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The generalized de Bruijn digraph GB(n, m) is the digraph
(V , A) where V = {0, 1, . . . , m −1} and (i , j ) ∈ A if and only
if j ≡ in + α (mod m) for some α ∈ {0, 1, 2, . . . , n − 1}.
By replacing each arc of GB(n, m) with an undirected
edge and eliminating loops and multi-edges, we obtain
the generalized undirected de Bruijn graph UGB(n, m). In
this article, we prove that when 2n2 ≤ m ≤ n3 the diame-
ter of UGB(n, m) is equal to 3. We also show that for pairs
(n, m) where n2 < m < 2n2 the diameter of UGB(n, m) can
be 2 or 3. © 2008 Wiley Periodicals, Inc. NETWORKS, Vol. 52(4),
180–182 2008
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1. INTRODUCTION

All graphs considered in this study are undirected, loop-
less, and without multi-edges. For graph theory terminology,
we follow [9]. For brevity, [a, b] = {a, a+1, . . . , b} is defined
here for non-negative integers a and b where a < b.

Imase and Itoh [6] were the first to generalize the well-
known de Bruijn network B(d, n), independently followed by
Reddy et al. [8]. The generalized de Bruijn digraph GB(n, m)

is the directed graph, whose vertices are 0, 1, . . . , m − 1, and
whose directed edges (arcs) are of the form

i → in + α (mod m), ∀i ∈ [0, m − 1] and ∀α ∈ [0, n − 1].

The generalized undirected de Bruijn graph is the undi-
rected graph derived from the generalized de Bruijn digraph
by replacing directed edges with undirected edges and omit-
ting loops and multi-edges. Such a graph is denoted here by
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UGB(n, m). The set of neighbors of any vertex i in UGB(n, m)

is N(i) = R(i) ∪ L(i), where

R(i) = {in + α (mod m) : α ∈ [0, n − 1]} and

L(i) = { j : jn + β ≡ i (mod m),

where β ∈ [0, n − 1], j ∈ [0, m − 1]}.

Therefore, if j ∈ R(i) then i ∈ L(j).
Imase and Itoh [6] proved that the generalized de Bruijn

digraph GB(n, m) is (n − 1)-connected and its diameter is
bounded above by �logn m�. Therefore, UGB(n, m) possesses
the same properties.

In the study of fault tolerance and transmission delay of
networks, the connectivity and diameter of the graph are two
very important parameters; these have been thoroughly stud-
ied by many authors [3, 4, 6, 10]. Since the de Bruijn graphs
B(d, n) are known to have short diameters and simple routing
strategies, they have been widely used as models for commu-
nication networks and multiprocessor systems [4]. However,
one of the disadvantages of de Bruijn graphs B(d, n) is the
restriction on the number of vertices dn. The generalized de
Bruijn graphs retain all of the properties of the de Bruijn
graphs, but have no restrictions on the number of vertices [4].
So, determining the connectivity and diameter of UGB(n, m)

is of relevant interest and importance.
Caro et al. [2] proved that UGB(n, n(n + 1)) has a w-wide-

diameter of 5 for w = 2(n − 1). Escuadro and Muga [5]
proved that UGB(n, n2) is 2(n − 1)-regular and has diame-
ter 2; in addition, they showed that the w-wide-diameter of
UGB(n, n2) is 4 for w = 2(n − 1) and n ≥ 4. Nochefranca
and Sy [7] proved that the diameter of UGB(n, n(n2 + 1)) is
4 for odd n ≥ 3. Caro and Zeratsion [3] recently proved that
the diameter of UGB(n, m) is 2 for m ∈ [n + 1, n2], and 3
for m ∈ [n2 + 1, n3] where n divides m. Caro et al. [1] also
provided an upper bound for the diameter of UGB(n, n2 + 1)

when n ≥ 5 is odd.
This work shows that the diameter of UGB(n, m) is 3

whenever n ≥ 2 and 2n2 ≤ m ≤ n3. Notably, for n2 <

m < 2n2, there are pairs (n, m) such that the diameter of
UGB(n, m) is 2 or 3. This work also verifies that the diameter
of UGB(n, n2+1) is 3 and the diameter of UGB(n, n2+2) is 2.
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2. UGB(n, m), 2n2 ≤ m ≤ n3

Let dG(x, y) denote the distance between two vertices x
and y in a graph (or directed graph) G, and let d(G) denote
the diameter of the graph G. We use < u, . . . , v > to denote
a path from u to v in G.

Imase and Itoh [6] proved that the diameter of the gen-
eralized de Bruijn digraph GB(n, m) is bounded above by
�logn m�, where �x� denotes the smallest integer not less than
x. Since for any two distinct vertices u and v in UGB(n, m),
the distance from u to v in the corresponding GB(n, m) pro-
vides an upper bound for the distance between u and v, we
have d(UGB(n, m)) ≤ d(GB(n, m)). Therefore, the following
bound is immediate.

Lemma 2.1. The diameter of the generalized undirected de
Bruijn graph UGB(n, m) is at most �logn m�.

On the other hand, in UGB(n, m), the degree of every ver-
tex is at most 2n. Therefore, from a vertex u of degree 2n−1,
one can reach at most (2n−1)+ (2n−1)2 +· · ·+ (2n − 1)d

vertices via a path of length d. With this observation, we get
the following lower bound for the diameter.

Lemma 2.2. �log2n−1 m� ≤ d(UGB(n, m)) for n + 1 ≤ m.

Corollary 2.3. The diameter of UGB(n, m) is 2 or 3 for
n2 ≤ m ≤ n3.

Proof. By Lemma 2.1 and �log2n−1 n2� = 2 for n > 2, we
have the result. ■

Now, we are ready to show our main results.

Theorem 2.4. For positive integers n ≥ 2 and 2n2 ≤ m ≤
n3, the diameter of UGB(n, m) is 3.

Proof. Let [0, m − 1] be the vertex set of G = UGB(n, m).
We claim that either dG(0, m − n) = 3 or dG(0, m − n −
1) = 3. For convenience, let j1 = m − n and j2 = m −
n − 1. By inspection, we have j1 
∈ N(0) and j2 
∈ N(0).
Therefore, it suffices to prove that either N(0) ∩ N(j1) = ∅
or N(0)∩ N(j2) = ∅, which implies that d(G) ≥ 3. Then, by
Corollary 2.3, the result follows.

By definition, N(0) = R(0) ∪ L(0) and N(j) = R(j) ∪
L(j) where j = j1 or j2 as the case may be. Therefore, it is
equivalent to show that [R(0) ∪ L(0)] ∩ [R(j) ∪ L(j)] = ∅.
We split the proof into four cases with the first three cases
dealing with j = j1 or j2.

Case 1. R(0) ∩ L(j) = ∅. Since
⋃

i∈R(0) R(i) =⋃
i∈[1,n−1] R(i) = [n, n2 − 1], neither j1 nor j2 are in⋃
i∈R(0) R(i). This implies that R(0) ∩ L(j) = ∅.

Case 2. R(0) ∩ R(j) = ∅. By the definition of R(j), R(j) =
{jn + α (mod m) : α ∈ [0, n − 1]}. Hence, it is clear that
R(0) ∩ R(j) = ∅.

Case 3. L(0) ∩ L(j) = ∅. Assume that L(0) ∩ L(j) 
= ∅.
Then there exists a k such that 0 ∈ R(k) and j ∈ R(k). This
implies that there exist α and β where 0 ≤ α, β ≤ n − 1
satisfying {

kn + α ≡ 0 (mod m),
kn + β ≡ j (mod m).

(2.1)

Therefore, β−α ≡ j (mod m) and −(n−1) ≤ β−α ≤ n−1.
Since β − α 
= j if β − α ≥ 0 and (−β + α) + m − n < m
or (−β + α) + m − n − 1 < m, we conclude that no solution
(α, β) exists for (2.1). Hence the case is proved.

Case 4. L(0) ∩ R(j) = ∅, j = j1 or j2. First, we define
δ(j1) = 0 and δ(j2) = 1. We claim that either 0 
∈⋃

i∈R(j1)
R(i) or 0 
∈ ⋃

i∈R(j2)
R(i). Assume that the above

assertion is not true. Then, there exist 0 ≤ α, β, γ , ε ≤ n − 1
such that{

((m − n − δ(j1))n + α)n + β ≡ 0 (mod m),
((m − n − δ(j2))n + γ )n + ε ≡ 0 (mod m).

Thus, {−n3 + αn + β ≡ 0 (mod m),
−n3 − n2 + γ n + ε ≡ 0 (mod m).

This implies that n2 + (α − γ )n + (β − ε) ≡ 0 (mod m).
Since both α − γ and β − ε are integers between −(n − 1)

and (n − 1), we have 2n2 > n2 + (α − γ )n + (β − ε) >

0. Therefore, we are not able to find (α, β, γ , ε) to satisfy
n2 + (α − γ )n + (β − ε) ≡ 0 (mod m). Hence, we conclude
that either 0 
∈ ⋃

i∈R(j1)
R(i) or 0 
∈ ⋃

i∈R(j2)
R(i) and thus

either L(0) ∩ R(j1) = ∅ or L(0) ∩ R(j2) = ∅.

Now, combining the above four cases and j 
∈ N(0), we
have either dG(0, j1) = 3 or dG(0, j2) = 3. ■

3. UGB(n, m), n2 < m < 2n2

Similar to Theorem 2.4, if we can find two vertices i, j ∈
[0, m − 1] such that dG(i, j) ≥ 3, then we can show that
d(G) ≥ 3. First, we find the diameter of UGB(n, n2 + 1).

Proposition 3.1. d(UGB(n, n2 + 1)) = 3 for n ≥ 4.

Proof. Let m = n2 + 1 and n ≥ 4. Consider i = n − 2 and
j = n2 − n + 2 in G = UGB(n, m). We claim dG(i, j) ≥ 3.
Since (n2 − n + 2)n + α ≡ n + 1 + α (mod m) > n − 2 =
i and (n − 2)n + α ≤ n2 − n − 1 < n2 − n + 2 = j,
i 
∈ R(j) and j 
∈ R(i) follow. Hence, it suffices to show that
[R(i) ∪ L(i)] ∩ [R(j) ∪ L(j)] = ∅ which can be broken down
into four cases.

• R(i) ∩ R(j) = ∅
Since (n − 2)n + α ≡ (n2 − n + 2)n + β (mod m), α − β ≡
3n + 2 (mod m). Clearly, there are no solutions for α and β

when n ≥ 4.
• R(i) ∩ L(j) = ∅

Since (ni + α)n + β ≡ j (mod m), we have αn + β ≡
i + j = n2 (mod m). By the fact |αn + β| ≤ n2 − 1, there are
no solutions for α and β.
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• L(i) ∩ R(j) = ∅
Since (nj + α)n + β ≡ i (mod m), we have αn + β ≡ n2

(mod m) and we are not able to find solutions for α and β.
• L(i) ∩ L(j) = ∅

Suppose not. Then there must exist k ∈ [0, n2] satisfying kn+
α ≡ i (mod m) and kn + β ≡ j (mod m). Therefore, |α −
β| = |i − j| = |n2 − 2n + 4| > n − 1. Again, this is not
possible.

We note here that d(UGB(n, n2 + 1)) = 2 for n = 2, 3.
To show the diameter of UGB(n, m) is equal to 2 for some

n2 < m < 2n2, we have to make sure that for each pair of
vertices i and j, N(i) ∩ N(j) 
= ∅ or i ∈ N(j). Surprisingly, if
m = n2 + 2, then the diameter of UGB(n, m) is equal to 2.

Proposition 3.2. d(UGB(n, n2 + 2)) = 2 for n ≥ 3.

Proof. Let m = n2 + 2. For any two distinct vertices x
and y in UGB(n, m), we claim that dG(x, y) ≤ 2. It suffices
to show that N(x) ∩ N(y) 
= ∅. Since N(x) = R(x) ∪ L(x)
and N(y) = R(y) ∪ L(y), we have to prove that one of the
following four conditions holds: (1) R(x) ∩ L(y) 
= ∅, (2)
R(y) ∩ L(x) 
= ∅, (3) R(x) ∩ R(y) 
= ∅ or (4) L(x) ∩ L(y)

= ∅.

Observe that R(x) ∩ L(y) 
= ∅ if and only if
(nx + α)n + β ≡ y (mod m) for some 0 ≤ α, β ≤ n − 1.
Therefore, y + 2x ≡ αn + β ∈ [0, n2 − 1] (mod m). In fact,
{αn + β : 0 ≤ α, β ≤ n − 1} = [0, n2 − 1]. This implies that
if y + 2x ∈ [0, n2 − 1] (mod m), then d(x, y) ≤ 2. On the
other hand, by considering R(y) ∩ L(x) 
= ∅, we have that if
x + 2y ∈ [0, n2 − 1] (mod m), then d(x, y) ≤ 2.

So, assume x + 2y and 2x + y are equal to either n2 or
n2 + 1 (mod m). Since 0 ≤ x 
= y ≤ n2 + 1, there are only
six possible cases to consider.

But, if 2x+y = n2 and 2y+x = 2n2 +2, then 3n2 +2 ≡ 0
(mod 3) which is not possible. By the same reason, 2x + y =
n2 +1 and 2y+x = 2n2 +3 are not possible. Furthermore, if
2x+y = n2 and 2y+x = 2n2 +3, then y−x = n2 +3, which
is not possible, either. Thus, we have exactly three cases to
check.

• 2x + y = n2 and 2y + x = n2 + 1
In this case, since 2n2+1 ≡ 0 (mod 3), we may let n = 3p+1.
Then x = 3p2 + 2p and y = 3p2 + 2p + 1. Hence, we have
a path < 3p2 + 2p, p, 3p2 + 2p + 1 > from x to y, which
concludes the proof.

• 2x + y = n2 + 1 and 2y + x = 2n2 + 2
We have x = 0 and y = n2 + 1. Therefore, the path < 0, n,
n2 + 1 > connects x and y for n ≥ 3, giving the result.

• 2x + y = 2n2 + 2 and 2y + x = 2n2 + 3
Since 4n2 + 5 ≡ 0 (mod 3), it suffices to consider the cases
n ≡ 1, 2 (mod 3). First, if n = 3p+1, then let x = 6p2+4p+2

and y = 6p2 +4p+1. It is easy to see that < 6p2 +4p+1, 2p,
6p2 + 4p + 2 > is a path from x to y. If n = 3p + 2, the proof
follows by letting x = 6p2 + 8p + 4 and y = 6p2 + 8p + 3.

■
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