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Abstract

Carbon nanotubes (CNTs) have unique properties that make them suitable for use in
various applications, such as field emission displays, energy storage, chemical sensors, nano-
electronic devices, and composite‘materials. The /ayailable methods for synthesizing CNTs
include arc-discharging, lasem vaporizatien,sandschemical vapor deposition using transition
metals (e.g., Fe, Co, Ni) as catalysts:

In the studies reported in this Thesis; we used a bias-assisted microwave plasma-
enhanced chemical vapor=deposition (MPCVD). system«to synthesize various crystalline
carbon nanomaterials, including. aligned and interlaced €NTs, CNTs decorated with carbon
nanowalls (CNWs), and two- sand. three-dimensional CNWs on carbon cloth (CC) and
stainless-steel (SS) substrates. The nature of 'the resulting carbon structures varied depending
on the choice of the gaseous system (CH4/H,, CH4/CO,). The CH4/H, system at a ratio of 1:4
served as a precursor for the synthesis of pure CNTs on both the CC and SS substrates, with
Fe as the catalyst. Interlaced CNTs formed in the absence of an applied external bias; aligned
CNTs formed when applying an external bias of at least —150 V with respect to the upper
electrode in the MPCVD system. Interestingly, CNTs decorated with CNWs on their surfaces
were synthesized on the Fe-coated CC subjected to annealing under a N, atmosphere at 400
°C for 5 h; an analogous structure was formed on the SS substrate when introducing the
mixture of CH4 and CO, at a specific flow ratio of 3:2. CNTs decorated with CNWs were
obtained when applying a negative bias of —150 V, whereas CNW sheets and spherical CNWs
resulted at biases of 0 and —100 V, respectively. In the same CH4/CO; system, but without any
added catalyst, normal 2D CNWs were formed on the CC substrate through the collision of

carbon atoms. Using catalyst-free conditions, we turned these 2D structures into 3D
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constructions by stacking flower-like aggregates of CNWs onto the 2D sheets, which had
been functionalized under the influence of HNO; at ca. 90 °C for 6 h. The structures were
characterized using scanning electron microscopy (SEM), transmission electron microscopy
(TEM), Raman spectroscopy, and X-ray diffraction (XRD).

The second part of this Thesis describes the quantitative limitations of the number of
functional groups that could be formed on aligned CNTs after oxidizing them with various
concentrations of HNOs at 90 °C for various periods of time. Using 2 and 14 M HNO;3, the
maximum number of functional groups was obtained after 12 and 6 h, respectively, as
measured in terms of quantity of Pt particles. Subsequently, the different kinds of carbon
materials described in this Thesis were functionalized with 14 M HNO; over 6 h to test their
applicability for use as supercapacitors. The capacitance was increased dramatically to ca. 194
F/g after attaching the CNWs to the CNTs, almost doubling the value of the electrode formed
from pure CNTs (ca. 100 F/g). The 3D construction of CNWs exhibited an enormous increase
in capacitance to ca. 200 F/g—overfour times larger than that of the 2D sheets of the pure
CNWs—because of their optimal pore size distributiofi. (ca. 3 nm). For all of the electrodes
tested in this study, the supeteapacitor efficiency remained greater than 90% after 2000 cycles.
The unique structures of the CNT-CNF and 3D CNW electrodes may provide another route
for the application of carbon-based .materials to energy storage systems, especially

electrochemical capacitors.
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