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二次規劃法配合全域策略於多種裁切庫存問題之研究 

 研究生：余明達 指導教授： 洪景華 
   林聰穎 
   曾錦煥 
 
 

國立交通大學機械工程學系 
 

摘要 

裁切庫存問題是一種有限制條件的最佳化問題，它在討論如何將所欲加工零件

的外型排列在材料中，能提高材料的利用率，且沒有重疊。 

裁切庫存問題存在於許多的工業中，例如紡織業、成衣業、紙張製造業、造船

業及板金業。裁切庫存問題可分為許多類型。例如：方形物件的排列、不規則物件

的排列、方形材料的使用、不規則材料的使用、單一材料與多種材料等。本研究將

重點集中在不規則物件的排列上，將裁切庫存問題規劃成限制最佳化問題的形式，

並利用求解限制最佳化問題常用的序列二次規劃法配合本研究提出的全域搜尋策

略，來找到良好的解。並利用虛擬物件的概念將不規則材料問題與多材料問題簡化

成單一方型材料問題，使得所提出的搜尋策略能廣泛地應用到多種不同的問題。此

外，本研究還提出一種適用於序列二次規劃法的物件重疊的指標，與一簡化的模型

以達到簡化限制條件計算的目的。 
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ABSTRACT 

The cutting-stock problem, which considers how to arrange the component profiles 

on the material without overlaps, can increase the utility rate of the stock, and is thus a 

standard constrained optimization problem. 

The cutting-stock problem is relevant in many industries, such as textile, garment, 

paper, ship building, and sheet metal industries. The cutting-stock problem can be 

classified in many types, such as: rectangle object problem, irregular object problem, 

rectangle stock problem, irregular stock problem, single-stock problem, and multi-stock 

problem. This study focuses on the irregular object problem, and formulates it as a 

standard constrained optimization problem. The Sequential Quadratic Programming 

method, which is famous for solving a constrained optimization problem, is used with the 

global strategies, which are proposed in this study, for obtaining a good solution. This 
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study also proposes a virtual object strategy to simplify the irregular stock problem and 

the multi-stock problem as a single rectangular stock problem. Additionally, this study 

proposes an overlap index, which is suitable for the Sequential Quadratic Programming 

method, and proposes a simplification model for simplifying the calculation of constraints. 
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CHAPTER 1 INTRODUCTION 

The cutting-stock problem is the problem considers how to arrange the 

components of products in the stock that will enhance the stock utility or reduce the 

necessary stock. This problem is often also called the “packing problem” or “nesting 

problem.” These three names may be used for different types of problems considering 

how to arrange components in the stock that can enhance the stock utility. However, 

they are all called the cutting-stock problem in this study. 

The main purpose of this problem is reducing the material cost. The cutting-stock 

problem is a key consideration in many manufacturing industries, such as textile, 

garment, metalware, paper, ship building, and sheet metal industries. In these 

industries, the products or the components will be cut from the stock. According to the 

statistics in by DGBAS (1998) and by DGBAS (2003), the cost of stock is about 50% 

in whole expense of manufacturing industries in Taiwan. It means that enhancing the 

stock utility will be helpful for reducing the outgoing of companies in these industries. 

Because characteristics of the cutting-stock problem in different applications 

may be different, the cutting-stock problem can be classified in different types by its 

characteristic in the next section. The classification will be helpful to know how many 

types should be solved. The nature of the cutting-stock problem will also be 

introduced in this chapter to know how to solve the problem. After knowing the 
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classification and the nature of this problem, the problem is understood well and the 

objectives of this study can be obtained. 

1.1 Classification of the Cutting-stock Problem 

The cutting-stock problem comprises the stock and the object. Therefore, the 

cutting-stock problem can be classified by the characteristics of the stock and the 

object. The cutting-stock problem may be one-, two-, or three-dimensional problem. 

The applications of the one-dimensional problem are cutting pipes, steel bars, and etc. 

Different length pipes should be cut from many long pipes, and how to cut the pipes 

may use the least amount of long pipes is a topic of the one-dimensional cutting-stock 

problem. The applications of the three-dimensional problems are packing boxes into a 

container, arranging components in the working space in the rapid prototyping 

industry, and etc. Even there are one- and three-dimensional cutting-stock problem, 

the two-dimensional cutting-stock problem is the most popular one. Therefore, this 

study focuses on the two-dimensional cutting-stock problem. 

In the two-dimensional problem, the shape of the objects can be classified in 

rectangle and irregular shapes. Rectangle is a special shape because rectangles can be 

arranged very close even there are different kinds of rectangles arranged together. It is 

because every angle of a rectangle is 90 degree. With the same reason, rectangles are 

easy to be represented with heights and widths. However, the profile of product in real 
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applications is usually not rectangle. To represent the irregular object and to check the 

overlap between objects are difficult. An irregular object may be a polygon or may 

have some curves. In general, any curve of an object is usually approximated by some 

edges with acceptable tolerance. The approximation method is used by Nee, et al., 

(1986), Koroupi and Loftus (1991), and Cheng and Rao (1999). Kershner (1968) 

showed that no convex polygon with more than six sides can be arranged without 

gaps, and there are only eight kinds of pentagons and three kinds of hexagons that can 

be arranged without gaps. For arranging these polygons without gaps, there should be 

only one kind polygon in the problem as shown in Fig. 1-1, i.e. different kind of these 

polygons cannot be arranged together without gaps. This study focuses on the 

cutting-stock problem with irregular object because the cutting-stock problem with 

irregular objects is more complex and difficult than the problem only arranging 

rectangles. 

According to how many kinds of objects, the cutting-stock problem can be 

divided into single-polygon problem and multi-polygon problem. There is only one 

kind of object in the single-polygon problem, as shown in Fig. 1-2(a). The 

single-polygon problem is the type of mass production. In this problem, the relative 

position between objects is obtained firstly and arranged repeatedly. If there are many 

kinds of objects, it is called the multi-polygon problem, as shown in Fig. 1-2(b). In 
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this kind of problem, there is not a regular relationship between object positions. 

Every object has to be arranged individually, and the problem is more complex than 

the single-polygon problem. Therefore, this study focuses on the multi-polygon 

problem. 

There is another kind of problem that combines the single-polygon and 

multi-polygon problems and it is called the “combinational problem” in this study. A 

product may have some components and the product may be mass produced. The 

cutting-stock problem will be very complex if considering every object as an 

independent individual. To simplify the problem, the components of a product may be 

arranged as a cluster first, and then the cluster is nested instead of the original 

components on the stock. This “clustering-then-nesting” strategy is useful for 

simplifying the combinational problem because the number of objects is reduced. The 

advantage of the clustering-then-nesting strategy is not only for arranging, but 

manufacturing. The manufacturing time may decrease because the components of a 

product can be cut at the same time by using a die. For the manufacture efficiency, a 

die may be designed for cutting all components at the same time. Thus, all 

components will be arranged together, and these components can be used as a single 

object in mass production. Therefore, it combined the characteristics of the 

single-polygon and multi-polygon problems. 
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Classifying by the characteristics of stock is similar to classify by objects. The 

shape of stock may also be rectangular or irregular. The shape of stock is usually 

rectangle, but in some applications, such as leather industry, the stock may have 

irregular shapes. In fact, every manufacture industry may have irregular stocks 

because some remainder stocks of the last cutting can be reused. The remainder stocks 

usually have irregular profiles. The irregular stock problem is more complex than the 

rectangular stock problem because of the irregular profile. Both of them will be 

discussed in this study. 

In some applications, a stock with a very long length, such as a steel roll, can 

contain all objects at the same time. It is called “single-stock problem” in this study. 

The length of the stock in this problem is considered as infinite because all objects can 

be arranged in the stock and the necessary length for manufacture is less than the 

stock length. To arrange objects on a stock with infinite length is a typical problem in 

all types of the cutting-stock problem. If a stock can not provide enough material for 

all objects, there will be several stocks and it is called “multi-stock problem” in this 

study. The stock is usually not large enough when using the remainder stock and there 

will be several stocks. If the size of an object is big, such as ship-building industry, the 

objects usually can not be arranged in only one stock. There will be several stocks 

because only one stock is not large enough. The multi-stock problem is more difficult 

5 



 

than the single-stock problem because of the limited length and the plurality choice of 

stocks. Both of them will be discussed in this study. 

In some applications, the stock may have some flaws and the flaw region can not 

be used to produce an object. For example, there may be some flaws on the leather 

because of the illness or hurt of the animal when it is alive. This flaw will also be 

considered in this study. 

As the introduction above, the types of the cutting-stock problem considered in 

this study can be summarized as follows: 

1. The problem with two dimensional irregular objects. 

2. The multi-polygon problem. 

3. The combinational problem. 

4. The rectangular stock problem and the irregular stock problem. 

5. The single-stock problem and the multi-stock problem. 

6. The flaw stock problem. 

The above-mentioned six types of problems are classified by the object or the 

stock individually but every application both has the object and the stock. Therefore, 

four cases are discussed in this study and the cases are listed as follows: 

1. The combinational problem. 

2. The multi-polygon problem with a rectangular stock. 
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3. The multi-polygon problem with several rectangular stocks. The stocks have 

the same width. 

4. The multi-polygon problem with several stocks. The stocks may be irregular 

and have different widths. There may be some flaws on the stocks. 

1.2 Nature of the Cutting-stock problem 

In fact, the cutting-stock problem is a type of constrained optimization problem. 

A constrained optimization problem is composed of three main parts: 

1. Design variable(s) 

2. Cost function(s) 

3. Constraint(s). 

The solving method improves the cost function and also satisfies the constraints 

via adjusting the design variables. As this formulation, the cost function of the 

cutting-stock problem is the stock utility. The design variables are the states of the 

objects, i.e. the profile of the components. For example, an object has three 

degree-of-freedom, i.e. two translations and one rotation, in the two-dimensional 

space. Therefore, three design variables, i.e. two position components and one 

orientation, are needed to describe the state of an object in a stock. 

There are four kinds of constraints in the cutting-stock problem, and those 

constraints are listed as follows: 
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1. Overlap constraint. 

2. Escape constraint. 

3. Orientation constraint 

4. Gap constraint. 

The overlap constraint is that no object can overlap with others. The escape 

constraint is that no object can be arranged outside the boundary of the stock. The 

orientation constraint in the cutting-stock problem is that the object can be arranged 

with only some specific orientations because of the stock property. For instance, the 

strength of a metal sheet is different in different orientations because of the rolling 

direction. If the product will be used to support loading, the orientation with higher 

strength should be chosen. This kind of constraint is the orientation constraint in the 

cutting-stock problem. The gap constraint is that the gap between objects should be 

larger than an acceptable value. This constraint usually exists in the sheet metal 

industry, and it has a standard as shown in Fig. 1-3 and Table 1-1. The gap constraint 

depends on the thickness of stocks, methods for feeing stock, and the shape of objects. 

The technique for solving the constrained optimization problem can be used to 

solve the cutting-stock problem because the cutting-stock problem is a type of 

constrained optimization problem. The solving methods for the optimization problem 

are classified into the indirect method and direct method by Arora (2004). The indirect 
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method can find the global optimum solution. The cost function and the constraint 

must be explicit functions of design variables in the indirect method. That is difficult 

for the cutting-stock problem. The direct method is a repeated process for finding the 

“search direction” and the “step size,” and the explicit function is not necessary. 

Therefore, the direct method is more suitable than the indirect method for solving the 

cutting-stock problem. However, the direct method usually only can find the local 

optimum solution. The cutting-stock problem has large solution space and many 

complex constraints. The direct method that may be caught by local optimum trap is 

not good enough for the cutting-stock problem. A global search strategy is necessary. 

1.3 Objectives of This Study 

The objective of this study is designing a strategy to solve the cutting-stock 

problem. After knowing the types and the nature of the cutting-stock problem, the 

objectives of this study can be listed as follows. 

1. Propose a method for checking the overlap between irregular objects. 

2. Formulate the cutting-stock problem into the equations with a constrained 

optimization problem form. 

3. Propose a global strategy to improve the solution. 

4. Propose a method to consider the irregular shape of the stock. 

5. Propose a method to consider the plurality of the stock. 
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6. Propose a method to consider the flaw on the stock. 

1.4 Outlines 

After the introduction of the cutting-stock problem in this chapter, the chapter 

two will introduce the literatures of the four cases listed in the section 1.1. The chapter 

three introduces methods used in this study. Some of the methods are proposed in 

literatures and others are proposed in this study. The chapter four will show the 

experimental results and some conclusions and future works will be made in the 

chapter five. 
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Table 1-1 Types of the gap constraints by Syu (1996). 

Feed by hand 
Circle Uncircle Repeated Shape

Automatic feedThickness 
(mm) 

d d1 d d1 d d1 d d1

≦1 1.5 1.5 2 1.5 3 2 3 2 
>1~2 2 1.5 2.5 2 3.5 2.5 3 2 
>2~3 2.5 2 3 2.5 4 3.5 3 2 
>3~4 3 2.5 3.5 3 5 4 4 3 
>4~5 4 3 5 4 6 5 5 4 
>5~6 5 4 6 5 7 6 6 5 
>6~8 6 5 7 6 8 7 7 6 

>8 7 6 8 7 9 8 8 7 
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(a) Hexagon 

 

(b) Pentagon 

Fig. 1-1 Special polygons with no gap nesting by Kershner (1968). 
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(a) Single-polygon nesting problem 

 

(b) Multi-polygon nesting problem 

Fig. 1-2 The classifications of the nesting problem. 
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d

d1 

(a) Circles 

(b) Uncircles 

Fig. 1-3 Types of the gap constraint by Syu (1996). 

 

d1 

d

 

(c) Repeated Shapes 

d1 

d
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CHAPTER 2 LITERATURE REVIEW 

The literatures introduced in this chapter are all about multi-polygon. The 

literatures are divided into four groups that associate with the four cases considered in 

this study. The methods used in every literature may have three parts: graph treatment, 

arranging strategy, and search strategy. The graph treatment technique is almost 

equivalent to the overlap consideration technique because the overlap constraint is the 

main constraint of the cutting-stock problem and many literatures only considered this 

constraint. The arranging strategy focuses on how to arrange the objects on the stock, 

and the arranging strategy will depend on the overlap consideration technique when 

arranging irregular objects. The arranging strategy considers how to obtain an 

arrangement pattern, and the search strategy is used to obtain another arrangement 

pattern to improve the arrangement result. 

2.1 Combinational problem 

The clustering-then-nesting strategy is useful for the combinational problem, and 

it is proposed by Cheng and Rao (1999). A sliding technique was proposed by Cheng 

and Rao (1997) to arrange all objects – the components – of a product first, i.e. 

clustering, then integrated these objects into a cluster, and nested it by CNA (Compact 

Neighborhood Algorithm). Finally, Cheng and Rao (2000) used a Genetic Algorithm 
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to adjust the position and orientation of the object to improve the result. The methods 

proposed by Cheng and Rao (2000) can be summarized as follows. 

․ Graph treatment: sliding technique. 

․ Arranging strategy: CNA. 

․ Search strategy: Genetic Algorithm. 

2.2 Rectangular single-stock problem 

Dowsland et al. (2002) used a “no-fit polygon” to obtain the closest position 

between two objects. The relative positions where one object contacts another object 

can be represented as a polygon called a “no-fit polygon”. They used a bottom-left 

strategy to arrange objects on the stock. The strategy of this literature can be 

summarized as follows: 

․ Graph treatment: no-fit polygon. 

․ Arranging strategy: bottom-left strategy. 

․ Search strategy: null. 

In this method, the arrangement sequence governs the resulting arranging pattern. 

Thus, deciding the arrangement sequence is very important. Gomes and Oliveira 

(2002) changed the position of objects in the sequence to generate a new solution 

based on the original one. The strategy of Gomes and Oliveira (2002) can be 

summarized as follows: 
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․ Graph treatment: no-fit polygon. 

․ Arranging strategy: bottom-left strategy. 

․ Search strategy: exchange. 

Bennell and Dowsland (2001) formulated the cutting-stock problem as a Linear 

Programming model, and solved this model to obtain an arrangement pattern. The 

model led the objects move to the best position on the no-fit polygons. After an 

arrangement pattern was obtained, one object was moved to another position and the 

model was solved again. Bennell and Dowsland (2001) used Tabu Search was used to 

seek the global optimum solution in the solution space. The strategy used by Bennell 

and Dowsland (2001) can be summarized as follows: 

․ Graph treatment: no-fit polygon. 

․ Arranging strategy: Linear Programming. 

․ Search strategy: Tabu Search. 

Gomes and Oliveira (2006) used bottom-left strategy to do the initial 

arrangement, and then swapped two objects randomly. The swapping will cause some 

overlaps, and these overlaps were relaxed by “separation step.” After relaxing the 

overlaps, the “compaction step” reduced the length of arrangement pattern. In the 

separation and compaction steps, the problem was formulated as different linear 

models to guide objects move to the good position on the no-fit polygons. If the 
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solution was improved after the compaction step, the solution was accepted. If the 

solution was not improved, Gomes and Oliveira (2006) the rule of Simulated 

Annealing Algorithm (SAA) was used to check acceptance or rejection of the solution. 

The SAA is a popular global optimization method. When using the SAA, various 

operators used to determine a new solution had to be designed for “searching”. The 

solution is updated to the new solution if the cost function is decreased. If the cost 

function of the new solution is larger than or equal to the original one, a random 

number σ will be generated as 0≦σ≦1. If  

  T
E

e
Δ−

≤σ   (1) 

where T is the temperature of the SAA, and ΔE is the increment of the cost function, 

the solution will be updated to a new one. The temperature here is not a real 

temperature. It is a parameter used to simulate a real annealing process, while the 

initial temperature, final temperature, and cooling rate have to be set when using the 

SAA. The strategy used by Gomes and Oliveira (2006) can be summarized as follows: 

․ Graph treatment: no-fit polygon. 

․ Arranging strategy: Linear Programming (separation and compaction steps). 

․ Search strategy: object swapping and SAA. 

Poshyanonda and Dagli (2004) represented objects as binary matrices, and used 

an artificial neural network and the Genetic Algorithm to solve the cutting-stock 
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problem. The strategy used by Poshyanonda and Dagli (2004) can be summarized as 

follows: 

․ Graph treatment: binary matrix representation. 

․ Arranging strategy: artificial neural network. 

․ Search strategy: Genetic Algorithm. 

Ratanapan et al. (2007) used an evolutionary algorithm to solve the cutting-stock 

problem. The evolutionary algorithm had a fitness function similar to the Genetic 

Algorithm, and has some operators, such as translation, rotation, touch point, relocate 

away, etc., designed by the authors to escape from the local optimum trap. The 

strategy used by Ratanapan et al. (2007) can be summarized as follows: 

․ Graph treatment: binary matrix representation. 

․ Arranging strategy: evolutionary algorithm. 

․ Search strategy: evolutionary algorithm. 

Bouganis and Shanahan (2007) sorted the objects into a sequence according to 

their area and arranged an object on the position lead the smallest enclosing rectangle 

of arrangement pattern. This sorting method is called “object-based approach.” After 

arranging an object, the shape of the void region, i.e. the region not arranged with 

objects, was evaluated with the remainder objects for profile matching by computer 

vision method. If there is an object match the void region, the object will be arranged. 
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If not, the next object in the sequence will be arranged. This is called “scene-driven 

approach.” The method used in this literature can be summarized as follows: 

․ Graph treatment: binary matrix representation. 

․ Arranging strategy: smallest enclosing rectangle + object-based approach + 

scene-driven approach. 

․ Search strategy: null. 

Egeblad et al. (2007) used bottom-left method to do the initial arrangement, and 

then reduced the total length of arrangement pattern. The reduction will cause some 

overlaps. The overlaps are relaxed by translating or rotating objects. The cost function 

in the relaxation step is the total overlap area of all objects. The cost function is 

express as a function of the horizontal positions of objects, and the overlap area is 

defined as the area between edges of two objects in the horizontal direction. After a 

new solution is obtained, the cost function is altered for escaping the local optimum 

trap. The strategy used by Egeblad et al. (2007) can be summarized as follows: 

․ Graph treatment: overlap area. 

․ Arranging strategy: overlap relaxation (translation and rotation). 

․ Search strategy: cost function alteration. 

Burke et al. (2006) found the relationship between line to line, line to arc, arc to 

line and arc to arc. Thus they can use the real arc not approximation edges when 
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arranging objects to relax overlap. At beginning, an arranging sequence was decided, 

and objects are put into stock one by one. Every object was put on the bottom-left 

corner of the stock firstly, and used the relationship between lines and arcs to move 

the object to a position without overlap. After a solution was obtained, some objects 

were swapped in the arranging sequence to obtain new solution. Some solutions better 

than the current one were obtained and the best solution was updated as the new 

solution. The Tabu Search was used to guide the searching in the solution space. The 

Tabu Search recorded the solution history by recording the recent solutions with 

pre-decide length, for example 200 solutions, and the same solution as these 200 

solutions can not be obtained again. The strategy used by Burke et al. (2006) can be 

summarized as follows: 

․ Graph treatment: relationship between lines and arcs 

․ Arranging strategy: bottom-left arranging + overlap relaxation 

․ Search strategy: swapping position in sequence + Tabu Search 

2.3 Multi-stock problem 

Babu and Babu (2001) coded the irregular stock and objects as an integer array. 

The cells that can arrange object on is coded as 0. The other cells are coded as an 

integer number that starts from 1 since the most right cell. Objects are coded in the 

opposite way and arranged near the bottom of the stock as close as possible. These 
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integer numbers are helpful for increasing the speed of finding the optimum 

arrangement. The method for searching a good arrangement sequence is the Genetic 

Algorithm coded with the stock number, the object number, and the object orientation. 

Zhang et al. (2005) used this method to design software for leather nesting. The 

strategy used in these two literatures can be summarized as follows: 

․ Object graph treatment: integer array representation. 

․ Multi-stock treatment: Genetic Algorithm. 

․ Arranging strategy: bottom-left strategy. 

․ Search strategy: Genetic Algorithm. 

Wu et al. (2003) represented objects by binary matrices, and arranged objects on 

multiple stocks by bottom-left strategy. The stock was selected randomly when 

arranging every object. They swapped the object sequence and the stock sequence to 

obtain different solutions, and accepted a new solution by SAA rule shown in 

equation (1). The strategy used by Wu et al. (2003) can be summarized as follows. 

․ Object graph treatment: binary array representation. 

․ Multi-stock treatment: select randomly. 

․ Arranging strategy: bottom-left strategy. 

․ Search strategy: swap sequence + SAA. 
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2.4 Irregular stock problem 

As introduced in section 2.3, the method proposed by Babu and Babu (2001) also 

considered the irregular stock problem. The strategy can be summarized as follows: 

․ Object graph treatment: integer array representation. 

․ Irregular stock treatment: integer array representation. 

․ Arranging strategy: bottom-left strategy. 

․ Search strategy: Genetic Algorithm. 

Tay et al. (2002) arranged one object to contact the stock boundary with at least a 

vertex. The object can be slid and keep contact the boundary of the irregular stock to 

search the optimum position by the Genetic Algorithm. The genome of the Genetic 

Algorithm contained the object position along the stock boundary and the orientation 

of the object. The objects are arranged around the stock boundary sequentially. After 

arranging an object, the object profile is compounded with the profile of the irregular 

stock, and the compound is considered as a new irregular stock. The strategy can be 

summarized as follows: 

․ Object graph treatment: contact. 

․ Irregular stock treatment: slid and keep contact. 

․ Arranging strategy: Genetic Algorithm. 

․ Search strategy: null. 
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Huang et al. (2005) used an opposite strategy to arrange objects. They arranged 

objects “near to center,” and presented a rule called “best-matching algorithm” to 

decide the relative position of two objects. The first object is arranged on the center of 

the smallest enclose rectangle’s center of the irregular stock. After two objects are 

arranged, they are treated as a compound object and the others are arranged with this 

compound object sequentially. They used the 2-exchange procedure proposed by 

Gomes et al. (2002) to modify the object sequence to search the best one. The strategy 

used by Huang et al. (2005) can be summarized as follows: 

․ Object graph treatment: original shape + checked. 

․ Irregular stock treatment: original shape + checked. 

․ Arranging strategy: best-matching algorithm. 

․ Search strategy: 2-exchange procedure. 

Crispin et al. (2005) found the no-fit polygon (NFP) between not only objects 

but an object and an irregular stock to consider the irregular profiles. And then used 

the Genetic Algorithm to obtain the arranging pattern. The strategy used by Crispin et 

al. (2005) can be summarized as follows: 

․ Object graph treatment: no-fit polygon. 

․ Irregular stock treatment: no-fit polygon. 

․ Arranging strategy: arranged on the crossing point of no-fit polygons. 
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․ Search strategy: Genetic Algorithm. 

Yuping et al. (2005) didn’t consider the irregular characteristic of the stock by 

graph treatment but the penalty concept. They considered the cutting-stock problem as 

an unconstrained optimization problem. The design variables are positions and 

orientations of objects. The cost function had three parts. The major one is the area of 

the unplacement stock. The area of objects escaped from the stock, and the overlap 

area between objects are treated as penalty functions of the cost function. They 

generated random movements of objects and used the SAA to search the global 

optimum solution. The strategy used by Yuping et al. (2005) can be summarized as 

follows: 

․ Object graph treatment: penalty function with object overlap area. 

․ Irregular stock treatment: penalty function with escaped object area. 

․ Arranging strategy: random movement. 

․ Search strategy: random movement and SAA. 

The methods use no-fit polygon as the graph treatment can be used to solve the 

cutting-stock problem when objects should be arranged in a special orientation, 

because the object orientation is fixed when finding the no-fit polygon. 

When using binary matrices to represent objects, the object may be deformed if 

rotating the binary matrix instead of the real object for considering multiple 

25 



 

orientations. It costs much time to rotate real object because the object have to be 

re-coded. 

The Genetic Algorithm is a popular and widely-use method for searching for the 

global optimum solution. However, it has many parameters that need to be decided, 

such as the crossover rate and the mutation rate. Also, each parameter setting will 

greatly affect the result, as shown by Poshyanonda and Dagli (2004). Every design 

variable is transferred to a binary code in Genetic Algorithm, and the resolution of the 

binary code will affect the result. This is another disadvantage of the Genetic 

Algorithm. 

The SAA has the similar drawback to Genetic Algorithm. The parameter setting 

of the SAA is also important for obtaining a good solution as shown by Marques et al. 

(1991) and Leung et al. (2003). The parameter setting depends on experience very 

much and not easy to use. 
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CHAPTER 3 METHODS 

The basic method for solving the cutting-stock problem in this study is 

formulating the problem as a constrained optimization problem and solving the 

constrained optimization problem by the Sequential Quadratic Programming (SQP) 

method. And the SQP method is used with different methods for different types of 

problem in this study. The methods used in this study are listed as follows. 

1. Maximum depth method. 

2. SQP method. 

3. Compact Neighborhood Algorithm (CNA). 

4. Parallism strategy. 

5. Virtual object strategy. 

6. Swap strategy. 

7. Insert strategy. 

The first method is used to consider the overlap between objects, and it 

overcomes the difficulty of the irregular profile of objects. The SQP method is used to 

arrange objects. The CNA and the parallism strategy are used for the combinational 

problem. The virtual object strategy is used for the irregular stock problem, 

multi-stock problem, and flaw stock problem. The swap strategy and the insert 

strategy are used to find the global optimum results. The methods used in this study 
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can be summarized as follows: 

For combinational problem: 

․ Graph treatment: maximum depth method and SQP method. 

․ Arranging strategy: SQP method and CNA. 

․ Search strategy: parallism strategy 

For other problems: 

․ Object graph treatment: maximum depth method and SQP method. 

․ Irregular stock treatment: virtual object. 

․ Multi-stock treatment: virtual object. 

․ Arranging strategy: SQP method. 

․ Search strategies:  1. swap strategy 

  2. insert strategy. 

The CNA and SQP method are published in the literatures. They are also 

introduced in this chapter because of the easy reading. As the same reason, only the 

maximum depth method and SQP method that are used in every solving process are 

introduced independently. Other methods are introduced in the solving process. 

3.1 Maximum depth method 

The objects of the cutting-stock problem cannot overlap one other. In traditional 

methods, the overlap area is calculated and the object positions are adjusted to reduce 

28 



the overlap area until the total overlap area equals to zero when considering overlap 

directly. This study uses the maximum “depth” of two objects as the overlap index 

when considering the overlap. 

When considering overlap between two objects, the “depth” means the distance 

from the vertex on one object to a point on the edge of the other object, and the 

maximum depth is the largest distance. The detailed calculation process is shown in 

Fig. 3-1 while the process can be explained with the example in Fig. 3-2. A and B are 

two objects and every vertex is numbered in a counterclockwise order (a1~a8 and 

b1~b8 , respectively). OA and OB are the reference points of object A and object B 

respectively. It is used to represent the position of the object. The centres of gravity 

(COG) is used as the reference point in this study. As shown in the process (Fig. 3-1), 

the first step of finding the maximum depth is transferring the original coordinate to 

the coordinate system where the y-direction is parallel to the BAOO  vector, which 

will be helpful for calculating depths. The next step initialises the maximum depth, 

and its value is determined by subtracting the y-value of a1 from the y-value of a1′, 

where a1′ is the point that a1 projects onto object B in the BAOO ction. The depth 

will be positive if the vertex is inside the other object, such as the depth of a

 dire

1. 

Similarly, if the vertex is outside the other object, the depth will be negative. Once the 

depth of a1 is known, the depth of a2 will be calculated, and is less than the depth of a1 
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as shown in the figure. Thus, the maximum depth will not be updated. Only the depths 

of the object vertices have to be calculated when finding the maximum depth, and it is 

not necessary to calculate the depths of the points on the edge. It is obvious that the 

maximum depth will coincide with a vertex, because all edges are linear. If depth of a 

point is searched along an edge, it will be increased or decreased monotonously until 

the movement meets a corner. Thus, the maximum depth will coincide with a vertex. 

The next point is a3 and its depth is negative because the y-value of a3 is larger than 

a3′. Other vertices on object A will also be considered one by one. Similarly, the 

depths of the vertices on object B are determined by subtracting the y-value of the 

projection point from the y-value of the vertex, and calculated one by one. 

By this way, the depth will be negative if the vertex is outside of the other object, 

and it is not necessary to check the vertex is inside the other object or not. The overlap 

index will be negative if there is a gap between two objects. A negative overlap index 

will be helpful for the active-set strategy of SQP method. The maximum depth will be 

negative but the overlap area is never negative. Therefore, the maximum depth is 

more suitable for the SQP method with the active-set strategy, which will be described 

in the next section. 

3.2 Sequential Quadratic Programming method 

The SQP method is a numerical method for solving optimization problems. The 
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procedure of a numerical method is an iterative process of finding a “search direction” 

and a “step size”. 

To solve the optimization problem by the SQP method, the Karush-Kuhn-Tucker 

(KKT) conditions that is introduced by Arora (2004) of the Lagrange function are 

used. The Lagrange function is defined as follows: 

  ( , ) ( ) TL fd μ d μ g= +  (2) 

where d is the vector form of design variables; μ is the vector form of the Lagrange 

multipliers; g is the vector form of constraints. The numerical solving process of the 

KKT conditions is an iterative process of calculating the new solution d(k+1) , 

   (3) 

where k is the iteration number, and Δd

( 1) ( ) ( )k kd d Δd+ = + k

(k) is the change in design variables. It is also 

the search direction of the SQP method. The SQP method defines a QP sub-problem 

to calculate the search direction. The flowchart of the SQP method is shown in Fig. 

3-3, and the process is described as follows. The description are summarized from the 

paper written by Arora (1984): 

1. Select an initial solution, and set other parameters that will be described later. 

2. Define the QP sub-problem. The QP sub-problem is defined as follows: 

minimize   (4) 

subject to  

0.5T Tf Δd Δd HΔd∇ +

TA Δd b≤  (5) 
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where H is the approximate Hessian matrix of the Lagrange function, and 

  ai
ji

j

g
A

d
∂

=
∂

  (6) 

  ( )i aib g d= − .  (7) 

When defining the QP sub-problem, only the constraints that are larger than or 

equal to zero need to be considered. The  is the i-th element of aig ag  which is 

the vector form of these constraints. This is the so-called active-set strategy. 

3. After the QP sub-problem is defined, the problem is normalized before solving. 

For normalizing the QP sub-problem, the H is decomposed as  

   (8) 

where U is an upper triangular matrix. A new variable s is defined as 

   (9) 

and the problem can be normalized as: 

minimize   (10) 

Subject to   

TH U U=

s UΔd=

0.5T T
0Λ s s+ s

Ms Δ≤  (11) 

where  
1

0

T

f
c0

UΛ
− ∇

=  (12) 

        1
0

T

c U− f= ∇  (13) 

       ai
i

i

g
c
−

Δ =  (14) 

       1T

ic aiU g−= ∇  (15) 
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1

0
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c
U AM

−

=  (16) 

4. Before solving the normalized QP sub-problem, the maximum value of constraints 

is compared with a constant cε . The maximum value of constraints is defined as 

  1 '( ) max{0, ' ( ),..., ' ( )}pF g g=d d d  (17) 

If the maximum value of constraints is less than cε , i.e., the violation is not 

serious, the solution will focus on reducing the cost function. The solution is: 

   (18) 

   (19) 

where   (20) 

        (21) 

       

1v v v= + 2

21s s s= − +

1
1

T
0v B M Λ−= −

1
2v B Δ−= −

TB M M=  (22) 

       1 0s Λ Mv1= +  (23) 

       2s Mv2= −  (24) 

If not, the solution focuses on correcting the constraints. The solution is: 

   (25) 

   (26) 

2v v=

2s s=

5. The solution of the original QP sub-problem can be obtained as: 

   0 1 2i
i

i

c v v
c

μ i+
=  (27) 

  1Δd U s−=  (28) 
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6. Check the stop condition. If ( )kd ε≤  or , stop the process and the 

current solution is the final solution. If not, continue the process. ε is a preset 

small number close to zero, and k

max>k k

max is the maximum iteration number set in the 

initialization step. 

7. Calculate the step size. The step size kα  is set as 

  , 0.5q
kα = 0,1, 2,...q =  (29) 

The minimum q that makes    (30) 

is used to define 

( 0.5 ) (qd ΔdΦ + ≤ Φ )d

kα  

where   (31) 

       

( ) ( ) ( )kf R Fd dΦ = + d

i

'

1
1

0.5( )
p

k k
i

R R μ−
=

= +∑  (32) 

8. Update the approximate Hessian matrix. The approximate Hessian matrix is 

updated by the BFGS strategy that is introduced by Arora (2004.) The BFGS 

strategy is described as follows: 

Define three variables first. 

   (33) 

  

( ) ( ) ( )k k
kz H Δdα= k

)k( ) ( 1) ( ) ( ) ( )( , ) ( ,k k k kL L+= ∇ −∇u d μ d μ  (34) 

and  (35) 

where 

( ) ( ) ( )(1 )k kψ ψ= + −w u z k

( ) ( ) ( ) ( )1, if
0.8, otherwise

T Tk k k k

ψ
⎧⎪ ≥= ⎨
⎪⎩

Δd u Δd z  (36) 

Then, the approximate Hessian matrix is updated as 
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  ( 1) ( ) ( ) (k k k+ )k= + −H H P E  (37) 

where 
( ) ( )

( )

( ) ( )

Tk k
k

Tk k
kα

=
w wP
Δd w

 (38) 

      
( ) ( )

( )

( ) ( )

Tk k
k

Tk k
k

z zE
Δd zα

=  (39) 

9. Update the solution as 

   (40) 

and continue to go to step 2 to define the QP sub-problem. 

( 1) ( ) ( )k k
kd d Δdα+ = + k

All equations are shown above, and the derivation can be found in the work by 

Arora (2004) and Liao (1990). There are several programs, such as MOST that is 

designed by Tseng (1989) and IDESIGN that is designed by Arora (1988,) that use the 

SQP method to solve the constrained optimization problem. 

3.3 The solving process for the combinational problem 

The solving process for the combinational problem can be divided into three 

steps in this study. The first step is to arrange the different objects as a cluster, and 

then to generate the nesting pattern according to the cluster. Finally, the third step is to 

adjust the orientation of the nesting pattern that generated in the second step to 

maximize the stock utility rate. 
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3.3.1 Clustering 

The cutting-stock problem is formulated as a standard form of the constrained 

optimization problem as follows: 

cost function: minimize 
1

1 1

O O
N N

i j
i j i

f
−

= = +

=∑∑  (41) 

design variables: iii yx θ,,  

  i=1~N (42) 

constraints: 1 ( , , , , , )i Mijk j j j k k kg D x y x y 0θ θ= ≤  

  
2

)1(~1 −
=

NNi  

  j=1~(N-1) 

  k=(j+1)~N  (43) 

where N is the number of objects; O Oi j  is the norm of vector O Oi j , i.e., the 

distance between Oi and Oj; xi is the x-coordinate value of the reference point of 

object i; yi is the y-coordinate value of the reference point of object i; iθ  is the 

orientation of object i; DMjk is the maximum depth between object j and object k. The 

cost function is to minimize the summation of distances between any two objects, 

which means that the objects have to be arranged as close as possible. This cost 

function (the distance summation) is more sensitive to the design variables than the 

number of objects or the necessary stock area. Therefore, it is more suitable for the 

SQP method. The constraints are that the maximum depths of any two objects cannot 
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be larger than zero, i.e., one object can only be far away or just contact the adjacent 

object. 

As shown in equation (43), there are many constraints when the number of objects 

is large, and reducing the number of constraints is important to decrease the 

calculation effort. Because of the nature of the cutting-stock problem, the constraints 

may not be reduced in physical ways, but they can be reduced using mathematical 

methods. If the solution satisfies the constraint, it will not be necessary to consider 

whether or not the constraint still exists. Therefore, the active-set strategy of the SQP 

method is used to reduce the considered constraints in this study. 

A constraint will never be inactive when using the overlap area as the constraint 

value because the overlap area is never less than zero. Thus, the number of constraints 

cannot be reduced. However, when using the maximum depth to consider overlap, the 

maximum depth will be negative if there is a gap between two objects, and therefore 

the constraint becomes inactive. These constraints will be ignored and the 

computation effort will be decreased. 

After formulating the clustering process as a constrained optimization problem, 

the positions and orientations of objects can be obtained by using SQP method to 

solve the problem. 
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3.3.2 Nesting 

After the first step, the objects are arranged at the positions (xi, yi) with the 

orientations ( iθ ), and are treated as a cluster in this step. This step uses the CNA 

method which proposed by Cheng and Rao (1999) to generate the nesting pattern. The 

detailed process is introduced with pentagons as an example as follows. 

At first, two objects are in contact to each other at a point as shown in Fig. 3-4(a), 

and are called “stator” and “mover”. The object S in Fig. 3-4(a) is the stator and the 

object M is the mover. The bottom-left vertex of the object is used to represent the 

object position in CNA. Then M slides on S with a fixed orientation in a 

counterclockwise direction. At beginning, m4 contacts with s1, and M will moves 

along  until the contact vertex m1 2s s 4 meet a corner or M contacts S on another point 

as shown in Fig. 3-4(b). The point m4 meets a corner when it contacts with s2, and 

then M will moves along  until the contact vertex s5 4m m 2 meet a corner or M 

contacts S on another point as shown in Fig. 3-4(c). This self-sliding process is 

complete when M moves to the initial position, and the path of the bottom-left vertex 

of M is recorded as a no-fit polygon as shown in Fig. 3-4(d). This process is called 

“self-sliding” because the two objects are identical and sliding relative to each other in 

the process. 

After finding the no-fit polygon of self-sliding, the mover is removed and the 
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stator is called object P0 as shown in Fig. 3-5(a). The bottom-left vertex of another 

object (object P1) is put at an arbitrary position of the self-sliding no-fit polygon of P0. 

These two objects have their self-sliding no-fit polygons, and the right interaction 

point of these two no-fit polygons is the position of object P2. The vector from the 

bottom-left vertex of object P0 to the object P1 is called the “first nesting vector”, and 

the vector from the bottom-left vertex of object P0 to the object P2 is the second 

nesting vector as shown in Fig. 3-5(b). The third nesting vector is obtained by 

subtracting the first nesting from the second nesting vector. These three nesting 

vectors and their negative vectors will form a hexagon as shown in Fig. 3-5(c), which 

is called a “nesting crystal”. Then, moving object P1 on the self-sliding no-fit polygon 

of P0 will result in different nesting vectors and different nesting crystals. The 

optimum nesting vectors are those vectors that cause the minimum nesting crystal 

area. 

3.3.3 Improvement 

Because the optimum nesting vectors in Fig. 3-5(b) might not be parallel to the 

sheet stock edges, there will be four corners that are not occupied by the nesting 

pattern after the second step. Rotating the nesting vector parallel to any axis will 

reduce this to two regions. Aligning three nesting vectors parallel to the X- and Y-axis 

respectively will result in six cases to improve the nesting pattern. The best case is 
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selected as the result in this study. 

3.4 The solving process for the multi-polygon problem 

The multi-polygon problem includes five kinds of problems. They are the 

single-stock problem, multi-stock problem, rectangular stock problem, irregular stock 

problem, and flaw stock problem. The solving process for the multi-polygon problem 

is similar to the clustering step in the combinational problem. It formulates the 

multi-polygon problem as a constrained optimization problem and solves it by SQP 

method. One difference is that the virtual object is used in the model. The other 

difference is that a global strategy will be used after solving by SQP method. The 

global strategy is used to improve the solution, and there are two global strategies 

proposed in this study. 

3.4.1 Virtual object strategy 

When using the virtual object in the irregular stock problem, the smallest 

surrounding rectangle of the stock will be obtained first as shown in Fig. 3-6. Then the 

space between the profile of the stock and the surrounding rectangle is divided into 

several no-overlapping pieces as shown in Fig. 3-6. The objects arranged on the stock 

cannot have any part outside the boundary of the stock. This situation is equivalent to 

that no object can overlap with the pieces described above. Arranging objects on the 
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irregular stock is equivalent to arranging objects on the surrounding rectangle where 

the pieces are already arranged on. The pieces are called the “virtual” objects because 

they are not the real objects that are wanted to be arranged on the stock. 

When using the virtual object in the multi-stock problem, the stocks are firstly 

arranged sequentially as shown in Fig. 3-7. The image of the arrangement of these 

stocks is similar to a large rectangular stock with some line segments. The objects that 

will be arranged on these stocks cannot be portioned into many parts in different 

stocks. Thus, the objects cannot overlap with the line segments on the large 

rectangular stock. Arranging objects on the stocks is equivalent to arranging objects 

on the large rectangular stock which has some line segments on it. The line segments 

are the virtual objects in the multi-stock problem. 

When using the virtual object in the flaw stock problem, the flaw on the stock is 

marked first. And then, a virtual object with the same profile of the flaw is fixed on 

the position of the flaw before arranging objects. The object will be avoided to 

arrange on the flaw because they can not overlap the virtual object. 

The cutting-stock problem with irregular stocks, multi-stock, or flaw stock is 

simplified as arranging objects on a rectangular single-stock where some virtual 

objects are already arranged on, and the objects cannot overlap with the virtual 

objects. 
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3.4.2 Problem formulation 

The cutting-stock problem is formulated as a standard form of the constrained 

optimization problem as follows: 

cost function: minimize 2

1

N

ui
i

f x
=

= ∑  (44) 

design variables: iii yx θ,, ; i=1~N (45) 

constraints: 1 ( , , , , , )i Mijk j j j k k kg D x y x y 0θ θ= ≤ ;  

  where 
2

)1(~1 −
=

NNi , j=1~(N-1), k=(j+1)~N  (46) 

  ; i=1~N (47) 

  ; i=1~N (48) 

  ; i=1~N (49) 

  ; i=1~N×N

02 ≤−= lii xg

03 ≤−= lii yg

widthuii yyg ≤=4

5i Mijkg D= ≤0 v, j=1~N, k=1~Nv (50) 

where N is the number of objects; xi is the x-coordinate value of the reference point of 

object i; yi is the y-coordinate value of the reference point of object i; iθ  is the 

orientation of object i; xli is the lower boundary of object i in the x-direction; xui is the 

upper boundary of object i in the x-direction; yli is the lower boundary of object i in 

the y-direction; yui is the upper boundary of object i in the y-direction; ywidth is the 

width of the stock; DMjk is the maximum depth between object j and object k; Nv is the 

number of virtual objects. 

The cost function will cause objects be arranged near the lower boundary of the 
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stock as close as possible. The design variables will denote the positions and the 

orientations of objects. A reference point is used to denote the position of an object as 

described in section 3.1. The maximum depth DMjk between object j and object k is the 

maximum overlap length in the direction from the reference point of object j to the 

reference point of object k. The DMjk will be negative if two objects have no overlap 

but a gap between them. The constraints g1i can be shown as a vector form g1, and it 

considers the overlap of objects. The vector form g2, g3, and g4 are similar to g1, and 

they constrain the objects to avoid being arranged outside the boundaries of the 

surrounding rectangular stock in the irregular stock problem and the large rectangular 

stock in the multi-stock problem. The equations of g5 are the same definition in g1 

and it considers the overlap between objects and virtual objects. 

The gradients are necessary in the local search strategy of this study, but the 

gradients of g1 and g5 do not have explicit forms. They will be calculated by the finite 

difference method in this study. The equation of the finite difference method used in 

this study is shown as follows. 

  
( ) (j j j

k k

gi gi gi
d d

d Δd d∂ + −
=

∂ Δ

)

3

; k=1~N×3 (51) 

where d is the vector form of design variables and dk is an element of d; and 

   (52) 

Because of the characteristic of this formulation, much calculation of the gradient in 

1{ ,..., ,..., }T
k k Nd d d d ×+ = + Δd Δd
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equation (51) is not necessary. For example, when modifying the design variables of 

object No. 3, it will never affect the overlap between object No.1 and object No. 2. 

Therefore 

  12 12 12

3 3 3

0M M MD D D
x y θ

∂ ∂ ∂
= =

∂ ∂ ∂
=  (53)  

and calculating them by equation (51) is not necessary. 

Therefore the gradients of the constraints are shown as follows. 
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 (58) 

For simplifying the calculation of overlap, the real maximum depth will not be 

calculated if the smallest surrounding rectangles of object j and k have no overlaps. At 

this time, the minus value of the distance between two objects’ reference point is used 

instead of the maximum depth. It is used for the g1 and g5, and they are modified as 

follows. 
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   where i=1~N×Nv, j=1~N, k=1~Nv (60) 

The equations of gradient are modified as follows. 
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where j and k in equation (61) and (62) are associated with what they are in equation 

45 



(59) and (60). 

3.4.3 SQP method with the swap strategy 

The swap strategy is one of the global strategies in this study. It includes 

“escaping the local optimum trap” and “sometimes accepting a bad solution”. Two 

objects will be swapped after finding a local optimum solution, and objects will be 

re-arranged by the SQP method. This will help to search for a solution in another 

region and escape the local optimum trap. If there is no solution better than the 

original one after several swaps, the best one in these swaps will be updated as the 

new solution. This is similar to the Simulated Annealing method that accepts a bad 

solution according to equation (1) described above. 

The whole approach is shown in Fig. 3-8, and includes the following steps: 

1. Arrange all objects on the sheet stock randomly, and decide the maximum 

iteration number. The random arrangement is the initial solution. The index 

“IterNo” indicates the iteration number now, and it is set as 0 at the beginning. 

2. Use the SQP method to arrange objects, and the solution “D” and the cost function 

value “F” are obtained. And then, initialize the best solution “Dbest” and the best 

cost function value “Fbest” as D and F. 

3. Update the “IterNo” and initialize the “SwapNo”. Set the maximum swap number 

as the iteration number. 
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4. Update the “SwapNo” first, and swap the position of two objects of solution D. 

The two objects are selected randomly. 

5. There will be some overlap after swap two objects. Thus the SQP method is used 

to re-arrange all objects, and the solution of the swap sub-process “Dsub” and its 

cost function value “Fsub” are obtained. 

6. If it is the first swap or the result of swap is better than the best solution in the 

swap sub-process, the best solution of the swap sub-problem “Dsubbest” and its cost 

function value “Fsubbest” are updated. 

7. If “Fsubbest” is larger than “Fbest”, i.e., the best solution of the swap sub-process is 

worse than the best one of total process, and it will be better to try another swap, 

or “SwapNo” is less than “SwapMax”, i.e., another swap is allowable, go to step 4 

to do another swap. 

8. If another swap is not necessary or not allowable in the swap sub-process, check if 

“Fsubbest” is better than “Fbest” or not. If a solution better than the best one of the 

total process is obtained in the swap sub-process, update the best solution and its 

cost function. 

9. If “IterNo” is less than “IterMax”, update the swap base “D” as the best solution 

of the swap sub-process and go to step 3 to continue the process. If not, the best 

solution is the final solution. 
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The solving process of the SQP method with the swap strategy can be written as 

an algorithm form as follows: 

Set IterMax 
Set IterNo=0 
Set initial solution of SQP method: d randomly 

where d=[x1,y1,θ1,x2,y2,θ2,...,xN,yN,θN]=[d1,d2,...dNx3]T

Solve min f(d) subject to g(d)≦0 by SQP method 
 Then obtain solution D, F=f(D) 
 
Set Dbest=D 
Set Fbest=F 
 
For IterNo=1,2,...,IterMax 
 Select a and b randomly where 1≦a≦N, 1≦b≦N 
 Set initial solution of SQP method:  

d=[D1,D2,...,Dax3-4,Dax3-3,Dbx3-2,Dbx3-1,Dax3,...,Dbx3-4,Dbx3-3,Dax3-2,Dax3-1,Dbx3,...,
DNx3]T

 Solve min f(d) subject to g(d)≦0 by SQP method 
Then obtain solution Dsub, Fsub=f(Dsub) 

 
 Set Dsubbest=Dsub

 Set Fsubbest=Fsub

 
 Set SwapMax 
 Set SwapNo=1 
 
 While (SwapNo<SwapMax and Fsubbest>Fbest) 
  Select a and b randomly where 1≦a≦N, 1≦b≦N 

 Set initial solution of SQP method:  
d=[D1,D2,...,Dax3-4,Dax3-3,Dbx3-2,Dbx3-1,Dax3,...,Dbx3-4,Dbx3-3,Dax3-2,Dax3-1,

Dbx3,...,DNx3]T

  Solve min f(d) subject to g(d)≦0 by SQP method 
      Then obtain solution Dsub, Fsub=f(Dsub) 
 
  If Fsub<Fsubbest

   Set Dsubbest=Dsub
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   Set Fsubbest=Fsub

  End If 
   
  Set SwapNo=SwapNo+1 
 End While 
 
 Set D=Dsubbest

 
 If Fsubbest<Fbest

  Set Dbest=Dsubbest

  Set Fbest=Fsubbest

 End If 
End For 
 
Obtain Dbest as the solution 

The maximum swapping number is set as the iteration number, because the bad 

solution may be accepted easily in the beginning of the solving process. The 

acceptance of bad solution will become more and more difficult in the solving process. 

This characteristic is similar to the concept of Simulated Annealing Algorithm for 

global searching. As the maximum swapping number is increased during every 

iteration in the process, the number of bad solution acceptances is decreased. It is 

similar to the “cooling down” in the Simulated Annealing Algorithm, but no 

additional parameter has to be set, such as the temperature and the cooling rate of the 

Simulated Annealing Algorithm and the mutation rate of the Genetic Algorithm. It is 

friendly and easy to use. 
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3.4.4 SQP method with the insert strategy 

As shown in the equation (1), the objects are desired to be arranged near the 

lower boundary in the x-direction as close as possible. After arranging by the local 

search strategy, the object with the maximum upper boundary in the x-direction is 

inserted to the x-lower boundary of the stock with the same height. This will cause the 

solution go into another local region but also produce some overlaps. 

The flowchart of the whole solving process is shown in Fig. 3-9. The steps are 

described below. 

1. Arrange objects on the stock randomly and it is the initial solution of the whole 

process. Choose the maximum iteration number “IterMax” and set the iteration 

number index “IterNo” as 0. 

2. Improve the initial solution with SQP method. 

3. Initialize the best solution “Dbest” as the solution of the SQP method. 

4. Insert the object with maximum x-upper bound into the x-lower boundary of the 

stock. 

5. Improve the overlap by using SQP method. 

6. Update Dbest. If the necessary length, i.e. the maximum x-upper bound of all 

objects, of the stock is reduced, set the new solution as the best solution. 

If the iteration number “IterNo” is less than the maximum iteration number, add 
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IterNo by 1 and go to step 4. Otherwise stop the process and the Dbest is the best 

solution. 

The solving process of the SQP method with the insert strategy can be written as 

an algorithm form as follows: 

Set IterMax 
Set IterNo=0 
Set initial solution of SQP method: d randomly 

where d=[x1,y1,θ1,x2,y2,θ2,...,xN,yN,θN]=[d1,d2,...dNx3]T

Solve min f(d) subject to g(d)≦0 by SQP method 
 Then obtain solution D, F=f(D) 
 
Set Dbest=D 
Set Fbest=F 
 
For IterNo=1,2,...,IterMax 
 Set xui=Max{xu1,xu2,...,xuN} and obtain i 
 Set d=[D1,D2,...,Dax3-3,0,Dax3-1,...,DNx3]T

 Solve min f(d) subject to g(d)≦0 by SQP method 
 Then obtain solution D, F=f(D) 
 
 If F<Fbest

  Set Dbest=D 
  Set Fbest=F 
 End If 
End For 
 
Obtain Dbest as the solution 
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Fig. 3-1 Flowchart for finding the maximum depth 
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Fig. 3-3 The flowchart of SQP method 
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(a) Two objects contact on a point 

 
(b) First path of that the mover slides on the stator 

 

(c) First two path of that the mover slides on the stator 

 
(d) The self-sliding no-fit polygon 

Fig. 3-4 Process of finding the self-sliding no-fit polygon. 
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Fig. 3-5 The process of finding nesting vectors. 
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Fig. 3-6 The virtual objects of the irregular stock problem. 

Fig. 3-7 The virtual objects of the multi-stock problem. 
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Fig. 3-8 The flowchart of the SQP method with the swap strategy. 
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Fig. 3-9 The flowchart of the SQP method with the insert strategy. 
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CHAPTER 4 EXPERIMENTAL RESULTS 

4.1 Combinational problem 

The first example used in this section was introduced by Cheng and Rao (1997, 

1999, 2000). The profiles of objects that will be nested are shown and numbered as in 

Fig. 4-1. Objects 2 and 3 have the same profile; objects 7 and 8 also have the same 

profile. 

In the first step, the design variables are the coordinate values (xi, yi) and object 

orientations ( iθ ). There are 24 design variables in this case because there are eight 

objects and every object needs three design variables to represent its position and 

orientation. The cost function is to minimize the summation distances between objects 

(as shown in equation (41)), and the 28 constraints are that no two objects may 

overlap (as shown in equation (43)). This means all objects have to be arranged as 

close as possible without overlap. Even if there are many constraints in this case, the 

inactive constraints will be ignored by the active-set strategy in the solving process 

when using the maximum depth to consider the overlaps. 

Deciding the initial solution is another problem in the optimization process, and 

different initial solutions will lead to different local optimum solutions. The initial 

solution in the examples of the combinational problem is set by the concept of 
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initially ignoring the constraints, and findings the best solution in the new 

unconstrained problem. Then the best solution of the unconstrained problem is set as 

the initial solution of the constrained problem. Thus, the initial solution is set as that 

all object positions are on the origin of the global coordinate system. This is because 

the best solution occurs when all objects overlap on the same position if the 

constraints are ignored. The object orientations are set as zero, i.e., the original 

orientation of objects, because they do not affect the cost function but can improve the 

constraints. 

The object positions and orientations are adjusted to improve the constraints in the 

solving process, resulting in 418 iterations in the SQP solving process in this case. 

The number of considered constraints during the solving process is shown in Fig. 4-2. 

At the beginning, 28 constraints are used, i.e., all constraints are considered, but the 

number of considered constraints is later reduced. For example, there are six pairs of 

objects that overlap one another in iteration 7. The arranging pattern is shown in Fig. 

4-3. This means that there are six considered constraints. The six pairs are object 1 & 

object 6, object 2 & object 3, object 2 & object 5, object 3 & object 5, object 4 & 

object 8, and object 7 & object 8. Object 2 and object 3 are almost overlapped 

completely, and look like one object in the figure. The maximum depths of the first, 

fifth, and sixth pair are very close to zero, and cannot be observed in the figure. If all 
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constraints are considered in the solving process, there will be 11704 constraints (28×

418). But the summation of the number of considered constraints is 2670 by using the 

active-set strategy with the maximum depth overlap index. This amounts to a 

reduction of about 77.19% in this case. 

The result of the first step is shown in Table 4-1, and the x- and y-coordinate 

values are the position of the objects’ reference points in the global coordinate system. 

The arranging pattern of the first step is shown in Fig. 4-4(a), and the objects should 

be integrated before going into the second step. The profile of the cluster with a 

highly concave characteristic is shown in Fig. 4-4(b). This concave characteristic may 

be used in the second step. 

The second step uses CNA to nest. The self-sliding no-fit polygon of the cluster 

has to be found first. Then the positions of the clusters are adjusted to find the 

optimum nesting vectors as introduced above. The optimum nesting vectors are 

shown in Table 4-2. The nesting pattern with these nesting vectors has 60 clusters in a 

50×50 sheet stock as shown in Fig. 4-5. N1, N2, and N3 are the first, second, and third 

optimum nesting vectors, respectively. As shown in Table 4-2 and Fig. 4-5, the 

optimum nesting vectors are not parallel to the X- or Y-axis. Therefore, the nesting 

pattern can be improved in the third step. 

In the third step, the three nesting vectors are aligned to the X- and Y-axis 
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respectively, as shown in Fig. 4-6. The best case is paralyzing the third nesting vector 

to the Y-axis, and it is resulting in 66 clusters in a 50×50 stock. 

For evaluating the proposed method, three kinds of sheet stocks were used, 

namely 50×50, 100×100, and 200×200. The cluster in the literature of Cheng and Rao 

(2000) is shown in Fig. 4-7. Because the Genetic Algorithm is a controlled random 

method, the improvement step runs three times in every kind of stock with the 

literature cluster, as shown in Table 4-3(a). The results of the proposed method with 

these sheet stocks are shown in Table 4-3(b). The comparison between these cases is 

shown in Table 4-3(c). After integrating the multi-polygon as a single object and 

nesting by CNA, there are 58 literature clusters in the 50×50 sheet stock, while the 

proposed method yields 60. Thus, the number of objects is improved by 3.45%. In the 

100×100 and 200×200 sheet stock, the number of objects is improved by 5.28% and 

4.91% respectively. However, after improving the nesting pattern by the Genetic 

Algorithm, there are up to 62 clusters in the literature method, while there are 66 

clusters in this study after the third step. Thus, the number of objects is improved by 

6.45%. The proposed method improves the number of objects in these cases by 

between 3 and 6 percent. Therefore, the proposed method has better results for 

rotatable objects and requires less calculation effort. 

For testing the efficiency of the methods, this study uses other two cases called 
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Com_Dagli and Com_Swim. The case information is shown in Appendix A.1. These 

two cases are modified from the case “Dagli” and “Swim” in the ESICUP website 

(http://paginas.fe.up.pt/~esicup/tiki-index.php). The clusters are shown in Fig. 4-8. 

The stock sizes are selected randomly, and the results are shown in Table 4-4 and 

Table 4-5. The results by using the SQP method and parallism strategy are better than 

the self-sliding with Genetic Algorithm. Thus, the approach proposed in this study is a 

good method not only for one special case. 

4.2 Multi-polygon problem with a rectangular stock 

The object information of the cases used in this section is shown in Appendix 

A.2. Four cases called Dagli, Swim, Albano, and Shapes2 are used to test the effect of 

the proposed approach. The first three cases are garment cases and the last one is an 

artificial case. 

The experiment results are shown in Table 4-6. At first, every case is solved by 

the Swap strategy with the maximum iteration number set as 80. Because the initial 

solution of the strategy is generated randomly, every case runs 20 times. The results 

are shown in the row “Swap 80” of Table 4-6. As shown in the table, the results are 

worse than the results in the literature unless case Swim. Thus, the maximum iteration 

number is set as 200 in Swap strategy for solving case Dagli, Albano, and Shapes2. 

Every case runs only 10 times because 200 iteration cost much time. The results are 
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shown in row “Swap 200” of the table. 

For observing easily, the cells of the results are filled with different colors. For 

case Dagli, Albano, and Shapes2, the results in the literature are compared with results 

in row Swap 200. If the result of Swap 200 is better than the literature results, the cell 

of literature result is filled with red. If they are the same, the cell is filled with yellow. 

If the result of Swap 200 is worse, the cell is filled with green. For case Swim, the 

literature results are compared with the results in Swap 80, and the color setting is 

similar as other cases. As shown in Table 4-6, the most results of this study are better 

than the literature results. Therefore, the Swap strategy is good for the cutting-stock 

problem. The best arranging patterns of cases are shown in Fig. 4-9. The white parts 

are objects and the gray part is the unused stock. 

Another strategy proposed in this study is the Insert strategy. It is difficult to 

compare the efficacy of Swap and Insert strategy with fixed iteration number because 

the number for executing SQP method in Swap 80 is not the same in every run. Thus, 

the SQP method execution number in every run of the Insert strategy is set the same 

as that in every run of the Swap strategy respectively. For example, the SQP method 

execution number in case Dagli run no. 1 of the Swap strategy is 2679, and the SQP 

method execution number in case Dagli run no. 1 of the Insert strategy is set as 2679, 

too. The results of the Insert strategy are shown in row “Insert” of Table 4-6. It is 
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obvious that the results of the Swap strategy are better than the results of the Insert 

strategy, but the Insert strategy is more stable than the Swap strategy because its 

deviation is smaller than the Swap strategy’s. 

4.3 Multi-polygon problem with several rectangular stocks 

The object information of the cases used in this section is shown in Appendix 

A.3. Four cases called Ext_Dagli, Ext_Swim, Ext_Albano, and Ext_Shapes2 are used 

to test the effect of the proposed approach. These four cases are modified from the 

cases in the last section, and the difference is the stock number and the stock size. 

The maximum iteration number of Swap strategy is set as 80, and there 20 runs 

in every case. The maximum iteration number of the Insert strategy is depended on 

the SQP method excitation number in the Swap strategy as describing in the last 

section. 

The results of the Swap and Insert strategy are shown in Table 4-7. The results 

show that the best result of the Swap strategy is usually better than the best result of 

the Insert strategy, but the average stock utility rate of the Insert strategy is usually 

better than the Swap strategy’s. It is similar to the single-stock problem that the Insert 

strategy is more stable than the Swap strategy because its deviation is smaller than the 

Swap strategy’s. The best arrangement patterns of the problem with several 

rectangular stocks are shown in Fig. 4-10. 
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4.4 Multi-polygon problem with irregular stocks 

The virtual objects in this section are used for multi-stock, irregular stock, and 

the flaw. The case information is shown in Appendix A.4. Both Swap and Insert 

strategy are used, and there is only one run for every strategy in every case because 

the effect of different strategies are compared in the last two section. It is not 

necessary to compare them again. The results are shown in Table 4-8, and the best 

arranging patterns are shown in Fig. 4-11. The black part is the flaw on the stock. The 

results show that the Swap strategy, Insert strategy, and Virtual object strategy are 

workable for multi-stock problem, irregular stock problem, and flaw stock problem. 

4.5 Simplification model 

Another effect should be discussed is the effect of simplification model that 

simplifies the calculation of constraint gradient as shown in section 3.4.2. The original 

model will calculate all constraint gradients by finite difference method. The case 

Dagli, Swim, Albano, and Shapes2 in section 4.2 are used to test the effect of the 

simplification model. Every case has 20 rums for SQP method, and every run has 200 

iteration of SQP method. The results are shown in Table 4-9. The results show that the 

simplification can save more than 95% time of the original model. 
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Table 4-1 The data of the first step result 

Object No. x coord. value y coord. value Orientation (degree) 
1 0.305 -2.808 6.922 
2 2.723 1.155 -49.388 
3 -1.196 -0.911 52.126 
4 -0.138 0.985 -3.821 
5 1.737 -0.717 -11.513 
6 0.973 0.707 5.641 
7 0.451 -0.904 92.524 
8 1.088 -0.346 106.560 

 
 
 

Table 4-2 Nesting vectors 

First nesting vector (1.917, -5.238) 
Second nesting vector (5.586, 1.060) 
Third nesting vector (3.669, 6.298) 
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Table 4-3 Results － (a) results of CNA with Genetic Algorithm; (b) results of the 
proposed method; (c) comparing the results. 

(a) 

The sheet stock size 50×50 100×100 200×200 
CNA 60 1279 196 

First nesting vector 62 285 1215 
Second nesting vector 61 279 1226 Paralleling X-axis 
Third nesting vector 61 276 1216 
First nesting vector 62 286 1214 
Second nesting vector 62 280 1225 Paralleling Y-axis 
Third nesting vector 66 284 1216 

The sheet stock size 50×50 100×100 200×200 
CNA 58 265 1140 
Improving run 1 60 269 1155 
Improving run 2 62 272 1150 
Improving run 3 62 277 1156 

The sheet stock size 50×50 100×100 200×200 
The best of proposed method 66 286 1226 
The best of CNA with GA 62 277 1156 
Improvement ratio 6.45% 3.25% 6.06% 

(b) 

(c) 
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Table 4-4 Results of case Com_Dagli (a) results of CNA with Genetic Algorithm; (b) 
results of the proposed method; (c) comparing the results. 

The sheet stock size 851×1790 1681×1638 649×1490 
CNA 1109 2045 689 

First nesting vector 1131 2096 703 
Second nesting vector 1113 2060 690 

Paralleling 
X-axis 

Third nesting vector 1124 2080 695 
First nesting vector 1146 2092 690 
Second nesting vector 1119 2082 687 

Paralleling 
Y-axis 

Third nesting vector 1153 2064 707 

The sheet stock size 851×1790 1681×1638 649×1490 
CNA 1042 1927 647 
Improving run 1 1109 2030 687 
Improving run 2 1099 2032 695 
Improving run 3 1099 2026 687 

The sheet stock size 851×1790 1681×1638 649×1490 
The best of proposed method 1153 2096 707 
The best of CNA with GA 1109 2032 695 
Improvement ratio 3.97% 3.15% 1.73% 

(b) 

(c) 

(a) 
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The sheet stock size 144202×
124029

48817×
71275 

69834×
95666 

Table 4-5 Results of case Com_Swim (a) results of CNA with Genetic Algorithm; (b) 
results of the proposed method; (c) comparing the results. 

 

CNA 1335 238 477 
First nesting vector 1363 236 475 
Second nesting vector 1365 250 486 

Paralleling 
X-axis 

Third nesting vector 1334 242 481 
First nesting vector 1336 243 484 
Second nesting vector 1330 249 484 

Paralleling 
Y-axis 

Third nesting vector 1337 237 497 

The sheet stock size 144202×124029 48817×71275 69834×95666 
CNA 1259 223 451 
Improving run 1 1277 230 462 
Improving run 2 1282 229 471 
Improving run 3 1277 230 468 

The sheet stock size 144202×124029 48817×71275 69834×95666 
The best of proposed method 1365 250 497 
The best of CNA with GA 1282 230 471 
Improvement ratio 6.47% 8.7% 5.52% 
 

(b) 

(c) 

(a) 
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Table 4-6 The results of the problem with a rectangular stock 

Dagli Swim Albano Shapes2  
Best
(%) 

Ave.
(%) 

Dev. 
(%) 

Best 
(%) 

Ave. 
(%) 

Dev.
(%)

Best
(%) 

Ave.
(%) 

Dev.
(%)

Best
(%) 

Ave.
(%) 

Dev.
(%)

Swap 80 84.21 82.77 0.94 74.08 72.67 0.86 86.49 84.02 1.34 80.23 77.83 1.33
Insert 81.82 80.80 0.82 70.45 69.13 0.67 82.24 80.18 0.96 75.05 73.41 1.09
Swap 200 87.78 86.22 0.83    87.18 84.71 1.28 81.98 79.44 1.74
Egeblad et al. (2007), 2DNest 85.98 85.31 0.53 71.53 70.27 0.69 87.44 86.96 0.32 81.21 79.89 1.05
Bouganis and Shanahan (2007), vision 81.00   69.50         
Ratanapan et al., (2007)  78.58           
Gomes and Oliveira (2006), GLSHA 85.49 82.99  73.24 71.85  86.41 83.09  81.82 80.24  
Gomes and Oliveira (2006), SAHA 87.15 85.38 1.07 74.37 72.28 0.97 87.43 84.70 1.23 83.60 81.41 0.74
Burke et al. (2006), Density 1 83.70   68.40   84.60   79.40   
Poshyanonda and Dagli (2004), GA 84.35            
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Table 4-7 The results of the problem with several rectangular stocks. 

 Ext_Dagli Ext_Swim Ext_Albano Ext_Shapes2
Best 67.48% 61.87% 77.09% 68.67% 
Average 63.99% 57.25% 73.37% 63.42% Swap 80 
Devaition 2.04% 1.76% 2.46% 2.89% 
Best 78.87% 59.32% 75.34% 67.61% 
Average 77.87% 58.26% 71.88% 65.87% Insert 
Devaition 0.39% 0.80% 1.11% 0.70% 

 
 
 

Table 4-8 The results of the problem with irregular stocks. 

 Utility 
Swap 80 72.97% 

Irr_Dagli 
Insert 71.15% 
Swap 80 39.52% 

Irr_Swim 
Insert 68.99% 

 
 
 

Table 4-9 The comparison between the original model and the simplification model. 

 Dagli Swim Albano Shapes2 
Origin (sec.) 93.75 1707.30 50.80 76.65
Simplification (Sec.) 3.40 17.20 2.05 2.90
Reduction 96.37% 98.99% 95.96% 96.22% 
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 (a) Object 1                 (b) Objects 2 and 3 

              

 (c) Object 4                 (d) Object 5 

                          

 (e) Object 6                 (f) objects 7 and 8 

Fig. 4-1 Profiles of objects for cutting. 
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Fig. 4-2 Considered iteration number 
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Fig. 4-3 The arranging pattern of iteration 7 
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(a) Arranging pattern of the first step 

 

(b) Integration object: cluster 

Fig. 4-4 Result of the first step. 



 

 

N1 

N2

N3 

Fig. 4-5 The nesting pattern of the second step on the 50×50 stock 
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N1 

N2 N3 N1

N2
N3 

(a) N1 parallels X-axis                (b) N1 parallels Y-axis 

N2 

N1 
N2 

N3 
N1 

N3 

 

(c) N2 parallels X-axis                (d) N2 parallels Y-axis 

Fig. 4-6 Nesting patterns. 
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N1 
N2 

N3 

N1 

N2

N3

 

(e) N3 parallels X-axis                  (f) N3 parallels Y-axis 

Fig. 4-6. Nesting patterns (continue). 

 

 

Fig. 4-7 Integration object (cluster) in the literature. 
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(a) The cluster of case Com_Dagli 

 

(b) The cluster of case Com_Swim 

Fig. 4-8 The clusters of cases. 

80 



 

    

            (a) Dagli                              (b) Swim 

   
            (c) Albano                           (d) Shapes2 
Fig. 4-9 The best arranging pattern of the problem with a rectangular stock. 
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(a) Ext_Dagli                       (b) Ext_Swim 

   
            (c) Ext_Albano                     (d) Ext_Shapes2 

 
Fig. 4-10 The best arranging pattern of the problem with several rectangular stock. 
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(a) Irr_Dagli 

 
(b) Irr_Swim 

Fig. 4-11 The best arranging pattern of the problem with irregular stocks. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

The cutting-stock problem is considered in many manufacturing industries. 

According to the statistics by DGBAS (1998) and DGBAS (2003), the cost of stock is 

about 50% in whole expense of manufacturing industries in Taiwan. Thus, enhancing 

the stock utility will be helpful for reducing the outgoing of companies in these 

industries. 

Because the cutting-stock is widely considered in many manufacturing industries, 

it has many different types. This study classifies the cutting-stock problem and 

focuses four types of the problem. The cutting-stock problem is also discussed in the 

viewpoint of the optimization problem, and the functions of the solving strategy are 

obtained. 

Therefore, this study proposes: 

1. Using the maximum depth as the overlap index instead of real overlap area and 

being used with the active-set concept can reduce the calculation effort. This is 

because the constraints will be ignored if the overlap indices are less than zero, i.e., 

the maximum depths are less than zero and the constraints become inactive. 

2. By using the maximum depth as the overlap index, different orientations of 
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objects is easy to consider. 

3. By using the maximum depth as the overlap index, the objects are not coded in 

binary matrices and they will not deform in different orientations. 

4. The cutting-stock problem is formulated into a constrained optimization problem, 

and a total solution strategy is proposed. 

5. Different orientations of objects are easy to consider by setting the ranges of 

design variables. 

6. By formulating the problem into a constrained optimization problem, the famous 

solving method “SQP method” can be used, and the existed software can be used. 

7. In the combinational problem, the nesting pattern is improved easily in the third 

step of the arranging strategy by aligning the three nesting vector with the X- and 

Y-axis, respectively. The best one as the final nesting pattern. 

8. A global strategy “Swap strategy” is helpful for improving the solution, and it is 

easy to use because there is no parameter that has to be set. 

9. A global strategy “Insert strategy” is helpful for improving the solution, and it is 

easy to use because there is no parameter that has to be set. 

10. The virtual object strategy is workable for the irregular shape of stocks by finding 

the smallest surrounding rectangle of the irregular stock and filling the virtual 

objects in the space between them. The problem becomes a rectangular stock 
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problem with some fixed virtual objects on it. 

11. The virtual object strategy is workable for the plurality of the stock by arranging 

the stocks of the multi-stock problem as a large stock and arranging virtual objects 

on the large stock at the position of boundaries of original stocks. The problem 

becomes a single-stock problem with some fixed virtual objects on it. 

12. The virtual object strategy is workable for the flaw of the stock by arranging a 

virtual object on the flaw. 

13. The Insert strategy is more stable than the Swap strategy because its deviation of 

20 runs is smaller. 

14. The Swap strategy is suggested for solving the single-stock problem. 

15. The Insert strategy is suggested for solving the multi-stock problem. 

16. The simplification model can save much time for calculating the constraint 

gradients. 

5.2 Future works 

This study proposes some methods for multi-types of the cutting-stock problem. 

Although these methods are workable and can obtain good results, some researches 

can be done in the future. 

1. The searching time may be used as the criteria for finishing the whole searching 

process. The iteration number is used as the criteria in this study, but it is not a 
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direct sense for user. 

2. The pre-set stock utility rate also can be used as the criteria for finishing the whole 

searching process. If the user only want to find a result that is “good enough” in a 

short time, this criterion is much suitable. 

3. This study considers the overlap of objects and the stock utility. Other properties 

can be considered in the problem. For example: the relation of the stock thickness 

and the gaps between objects, the necessary tool number, the tool path, and the 

cutting path.. 

4. The methods proposed in this study are suitable for the free rotatable objects. 

These methods may be modified for solving the problem that the objects should be 

arranged on some specific orientations. 
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APPENDIX A CASE INFORMATION 

A.1 Combinational problem 

Cheng and Rao: 

Objects:

No. Vertices (x, y) 

1 
(-0.18, -1.77); (0.82, -1.47); (-0.18, -0.47); (0.82, 0.53); 
(0.62, -0.47); (2.82, 0.53); (-0.18, 1.53); (-2.18, -0.47) 

2 & 3 
(-0.7, -1.14); (1.3, -0.74); (0.8, 0.86); (-0.7, 0.86); 
(-1.7, -0.14); (-0.7, -0.64); (-0.9, 0.16); (0.3, -0.14) 

4 
(-1.32, -0.78); (0.68, -1.38); (0.68, 1.62); (-1.32,0.62); 

(-0.12, 0.62); (-0.12, -0.38); (-1.32, -0.38) 

5 
(-1.16, -0.94); (0.84, -0.94); (0.34, 1.06); (-0.66, 1.56); 

(-0.16, 0.06) 

6 (-0.55, -0.58); (0.45, -0.58); (0.45, 0.62); (-0.35, 0.62) 

7 & 8 
(-0.2, -0.44); (0.2, -0.44); (0.5, 0.06); (0, 0.56); 

(-0.5, 0.06) 

Stocks: 

50×50; 100×100; 200×200 

 

 

 

 

 

A1 



 

Com_Dagli: 

Objects: 

No. Vertices (x, y) 

1 
(-7.125, 1.875); (-6.125, 0.875); (-0.125, -1.125); (4.875, -6.125); 

(7.875, -3.125); (2.875, 1.875); (3.875, 2.875); (-6.125, 2.875) 

2 
(-2.5, 8); (-4.5, -4); (-0.5, -4); (-0.5, -3); 

(0.5, -3); (0.5, -4); (4.5, -4); (4.5, -2); 
(0.5, 8) 

3 
(-3.5, 12); (-5.5, 6); (-5.5, -6); (-3.5, -12); 

(3.5, -12); (5.5, -6); (5.5, 6); (3.5, 12) 

4 (-7, 7.5); (-7, -7.5); (7, -7.5); (7, 7.5) 

5 (-4.5, -2.5); (4.5, -2.5); (2.5, 2.5); (-2.5, 2.5) 

6 
(-4, 16.143); (-3, -12.857); (-1, -15.857); (2, -14.857); 

(7, -4.857); (1, 15.143); (-2, 17.143) 

7 
(-8.4, 0.4); (-3.4, -2.6); (14.6, -2.6); (4.6, 2.4); 

( -7.4, 2.4) 

8 
(-1.5, -4.2); (1.5, -4.2); (2.5, 1.8); (1.5, 1.8); 
(1.5, 0.8); (0.5, -0.2); (-0.5, -0.2); (-1.5, 0.8); 

(-1.5, 1.8); (-2.5, 1.8) 

9 (-3.75, 0.75); (-2.75, -1.25); (4.25, -1.25); (2.25, 1.75) 

10 (-6.333, -2.133); (7.667, -2.133); (-1.333, 4.267); 

Stocks: 

851×1790; 1681×1638; 649×1490 
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Com_Swim: 

Objects: 

No. Vertices (x, y) 

1 
(-9.304, 3.188); (-9.354, -0.022); (-9.294, -3.232); (-7.794, -3.412); 

(-6.714, -3.722); (-5.074, -4.192); (-3.834, -4.512); (-2.504, -4.82188); 
(-0.724, -5.182); (0.576, -3.632); (1.446, -3.012); (2.806, -2.342); 
(3.886, -2.082); (5.506, -2.072); (6.666, -2.212); (8.066, -2.452); 
(7.886, -1.212); (7.776, 0.018); (7.876, 1.248); (8.056, 2.488); 
(6.656, 2.238); (5.496, 2.098); (3.876, 2.098); (2.796, 2.358); 

(1.436, 3.018); (0.556, 3.638); (-0.744, 5.178); (-2.524, 4.808); 
(-3.854, 4.498); (-5.09, 4.168); (-6.734, 3.688); (-7.814, 3.378) 

2 
(-3.936, 2.733); (-3.856, 1.253); (-3.667, -0.264); (-3.252, -1.891); 
(-2.146, -1.757); (-1.056, -1.727); (0.074, -1.897); (1.544, -2.237); 

(3.704, -2.723); (4.114, -0.767); (4.934, 0.773); (3.614, 0.973); 
(2.614, 1.183); (1.294, 1.523); (-1.216, 2.213); (-2.762, 2.614) 

3 
(-4.125, 0.623); (-5.815, 0.193); (-7.275, -0.147); (-9.483, -0.603); 

(-10.601, -1.122); (-7.855, -1.367); (-6.615, -1.527); (-4.685, -1.957); 
(-3.305, -2.537); (-1.235, -3.727); (0.105, -3.417); (2.244, -2.966); 

(3.99, -2.378); (5.125, -1.837); (6.395, -1.147); (8.615, -0.107); 
(8.715, 1.163); (8.795, 2.403); (6.865, 2.703); (5.385, 2.923); 
(4.265, 3.063); (2.705, 3.173); (1.04, 3.173); (-0.725, 2.913); 

(-2.525, 2.515) 

4 
(-6.711, 0.842); (-6.631, -0.878); (-3.621, -0.818); (-1.871, -0.808);  
(-0.551, -0.828); (0.469, -0.878); (2.049, -1.098); (3.599, -1.638);  

(6.804, -0.269); (5.379, 0.272); (3.779, 0.774); (2.379, 1.002);  
(1.139, 1.102); (-0.031, 1.132); (-1.601, 1.102); (-4.581, 0.982) 

5 
(-1.285, 3.988); (-0.945, 2.559); (-0.515, 1.308); (-0.395, 0.108); 

(-9.545, -0.402); (-9.525, -1.992); (-0.895, -2.082); (0.405, -2.512); 
(0.805, -4.012); (1.225, -5.412); (2.425, -5.252); (2.255, -3.272); 
(2.195, -2.112); (2.215, -0.132); (2.315, 1.348); (2.535, 3.048); 

(3.602, 6.309); (2.235, 4.528); (0.885, 3.988); 
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6 
(-7.243, -5.072); (-5.945, -5.36); (-4.174, -4.77); (-2.293, -3.9); 

(-1.083, -3.28); (0.127, -2.62); (1.307, -2.1); (2.347, -1.87); 
(3.467, -1.94); (5.507, -2.45); (5.357, -1.06); (5.257, -0.01); 

(5.357, 1.06); (5.507, 2.45); (3.467, 1.94); (2.347, 1.87); 
(1.307, 2.1); (0.127, 2.62); (-1.083, 3.28); (-2.293, 3.9); 

(-4.174, 4.771); (-5.945, 5.361); (-7.243, 5.073) 

7 
(-4.125, 0.036); (-4.165, -1.194); (-4.205, -2.874); (-4.295, -4.504); 
(-4.525, -6.164); (-2.935, -6.154); (-1.665, -5.344); (-0.605, -4.974); 

(0.795, -4.544); (2.345, -4.124); (3.535, -3.654); (5.005, -2.984); 
(6.485, -2.204); (6.335, -0.964); (6.245, 0.056); (6.485, 2.276); 
(5.005, 3.056); (3.535, 3.726); (2.345, 4.196); (0.795, 4.616); 

(-0.605, 5.046); (-1.665, 5.416); (-2.935, 6.226); (-4.525, 6.236); 
(-4.295, 4.576); (-4.205, 2.946); (-4.165, 1.266) 

8 
(1.313, 2.71); (0.293, 1.56); (-0.627, 0.5); (-2.047, -0.181); 

(-7.507, -0.271); (-7.467, -1.871); (-1.587, -2.041); (-0.617, -3.031); 
(1.173, -3.521); (2.033, -1.831); (2.473, -0.871); (3.013, 0.44); 

(3.475, 1.656); (3.963, 3.14); (2.118, 3.61) 

9 
(-0.692, 2.401); (-1.713, 1.174); (-1.742, -0.464); (-1.306, -1.654); 
(-0.476, -3.051); (0.338, -2.345); (1.250, -1.245); (1.849, 0.152); 

(1.754, 1.694); (0.738, 3.339) 

10 
(1.422, 7.019); (0.136, 6.234); (-0.894, 5.814); (-1.924, 5.664); 

(-3.554, 5.824); (-4.724, 6.054); (-6.724, 6.504); (-7.114, 4.824); 
(-4.424, 4.214); (-2.134, 3.704); (-0.954, 3.444); (0.296, 2.644); 
(0.656, 0.744); (0.656, -0.876); (0.436, -2.406); (-2.154, -3.826); 

(-4.444, -4.326); (-7.134, -4.926); (-6.754, -6.606); (-4.754, -6.166); 
(-3.574, -5.936); (-1.944, -5.786); (-0.914, -5.936); (0.106, -6.366); 

(1.372, -7.139); (3.24, -7.946); (6.366, -7.246); (5.876, -5.156); 
(5.656, -3.686); (5.586, -1.476); (5.596, -0.076); (5.596, 1.324); 

(5.636, 2.804); (5.746, 4.164); (6.396, 7.094); (3.335, 7.824) 

Stocks: 

1442.02×1240.29; 488.17×712.75; 698.34×956.66 
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A.2 Multi-polygon problem with a rectangular stock 

Dagli: 

Objects: 

Total object: 30 

No. Amount Vertices (x, y) 

1 3 The same as object 1 of case Com_Dagli shown in A.1. 

2 3 The same as object 2 of case Com_Dagli shown in A.1. 

3 3 The same as object 3 of case Com_Dagli shown in A.1. 

4 3 The same as object 4 of case Com_Dagli shown in A.1. 

5 3 The same as object 5 of case Com_Dagli shown in A.1. 

6 3 The same as object 6 of case Com_Dagli shown in A.1. 

7 3 The same as object 7 of case Com_Dagli shown in A.1. 

8 3 The same as object 8 of case Com_Dagli shown in A.1. 

9 3 The same as object 9 of case Com_Dagli shown in A.1. 

10 3 The same as object 10 of case Com_Dagli shown in A.1. 

Stock: 

Width: 60 
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Swim 

Object 

Total object: 48 

No. Amount Vertices (x, y) 

1 3 The same as object 1 of case Com_Swim shown in A.1. 

2 6 The same as object 2 of case Com_Swim shown in A.1. 

3 6 The same as object 3 of case Com_Swim shown in A.1. 

4 6 The same as object 4 of case Com_Swim shown in A.1. 

5 6 The same as object 5 of case Com_Swim shown in A.1. 

6 3 The same as object 6 of case Com_Swim shown in A.1. 

7 3 The same as object 7 of case Com_Swim shown in A.1. 

8 6 The same as object 8 of case Com_Swim shown in A.1. 

9 6 The same as object 9 of case Com_Swim shown in A.1. 

10 3 The same as object 10 of case Com_Swim shown in A.1. 

Stock: 

Width: 57.52 
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Albano: 

Objects: 

Total objects: 24 

No. Amount Vertices (x, y) 

1 2 
(-19.553, -10.44); (-9.893, -9.88); (0.277, -11.3); (2.297, -8.92); 

(7.787, -9.13); (10.447, -3.63); (8.637, -2.3); (8.637, 2.3); 
(10.447, 3.63); (7.787, 9.13); (2.297, 8.92); (0.277, 11.3); 

(-9.893, 9.88); (-19.553, 10.44) 

2 2 (-15.17, -1.305); (15.17, -1.305); (15.17, 1.305); (-15.17, 1.305) 

3 4 
(-13.147, -6.57); (4.463, -8.3); (8.683, -1.8); (8.683, 1.8); 

(4.463, 8.3); (-13.147, 6.57) 

4 4 
(-7.96, -1.123); (0, 0.067); (7.96, -1.123); (8.7, 0.127); 

(0, 1.927); (-8.7, 0.127) 

5 4 
(-8, -1.44); (-3.89, -0.79); (0, -1.44); (3.89, -0.79); 

(8, -1.44); (7, 2.24); (0, 1.42); (-7, 2.24) 

6 4 (-4.68, -3.295); (4.68, -3.295); (4.68, 3.295); (-4.68, 3.295) 

7 2 
(-15.743, -4.774); (-5.643, -4.074); (2.608, -5.504); 

(5.558, -2.624); (9.428, -3.094); (10.458, 3.756); (9.638, 8.156); 
(-16.303, 8.156) 

8 2 
(-16.194, -7.03); (8.796, -7.03); (10.856, -3.16); (10.026, 2.31); 

(5.286, 2.64); (3.006, 4.49); (-5.584, 3.56); (-16.194, 4.22) 

Stock 

Width: 49 
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Shapes2 

Objects: 

Total objects: 28 

No. Amount Vertices (x, y) 

1 4 
(-2, -1.5); (0, -2.5); (2, -1.5); (2, 1.5); 

(0, 2.5); (-2, 1.5) 

2 4 
(-1.25, -2.5); (1.75, -2.5); (0.75, -0.5); (1.75, 1.5); 
(1.75, 2.5); (-0.25, 2.5); (-2.25, 0.5); (-2.25, -1.5) 

3 4 
(-1, -2); (1, -2); (2, -1); (2, 1); 
(1, 2); (-1, 2); (-2, 1); (-2, -1) 

4 4 
(-2, -2.5); (0, -1.5); (2, -2.5); (1, -0.5); 

(2, 2.5); (0, 1.5); (-2, 2.5); (-1, 0.5) 

5 4 
(-2.714, -2.286); (2.286, -2.286); (2.286, 2.714); (1.286, 2.714); 

(0.286, 0.714); (-0.714, -0.286); (-2.714, -1.286) 

6 4 (0, -2); (2, 1); (-2, 1) 

7 4 (-1, -1); (1, -1); (1, 1); (-1, 1) 

Stock: 

Width: 15 
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A.3 Multi-polygon problem with several rectangular stocks 

Objects: 

The vertices of objects in Ext_Dagli are the same as vertices of objects in Dagli 

in A.2. The vertices of objects in Ext_Swim, Ext_Albano, and Ext_Shapes2 are the 

same as vertices of objects in Swim, Albano, and Shapes2 in A.2 respectively. 

Case Ext_Dagli Ext_Swim Ext_Albano Ext_Shapes2 

No. 
& 
amount 

No. 1: 5 
No. 2: 5 
No. 3: 5 
No. 4: 5 
No. 5: 5 
No. 6: 5 
No. 7: 5 
No. 8: 5 
No. 9: 5 
No. 10: 5 

No. 1: 3 
No. 2: 6 
No. 3: 6 
No. 4: 6 
No. 5: 6 
No. 6: 3 
No. 7: 3 
No. 8: 6 
No. 9: 6 
No. 10: 3 

No. 1: 2 
No. 2: 2 
No. 3: 4 
No. 4: 4 
No. 5: 4 
No. 6: 4 
No. 7: 2 
No. 8: 2 

No. 1: 5 
No. 2: 5 
No. 3: 5 
No. 4: 5 
No. 5: 5 
No. 6: 5 
No. 7: 5 

Total 50 48 24 35 

 

Stocks:

Case Ext_Dagli Ext_Swim Ext_Albano Ext_Shapes2 

No. 1 60×58.2 57.52×28 49×58.8 15×14.85 

No. 2 60×51 57.52×30 49×40 15×12.75 

No. 3 60× infinite 57.2× infinite 49× infinite 15× infinite 
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A.4 Multi-polygon problem with irregular stocks 

Objects: 

Objects of cases Ext_Dagli and Ext_Swim are used and the object information is 

the same with they are in A. 3. The cases are called Irr_Gagli and Irr_Swim here. 

Stocks

No. 1 2 3 

Description 
Vertices: 
(0, 0) 
(58.2, 0) 
(58.2, 60) 
(20, 60) 
(0 ,40) 
(10, 30) 

Rectangle 
50 × 51 
with flaw 
(20, 20) 
(30, 23) 
(22, 32) 

Regular 
60 × infinite 
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