On the Diameter of the Generalized Undirected de Bruijn Graphs $UG_{B}(n, m), n^{2} < m \leq n^{3}$

Jyhmin Kuo and Hung-Lin Fu

Department of Applied Mathematics, National Chiao Tung University, Hsin Chu, Taiwan 30050, Republic of China

The generalized de Bruijn digraph $G_{\rm B}(n, m)$ is the digraph (V, A) where $V = \{0, 1, \ldots, m-1\}$ and $(i, j) \in A$ if and only if $j \equiv in + \alpha \pmod{m}$ for some $\alpha \in \{0, 1, 2, \ldots, n-1\}$. By replacing each arc of $G_{\rm B}(n, m)$ with an undirected edge and eliminating loops and multi-edges, we obtain the generalized undirected de Bruijn graph $UG_{\rm B}(n, m)$. In this article, we prove that when $2n^2 \leq m \leq n^3$ the diameter of $UG_{\rm B}(n, m)$ is equal to 3. We also show that for pairs (n, m) where $n^2 < m < 2n^2$ the diameter of $UG_{\rm B}(n, m)$ can be 2 or 3. © 2008 Wiley Periodicals, Inc. NETWORKS, Vol. 52(4), 180–182 2008

Keywords: generalized de Bruijn graph; diameter; undirected graph

1. INTRODUCTION

All graphs considered in this study are undirected, loopless, and without multi-edges. For graph theory terminology, we follow [9]. For brevity, $[a, b] = \{a, a+1, ..., b\}$ is defined here for non-negative integers a and b where a < b.

Imase and Itoh [6] were the first to generalize the wellknown de Bruijn network B(d, n), independently followed by Reddy et al. [8]. The generalized de Bruijn digraph $G_B(n, m)$ is the directed graph, whose vertices are 0, 1, ..., m - 1, and whose directed edges (arcs) are of the form

 $i \to in + \alpha \pmod{m}, \quad \forall i \in [0, m-1] \text{ and } \forall \alpha \in [0, n-1].$

The generalized undirected de Bruijn graph is the undirected graph derived from the generalized de Bruijn digraph by replacing directed edges with undirected edges and omitting loops and multi-edges. Such a graph is denoted here by $UG_{B}(n, m)$. The set of neighbors of any vertex *i* in $UG_{B}(n, m)$ is $N(i) = R(i) \cup L(i)$, where

 $R(i) = \{in + \alpha \pmod{m} : \alpha \in [0, n-1]\} \text{ and}$ $L(i) = \{j : jn + \beta \equiv i \pmod{m},$ where $\beta \in [0, n-1], j \in [0, m-1]\}.$

Therefore, if $j \in R(i)$ then $i \in L(j)$.

Imase and Itoh [6] proved that the generalized de Bruijn digraph $G_B(n,m)$ is (n-1)-connected and its diameter is bounded above by $\lceil \log_n m \rceil$. Therefore, $UG_B(n,m)$ possesses the same properties.

In the study of fault tolerance and transmission delay of networks, the connectivity and diameter of the graph are two very important parameters; these have been thoroughly studied by many authors [3, 4, 6, 10]. Since the de Bruijn graphs B(d, n) are known to have short diameters and simple routing strategies, they have been widely used as models for communication networks and multiprocessor systems [4]. However, one of the disadvantages of de Bruijn graphs B(d, n) is the restriction on the number of vertices d^n . The generalized de Bruijn graphs retain all of the properties of the de Bruijn graphs, but have no restrictions on the number of vertices [4]. So, determining the connectivity and diameter of $UG_B(n,m)$ is of relevant interest and importance.

Caro et al. [2] proved that $UG_B(n, n(n + 1))$ has a *w*-widediameter of 5 for w = 2(n - 1). Escuadro and Muga [5] proved that $UG_B(n, n^2)$ is 2(n - 1)-regular and has diameter 2; in addition, they showed that the *w*-wide-diameter of $UG_B(n, n^2)$ is 4 for w = 2(n - 1) and $n \ge 4$. Nochefranca and Sy [7] proved that the diameter of $UG_B(n, n(n^2 + 1))$ is 4 for odd $n \ge 3$. Caro and Zeratsion [3] recently proved that the diameter of $UG_B(n, m)$ is 2 for $m \in [n + 1, n^2]$, and 3 for $m \in [n^2 + 1, n^3]$ where *n* divides *m*. Caro et al. [1] also provided an upper bound for the diameter of $UG_B(n, n^2 + 1)$ when $n \ge 5$ is odd.

This work shows that the diameter of $UG_{\rm B}(n,m)$ is 3 whenever $n \ge 2$ and $2n^2 \le m \le n^3$. Notably, for $n^2 < m < 2n^2$, there are pairs (n,m) such that the diameter of $UG_{\rm B}(n,m)$ is 2 or 3. This work also verifies that the diameter of $UG_{\rm B}(n,n^2+1)$ is 3 and the diameter of $UG_{\rm B}(n,n^2+2)$ is 2.

Received June 2006; accepted September 2007

Correspondence to: J. Kuo, No. 37, Minxiang 1st St., East District, Hsinchu City 300, Taiwan; e-mail: jyhminkuo@gmail.com

DOI 10.1002/net.20228

Published online 11 January 2008 in Wiley InterScience (www. interscience.wiley.com).

^{© 2008} Wiley Periodicals, Inc.

2. $UG_{B}(n,m), 2n^{2} \le m \le n^{3}$

Let $d_G(x, y)$ denote the distance between two vertices x and y in a graph (or directed graph) G, and let d(G) denote the diameter of the graph G. We use $\langle u, \ldots, v \rangle$ to denote a path from u to v in G.

Imase and Itoh [6] proved that the diameter of the generalized de Bruijn digraph $G_B(n,m)$ is bounded above by $\lceil \log_n m \rceil$, where $\lceil x \rceil$ denotes the smallest integer not less than x. Since for any two distinct vertices u and v in $UG_B(n,m)$, the distance from u to v in the corresponding $G_B(n,m)$ provides an upper bound for the distance between u and v, we have $d(UG_B(n,m)) \leq d(G_B(n,m))$. Therefore, the following bound is immediate.

Lemma 2.1. The diameter of the generalized undirected de Bruijn graph $UG_B(n,m)$ is at most $\lceil \log_n m \rceil$.

On the other hand, in $UG_B(n, m)$, the degree of every vertex is at most 2n. Therefore, from a vertex u of degree 2n - 1, one can reach at most $(2n - 1) + (2n - 1)^2 + \cdots + (2n - 1)^d$ vertices via a path of length d. With this observation, we get the following lower bound for the diameter.

Lemma 2.2. $\lceil \log_{2n-1} m \rceil \le d(UG_B(n, m)) \text{ for } n+1 \le m.$

Corollary 2.3. The diameter of $UG_B(n,m)$ is 2 or 3 for $n^2 \le m \le n^3$.

Proof. By Lemma 2.1 and $\lceil \log_{2n-1} n^2 \rceil = 2$ for n > 2, we have the result.

Now, we are ready to show our main results.

Theorem 2.4. For positive integers $n \ge 2$ and $2n^2 \le m \le n^3$, the diameter of $UG_B(n,m)$ is 3.

Proof. Let [0, m - 1] be the vertex set of $G = UG_B(n, m)$. We claim that either $d_G(0, m - n) = 3$ or $d_G(0, m - n - 1) = 3$. For convenience, let $j_1 = m - n$ and $j_2 = m - n - 1$. By inspection, we have $j_1 \notin N(0)$ and $j_2 \notin N(0)$. Therefore, it suffices to prove that either $N(0) \cap N(j_1) = \emptyset$ or $N(0) \cap N(j_2) = \emptyset$, which implies that $d(G) \ge 3$. Then, by Corollary 2.3, the result follows.

By definition, $N(0) = R(0) \cup L(0)$ and $N(j) = R(j) \cup L(j)$ where $j = j_1$ or j_2 as the case may be. Therefore, it is equivalent to show that $[R(0) \cup L(0)] \cap [R(j) \cup L(j)] = \emptyset$. We split the proof into four cases with the first three cases dealing with $j = j_1$ or j_2 .

CASE 1. $R(0) \cap L(j) = \emptyset$. Since $\bigcup_{i \in R(0)} R(i) = \bigcup_{i \in [1,n-1]} R(i) = [n, n^2 - 1]$, neither j_1 nor j_2 are in $\bigcup_{i \in R(0)} R(i)$. This implies that $R(0) \cap L(j) = \emptyset$.

CASE 2. $R(0) \cap R(j) = \emptyset$. By the definition of $R(j), R(j) = \{jn + \alpha \pmod{m} : \alpha \in [0, n - 1]\}$. Hence, it is clear that $R(0) \cap R(j) = \emptyset$.

CASE 3. $L(0) \cap L(j) = \emptyset$. Assume that $L(0) \cap L(j) \neq \emptyset$. Then there exists a k such that $0 \in R(k)$ and $j \in R(k)$. This implies that there exist α and β where $0 \leq \alpha, \beta \leq n - 1$ satisfying

$$\begin{cases} kn + \alpha \equiv 0 \pmod{m}, \\ kn + \beta \equiv j \pmod{m}. \end{cases}$$
(2.1)

Therefore, $\beta - \alpha \equiv j \pmod{m}$ and $-(n-1) \leq \beta - \alpha \leq n-1$. Since $\beta - \alpha \neq j$ if $\beta - \alpha \geq 0$ and $(-\beta + \alpha) + m - n < m$ or $(-\beta + \alpha) + m - n - 1 < m$, we conclude that no solution (α, β) exists for (2.1). Hence the case is proved.

CASE 4. $L(0) \cap R(j) = \emptyset$, $j = j_1$ or j_2 . First, we define $\delta(j_1) = 0$ and $\delta(j_2) = 1$. We claim that either $0 \notin \bigcup_{i \in R(j_1)} R(i)$ or $0 \notin \bigcup_{i \in R(j_2)} R(i)$. Assume that the above assertion is not true. Then, there exist $0 \le \alpha, \beta, \gamma, \epsilon \le n-1$ such that

$$\begin{cases} ((m-n-\delta(j_1))n+\alpha)n+\beta \equiv 0 \quad (\text{mod } m), \\ ((m-n-\delta(j_2))n+\gamma)n+\epsilon \equiv 0 \quad (\text{mod } m). \end{cases}$$

Thus,

$$\begin{cases} -n^3 + \alpha n + \beta \equiv 0 \quad (\text{mod } m), \\ -n^3 - n^2 + \gamma n + \epsilon \equiv 0 \quad (\text{mod } m). \end{cases}$$

This implies that $n^2 + (\alpha - \gamma)n + (\beta - \epsilon) \equiv 0 \pmod{m}$. Since both $\alpha - \gamma$ and $\beta - \epsilon$ are integers between -(n - 1) and (n - 1), we have $2n^2 > n^2 + (\alpha - \gamma)n + (\beta - \epsilon) > 0$. Therefore, we are not able to find $(\alpha, \beta, \gamma, \epsilon)$ to satisfy $n^2 + (\alpha - \gamma)n + (\beta - \epsilon) \equiv 0 \pmod{m}$. Hence, we conclude that either $0 \notin \bigcup_{i \in R(j_1)} R(i)$ or $0 \notin \bigcup_{i \in R(j_2)} R(i)$ and thus either $L(0) \cap R(j_1) = \emptyset$ or $L(0) \cap R(j_2) = \emptyset$.

Now, combining the above four cases and $j \notin N(0)$, we have either $d_G(0, j_1) = 3$ or $d_G(0, j_2) = 3$.

3. $UG_{B}(n,m), n^{2} < m < 2n^{2}$

Similar to Theorem 2.4, if we can find two vertices $i, j \in [0, m - 1]$ such that $d_G(i, j) \ge 3$, then we can show that $d(G) \ge 3$. First, we find the diameter of $UG_B(n, n^2 + 1)$.

Proposition 3.1. $d(UG_B(n, n^2 + 1)) = 3$ for $n \ge 4$.

Proof. Let $m = n^2 + 1$ and $n \ge 4$. Consider i = n - 2 and $j = n^2 - n + 2$ in $G = UG_B(n, m)$. We claim $d_G(i, j) \ge 3$. Since $(n^2 - n + 2)n + \alpha \equiv n + 1 + \alpha \pmod{m} > n - 2 = i$ and $(n - 2)n + \alpha \le n^2 - n - 1 < n^2 - n + 2 = j$, $i \notin R(j)$ and $j \notin R(i)$ follow. Hence, it suffices to show that $[R(i) \cup L(i)] \cap [R(j) \cup L(j)] = \emptyset$ which can be broken down into four cases.

- $R(i) \cap R(j) = \emptyset$ Since $(n-2)n + \alpha \equiv (n^2 - n + 2)n + \beta \pmod{m}$, $\alpha - \beta \equiv 3n + 2 \pmod{m}$. Clearly, there are no solutions for α and β when $n \ge 4$.
- $R(i) \cap L(j) = \emptyset$ Since $(ni + \alpha)n + \beta \equiv j \pmod{m}$, we have $\alpha n + \beta \equiv i + j = n^2 \pmod{m}$. By the fact $|\alpha n + \beta| \le n^2 - 1$, there are no solutions for α and β .

- L(i) ∩ R(j) = Ø
 Since (nj + α)n + β ≡ i (mod m), we have αn + β ≡ n² (mod m) and we are not able to find solutions for α and β.
 L(i) ∩ L(j) = Ø
- Suppose not. Then there must exist $k \in [0, n^2]$ satisfying $kn + \alpha \equiv i \pmod{m}$ and $kn + \beta \equiv j \pmod{m}$. Therefore, $|\alpha \beta| = |i j| = |n^2 2n + 4| > n 1$. Again, this is not possible.

We note here that $d(UG_B(n, n^2 + 1)) = 2$ for n = 2, 3. To show the diameter of $UG_B(n, m)$ is equal to 2 for some $n^2 < m < 2n^2$, we have to make sure that for each pair of vertices *i* and *j*, $N(i) \cap N(j) \neq \emptyset$ or $i \in N(j)$. Surprisingly, if $m = n^2 + 2$, then the diameter of $UG_B(n, m)$ is equal to 2.

Proposition 3.2. $d(UG_B(n, n^2 + 2)) = 2$ for $n \ge 3$.

Proof. Let $m = n^2 + 2$. For any two distinct vertices x and y in $UG_B(n, m)$, we claim that $d_G(x, y) \le 2$. It suffices to show that $N(x) \cap N(y) \ne \emptyset$. Since $N(x) = R(x) \cup L(x)$ and $N(y) = R(y) \cup L(y)$, we have to prove that one of the following four conditions holds: (1) $R(x) \cap L(y) \ne \emptyset$, (2) $R(y) \cap L(x) \ne \emptyset$, (3) $R(x) \cap R(y) \ne \emptyset$ or (4) $L(x) \cap L(y) \ne \emptyset$.

Observe that $R(x) \cap L(y) \neq \emptyset$ if and only if $(nx + \alpha)n + \beta \equiv y \pmod{m}$ for some $0 \leq \alpha, \beta \leq n - 1$. Therefore, $y + 2x \equiv \alpha n + \beta \in [0, n^2 - 1] \pmod{m}$. In fact, $\{\alpha n + \beta : 0 \leq \alpha, \beta \leq n - 1\} = [0, n^2 - 1]$. This implies that if $y + 2x \in [0, n^2 - 1] \pmod{m}$, then $d(x, y) \leq 2$. On the other hand, by considering $R(y) \cap L(x) \neq \emptyset$, we have that if $x + 2y \in [0, n^2 - 1] \pmod{m}$, then $d(x, y) \leq 2$.

So, assume x + 2y and 2x + y are equal to either n^2 or $n^2 + 1 \pmod{m}$. Since $0 \le x \ne y \le n^2 + 1$, there are only six possible cases to consider.

But, if $2x + y = n^2$ and $2y + x = 2n^2 + 2$, then $3n^2 + 2 \equiv 0 \pmod{3}$ which is not possible. By the same reason, $2x + y = n^2 + 1$ and $2y + x = 2n^2 + 3$ are not possible. Furthermore, if $2x + y = n^2$ and $2y + x = 2n^2 + 3$, then $y - x = n^2 + 3$, which is not possible, either. Thus, we have exactly three cases to check.

- $2x + y = n^2$ and $2y + x = n^2 + 1$ In this case, since $2n^2 + 1 \equiv 0 \pmod{3}$, we may let n = 3p+1. Then $x = 3p^2 + 2p$ and $y = 3p^2 + 2p + 1$. Hence, we have a path $< 3p^2 + 2p$, p, $3p^2 + 2p + 1 >$ from x to y, which concludes the proof.
- $2x + y = n^2 + 1$ and $2y + x = 2n^2 + 2$ We have x = 0 and $y = n^2 + 1$. Therefore, the path $< 0, n, n^2 + 1 >$ connects x and y for $n \ge 3$, giving the result.
- $2x + y = 2n^2 + 2$ and $2y + x = 2n^2 + 3$ Since $4n^2 + 5 \equiv 0 \pmod{3}$, it suffices to consider the cases $n \equiv 1, 2 \pmod{3}$. First, if n = 3p+1, then let $x = 6p^2 + 4p + 2$

and $y = 6p^2 + 4p + 1$. It is easy to see that $< 6p^2 + 4p + 1$, 2p, $6p^2 + 4p + 2 >$ is a path from x to y. If n = 3p + 2, the proof follows by letting $x = 6p^2 + 8p + 4$ and $y = 6p^2 + 8p + 3$.

Acknowledgments

The authors are grateful to the referees and editors for their very valuable comments and suggestions which yielded an improved version of this article.

REFERENCES

- [1] J.D.L. Caro, L.R. Nochefranca, and P.W. Sy, On the diameter of the generalized de Bruijn graphs $UG_{\rm B}(n, n^2 + 1)$, 2000 International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN '00), Washington, DC, USA, December 07–07, 2000, pp. 57–63.
- [2] J.D.L. Caro, L.R. Nochefranca, P.W. Sy, and F.P. Muga, II, The wide-diameter of the generalized de Bruijn graphs $UG_{\rm B}(n,n(n+1))$, 1996 International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN '96), Washington, DC, USA, June 12–14, 1996, pp. 334–336.
- [3] J.D.L. Caro and T.W. Zeratsion, On the diameter of a class of the generalized de Bruijn graphs, 2002 International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN '02), Washington, DC, USA, May 22–24, 2002, pp. 197–202.
- [4] D.Z. Du and F.K. Hwang, Generalized de Bruijn digraphs, Networks 18 (1988), 27–38.
- [5] H.E. Escuadro and F.P. Muga, II, Wide-diameter of generalized undirected de Bruijn graph UG_B(n, n²), 1997 International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN '97), Washington, DC, USA, December 18–20, 1997, pp. 417–420.
- [6] M. Imase and M. Itoh, Design to minimize diameter on building-block network, IEEE Trans Comput C 30 (1981), 439–442.
- [7] L.R. Nochefranca and P.W. Sy, The diameter of the generalized de Bruijn graph $UG_{\rm B}(n, n(n^2 + 1))$, 1997 International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN '97), Washington, DC, USA, December 18–20, 1997, pp. 421–423.
- [8] S.M. Reddy, D.K. Pradhan, and J.G. Kuhl, Directed graphs with minimal diameter and maximal connectivity, School of Engineering, Oakland University Technical Report, Oakland, USA, July 1980.
- [9] D.B. West, Introduction to graph theory, Prentice-Hall, Upper Saddle River, NJ, 2001.
- [10] J.M. Xu, Wide diameters of cartesian product graphs and digraphs, J Combin Optim 8 (2004), 171–181.