
國 立 交 通 大 學

機 械 工 程 學 系

博 士 論 文

二次規劃法配合全域策略於多種裁切庫存問題之研究

Sequential Quadratic Programming Method with Global Strategy

for Multiple Types of Multi-polygon Cutting-stock Problem

研 究 生：余 明 達

指導教授：洪 景 華 老師

 林 聰 穎 老師

曾 錦 煥 老師

中華民國 九十八年七月

二次規劃法配合全域策略於多種裁切庫存問題之研究
Sequential Quadratic Programming Method with Global Strategy for

Multiple Types of Multi-polygon Cutting-stock Problem

研 究 生：余明達 Student： Ming-Ta Yu
指導教授：洪景華 Advisor：Chinghua Hung
 林聰穎 Tsung-Yin Lin
 曾錦煥 Ching-Huan Tseng

國 立 交 通 大 學
機 械 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Mechanical Engineering

College of Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Mechanical Engineering

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

二次規劃法配合全域策略於多種裁切庫存問題之研究

 研究生：余明達 指導教授： 洪景華
 林聰穎
 曾錦煥

國立交通大學機械工程學系

摘要

裁切庫存問題是一種有限制條件的最佳化問題，它在討論如何將所欲加工零件

的外型排列在材料中，能提高材料的利用率，且沒有重疊。

裁切庫存問題存在於許多的工業中，例如紡織業、成衣業、紙張製造業、造船

業及板金業。裁切庫存問題可分為許多類型。例如：方形物件的排列、不規則物件

的排列、方形材料的使用、不規則材料的使用、單一材料與多種材料等。本研究將

重點集中在不規則物件的排列上，將裁切庫存問題規劃成限制最佳化問題的形式，

並利用求解限制最佳化問題常用的序列二次規劃法配合本研究提出的全域搜尋策

略，來找到良好的解。並利用虛擬物件的概念將不規則材料問題與多材料問題簡化

成單一方型材料問題，使得所提出的搜尋策略能廣泛地應用到多種不同的問題。此

外，本研究還提出一種適用於序列二次規劃法的物件重疊的指標，與一簡化的模型

以達到簡化限制條件計算的目的。

i

Sequential Quadratic Programming Method with Global Strategy

for Multiple Types of Multi-polygon Cutting-stock Problem

 Student: Ming-Ta Yu Advisors: Dr. ChingHua Hung
 Dr. Tsung-Yin Lin
 Dr. Ching-Huan Tseng

Department of Mechanical Engineering
National Chiao Tung University

ABSTRACT

The cutting-stock problem, which considers how to arrange the component profiles

on the material without overlaps, can increase the utility rate of the stock, and is thus a

standard constrained optimization problem.

The cutting-stock problem is relevant in many industries, such as textile, garment,

paper, ship building, and sheet metal industries. The cutting-stock problem can be

classified in many types, such as: rectangle object problem, irregular object problem,

rectangle stock problem, irregular stock problem, single-stock problem, and multi-stock

problem. This study focuses on the irregular object problem, and formulates it as a

standard constrained optimization problem. The Sequential Quadratic Programming

method, which is famous for solving a constrained optimization problem, is used with the

global strategies, which are proposed in this study, for obtaining a good solution. This

ii

study also proposes a virtual object strategy to simplify the irregular stock problem and

the multi-stock problem as a single rectangular stock problem. Additionally, this study

proposes an overlap index, which is suitable for the Sequential Quadratic Programming

method, and proposes a simplification model for simplifying the calculation of constraints.

iii

誌謝

從交大大學部、碩士班、博士班，待在交大的日子已經十二年了。在交大的日

子佔了到目前為止生命快一半的時光。這段日子裡要感謝的人很多，最要感謝的，

就是恩師曾錦煥老師，曾老師時時引導我，改變我的觀念，鼓勵我，激發我的鬥志。

在老師走了之後，洪景華老師跟林聰穎學長不辭勞苦地接下了指導我的工作，讓我

能夠繼續從事最佳化的研究，這裡也要向老師及學長致上深深的感謝。

感謝我的口試委員，蔡忠杓老師、宋震國老師、徐瑞坤老師以及陳申岳總經理。

謝謝您們給予學生的建議以及指導。謝謝實驗室的師兄弟，謝謝您們和我討論專業

上的問題，也聽我論文做不出來的抱怨。更懷念那些大家一起睡在實驗室的日子。

尤其感謝嘉宏，沒有您我就沒有機緣進這個實驗室。特別感謝陸聯公司的長官以及

同事，在我論文最忙時，多替我分擔了許多工作上的負荷。

感謝我的父母以及家人對我的鼓勵，在我投稿沒有回音時，給我的鼓勵、陪伴、

與支持。感謝我的愛人，在我壓力大時，陪伴我、帶我到處走走，紓解我的壓力；

在我不開心時，逗我笑。

感謝大家。

iv

CONTENTS

摘要………………………………………………………………………………….…i

ABSTRACT………………………………………………………………………….. ii

誌謝…………………………………………………………………………………...iv

CONTENTS…………………………………………………………………………... v

CONTENTS OF TABLES…………………………………………………………...vii

CONTENTS OF FIGURES ………………………………………………………..viii

NOTATIONS…………………………………………………………………………..x

CHAPTER 1 INTRODUCTION……………………………………………………... 1

1.1 Classification of the Cutting-stock problem………………………………… 2

1.2 Nature of the Cutting-stock problem.………………………………………...7

1.3 Objectives of this study...……………………………………………………. 9

1.4 Outlines…………………………………………………………………….. 10

CHAPTER 2 LITERATURE REVIEW……………………………………………...15

2.1 Combination problem……………………………………………………….15

2.2 Rectangular single-stock problem …………………………………………..16

2.3 Multi-stock problem ………………………………………………………...21

2.4 Irregular stock problem ……………………………………………………..23

CHAPTER 3 METHODS ……………………………………………………………27

3.1 Maximum depth method ……………………………………………………28

3.2 Sequential Quadratic Programming method ………………………………..30

3.3 The solving process of the combinational problem…………………………35

3.3.1 Clustering...…………………………………………………………. 36

3.3.2 Nesting...……………………………………………………………..38

3.3.3 Improvement ………………………………………………………...39

v

3.4 The solving process for the multi-polygon problem ………………………..40

3.4.1 Virtual object strategy………………………………………………..40

3.4.2 Problem formulation ………………………………………………...42

3.4.3 SQP method with the swap strategy…………………………………46

3.4.4 SQP method with the insert strategy ………………………………...50

CHAPTER 4 EXPERIMENTAL RESULTS…………………………………………60

4.1 Combinational problem……………………………………………………..60

4.2 Multi-polygon problem with a rectangular stock …………………………...64

4.3 Multi-polygon problem with several rectangular stocks……………………66

4.4 Multi-polygon problem with irregular stocks ………………………………67

4.5 Simplification model ………………………………………………………..67

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS…………………………84

5.1 Conclusions……………………………………………………………….... 84

5.2 Future works………………………………………………………………...86

REFERENCES……………………………………………………………………….88

APPENDIX A CASE INFORMATION ……………………………………………..A1

A.1 Combinational problem ……………………………………………………A1

A.2 Multi-polygon problem with a rectangular stock ………………………….A5

A.3 Multi-polygon problem with several rectangular stocks …………………..A9

A.4 Multi-polygon problem with irregular stocks…………………………….A10

vi

CONTENTS OF TABLES

Table 1-1 Types of the gap constraints by Syu (1996)………………………………. 11

Table 4-1 The data of the first step result……………………………………………. 68

Table 4-2 Nesting vectors…………………………………………………………… 68

Table 4-3 Results － (a) results of CNA with Genetic Algorithm; (b) results of the

proposed method; (c) comparing the results…………………………………… 69

Table 4-4 Results of case Com_Dagli (a) results of CNA with Genetic Algorithm; (b)

results of the proposed method; (c) comparing the results…………………….. 70

Table 4-5 Results of case Com_Swim (a) results of CNA with Genetic Algorithm; (b)

results of the proposed method; (c) comparing the results.……………………..71

Table 4-6 The results of the problem with a rectangular stock ………………………72

Table 4-7 The results of the problem with several rectangular stocks. ………………73

Table 4-8 The results of the problem with irregular stocks.………………………….73

Table 4-9 The comparison between the original model and the simplification model.73

vii

CONTENTS OF FIGURES

Fig. 1-1 Special polygons with no gap nesting – (a) hexagon, (b) pentagon (Kershner,

1968)…………………………………………………………………………….12

Fig. 1-2 The classifications of the nesting problem － (a) Single-polygon nesting

problem; (b) Multi-polygon nesting problem…………………………………...13

Fig. 1-3 Types of the gap constraint by Syu (1996) – (a) Circles (b) uncircles (c)

repeated Shapes.………………………………………………………………...14

Fig. 3-1 Flowchart for finding the maximum depth………………………………….52

Fig. 3-2 Depths between two objects ………………………………………………...53

Fig. 3-3 The flowchart of SQP method ………………………………………………54

Fig. 3-4 Process of finding the self-sliding no-fit polygon － (a) two objects contact

on a point; (b) first path of that the mover slides on the stator; (b) first two path

of that the mover slides on the stator; (d) the self-sliding no-fit polygon. ……...55

Fig. 3-5 The process of finding nesting vectors － (a) the object P1 on the

self-sliding no-fit polygon of the object P0; (b) nesting vectors; (c) the nesting

crystal. …………………………………………………………………………..56

Fig. 3-6 The virtual objects of the irregular stock problem.………………………….57

Fig. 3-7 The virtual objects of the multi-stock problem.……………………………..57

Fig. 3-8 The flowchart of the SQP method with the swap strategy.………………….58

Fig. 3-9 The flowchart of the SQP method with the insert strategy. …………………59

Fig. 4-1 Profiles of objects for cutting － (a) object 1; (b) objects 2 and 3; (c) object

4; (d) object 5; (e) object 6; (f) objects 7 and 8…………………………………74

Fig. 4-2 Considered iteration number………………………………………………...75

Fig. 4-3 The arranging pattern of iteration 7 …………………………………………75

Fig. 4-4 Result of the first step － (a) arranging pattern of the first step; (b)

viii

integration object: cluster.. ……………………………………………………...76

Fig. 4-5 The nesting pattern of the second step on the 50×50 stock…….. …………..77

Fig. 4-6 Nesting patterns － (a) N1 parallels X-axis; (b) N1 parallels Y-axis; (c) N2

parallels X-axis; (d) N2 parallels Y-axis;……………………………………….78

Fig. 4-6. Nesting patterns － (e) N3 parallels X-axis; (f) N3 parallels Y-axis……... 79

Fig. 4-7 Integration object (cluster) in the literature.. ……………………….……….79

Fig. 4-8 The cluster of cases - (a) The cluster of case Com_Dagli, (b) the cluster of

case Com_Swim...………………………………………………………………80

Fig. 4-9 The best arranging pattern of the problem with a rectangular stock (a) Dagli

(b) Swim (c) Albano (d) Shapes2……...………………………………………..81

Fig. 4-10 The best arranging pattern of the problem with several rectangular stock (a)

Ext_Dagli (b) Ext_Swim (c) Ext_Albano (d) Ext_Shapes2…...………………..82

Fig. 4-11 The best arranging pattern of the problem with irregular stocks (a) Irr_Dagli

(b) Irr_Swim………….…………………………………………………………83

ix

NOTATIONS

A a matrix used to consider constraints in QP sub-problem

a the object index which will be swapped

B a matrix used in the solution of the normalized QP sub-problem

b a vector used to consider constraints in QP sub-problem

b the object index which will be swapped

c0 a variable used to normalize the QP sub-problem

ci a variable used to normalize the QP sub-problem

D the solution of the SQP method

D a depth

Dbest the best solution of the whole solving process

DMjk the maximum depth between object j and object k

Dsub the solution in the swapping sub-process

Dsubbest the best solution in the swapping sub-process

d the vector form of design variables

E a matrix used to update the approximate Hessian matrix

Fbest the cost function value of the best solution in the whole solving process

Fsub the cost function value of the solution in the swapping sub-process

Fsubbest the cost function value of the best solution in the swapping sub-process

x

g the vector form of constraints

ag the vector form of the active-set constraints

g1 the vector form of overlap constraints between objects

g2 the vector form of x-lower boundary constraints

g3 the vector form of y-lower boundary constraints

g4 the vector form of y-upper boundary constraints

g5 the vector form of overlap constraints between object and virtual object

g1′ the calculation simplification form of g1

g5′ the calculation simplification form of g5

H the approximate Hessian matrix

IterNo the variable indicates the iteration number of the whole solving process

IterMax the maximum iteration number of the whole solving process

kmax the maximum iteration number of the SQP method

M a matrix used to consider the constraints in normalized QP sub-problem

N the number of design variables

Nv the number of virtual objects

Oi the reference point of object i

P a matrix used to update the approximate Hessian matrix

p′ the number of the active-set constraints

xi

q a variable used to calculate the step size

Rk a variable used to calculate the step size of iteration k

s the vector form of design variables in the normalized QP sub-problem

SwapNo the variable indicates the number of swap action in one iteration

SwapMax the maximum allowable swapping number

T the temperature of the Simulated Annealing Algorithm

U an upper triangular matrix for normalizing the QP sub-problem

u a vector used to update the approximate Hessian matrix

v a vector used in the solution of the normalized QP sub-problem

w a vector used to update the approximate Hessian matrix

xi the x-coordinate value of the reference point of object i

xli the lower boundary of object i in the x-direction

xui the upper boundary of object i in the x-direction

yi the y-coordinate value of the reference point of object i

yli the lower boundary of object i in the y-direction

yui the upper boundary of object i in the y-direction

ywidth the width of the stock

z a vector used to update the approximate Hessian matrix

kα the step size of the SQP method

xii

Δ a vector used to consider the constraints in normalized QP sub-problem

Δd the change in design variables

ΔE the cost function increment of the Simulated Annealing method

ε a constant used to check the convergence

cε a constant used to check the constraint violation is serious or not

iθ the orientation of object i

Λ0 a matrix used to consider the cost function in normalized QP sub-problem

μ the vector form of the Lagrange multipliers

σ the random number of the Simulated Annealing method

Ψ a variable used to update the approximate Hessian matrix

f∇ the gradient of the cost function

xiii

CHAPTER 1 INTRODUCTION

The cutting-stock problem is the problem considers how to arrange the

components of products in the stock that will enhance the stock utility or reduce the

necessary stock. This problem is often also called the “packing problem” or “nesting

problem.” These three names may be used for different types of problems considering

how to arrange components in the stock that can enhance the stock utility. However,

they are all called the cutting-stock problem in this study.

The main purpose of this problem is reducing the material cost. The cutting-stock

problem is a key consideration in many manufacturing industries, such as textile,

garment, metalware, paper, ship building, and sheet metal industries. In these

industries, the products or the components will be cut from the stock. According to the

statistics in by DGBAS (1998) and by DGBAS (2003), the cost of stock is about 50%

in whole expense of manufacturing industries in Taiwan. It means that enhancing the

stock utility will be helpful for reducing the outgoing of companies in these industries.

Because characteristics of the cutting-stock problem in different applications

may be different, the cutting-stock problem can be classified in different types by its

characteristic in the next section. The classification will be helpful to know how many

types should be solved. The nature of the cutting-stock problem will also be

introduced in this chapter to know how to solve the problem. After knowing the

1

classification and the nature of this problem, the problem is understood well and the

objectives of this study can be obtained.

1.1 Classification of the Cutting-stock Problem

The cutting-stock problem comprises the stock and the object. Therefore, the

cutting-stock problem can be classified by the characteristics of the stock and the

object. The cutting-stock problem may be one-, two-, or three-dimensional problem.

The applications of the one-dimensional problem are cutting pipes, steel bars, and etc.

Different length pipes should be cut from many long pipes, and how to cut the pipes

may use the least amount of long pipes is a topic of the one-dimensional cutting-stock

problem. The applications of the three-dimensional problems are packing boxes into a

container, arranging components in the working space in the rapid prototyping

industry, and etc. Even there are one- and three-dimensional cutting-stock problem,

the two-dimensional cutting-stock problem is the most popular one. Therefore, this

study focuses on the two-dimensional cutting-stock problem.

In the two-dimensional problem, the shape of the objects can be classified in

rectangle and irregular shapes. Rectangle is a special shape because rectangles can be

arranged very close even there are different kinds of rectangles arranged together. It is

because every angle of a rectangle is 90 degree. With the same reason, rectangles are

easy to be represented with heights and widths. However, the profile of product in real

2

applications is usually not rectangle. To represent the irregular object and to check the

overlap between objects are difficult. An irregular object may be a polygon or may

have some curves. In general, any curve of an object is usually approximated by some

edges with acceptable tolerance. The approximation method is used by Nee, et al.,

(1986), Koroupi and Loftus (1991), and Cheng and Rao (1999). Kershner (1968)

showed that no convex polygon with more than six sides can be arranged without

gaps, and there are only eight kinds of pentagons and three kinds of hexagons that can

be arranged without gaps. For arranging these polygons without gaps, there should be

only one kind polygon in the problem as shown in Fig. 1-1, i.e. different kind of these

polygons cannot be arranged together without gaps. This study focuses on the

cutting-stock problem with irregular object because the cutting-stock problem with

irregular objects is more complex and difficult than the problem only arranging

rectangles.

According to how many kinds of objects, the cutting-stock problem can be

divided into single-polygon problem and multi-polygon problem. There is only one

kind of object in the single-polygon problem, as shown in Fig. 1-2(a). The

single-polygon problem is the type of mass production. In this problem, the relative

position between objects is obtained firstly and arranged repeatedly. If there are many

kinds of objects, it is called the multi-polygon problem, as shown in Fig. 1-2(b). In

3

this kind of problem, there is not a regular relationship between object positions.

Every object has to be arranged individually, and the problem is more complex than

the single-polygon problem. Therefore, this study focuses on the multi-polygon

problem.

There is another kind of problem that combines the single-polygon and

multi-polygon problems and it is called the “combinational problem” in this study. A

product may have some components and the product may be mass produced. The

cutting-stock problem will be very complex if considering every object as an

independent individual. To simplify the problem, the components of a product may be

arranged as a cluster first, and then the cluster is nested instead of the original

components on the stock. This “clustering-then-nesting” strategy is useful for

simplifying the combinational problem because the number of objects is reduced. The

advantage of the clustering-then-nesting strategy is not only for arranging, but

manufacturing. The manufacturing time may decrease because the components of a

product can be cut at the same time by using a die. For the manufacture efficiency, a

die may be designed for cutting all components at the same time. Thus, all

components will be arranged together, and these components can be used as a single

object in mass production. Therefore, it combined the characteristics of the

single-polygon and multi-polygon problems.

4

Classifying by the characteristics of stock is similar to classify by objects. The

shape of stock may also be rectangular or irregular. The shape of stock is usually

rectangle, but in some applications, such as leather industry, the stock may have

irregular shapes. In fact, every manufacture industry may have irregular stocks

because some remainder stocks of the last cutting can be reused. The remainder stocks

usually have irregular profiles. The irregular stock problem is more complex than the

rectangular stock problem because of the irregular profile. Both of them will be

discussed in this study.

In some applications, a stock with a very long length, such as a steel roll, can

contain all objects at the same time. It is called “single-stock problem” in this study.

The length of the stock in this problem is considered as infinite because all objects can

be arranged in the stock and the necessary length for manufacture is less than the

stock length. To arrange objects on a stock with infinite length is a typical problem in

all types of the cutting-stock problem. If a stock can not provide enough material for

all objects, there will be several stocks and it is called “multi-stock problem” in this

study. The stock is usually not large enough when using the remainder stock and there

will be several stocks. If the size of an object is big, such as ship-building industry, the

objects usually can not be arranged in only one stock. There will be several stocks

because only one stock is not large enough. The multi-stock problem is more difficult

5

than the single-stock problem because of the limited length and the plurality choice of

stocks. Both of them will be discussed in this study.

In some applications, the stock may have some flaws and the flaw region can not

be used to produce an object. For example, there may be some flaws on the leather

because of the illness or hurt of the animal when it is alive. This flaw will also be

considered in this study.

As the introduction above, the types of the cutting-stock problem considered in

this study can be summarized as follows:

1. The problem with two dimensional irregular objects.

2. The multi-polygon problem.

3. The combinational problem.

4. The rectangular stock problem and the irregular stock problem.

5. The single-stock problem and the multi-stock problem.

6. The flaw stock problem.

The above-mentioned six types of problems are classified by the object or the

stock individually but every application both has the object and the stock. Therefore,

four cases are discussed in this study and the cases are listed as follows:

1. The combinational problem.

2. The multi-polygon problem with a rectangular stock.

6

3. The multi-polygon problem with several rectangular stocks. The stocks have

the same width.

4. The multi-polygon problem with several stocks. The stocks may be irregular

and have different widths. There may be some flaws on the stocks.

1.2 Nature of the Cutting-stock problem

In fact, the cutting-stock problem is a type of constrained optimization problem.

A constrained optimization problem is composed of three main parts:

1. Design variable(s)

2. Cost function(s)

3. Constraint(s).

The solving method improves the cost function and also satisfies the constraints

via adjusting the design variables. As this formulation, the cost function of the

cutting-stock problem is the stock utility. The design variables are the states of the

objects, i.e. the profile of the components. For example, an object has three

degree-of-freedom, i.e. two translations and one rotation, in the two-dimensional

space. Therefore, three design variables, i.e. two position components and one

orientation, are needed to describe the state of an object in a stock.

There are four kinds of constraints in the cutting-stock problem, and those

constraints are listed as follows:

7

1. Overlap constraint.

2. Escape constraint.

3. Orientation constraint

4. Gap constraint.

The overlap constraint is that no object can overlap with others. The escape

constraint is that no object can be arranged outside the boundary of the stock. The

orientation constraint in the cutting-stock problem is that the object can be arranged

with only some specific orientations because of the stock property. For instance, the

strength of a metal sheet is different in different orientations because of the rolling

direction. If the product will be used to support loading, the orientation with higher

strength should be chosen. This kind of constraint is the orientation constraint in the

cutting-stock problem. The gap constraint is that the gap between objects should be

larger than an acceptable value. This constraint usually exists in the sheet metal

industry, and it has a standard as shown in Fig. 1-3 and Table 1-1. The gap constraint

depends on the thickness of stocks, methods for feeing stock, and the shape of objects.

The technique for solving the constrained optimization problem can be used to

solve the cutting-stock problem because the cutting-stock problem is a type of

constrained optimization problem. The solving methods for the optimization problem

are classified into the indirect method and direct method by Arora (2004). The indirect

8

method can find the global optimum solution. The cost function and the constraint

must be explicit functions of design variables in the indirect method. That is difficult

for the cutting-stock problem. The direct method is a repeated process for finding the

“search direction” and the “step size,” and the explicit function is not necessary.

Therefore, the direct method is more suitable than the indirect method for solving the

cutting-stock problem. However, the direct method usually only can find the local

optimum solution. The cutting-stock problem has large solution space and many

complex constraints. The direct method that may be caught by local optimum trap is

not good enough for the cutting-stock problem. A global search strategy is necessary.

1.3 Objectives of This Study

The objective of this study is designing a strategy to solve the cutting-stock

problem. After knowing the types and the nature of the cutting-stock problem, the

objectives of this study can be listed as follows.

1. Propose a method for checking the overlap between irregular objects.

2. Formulate the cutting-stock problem into the equations with a constrained

optimization problem form.

3. Propose a global strategy to improve the solution.

4. Propose a method to consider the irregular shape of the stock.

5. Propose a method to consider the plurality of the stock.

9

6. Propose a method to consider the flaw on the stock.

1.4 Outlines

After the introduction of the cutting-stock problem in this chapter, the chapter

two will introduce the literatures of the four cases listed in the section 1.1. The chapter

three introduces methods used in this study. Some of the methods are proposed in

literatures and others are proposed in this study. The chapter four will show the

experimental results and some conclusions and future works will be made in the

chapter five.

10

Table 1-1 Types of the gap constraints by Syu (1996).

Feed by hand
Circle Uncircle Repeated Shape

Automatic feedThickness
(mm)

d d1 d d1 d d1 d d1

≦1 1.5 1.5 2 1.5 3 2 3 2
>1~2 2 1.5 2.5 2 3.5 2.5 3 2
>2~3 2.5 2 3 2.5 4 3.5 3 2
>3~4 3 2.5 3.5 3 5 4 4 3
>4~5 4 3 5 4 6 5 5 4
>5~6 5 4 6 5 7 6 6 5
>6~8 6 5 7 6 8 7 7 6

>8 7 6 8 7 9 8 8 7

11

(a) Hexagon

(b) Pentagon

Fig. 1-1 Special polygons with no gap nesting by Kershner (1968).

12

(a) Single-polygon nesting problem

(b) Multi-polygon nesting problem

Fig. 1-2 The classifications of the nesting problem.

13

d

d1

(a) Circles

(b) Uncircles

Fig. 1-3 Types of the gap constraint by Syu (1996).

d1

d

(c) Repeated Shapes

d1

d

14

CHAPTER 2 LITERATURE REVIEW

The literatures introduced in this chapter are all about multi-polygon. The

literatures are divided into four groups that associate with the four cases considered in

this study. The methods used in every literature may have three parts: graph treatment,

arranging strategy, and search strategy. The graph treatment technique is almost

equivalent to the overlap consideration technique because the overlap constraint is the

main constraint of the cutting-stock problem and many literatures only considered this

constraint. The arranging strategy focuses on how to arrange the objects on the stock,

and the arranging strategy will depend on the overlap consideration technique when

arranging irregular objects. The arranging strategy considers how to obtain an

arrangement pattern, and the search strategy is used to obtain another arrangement

pattern to improve the arrangement result.

2.1 Combinational problem

The clustering-then-nesting strategy is useful for the combinational problem, and

it is proposed by Cheng and Rao (1999). A sliding technique was proposed by Cheng

and Rao (1997) to arrange all objects – the components – of a product first, i.e.

clustering, then integrated these objects into a cluster, and nested it by CNA (Compact

Neighborhood Algorithm). Finally, Cheng and Rao (2000) used a Genetic Algorithm

15

to adjust the position and orientation of the object to improve the result. The methods

proposed by Cheng and Rao (2000) can be summarized as follows.

․ Graph treatment: sliding technique.

․ Arranging strategy: CNA.

․ Search strategy: Genetic Algorithm.

2.2 Rectangular single-stock problem

Dowsland et al. (2002) used a “no-fit polygon” to obtain the closest position

between two objects. The relative positions where one object contacts another object

can be represented as a polygon called a “no-fit polygon”. They used a bottom-left

strategy to arrange objects on the stock. The strategy of this literature can be

summarized as follows:

․ Graph treatment: no-fit polygon.

․ Arranging strategy: bottom-left strategy.

․ Search strategy: null.

In this method, the arrangement sequence governs the resulting arranging pattern.

Thus, deciding the arrangement sequence is very important. Gomes and Oliveira

(2002) changed the position of objects in the sequence to generate a new solution

based on the original one. The strategy of Gomes and Oliveira (2002) can be

summarized as follows:

16

․ Graph treatment: no-fit polygon.

․ Arranging strategy: bottom-left strategy.

․ Search strategy: exchange.

Bennell and Dowsland (2001) formulated the cutting-stock problem as a Linear

Programming model, and solved this model to obtain an arrangement pattern. The

model led the objects move to the best position on the no-fit polygons. After an

arrangement pattern was obtained, one object was moved to another position and the

model was solved again. Bennell and Dowsland (2001) used Tabu Search was used to

seek the global optimum solution in the solution space. The strategy used by Bennell

and Dowsland (2001) can be summarized as follows:

․ Graph treatment: no-fit polygon.

․ Arranging strategy: Linear Programming.

․ Search strategy: Tabu Search.

Gomes and Oliveira (2006) used bottom-left strategy to do the initial

arrangement, and then swapped two objects randomly. The swapping will cause some

overlaps, and these overlaps were relaxed by “separation step.” After relaxing the

overlaps, the “compaction step” reduced the length of arrangement pattern. In the

separation and compaction steps, the problem was formulated as different linear

models to guide objects move to the good position on the no-fit polygons. If the

17

solution was improved after the compaction step, the solution was accepted. If the

solution was not improved, Gomes and Oliveira (2006) the rule of Simulated

Annealing Algorithm (SAA) was used to check acceptance or rejection of the solution.

The SAA is a popular global optimization method. When using the SAA, various

operators used to determine a new solution had to be designed for “searching”. The

solution is updated to the new solution if the cost function is decreased. If the cost

function of the new solution is larger than or equal to the original one, a random

number σ will be generated as 0≦σ≦1. If

 T
E

e
Δ−

≤σ (1)

where T is the temperature of the SAA, and ΔE is the increment of the cost function,

the solution will be updated to a new one. The temperature here is not a real

temperature. It is a parameter used to simulate a real annealing process, while the

initial temperature, final temperature, and cooling rate have to be set when using the

SAA. The strategy used by Gomes and Oliveira (2006) can be summarized as follows:

․ Graph treatment: no-fit polygon.

․ Arranging strategy: Linear Programming (separation and compaction steps).

․ Search strategy: object swapping and SAA.

Poshyanonda and Dagli (2004) represented objects as binary matrices, and used

an artificial neural network and the Genetic Algorithm to solve the cutting-stock

18

problem. The strategy used by Poshyanonda and Dagli (2004) can be summarized as

follows:

․ Graph treatment: binary matrix representation.

․ Arranging strategy: artificial neural network.

․ Search strategy: Genetic Algorithm.

Ratanapan et al. (2007) used an evolutionary algorithm to solve the cutting-stock

problem. The evolutionary algorithm had a fitness function similar to the Genetic

Algorithm, and has some operators, such as translation, rotation, touch point, relocate

away, etc., designed by the authors to escape from the local optimum trap. The

strategy used by Ratanapan et al. (2007) can be summarized as follows:

․ Graph treatment: binary matrix representation.

․ Arranging strategy: evolutionary algorithm.

․ Search strategy: evolutionary algorithm.

Bouganis and Shanahan (2007) sorted the objects into a sequence according to

their area and arranged an object on the position lead the smallest enclosing rectangle

of arrangement pattern. This sorting method is called “object-based approach.” After

arranging an object, the shape of the void region, i.e. the region not arranged with

objects, was evaluated with the remainder objects for profile matching by computer

vision method. If there is an object match the void region, the object will be arranged.

19

If not, the next object in the sequence will be arranged. This is called “scene-driven

approach.” The method used in this literature can be summarized as follows:

․ Graph treatment: binary matrix representation.

․ Arranging strategy: smallest enclosing rectangle + object-based approach +

scene-driven approach.

․ Search strategy: null.

Egeblad et al. (2007) used bottom-left method to do the initial arrangement, and

then reduced the total length of arrangement pattern. The reduction will cause some

overlaps. The overlaps are relaxed by translating or rotating objects. The cost function

in the relaxation step is the total overlap area of all objects. The cost function is

express as a function of the horizontal positions of objects, and the overlap area is

defined as the area between edges of two objects in the horizontal direction. After a

new solution is obtained, the cost function is altered for escaping the local optimum

trap. The strategy used by Egeblad et al. (2007) can be summarized as follows:

․ Graph treatment: overlap area.

․ Arranging strategy: overlap relaxation (translation and rotation).

․ Search strategy: cost function alteration.

Burke et al. (2006) found the relationship between line to line, line to arc, arc to

line and arc to arc. Thus they can use the real arc not approximation edges when

20

arranging objects to relax overlap. At beginning, an arranging sequence was decided,

and objects are put into stock one by one. Every object was put on the bottom-left

corner of the stock firstly, and used the relationship between lines and arcs to move

the object to a position without overlap. After a solution was obtained, some objects

were swapped in the arranging sequence to obtain new solution. Some solutions better

than the current one were obtained and the best solution was updated as the new

solution. The Tabu Search was used to guide the searching in the solution space. The

Tabu Search recorded the solution history by recording the recent solutions with

pre-decide length, for example 200 solutions, and the same solution as these 200

solutions can not be obtained again. The strategy used by Burke et al. (2006) can be

summarized as follows:

․ Graph treatment: relationship between lines and arcs

․ Arranging strategy: bottom-left arranging + overlap relaxation

․ Search strategy: swapping position in sequence + Tabu Search

2.3 Multi-stock problem

Babu and Babu (2001) coded the irregular stock and objects as an integer array.

The cells that can arrange object on is coded as 0. The other cells are coded as an

integer number that starts from 1 since the most right cell. Objects are coded in the

opposite way and arranged near the bottom of the stock as close as possible. These

21

integer numbers are helpful for increasing the speed of finding the optimum

arrangement. The method for searching a good arrangement sequence is the Genetic

Algorithm coded with the stock number, the object number, and the object orientation.

Zhang et al. (2005) used this method to design software for leather nesting. The

strategy used in these two literatures can be summarized as follows:

․ Object graph treatment: integer array representation.

․ Multi-stock treatment: Genetic Algorithm.

․ Arranging strategy: bottom-left strategy.

․ Search strategy: Genetic Algorithm.

Wu et al. (2003) represented objects by binary matrices, and arranged objects on

multiple stocks by bottom-left strategy. The stock was selected randomly when

arranging every object. They swapped the object sequence and the stock sequence to

obtain different solutions, and accepted a new solution by SAA rule shown in

equation (1). The strategy used by Wu et al. (2003) can be summarized as follows.

․ Object graph treatment: binary array representation.

․ Multi-stock treatment: select randomly.

․ Arranging strategy: bottom-left strategy.

․ Search strategy: swap sequence + SAA.

22

2.4 Irregular stock problem

As introduced in section 2.3, the method proposed by Babu and Babu (2001) also

considered the irregular stock problem. The strategy can be summarized as follows:

․ Object graph treatment: integer array representation.

․ Irregular stock treatment: integer array representation.

․ Arranging strategy: bottom-left strategy.

․ Search strategy: Genetic Algorithm.

Tay et al. (2002) arranged one object to contact the stock boundary with at least a

vertex. The object can be slid and keep contact the boundary of the irregular stock to

search the optimum position by the Genetic Algorithm. The genome of the Genetic

Algorithm contained the object position along the stock boundary and the orientation

of the object. The objects are arranged around the stock boundary sequentially. After

arranging an object, the object profile is compounded with the profile of the irregular

stock, and the compound is considered as a new irregular stock. The strategy can be

summarized as follows:

․ Object graph treatment: contact.

․ Irregular stock treatment: slid and keep contact.

․ Arranging strategy: Genetic Algorithm.

․ Search strategy: null.

23

Huang et al. (2005) used an opposite strategy to arrange objects. They arranged

objects “near to center,” and presented a rule called “best-matching algorithm” to

decide the relative position of two objects. The first object is arranged on the center of

the smallest enclose rectangle’s center of the irregular stock. After two objects are

arranged, they are treated as a compound object and the others are arranged with this

compound object sequentially. They used the 2-exchange procedure proposed by

Gomes et al. (2002) to modify the object sequence to search the best one. The strategy

used by Huang et al. (2005) can be summarized as follows:

․ Object graph treatment: original shape + checked.

․ Irregular stock treatment: original shape + checked.

․ Arranging strategy: best-matching algorithm.

․ Search strategy: 2-exchange procedure.

Crispin et al. (2005) found the no-fit polygon (NFP) between not only objects

but an object and an irregular stock to consider the irregular profiles. And then used

the Genetic Algorithm to obtain the arranging pattern. The strategy used by Crispin et

al. (2005) can be summarized as follows:

․ Object graph treatment: no-fit polygon.

․ Irregular stock treatment: no-fit polygon.

․ Arranging strategy: arranged on the crossing point of no-fit polygons.

24

․ Search strategy: Genetic Algorithm.

Yuping et al. (2005) didn’t consider the irregular characteristic of the stock by

graph treatment but the penalty concept. They considered the cutting-stock problem as

an unconstrained optimization problem. The design variables are positions and

orientations of objects. The cost function had three parts. The major one is the area of

the unplacement stock. The area of objects escaped from the stock, and the overlap

area between objects are treated as penalty functions of the cost function. They

generated random movements of objects and used the SAA to search the global

optimum solution. The strategy used by Yuping et al. (2005) can be summarized as

follows:

․ Object graph treatment: penalty function with object overlap area.

․ Irregular stock treatment: penalty function with escaped object area.

․ Arranging strategy: random movement.

․ Search strategy: random movement and SAA.

The methods use no-fit polygon as the graph treatment can be used to solve the

cutting-stock problem when objects should be arranged in a special orientation,

because the object orientation is fixed when finding the no-fit polygon.

When using binary matrices to represent objects, the object may be deformed if

rotating the binary matrix instead of the real object for considering multiple

25

orientations. It costs much time to rotate real object because the object have to be

re-coded.

The Genetic Algorithm is a popular and widely-use method for searching for the

global optimum solution. However, it has many parameters that need to be decided,

such as the crossover rate and the mutation rate. Also, each parameter setting will

greatly affect the result, as shown by Poshyanonda and Dagli (2004). Every design

variable is transferred to a binary code in Genetic Algorithm, and the resolution of the

binary code will affect the result. This is another disadvantage of the Genetic

Algorithm.

The SAA has the similar drawback to Genetic Algorithm. The parameter setting

of the SAA is also important for obtaining a good solution as shown by Marques et al.

(1991) and Leung et al. (2003). The parameter setting depends on experience very

much and not easy to use.

26

CHAPTER 3 METHODS

The basic method for solving the cutting-stock problem in this study is

formulating the problem as a constrained optimization problem and solving the

constrained optimization problem by the Sequential Quadratic Programming (SQP)

method. And the SQP method is used with different methods for different types of

problem in this study. The methods used in this study are listed as follows.

1. Maximum depth method.

2. SQP method.

3. Compact Neighborhood Algorithm (CNA).

4. Parallism strategy.

5. Virtual object strategy.

6. Swap strategy.

7. Insert strategy.

The first method is used to consider the overlap between objects, and it

overcomes the difficulty of the irregular profile of objects. The SQP method is used to

arrange objects. The CNA and the parallism strategy are used for the combinational

problem. The virtual object strategy is used for the irregular stock problem,

multi-stock problem, and flaw stock problem. The swap strategy and the insert

strategy are used to find the global optimum results. The methods used in this study

27

can be summarized as follows:

For combinational problem:

․ Graph treatment: maximum depth method and SQP method.

․ Arranging strategy: SQP method and CNA.

․ Search strategy: parallism strategy

For other problems:

․ Object graph treatment: maximum depth method and SQP method.

․ Irregular stock treatment: virtual object.

․ Multi-stock treatment: virtual object.

․ Arranging strategy: SQP method.

․ Search strategies: 1. swap strategy

 2. insert strategy.

The CNA and SQP method are published in the literatures. They are also

introduced in this chapter because of the easy reading. As the same reason, only the

maximum depth method and SQP method that are used in every solving process are

introduced independently. Other methods are introduced in the solving process.

3.1 Maximum depth method

The objects of the cutting-stock problem cannot overlap one other. In traditional

methods, the overlap area is calculated and the object positions are adjusted to reduce

28

the overlap area until the total overlap area equals to zero when considering overlap

directly. This study uses the maximum “depth” of two objects as the overlap index

when considering the overlap.

When considering overlap between two objects, the “depth” means the distance

from the vertex on one object to a point on the edge of the other object, and the

maximum depth is the largest distance. The detailed calculation process is shown in

Fig. 3-1 while the process can be explained with the example in Fig. 3-2. A and B are

two objects and every vertex is numbered in a counterclockwise order (a1~a8 and

b1~b8 , respectively). OA and OB are the reference points of object A and object B

respectively. It is used to represent the position of the object. The centres of gravity

(COG) is used as the reference point in this study. As shown in the process (Fig. 3-1),

the first step of finding the maximum depth is transferring the original coordinate to

the coordinate system where the y-direction is parallel to the BAOO vector, which

will be helpful for calculating depths. The next step initialises the maximum depth,

and its value is determined by subtracting the y-value of a1 from the y-value of a1′,

where a1′ is the point that a1 projects onto object B in the BAOO ction. The depth

will be positive if the vertex is inside the other object, such as the depth of a

 dire

1.

Similarly, if the vertex is outside the other object, the depth will be negative. Once the

depth of a1 is known, the depth of a2 will be calculated, and is less than the depth of a1

29

as shown in the figure. Thus, the maximum depth will not be updated. Only the depths

of the object vertices have to be calculated when finding the maximum depth, and it is

not necessary to calculate the depths of the points on the edge. It is obvious that the

maximum depth will coincide with a vertex, because all edges are linear. If depth of a

point is searched along an edge, it will be increased or decreased monotonously until

the movement meets a corner. Thus, the maximum depth will coincide with a vertex.

The next point is a3 and its depth is negative because the y-value of a3 is larger than

a3′. Other vertices on object A will also be considered one by one. Similarly, the

depths of the vertices on object B are determined by subtracting the y-value of the

projection point from the y-value of the vertex, and calculated one by one.

By this way, the depth will be negative if the vertex is outside of the other object,

and it is not necessary to check the vertex is inside the other object or not. The overlap

index will be negative if there is a gap between two objects. A negative overlap index

will be helpful for the active-set strategy of SQP method. The maximum depth will be

negative but the overlap area is never negative. Therefore, the maximum depth is

more suitable for the SQP method with the active-set strategy, which will be described

in the next section.

3.2 Sequential Quadratic Programming method

The SQP method is a numerical method for solving optimization problems. The

30

procedure of a numerical method is an iterative process of finding a “search direction”

and a “step size”.

To solve the optimization problem by the SQP method, the Karush-Kuhn-Tucker

(KKT) conditions that is introduced by Arora (2004) of the Lagrange function are

used. The Lagrange function is defined as follows:

 (,) () TL fd μ d μ g= + (2)

where d is the vector form of design variables; μ is the vector form of the Lagrange

multipliers; g is the vector form of constraints. The numerical solving process of the

KKT conditions is an iterative process of calculating the new solution d(k+1) ,

 (3)

where k is the iteration number, and Δd

(1) () ()k kd d Δd+ = + k

(k) is the change in design variables. It is also

the search direction of the SQP method. The SQP method defines a QP sub-problem

to calculate the search direction. The flowchart of the SQP method is shown in Fig.

3-3, and the process is described as follows. The description are summarized from the

paper written by Arora (1984):

1. Select an initial solution, and set other parameters that will be described later.

2. Define the QP sub-problem. The QP sub-problem is defined as follows:

minimize (4)

subject to

0.5T Tf Δd Δd HΔd∇ +

TA Δd b≤ (5)

31

where H is the approximate Hessian matrix of the Lagrange function, and

 ai
ji

j

g
A

d
∂

=
∂

 (6)

 ()i aib g d= − . (7)

When defining the QP sub-problem, only the constraints that are larger than or

equal to zero need to be considered. The is the i-th element of aig ag which is

the vector form of these constraints. This is the so-called active-set strategy.

3. After the QP sub-problem is defined, the problem is normalized before solving.

For normalizing the QP sub-problem, the H is decomposed as

 (8)

where U is an upper triangular matrix. A new variable s is defined as

 (9)

and the problem can be normalized as:

minimize (10)

Subject to

TH U U=

s UΔd=

0.5T T
0Λ s s+ s

Ms Δ≤ (11)

where
1

0

T

f
c0

UΛ
− ∇

= (12)

 1
0

T

c U− f= ∇ (13)

 ai
i

i

g
c
−

Δ = (14)

 1T

ic aiU g−= ∇ (15)

32

1

0

T

c
U AM

−

= (16)

4. Before solving the normalized QP sub-problem, the maximum value of constraints

is compared with a constant cε . The maximum value of constraints is defined as

 1 '() max{0, ' (),..., ' ()}pF g g=d d d (17)

If the maximum value of constraints is less than cε , i.e., the violation is not

serious, the solution will focus on reducing the cost function. The solution is:

 (18)

 (19)

where (20)

 (21)

1v v v= + 2

21s s s= − +

1
1

T
0v B M Λ−= −

1
2v B Δ−= −

TB M M= (22)

 1 0s Λ Mv1= + (23)

 2s Mv2= − (24)

If not, the solution focuses on correcting the constraints. The solution is:

 (25)

 (26)

2v v=

2s s=

5. The solution of the original QP sub-problem can be obtained as:

 0 1 2i
i

i

c v v
c

μ i+
= (27)

 1Δd U s−= (28)

33

6. Check the stop condition. If ()kd ε≤ or , stop the process and the

current solution is the final solution. If not, continue the process. ε is a preset

small number close to zero, and k

max>k k

max is the maximum iteration number set in the

initialization step.

7. Calculate the step size. The step size kα is set as

 , 0.5q
kα = 0,1, 2,...q = (29)

The minimum q that makes (30)

is used to define

(0.5) (qd ΔdΦ + ≤ Φ)d

kα

where (31)

() () ()kf R Fd dΦ = + d

i

'

1
1

0.5()
p

k k
i

R R μ−
=

= +∑ (32)

8. Update the approximate Hessian matrix. The approximate Hessian matrix is

updated by the BFGS strategy that is introduced by Arora (2004.) The BFGS

strategy is described as follows:

Define three variables first.

 (33)

() () ()k k
kz H Δdα= k

)k() (1) () () ()(,) (,k k k kL L+= ∇ −∇u d μ d μ (34)

and (35)

where

() () ()(1)k kψ ψ= + −w u z k

() () () ()1, if
0.8, otherwise

T Tk k k k

ψ
⎧⎪ ≥= ⎨
⎪⎩

Δd u Δd z (36)

Then, the approximate Hessian matrix is updated as

34

 (1) () () (k k k+)k= + −H H P E (37)

where
() ()

()

() ()

Tk k
k

Tk k
kα

=
w wP
Δd w

 (38)

() ()

()

() ()

Tk k
k

Tk k
k

z zE
Δd zα

= (39)

9. Update the solution as

 (40)

and continue to go to step 2 to define the QP sub-problem.

(1) () ()k k
kd d Δdα+ = + k

All equations are shown above, and the derivation can be found in the work by

Arora (2004) and Liao (1990). There are several programs, such as MOST that is

designed by Tseng (1989) and IDESIGN that is designed by Arora (1988,) that use the

SQP method to solve the constrained optimization problem.

3.3 The solving process for the combinational problem

The solving process for the combinational problem can be divided into three

steps in this study. The first step is to arrange the different objects as a cluster, and

then to generate the nesting pattern according to the cluster. Finally, the third step is to

adjust the orientation of the nesting pattern that generated in the second step to

maximize the stock utility rate.

35

3.3.1 Clustering

The cutting-stock problem is formulated as a standard form of the constrained

optimization problem as follows:

cost function: minimize
1

1 1

O O
N N

i j
i j i

f
−

= = +

=∑∑ (41)

design variables: iii yx θ,,

 i=1~N (42)

constraints: 1 (, , , , ,)i Mijk j j j k k kg D x y x y 0θ θ= ≤

2

)1(~1 −
=

NNi

 j=1~(N-1)

 k=(j+1)~N (43)

where N is the number of objects; O Oi j is the norm of vector O Oi j , i.e., the

distance between Oi and Oj; xi is the x-coordinate value of the reference point of

object i; yi is the y-coordinate value of the reference point of object i; iθ is the

orientation of object i; DMjk is the maximum depth between object j and object k. The

cost function is to minimize the summation of distances between any two objects,

which means that the objects have to be arranged as close as possible. This cost

function (the distance summation) is more sensitive to the design variables than the

number of objects or the necessary stock area. Therefore, it is more suitable for the

SQP method. The constraints are that the maximum depths of any two objects cannot

36

be larger than zero, i.e., one object can only be far away or just contact the adjacent

object.

As shown in equation (43), there are many constraints when the number of objects

is large, and reducing the number of constraints is important to decrease the

calculation effort. Because of the nature of the cutting-stock problem, the constraints

may not be reduced in physical ways, but they can be reduced using mathematical

methods. If the solution satisfies the constraint, it will not be necessary to consider

whether or not the constraint still exists. Therefore, the active-set strategy of the SQP

method is used to reduce the considered constraints in this study.

A constraint will never be inactive when using the overlap area as the constraint

value because the overlap area is never less than zero. Thus, the number of constraints

cannot be reduced. However, when using the maximum depth to consider overlap, the

maximum depth will be negative if there is a gap between two objects, and therefore

the constraint becomes inactive. These constraints will be ignored and the

computation effort will be decreased.

After formulating the clustering process as a constrained optimization problem,

the positions and orientations of objects can be obtained by using SQP method to

solve the problem.

37

3.3.2 Nesting

After the first step, the objects are arranged at the positions (xi, yi) with the

orientations (iθ), and are treated as a cluster in this step. This step uses the CNA

method which proposed by Cheng and Rao (1999) to generate the nesting pattern. The

detailed process is introduced with pentagons as an example as follows.

At first, two objects are in contact to each other at a point as shown in Fig. 3-4(a),

and are called “stator” and “mover”. The object S in Fig. 3-4(a) is the stator and the

object M is the mover. The bottom-left vertex of the object is used to represent the

object position in CNA. Then M slides on S with a fixed orientation in a

counterclockwise direction. At beginning, m4 contacts with s1, and M will moves

along until the contact vertex m1 2s s 4 meet a corner or M contacts S on another point

as shown in Fig. 3-4(b). The point m4 meets a corner when it contacts with s2, and

then M will moves along until the contact vertex s5 4m m 2 meet a corner or M

contacts S on another point as shown in Fig. 3-4(c). This self-sliding process is

complete when M moves to the initial position, and the path of the bottom-left vertex

of M is recorded as a no-fit polygon as shown in Fig. 3-4(d). This process is called

“self-sliding” because the two objects are identical and sliding relative to each other in

the process.

After finding the no-fit polygon of self-sliding, the mover is removed and the

38

stator is called object P0 as shown in Fig. 3-5(a). The bottom-left vertex of another

object (object P1) is put at an arbitrary position of the self-sliding no-fit polygon of P0.

These two objects have their self-sliding no-fit polygons, and the right interaction

point of these two no-fit polygons is the position of object P2. The vector from the

bottom-left vertex of object P0 to the object P1 is called the “first nesting vector”, and

the vector from the bottom-left vertex of object P0 to the object P2 is the second

nesting vector as shown in Fig. 3-5(b). The third nesting vector is obtained by

subtracting the first nesting from the second nesting vector. These three nesting

vectors and their negative vectors will form a hexagon as shown in Fig. 3-5(c), which

is called a “nesting crystal”. Then, moving object P1 on the self-sliding no-fit polygon

of P0 will result in different nesting vectors and different nesting crystals. The

optimum nesting vectors are those vectors that cause the minimum nesting crystal

area.

3.3.3 Improvement

Because the optimum nesting vectors in Fig. 3-5(b) might not be parallel to the

sheet stock edges, there will be four corners that are not occupied by the nesting

pattern after the second step. Rotating the nesting vector parallel to any axis will

reduce this to two regions. Aligning three nesting vectors parallel to the X- and Y-axis

respectively will result in six cases to improve the nesting pattern. The best case is

39

selected as the result in this study.

3.4 The solving process for the multi-polygon problem

The multi-polygon problem includes five kinds of problems. They are the

single-stock problem, multi-stock problem, rectangular stock problem, irregular stock

problem, and flaw stock problem. The solving process for the multi-polygon problem

is similar to the clustering step in the combinational problem. It formulates the

multi-polygon problem as a constrained optimization problem and solves it by SQP

method. One difference is that the virtual object is used in the model. The other

difference is that a global strategy will be used after solving by SQP method. The

global strategy is used to improve the solution, and there are two global strategies

proposed in this study.

3.4.1 Virtual object strategy

When using the virtual object in the irregular stock problem, the smallest

surrounding rectangle of the stock will be obtained first as shown in Fig. 3-6. Then the

space between the profile of the stock and the surrounding rectangle is divided into

several no-overlapping pieces as shown in Fig. 3-6. The objects arranged on the stock

cannot have any part outside the boundary of the stock. This situation is equivalent to

that no object can overlap with the pieces described above. Arranging objects on the

40

irregular stock is equivalent to arranging objects on the surrounding rectangle where

the pieces are already arranged on. The pieces are called the “virtual” objects because

they are not the real objects that are wanted to be arranged on the stock.

When using the virtual object in the multi-stock problem, the stocks are firstly

arranged sequentially as shown in Fig. 3-7. The image of the arrangement of these

stocks is similar to a large rectangular stock with some line segments. The objects that

will be arranged on these stocks cannot be portioned into many parts in different

stocks. Thus, the objects cannot overlap with the line segments on the large

rectangular stock. Arranging objects on the stocks is equivalent to arranging objects

on the large rectangular stock which has some line segments on it. The line segments

are the virtual objects in the multi-stock problem.

When using the virtual object in the flaw stock problem, the flaw on the stock is

marked first. And then, a virtual object with the same profile of the flaw is fixed on

the position of the flaw before arranging objects. The object will be avoided to

arrange on the flaw because they can not overlap the virtual object.

The cutting-stock problem with irregular stocks, multi-stock, or flaw stock is

simplified as arranging objects on a rectangular single-stock where some virtual

objects are already arranged on, and the objects cannot overlap with the virtual

objects.

41

3.4.2 Problem formulation

The cutting-stock problem is formulated as a standard form of the constrained

optimization problem as follows:

cost function: minimize 2

1

N

ui
i

f x
=

= ∑ (44)

design variables: iii yx θ,, ; i=1~N (45)

constraints: 1 (, , , , ,)i Mijk j j j k k kg D x y x y 0θ θ= ≤ ;

 where
2

)1(~1 −
=

NNi , j=1~(N-1), k=(j+1)~N (46)

 ; i=1~N (47)

 ; i=1~N (48)

 ; i=1~N (49)

 ; i=1~N×N

02 ≤−= lii xg

03 ≤−= lii yg

widthuii yyg ≤=4

5i Mijkg D= ≤0 v, j=1~N, k=1~Nv (50)

where N is the number of objects; xi is the x-coordinate value of the reference point of

object i; yi is the y-coordinate value of the reference point of object i; iθ is the

orientation of object i; xli is the lower boundary of object i in the x-direction; xui is the

upper boundary of object i in the x-direction; yli is the lower boundary of object i in

the y-direction; yui is the upper boundary of object i in the y-direction; ywidth is the

width of the stock; DMjk is the maximum depth between object j and object k; Nv is the

number of virtual objects.

The cost function will cause objects be arranged near the lower boundary of the

42

stock as close as possible. The design variables will denote the positions and the

orientations of objects. A reference point is used to denote the position of an object as

described in section 3.1. The maximum depth DMjk between object j and object k is the

maximum overlap length in the direction from the reference point of object j to the

reference point of object k. The DMjk will be negative if two objects have no overlap

but a gap between them. The constraints g1i can be shown as a vector form g1, and it

considers the overlap of objects. The vector form g2, g3, and g4 are similar to g1, and

they constrain the objects to avoid being arranged outside the boundaries of the

surrounding rectangular stock in the irregular stock problem and the large rectangular

stock in the multi-stock problem. The equations of g5 are the same definition in g1

and it considers the overlap between objects and virtual objects.

The gradients are necessary in the local search strategy of this study, but the

gradients of g1 and g5 do not have explicit forms. They will be calculated by the finite

difference method in this study. The equation of the finite difference method used in

this study is shown as follows.

() (j j j

k k

gi gi gi
d d

d Δd d∂ + −
=

∂ Δ

)

3

; k=1~N×3 (51)

where d is the vector form of design variables and dk is an element of d; and

 (52)

Because of the characteristic of this formulation, much calculation of the gradient in

1{ ,..., ,..., }T
k k Nd d d d ×+ = + Δd Δd

43

equation (51) is not necessary. For example, when modifying the design variables of

object No. 3, it will never affect the overlap between object No.1 and object No. 2.

Therefore

 12 12 12

3 3 3

0M M MD D D
x y θ

∂ ∂ ∂
= =

∂ ∂ ∂
= (53)

and calculating them by equation (51) is not necessary.

Therefore the gradients of the constraints are shown as follows.

; when = , , , , , or 1

 0; otherwise

Mikl
j k k k l l li

j
j

D d x y x yg d
d

θ θ∂⎧
∂ ⎪ ∂= ⎨
∂ ⎪

⎩

 (54)

; when

2 1; when

0; otherwise

li
j i

j

i
j i

j

x d
d

g d x
d

θ
⎧ ∂⎪⎪− =⎪⎪ ∂⎪⎪⎪∂ ⎪⎪⎪= − =⎨∂ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 (55)

; when

3 1; when

0; otherwise

li
j i

j

i
j i

j

y d
d

g d y
d

θ
⎧⎪ ∂⎪− =⎪⎪ ∂⎪⎪⎪⎪∂ ⎪⎪= − =⎨⎪∂ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 (56)

; when

4 1; when

0; otherwise

ui
j i

j

i
j i

j

y d
d

g d y
d

θ
⎧⎪∂⎪ =⎪⎪∂⎪⎪⎪⎪∂ ⎪⎪=⎨⎪∂ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= (57)

44

; when , , or
5

0; otherwise

Mikl
j k k k

ji

j

D d x y
dg

d

θ
⎧∂⎪⎪ =⎪⎪ ∂∂ ⎪⎪=⎨⎪∂ ⎪⎪⎪⎪⎪⎩

 (58)

For simplifying the calculation of overlap, the real maximum depth will not be

calculated if the smallest surrounding rectangles of object j and k have no overlaps. At

this time, the minus value of the distance between two objects’ reference point is used

instead of the maximum depth. It is used for the g1 and g5, and they are modified as

follows.

2 2() () 0,
1 when or or or

(, , , , ,) 0, otherwise

j k j k

i lj uk uj lk lj uk uj lk

Mijk j j j k k k

x x y y
g x x x x y y y y

D x y x yθ θ

⎧⎪− − + − ≤⎪⎪⎪⎪′ =⎨ > < > <⎪⎪⎪ ≤⎪⎪⎩

;

 where
2

)1(~1 −
=

NNi , j=1~(N-1), k=(j+1)~N (59)

2 2() () 0,
5 when or or or

(, , , , ,) 0, otherwise

j k j k

i lj uk uj lk lj uk uj lk

Mijk j j j k k k

x x y y
g x x x x y y y y

D x y x yθ θ

⎧⎪− − + − ≤⎪⎪⎪⎪′ =⎨ > < > <⎪⎪⎪ ≤⎪⎪⎩

;

 where i=1~N×Nv, j=1~N, k=1~Nv (60)

The equations of gradient are modified as follows.

1 () 1 () ; when = , , , , , or 1

 0; otherwise

i i
l j j j k ki

l
l

g g d x y x yg d
d

d Δd d
kθ θ

′ ′+ −⎧
′∂ ⎪ Δ= ⎨∂ ⎪⎩

 (61)

5 () 5 () ; when = , , or 5

 0; otherwise

i i
l j ji

j
l

g g d x yg d
d

d Δd d
jθ

′ ′+ −⎧
′∂ ⎪ Δ= ⎨

∂ ⎪
⎩

 (62)

where j and k in equation (61) and (62) are associated with what they are in equation

45

(59) and (60).

3.4.3 SQP method with the swap strategy

The swap strategy is one of the global strategies in this study. It includes

“escaping the local optimum trap” and “sometimes accepting a bad solution”. Two

objects will be swapped after finding a local optimum solution, and objects will be

re-arranged by the SQP method. This will help to search for a solution in another

region and escape the local optimum trap. If there is no solution better than the

original one after several swaps, the best one in these swaps will be updated as the

new solution. This is similar to the Simulated Annealing method that accepts a bad

solution according to equation (1) described above.

The whole approach is shown in Fig. 3-8, and includes the following steps:

1. Arrange all objects on the sheet stock randomly, and decide the maximum

iteration number. The random arrangement is the initial solution. The index

“IterNo” indicates the iteration number now, and it is set as 0 at the beginning.

2. Use the SQP method to arrange objects, and the solution “D” and the cost function

value “F” are obtained. And then, initialize the best solution “Dbest” and the best

cost function value “Fbest” as D and F.

3. Update the “IterNo” and initialize the “SwapNo”. Set the maximum swap number

as the iteration number.

46

4. Update the “SwapNo” first, and swap the position of two objects of solution D.

The two objects are selected randomly.

5. There will be some overlap after swap two objects. Thus the SQP method is used

to re-arrange all objects, and the solution of the swap sub-process “Dsub” and its

cost function value “Fsub” are obtained.

6. If it is the first swap or the result of swap is better than the best solution in the

swap sub-process, the best solution of the swap sub-problem “Dsubbest” and its cost

function value “Fsubbest” are updated.

7. If “Fsubbest” is larger than “Fbest”, i.e., the best solution of the swap sub-process is

worse than the best one of total process, and it will be better to try another swap,

or “SwapNo” is less than “SwapMax”, i.e., another swap is allowable, go to step 4

to do another swap.

8. If another swap is not necessary or not allowable in the swap sub-process, check if

“Fsubbest” is better than “Fbest” or not. If a solution better than the best one of the

total process is obtained in the swap sub-process, update the best solution and its

cost function.

9. If “IterNo” is less than “IterMax”, update the swap base “D” as the best solution

of the swap sub-process and go to step 3 to continue the process. If not, the best

solution is the final solution.

47

The solving process of the SQP method with the swap strategy can be written as

an algorithm form as follows:

Set IterMax
Set IterNo=0
Set initial solution of SQP method: d randomly

where d=[x1,y1,θ1,x2,y2,θ2,...,xN,yN,θN]=[d1,d2,...dNx3]T

Solve min f(d) subject to g(d)≦0 by SQP method
 Then obtain solution D, F=f(D)

Set Dbest=D
Set Fbest=F

For IterNo=1,2,...,IterMax
 Select a and b randomly where 1≦a≦N, 1≦b≦N
 Set initial solution of SQP method:

d=[D1,D2,...,Dax3-4,Dax3-3,Dbx3-2,Dbx3-1,Dax3,...,Dbx3-4,Dbx3-3,Dax3-2,Dax3-1,Dbx3,...,
DNx3]T

 Solve min f(d) subject to g(d)≦0 by SQP method
Then obtain solution Dsub, Fsub=f(Dsub)

 Set Dsubbest=Dsub

 Set Fsubbest=Fsub

 Set SwapMax
 Set SwapNo=1

 While (SwapNo<SwapMax and Fsubbest>Fbest)
 Select a and b randomly where 1≦a≦N, 1≦b≦N

 Set initial solution of SQP method:
d=[D1,D2,...,Dax3-4,Dax3-3,Dbx3-2,Dbx3-1,Dax3,...,Dbx3-4,Dbx3-3,Dax3-2,Dax3-1,

Dbx3,...,DNx3]T

 Solve min f(d) subject to g(d)≦0 by SQP method
 Then obtain solution Dsub, Fsub=f(Dsub)

 If Fsub<Fsubbest

 Set Dsubbest=Dsub

48

 Set Fsubbest=Fsub

 End If

 Set SwapNo=SwapNo+1
 End While

 Set D=Dsubbest

 If Fsubbest<Fbest

 Set Dbest=Dsubbest

 Set Fbest=Fsubbest

 End If
End For

Obtain Dbest as the solution

The maximum swapping number is set as the iteration number, because the bad

solution may be accepted easily in the beginning of the solving process. The

acceptance of bad solution will become more and more difficult in the solving process.

This characteristic is similar to the concept of Simulated Annealing Algorithm for

global searching. As the maximum swapping number is increased during every

iteration in the process, the number of bad solution acceptances is decreased. It is

similar to the “cooling down” in the Simulated Annealing Algorithm, but no

additional parameter has to be set, such as the temperature and the cooling rate of the

Simulated Annealing Algorithm and the mutation rate of the Genetic Algorithm. It is

friendly and easy to use.

49

3.4.4 SQP method with the insert strategy

As shown in the equation (1), the objects are desired to be arranged near the

lower boundary in the x-direction as close as possible. After arranging by the local

search strategy, the object with the maximum upper boundary in the x-direction is

inserted to the x-lower boundary of the stock with the same height. This will cause the

solution go into another local region but also produce some overlaps.

The flowchart of the whole solving process is shown in Fig. 3-9. The steps are

described below.

1. Arrange objects on the stock randomly and it is the initial solution of the whole

process. Choose the maximum iteration number “IterMax” and set the iteration

number index “IterNo” as 0.

2. Improve the initial solution with SQP method.

3. Initialize the best solution “Dbest” as the solution of the SQP method.

4. Insert the object with maximum x-upper bound into the x-lower boundary of the

stock.

5. Improve the overlap by using SQP method.

6. Update Dbest. If the necessary length, i.e. the maximum x-upper bound of all

objects, of the stock is reduced, set the new solution as the best solution.

If the iteration number “IterNo” is less than the maximum iteration number, add

50

IterNo by 1 and go to step 4. Otherwise stop the process and the Dbest is the best

solution.

The solving process of the SQP method with the insert strategy can be written as

an algorithm form as follows:

Set IterMax
Set IterNo=0
Set initial solution of SQP method: d randomly

where d=[x1,y1,θ1,x2,y2,θ2,...,xN,yN,θN]=[d1,d2,...dNx3]T

Solve min f(d) subject to g(d)≦0 by SQP method
 Then obtain solution D, F=f(D)

Set Dbest=D
Set Fbest=F

For IterNo=1,2,...,IterMax
 Set xui=Max{xu1,xu2,...,xuN} and obtain i
 Set d=[D1,D2,...,Dax3-3,0,Dax3-1,...,DNx3]T

 Solve min f(d) subject to g(d)≦0 by SQP method
 Then obtain solution D, F=f(D)

 If F<Fbest

 Set Dbest=D
 Set Fbest=F
 End If
End For

Obtain Dbest as the solution

51

Initialise maximum depth DM

Calculate the depth D

D > DM? Update DM

Next point?

Stop

Get one vertex

Yes

No

No

Yes

Coordinate transformation

Fig. 3-1 Flowchart for finding the maximum depth

52

X

Y

a'1

a1

a2

a3

a4

a5

a6

a7

a8

b1
b2

b3

b4

b5

b6

b7

b8

OB

OA

a'3 a'2

A

B

Fig. 3-2 Depths between two objects

53

Initialize
d(0), H(0)=I, R0=1, kmax

Define QP subproblem
minimize 0.5T Tf Δd Δd HΔd∇ +
subject to TA Δd b≤

Normalize QP subproblem

Minimize 0.5T T
0Λ s s s+

Subject to Ms Δ≤

()()k
cF d ε≤

Solve normalized
QP subproblem

1 2v v v= +

1 2s s s= − +

Solve normalized
QP subproblem

2v v=

2s s=

De-normalize

0 1 2i i
i

i

c v v
c

μ +
=

1Δd U s−=

()kd ε≤ or max>k k

Final design

Calculate step size

0.5q
kα = 0,1, 2,...q =

Minimum q that
(0.5) ()qd Δd dΦ + ≤ Φ

Update approximate Hessian
(1) () () ()k k k kH H D E+ = + −

Update solution

(1) () ()k k k
kd d Δdα+ = +

Yes No

No

Yes

Fig. 3-3 The flowchart of SQP method

54

(a) Two objects contact on a point

(b) First path of that the mover slides on the stator

(c) First two path of that the mover slides on the stator

(d) The self-sliding no-fit polygon

Fig. 3-4 Process of finding the self-sliding no-fit polygon.

55

P0

P1

P2

(a) The object P1 on the self-sliding no-fit polygon of the object P0

P0

P1

1st nesting vector
2nd nesting vector

3rd nesting vector

P2

(b) Nesting vectors

P2

P0

P1

(c) The nesting crystal

Fig. 3-5 The process of finding nesting vectors.

56

Virtual object

Stock

Smallest surrounding rectangle

Virtual object

Fig. 3-6 The virtual objects of the irregular stock problem.

Fig. 3-7 The virtual objects of the multi-stock problem.

Virtual Object

Large rectangular stock

 Stock 1 Stock 2 Stock 3

57

Fig. 3-8 The flowchart of the SQP method with the swap strategy.

58

Yes

Initial solution
Set IterMax
IterNo=0

SQP method

Initialize Dbest

xmax-upper=0

SQP method

IterNo < IterMax

Update Dbest

Stop

No

IterNo=IterNo+1

Fig. 3-9 The flowchart of the SQP method with the insert strategy.

59

CHAPTER 4 EXPERIMENTAL RESULTS

4.1 Combinational problem

The first example used in this section was introduced by Cheng and Rao (1997,

1999, 2000). The profiles of objects that will be nested are shown and numbered as in

Fig. 4-1. Objects 2 and 3 have the same profile; objects 7 and 8 also have the same

profile.

In the first step, the design variables are the coordinate values (xi, yi) and object

orientations (iθ). There are 24 design variables in this case because there are eight

objects and every object needs three design variables to represent its position and

orientation. The cost function is to minimize the summation distances between objects

(as shown in equation (41)), and the 28 constraints are that no two objects may

overlap (as shown in equation (43)). This means all objects have to be arranged as

close as possible without overlap. Even if there are many constraints in this case, the

inactive constraints will be ignored by the active-set strategy in the solving process

when using the maximum depth to consider the overlaps.

Deciding the initial solution is another problem in the optimization process, and

different initial solutions will lead to different local optimum solutions. The initial

solution in the examples of the combinational problem is set by the concept of

60

initially ignoring the constraints, and findings the best solution in the new

unconstrained problem. Then the best solution of the unconstrained problem is set as

the initial solution of the constrained problem. Thus, the initial solution is set as that

all object positions are on the origin of the global coordinate system. This is because

the best solution occurs when all objects overlap on the same position if the

constraints are ignored. The object orientations are set as zero, i.e., the original

orientation of objects, because they do not affect the cost function but can improve the

constraints.

The object positions and orientations are adjusted to improve the constraints in the

solving process, resulting in 418 iterations in the SQP solving process in this case.

The number of considered constraints during the solving process is shown in Fig. 4-2.

At the beginning, 28 constraints are used, i.e., all constraints are considered, but the

number of considered constraints is later reduced. For example, there are six pairs of

objects that overlap one another in iteration 7. The arranging pattern is shown in Fig.

4-3. This means that there are six considered constraints. The six pairs are object 1 &

object 6, object 2 & object 3, object 2 & object 5, object 3 & object 5, object 4 &

object 8, and object 7 & object 8. Object 2 and object 3 are almost overlapped

completely, and look like one object in the figure. The maximum depths of the first,

fifth, and sixth pair are very close to zero, and cannot be observed in the figure. If all

61

constraints are considered in the solving process, there will be 11704 constraints (28×

418). But the summation of the number of considered constraints is 2670 by using the

active-set strategy with the maximum depth overlap index. This amounts to a

reduction of about 77.19% in this case.

The result of the first step is shown in Table 4-1, and the x- and y-coordinate

values are the position of the objects’ reference points in the global coordinate system.

The arranging pattern of the first step is shown in Fig. 4-4(a), and the objects should

be integrated before going into the second step. The profile of the cluster with a

highly concave characteristic is shown in Fig. 4-4(b). This concave characteristic may

be used in the second step.

The second step uses CNA to nest. The self-sliding no-fit polygon of the cluster

has to be found first. Then the positions of the clusters are adjusted to find the

optimum nesting vectors as introduced above. The optimum nesting vectors are

shown in Table 4-2. The nesting pattern with these nesting vectors has 60 clusters in a

50×50 sheet stock as shown in Fig. 4-5. N1, N2, and N3 are the first, second, and third

optimum nesting vectors, respectively. As shown in Table 4-2 and Fig. 4-5, the

optimum nesting vectors are not parallel to the X- or Y-axis. Therefore, the nesting

pattern can be improved in the third step.

In the third step, the three nesting vectors are aligned to the X- and Y-axis

62

respectively, as shown in Fig. 4-6. The best case is paralyzing the third nesting vector

to the Y-axis, and it is resulting in 66 clusters in a 50×50 stock.

For evaluating the proposed method, three kinds of sheet stocks were used,

namely 50×50, 100×100, and 200×200. The cluster in the literature of Cheng and Rao

(2000) is shown in Fig. 4-7. Because the Genetic Algorithm is a controlled random

method, the improvement step runs three times in every kind of stock with the

literature cluster, as shown in Table 4-3(a). The results of the proposed method with

these sheet stocks are shown in Table 4-3(b). The comparison between these cases is

shown in Table 4-3(c). After integrating the multi-polygon as a single object and

nesting by CNA, there are 58 literature clusters in the 50×50 sheet stock, while the

proposed method yields 60. Thus, the number of objects is improved by 3.45%. In the

100×100 and 200×200 sheet stock, the number of objects is improved by 5.28% and

4.91% respectively. However, after improving the nesting pattern by the Genetic

Algorithm, there are up to 62 clusters in the literature method, while there are 66

clusters in this study after the third step. Thus, the number of objects is improved by

6.45%. The proposed method improves the number of objects in these cases by

between 3 and 6 percent. Therefore, the proposed method has better results for

rotatable objects and requires less calculation effort.

For testing the efficiency of the methods, this study uses other two cases called

63

Com_Dagli and Com_Swim. The case information is shown in Appendix A.1. These

two cases are modified from the case “Dagli” and “Swim” in the ESICUP website

(http://paginas.fe.up.pt/~esicup/tiki-index.php). The clusters are shown in Fig. 4-8.

The stock sizes are selected randomly, and the results are shown in Table 4-4 and

Table 4-5. The results by using the SQP method and parallism strategy are better than

the self-sliding with Genetic Algorithm. Thus, the approach proposed in this study is a

good method not only for one special case.

4.2 Multi-polygon problem with a rectangular stock

The object information of the cases used in this section is shown in Appendix

A.2. Four cases called Dagli, Swim, Albano, and Shapes2 are used to test the effect of

the proposed approach. The first three cases are garment cases and the last one is an

artificial case.

The experiment results are shown in Table 4-6. At first, every case is solved by

the Swap strategy with the maximum iteration number set as 80. Because the initial

solution of the strategy is generated randomly, every case runs 20 times. The results

are shown in the row “Swap 80” of Table 4-6. As shown in the table, the results are

worse than the results in the literature unless case Swim. Thus, the maximum iteration

number is set as 200 in Swap strategy for solving case Dagli, Albano, and Shapes2.

Every case runs only 10 times because 200 iteration cost much time. The results are

64

http://paginas.fe.up.pt/%7Eesicup/tiki-index.php

shown in row “Swap 200” of the table.

For observing easily, the cells of the results are filled with different colors. For

case Dagli, Albano, and Shapes2, the results in the literature are compared with results

in row Swap 200. If the result of Swap 200 is better than the literature results, the cell

of literature result is filled with red. If they are the same, the cell is filled with yellow.

If the result of Swap 200 is worse, the cell is filled with green. For case Swim, the

literature results are compared with the results in Swap 80, and the color setting is

similar as other cases. As shown in Table 4-6, the most results of this study are better

than the literature results. Therefore, the Swap strategy is good for the cutting-stock

problem. The best arranging patterns of cases are shown in Fig. 4-9. The white parts

are objects and the gray part is the unused stock.

Another strategy proposed in this study is the Insert strategy. It is difficult to

compare the efficacy of Swap and Insert strategy with fixed iteration number because

the number for executing SQP method in Swap 80 is not the same in every run. Thus,

the SQP method execution number in every run of the Insert strategy is set the same

as that in every run of the Swap strategy respectively. For example, the SQP method

execution number in case Dagli run no. 1 of the Swap strategy is 2679, and the SQP

method execution number in case Dagli run no. 1 of the Insert strategy is set as 2679,

too. The results of the Insert strategy are shown in row “Insert” of Table 4-6. It is

65

obvious that the results of the Swap strategy are better than the results of the Insert

strategy, but the Insert strategy is more stable than the Swap strategy because its

deviation is smaller than the Swap strategy’s.

4.3 Multi-polygon problem with several rectangular stocks

The object information of the cases used in this section is shown in Appendix

A.3. Four cases called Ext_Dagli, Ext_Swim, Ext_Albano, and Ext_Shapes2 are used

to test the effect of the proposed approach. These four cases are modified from the

cases in the last section, and the difference is the stock number and the stock size.

The maximum iteration number of Swap strategy is set as 80, and there 20 runs

in every case. The maximum iteration number of the Insert strategy is depended on

the SQP method excitation number in the Swap strategy as describing in the last

section.

The results of the Swap and Insert strategy are shown in Table 4-7. The results

show that the best result of the Swap strategy is usually better than the best result of

the Insert strategy, but the average stock utility rate of the Insert strategy is usually

better than the Swap strategy’s. It is similar to the single-stock problem that the Insert

strategy is more stable than the Swap strategy because its deviation is smaller than the

Swap strategy’s. The best arrangement patterns of the problem with several

rectangular stocks are shown in Fig. 4-10.

66

4.4 Multi-polygon problem with irregular stocks

The virtual objects in this section are used for multi-stock, irregular stock, and

the flaw. The case information is shown in Appendix A.4. Both Swap and Insert

strategy are used, and there is only one run for every strategy in every case because

the effect of different strategies are compared in the last two section. It is not

necessary to compare them again. The results are shown in Table 4-8, and the best

arranging patterns are shown in Fig. 4-11. The black part is the flaw on the stock. The

results show that the Swap strategy, Insert strategy, and Virtual object strategy are

workable for multi-stock problem, irregular stock problem, and flaw stock problem.

4.5 Simplification model

Another effect should be discussed is the effect of simplification model that

simplifies the calculation of constraint gradient as shown in section 3.4.2. The original

model will calculate all constraint gradients by finite difference method. The case

Dagli, Swim, Albano, and Shapes2 in section 4.2 are used to test the effect of the

simplification model. Every case has 20 rums for SQP method, and every run has 200

iteration of SQP method. The results are shown in Table 4-9. The results show that the

simplification can save more than 95% time of the original model.

67

Table 4-1 The data of the first step result

Object No. x coord. value y coord. value Orientation (degree)
1 0.305 -2.808 6.922
2 2.723 1.155 -49.388
3 -1.196 -0.911 52.126
4 -0.138 0.985 -3.821
5 1.737 -0.717 -11.513
6 0.973 0.707 5.641
7 0.451 -0.904 92.524
8 1.088 -0.346 106.560

Table 4-2 Nesting vectors

First nesting vector (1.917, -5.238)
Second nesting vector (5.586, 1.060)
Third nesting vector (3.669, 6.298)

68

Table 4-3 Results － (a) results of CNA with Genetic Algorithm; (b) results of the
proposed method; (c) comparing the results.

(a)

The sheet stock size 50×50 100×100 200×200
CNA 60 1279 196

First nesting vector 62 285 1215
Second nesting vector 61 279 1226 Paralleling X-axis
Third nesting vector 61 276 1216
First nesting vector 62 286 1214
Second nesting vector 62 280 1225 Paralleling Y-axis
Third nesting vector 66 284 1216

The sheet stock size 50×50 100×100 200×200
CNA 58 265 1140
Improving run 1 60 269 1155
Improving run 2 62 272 1150
Improving run 3 62 277 1156

The sheet stock size 50×50 100×100 200×200
The best of proposed method 66 286 1226
The best of CNA with GA 62 277 1156
Improvement ratio 6.45% 3.25% 6.06%

(b)

(c)

69

Table 4-4 Results of case Com_Dagli (a) results of CNA with Genetic Algorithm; (b)
results of the proposed method; (c) comparing the results.

The sheet stock size 851×1790 1681×1638 649×1490
CNA 1109 2045 689

First nesting vector 1131 2096 703
Second nesting vector 1113 2060 690

Paralleling
X-axis

Third nesting vector 1124 2080 695
First nesting vector 1146 2092 690
Second nesting vector 1119 2082 687

Paralleling
Y-axis

Third nesting vector 1153 2064 707

The sheet stock size 851×1790 1681×1638 649×1490
CNA 1042 1927 647
Improving run 1 1109 2030 687
Improving run 2 1099 2032 695
Improving run 3 1099 2026 687

The sheet stock size 851×1790 1681×1638 649×1490
The best of proposed method 1153 2096 707
The best of CNA with GA 1109 2032 695
Improvement ratio 3.97% 3.15% 1.73%

(b)

(c)

(a)

70

71

The sheet stock size 144202×
124029

48817×
71275

69834×
95666

Table 4-5 Results of case Com_Swim (a) results of CNA with Genetic Algorithm; (b)
results of the proposed method; (c) comparing the results.

CNA 1335 238 477
First nesting vector 1363 236 475
Second nesting vector 1365 250 486

Paralleling
X-axis

Third nesting vector 1334 242 481
First nesting vector 1336 243 484
Second nesting vector 1330 249 484

Paralleling
Y-axis

Third nesting vector 1337 237 497

The sheet stock size 144202×124029 48817×71275 69834×95666
CNA 1259 223 451
Improving run 1 1277 230 462
Improving run 2 1282 229 471
Improving run 3 1277 230 468

The sheet stock size 144202×124029 48817×71275 69834×95666
The best of proposed method 1365 250 497
The best of CNA with GA 1282 230 471
Improvement ratio 6.47% 8.7% 5.52%

(b)

(c)

(a)

72

Table 4-6 The results of the problem with a rectangular stock

Dagli Swim Albano Shapes2
Best
(%)

Ave.
(%)

Dev.
(%)

Best
(%)

Ave.
(%)

Dev.
(%)

Best
(%)

Ave.
(%)

Dev.
(%)

Best
(%)

Ave.
(%)

Dev.
(%)

Swap 80 84.21 82.77 0.94 74.08 72.67 0.86 86.49 84.02 1.34 80.23 77.83 1.33
Insert 81.82 80.80 0.82 70.45 69.13 0.67 82.24 80.18 0.96 75.05 73.41 1.09
Swap 200 87.78 86.22 0.83 87.18 84.71 1.28 81.98 79.44 1.74
Egeblad et al. (2007), 2DNest 85.98 85.31 0.53 71.53 70.27 0.69 87.44 86.96 0.32 81.21 79.89 1.05
Bouganis and Shanahan (2007), vision 81.00 69.50
Ratanapan et al., (2007) 78.58
Gomes and Oliveira (2006), GLSHA 85.49 82.99 73.24 71.85 86.41 83.09 81.82 80.24
Gomes and Oliveira (2006), SAHA 87.15 85.38 1.07 74.37 72.28 0.97 87.43 84.70 1.23 83.60 81.41 0.74
Burke et al. (2006), Density 1 83.70 68.40 84.60 79.40
Poshyanonda and Dagli (2004), GA 84.35

73

Table 4-7 The results of the problem with several rectangular stocks.

 Ext_Dagli Ext_Swim Ext_Albano Ext_Shapes2
Best 67.48% 61.87% 77.09% 68.67%
Average 63.99% 57.25% 73.37% 63.42% Swap 80
Devaition 2.04% 1.76% 2.46% 2.89%
Best 78.87% 59.32% 75.34% 67.61%
Average 77.87% 58.26% 71.88% 65.87% Insert
Devaition 0.39% 0.80% 1.11% 0.70%

Table 4-8 The results of the problem with irregular stocks.

 Utility
Swap 80 72.97%

Irr_Dagli
Insert 71.15%
Swap 80 39.52%

Irr_Swim
Insert 68.99%

Table 4-9 The comparison between the original model and the simplification model.

 Dagli Swim Albano Shapes2
Origin (sec.) 93.75 1707.30 50.80 76.65
Simplification (Sec.) 3.40 17.20 2.05 2.90
Reduction 96.37% 98.99% 95.96% 96.22%

74

 (a) Object 1 (b) Objects 2 and 3

 (c) Object 4 (d) Object 5

 (e) Object 6 (f) objects 7 and 8

Fig. 4-1 Profiles of objects for cutting.

0

5

10

15

20

25

30

1 51 101 151 201 251 301 351 401

Iteration No.

C
on

si
de

re
d

co
ns

tra
in

t n
um

be
r

Fig. 4-2 Considered iteration number

8 7

6

5

4

2, 3

1

Fig. 4-3 The arranging pattern of iteration 7

75

76

(a) Arranging pattern of the first step

(b) Integration object: cluster

Fig. 4-4 Result of the first step.

N1

N2

N3

Fig. 4-5 The nesting pattern of the second step on the 50×50 stock

77

N1

N2 N3 N1

N2
N3

(a) N1 parallels X-axis (b) N1 parallels Y-axis

N2

N1
N2

N3
N1

N3

(c) N2 parallels X-axis (d) N2 parallels Y-axis

Fig. 4-6 Nesting patterns.

78

N1
N2

N3

N1

N2

N3

(e) N3 parallels X-axis (f) N3 parallels Y-axis

Fig. 4-6. Nesting patterns (continue).

Fig. 4-7 Integration object (cluster) in the literature.

79

(a) The cluster of case Com_Dagli

(b) The cluster of case Com_Swim

Fig. 4-8 The clusters of cases.

80

 (a) Dagli (b) Swim

 (c) Albano (d) Shapes2
Fig. 4-9 The best arranging pattern of the problem with a rectangular stock.

81

(a) Ext_Dagli (b) Ext_Swim

 (c) Ext_Albano (d) Ext_Shapes2

Fig. 4-10 The best arranging pattern of the problem with several rectangular stock.

82

(a) Irr_Dagli

(b) Irr_Swim

Fig. 4-11 The best arranging pattern of the problem with irregular stocks.

83

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

The cutting-stock problem is considered in many manufacturing industries.

According to the statistics by DGBAS (1998) and DGBAS (2003), the cost of stock is

about 50% in whole expense of manufacturing industries in Taiwan. Thus, enhancing

the stock utility will be helpful for reducing the outgoing of companies in these

industries.

Because the cutting-stock is widely considered in many manufacturing industries,

it has many different types. This study classifies the cutting-stock problem and

focuses four types of the problem. The cutting-stock problem is also discussed in the

viewpoint of the optimization problem, and the functions of the solving strategy are

obtained.

Therefore, this study proposes:

1. Using the maximum depth as the overlap index instead of real overlap area and

being used with the active-set concept can reduce the calculation effort. This is

because the constraints will be ignored if the overlap indices are less than zero, i.e.,

the maximum depths are less than zero and the constraints become inactive.

2. By using the maximum depth as the overlap index, different orientations of

84

objects is easy to consider.

3. By using the maximum depth as the overlap index, the objects are not coded in

binary matrices and they will not deform in different orientations.

4. The cutting-stock problem is formulated into a constrained optimization problem,

and a total solution strategy is proposed.

5. Different orientations of objects are easy to consider by setting the ranges of

design variables.

6. By formulating the problem into a constrained optimization problem, the famous

solving method “SQP method” can be used, and the existed software can be used.

7. In the combinational problem, the nesting pattern is improved easily in the third

step of the arranging strategy by aligning the three nesting vector with the X- and

Y-axis, respectively. The best one as the final nesting pattern.

8. A global strategy “Swap strategy” is helpful for improving the solution, and it is

easy to use because there is no parameter that has to be set.

9. A global strategy “Insert strategy” is helpful for improving the solution, and it is

easy to use because there is no parameter that has to be set.

10. The virtual object strategy is workable for the irregular shape of stocks by finding

the smallest surrounding rectangle of the irregular stock and filling the virtual

objects in the space between them. The problem becomes a rectangular stock

85

problem with some fixed virtual objects on it.

11. The virtual object strategy is workable for the plurality of the stock by arranging

the stocks of the multi-stock problem as a large stock and arranging virtual objects

on the large stock at the position of boundaries of original stocks. The problem

becomes a single-stock problem with some fixed virtual objects on it.

12. The virtual object strategy is workable for the flaw of the stock by arranging a

virtual object on the flaw.

13. The Insert strategy is more stable than the Swap strategy because its deviation of

20 runs is smaller.

14. The Swap strategy is suggested for solving the single-stock problem.

15. The Insert strategy is suggested for solving the multi-stock problem.

16. The simplification model can save much time for calculating the constraint

gradients.

5.2 Future works

This study proposes some methods for multi-types of the cutting-stock problem.

Although these methods are workable and can obtain good results, some researches

can be done in the future.

1. The searching time may be used as the criteria for finishing the whole searching

process. The iteration number is used as the criteria in this study, but it is not a

86

direct sense for user.

2. The pre-set stock utility rate also can be used as the criteria for finishing the whole

searching process. If the user only want to find a result that is “good enough” in a

short time, this criterion is much suitable.

3. This study considers the overlap of objects and the stock utility. Other properties

can be considered in the problem. For example: the relation of the stock thickness

and the gaps between objects, the necessary tool number, the tool path, and the

cutting path..

4. The methods proposed in this study are suitable for the free rotatable objects.

These methods may be modified for solving the problem that the objects should be

arranged on some specific orientations.

87

REFERENCES

Arora, J.S., (1984). An algorithm for optimum structural design without line search,

Chapter 20 in New Directions in Optimum Structural Design, Atrek, E.,

Gallagher, R.H., Ragsdell, K.M., and Zienklewiz, O.C., John Wiley and Sons,

New York.

Arora, J.S., (1988). IDESIGN software, Optimal Design Laboratory, College of

Engineering, The University of Iowa, Iowa City.

Arora, J.S., (2004). Introduction to Optimum Design, Second edition.

Elsevier/Academic Press, London.

Babu, A.R., and Babu, N.R., (2001). A genetic approach for nesting of 2-D parts in

2-D sheets using genetic and heuristic algorithms, Computer-Aided Design, 22,

879-891.

Bennell, J.A., and Dowsland, K.A., (2001). Hybridising tabu search with optimisation

techniques for irregular stock cutting, Management Science, 47, 8, 1160-1172.

Bouganis, A., and Shanahan, M., (2007). A vision-based intelligent system for

packing 2-D irregular shapes, IEEE Transactions on Automation Science and

Engineering, 4, 382-394.

Burke, E., Hellier, R., Kendall, G., and Whitwell, G., (2006). A new bottom-left-fill

heuristic algorithm for the two-dimensional irregular packing problem,

88

Operations Research, 54, 587-601.

Cheng, S.K., and Rao, K.P., (1997). Quick and precise clustering of arbitrarily shaped

flat patterns based on stringy effect, Computers & Industrial Engineering, 33,

485-488.

Cheng, S.K., and Rao, K.P., (1999). Concepts of neighborhood and universal compact

yield towards achieving best pattern layout, International Journal of Production

Research, 37, 3643-3658.

Cheng, S.K., and Rao, K.P., (2000). Large-scale nesting of irregular patterns using

compact neighborhood algorithm, Journal of Materials Processing Technology,

103, 135-140.

Crispin, A., Clay, P., Taylor, G., Bayes, T., and Reedman, D., (2005). Genetic

algorithm coding methods for leather nesting, Applied Intelligence, 23, 9-20.

DGBAS, (1998). The Report on 1996 Industry Commerce and Service Census

Taiwan-Fukien Area the Republic of China, DGBAS, Taipei. (主計處，1998，工

商及服務業普查報告，主計處，台北)

DGBAS, (2003). The Report on 2001 Industry Commerce and Service Census

Taiwan-Fukien Area the Republic of China, DGBAS, Taipei. (主計處，2003，工

商及服務業普查報告，主計處，台北)

Dowsland, K.A., Vaid, S., and Dowsland, W.B., (2002). An algorithm for polygon

89

placement using a bottom-left strategy, European Journal of Operational

Research, 141, 371-381.

Egeblad, J., Nielsen, B.K., and Odgaard, A., (2007). Fast neighborhood search for

two- and three-dimensional nesting problems, European Journal of Operational

Research, 183, 1249-1266.

ESICUP website (http://paginas.fe.up.pt/~esicup/tiki-index.php)

Gomes, A.M., and Oliveira, J.F., (2002). A 2-exchange heuristic for nesting problems,

European Journal of Operational Research, 141, 359-370.

Gomes, A.M., and Oliveira, J.F., (2006). Solving irregular strip packing problems by

hybridising simulated annealing and linear programming, European Journal of

Operational Research, 171, 811-829.

Huang, Y., Mei, D., Chen, Z., and Hao, D., (2005). Research on an intelligent leather

nesting system, Proceedings of SPIE - Volume 6040, 60400R1-60400R6.

Koroupi, F., and Loftus, M., (1991). Accommodating diverse shapes within hexagonal

pavers, International Journal of Production Research, 29, 1507-1519.

Leung, T.W., Chan C.K., and Troutt, M.D., (2003). Application of a mixed simulated

annealing-genetic algorithm heuristic for the two-dimensional orthogonal

packing problem, European Journal of Operational Research, 145, 530-542.

Liao, W.C., (1990). Integrated Software for Multifunctional Optimization, Master

90

http://paginas.fe.up.pt/%7Eesicup/tiki-index.php

Thesis, National Chiao Tung University, Taiwan, R.O.C.

Marques, V.M.M., Bispo, C.F.G., and Sentieiro, J.J.S., (1991). A system for the

compactation of two-dimensional irregular shapes based on simulated annealing,

Proceedings of the 1991 International Conference on Industrial Electronics,

Control and Instrumentation - IECON '91, 1911-1916.

Nee, A.Y.C., Seow, K.W., and Long, S.L., (1986). Designing algorithm for nesting

irregular shapes with and without boundary constraints, CIRP Annals, 35,

107-110.

Poshyanonda, P., and Dagli, C.H., (2004). Genetic neuro-nester, Journal of Intelligent

Manufacturing, 15, 201-218.

Ratanapan, K., Dagli, C.H., and Grasman, S.E., (2007). An object-based evolutionary

algorithm for solving nesting programs, International Journal of Production

Research, 45, 4, 845-869.

Syu, H., (1996). Machine Design Handbook, Chien-Hung, Taipei. (徐灝，1996，機械

設計手冊，建宏出版社，台北)

Tay, F.E.H., Chong, T.Y., and Lee, F.C., (2002). Pattern nesting on irregular-shaped

stock using Genetic Algorithm, Engineering Applications of Artificial

Intelligence, 15, 551-558.

Tseng, C.H., (1989). MOST software, Applied Optimal Design Laboratory,

91

Department of Mechanical Engineering, The National Chiao-Tung University,

Taiwan, R.O.C.

Tseng, C.H., Liao, W.C., and Yang, T.C., (1993). MOST 1.1 User’s Manual. Technical

Report No.AODL-93-01, Department of Mechanical Engineering, National

Chiao Tung University, Taiwan, R.O.C.

Wu, T.H., Chen, J.F., Low, C., and Tang, P.T., (2003). Nesting of two-dimensional

parts in multiple plates using hybrid algorithm, International Journal of

Production Research, 41, 3883-3900.

Yuping, Z., Shouwei, J., and Chunli, Z., (2005). A very fast simulated re-annealing

algorithm for the leather nesting problem, International Journal of Advanced

Manufacturing Technology, 25, 1113-1118.

Zhang, Y.P., Zhang, C.L., and Jiang, S.W., (2005). An effect approach for leather

nesting, Journal of Software, 16(2), 316-323.

92

APPENDIX A CASE INFORMATION

A.1 Combinational problem

Cheng and Rao:

Objects:

No. Vertices (x, y)

1
(-0.18, -1.77); (0.82, -1.47); (-0.18, -0.47); (0.82, 0.53);
(0.62, -0.47); (2.82, 0.53); (-0.18, 1.53); (-2.18, -0.47)

2 & 3
(-0.7, -1.14); (1.3, -0.74); (0.8, 0.86); (-0.7, 0.86);
(-1.7, -0.14); (-0.7, -0.64); (-0.9, 0.16); (0.3, -0.14)

4
(-1.32, -0.78); (0.68, -1.38); (0.68, 1.62); (-1.32,0.62);

(-0.12, 0.62); (-0.12, -0.38); (-1.32, -0.38)

5
(-1.16, -0.94); (0.84, -0.94); (0.34, 1.06); (-0.66, 1.56);

(-0.16, 0.06)

6 (-0.55, -0.58); (0.45, -0.58); (0.45, 0.62); (-0.35, 0.62)

7 & 8
(-0.2, -0.44); (0.2, -0.44); (0.5, 0.06); (0, 0.56);

(-0.5, 0.06)

Stocks:

50×50; 100×100; 200×200

A1

Com_Dagli:

Objects:

No. Vertices (x, y)

1
(-7.125, 1.875); (-6.125, 0.875); (-0.125, -1.125); (4.875, -6.125);

(7.875, -3.125); (2.875, 1.875); (3.875, 2.875); (-6.125, 2.875)

2
(-2.5, 8); (-4.5, -4); (-0.5, -4); (-0.5, -3);

(0.5, -3); (0.5, -4); (4.5, -4); (4.5, -2);
(0.5, 8)

3
(-3.5, 12); (-5.5, 6); (-5.5, -6); (-3.5, -12);

(3.5, -12); (5.5, -6); (5.5, 6); (3.5, 12)

4 (-7, 7.5); (-7, -7.5); (7, -7.5); (7, 7.5)

5 (-4.5, -2.5); (4.5, -2.5); (2.5, 2.5); (-2.5, 2.5)

6
(-4, 16.143); (-3, -12.857); (-1, -15.857); (2, -14.857);

(7, -4.857); (1, 15.143); (-2, 17.143)

7
(-8.4, 0.4); (-3.4, -2.6); (14.6, -2.6); (4.6, 2.4);

(-7.4, 2.4)

8
(-1.5, -4.2); (1.5, -4.2); (2.5, 1.8); (1.5, 1.8);
(1.5, 0.8); (0.5, -0.2); (-0.5, -0.2); (-1.5, 0.8);

(-1.5, 1.8); (-2.5, 1.8)

9 (-3.75, 0.75); (-2.75, -1.25); (4.25, -1.25); (2.25, 1.75)

10 (-6.333, -2.133); (7.667, -2.133); (-1.333, 4.267);

Stocks:

851×1790; 1681×1638; 649×1490

A2

Com_Swim:

Objects:

No. Vertices (x, y)

1
(-9.304, 3.188); (-9.354, -0.022); (-9.294, -3.232); (-7.794, -3.412);

(-6.714, -3.722); (-5.074, -4.192); (-3.834, -4.512); (-2.504, -4.82188);
(-0.724, -5.182); (0.576, -3.632); (1.446, -3.012); (2.806, -2.342);
(3.886, -2.082); (5.506, -2.072); (6.666, -2.212); (8.066, -2.452);
(7.886, -1.212); (7.776, 0.018); (7.876, 1.248); (8.056, 2.488);
(6.656, 2.238); (5.496, 2.098); (3.876, 2.098); (2.796, 2.358);

(1.436, 3.018); (0.556, 3.638); (-0.744, 5.178); (-2.524, 4.808);
(-3.854, 4.498); (-5.09, 4.168); (-6.734, 3.688); (-7.814, 3.378)

2
(-3.936, 2.733); (-3.856, 1.253); (-3.667, -0.264); (-3.252, -1.891);
(-2.146, -1.757); (-1.056, -1.727); (0.074, -1.897); (1.544, -2.237);

(3.704, -2.723); (4.114, -0.767); (4.934, 0.773); (3.614, 0.973);
(2.614, 1.183); (1.294, 1.523); (-1.216, 2.213); (-2.762, 2.614)

3
(-4.125, 0.623); (-5.815, 0.193); (-7.275, -0.147); (-9.483, -0.603);

(-10.601, -1.122); (-7.855, -1.367); (-6.615, -1.527); (-4.685, -1.957);
(-3.305, -2.537); (-1.235, -3.727); (0.105, -3.417); (2.244, -2.966);

(3.99, -2.378); (5.125, -1.837); (6.395, -1.147); (8.615, -0.107);
(8.715, 1.163); (8.795, 2.403); (6.865, 2.703); (5.385, 2.923);
(4.265, 3.063); (2.705, 3.173); (1.04, 3.173); (-0.725, 2.913);

(-2.525, 2.515)

4
(-6.711, 0.842); (-6.631, -0.878); (-3.621, -0.818); (-1.871, -0.808);
(-0.551, -0.828); (0.469, -0.878); (2.049, -1.098); (3.599, -1.638);

(6.804, -0.269); (5.379, 0.272); (3.779, 0.774); (2.379, 1.002);
(1.139, 1.102); (-0.031, 1.132); (-1.601, 1.102); (-4.581, 0.982)

5
(-1.285, 3.988); (-0.945, 2.559); (-0.515, 1.308); (-0.395, 0.108);

(-9.545, -0.402); (-9.525, -1.992); (-0.895, -2.082); (0.405, -2.512);
(0.805, -4.012); (1.225, -5.412); (2.425, -5.252); (2.255, -3.272);
(2.195, -2.112); (2.215, -0.132); (2.315, 1.348); (2.535, 3.048);

(3.602, 6.309); (2.235, 4.528); (0.885, 3.988);

A3

6
(-7.243, -5.072); (-5.945, -5.36); (-4.174, -4.77); (-2.293, -3.9);

(-1.083, -3.28); (0.127, -2.62); (1.307, -2.1); (2.347, -1.87);
(3.467, -1.94); (5.507, -2.45); (5.357, -1.06); (5.257, -0.01);

(5.357, 1.06); (5.507, 2.45); (3.467, 1.94); (2.347, 1.87);
(1.307, 2.1); (0.127, 2.62); (-1.083, 3.28); (-2.293, 3.9);

(-4.174, 4.771); (-5.945, 5.361); (-7.243, 5.073)

7
(-4.125, 0.036); (-4.165, -1.194); (-4.205, -2.874); (-4.295, -4.504);
(-4.525, -6.164); (-2.935, -6.154); (-1.665, -5.344); (-0.605, -4.974);

(0.795, -4.544); (2.345, -4.124); (3.535, -3.654); (5.005, -2.984);
(6.485, -2.204); (6.335, -0.964); (6.245, 0.056); (6.485, 2.276);
(5.005, 3.056); (3.535, 3.726); (2.345, 4.196); (0.795, 4.616);

(-0.605, 5.046); (-1.665, 5.416); (-2.935, 6.226); (-4.525, 6.236);
(-4.295, 4.576); (-4.205, 2.946); (-4.165, 1.266)

8
(1.313, 2.71); (0.293, 1.56); (-0.627, 0.5); (-2.047, -0.181);

(-7.507, -0.271); (-7.467, -1.871); (-1.587, -2.041); (-0.617, -3.031);
(1.173, -3.521); (2.033, -1.831); (2.473, -0.871); (3.013, 0.44);

(3.475, 1.656); (3.963, 3.14); (2.118, 3.61)

9
(-0.692, 2.401); (-1.713, 1.174); (-1.742, -0.464); (-1.306, -1.654);
(-0.476, -3.051); (0.338, -2.345); (1.250, -1.245); (1.849, 0.152);

(1.754, 1.694); (0.738, 3.339)

10
(1.422, 7.019); (0.136, 6.234); (-0.894, 5.814); (-1.924, 5.664);

(-3.554, 5.824); (-4.724, 6.054); (-6.724, 6.504); (-7.114, 4.824);
(-4.424, 4.214); (-2.134, 3.704); (-0.954, 3.444); (0.296, 2.644);
(0.656, 0.744); (0.656, -0.876); (0.436, -2.406); (-2.154, -3.826);

(-4.444, -4.326); (-7.134, -4.926); (-6.754, -6.606); (-4.754, -6.166);
(-3.574, -5.936); (-1.944, -5.786); (-0.914, -5.936); (0.106, -6.366);

(1.372, -7.139); (3.24, -7.946); (6.366, -7.246); (5.876, -5.156);
(5.656, -3.686); (5.586, -1.476); (5.596, -0.076); (5.596, 1.324);

(5.636, 2.804); (5.746, 4.164); (6.396, 7.094); (3.335, 7.824)

Stocks:

1442.02×1240.29; 488.17×712.75; 698.34×956.66

A4

A.2 Multi-polygon problem with a rectangular stock

Dagli:

Objects:

Total object: 30

No. Amount Vertices (x, y)

1 3 The same as object 1 of case Com_Dagli shown in A.1.

2 3 The same as object 2 of case Com_Dagli shown in A.1.

3 3 The same as object 3 of case Com_Dagli shown in A.1.

4 3 The same as object 4 of case Com_Dagli shown in A.1.

5 3 The same as object 5 of case Com_Dagli shown in A.1.

6 3 The same as object 6 of case Com_Dagli shown in A.1.

7 3 The same as object 7 of case Com_Dagli shown in A.1.

8 3 The same as object 8 of case Com_Dagli shown in A.1.

9 3 The same as object 9 of case Com_Dagli shown in A.1.

10 3 The same as object 10 of case Com_Dagli shown in A.1.

Stock:

Width: 60

A5

Swim

Object

Total object: 48

No. Amount Vertices (x, y)

1 3 The same as object 1 of case Com_Swim shown in A.1.

2 6 The same as object 2 of case Com_Swim shown in A.1.

3 6 The same as object 3 of case Com_Swim shown in A.1.

4 6 The same as object 4 of case Com_Swim shown in A.1.

5 6 The same as object 5 of case Com_Swim shown in A.1.

6 3 The same as object 6 of case Com_Swim shown in A.1.

7 3 The same as object 7 of case Com_Swim shown in A.1.

8 6 The same as object 8 of case Com_Swim shown in A.1.

9 6 The same as object 9 of case Com_Swim shown in A.1.

10 3 The same as object 10 of case Com_Swim shown in A.1.

Stock:

Width: 57.52

A6

Albano:

Objects:

Total objects: 24

No. Amount Vertices (x, y)

1 2
(-19.553, -10.44); (-9.893, -9.88); (0.277, -11.3); (2.297, -8.92);

(7.787, -9.13); (10.447, -3.63); (8.637, -2.3); (8.637, 2.3);
(10.447, 3.63); (7.787, 9.13); (2.297, 8.92); (0.277, 11.3);

(-9.893, 9.88); (-19.553, 10.44)

2 2 (-15.17, -1.305); (15.17, -1.305); (15.17, 1.305); (-15.17, 1.305)

3 4
(-13.147, -6.57); (4.463, -8.3); (8.683, -1.8); (8.683, 1.8);

(4.463, 8.3); (-13.147, 6.57)

4 4
(-7.96, -1.123); (0, 0.067); (7.96, -1.123); (8.7, 0.127);

(0, 1.927); (-8.7, 0.127)

5 4
(-8, -1.44); (-3.89, -0.79); (0, -1.44); (3.89, -0.79);

(8, -1.44); (7, 2.24); (0, 1.42); (-7, 2.24)

6 4 (-4.68, -3.295); (4.68, -3.295); (4.68, 3.295); (-4.68, 3.295)

7 2
(-15.743, -4.774); (-5.643, -4.074); (2.608, -5.504);

(5.558, -2.624); (9.428, -3.094); (10.458, 3.756); (9.638, 8.156);
(-16.303, 8.156)

8 2
(-16.194, -7.03); (8.796, -7.03); (10.856, -3.16); (10.026, 2.31);

(5.286, 2.64); (3.006, 4.49); (-5.584, 3.56); (-16.194, 4.22)

Stock

Width: 49

A7

Shapes2

Objects:

Total objects: 28

No. Amount Vertices (x, y)

1 4
(-2, -1.5); (0, -2.5); (2, -1.5); (2, 1.5);

(0, 2.5); (-2, 1.5)

2 4
(-1.25, -2.5); (1.75, -2.5); (0.75, -0.5); (1.75, 1.5);
(1.75, 2.5); (-0.25, 2.5); (-2.25, 0.5); (-2.25, -1.5)

3 4
(-1, -2); (1, -2); (2, -1); (2, 1);
(1, 2); (-1, 2); (-2, 1); (-2, -1)

4 4
(-2, -2.5); (0, -1.5); (2, -2.5); (1, -0.5);

(2, 2.5); (0, 1.5); (-2, 2.5); (-1, 0.5)

5 4
(-2.714, -2.286); (2.286, -2.286); (2.286, 2.714); (1.286, 2.714);

(0.286, 0.714); (-0.714, -0.286); (-2.714, -1.286)

6 4 (0, -2); (2, 1); (-2, 1)

7 4 (-1, -1); (1, -1); (1, 1); (-1, 1)

Stock:

Width: 15

A8

A.3 Multi-polygon problem with several rectangular stocks

Objects:

The vertices of objects in Ext_Dagli are the same as vertices of objects in Dagli

in A.2. The vertices of objects in Ext_Swim, Ext_Albano, and Ext_Shapes2 are the

same as vertices of objects in Swim, Albano, and Shapes2 in A.2 respectively.

Case Ext_Dagli Ext_Swim Ext_Albano Ext_Shapes2

No.
&
amount

No. 1: 5
No. 2: 5
No. 3: 5
No. 4: 5
No. 5: 5
No. 6: 5
No. 7: 5
No. 8: 5
No. 9: 5
No. 10: 5

No. 1: 3
No. 2: 6
No. 3: 6
No. 4: 6
No. 5: 6
No. 6: 3
No. 7: 3
No. 8: 6
No. 9: 6
No. 10: 3

No. 1: 2
No. 2: 2
No. 3: 4
No. 4: 4
No. 5: 4
No. 6: 4
No. 7: 2
No. 8: 2

No. 1: 5
No. 2: 5
No. 3: 5
No. 4: 5
No. 5: 5
No. 6: 5
No. 7: 5

Total 50 48 24 35

Stocks:

Case Ext_Dagli Ext_Swim Ext_Albano Ext_Shapes2

No. 1 60×58.2 57.52×28 49×58.8 15×14.85

No. 2 60×51 57.52×30 49×40 15×12.75

No. 3 60× infinite 57.2× infinite 49× infinite 15× infinite

A9

A.4 Multi-polygon problem with irregular stocks

Objects:

Objects of cases Ext_Dagli and Ext_Swim are used and the object information is

the same with they are in A. 3. The cases are called Irr_Gagli and Irr_Swim here.

Stocks

No. 1 2 3

Description
Vertices:
(0, 0)
(58.2, 0)
(58.2, 60)
(20, 60)
(0 ,40)
(10, 30)

Rectangle
50 × 51
with flaw
(20, 20)
(30, 23)
(22, 32)

Regular
60 × infinite

A10

	01_FrontPage and Book Name.doc
	 二次規劃法配合全域策略於多種裁切庫存問題之研究
	Sequential Quadratic Programming Method with Global Strategy for Multiple Types of Multi-polygon Cutting-stock Problem

	02_Abstract.doc
	03_Contents and Notations.doc
	04_Ch1 Introduction.doc
	Chapter 1 INTRODUCTION
	1.1 Classification of the Cutting-stock Problem
	1.2 Nature of the Cutting-stock problem
	1.3 Objectives of This Study
	1.4 Outlines

	05_Ch2 Literature review.doc
	Chapter 2 LITERATURE REVIEW
	2.1 Combinational problem
	2.2 Rectangular single-stock problem
	2.3 Multi-stock problem
	2.4 Irregular stock problem

	06_Ch3 Methods-2.doc
	Chapter 3 METHODS
	3.1 Maximum depth method
	3.2 Sequential Quadratic Programming method
	3.3 The solving process for the combinational problem
	3.3.1 Clustering
	3.3.2 Nesting
	3.3.3 Improvement

	3.4 The solving process for the multi-polygon problem
	3.4.1 Virtual object strategy
	3.4.2 Problem formulation
	3.4.3 SQP method with the swap strategy
	3.4.4 SQP method with the insert strategy

	07_Ch4 Experimental results-2.doc
	Chapter 4 EXPERIMENTAL RESULTS
	4.1 Combinational problem
	4.2 Multi-polygon problem with a rectangular stock
	4.3 Multi-polygon problem with several rectangular stocks
	4.4 Multi-polygon problem with irregular stocks
	4.5 Simplification model

	08_Ch5 Conclusions and Future Works.doc
	Chapter 5 CONCLUSIONS AND FUTURE WORKS
	5.1 Conclusions
	5.2 Future works

	09_Reference.doc
	10_Appendix A.doc

