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ABSTRACT: In this article, a compact cascade quadruplet bandpass
filter has been proposed. This bandpass filter has been realized with the
semilumped method and can generate a pair of transmission zeros at the
two sides of passband by using the nonadjacent cross coupling. The
analysis and design procedures are provided in this article. To minia-
turize the size of the circuit and improve its performance, multilay-
ered structure and the low-temperature cofired ceramic technology
are employed to design and fabricate the filter. Measurement results
agree well with the electromagnetic simulation, which can validate
the proposed structure. © 2008 Wiley Periodicals, Inc. Microwave
Opt Technol Lett 50: 3218-3220, 2008; Published online in Wiley
InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23910

Key words: bandpass filter; low-temperature cofired ceramic; compact
filters

1. INTRODUCTION

Compact size and low insertion loss are essential specifications
within the modern telecommunication systems. To realize multi-
band behavior, RF transceivers with more bandwidth and flexibil-
ity are utilized. Meanwhile, the technologies for integrating pas-
sive circuits to achieve multifunction, high performance, and chip-
size are attractive for the microwave and millimeter-wave
applications. Therefore, the low-temperature cofired ceramic
(LTCC) [1-6] seems to be one of the most efficient methods for
miniaturizing and packaging technologies [7-10] because LTCC
can integrate both passive and active components in a module to
achieve the system-in-a-package (SiP) approach.
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The bandpass filter is one of the most important components in
the RF front-end. It can select passband frequencies and reduce the
influence from frequencies of the adjacent channels. The lowpass
prototypes have been discussed in several articles [11, 12]. Levy
[13] has proposed a unified theory for the synthesis of exactly
equiripple lowpass prototypes. To realize a single pair of attenu-
ation poles at finite frequencies, Yu and Chang [14] and Hong and
Lancaster [15] adopt the microstrip open-loop resonators. Hsu et
al. [16] have also adopted the coupled-resonators to design the
group-delay equalizers. In this article, the coupling scheme is
proposed to control the locations of transmission zeros at both
sides of passband skirts. Detailed analyses of coupling scheme and
design equations are introduced in Section 2. The multilayered
structure of bandpass filter and fabricated unit are provided in
Section 3. Section 4 concludes this article.

2. THEORY OF FILTER

The immittance inverter is adopted to analyze our proposed filter
[17, 18]. The four-ordered quasi-elliptic bandpass filter with cross-
coupling can generate a first pair of transmission zeros at finite
frequencies. As shown in Figure 1, the inverter J,, is connected to
nodes A and B. The condition of generating the first pair of
transmission zeros is Y5, pun acps T Y21 pan ap = 0. Assuming
all of the resonators B,(w) are equal to B(w), the equation can be
derived as

JioJoaJ
32(2)23_3333 = —Ju (H
Within the susceptance B(w), both the inductor L and capacitor C
are combined. This result may make the denominator of Eq. (1)
greater than zero. Table 1 shows the relation between J,,, J,3, J34,
and J,,. The positive value of J-inverter represents the circuit
using the inductive coupling for the feedback loop, and the nega-
tive value of J-inverter represents the circuit using the capacitive
coupling for the feedback loop.

Using the combline filter as an example, the center frequency
and bandwidth ratio are defined as 2.4 GHz and 0.1, respectively,
and the characteristic impedance Z, and the electric length 6 of
transmission line are chosen as 25 () and 25°, respectively. If the
ripple of Chebyshev response is 0.01 dB, then the values of each
inverter, as shown in Figure 1, can be calculated as J,, = J,5 =
0.016, J,, = J3, = 0.00992, and J,; = 0.00729. Here, the
frequency of transmission zero is located at the lower side of the
passband at 1.9 GHz, and J,, can be derived, by Eq. (1), as
—0.000394. Figure 2 shows the simulated results of four-ordered
bandpass filters with and without the cross-coupled inverter J,,.
For simplification, the inverters can be replaced with quarter-
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B4(m)

Rs Joi

T
I
|
|
I
I
I

E Jss Rp

Bi(®

Figure 1 Equivalent circuit of four-ordered quasi-elliptic bandpass filter
with cross coupling
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TABLE 1

Conditions of Appearing the Transmission Zero

Jig = +al2 Jyy = —m2
Jiz Jo3 Js4 Jiz Ja3 Js4
+@/2 +m/2 —/2 — /2 — /2 + /2
+m/2 —/2 +a/2 —7/2 +m/2 — /2
—m/2 +/2 + /2 + /2 —m/2 —7/2
—/2 — /2 —/2 +7/2 +7/2 + /2

wavelength transmission lines. It depicts that the two transmission
zeros of the simulated filter with cross-coupling J,, are located at
1.93 and 2.97 GHz, respectively.

In Figure 2, the return loss of the filter with cross-coupling is less
than the filter without cross-coupling. Moreover, the closer the two
frequencies of transmission zeros to the center frequency, the worse is
the return loss. If two admittances Y, at the inputs of inverter J,, and
J,45, are modified, the performance of return loss can be improved as
shown in Figure 3. The admittance Y, is matched at the central
frequency and can be derived as in (2), and two inverters J,, and J,5
are also modified as (3) and (4). As a result, the two inverters J,,, and
J,4s are revised as 0.01667. Figure 4 shows the simulated results of
modified four-ordered quasi-elliptic bandpass filter and the original
filter with cross-coupling J,.

y = J|2-734 - ]23J|4

i 2
T 2
1234 = JasJ 14

Jo = LR (3)
AW EVRV POV PN

Jus = 1274 T2 )

J 23R L

3. FABRICATION AND MEASUREMENT

The cross-coupled four-ordered bandpass filter as an example. This
filter is fabricated with the substrate of Dupont 951. Its dielectric
constant and loss tangent are 7.8 and 0.0045, respectively. The
2.4-GHz LTCC filter is designed on four upper layers with the
sheet of 1.57 mil, followed by six layers with the sheet of 3.6 mil,
six layers with the sheet of 1.57 mil, and finally two layers with the
sheet of 3.6 mil at the bottom. Its overall size is 132 mil X 92
mil X 41.4 mil. The simulation is carried out with the assistance of
full-wave electromagnetic (EM) simulator, namely Sonnet from
Sonnet Software. To improve the accuracy of measurement, the

0 0
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-20
— -20
.30 —_
m 2
S )
=
me-a -40 30 m:
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-40
-60
-70 -50

17 18 19 2 21 22 23 24 25 26 2.7 28 29 3 31 32
Frequency (GHz)

Figure 2 Simulated results of four-ordered bandpass filters.
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Figure 3 Four-ordered bandpass filter, which has considered the imped-
ance matching in the inverters J,; and J,5

on-wafer tester has been chosen. The network analyzer, Agilent
N5230A PNA_L, is used to measure, and the short-open-load-
through (SOLT) is adopted for calibration. To design the cross-
coupled bandpass filter, with multilayered structure, the semi-
lumped method is suitable to realize four resonators. This
semilumped method is composed of a transmission line section
shunted with a capacitor. These capacitors within four resonators
simply use the metal-insulator-metal (MIM) architecture to realize.
The inductance coupling of L, is realized by the edge coupling
between the transmission lines of first and fourth resonators. The
other inductance couplings of L,, and L, adopt the broadside-
coupled transmission lines. The capacitance coupling of C, uses
the MIM capacitor directly. Figure 5(a) reveals the detailed three-
dimensional (3D) structure of 2.4-GHz LTCC bandpass filter.

As shown in Figure 5(b), the pair of frequencies of measured
and EM simulated transmission zeros are 1.93, 3.1 GHz, and 1.9,
3 GHz, respectively. At the frequency of 2.4 GHz, the measured
and EM simulated insertion losses are less than 3.3 and 3 dB,
respectively, whereas the return losses are greater than 19.6 and
27.3 dB. At the neighboring of passband, the outband rejection is
more than the level of 40 dB.

4. CONCLUSION

The LTCC bandpass filter with coupling scheme has been pro-
posed in this article. The theory of generating the transmission
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2] 28
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Figure 4 Compare the responses of modified four-ordered bandpass
filter with the original filter with cross-coupling J,,
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Figure 5 Fabricated cross-coupled four-ordered LTCC bandpass filter.
(a) 3D structure and (b) measured and EM simulated results. [Color figure
can be viewed in the online issue, which is available at www.interscience.
wiley.com]

zeros and the design procedures of filters have been analyzed. The
proposed bandpass filter fabricated with the multiayered structure
is realized using the semilumped method. The fabricated bandpass
filter with the characteristics of high integration and small size is
very suitable for the implementation in the multichip module.
Agreement between measurement and theoretical prediction has
evidenced the feasibility of our study.
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ABSTRACT: It is noted that the high-group dispersion leads to huge
enhancement of the fiber optic gyroscope’s sensitivity in a resonating
structure, and an approach to evaluate and design resonator gyroscope
with slow-light property is proposed. And then we could adopt time in-
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