

3.1 光電性質 (Electro-Optical) 討論

光電性質的探討以液晶最常普便使用的物理性質作為一個分析 依據,voltage-transmittance、contrast ratio、response time。而此次試 片的準備上皆以兩片為一單位,所以量測上以取平均值為主。

首先在 V-T curve 方面,每片 test cell 的測量條件均為溫度於室 溫,給予頻率 f = 1K Hz,給予波形為方型波,每次增加均方根電壓 約 0.25~0.3 V_{rms}。圖二十八為 M1 之 V-T curve 圖表,可以看見其 穿透度 10% 時,driving voltage 約 2.76 V_{rms},而當穿透度 90% 時, driving voltage 約 6.28 V_{rms}。

圖二十八、單體 M1 穿透度對操作電壓作圖

圖二十九為 M2 之 V-T curve 圖表,其穿透度 10% 時,driving voltage 約 2.84 V_{rms},而當穿透度 90% 時,driving voltage 約 6.46 V_{rms}。

 $V_{rms}\,\,\circ\,\,$

圖三十、單體 M3 穿透度對操作電壓作圖

圖三十一為 STD02 之 V-T curve 圖表,其穿透度 10% 時,driving voltage 約 2.69 V_{rms} ,而當穿透度 90% 時,driving voltage 約 6.40 V_{rms} 。


```
6.36 \; V_{rms} \; \circ \;
```


圖三十二、單體 STD03 穿透度對操作電壓作圖

以上 STD02、STD03、M1、M2、M3 的光通量的多寡其實差 不多,因為混入的單體成分不多,影響光通量的因素大部分取決於液 晶分子,由於 VA-mode cell 未通電時液晶分子是站立垂直於基板, 通電後液晶分子會平行躺在基板上,躺下後液晶分子排列的方向則是 看刷磨 (Rubbing) 的方向,排列整齊的液晶分子會使暗態 (Dark State)更明顯。單體在照光後形成高分子垂直配向層,液晶分子會隨 著配向的方向做一整齊的排列,由於本實驗用的 test cell 為 non-rubbing,所以亮態及暗態的光通量與配向的好壞有極大的關係, 圖三十三為垂直配向層形成說明圖。

圖三十三、曝光前後形成配向層示意圖

統計以上 V-T curve 的數據,整理成下表,各單體之操作電壓於 穿透度 10% 及 90% 皆相似,整體趨勢正常。

sample	STD02	STD03	M1	M2	M3
T _{10%} 時, driving	2.69	2.82	2.76	2.84	2.70
voltage (V _{rms})					
T _{90%} 時,driving	6.40	6.36	6.28	6.46	6.84
voltage (V _{rms})					

表三,單體穿透度對應的操作電壓

North Contraction

藉由亮態及暗態的比值可以計算出對比度 (Contrast Rratio),「對 比度」是指「最亮畫面」 (白色) 與「最暗畫面」 (黑色) 之間亮度 的比率。對比值越大,對比度就越大就越能顯示豐富的色彩層次和細 節而正確的算法表示為: 全亮 (Ton)÷全暗 (Toff) = 對比值 ,本實 驗測量所使用的 He-Ne laser beam 波長為 633 nm 的紅色光源,明 暗對比上並沒有白色光源銳利,但就各單體對比的趨勢上是符合的, 整理如下表, test cell 兩片為一單位,所測出的結果相似。對比度好 壞之順序比為: STD03>STD02>M3>M2>M1。

sample	STD02	STD03	M1	M2	M3
Bright State	0.969	0.935	0.949	0.911	0.894
Dark State	0.001	0.001	0.0014	0.0013	0.001
1st C.R. ^a	960:1	940:1	680:1	700:1	890:1
Bright State	0.912	0.965	0.885	0.929	0.883
Dark State	0.001	0.001	0.0013	0.0013	0.001
2nd $C.R.^a$	910:1	960:1	680:1	710:1	880:1

表四,各單體之明暗對比度

^a Contrast Rratio 簡稱 C.R.

測量反應時間 (t_{on}) 此光電性質前,須先設定驅動波形,波形設 定示意圖如下,測量時利用數位示波器給予一 60 Hz 的方型波,並 控制調幅的模式 (2 Hz),兩個相加而成即為驅動波形, low level 是 V_{pp} 為 off 時,而 high level 是 V_{pp} 為 on 狀態,隨著 V_{pp} 值增加 high level 會變高, low level 則保持不變。

圖三十四、驅動波形設定圖示

驅動波形設定完成後, rise time 及 decay time 皆有測量,但考 慮到 test cell 的 cell gap 是 3.8 µm,因為 cell gap 較小的關係,液 晶分子躺下的瞬間即 t_{on},是決定整體反應時間的重要依據,所以 t_{off} 上各單體的結果皆相似,故數據呈現上以 t_{on} 為目標做測量。

圖三十五為 M1 的反應時間 t_{on} 圖表,而在 4 V_{rms} 時兩片 test cell 的平均值有最快的 t_{on} 約 8.17 ms。

圖三十五、單體 M1 之均方根電壓 V_{rms} 對 t_{on} 作圖

圖三十五為 M2 的反應時間 t_{on} 圖表,而在 $4 V_{rms}$ 時兩片 test cell 的平均值有最快的 t_{on} 約 8.29 ms。

圖三十七、單體 M3 之均方根電壓 V_{rms} 對 t_{on} 作圖

圖三十八為 STD02 的反應時間 t_{on} 圖表,而在 4 V_{rms} 時兩片 test cell 的平均值有最快的 t_{on} 約 6.43 ms。

圖三十九、單體 STD03 之均方根電壓 V_{rms} 對 t_{on} 作圖

綜合以上各 t_{on} 的圖表整理了如圖四十,可以發現 t_{on} 的快慢順 序為: STD02>STD03>M1>M2>M3,不僅僅是在 4V_{rms} 時 t_{on} 順 序如此,隨著 voltage 的增加,此快慢順序也維持不變。

表五,各單體於特定均方根電壓 Vrms 時之 ton 時間

sample	t _{on} (ms)				
V _{rms}	STD02	STD03	M1	M2	M3
3.0	12.6	12.9	13.9	15.1	15.2
3.5	8.99	9.21	11.1	10.2	10.6
4.0	6.43	6.53	8.17	8.29	8.82
4.5	6.6	6.8	12.0	11.3	12.4
5.0	8.6	10.5	17.1	18.4	19.1
5.5	12.8	17.6	27.7	25.9	32.8
6.0	17.1	27.3	42.7	34.8	46.0
6.5	25.5	34.7	48.2	43.8	56.9
7.0	36.7	42.3	62.3	50.2	63.6

數據上顯示 STD02 之 t_{on} 為最快,而 M3 為最慢,可以從單 體結構來做探討,單體 STD02 分子結構因兩苯環相連是 naphthalene 架構,立體空間來看似同平面,相對的 M3 分子結構因 兩苯環並無緊密相連是 biphenyl 架構,立體空間來看非同平面。就 立體障礙度來說明,M3 之空間障礙確實比 STD02 來得大,可由圖 四十一 3D 分子模擬來看,中心核雙苯環上導入氟原子或甲基取代 之 M 系列單體,以加大雙苯環彼此的扭轉角度,減少分子間強烈的 π-π interaction,降低黏度及熔點,而 biphenyl 架構上兩苯環的主軸 相互扭轉,而 naphthalene 架構上兩苯環的主軸較 biphenyl 平面,立 體空間上 biphenyl 較 naphthalene 佔的多所以立體障礙也

較大。當單體經過 UV 曝光後形成垂直配向層時,也會因單體本身 立體障礙大導致所形成的高分子也會有較大的立體障礙,也因為如此 當 cell 通電時,液晶分子躺下瞬間要是遇到的立體障礙較大也會遲 緩反應時間,同理可印證 STD03、M2 及 M1 單體反應時間上的順 序比,由於甲基團的立體障礙大於氟原子,接在 M2 及 M3 上的甲 基團相較於接在 M1 上的氟原子立體障礙來得大,所以在反應時間 上是 M1 快於 M2,而由接一個甲基團的 M2 快於接兩個甲基團的 M3,相對於無接任何取代基的 STD02 及 STD03 較慢約 2 ms,可 見取代基會影響到形成高分子後的光電性質,故反應時間的快慢排序 為: STD02>STD03>M1>M2>M3。

此次光學測量主要是以線偏光做背景,相較於圓偏光確實在 ton 上有 不及的地方,液晶倒下的瞬間圓偏光能準確做到補償的效果,任一角 度的光通量變化量能立即記錄下來,而線偏光只能紀錄同一方向的光 通量變化,導致當電壓升高時 ton 值較圓偏光測出的結果來得慢,且 當電壓持續增加時,液晶倒下的速度會越快,但由於線偏光的關係, 液晶倒下的方向不一,能夠偵測的角度有限,而反應時間上一直在紀 錄,所以反應時間對電壓作圖的趨勢是先降後升 3.2 高分子構型與粗糙度(roughness)探討

此部份要探討的是 morphology 及 roughness,藉由儀器的分析 來知道這五種單體經由照光後所形成的形態及粗糙度。AFM 測量 條件 data scale: 200 nm; scan size: 5.00 µm; scan rate: 0.4 Hz。SEM 测量條件 Ext. voltage: 15 kV; emission current: 10 μA Roughness 由 AFM 測量得到,是為了與 SEM 拍照出來之 morphology 做搭配, 各單體經過曝光後形成之高分子其 morphology 可從文獻上^[14]推測 而知,呈現顆粒狀,原因是各單體分子結構上皆無烷鏈段 (Spacers) 導致剛硬性較大,且單體於 cell 的含量比一般 PSLCs 所使用的量 還來得少只有 0.3%,難以形成纖維狀的高分子,但分佈排列上卻相 當地均勻,其高分子井然有序的排列對顯示器的對比度是非常重 要,而曝光過程中其 roughness 會隨著曝光時間增長而提升平均值 ^[22],且對比度跟配向排列整齊有很大的關係。以下為 test cell 剖片 後進行 morphology 及 roughness 之分析結果,圖四十二為 M1 單 體曝光後 AFM 之照片,圖四十二 (a) 及 (b) 為第一片測量之結 果,其 roughness 約在 15.6 nm,圖四十二 (c) 及 (d) 是第二片测 量之結果,其 roughness 約在 15.8 nm,兩次測量結果平均值是 15.75 nm 對此結果可顯示兩片 test cell 之 roughness 值相近,對照

- 49 -

SEM 圖來看,如圖 四十三(a) 倍率 10000 倍及(b) 60000 倍,可清 楚看到確實是呈顆粒狀均勻分布。顆粒直徑大約 50~100 nm 不等, 且有些微的聚集現象,但整體上排列算整齊。

圖四十三、M1 單體 SEM 正面倍率圖(a)10000 倍及(b)60000 倍

圖四十四為 M2 單體曝光後 AFM 之照片,圖四十四 (a) 及 (b) 為 第一片測量之結果,其 roughness 約在 14.97 nm,而圖四十四 (c) 及 (d) 是第二片測量之結果,其 roughness 約在 14.96 nm,兩次測量之 結果取平均值是 14.96 nm,平均值比 M1 稍小 1 nm,對照 SEM 相

圖四十四、M2 單體 AFM 正面及側面照片

片來看如圖四十五 (a)倍率 10000 倍及(b) 60000 倍,其聚集現象較 M1 嚴重些,原因出於 M2 分子上之甲基團與液晶分子互溶性較 M1 分子上之氟原子佳,所以在相分離過程中,M1 分離較完全,而 M2 與液晶分子間還存有一些作用力,所以聚集現象較 M1 明顯。

圖四十五、M2 單體 SEM 正面倍率圖 (a) 10000 倍及 (b) 60000 倍 圖四十六為 M3 單體曝光後 AFM 之照片,圖四十六 (a) 及 (b) 為 第一片測量之結果,其 roughness 約在 12.20 nm,而圖四十六 (c) 及 (d) 是第二片測量之結果,其 roughness 約在 12.22 nm,兩次測量

圖四十六、M3 單體 AFM 正面及側面照片

之結果取平均值是 12.21 nm,發現 M3 之 roughness 是最小的,較 M2小約3 nm,但其聚集現象卻與 M2 相似,如 SEM 相片下圖四十 七(a)倍率 10000 倍及(b) 60000 倍,發現可由 10000 倍率相片中印證 M3 之 roughness 是較平坦的。綜觀以上 M1、M2及 M3 發現 roughness 之大小順序是 M1>M2>M3,此現象與之前提到的反應時間 ton 是 同一結果,而與對比度好壞順序剛好相反,對於此規律現象,合理推 測與硬段上所連接之取代基有密切的關係。

圖四十七、M3 單體 SEM 正面倍率圖(a)10000 倍及(b)60000 倍 圖四十八為 STD02 單體曝光後 AFM 之照片,圖四十八 (a) 及 (b) 為第一片測量之結果,其 roughness 約在 19.95 nm,而圖四十八 (c) 及 (d) 是第二片測量之結果,其 roughness 約在 19.23 nm,兩次測 量之結果取平均值是 19.59 nm,發現 STD02 之 roughness 比 M1、 M2 及 M3 還來得大,較 M1 大約 4 nm 左右,而較 M3 大約 7 nm,就 AFM 照片來看,表面的確有較多突出物,且較大顆粒甚多。

以 SEM 相片下圖四十九 (a)倍率 10000 倍及(b)60000 倍, 顆粒狀分佈 均勻整齊, 且明顯顆粒較大顆, 也是有聚集現象, 聚集後的顆粒大小 可達 150 nm。

圖四十九、STD02 單體 SEM 正面倍率圖(a)10000 倍及(b)60000 倍

圖五十為 STD03 單體曝光後 AFM 之照片,圖五十 (a) 及 (b) 為 第一片測量之結果,其 roughness 約在 18.46 nm,而圖五十 (c)及(d) 是第二片測量之結果,其 roughness 約在 16.65 nm,兩次測量之結果 取平均值是 17.55 nm。

圖五十、STD03 單體 AFM 正面及側面照片

此 test cell 兩片測量的結果有些微的不同,兩次測量出來的結果約差 2 nm,可能是曝光條件有些小誤差導致兩片 roughness 之差異性,但 整體上皆符合趨勢,對照圖五十一 SEM 相片 (a) 倍率 10000 倍及 (b) 60000 倍,其高分子分佈均勻且密集。

圖五十一、STD03 單體 SEM 正面倍率圖(a)10000 倍及(b)60000 倍 Roughness 大小順序比為: STD02>STD03>M1>M2>M3,此結果 與反應時間 ton 的快慢順序完全符合,且與立體障礙大小順序完全相 反,可發現除了光電性質而言,連 roughness 受單體結構上的影響都 甚大,而在 morphology 方面,高分子都呈現顆粒狀散佈於 ITO 玻璃 上,並無特別的 morphology 被發現。 以上單體 STD02、STD03、M1、M2、M3 其分子結構皆無接烷鏈段, 接下來介紹 N1 及 N2 有接烷鏈段的反應型液晶單體之高分子構型 探討,圖五十二為 N1 經過曝光 (a) 100 s 及 (b) 300 s 之 SEM 照 片,可看見拉長曝光時間,其 morphology 走向更纖維化,單體結構 含烷鏈段在光聚合過程中可藉由擴散團簇現象,從原本顆粒狀的高分 子互相堆疊行成網狀高分子,其纖維也有越來越細的趨勢,可能擴散 現象跟著時間拉長會趨近於能量最安定的排列方式,所以纖維狀高分 子其配向排列形狀才會如此纖細。

(a)

(b)

圖五十二、N1 經過曝光(a) 100 s 及(b) 300 s 之 SEM 照片 再來看圖五十三是 N1 單體濃度的不同 (a) 1% 及 (b) 3%,經由光 聚合過程中,發現當配給濃度增加會使纖維化的高分子附近產生的孔 隙直徑縮小,擴散團簇現象非常之明顯,濃度較小其擴散現象較稀疏 而濃度變大後現象較繁密。

圖五十三、N1 經過曝光(a) 1%及(b) 3%之 SEM 照片 圖五十四 N2 經過曝光(a) 100 s 及(b) 300 s 之 SEM 照片,隨著曝光時 間拉長,也可以發現會先形成像米粒狀的高分子,再經由擴散團簇作 用堆疊在一起,形成像稻穗狀構型,由於 N2 分子結構是彎曲型的, 形成的高分子較像米粒狀,而 N1 分子結構是直線形的,所形成的高 分子較為纖維狀,且也因為時間拉長之關係使得附近孔隙直徑平均值 也逐漸縮小。

(a)

(b)

圖五十四、N2 經過曝光 (a) 100 s 及 (b) 300 s 之 SEM 照片 而圖五十五為 N2 單體濃度的不同 (a) 1% 及 (b) 3%之 SEM 照

片,改變不同濃度,也許是因為單體溶於液晶溶液中其溶解度不佳, 所以照片裡差異度其實不大,但還是可以看見濃度 3%時,擴散現象 較 1%完全。

圖五十五、N2 經過曝光 (a) 1% 及(b) 3% 之 SEM 照片 表六,N1 及 N2 單體之光電性質⁸⁹⁶

Sample	$\tau_{\rm r}({\rm ms})$	$ au_{ m d}$ (ms)	Rseponse Time (ms)/ $(V)^*$	Contrast
N2	0.90	0.9	1.80 / 25	17.4
N1	3.73	0.92	4.65 / 20	21.0

*Saturate voltage (V), τ_r 為 上升時間, τ_d 為 下降時間

對於化學結構為線狀者,我們發現其會有較慢的反應時間及上升時間 (rise time),因此單體 N1 會有較慢的反應時間及上升時間。對於彎 曲結構之單體 N2 而言,其下降時間 (decay time) 和反應時間也較 短。在對比方面效果極差,原因是表面構型較不平整,排列方式並沒 有像 STD02、STD03、M1、M2、M3 整齊。 3.3 結論

- 反應型液晶單體中心核雙苯環上導入氟原子或甲基取代,各單體 其光電性質表現優異,尤其是以 STD02 反應時間 ton 可達6 ms,而最慢之 M3 也有達到8ms,且在對比度方面,最優異之 單體 STD02 可達到960:1,而較差之 M1 只能達到680:1。
- 2. 探討出結構上與光電性質之間的關係,發現取代基及本體中心環皆會影響反應時間 ton,甲基團立體影響較氟原子大,所以立體障礙 M3 是最大的,也因此影響到其反應時間 ton,而中心環相較於其他單體共平面之 STD02,其曝光後之高分子立體空間上也比其他單體小,所以反應時間 ton 是最快的。
- 3. 分析出結構與型態上之間的關係,發現單體分子結構上有無烷鏈 段經由曝光後所形成的高分子型態皆不同,含 spacers 之單體 (N1及N2)結構較易形成稻穗或纖維狀,而不含 spacers 之單體 (STD02、STD03、M1、M2及M3)結構較易形成水滴或米粒狀。
- 粗糙度對光電性質的影響至深,發現當 roughness 越大時,其反應時間 ton 越快,且發現當 morphology 越均匀,其會有較佳的對比,所以 STD02 及 M3 對比度較優異。
- 5. 單體結構與粗糙度之間的關係主要決定在相分離過程中,液晶及 高分子分離完不完全,也取決於單體溶於液晶溶劑中之溶解度。