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Abstract

Conventional free radica polymerization has been used to
synthesize side-chain copolymers with H-bonded/covalent bent-core
mesogen. The molar ratio«of resulting polymers exhibiting smectic layer
arrangement is characterized-by NMR-spectrascopy. The synthesis of the
desired bent-core complexes required two components ( H donor and H
acceptor ) to be mixed in precise equimolecular proportions in a common
solvent ( THF ) followed by removal of the solvent. Differential scanning
calorimetry, thermo-polarized optical microscopy, wide-angle X-ray
diffraction are used to characterized the liquid crystal phases of all
studied materials involving covalent low molecular weight bent-core
mesogens, acrylate monomers and side-chain H-bonded complexes. The
electro-optic measurement is carried out by applying a triangular wave
field. It is not until the constitutional ratio of H-bonded/covalent
bent-core mesogen in copolymer was tuned to 10/1 that the complex
exhibit ferroelectric ( FE ) property. Only one current peak can be clearly
identified within a modified triangular wave indicating the FE behavior

and Ps value is measured to be 50~130 nCcm™.
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