國立交通大學環境工程研究所

碩士論文

奈米二氧化鈦覆載於銀擔體之複合物光觸媒

對丙酮去除處理之研究

Study of Titanium Dioxide/Silver (TiO₂/Ag) Composites Photocatalyst for Acetone Removal

研究生 : 巫菁芳

指導教授:白曛綾 教授

林家欣 博士

中華民國九十六年八月

奈米二氧化鈦覆載於銀擔體之複合物光觸媒

對丙酮去除處理之研究

Study of of Titanium Dioxide/Silver (TiO₂/Ag) Composites Photocatalyst for Acetone Removal

研究生:巫菁芳

指導教授:白曛綾

林家欣

Student: Ching-Fang Wu Advisor: Hsunling Bai Chia-Hsin Lin

國立交通大學

環境工程研究所

Submitted to Institute of Environmental Engineering College of Engineering National Chiao Tung University In Partial Fulfillment of the Requirements For the Degree of Master

In

Environmental Engineering August 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年

致謝

在碩士兩年的研究學習期間,特別要感謝我的指導老師白曛綾教 授及林家欣博士,在教授啟發式的引導及學長極有耐心並費心的教導 下,讓我對一個原本完全陌生的領域到了解,並培養獨立思考與邏輯 判斷的能力,運用具科學創造性及建設性的方式解決問題;除了學習 專業知識外,還有生活上的諸多獲益。在此亦要感謝口試委員張木彬 及張淑閔教授對本研究提出的諸多建議,使本論文能夠更完整而嚴 i 謹。本論文能順利完成多虧有家欣學長,除了提供實驗所需經費外, 並協助我度過無數個瓶頸,且不斷給我加油打氣,在此由衷表達感謝 之意。另外還要感謝實驗室的前輩建志、育旨、Karthik、錦德、郁茗、 文智學長們與怡君學姐傳承許多寶貴的研究經驗於後進,還有能互相 討論學術研究並分享建議的彥暉、成光及學弟們奕岑.學詩.亮毅,在 白 Group 裡有這麼多優秀的好夥伴,讓我與有榮焉,也因為有你們, 研究生活不孤單。在生活上與研究過程中互相鼓勵的好同學淑芬、昭 瑩、詔棻、彦汝、敏筠、品欣、孝綸、文善、承翰、傑耀、裕勝,我 很幸運能夠和你們這些好同伴們一起體會研究生活的喜怒哀樂,能認 識你們真好。還有好朋友與老同學小燕、錦旻、宴會、慧芳、佑慈、 玉倩、右儀、慧萍、伶榕、玉茹、智元、益豪、正昇、信賢、鑫翔與 奕儒、芝帆及大學室友涵錚、楓媚、怡欣平日的闢心,有你們的陪伴 與激勵,我才能生活如此充實愉悅。這些年來多虧有母親無微不至的 照料與爸對我健康的關注,姐旻書的開導及體諒、包容我的任性,哥 俊誠的愛護,讓我疲憊時心靈有所歸屬,很開心有你們這樣棒的家 人。最後,謹以此文獻給我摯愛的雙親及兄姊和所有關心我的人,謝 谢你們的支持,我真的十分幸福,因為有你們的存在才有現在的我。 著芳謹誌於交通大學環境工程研究所 民國九十六年八月

奈米二氧化鈦覆載於銀擔體之複合物光觸媒

對丙酮去除處理之研究

研究生:巫菁芳 指導教授:白曛綾 林家欣

國立交通大學環境工程研究所碩士班

摘要

目前奈米二氧化鈦光觸媒應用已相當廣泛,但奈米粉體之間因為 容易發生團聚的現象,而降低奈米二氧化鈦的效能。由於奈米粉體分 散的好壞為影響奈米粉體效能的主要因子之一,為了改善奈米粉體團 聚的問題,一般是藉由添加界面活性劑使奈米粉體能均勻分散,但界 面活性劑多為有機物,在光照射下容易發生劣化現象,造成奈米粉體 品質降低,因此本實驗藉由調整製備溶液的酸鹼度改變顆粒表面電 性,利用不同顆粒其本身的表面電性差異特性,使二氧化鈦與銀有良 好的結合及分散性。實驗結果顯示將配製溶液控制在pH5.8 的中性條 件下,TiO2與藥品級Ag恰為介達電位差異最大時,可獲得有高分散性 之TiO2/Ag複合物光觸媒。本研究以丙酮當作汙染物測試標的,以連 續式反應器進行實驗測試之結果亦顯示,在TiO2、Ag顆粒表面電性相 異環境製備下,所製備的高分散性TiO2/Ag複合物光觸媒有極佳的丙 酮去除效率。

關鍵字:光觸媒、二氧化鈦、分散性、奈米粉體團聚

Study of Titanium Dioxide/Silver (TiO2/Ag) CompositesPhotocatalyst for Acetone RemovalStudent: Ching-Fang WuAdvisor: Dr. Hsunling Bai,

Dr. Chia-Hsin Lin

Institute of Environmental Engineering National Chiao Tung University

ABSTRACT

Titanium dioxide has been extensively used as photocatalyst in nowadays. But aggregation between nanoparticles results in a lower photoactivity. Generally, surfactants are added to make nanoparticles disperse well. However, surfactants belong to organic matters, it could be decomposed by illumination of sunlight or UV lamp.

This study focuses on the relationship between pH status and surface charges of particles, and attempt to synthesize well-bonding composites by means of different surface charges between TiO₂ and Ag carrier. The experiments showed that TiO₂ can't adsorb on the surface of Ag carrier in both acidic and alkaline solution due to the same surface charges. A highly-dispersed TiO₂/Ag composites are obtained in a neutral solution (pH5.8) where zeta potential of TiO₂ and Ag carrier is +27, -10mV, respectively. Strong electric attraction between TiO₂ and Ag carrier in neutral solution spontaneously results in a highly-dispersed TiO₂/Ag composite, and it is found excellent for the removal of acetone due to chemical binding Ti-O-Ag.

Keywords: photocatalyst, dispersion, nanoparticles aggregation

摘要	I
表目錄	V
圖目錄	VI
第一章 前言	1
1.1 研究背景	1
1.2 研究目的	2
第二章 文獻回顧	3
2.1 光觸媒二氧化鈦基本特性	3
2.2 光觸媒二氧化鈦光催化之機制與研究	5
2.2.1 光催化反應機制	5
2.2.2 光催化VOCs之研究	6
2.2.3 光催化之反應動力	8
2.2.4 光觸媒合成於不同基材	10
2.3 奈米粉體的分散及顆粒表面帶電特性與pll之影響	12
2.3.1 膠體團聚與顆粒分子間作用力之關係	12
2.3.2 顆粒表面帶電特性與pH之影響	13
2.4 光電產業有機污染物之廢氣	17
第三章 實驗方法與步驟	19
3.1 觸媒製備方法	19

3.1.1 自製銀擔體之製備方法及流程	19
3.1.2 複合樣品製備方法	20
3.2 實驗藥品及器材設備	22
3.3 實驗架構	24
3.4 樣品分析儀器	26
第四章 實驗結果與討論	29
4.1 製備溶液酸鹼度對複合物光觸媒物化特性之影響	29
4.1.1 TiO ₂ /Ag複合物光觸媒之表面電性分析	29
4.1.2 複合樣品之表面型態	34
4.1.3 複合樣品之XRD結構分析	40
4.1.4 複合樣品之XPS特性分析	42
4.2 複合樣品觸媒光催化分解丙酮效能測試	46
4.2.1 光催化空白效能基本測試	46
4.2.2 最佳光觸媒含量之效能與分散評估	47
4.2.3 複合物光觸媒去除有機物丙酮之效能	51
4.3 影響金屬銀複合光觸媒材料反應速率之探討	54
4.4 以金屬銅為對照擔體之複合物光觸媒測試	57
第五章 結論與建議	61
5.1 結論	61
5.2 建議	62
第六章 參考文獻	63

表目錄

表 2-1:TiO2對丙酮之吸附量	7
表 2-2:各級基本反應之速率方程式,積分形式及半衰期	8
表 3-1:主要的實驗參數條件	24
表 4-1:TiO ₂ 、Ag[s]、Ag[m]的等電位點	35
表 4-2:XRD各樣品波峰訊號位置整理	40
表 4-3:不同酸鹼溶液製備樣品TiO ₂ /Ag[m]之反應速率常數	55
表 4-4:不同酸鹼溶液製備樣品TiO ₂ /Ag[m]之初始反應速率	56
表 4-5:不同擔體TiO ₂ /Ag與TiO ₂ /Cu複合樣品之丙酮效率	59

圖目錄

圖 2-1:TiO ₆ 八面體結構 (a) 金紅石 (b) 銳鈦礦 (c) 板鈦礦	3
圖 2-2:金紅石 與 銳鈦礦 Ti-O-Ti 鍵結角度	4
圖 2-3:金紅石和銳鈦礦之晶胞結構示意圖	4
圖 2-4:光觸媒催化反應機制圖	6
圖 2-5:銀顆粒表面吸附OH	14
圖 2-6:酸鹼pH值相對之電位值	15
圖 2-7: 電雙層示意圖	16
圖 3-1:TiO ₂ /Ag複合物光觸媒製備流程圖	21
圖 3-2:實驗系統架構示意圖	25
圖 4-1:以硝酸與氨水控制不同pH值對介達電位的影響	31
圖 4-2:不同尺寸Ag15µm及 3µm之介達電位的影響	33
圖 4-3: 自製銀Ag[s]之粒徑分布	33
圖 4-4:在不同pH下之Ag[s]與TiO2懸浮液	35
圖 4-5:在不同pH下之(a) TiO2懸浮液(b) Ag[m]與TiO2混合液	35
圖 4-6: 樣品溶液澄清度	36
圖 4-7:在不同酸鹼製備溶液下對TiO ₂ /Ag[s]結合之影響	38
圖 4-8:不同pH值對TiO2/Ag[m]結合之影響	39
圖 4-9:TiO ₂ /Ag[m]光觸媒複合材料XRD特性分析	41

圖 4-10:酸性複合光觸媒材料 ESCA 全譜圖	43
圖 4-11:中性複合光觸媒材料 ESCA 全譜圖	43
圖 4-12:鹼性複合光觸媒材料ESCA全譜圖	44
圖 4-13:TiO ₂ /Ag[m]之Ti 2p _{3/2} ESCA特性分析	44
圖 4-14:TiO ₂ /Ag[m]之Ag 3d _{5/2} ESCA特性分析	45
圖 4-15:光降解丙酮之空白效率測試	46
圖 4-16(a):添加不同理論重量比例之TiO2對效率的影響	48
圖 4-16(b):添加不同理論重量比例之TiO2的經濟效應	49
圖 4-16(c):不同承載TiO2比例重量之UV-vis光譜	49
圖 4-16(d):固定pH值下添加不同重量比例之TiO2對樣品的影響	50
圖 4-17:不同酸鹼溶液製備樣品TiO ₂ /Ag[s]之丙酮去除效率	53
圖 4-18:控制製備之酸鹼條件對TiO ₂ /Ag[m]效率的影響	53
圖 4-19: 複合物光觸媒光催化丙酮之動力分析	55
圖 4-20:不同初始濃度對丙酮效率的影響	56
圖 4-21: TiO ₂ /Cu複合樣品之處理效率	57
圖 4-22: TiO ₂ 、Cu在不同pH值的介達電位	58
圖 4-23:不同pH值對 10%TiO ₂ /Cu結合之影響	60

第一章 前言

1.1 研究背景

光觸媒發展自 1972 年Akira Fujishima等人發現二氧化鈦在光照 下會出現催化之反應,其先是應用於光能之轉換儲存(Fujishima et al., 2000),後續發展由於TiO2極高的光催化活性和超強著色力及遮蓋力 而在各行各業扮演重要的角色,近代更被廣泛應用於環境觸媒材料中 (Hoffmann et al.,1995)。

光觸媒的材料眾多,其中包括TiO₂、ZnO、SnO₂、ZrO₂等氧化物 及CdS、ZnS等硫化物,而其中以TiO₂應用最廣,因其包含光照後不 發生光腐蝕、耐酸鹼性好、化學穩定度高、來源豐富價格低廉、可在 室溫常壓下操作、能隙較大,產生光生電子和空穴的電位高,氧化還 原能力強等優勢, TiO₂在經紫外光照射後產生之電子電洞對可與光 觸媒表面之氧與水反應生成氫氧自由基與負氧自由基,當有機污染物 質遇上氫氧自由基即會被分解成無害的水及二氧化碳。因其對環境生 物無毒性,因此被廣為利用於除霧、殺菌除臭、去除NO_X或有機物(Zuo et al., 2006; Kim et al., 2006; Yu et al., 2007)。

現今奈米二氧化鈦光觸媒應用已相當廣泛,但因奈米粉體尺寸過 小,奈米粉體之間因凡德瓦力而容易發生團聚的現象,而降低奈米二 氧化鈦的效能。影響奈米粉體光催化效率的因素有粒徑大小、比表面 積、光照強度、停留時間等。當奈米粉體發生團聚現象,會導致光觸 媒表面與汙染物接觸的機會減少而降低活性,因此奈米粉體分散的好 壞為影響效率的主要因子之一。奈米粉體自身的團聚及粉體與覆載基 體的結合力較低等問題極大程度限制了奈米粉體的應用,為了改善奈 米粉體團聚的問題,一般是藉由添加界面活性劑或分散劑,使奈米粉 體能均勻分散,但其添加劑多為有機物,除了在光照射下會產生劣化 現象外,且於製備過程中需經高溫鍛燒,亦會造成團聚現象發生,因 此本研究探討將二氧化鈦均勻披覆於銀擔體上,避免團聚現象發生而 提高奈米光觸媒之效能,且製備為藉由控制溶液酸鹼值,在低溫環境 條件下操作,無需經過鍛燒的高溫加熱程序,除了可節省能源,亦可 避免因鍛燒而造成顆粒之團聚現象發生。

1.2 研究目的

奈米粉體之間因為容易發生團聚的現象,而降低奈米二氧化鈦的 效能,因此本研究探討提高奈米粉體的分散性以增進奈米光觸媒之效 能。研究將二氧化鈦與銀以液相法製備成複合物,除了可利用銀為電 子侷限中心,使電子電洞不易再結合而提高活性;將二氧化鈦均勻披 覆於銀擔體上,可避免團聚現象發生以提高處理效能,並探討在不同 停留時間與初始濃度下之效能變化,本研究之目的條列說明如下:

- 探討研究利用改變顆粒表面電性的概念製作高分散性TiO₂/Ag複 合物,以提高複合物的光催化效率。
- 2. 探討不同操作參數對高分散性TiO₂/Ag複合物之動力模式。
- 3. 延伸改變顆粒表面電性的概念至其他金屬載體以探討其應用性。

第二章 文獻回顧

2.1 光觸媒二氧化鈦基本特性

二氧化鈦屬於一種n型半導體,分別具有銳鈦礦(Anatase)、金紅 石(Rutile)及板鈦礦 (Brookite)三種結晶結構,TiO2三種晶體組成結構 的基本單位皆為TiO6八面體,如圖 2-1,其區別在於是由TiO6八面體 通過共用頂點或是共邊組成骨架;金紅石的結構是建立在O的最密堆 積上,但是其晶體結構不是一種最密堆積,其晶型中,氧離子略成六 面堆積晶格;板鈦礦結構是由O最密堆積而成的;金紅石和板鈦礦是 晶格稍有畸變的八面體,是由TiO6八面體共頂點且共邊組成。銳鈦礦 則是由TiO6八面體共邊組成,屬於CFC晶格。

圖 2-1:TiO₆八面體結構 (a)金紅石 (b)銳鈦礦 (c)板鈦礦

金紅石與銳鈦礦結構中的氧有三個共平面相鄰鈦離子,且在 Rutile晶型中,Ti-O-Ti角度約成120度,在Anatase晶型中則是一個 Ti-O-Ti為180度,另外兩個呈90度,如圖2-2所示,此鍵結角度之 不同造成原子堆疊軌域的不同,在Anatase晶型裡形成較寬的d band, 使電子的有效質量較小,遷移率較大,因此一般認為只有銳鈦礦結構 具有光觸媒特性,然而也有部分學者(Ohno et al.,2002)提出掺雜些微 金紅石的銳鈦礦其光催化特性會更佳,尤其是對需強氧化力的反應更 顯著,因金紅石比銳鈦礦易吸收光而生成電子電洞,其電洞有很強的 氧化力。銳鈦礦和金紅石光催化活性不同主要是因為結晶型態的不 同,銳鈦礦晶體暴露在表面的(crystal step)結晶密度較高,此時晶格 上的原子較不穩定,能產生較多的活性位置,此可能為銳鈦礦光學活 性較高的的原因之一。另一種可能為因結晶型態不同,使銳鈦礦對氧 物種(O₂、O₂⁻、O⁻)的吸脫附能力優於金紅石,可減低電子電洞對的 再結合率,而有效提升光催化活性。

圖 2-3: 金紅石和銳鈦礦之晶胞結構示意圖(Fujishima et al., 1999)

2.2 光觸媒二氧化鈦光催化之機制與研究

2.2.1 光催化反應機制

光觸媒之催化反應機制如圖 2-4,當以大於半導體能隙的光源照 射光觸媒後,其電子會由價帶躍遷至傳導帶,因而產生電子-電洞對。 當半導體受光激發而產生電子躍遷所需要之最短波長為:

$$\lambda = \frac{hc}{E_{g}}$$

其中 λ 為入射光波長(nm)、h為Planck常數(= 6.63×10^{-34} J·s)、c 為光速(=3×10⁸ m/s)、Eg為能帶間隙能量(eV)。以二氧化鈦為例,經 紫外光波長小於 387nm的光照後,提供足夠能量滿足二氧化鈦能帶間 隙值 3.2eV, 使觸媒表面的電子吸收足夠能量而脫離, 此時二氧化鈦 的電子便會從價帶(Valence Band)躍遷到導帶(Conduct Band),而在電 子脫離的位置便形成帶正電的電洞(h⁺),電洞會將觸媒附近水分子游 離出的氫氧基(OH)氧化(即奪取其電子),使其成為活性極大的氫氧自 由基(OH radical);在光觸媒表面形成之負電電子(e)與吸附於觸媒表 面之氧結合產生負氧離子(O2),此兩者在化學上都是極不穩定的物質 而具有強氧化還原性,一般的污染物或病源體多半是碳水化合物,故 當碳氫化合物的有機物接觸到光觸媒表面時,一旦有機物質遇上氫氧 自由基,便會將電子奪回而分別與負氧及氫氧自由基結合,有機物分 子便會因鍵結的破壞而分解成無害的水及二氧化碳,因此達到除污及 滅菌的效果。在此過程中產生的電子電洞對極易再結合,因而一般最 常見的有添加貴重金屬或較低能階的半導體、或是摻雜氮氣的研究, 其目的皆是要抑制雷子雷洞對的再結合,並且增加光吸收度、縮小能 带,以提高去除污染物的效率。

圖 2-4:光觸媒催化反應機制圖

2.2.2 光催化 VOCs 之研究

根據美國環保署EPA調查,空氣污染物中揮發性有機物(Volatile organic compounds, VOCs)即占 70%,目前已從空氣中鑑定出的有機 物質達數百種,其中有許多物質對人體有害,甚至有些是致癌物 (Armor, 1992)。光觸媒已經被證實可以去除多種具臭味之有機物質, Alberici and Jardim(1997)以P25-TiO₂光觸媒對 17 種常見VOCs進行處 理,其中包含室內外常見之空氣污染物如三氯乙烯、甲苯、甲醇、丙酮、乙醚等,當操作條件為流量 200ml min⁻¹,溼度 23%,氧含量 21%下,以 365nm對初始濃度為 200ppmv之VOCs進行處理,其降解效率皆可達百分之八、九十,對部份VOCs甚至幾乎可達百分之百。

Hager and Bauer(1999)與Zhao and Yang (2003)在研究以氣-固之異 相光觸媒UV/TiO2淨化空氣裡的有機物中,皆提及氧化程序影響降解 效率之控制因子包含有氣體流速、VOCs初始濃度、相對溼度、溫度 及光強度。當在室溫 25℃下,操作條件為相對的低流速及低初始濃 度時,會有較高的降解轉換率;Phillips and Raupp(1992)研究中亦提 及含水量對效率之影響較複雜,因水是形成·OH的主要來源,適量的 水分子於觸媒表面對其吸脫附與消耗間之平衡有助於反應,但含水量 過多會抑制VOCs的礦化作用,因為水分子會與VOCs對TiO2表面的活 性位置產生競爭吸附作用,而抑制光氧化作用進行。

Vorontsov et al.(1997)在環狀反應器中進行 VOCs 之異相光催化氧 化反應的研究結果指出,若停留時間超過一分鐘,丙酮將完成礦化形 成二氧化碳與水,其反應式如下:

 $CH_3COCH_3 + 4O_2 \rightarrow 3CO_2 + 3H_2O$

	Peral &Ollis,1992	Raupp&Junio,1993	Alberici&Jardim,1997
Organic adsorbed/mass catalyst(mol/g TiO ₂)	3.6*10 ⁻⁵	$1.7*10^{-4}$	7.2*10 ⁻⁵
catalyst specific surface area(m ² /g)	50	78	50
Organic adsorbed/unit surface area(molecules/cm ²)	4.3*10 ¹³	$1.4*10^{14}$	8.6*10 ¹³

表 2-1:TiO2對丙酮之吸附量

2.2.3 光催化之反應動力

常見之光催化反應動力式如表 2-2 所示,其特性分述如下:

表 2-2:各級基本反應之速率方程式,積分形式及半衰期(林,1988)

	,	· · · · · · · · · · · · · · · · · · ·	·····	
反應	級數	速率方程式	積 分 形 式	
不可逆反应				
A →C	0	$-\frac{dC_A}{dt} = k$	$C_{A0} - C_A = kt$	C _{A0} /2 k
$A \rightarrow C$	1	$-\frac{dC_A}{dt} = kC_A$	$-\ln C_A/C_{A0} = kt$	(ln 2)/k
A+A→ 生成物	2	$-\frac{dC_A}{dt} = kC_A^2$	$\frac{1}{C_A} - \frac{1}{C_{A0}} = kt$	1/kC _{A0}
<i>A</i> + <i>B</i> → 生成物	2	$-\frac{dC_A}{dt} = kC_A C_B$	$\ln \frac{C_B}{MC_A} = C_{A0} (M-1) kt \cdot M \neq 1$ $\frac{C_{A0} - C_A}{C_A} = C_{A0} kt \cdot M = 1$	$\frac{1}{kC_{A0}(M-1)} \ln \frac{2M-1}{M}, M \neq 1$ 1/kC _{A0} , ,M \ 1

and the second

零級不可逆反應(irreversible zero order reaction)即為反應速率不 隨反應物濃度而變,發生零級情況有兩種,其一為反應本身與濃度無 關,例如光化學反應,其反應速率只和光照強度有關;另一種為反應 物濃度極高,反應所消耗的量對其濃度之影響極微,例如NO氧化成 NO2有過量之O2存在,因此反應對O2是零級的。

零級反應式: -dC/dt=k

其中C為濃度,t為反應時間,k為速率常數;由實驗觀點可利用k 計算半衰期(half-life time),t_{1/2},即反應物由初始濃度達原來濃度一半 所需要的時間。

一級不可逆反應(irreversible first order reaction)即為反應速率與 隨時間變化之反應物濃度成正比,光觸媒進行催化分解污染物即為典 型異相催化反應,常遵循一階動力學(Pseudo-first order kinetics),其 半衰期為t_{1/2} = ln2/k,可知一級反應之半衰期不受最初濃度之影響。

一級反應式: -dC/dt = kC

對 VOCs 之異相光催化降解反應亦多遵循一階反應動力模式,其 反應動力多以 Langmuir-Hinshelwood (L-H model)方程式模擬

 $r = -\frac{kKC}{1+KC}$

其中 k 為速率常數, K 為吸附常數, C 為 VOC 濃度。基於 L-H 動力模式,降解率同時與 K 和 k 兩者有關,但吸附常數(K)大並不表 示總是會得到高降解率(Matthews, 1987; Sang and Sung, 2002)。

二級不可逆反應(irreversible second order reaction)即為反應速率 與隨時間變化之反應物濃度成二階之正相關,其二級反應有兩種類型 ① 當反應物為相同物種進行反應時

 $A + A \rightarrow product$

其速率方程式為: $-dC/dt = kC^2$

②反應物為A、B兩種不同物質同時進行反應,其物種消失反應速率 相等,即在任何時間t內反應掉相同數量,例如在光催化中若考慮溼 度對反應速率之影響時,水氣之多寡除了會佔據TiO2反應活性位置, 易會與OH·ads之生成速率有關。

 $A + B \rightarrow product$

其速率方程式為:- $dC_A/dt = -dC_B/dt = k C_A C_B$

2.2.4 光觸媒合成於不同基材

在光觸媒奈米粒子的應用上,固定與分散於基材上成為影響光催 化反應中重要的問題,若因操作條件造成奈米粒子的團聚,將會影響 光催化的分解效能。

光觸媒固定化技術主要取決於接著劑或載體種類,常見接著劑為 氟素樹脂、矽膠(Silica sol)、Polysiloxane or Silicone Alkoxide,此類技 術為利用耐光觸媒作用之黏著性材料與奈米TiO2混合製成塗料使 用,以增加奈米TiO2材料鍍膜附著性及固定性,但經所謂黏著劑材料 混合包覆後,光觸媒鍍膜功效便大為喪失。TiO2載體種類則依照應用 上的不同而與不同擔體複合在一起,其中包含石英玻璃(SiO2) (Herrmann et al.,1997;Kamegawa et al.,2006)、陶瓷(Sen et al.,2005)、沸 石(Hashimoto et al.,2001)、活性碳(Cordero et al.,2007)、金屬鋁(Kwon et al.,2004),最普遍應用的材料為石英玻璃,因其取得方便,容易做實 驗測試,且日常應用最廣泛;利用高比表面積、高吸附量之沸石或活 性碳等多孔性材料與TiO2進行複合,主要是為了提高污染物的吸附量 而增加去除效率,其雖然價格便宜,但是不耐高溫。

將TiO₂披覆於擔體上最常被使用的方式包含有噴霧法(spray)、旋轉 塗敷法(spin coating)、含浸法(Dip coating)(Herrmann et al.,1997)、液 相沉積法(liquid phase deposition,LPD)(Yu et al.,2005)、溶膠-凝膠法 (Sol-gel)(Moonsiri et al.,2004;Sen et al.,2005),多為透過機械力,使 其披覆於擔體上,同時輔以加熱提高溫度,增強其結合之附著力。其 中以溶膠-凝膠法最被廣為利用,因其易與其他物質摻雜,普適性高、 易於塗敷,但此法需較高之鍛燒溫度,且於乾燥鍛燒凝膠過程中體積 收縮大,易造成奈米TiO₂顆粒間團聚、顆粒尺寸分布寬,而無法有特 定的結構組成。

Cordero et al.(2007)研究將TiO₂/AC放置於充滿CO₂與N₂之不同鍛 燒溫度的氣氛中,以增強其結合力,因產生化學變化,導致樣品產生 表面鹼性官能基;當鍛燒溫度越高,所測得之比表面積會較高,且pH_{zpc} 值偏高;其SEM分析結果顯示,當表面pH_{zpc}越鹼,TiO₂分散越好;相 反地,pH_{zpc}越酸,則TiO₂發生團聚,因表面大量nano-TiO₂團聚而造 成活性降低,文獻中推測其團聚取決於擔體表面pH值,且提出控制 擔體表面pH可自發產生高分散之TiO₂-AC,輔以提升污染物由活性碳 擴散至TiO₂表面,而加強污染物之光降解。

銀之氧化還原電位高,不易氧化變質,且金屬中銀之抗菌效果最 佳,日常應用範圍亦最廣,當與TiO2複合無論照光與否皆可殺菌,而 達到全時殺菌特性。許多文獻皆是利用煅燒,去除堵塞降低活性的中 間產物來恢復光觸媒活性,於Zhang and Yu(2005)提到當銀照光後可 再生還原毒化之TiO2,且銀與TiO2之複合物相較於其他金屬皆有極佳 之污染物去除效率。

2.3 奈米粉體的分散及顆粒表面帶電特性與 pH 之影響

2.3.1 膠體團聚與顆粒分子間作用力之關係

引起膠粒聚集之主要原因為受到凡得瓦爾力的影響,為抵消此種 吸引力並促進膠體溶液的穩定性,則必須考慮膠體表面帶電所產生之 靜電排斥力;當吸引力大於排斥力時,則膠體粒子傾向於聚集,反之 則傾向於分散。有關膠體分散的理論中,應用最廣為DLVO模型, 其模式為 Derjarguin, Landau, Verwey 與 Overbeek 四位物理化學家所 提出, DLVO 理論主要的內容為描述膠體之間作用力與其間距離變化 的關係,以膠體顆粒間之凡得瓦爾力及靜電力為基礎,當顆粒受到凡 得瓦爾力的影響,使分散在液體中之膠體粒子發生碰撞,而膠體溶液 最後是否穩定 則視彼此間的交互作用力而定(Hunter, 1989)。而理論 上若是膠粒的尺寸愈來愈小時,則膠粒的布朗運動動亦會愈明顯;因 此膠粒在溶液中的運動,受到 DLVO 作用力及布朗運動的影響,會

由於奈米粉體本身具有較大的比表面積和表面能,而粉體顆粒具 有互相團聚來降低其表面能的驅勢,因此粉體顆粒多是以團聚體的形 式存在。粉末團聚可分為軟團聚與硬團聚,主要是皆是受到凡得瓦力 與庫侖力作用產生,另外硬團聚還多包括化學鍵作用,其形成機制主 要推測有晶體理論、毛細管吸附理論、氫鍵作用理論、化學作用理論 (Shaw,1992)。因奈米粒子具有很高的活性與凡得瓦爾力,使得奈米粒 子容易發生團聚的現象,因此通常是藉由添加界面活性劑,使粒子能 夠均勻分散,以提高觸媒比表面積 (Ding et al.,2000; Zainal and Lee, 2006)。一般皆是將奈米粉體均勻分散於液相介質中製成漿料再進行

塗敷,而傳統解決奈米粉體團聚方法為添加界面活性劑或二氧化鈦粉 末的分散劑,如陰離子分散劑(聚羧酸鈉鹽)、乙二醇、聚丙烯酸鈉、 SDS(十二烷基磺酸鈉),其目的皆是針對團聚產生機制中之原因,形 成空間位阻與靜電穩定,以添加劑吸附或降低表面張力,減少膠團化 之作用產生,但所使用之添加劑多為有機物,在光照射下容易產生劣 化現象。

2.3.2 顆粒表面帶電特性與 pH 之影響

影響膠粒帶電的因素包含帶電粒子的大小、形狀、粒子表面的電 荷數目、溶劑中電解質的種類、離子強度及pH值、溫度和所加的電 壓等。顆粒表面帶電,會使粒子間產生靜電斥力,此外還存在凡得瓦 爾作用力,有些物質如銀、銅 或TiO2在水中不能解離,但可從溶液 中吸附H⁺、OHT或其他離子,而使顆粒表面帶有電荷。

當水在溶液中離子化成H⁺ 及OH⁻,這兩個相反電荷共存於溶液中 會形成極性結構,如下式

Negative end -^{0^{+}}-H+ Positive end

第47號元素銀的電子軌域為³⁶[Kr]4d¹⁰5s¹,金屬銀表面吸附的機制 為靠銀軌域中的電子 5s¹吸引溶液中的氫基部份,以吸附羥基(OH⁻)為 例,當OH⁻靠近中性的銀原子,OH⁻的正電荷端H⁺會被吸引至原子表 面,而負電荷端O⁻則突出於溶液中,因而使銀顆粒帶負電(Key and Maass, 2001),如圖 2-5 所示。

圖 2-5: 銀顆粒表面吸附OH[®] (Key and Maass,2001)

對金屬氧化物而言,許多顆粒在水溶液中皆帶有表面氫氧基 (surface hydroxyl group),這些表層之金屬氫氧化物具有布朗斯特 (Brönst)兩親性質,因此會隨著水溶液系統之酸鹼性 pH 值的不同, 使粒子表面帶有正電或負電荷,如下式所列:

 $M-OH+OH^- \rightarrow M-O^- + H_2O$

 $M-OH + H^+ \rightarrow M-OH_2^+$

顆粒與水溶液進行質子交換反應後,在酸性溶液中因質子化而帶 正電荷,在鹼性溶液中則因去質子化而帶負電荷。其分界點在於固體 的等電位點(isoelectric point)之水溶液 pH 值。pH 值一般定義為溶液 中氫離子活性(α)的負對數值,如下式所列:

 $pH = -\log \alpha = -\log \gamma_{H}^{+}[H^{+}] = -\log [H^{+}]$

[H⁺] 為氫離子濃度,γ_H⁺為氫離子的活性係數,在純水及稀薄溶液 中,氫離子活性可視為與氫離子濃度相同,故可忽略γ_H⁺,圖 2-6 為不 同pH值下相對應之電位值。

圖 2-6:酸鹼 pH 值相對之電位值

固體之表面電荷經對應電荷平衡後,形成一「電雙層」(electrical double layer)。廣義而言,電雙層乃由一吸附層(又稱Stern layer,緊 鄰於表面),及擴散層(diffusion layer)組成,如圖 2-7 所示。在電雙層 理論中,表面電位雖然無法實際測得,但是吸附層及擴散層之剪切面 電位可由介達電位(zeta potential)推估出來。因此,介達電位成為顆 粒之穩定性及電泳速度(electrophoretic mobility)之重要指標。一般而 言,高穩定性之顆粒具有高介達電位值。所謂等電位點為膠體之表面 電荷(pHzpc,由滴定法測定)或剪力面位置(pHiep,由介達電位儀測定) 電荷為零之pH值;當剪力面無任何離子跑入,pHzpc(zero point charge)= pHiep(isoelectric point),pHzpc越高,表示顆粒表面有越多的鹼性官能 基(basic functional groups),介達電位接近零時,固體顆粒與水分子間 的鍵結能達到最低點(Benjamin, 2002)。

2.4 光電產業有機污染物之廢氣

台灣高科技產業近幾年來蓬勃發展,新竹科學工業園區陸續成立 許多積體電路製造業及光電產業,根據新竹科學園區歷年來,工廠採 樣檢測的結果顯示(行政院環保署,2002;張書豪與張木彬,1999),積 體電路產業及光電產業各工廠所排放之主要空氣污染物成份,大多以 異丙醇及丙酮為主,其用途主要為光蝕刻、顯影過程中所使用之光阻 劑及去光阻劑,或是清洗基板及進行化學處理的溶劑(蘇茂豐, 2003),此兩者汙染物對於排放總量的貢獻程度大約在 50~80%左右, 其餘依各工廠製程不同而有落差,其中常見之化學品如 2-丁酮、甲 苯、二甲苯、乙酸丁酯、propytlene glycol monomethylethy acetate(PGMEA)及三氯乙烷等。此外,自等(2001)報告中亦指出丙酮 佔半導體晶圓廠 VOCs 總排放量的最大比例。

目前實場常見之應用技術包括吸收法、吸附法、沸石吸附濃縮轉 輪焚化系統、冷凝法及生物處理法等。依 VOCs 產生的濃度不同,選 擇合適之處理技術,其中沸石吸附濃縮轉輪焚化系統是國內半導體業 界最廣為採用,一般光電產業 VOCs 經過處理前之濃度範圍約在 100~ 700ppm 之間(林等, 2004)。廢氣尾端靠沸石吸附或者是熱燃燒方式進 行處理,皆須透過高溫燃燒程序,相當耗費能量,且沸石經過高溫脫 附再生後其效率會不斷衰退,而須定期更換,後續處理費時,因此若 能在廢氣排放時便將其進行處理,將可提升處理績效。

根據環保署「光電材料及元件製造業空氣污染管制及排放標準草案」(2005),光電業產生之空氣污染物應經密閉排氣系統收集導入污染防制設備,並處理至符合下表規定後始得排放:

空氣污染物	排放標準		
揮發性有機物	新設	處理效率應達九十%或管道排放量O、二公斤/	
		小時以下(以甲烷為計算基準)。	
	町ち	處理效率應達八十%或管道排放量〇、二公斤/	
	成仔	小時以下(以甲烷為計算基準)。	

污染防制設備處理效率(簡稱處理效率):指空氣污染物經防制設備處理後,其排放量削減百分比,其計算公式如下:

處理效率=(E-Eo)/Ex100%;單位為%。

E:經密閉排氣系統進入污染防制設備前之氣狀污染物質量流率,單位為 kg/hr。Eo(排放量):經污染防制設備後逕排大氣之氣狀污染物質量流率,單位為 kg/hr。

由於針對光電廠有機物質污染排放處理效率需為80~90%以上,根 據Zhang et al.(2003)研究中以P-25 TiO2對處理丙酮在照光1小時後效 率只有65%,但其所製備之Ag/TiO2對處理丙酮在照光1小時後最佳 效率可達90%以上,很明顯因爲銀含量多寡而影響樣品活性,可知這 樣的組合有利於丙酮去除。丙酮為積體電路製造業、光電產業排放量 最大物種之一,因此本研究選擇丙酮作為本研究之測試污染物,以二 氧化鈦與銀製備成之複合材料,針對揮發性有機物丙酮進行處理。

第三章 實驗方法與步驟

3.1 觸媒製備方法

3.1.1 自製銀擔體之製備方法及流程

本研究所製備之TiO₂/Ag複合物光觸媒,主要是以銀做為擔體, 銀擔體之製備是以氧化還原方法進行,由於氧化電位大的金屬可還原 氧化電位小的金屬離子(氧化電位大者,即還原電位小),而Ag⁺的標 準還原電位E°(Ag⁺/Ag)為 0.8mV,Cu⁺的標準還原電位E°(Cu⁺²/Cu)為 0.337mV,因此若將零價的銅金屬置於含有正一價的銀離子溶液內, 即可利用氧化還原電位的差異而將硝酸銀中的銀離子置換出來。其過 程以光罩隔開光線以避免硝酸銀自身被光反應掉,靜置約半小時後, 以抽濾法收集溶液中產生的銀灰色沈澱物,再以大量去離子水沖洗銀 表面以去除殘餘的銅離子,之後連同濾紙放入烘箱以 75℃乾燥 2 小 時,確認完全乾燥後,以刮杓將固體物取下,即完成銀擔體的製作。 為了標準化銀擔體的顆粒,使其尺寸均一,提高比表面積,後續亦有 使用藥品級 2-3.5 μm銀金屬粉,並與藥品級 3 μm銅金屬粉為擔體進 行對照比較。

本研究所製備之光觸媒結合銀之複合樣品主要是以銀做為擔體, 利用銀和二氧化鈦之表面電性差異,於銀擔體表面均勻披覆奈米 TiO₂,來達到兩者結合的目的,並探討於不同pH製備環境操作條件 下,對TiO₂/Ag複合物光觸媒之影響。圖 3-1 為製備光觸媒複合材料 的實驗流程,實驗操作是在不同酸鹼性之液相中混合Ag 與TiO₂,首 先利用硝酸與氨水控制去離子水溶液之pH值,接著添加所需之重量 比 10% TiO₂ (P25,Degussa)於所調配出之酸、中、鹼性水溶液 60ml中, 以超音波震盪器震盪 15 分鐘後,在TiO₂懸浮液中加入銀金屬粉,在 室溫下以電磁攪拌器攪拌 6 小時,之後放入烘箱以 110℃乾燥 12 小 時,即完成樣品TiO₂/Ag複合物光觸媒之製作。

其它複合擔體之藥品級 2-3.5 µm 銀金屬粉與 3 µm 銅金屬亦是以 相同操作方式進行樣品複合的製備以利後續效能比較。

Mannun .

圖 3-1:TiO₂/Ag複合物光觸媒製備流程圖

3.2 實驗藥品及器材設備

以下為實驗所使用的藥品與儀器:

- 1. 丙酮(Acetone):藥品級 99%, Merck & Co. Inc., Germany
- 二氧化鈦(TiO₂):80% anatase,20% rutile;BET area~50m²/g, primary size ~25-30 nm, agglomerate size ~100 nm, VP Aeroperl. P25/20, Degussa
- 氢水(Ammonia water, NH₄OH):比重~0.9,純度 28%,製造廠商:
 和光純藥
- 4. 硝酸(Nitric acid, HNO3):比重 1.42, 島久
- 5. 硝酸銀(silver nitrate_AR, AgNO3_crystal): 六和
- 6. 銀粉(Silver, powder): Pulver 2-3.5 micro, 99.9+%, Sigma-Aldrich
- 7. 銅粉(Copper, powder): Dendritic, 3 micro, 99.7%, Sigma-Aldrich
- 8. 乙醇(Ethyl alcohol):, RIEDEL, 純度 99%
- 9. 玻璃基材:長12mm、外徑35mm之Pyrix 圓型玻管
- 10. 酸鹼度計(pH meter): inoLab pH 730, HP3458A, WTW, German
- 11. 採樣袋(Tedler Bag): SKC Inc., PA, USA, 體積 1L
- 12. 泡沫流量計(Bubble meter): Gilian Instrument Corp., NJ, USA, 流量 校正範圍 20 ml-6 L/min。
- 13. 氣密式氣體注射針(Syringe): Hamilton Co., Nevada, USA, 體積 1ml
- 14. 泡沫流量計(Bubble meter): Gilian Instrument Co., USA, 20-6000ccm
- 15. 質量流量控制器(MFC, Mass Flow Controller): mks, 1179A, range:

200sccm, USA

- 16. 紫外燈管(UV lamp): Sparkie UVA-S 8W,台灣,主要波長為
 365nm(28 cm×1.6 cm I.D.),輸出功率 8 W。
- 17. 超音波震盪水槽(Ultrasonic cleaner): Tohama DC-400, 台灣
- 18. 電磁攪拌器: Cimares2, Thermolyne, Lowa, USA.
- 低溫循環水槽:溫度範圍-20~100℃, P-10 YEONG SHIN, YSC, 詠 欣, 台灣
- 20. 光強度計(Light intensity meter):光譜範圍 UV 315-390 nm, IL 1400A, International Light, Newburyport, MA
- 21. 光譜分析儀(Spectrometer): SEL240/W Solar blind Vacuum Photo. Probe

3.3 實驗架構

本實驗之測試方法,是以連續流式反應器作為效率測試方法,系統操作在室溫下進行(恆溫冰箱 25±2℃),實驗系統架設如圖 3-2 所示,整體實驗系統可分為氣體產生區、反應區及分析系統三部份所組成。

(1) 氣體產生區

氣體來源是利用空壓機產生之高壓空氣,流經矽膠填充乾燥管與 高效能除微粒過濾器(HEPA filter)去除氣體中的水分(溼度 30±3%)與 雜質後,由質量流量計(Mass flow controller)控制曝氣的氣體流量,將 放置於-10℃恆溫水槽的有機液體丙酮進行曝氣後再與稀釋空氣混 合,由混合管後端採樣口抽取有機氣體的濃度為初始濃度,測試丙酮 初始濃度設定為 200±10ppm。

(2) 反應區

UV light	365nm (UVA)	Flow rate	60ccm±5ccm
UV intensity	1.78 mW/cm²	外管直徑(R2)	3.04cm
Acetone Co	200 ±10 ppm	內管直徑(R1)	2.2cm
Coated length	12cm	Coated weight	0.95±0.05g

表 3-1:主要的實驗參數條件

40000

當確認系統丙酮濃度穩定後,將三向閥轉向反應區方向使氣流進 入預先於玻璃管柱塗敷樣品TiO₂/Ag的反應管,當氣體流量為 60± 5ccm下,管壁塗敷長度為 12cm,停留時間則為 41sec,反應腔體光源 以紫外燈管365nm (8W-UVA)照射,光照強度約為1.78 mW/cm²。當 確認初始丙酮濃度穩定後,將三向閥轉向反應區方向,氣體流經充滿 反應器約需20~40分鐘,反應區系統濃度才會穩定,因此在轉閥20~40 分鐘後才開始進行抽針測試。實驗過程中,皆將反應腔體放置於黑色 壓克力密閉箱之光罩,減少外界其他光源對反應的影響,並於密閉光 罩加裝風扇通風,降低因燈管使用而發熱的腔體溫度。測試樣品是利 用旋轉塗敷方式披覆於12cm玻璃管柱內,樣品披覆量為0.95±0.05g, 是秤量玻璃基材披覆前後重量差異為其量,進行反覆披覆。實驗過程 之主要實驗參數條件皆分列於表 3-1。

(3) 分析系統

ATTILLER.

當實驗開始進行時,在固定間隔時間以氣體注射針對反應腔體後 端進行抽針採樣,每次採樣體積固定1mL,並將採樣氣體打入氣相 層析儀進行分析,後端其餘廢氣則均由活性碳吸附過濾,再排至大氣 中。

圖 3-2: 實驗系統架構示意圖

3.4 樣品分析儀器

- ◆氣相層析儀(Gas Chromatography, GC-FID)作為定量分析的儀器, 藉由不同物種在毛細層析管柱的停留時間不同而將物種分離,之 後再由 FID 將其燃燒離子化後得到電流訊號大小,透過曲線計算 得到積分面積並對應由已知濃度所製作之檢量線,可知積分面積 所代表的真正濃度。儀器操作型號為 SRI-8610C, CA, USA, 儀器偵 測極限為 1ppm,方法偵測極限為 3 ppm。
- ◆ 顆粒粒徑分佈儀(particle size distribution analyzer)可用做為顆粒粒 徑分佈的測量,其原理為利用氦氖紅光雷射配合藍光雷射穿過一 組反傅立業鏡頭,接著透過樣品粒子,經過多角度偵測器量測出 粒徑分佈範圍,最大特色是利用此法將量測範圍下向延伸至 0.02 μm,並可達 2000μm。本研究所使用之顆粒粒徑分佈儀型號為 Mastersizer 2000,英國 Malvern 製造。
- 高解析 X 光繞射儀(X-ray diffractometer, XRD)其繞射圖能反映出晶格原子排列的情形及晶體結構,其原理為將 X 光入射樣品,因晶格的光柵作用產生繞射,當反射光角度滿足 Bragg 繞射公式(λ=2dsin θ, λ為 X 光入射波長,d 為晶面間距)時,產生建設性干涉,造成圖譜上之繞射線。本研究所使用之 XRD 儀器型號為 X'Pert Pro MRD, Panalytical, Holland。
- ◆ 表面化學光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS; Electron Spectroscopy for chemical analysis, ESCA)藉由量測 X 光光 電子能譜來分析材料表面各種元素的化學狀態,原理為利用 X 射 線使其物種產生螢光而辨別觸媒表面之元素組成,或是由打入 X 射線所放出之能量可知化學鍵強弱再進一步測定其結構。本研究 所使用之 XPS 儀器型號為 ESCAlab 250, Thermo VG,成份影像解 析度 3 μ m,縱深解析度 1nm 或更好,含化態分析功能(Analyser $\Delta E < 25$ meV)、0.1-1 μ m 深度之 spectrum line scan。
- ◆界面電位分析儀(Zetasizer)主要是透過偵測顆粒的電泳速度轉換而 測得介達電位(zeta potential)。介達電位為顆粒固定層與擴散層剪 力面上的電位值,由於顆粒的穩定性與電雙層的交互作用有關, 因此可利用介達電位來初步判斷調理劑的作用機制。介達電位是 以雷射電泳分析儀測定,其原理為利用分光鏡分成兩束低強度雷 射光,交叉於待測樣品管,產生干涉條紋,以觀察粒子在外加電 場的電泳行為所造成之光散射現象,並決定其電泳速度,再藉由 內建的方程式(Smoluchowsky equation)換算成介達電位。本研究所 使用之界面電位分析儀型號為 zetasizer nano ZS,英國 Malvern 製 造。
- ◆掃描式電子顯微鏡(scanning electron microscopy, SEM)可觀察樣品 表面狀況,其原理是利用加熱燈絲所發射出來的電子束經柵極聚 焦,形成約幾十毫米大小之點光源,在陽極之加速電壓的作用下, 經過2至3個電磁透鏡所組成的電子光學系統匯聚成一細小約幾 個奈米之電子射束再聚焦至試樣表面,由於在末端透鏡上裝有掃

描線圈,使電子射束在試樣上掃瞄,而透過高能電子射束與物質 交互作用產生各種電子訊號,訊號經檢測器(detector)接收後經放大 器放大,然後送到顯像管成像,可見試樣表面型態,利用此SEM 可觀察銀覆載在TiO₂表面的分布。本研究所使用之SEM儀器型號 為FE-SEM, 1530, LEO。

◆紫外/可見 分光光譜儀(UV-vis spectrophotometer)是一種分析材料 透光率及反射率的儀器,其基本原理乃根據光電效應,利用火花 放電方式,給予能量逼迫原子之外層電子逃逸到下一個軌道,當 電子再返回到原軌道時,就會放出能量即為所謂光譜。其測定方 法包含波長掃描(wavelength scan)及吸光度測定(photometry),可用 於分析複合材料不同比例的光吸收度紅移或藍移的現象,透過元 素吸收峰強度,轉換吸光度面積。因每一元素之原子結構不同, 所以所獲得之光譜亦不同;利用全波段掃描粉体反射率 R,經過吸 光度換算(Kubelka-Munk Abs=(1-R)²/(2*R),可得粉體光吸收範 圍。本研究所使用之分光光譜儀型號為 U3012, HITACHI, Japan, 可偵測波長 190~900 nm。

第四章 實驗結果與討論

為了改善奈米粉體團聚的問題,傳統方式為添加界面活性劑以達 到分散目的,但是界面活性劑多為有機物,當光觸媒受光照射與污染 物反應同時,亦將與分散劑進行光催化反應,造成分散劑劣化,因此 本研究利用不同物種本身表面電性差異的特性,藉由控制表面電荷差 異以減緩顆粒團聚,並使二氧化鈦能自發性地均勻分散結合於銀擔體 表面。本實驗以硝酸與氨水控制製備溶液在不同pH值,並利用界面 電位分析儀觀察TiO₂及Ag表面電荷變化,以掃描式電子顯微鏡視其 TiO₂/Ag複合物光觸媒外觀受操作條件的影響,並以X光繞射儀與光 電子能譜儀對複合物做化學特性分析,探討不同製備pH值條件下, TiO₂/Ag複合物光觸媒結合狀況及對去除丙酮效率之影響,並對複合 物光觸媒進行動力分析,另外探討以金屬銅為對照擔體之效能。

4.1 製備溶液酸鹼度對複合物光觸媒物化特性之影響

本節利用界面電位分析儀個別分析樣品之表面電性,探討不同 pH 溶液對顆粒所造成之電位差異的影響,輔以掃描式電子顯微鏡 (SEM)觀察其對樣品結合的狀況,後續以X光繞射儀(XRD)測定樣品 顆粒表面結構,並以光電子能譜儀(XPS)進行樣品表面之元素組成分 析。

1896

4.1.1 TiO₂/Ag複合物光觸媒之表面電性分析

製備溶液的 pH 值會影響微粒表面物化特性進而影響微粒之間的 吸附或鍵結能力,因而造成樣品結合分散的不同,對後續光催化效果

產生不同的影響,因此本研究先針對不同製備溶液 pH 值之影響做實驗探討。介達電位(zeta potential)是表徵分散體系穩定性的重要指標, 由於帶電微粒會吸引系統中帶相反電荷的粒子,離顆粒表面近的離子 被強烈束缚著,而那些距離較遠的離子形成一個鬆散的電子層,電子 層的內外電位差定義為介達電位,而只有在介達電位在±30mV 以外, 體系才是穩定的,顆粒不容易團聚(高等,2005)。

圖 4-1 為TiO₂與Ag分別在不同pH值溶液下的介達電位,本文所 定義之酸中鹼性以圖 2-6 的pH範圍為準,pH≦4 為酸,pH4~8 為中性, pH≧8 為鹼性,此部分是藉由添加HNO₃及NH₄OH來控制溶液酸鹼 度。水會解離成H⁺ 及OH⁻,或由H⁺進一步形成的水合氫離子 (hydronium ion, H₃O⁺),當在酸、中性條件的環境下,由於溶液中含 有充沛的H⁺或是H₃O⁺,而吸附於TiO₂顆粒表面使其帶正電,銀粒子 在pH<6.8 的相似溶液環境條件下,表面亦同樣為帶正電,因此測得 的介達電位皆為正值;相反地,當溶液為鹼性狀態下,溶液中含有大 量OH⁻,故當溶液pH值增加時,TiO₂及Ag顆粒表面會吸附OH⁻,因此 兩者表面皆帶負電。當帶有同性電荷的膠質粒子於溶液中進行布朗運 動時,由於同性電荷間之斥力使其顆粒彼此不容易接觸碰撞,故能成 為穩定的膠液。由圖 4-1 實驗結果可知,TiO₂的等電位點(isoelectric point, pH_{iep})約在 6.8 左右,銀粒子pH_{iep}則約為 8.8。隨著pH的遞增, 兩者之介達電位在此則由正轉負,其等電位點可視為表面帶電性相異 之分界。

在酸、中性條件(pH=3~6)或鹼性條件(pH=8~11)的範圍內,TiO2介 達電位之絕對值皆大於Ag,推論此一現象乃是由於TiO2為親水膠體 (hydrophilic colloid),金屬氧化物TiO2表面親水性優於金屬Ag之表面 親水性,所以不同酸鹼度溶液中的離子電荷H⁺、H₃O⁺或OH⁻會更

容易藉由氫鍵與顆粒表面結合使其帶電,因此TiO2表面電荷電位極高。相對的Ag介達電位之絕對值偏低,因金屬銀表面吸附離子的機制是靠銀軌域[Kr]4d¹⁰5s¹中的5s¹吸引溶液中H⁺端的離子,與金屬氧化物表面直接吸附電荷離子不同,因此推論由於軌域電子能容納的空間電荷有限,而導致Ag介達電位值偏低。由界面電位分析結果可知, 當pH範圍介於6.8~8.8之間,TiO2表面帶負電,銀帶正電,且膠體呈現不穩定狀態,彼此會因靜電吸引力而結合,當TiO2趨向銀粒子表面時,可能會受到溶液熱運動擴散的影響,因此能均勻擴散分布在銀粒子周圍以及產生化學鍵結反應,本研究即利用電性相異互相吸引的特性來達到使二氧化鈦能自發性地均勻披覆於銀擔體上。

圖 4-1:以硝酸與氨水控制不同pH值對TiO2及Ag[s]介達電位的影響

隨著溶液在不同pH值的環境下,溶液中不同物種的顆粒表面帶 電性會隨之變化,受顆粒間靜電力的交互作用影響,間接改變顆粒分 子的吸附或鍵結能力。對不同的載體而言,其吸附的離子種類和吸附 力的強弱也不盡相同,故等電位點pHien或pHzpc值亦會有所變化。圖 4-2 為不同尺寸的銀顆粒存在於不同pH值溶液系統中介達電位的變 化,大多數固體分散在低離子濃度水中會顯現出介達電位變化,顆粒 帶電是由於溶液中離子的吸附而有表面電荷,顆粒周圍電位分布是靠 表面吸附之電荷提升,兩種尺寸銀之介達電位趨勢有很大差異,推測 其原因為顆粒尺寸不同,所以導致銀顆粒所能容納之空間電荷改變, 因而造成吸附離子電荷能力之差異。藥品級銀(Ag[m]-medicine)顆粒 尺寸小,能容納之空間電荷密度有限,因此能吸附的電荷不多,推論 其為Ag[m]在酸、中性環境條件下,介達電位接近零的原因。兩種不 同尺寸的銀顆粒其介達電位趨勢皆為由正轉負,但是pHien有明顯差 異,推測其原因為銀擔體顆粒尺寸不同造成,自製銀(Ag[s]-self product)平均顆粒尺寸約為15μm,其粒徑分布如圖 4-3 所示,而藥 品級銀Ag[m]尺寸為2.5~3µm之等似直徑,由於銀擔體尺寸之不同, 造成表面空間電荷分布的差異,進一步影響吸附能力;由於金屬銀粉 Ag[s]粒徑大,能容納較多之空間電荷,於溶液中比Ag[m]更易與水中 的OH 結合;而Ag[m] 由於顆粒尺寸小,侷限了介達電位鬆散電子層 之涵蓋範圍,因此小顆粒Ag[m]表面所能吸附的羥基相對較少,使得 其pHien shift向左偏移至4,因而導致與TiO2結合程度的差異。

圖 4-2: 不同尺寸 Ag[s]-15μm 及 Ag[m]-3μm 之介達電位的影響

圖 4-3:自製銀Ag[s]之粒徑分布d_{0.5}=15.05 μm

4.1.2 複合樣品之表面型態

銀密度為 10.5g/cm³, 遠大於水密度 1g/cm³,所以銀在水中會沉 澱。將銀加入TiO₂懸浮液中攪拌一陣子,可明顯觀察到溶液澄清度的 變化。由圖 4-4 可見將自製銀Ag[s]與TiO₂懸浮液混合之後的溶液外 觀, 在擁有TiO₂及Ag的酸、中性製備溶液皆呈現混濁狀態,可知TiO₂ 仍懸浮於溶液中;但在鹼性溶液中,可明顯觀察到上層液為澄清透 明,與介達電位所呈現之結果相符,即當Ag[s]與TiO₂表面電性相反 時,兩者互相吸引結合,使TiO₂披覆在銀上而隨之沉澱。

圖 4-5 則為藥品級銀Ag[m]與TiO2樣品製備的情況,TiO2與Ag的 重量比例為 10 比 90,圖 4-5(a)是TiO2在不同pH下之懸浮液,圖 4-5(b) 則是添加Ag[m]攪拌 6 小時後的狀況,圖中燒杯由左至右皆分別是酸 (pH3)、中(pH5.8)、鹼(pH8)性溶液,由圖可明顯觀察到與自製銀同樣 的結果發生,在界面電位分析中顆粒表面呈現相同電性的酸、鹼性溶 液,其液體外觀皆顯現混濁狀態,而對顆粒表面帶有相反電性之中性 溶液,其上層液則是澄清透明,顯示當Ag[m]與TiO2於中性溶液中, 表面電性為相反時,兩者會因靜電力而互相吸引結合,形成TiO2/Ag 複合物光觸媒而沉澱,其結果亦與介達電位變化相互呼應。

綜合上述現象, Ag[s]與Ag[m]皆有當表面電性與TiO2相反時,將 TiO2抓下來共同沉澱的特性,但是因兩者銀之等電位點不同,可參考 表 4-1 所整理的TiO2、Ag[s]、Ag[m]等電位點, Ag[s]pH_{zpc}為 8.8,較 偏鹼性範圍,所以就Ag[s]來說,於鹼性範圍(pH8)可得最佳之高分散 性複合物;由Ag[m]與TiO2之pH_{zpc}可知,介於電荷相異的範圍在 4~6.8 之間,因此對Ag[m]來說,中性(pH5.8)落於預設可得最佳樣品的pH 範圍內。

圖 4-4:在不同pH下之Ag[s]與TiO2懸浮液

(由左至右分別為: pH3、pH5.8、pH8)

圖 4-5: 在不同pH下之(a) TiO2懸浮液(b) Ag[m]與TiO2混合液

(由左至右分別為: pH3、pH5.8、pH8)

sample	pH _{zpc}	Ref.
P25-TiO ₂	6.25	Kormann et al.,1991
	6.5	Cordero et al.,2007
	6.8	this study
Ag[s]-15 μ m	8.8	this study
Ag[m]- 3μm	4	this study

表 4-1:TiO₂、Ag[s]、Ag[m]的等電位點

圖 4-6 為樣品 10% TiO₂/Ag[m]與 10% TiO₂在中性水溶液中,經 過不同離心力作用後之上層液光穿透度(%T),其先以UV-vis分光光譜 儀對上層液作全波段掃描後,再擷取TiO₂發生光吸收之波長 365nm處 之穿透度與轉速作圖。由圖 4-6 可見當相同重量之 10% TiO₂溶液在受 離心力 500~4000 rpm,約為 24g~1520g (g為重力單位)之下,上層液 之光穿透度只有 3%~13%,顯示仍有大量TiO₂懸浮在溶液中;相對於 如圖 4-5 所示,因電性相異發生結合的TiO₂/Ag上層液透明澄清,其 穿透度皆維持於 73~84%,由此可知,TiO₂確實附著在Ag擔體上,且 不易受外力而脫落。

圖 4-6: 樣品溶液澄清度

進一步透過掃描式電子顯微鏡(SEM)的觀察,可以瞭解製備產物 外觀受操作條件的影響,圖 4-7 即為Ag[s]與TiO2在不同酸鹼製備溶液 條件下,利用兩者帶電性的不同而有不同的結合現象,圖 4-7(a)為製 備溶液環境控制在酸性(pH3)的狀態下,由圖可見奈米二氧化鈦微粒 幾乎無法附著於銀表面上,推測其原因為表面電性相同,彼此互相排 斥導致。當pH維持在中性條件(pH5.8),如圖 4-7(b)所見,因電位差異 不大,使二氧化鈦微粒產生凝團聚集在Ag表面的現象;圖 4-7(c)為將 溶液調控pH為鹼性條件(pH8)時,可見二氧化鈦均勻地分布在銀擔體 表面,此一現象可由介達電位與pH關係圖 4-1 佐證,當二氧化鈦與銀 在pH8 的鹼性溶液時,兩者因電性互異而結合。因此可知藉由改變溶 液pH值的方法,可以有效控制奈米級二氧化鈦均勻披覆於金屬銀擔 體結構上。

圖 4-8 為不同pH值對TiO₂/Ag [m]結合之影響,圖 4-8(a)為控制製 備溶液在酸性(pH3)環境下,因表面電性相同,TiO₂與Ag彼此互相排 斥,導致奈米二氧化鈦微粒不易附著於銀表面上,而發生自身團聚的 現象。圖 4-8(b)為Ag[m]與TiO₂在中性條件下(pH5.8),此時TiO₂介達 電位為+27mV,Ag為-10mV,膠體為不穩定狀態,並因介達電位差異 造成TiO₂/Ag彼此結合的狀況發生,TiO₂沒有產生團聚,而附著於銀 表面上,兩者因電性電荷相異而能互相吸引的趨勢亦可由此觀察到。 圖 4-8(c)為鹼性條件(pH8)下製備的情況,其TiO₂介達電位為-30mV, Ag為-55mV,彼此因為強斥力而使Ag吸附較少的TiO₂,結果與酸性 條件有類似的狀況。

(a)Acid solution (pH3)

(c)Alkaline solution (pH8)

圖 4-7:在不同酸鹼製備溶液下對TiO₂/Ag[s]結合之影響

(a) Acid solution (pH3)

(b)Neutral solution (pH5.8)

4.1.3 複合樣品之 XRD 結構分析

XRD分析可以顯示樣品在不同繞射角度上產生之訊號,透過標準 圖譜比對可知其物種,如同指紋般可辨識各式化合物及其晶相變化。 圖 4-9 為單純銀粉Ag[m]、於酸中鹼溶液所製備的樣品與單純光觸媒 P25-TiO₂之XRD分析圖譜,對照JCPDS標準圖譜[附錄一],各物種主 繞射波峰分述如下,銳鈦礦(Anatase)主繞射波鋒約在25.3°、48.1°, 金紅石(Rutile)則約於27.4°、36.1°、54.4°處出現訊號,銀(Ag)晶相則 在38.1°有特徵訊號,各樣品XRD分析圖譜2θ之peak整理如表4-2。 由XRD圖譜可觀察到訊號強度以銀為主,其次為Anatase,各樣品所 顯示之主要特性波峰皆很相近,並無明顯差異。XRD主要為表面繞射 所得訊號,但因TiO₂相對於銀含量較少,所以TiO₂的訊號強度皆很微 弱,但其仍為anatase相。樣品銀之訊號與單純銀訊號相似,可知在經 過不同酸中鹼性製備溶液下,觸媒本質結構沒有改變。

主要特性波峰	Anatase	Rutile	Rutile	Ag	Ag	Anatase	Rutile	Rutile
樣品	25.3	27.4	36.1	38.1	-	48.1	-	54.4
Ag[m]	-	-	-	38.15	44.28	-	-	-
рН 3	25.41	-	-	38.12	44.35	-	-	-
pH5.8	25.45	-	-	38.15	44.39	-	-	-
pH 8	25.37	-	-	38.12	44.35	-	-	-
P25	25.36	27.56	37.94	-	-	48.18	54.02	54.38

表 4-2: XRD 各樣品波峰訊號位置整理

4.1.4 複合樣品之 XPS 特性分析

光電子能譜XPS亦稱為ESCA,可判別分析複合材料表面各種元 素的價態及化學狀態,本研究以此作化學定性分析,圖 4-10~12 為酸 中鹼性溶液所製備之複合光觸媒材料特性分析之X射線全掃描能譜 圖,掃描範圍為-10~1350eV。依據標準XPS圖譜[附錄二]比對,本研 究分析觸媒主要元素的軌域電子為Ti 2p_{3/2}及Ag 3d_{5/2}。TiO₂中的Ti2p_{3/2} Binding Energy範圍為 458.6~459.3eV; Ag的Ag 3d_{5/2} Binding Energy 範圍為 368.04~368.2eV, Ag 3d_{5/2} 於Ag Oxides Binding Energy範圍則 是在 367.5~368eV; O1s 之 Metal Oxides 電子束缚能為 528.1 ~531.1eV; 另外亦有作為校正基準的C1s元素訊號 284.6eV呈現於圖 中(Shen et al.,2006)。

圖 4-13、14 分別為經過不同pH溶液所製備出之樣品觸媒Ti、Ag 元素分析光譜,利用此光譜可比較經過不同pH製備溶液後元素組成 之差異性。對照標準圖譜可知,Ti之 2p_{3/2}電子束缚能幾乎沒有位移, 形式皆為TiO₂沒有改變。對Ag[m]之掃描發現,在酸與鹼性溶液製備 下,其 3d_{5/2}結合能峰值為 368.1eV,證明Ag是以單質形式存在,但是 中性狀態下之卻形成氧化態之銀Ag₂O,其Ag3d_{5/2}束縛能峰值為 367.8eV,推測TiO₂-H⁺與Ag-OH⁻之介達電位於中性溶液下,恰為電性 相異範圍,TiO₂-H⁺與Ag-OH⁻因電性相異互相吸引,進一步產生鍵結 Ag-O-Ti。

圖 4-11:中性複合光觸媒材料 ESCA 全譜圖

圖 4-12:鹼性複合光觸媒材料 ESCA 全譜圖

4.2 複合樣品觸媒光催化分解丙酮效能測試

4.2.1 光催化空白效能基本测試

本實驗操作皆為當進流濃度與原始初流濃度相同,即達氣-固吸 附平衡,反應系統呈現穩定狀態達 30 分鐘,才開啟紫外光燈照射一 小時,接著於 90 分鐘關閉紫外光燈。圖 4-15 為對丙酮光降解的空白 測試,Blank-UVA 為當只有照射 UVA 而反應器內無任何觸媒存在, 而 Blank-Ag 則為只有銀擔體存在,於總流量 60ccm、365nm 紫外光 燈照射下,其實驗結果顯示丙酮濃度皆維持在 200ppm 左右,系統前 後端濃度變化約在 10ppm 左右(可視為系統約有 5%誤差)。因此由空 自效率測試可知,自身光解與擔體本身此兩者 blank 對丙酮皆無光降 解的作用發生。

圖 4-15:光降解丙酮之空白效率測試

4.2.2 最佳光觸媒含量之效能與分散評估

本節主要是針對光觸媒含量對效能與分散的評估,以決定複合物 TiO₂/Ag的最佳比例。本實驗初期在樣品於不同pH製備溶液中混合 後,皆經過過濾處理後乾燥的手續,但是若TiO₂無與Ag複合,則TiO₂ 大多會被過濾掉,導致比較基準差異大,如此進行效率測試比較有失 偏頗,且TiO₂之比例亦不易掌握;實驗期間亦曾減少TiO₂/Ag複合比 例至 1%,期望確保TiO₂皆能完全披覆於Ag上,但在不同pH值下,因 樣品本身特性關係無法如預期,因此實驗後期決定忽略過濾步驟,直 接以溶液進行烘乾,如此一來,比較基準為在相同TiO₂含量下,即當 選擇添加固定比例之TiO₂時,相同pH值下,樣品有相同團聚量或分散 度,即使TiO₂沒完全披覆於銀擔體上亦能作對等比較。

由圖 4-5 證據顯示,在pH4~6.8 偏中性範圍下,TiO₂與Ag[m]能有 效結合在一起,因此本節實驗探討在中性條件下,不同理論重量比例 之TiO₂結合Ag[m]對效率的影響,圖中數據皆為二重複取平均之效能 值,誤差值範圍為 2.38~8.28%。由圖 4-16(a)實驗結果可觀察到,隨 著TiO₂添加含量之比例增加,丙酮去除效率亦隨之提升,可知TiO₂含 量的多寡仍是處理效率的主要因素,但是若以單位TiO₂承載量之丙酮 去除效率為考量,在此定義為將各樣品最終的效率除以樣品添加TiO₂ 之含量為E(eff/ratio),由圖 4-16(b)可明顯觀察到 10% TiO₂/Ag有最高 經濟效應,添加 20% TiO₂、40% TiO₂的樣品雖然有大量TiO₂存在,但 有絕大多數TiO₂因團聚而無法有效利用。圖 4-16(c)為不同TiO₂比例重 量所測得之UV-vis分光光譜,10% TiO₂趨勢類似Ag,20% TiO₂、40% TiO₂趨勢類似TiO₂,即光譜測得的表面訊號以 10%較強,可知添加 20% TiO₂、40% TiO₂,表面因團聚大量TiO₂而無法探測到Ag擔體的吸

收峰,尤其是 40%已經幾乎沒有Ag之波峰訊號。由圖 4-16(d)之SEM 亦可觀察到,當承載比例高達 20%及 40%時,過量之TiO2已完全包覆 住Ag擔體,無法從表面外觀觀察到樣品分散狀況。相較之下,5%及 10%由SEM圖則可觀察到TiO2之分散,其SEM所見與UV-vis分析結果 相符。綜合以上評估本研究選擇以 10% TiO2的比例作進一步的效率 測試及其動力之分析。

圖 4-16(a):添加不同理論重量比例之TiO2對效率的影響(RT=21sec)

圖 4-16(c):不同承載TiO2比例重量之UV-vis光譜

40% TiO₂/Ag

圖 4-16(d):固定pH值下添加不同重量比例之TiO2對樣品的影響

4.2.3 複合物光觸媒去除有機物丙酮之效能

圖 4-17 為在不同酸鹼溶液下製備之樣品 10%TiO₂/Ag[s]對丙酮的 去除效率,圖中數據皆為二重複之平均效率值,誤差值範圍為 1.94~4.88%。結果顯示當TiO₂與Ag[s]電性為相異之鹼性溶液(pH8)所 製備的樣品對所處理之丙酮效率有明顯提升,效率可至 86%,而中、 酸性溶液所製備的樣品效率皆約只有 62%。由實驗結果效率圖發現中 性樣品效率在照光 10 分鐘後,效率由 75%下降至 62%,推測由於實 驗操作為樣品在吸附飽和,反應系統呈現穩定狀態下才開啟紫外光, 此時充斥吸附於樣品空隙表面的丙酮被迅速分解,因此效率略微上 升,但在固定流量的停留時間內,因TiO₂有團聚現象,能進行吸附處 理丙酮的量有限,且由於燈管溫度之提升可能造成污染物再次脫附, 故造成其效率下降並趨於穩定。對於鹼性溶液所製備的樣品,因TiO₂ 能單顆均勻披覆於銀擔體上,因此在吸附丙酮並進行分解的過程,不 會受團聚影響而有良好的丙酮去除率。

圖 4-18 為在不同酸鹼溶液下製備之樣品 10%TiO₂/Ag[m]對丙酮 的去除效率,圖中數據皆為三重複之平均效率值,誤差值範圍為 1.71~9.54%。結果亦顯示當TiO₂與Ag[m] 為電性相異之偏中性溶液 (pH5 及pH5.8)所製備的樣品對所處理之丙酮效率有明顯的提升,且效 率高達 91%,其次為鹼性溶液(pH8)製備樣品效率為 81%,效率最差 的為酸性溶液(pH3)製備樣品,效率只有 62%。

綜合上述實驗結果,當樣品TiO2與Ag混合於介達電位為電性相異 的製備溶液中,所得的TiO2/Ag光觸媒複合物可獲得最佳之丙酮去除 效率。由於光觸媒去除污染物只發生在表面,因此推測丙酮的去除主 要是受到光觸媒分散性的影響,當光觸媒能均勻分散於擔體上,減少

團聚的現象發生,而提供較高的比表面積,增加與汙染氣體接觸的機 會,使丙酮的去除效率因而提升。相反地,當TiO2發生團聚,造成樣 品表面接觸污染物的總表面積下降,能進行吸附處理丙酮的量有限, 會使真正能有效去除有機物的量相對減少,而降低光觸媒活性。由圖 4-7 及圖 4-8 之SEM佐證,當樣品TiO2與Ag混合於介達電位為電性相 異的製備溶液中,可獲得最佳分散性之TiO2/Ag光觸媒複合物。

丙酮去除率高除了分散性佳的原因外,介達電位的差異,亦使 TiO₂/Ag複合物光觸媒產生化學鍵結。由圖 4-14 之XPS分析結果顯 示,TiO₂與Ag[m]在介達電位差異最大之中性條件下,會產生Ti-O-Ag 的鍵结,另一種推論為TiO₂與Ag[m]之間有Ag₂O的存在,當Ag₂O照光 時亦會產生電子電洞對,如下列方程式所示Ag₂O+h*v*→hole⁺+e⁻ (Zhang et al., 2003),如此便可增加TiO₂/Ag複合物光觸媒電子電洞對 的產生率,對上述兩種狀況而言,其現象皆有助於光催化反應發生, 因此於電性相異條件下所製備之樣品有最佳丙酮去除效率。

mannu

圖 4-18:控制製備之酸鹼條件對TiO₂/Ag[m]效率的影響(RT=41sec)

4.3 影響金屬銀複合光觸媒材料反應速率之探討

光觸媒進行催化分解污染物為典型異相催化反應,常遵循一階動 力學(Pseudo-first order kinetics),文獻上多以 Langmuir-Hinshelwood 動力學模式模擬其反應速率常數,以光催化反應時間與有機物濃度描 述一階反應模式,其一級不可逆反應(irreversible first order reaction) 方程式如下:

r = - dC/dt = kC

對上式積分可得: - ln(C/Co) = kt

其中 r 為反應速率, C 為反應物濃度, Co 為反應物初始濃度, t 為反應停留時間, k 為反應速率常數。對-ln(C/Co)之不同停留時間(RT) 作圖,可以獲得擬一階動力學常數 k, 即其迴歸所得之直線斜率。

圖 4-19 是以固定丙酮初始濃度 200ppm、改變流速而得不同停留 時間為效率測試,以-ln(C/Co)為縱軸,停留時間為橫軸作線性迴歸之 動力分析。當提高總流量下,使得反應停留時間縮短,因而使所有樣 品之去除效率皆降低。圖中顯示的直線斜率呈現高度線性關係,證實 本實驗之光催化亦為一階反應動力式。不同酸鹼溶液所製備樣品 TiO₂/Ag [m]之反應速率常數、相關係數與初始反應速率皆列於表 4-3。

圖 4-20 為於不同丙酮初始濃度下對丙酮去除效率的影響,隨著 丙酮濃度的增加,去除效率遞減,可知丙酮初始濃度的增加不利於丙 酮的去除,推測其原因為光觸媒能吸附去除反應的量已達飽和,而無 法再提升丙酮之去除量。將一階反應速率常數與初始濃度相乘,可得 初始反應速率,如列表 4-4 所示,隨著丙酮初始濃度增加,初始反應 速率亦隨丙酮濃度呈倍數增加,依照反應速率可推測在不同初始濃度 下達去除穩定所需之時間。

表 4-3:不同酸鹼溶液製備樣品TiO2/Ag[m]之反應速率常數

kinatia	Cotolyct	k	\mathbf{P}^2	初始反應速率	
KIIIetic	Catalyst	(1/sec)	K	(ppmv/sec)	
	pH3	0.0303	0.8794	6.06	
一階	pH5	0.0664	0.9342	13.28	
	pH8	0.0445	0.9467	8.90	

表 4-4:不同酸鹼溶液製備樣品TiO2/Ag[m]之初始反應速率

Catalvet	k	初始濃度 Co(ppmv) / 初始反應速率					
Catalyst	(1/sec)	100	200	400	600		
pH3	0.0303	3.03	6.06	12.12	18.18		
pH5	0.0664	6.64	13.28	26.56	39.84		
pH8	0.0445	4.45	8.90	17.80	26.70		

4.4 以金屬銅為對照擔體之複合物光觸媒測試

本章節為考慮銀成本較高,因此考慮以銅為折衷之替代品,視其 當表面電性相異狀況下,是否亦能得到高分散性之光觸媒複合物,同 樣利用改變表面電性的概念以嘗試複合其他金屬,擴展其應用性。

圖 4-21 為 10%TiO₂/Cu分別在酸中鹼溶液所製備的樣品對丙酮的 去除效率,在不同酸鹼溶液下製備的樣品中,中性溶液(pH5.6)所製備 的樣品對所處理之丙酮效率為 48%,其次為鹼性溶液(pH6.8)製備樣 品效率為 39%,鹼性樣品pH8 效率為 34%,效率最差的為酸性溶液 (pH3)製備樣品,效率只有 23%。

圖 4-21: TiO₂ /Cu複合樣品之處理效率

表 4-5 為不同擔體TiO₂ /Ag與TiO₂ /Cu複合物光觸媒之丙酮去除 效率,銀擔体效率平均皆比銅擔体高 40%,推測TiO₂/Cu去除效率普 遍皆不佳之可能因素包含:

④由[附錄三]銅之水溶液 Pourbaix 熱力學平衡氧化物種圖,在其電位與 pH 之關係圖中,可觀察到銅在鹼性水溶液多為非溶解態之氧化銅,在酸性水溶液中則多為水合離子態,因此推測由於銅之氧化還原電位較低,導致 Cu 在酸、鹼性溶液中容易變質,進而影響效率。

①.圖 4-22 所示為藥品級 3µm Cu在不同pH值下的介達電位變化,Cu等電位點約為 6.8,由圖可觀察到Cu的介達電位與TiO2有同樣趨勢,其等電位點幾乎重疊,由於兩者顆粒表面電性相似,因此無法利用表面電性之差異,達到使Cu與TiO2能有效分散及鍵結,而導致TiO2/Cu複合物光觸媒去除效率皆低於 50%。

圖 4-22: TiO₂、Cu在不同pH值的介達電位

表 4-5: 不同擔體TiO₂ /Ag與TiO₂ /Cu複合樣品之丙酮效率

	Neutral A	Acid	
TiO ₂ /Ag[m]	91%	81%	62%
TiO ₂ /Cu[m]	48%	34%	23%

圖 4-23 為在不同酸鹼製備溶液條件下對TiOo與Cu結合之影響, 圖 4-23(a)為製備溶液環境控制在酸性(pH3)的狀態下,由SEM可見 TiOo微粒幾乎無法附著於銅表面上,且TiOo會產生自身團聚的現象, 並各自凝團成球狀與銀擔體幾乎完全分離,推測因兩者顆粒表面電性 相同,而導致彼此互相排斥少有結合。圖 4-23(b)是在中性(pH5.6)條 件下的樣品外觀,其介達電位與酸性操作條件相同,TiO2與Cu亦因表 面皆帶正電而互斥,此一現象可由圖 4-22 介達電位與pH之關係佐 證。當將溶液調控pH為鹼性條件(pH6.8)時,由圖 4-23(c)可見,因TiO2 與Cu之間電位差異不大,且皆接近等電位點,此時顆粒與水分子間 的鍵結能達到最低點,幾乎不帶電,故有部分TiO2凝團附著於銅擔體 表面。當於鹼性條件(pH8)時,如圖 4-23(d)所示,兩者因表面電性皆 帶負電而互相排斥,因此只有少量TiOz披覆於銅擔體上。綜合以上結 果,由於銅擔體介達電位與TiO₂有相同趨勢,因此藥品級尺寸為 3μ m之 Cu在此並不適合作為TiO2之金屬擔體。由上述銀擔體不同尺寸 效應所造成的表面電位差異可推測,若將Cu擔體換成更大或更小之 尺寸,當使Cu擔體介達電位與TiO2有不同趨勢時,推測其便適合利用 表面電性差異而結合的概念。

第五章 結論與建議

5.1 結論

本研究探討了改變製備溶液之pH值,對自製銀及藥品級銀與TiO₂ 懸浮液進行混合含浸製作TiO₂/Ag複合物光觸媒的影響,及其對污染 物丙酮降解去除效率的關係,茲將研究結果作以下結論整理:

- 隨著溶液pH的改變,顆粒之介達電位亦隨之變化,當Ag與TiO2兩 者顆粒表面呈現電性相異時,彼此會因靜電力而互相吸引結合, 形成TiO2/Ag複合物光觸媒而沉澱,其結果可由溶液外觀及樣品 SEM為佐證。
- 在化性分析中可知樣品本質結構皆沒有改變,但發現於電性相異 環境下所產生的TiO₂/Ag複合物光觸媒有化學鍵結產生,而使TiO₂ 與Ag能有效結合。
- 以連續式反應器測試在電性相異下所產生的TiO₂/Ag複合物光觸 媒,其對丙酮進行光降解效能可高達91%,明顯優於在使其電性 相同的溶液環境下所製備之複合物樣品。
- 反應動力分析部份以Langmuir-Hinshelwood動力學一階反應模式 模擬,其線性迴歸之動力分析呈現高相關性。當提高氣體流量 時,反應停留時間縮短,會使樣品之去除效率降低。
- 5. 以3μm金屬銅為對照擔體之複合物光觸媒測試部分結果,可知 當擔體介達電位與TiO2有相同趨勢時,並不適合利用表面電性差 異而結合的概念。當以其他金屬為TiO2之複合擔體時,應選擇適 當pH之製備溶液,可使金屬擔體結構上載持分散良好之奈米

TiO₂,能有效解決傳統使用分散劑及結合劑所造成的劣化現象, 並同時克服奈米光觸媒因團聚所造成的活性降低。

5.2 建議

- 研究後續若要深入探討,建議可再增加鍛燒步驟,更強化TiO2與 銀之結合,且一般奈米粉體經過鍛燒更容易產生團聚現象,與經 過鍛燒但分散良好之TiO2/Ag再進行比較,可更明顯辨別分散之優 劣程度。
- 當在可測得或得知物體表面電性下,便可利用控制表面電性差異 特性,將TiO2均匀披覆於其它擔體,如金屬網或可測得表面電性 之物種上,使其有良好分散性,拓展其應用範圍。
- 3. 未來可推廣應用於全時效性醫療抗菌,銀本身抗菌效果極佳,利 用高效能之高分散TiO₂/Ag複合物不但可殺除細菌,當TiO₂照光時 還能將其分解,但相關之滅菌測試需再進一步研究。
- 奈米光觸媒在反應完成後,普遍存在回收困難,或使水體濁度提高,而造成二次污染的問題,可針對此問題,研究利用電性相異特性,回收懸浮TiO2之溶液。
第六章 參考文獻

- Alberici, R. M. and Jardim, W. F.; "Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide", Applied Catalysis B: Environmental, Vol. 14, 55-48 (1997).
- Armor, J.N., "Environmental catalysis" Appl. Catalysis B: Environmental, Volume 1, Issue 4, Pages 221-256(1992)

Benjamin, M.M.;" water chemistry" 1sted, McGraw-Hill (2002)

- Cordero, T.; Chovelon, J.M.; Duchamp, C.; Ferronato, C. and Matos, J.;
 "Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons" Applied Catalysis B: Environmental, Volume 73, Issues 3-4, Pages 227-235(2007)
- Fujishima, A. and Honda, K.; "Electrochemical photolysis of water at a semiconductor electrode", Nature, Vol. 238, 37-38 (1972).
- Fujishima, A.; Rao, T. N. and Tryk, D.A.; "Titanium dioxide photocatalysis", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 1, Issue 1, Pages 1-21(2000)
- Hager, S.; Bauer, R.; "Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide" J. CHEMOSPHERE Vol 38 (7): 1549-1559 (1999)
- Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N.,
 Kominami, H., Kera, Y., "Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere", Applied Catalysis B: Environmental, Vol. 30, 429-436 (2001)

- Herrmann, M., Tahiri, H., Ait-Ichou, Y., Lassaletta, G., Gonza'lez-Elipe, A.R. and Ferna'ndez, A., "Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag- TiO2 coatings on quartz", J.-Appl. Catal. B 13, p. 219(1997)
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; and Bahnemannt, D.W.; " Environmental Applications of Semiconductor Photocatalysis,"Chem. Rev., 95, 69-96(1995)
- Hunter, R.J.; "Zeta potential in colloid science : principles and applications" London, Academic Press, Colloids science(1981)
- Hunter, R.J.; "Foundations of colloid science" Oxford, Clarendon Press,Oxford science publications(1989)
- Kamegawa, T., Takeuchi, R., Matsuoka M. and Anpo M., "Photocatalytic oxidation of CO with various oxidants by Mo oxide species highly dispersed on SiO2 at 293 K", Catalysis Today, Volume 111, Issues 3-4, Pages 248-253(2006)
- Key F.S. and Maass G., "Ion, Atoms and Charged Particles " www.silver-colloids.com/Papers/papers.html, Silver colloids (2001)
- Kim, FH, Ogata, A., Futamura, S. "Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis"IEEE T PLASMA SCI 34 (3): 984-995 Part 3 (2006)
- Kormann, C.; Bahnemann, D.W.; Hoffmann, M.R.; "Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions "Environ Sci Technol, 25: 494-500(1991)
- Linsebiger A L, Lu G Q, John T Y. "Photocatalysis on TiO2 Surfaces Principles, Mechanisms, and Selected Results" J. Chem Rev, 95

(3):735 - 758 (1995)

- Matthews, R.W.; "Photooxidation of organic impurities in water using thin films of titanium dioxide" J. Phys. Chem.; 91(12) pp 3328 - 3333 (1987)
- Moonsiri, M.; Rangsunvigit, P.; Chavadej, S.; Gulari, E. "Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products", Chemical Engineering Journal, Volume 97, Issues 2-3, Pages 241-248 (2004)
- Ohno T., Sarukawa K., and Matsumura M., "Crystal Faces of Rutile and Anatase TiO2 Particles and Their Roles in Photocatalytic Reactions", New. J. Chem., Chemistry, 26, 1167-1170(2002)
- Phillips, L.A.; Raupp, G.B., "Infrared spectroscopic investigation of gas-solid heterogeneous photocatalytic oxidation of trichloroethylene" Journal of Molecular Catalysis, Vol.77, Issue 3, Pages 297-311 (1992)
- Pourbaix, M.; "Atlas of Electrochemical Equilibria in Aqueous Solutions". 2nd Edition. Houston, TX, USA: National Association of Corrosion Engineers, p384 - 398. (1974)
- Peral J. and Ollis. D.F. "Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation" Journal of Catalysis, Volume 136, Issue 2, Pages 554-565 (1992)
- Raupp G.B. and Junio T.C.. "Photocatalytic oxidation of oxygenated air toxics" Applied Surface Science, Vol.72, Issue 4, pp 321-327 (1993)

Sang, B.K. and Sung, C.H. "Kinetic study for photocatalytic degradation

of volatile organic compounds in air using thin film TiO2 photocatalyst", Applied Catalysis B: Environmental, 35, 305-315 (2002)

- Sen, U.; Mahanty,S.; Roy,S.; Heintz,O.; Bourgeois S. and Chaumont
 D., "Investigation on sol–gel synthesized Ag-doped TiO2 cermet thin films, Thin Solid Films", Vol. 474, Issues 1-2, Pages 245-249(2005)
- Shaw, S.J.;"Introduction to colloid and surface chemistry" 4th edition, Butterworth - Heinemann(1992)
- Shen, J.; Shan, W.; Zhang, Y.; Du, J.; Xu, H.; Fan, K.; Shen, W.; Tang, Y.; "Gas-phase selective oxidation of alcohols: In situ electrolytic nano-silver/zeolite film/copper grid catalyst"Journal of Catalysis, Volume 237, Issue 1, Pages 94-101 (2006)
- Vorontsov, A.V., Savinov, E.N., Barannik, G.B., Troitsky, V.N., Parmon, V.N., "Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2", Catalysis Today, Vol. 39, 207-218 (1997)
- Yu, J.; Xiong, J.; Cheng, B.; Liu, S.; "Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity", Applied Catalysis B: Environmental 60,211 – 221 (2005)
- Yu, H.; Zhang, K.; and Rossi, C.; "Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst" Journal of Photochemistry and Photobiology A: Chemistry, Volume 188, Issue 1, Pages 65-73 (2007)

Zhang,L.; Yu, J.C.; "A simple approach to reactivate silver-coated

titanium dioxide photocatalyst"Catalysis Communications, Volume 6, Issue 10, Pages 684-687(2005)

- Zhang, L.; Yu, J.C.; Yip, H. Y.; Li, Q.; Kwong, K. W.; Xu, A.W. and Wong P.K., "Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated TiO2 with Enhanced Photocatalytic and Bactericidal Activities", Langmuir, 19, pp 10372 – 10380(2003)
- Zhao J. and Yang X., "Photocatalytic oxidation for indoor air purification: a literature review"Building and Environment, Volume 38, Issue 5, May 2003, Pages 645-654(2003)
- Zuo, G.M.; Cheng, Z.X.; Chen, H.; Li G.W. and Miao Ti.," Study on photocatalytic degradation of several volatile organic compounds" Journal of Hazardous Materials, Volume 128, Issues 2-3, Pages 158-163(2006)

高濂、鄭珊、張青紅,"奈米光觸媒"五南(2004)

高濂、孫靜、劉陽橋, "奈米粉體的分散及表面改性/Nano powder dispersion and surface modification" 五南(2005)

林俊一,"反應工程學(化工動力學)" 文京(1988)

- 王世敏、許祖勛、傅晶,"奈米材料原理與製備/Nanomaterial science and processing technology"五南(2004)
- 施周、張文輝,"環境奈米技術/Nano Technology for Environment Protection"五南(2006)
- 楊雅葳,交通大學環境工程研究所"以氮摻雜之改質二氧化鈦探討觸 媒性質與光催化效率之相關性" (2003)
- 曾郁茗,交通大學環境工程研究所"以含氮氯体於常溫常壓電漿輔助 程序製造可見光及紫外光觸媒研究"(2005)

行政院環境保護署,「特性行業揮發性有機物污染檢測及污染物特性

計畫書」, EPA-91FA12-03-A220(2002)

張書豪,張木彬,「科學園區空氣污染排放特性之探討」,國立中央大學

環境工程學刊,第六期,215(1999)

白曛綾,賴慶智,林育旨,康育豪,李谷蘭,曾映棠,劉政彰,陳建志,張國財,

劉惠綺,楊德志,「新竹科學園區半導體及光電製造業空氣污染防

制設施績效提升輔導」,國科會科學工業園區管理局(2001) 蘇茂豐,「國內半導體製造業及光電業之產業現況、製程廢棄污染來

源與排放特性」,經濟部環境技術 e 報,第三期 (2003)

林育旨、白曛綾、張豐堂,"半導體及光電產業現行揮發性有機廢氣

控制設備之選用評估",工業污染防治季刊 (2004)

1276 JCPDS-ICDD Copyright (c) 1993 PDF-2 Sets 1-43 database	Rad.	# 1.5405	6 Quality	
	2-theta	Int.	. h k	1
nio -		1		
2	27 446	100	1 1	٥
21 000 MWA	36 085	50	ĩo	1
jtanium Oxide	39 187	8	2 0	0
	41 225	25	1 1	l
utile, syn	44.050	18.5.4	2 1	0
	i I			
ad: CuKal Landa: 1.54056 Filter. Bold. CuP	54.322	60	12 1	1
Autott: Int: Dillacometer 1/1069	56.640	20 1	22	0
ief: Nati. Bur. Stang. (U.S.) Monogi. 23, (1905)	62.740	10	0 0	2
	64.038	10	31	0
C G + B42/mm (136)	65.478	2	22	1
yys: tecragonal 5.0:172/man (100)	1	[.]		
a, 4,5933 D: C: Z: 2 mp:	69.008	20	з о	1
	69.788	12 -	1 1	2
	1 72.408	2	31	1
Dr. 4 75 Dm. 4 73 SS/FOM: F30=107(.009,32)	[74.409]	1	[32	0]
	76.508	4	2 0	2
at 7 9467 nwB 2.6505 ev: Sign: + 2V:	1	1		
mar Dana's Sverem of Mineralogy, 7th Ed., I 575	79.819	2	2 1	. 2
	82.333	6	32	: 1
	84.258	4	4 0	
Color: Reddish brown	87.461	2	4 1	. 0
Partern taken at 25 C. Sample obtained from National Lead Co., South Amboy,	89.555	1 8	_ Z 2	2
New Jersey, USA. No impurity over 0.001%. Two other polymorphs anatase	A SHE REPORT			
(terragonal) and brookite (orthorhombic) converted to rutile on heating above	90.705	4	3 3	
100 C Oprical data on specimen from Dana's System of Mineralogy, 7th	95.272	6	4	i 1.
rd I 555. Opaque mineral optical data on specimen from Sweden:	96.014	6	3	
R3R1=20.3. Disp.=Std., VHN100=1132-1187, Ref.: IMA Commission on Ore	97.173	4	4	2 11
Microscopy QDF. Pattern reviewed by Syvinski, W., McCarthy, G., North Dakota	[[98.511]	<1	[<u>3</u> .) L
State University, Fargo, North Dakota, USA, ICDD Grant-in-Aid (1990)				
Agrees well with experimental and calculated patterns. Additional weak				
reflections [indicated by brackets] were observed. O2Ti type. Rutile group.	1	4. 4		
rutile subgroup. Also called: titania. W used as internal standard. PSC:	1	4 13		
the Validated by calculated pattern. Mwt: 79.90. Volume(CD): 62.43.	l.	1 • J		

2-theta	Int.	h	k	1] 2	2-theta	Int	. ['n	ĸ	1		1	2-theta	ļI	nt.			h k	1
						20 054	A	-+	2	1	3		ī	140.044	i i	12		s	2	1
105.095	2	°	4	1		20.054				2	1	7	1	143 107	1	2 1	32	4	4	0
106.015	2	1	0	3	1 3	122.783	0			-	-		- 1	100 000	1			5	٦	0
109.402	21	1 .	1	3	1	123.655	8	1	3	. ف	2		- !	700.000	4	. 4		-	4	: 18 7 1 - 1
116.222	4	4	0	2	1 :	131.841	6	1	4	Ż	2		t.		1					
117 577	i 4 i	5	1	a	Ē.	136.541	8	1	3	0	З	33	1		1	2				

				copyergine in										
•••								1	2-theta	Int.		h	k	1
2					A.			i i		++				
-								ł	25 477	60		1	1	n ·
Titanium	Oxide							1	31 463	100 1		1	1	ĩ
								ł	32 545	1 40 1		0	2	n
Tilankit	te. svn							i	36 649	30 1		0	0	2
									17.506	38-1	-	0	2	ĩ
ad: CuKa	a Lan	nbda: 1.54	118	Filter	: N1	d	sp: D.S.	-114.5		1		•		
utoff:	Int	: Visual		I/Icor			1	1	39.818	20		12	0	0
ef: Bend	deliani et	al., Geod	chem. In	t., 3 387 (1	966)			i	41.947	30		1	0	2
								i	42.653	60		1	2	1
								••••••	45.401	60		1	1	2
ys: Orth	horhombic		S.G. : P	bcn (60)					49.785	40 1		0	2	2
: 4.531	1	5.498		c: 4.900	A :		C:	1		F				
41	E	3 :		C: .	Z :	[4]	mp:	1	52.292.	40		2	2	0
lef: Ibic	d.						1120420	Ĥ	53.989	60		1	2	2
								i	55.186	1 100		2	0	2
X: 4.3	5 Dm :		SS/FOM:	F30=14(.042	. 50)			1	55.805	1 100		2	2	1
									62.726	60		1	1	3
ia :	nw£	9 îs	ey	:	Sign: -	2V: 3	16(1) deg	g.		1. 1				
ef: Will	ligallis, A	A. et al.,	Neues	Jahrb. Miner	al., Mona	tsh., 15	1 (1983)	1	65.545	20		2	2	2
														1000
								ĺ. ĺ	66.546	40 1		0	2	3
	•••••••••••••								66.546 66.978	40		0 3	2	3
olor: B.	lack-brown	·····;···					••••••		66.546 66.978 68.196	40 60 20		0 3 0	2 1 4	3 1 0
olor: B. AS no.:	lack-brown 13463-67-1), Patter	rn taken	at 40-120 k	bar and 4	00-1500 (C. PbO2,	type.	66.546 66.978 68.196 71.214	40 60 20 40		0 3 0 0	2 1 4 4	3 1 0 . 1
olor: B AS no.: olumbit	lack-brown 13463-67- e group, is	7. Patter ciolite su	rn taken ibgroup.	at 40-120 k C.D. Cell:	bar and 4 a=4.900,	00-1500 (b=5.498	C. PbO2 , c=4.53	type. 1,	66.546 66.978 68.196 71.214	40 60 20 40		0 3 0 0	2 1 4 4	3 1 0 .1
olor: 8. AS no.: olumbite /b-0.89	lack-brown 13463-67-7 e group, is 12, c/b=0.8	7. Patter Golite su 3241, S.G.	rn taken ibgroup. .=Pnab (at 40-120 k C.D. Cell: 60). PSC: o	bar and 4 a=4.900, P12. To	00-1500 (b=5.498 replace :	C. PbO2 , c=4.53 23-1446	type. 1, and	66.546 66.978 68.195 71.214	40 60 20 40 20		0 3 0 0 3	2 1 4 4 2	3 1 0 .1
olor: 8 AS no.: olumbit /b-0.89 5-584.	lack-brown 13463-67-7 e group, ix 12, c/b=0.8 Mwt: 79.90	7. Patter Golite su 2241, S.G. J. Volume	rn taken ibgroup. .=Pnab (e[CD]: 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07.	bar and 4 a=4.900, P12. To	00-1500 (b=5.498 replace (C. PbO2 , c=4.53 23-1446 ;	type. 1, and	66.546 66.978 68.196 71.214 74.130 75.939	40 60 20 40 20 10		0 3 0 0 3 3	2 1 4 4 2 1	3 9 .1 1 2
Color: 8 CAS no.: Columbite (/b=0.89) (5-584	iack-brown 13463-67- e group, is 12, c/b=0.8 Mwt: 79.90	7. Patten Golite su 3241, S.G. J. Volume	rn taken ibgroup. .=Pnab (e(CD): 1	at 40-120 k C.D. Cell: 60). PSC: c 22.07.	bar and 4 a=4.900, P12. To	00-1500 c b=5.498 replace :	C. PbO2 , c=4.53 23-1446 -	Lype.	66.546 66.978 68.196 71.214 74.130 75.939 76.075	40 60 20 40 20 10 10		0 3 0 3 3 3 0	2 4 4 2 1 0	3 9 1 1 2 4
olor: 8 AS no.: olumbic /b=0.89 5-584.	iack-brown 13463-67- e group, is 12, c/b=0.8 Mwt: 79.90	7. Patter kiolite su 3241, S.G. J. Volume	rn taken ibgroup. .=Pnab (e[CD]: 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07.	bar and 4 a=4.900, P12. To	00-1500 (b=5.498 replace :	C. PbO2 , c=4.53 23-1446 ;	type. l, and	66.546 66.978 68.196 71.214 74.130 75.939 76.075 80.431	40 60 20 40 20 10 10 10		0 3 0 3 3 0 2	2 1 4 4 2 1 0 2	3 0 1 1 2 4 3
olor: 8. AS no.: olumbic /b-0.89) 5-584.	lack-brown 13463-67- e group, ij 12, c/b=0.8 Mwt: 79.90	7. Patter Kiolite su 3241, S.G. J. Volume	rn taken ibgroup. .=Pnab (e(CD): 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07.	bar and 4 a=4.900, P12. To	00-1500 (b=5.498 replace :	C. PbO2 , c=4.53 23-1446 ;	type. 1, and	66.546 66.978 58.196 71.214 74.130 75.939 78.075 80.431 81.503	40 60 20 40 20 10 10 10 10 10 10 10		0 3 0 3 3 0 2 1	2 4 4 2 1 0 2 3	3 0 1 2 4 3 3
Color: 8. CAS no.: Columbit /b-0.89 5-584	lack-brown 13463-67- e group, ij 12, c/b=0.8 Mwt: 79.90	7. Patter kiolite su 3241, S.G. J. Volume	rn taken ibgroup. .=Pnab (e(CD): 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07.	bar and 4 a=4.900, P12. To	00-1500 (b=5.498 replace :	C. PbO2 , c=4.53 23-1446 ;	type. 1, and	66.546 66.978. 68.196 71.214 74.130 75.939 78.075 80.431 81.503	40 60 20 40 20 10 10 10 10 10 10		0 3 0 3 3 0 2 1	2 4 4 2 1 0 2 3	3 9 - 1 2 4 3 3
Clor: 8. XS no.: clumbit /b-0.89 5-584.	lack-brown 13463-67- e group, ij 12. c/b=0.8 Mwt: 79.90	7. Patten Kiolite su 3241, S.G. J. Volume	rn taken ibgroup. .=Pnab (e(CD): 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07.	bar and 4 a=4.900, P12. To	00-1500 (b=5.498 replace :	C. PbO2 , c=4.53 23-1446 ;	type. 1, and	66.546 66.978 68.196 71.214 74.130 75.939 78.075 80.431 81.503	40 60 20 40 10 10 10 10 10		0 3 0 3 3 0 2 1	2 4 4 2 1 0 2 3	3 0 1 2 4 3 3
Color: 8. 7AS no.: Solumbite (/b=0.89) (5-584.	iack-brown 13463-67- e group, is 12. c/b=0.8 Mwt: 79.90	7. Patten Riolite su 3241, S.G. 3. Volume h k	n taken ibgroup. -Pnab (e(CD): 1	at 40-120 k C.D. Cell: 601. PSC: o 22.07.	bar and 4 a=4.900, P12. To	00-1500 0 b=5.498 replace :	C. PbO2, c=4.53 23-1446	type. 1, and	66.546 66.978 58.196 71.214 74.130 75.939 78.075 80.431 81.503	40 60 20 40 20 10 10 10 10 10 10	h k 1	0 3 0 3 3 0 2 1	2 4 4 2 1 0 2 3	3 0 1 2 4 3 3
Color: B. CAS no.: Olumbit (/b-0.89) (5-584.	lack-brown 13463-67- e group, ij 12, c/b=0.8 Mwt: 79.90	7. Patter kiolite su 2241, S.G. J. Volume h k	rn taken ibgroup. =Pnab (a(CD): 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07.	bar and 4 a=4.900, P12. To Int.	00-1500 (b=5.498 replace : h	C. PbO2, , c=4.53 23-1446 -	type. 1, and 2-theta	66.546 66.978 58.196 71.214 74.130 75.939 78.075 80.431 81.503	40 60 20 40 10 10 10 10 10 10	h k 1	0300	2 4 4 2 1 0 2 3	3 0 1 2 4 3 3
color: 8. 7.85 no.: columbite /b=0.89 5-584. 5-584.	<pre>lack -brown 13463-67-* e group, is 12, c/b=0.8 Mwt: 79.9(</pre>	7. Patter Nolite su 3241, S.G. J. Volume h k 3 3	rn taken ibgroup. -Pnab (e(CD): 1 1 0	at 40-120 k C.D. Cell: 60). PSC: 0 22.07.	bar and 4 a=4.900, P12. To Int. Int.	00-1500 0 b=5.498 replace : h	C. Pb02, c=4.53 23-1446 a k 1 2 2	type. 1, and 2-theta 131.446	66.546 66.978 68.196 71.214 74.130 75.939 78.075 80.431 81.503	40 60 20 40 40 10 10 10 10 10 10 10 10 10 1	h k 1	0 3 0 3 3 0 2 1	2 4 4 2 1 0 2 3	3 0 1 2 4 3 3
Color: B. AS no.: /b-0.89: 5-584. -theta 2.694 4.739	<pre>iack -brown 13463-67-* e group, is 12, c/b=0.4 Mwt: 79.90 Int. { 10 10 10 10 10 10 10 </pre>	7. Patter Kiolite su 3241. S.G. J. Volume h k 3 3 2 4	rn taken ibgroup. -Pnab (e(CD): 1 1 0 1	at 40-120 k C.D. Cell: 601. PSC: o 22.07. 2-theta 106.395 107.525	bar and 4 a=4.900, P12. To Int. 10 20	00-1500 (b=5.498 replace : h 4 2	C. Pb02, c=4.53 23-1446 k 1 2 2 4 3	type. 1, and 2-theta 131.448 140.665	66.546 66.978. 68.196 71.214 74.130 75.339 78.075 80.431 81.503	40 60 20 40 10 10 10 10 10 10 10 3	h k 1	0 3 0 3 3 0 2 1	2 4 4 2 1 0 2 3	3 1 0 1 2 4 3 3
Color: B. CAS no.: Columbitu (b-0.99) 5-584. 	lack-brown 13463-67- e group, ij 12, c/b=0.8 Mwt: 79.90 1, Int. 1 1 Int. 1 1 0 1 20 1 20 1	7. Patter dolite su 2241, S.G. J. Volume h k 3 3 2 4 4 0	rn taken ibgroup. =Pnab (e(CD): 1 1 1 0 1 0	at 40-120 k C.D. Cell: 60). PSC: o 22.07. 22.07. 22-theta 106.395 107.525 109.026	bar and 4 a=4.900, P12. To Int. 10 20 20	00-1500 (b=5.498 replace : h h 4 2 4	C. Pb02, c=4.53; 23-1446 4 k 1 2 2 4 3 3 1	type. 1, and 2-theta 131.448 140.655 142.687	66.546 66.978. 58.196 71.214 74.130 75.939 76.075 80.431 81.503 	40 60 20 40 10 10 10 10 10 10 10 10 10 1	h k 1	0 3 0 3 3 0 2 1 1 4 5	2 4 4 2 1 0 2 3	3 1 0 1 2 4 3 3 1 1 2 4 3 3
<pre>color: B. //S no.: /b-0.99: 5-584. </pre>	iack-brown 13463-67- e group, is 12, c/b=0.8 Mwt: 79.90 Mwt: 79.90 12, c/b=0.8 Mwt: 20.90 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	7. Patter dolite su 3241, S.G. J. Volume h k 3 3 2 4 4 0 0 0 2	cn taken ibgroup. -Pnab ((CD): 1 1 0 1 0 4	at 40-120 k C.D. Cell: 60). PSC: 0 22.07. 2-theta 106.395 107.525 109.026 110.059	bar and 4 a=4.900, pl2. To pl2. To l Int. l 10 20 20 20 20 20	00-1500 (b=5.498 replace : h h 4 2 4 3	C. Pb02, c=4.53 23-1446 k 1 2 2 4 3 3 1 4 2	type. 1, and 2-theta 131.448 140.665 142.687 145.757	66.546 66.978. 58.196 71.214 74.130 75.939 76.075 80.431 81.503 1.503	40 50 20 40 10 10 10 10 10 10 10 10 10 1	h k 1 3 1 5	0 3 0 0 2 1 4 5 4	2 1 4 2 1 0 2 3	3 1 0 1 2 4 3 3 3
<pre>olor: 8. AS no.: olumbit. /b-0.89; 5-584. -thetą 2.694 4.739 5.759 7.002 0.247</pre>	lack-brown 13463-67- e group, is 12, c/b=0.8 Mwt: 79.90 Mwt: 79.90 1 Int. 1 10 1 1 20 1 20 1 20 1 20 1 20 1	7. Patter kiolite su 3241, S.G. J. Volume h k 3 3 2 4 4 0 0 2 3 1	n taken -Pnab ((CD): 1 1 0 1 0 4 3	at 40-120 k C.D. Cell: 601. PSC: o 22.07. 2-theta 106.395 107.525 109.026 110.059 118.779	bar and 4 a-4.900, p12. To p12. To i Int. i 10 j 20	00-1500 (b=5.498 replace : h 4 2 4 3 1	C. Pb02, c=4.53 23-1446 k 1 2 2 4 3 3 1 4 2 5 3	type. 1, and 2-theta 131.448 140.655 142.687 146.655	66.546 66.978. 68.196 71.214 74.130 75.339 78.075 80.431 81.503 	40 60 20 40 10 10 10 10 10 10 10 10 10 1	h k 1 3 1 5 0	0 3 0 0 2 1 4 5 4 6	2 1 4 2 1 0 2 3	3 1 9 1 2 4 3 3
olor: 8. AS no.: olumbic. /b-0.89: 5-584. - -thetą 2.694 4.739 7.002 0.247	lack -brown 13463-67- e group, ij 12, c/b-0.1 Mwt: 79.90 12, c/b-0.1 Mwt: 79.90 12, c/b-0.1 12, c/b-0.1 13, c/b-0.1 14, c/b-0.	7. Patter iolite sustained 2241, S.G. J. Volume h k 3 3 2 4 4 0 0 2 3 1	rn taken ibgroup. = Pnab (e (CD) : 1 1 0 1 0 4 3	at 40-120 k C.D. Cell: 60). PSC: o 22.07. 22.07. 22-theta 107.525 109.026 110.059 118.779	bar and 4 a=4.900, P12. To Int. 10 20 20 20 20 20	00-1500 0 b=5.498 replace : h 4 2 4 3 1	C. Pb02, c=4.53 23-1446 c k 1 2 2 4 3 1 1 4 2 5 3	type. 1, and 2-theta 131.448 140.655 142.687 145.757 146.695	66.546 66.978. 58.196 71.214 74.130 75.939 76.075 80.431 81.503 	40 60 20 40 10 10 10 10 10 10 10 10 10 1	h k 1 3 1 5 0	0 3 0 0 2 1 4 5 4 6	2 1 4 2 1 0 2 3	3 1 0 1 2 4 3 3
olor: 8. AS no.: olumbic: /b-0.99: 5-584. - - -theta 2.694 4.739 5.759 7.002 0.247 1.212	iack -brown 13463-67- e group, is 12, c/b=0.1 Mwt: 79.90 Mwt: 79.90 Int. 10 [20] 20] 20] 20] 20] 20]	7. Patter ciolite su 3241, S.G. . Volume h k 3 3 2 4 4 0 0 2 2 3 1 2 0	cn taken ibgroup. -Pnab ((CD): 1 (CD): 1 1 0 1 0 4 3 4	at 40-120 k C.D. Cell: 60). PSC: 0 22.07. 22.07. 22-theta 106.395 107.525 109.026 110.059 118.779	bar and 4 a=4.900, pl2. To pl2. To i lnt. i 20 i 20 i 20 i 20 i 20 i 20 i 20 i 3 20 i 3 20 i 3 20 i 3 20 i 3 40 i 4 40 i 10 10 i 100 i 100 i 100 i 100 i 100	00-1500 0 b=5.498 replace : h 4 2 4 3 1	C. Pb02, c=4.53 23-1446 k 1 2 2 4 3 3 1 4 2 5 3 2 3	type. 1, and 2-theta 131.448 140.665 142.687 145.757 146.695 149.708	66.546 66.978. 58.196 71.214 74.130 75.939 76.075 80.431 81.503 1.503 1.503 1.503	40 60 20 20 10 10 10 10 10 1	h k 1 3 1 5 0	0 3 0 2 1 4 5 4 6 5	2 1 4 2 1 0 2 3	3 1 0 1 2 4 3 3
Color: B. XS no.: Solumbit. (/b-0.99) 5-584. 	lack-brown 13463-67- e group, is 12, c/b=0.8 Mwt: 79.9(Mwt: 79.9(12, c/b=0.8 Mwt: 79.9(12, c/b=0.8 Mwt: 79.9(12, c/b=0.8 10, c/b=0.810, c/b=0.810, c/b=0.8 10, c/b=0.810, c/b=0.810, c/b=0.8 10, c/b=0.810, c/b=0.81	7. Patter kiolite su 3241, S.G. J. Volume h k 3 3 2 4 4 0 0 2 3 1 2 1 2 0 0 4	rn taken ibgroup. -Pnab ([CD]: 1 1 0 1 0 4 3 4 3	at 40-120 k C.D. Cell: 601. PSC: o 22.07. 2-theta 106.395 107.525 109.026 110.059 118.779 121.697 121.697	bar and 4 a-4.900, p12. To p12. To l Int. l 10 l 20 l 40 l 20 l 20	00-1500 (b=5.498 replace : h 4 2 4 3 1 1 4 3	C. Pb02, c=4.53; 23-1446 + k 1 2 2 4 3 3 1 4 2 5 3 2 3 5 1	type. 1, and 2-theta 131.448 140.665 142.687 145.655 145.655 146.655 149.708 150.791	66.546 66.978. 68.196 71.214 74.130 75.339 76.075 80.431. 81.503 Int. 20	40 60 20 40 10 10 10 10 10 10 10 10 10 1	h k 1 3 5 0 4	0 3 0 2 1 4 5 4 6 5 4	2 1 4 2 1 0 2 3	3 1 0 1 2 4 3 3 3
Color: B. CAS no.: Solumbic: (b-0.89) 5-584. C-theta 12.694 14.739 15.759 17.002 10.247 11.212 14.143 15.691	lack -brown 13463-67- e group, is 12. c/b=0.8 Mwt: 79.90 12. c/b=0.8 Mwt: 79.90 12. c/b=0.8 12. c/b=0.8 13. c/b=0.8 14. c/b=0	7. Patter ciolite sustained iolite sustained iolite sustained by Volume h k 3 3 2 4 4 0 0 2 3 1 2 0 0 4 1 5	rn taken ibgroup. =Pnab (e(CD): 1 1 0 1 0 4 3 4 3 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07. 22.07. 22-theta 106.395 107.525 109.026 110.059 118.779 121.697 123.362 126.923	bar and 4 a=4.900, P12. To P12. To I Int. 1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 1 2 0 1 2 0 0 1 2 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0	00-1500 0 b=5.498 replace : h 4 2 4 3 1 4 3 4	C. Pb02, c=4.53 23-1446 d k 1 2 2 4 3 1 4 2 5 3 2 3 5 1 4 1	type. 1, and 2-theta 131.448 140.665 142.687 145.757 146.695 149.708 150.791 157.774	66.546 66.978. 58.196 71.214 74.130 75.939 76.075 80.431 81.503 1.		h k 1 3 1 5 0 4	0 3 0 2 1 4 5 4 6 5 4	2 1 4 2 1 0 2 3	3 1 0 1 2 4 3 3
Color: B. CAS no.: Solumbic: A/b-0.89 15-584. theta 12.694 14.739 15.759 15.759 15.759 15.759 15.759 15.2247 11.212 14.143 15.091 13.16	iack -brown 13463-67- e group, ij 12. c/b=0.8 Mwt: 79.90 Mwt: 79.90 10.1 10.1 20.1	 Patter Patter Rall, S. G. Volume k k 3 3 2 4 4 0 0 2 2 3 1 2 0 0 4 1 5 3 4 	cn taken ibgroup. =Pnab (=(CD): 1 1 0 1 0 4 3 4 3 1 1	at 40-120 k C.D. Cell: 60). PSC: o 22.07. 2-theta 105.395 107.525 109.026 110.059 118.779 121.697 123.362 126.923 128.556	bar and 4 a=4.900, P12. To P12. To 10 20 20 20 20 20 20 20 2	00-1500 b=5.498 replace : h 4 2 4 3 1 4 3.4 4 2 4 3.4 4 2 4 3.4 4 2 4 3.4 5 4 4 3.4 5 1 1	<pre>C. Pb02, c=4.53 23-1446 4 k 1 2 2 4 3 3 1 4 2 5 3 2 3 5 1 4 1 2 5 3</pre>	type. 1, and 2-theta 131.448 140.665 142.687 145.757 146.695 149.708 150.791 157.774 160.992	66.546 66.978. 58.196 71.214 74.130 75.939 76.075 80.431 81.503	40 60 20 40 10 10 10 10 10 10 10 10 10 1	h k 1 3 1 5 0 4 2	0 3 0 2 1 4 5 4 4 6 5 5 4 4 3	2 1 4 2 1 0 2 3	3 1 0 1 2 4 3 3

man

							2-theta	Int.		h	k	1
10	1983											
3							Ì.	[]				
4							25.281	100		1	0	1
itanium Ovid	le .						36.946	10		1	0	з
ICanton Okto			10				37.800	20]		0	0	4
					x.		38.575	10		1	l	2 .
natase, syn	Second and second						- 48.049	35		2	0	0
	Lambda	Filter			1-50:			أسر				
.au: 	Januua:	I/Icor:	3.3	15505	100000000000000000000000000000000000000		53.890	20		1	0	5
ULOIL:	Inc.	E Monogr 25 (1969)					55.060	20		12	1	1
CEL: NACI, BU	ir, acana. (U	(1010gt. 25) (1905)					62.119	4	12	z	1	3
							62.688	1 14		2	0	4
		S.G. : T41/amd (141)					68.760	6		1	1	6
sys: letragor	h.	5.G	Α.		C	2.5134	i i	1				
1: 3. /854	0:	C. 7.5107	7.	4		D :	70.309	6		2	2	0
A.:	в:	ч.	u ,		10.00	7 1700	74.029	1 <2		1	D	7
et: Ibid.	14						75.029	1 10		2	.1	5
		CC (POM. 230-74/ 012	351				76.017	4		3	0	1
0x: 3.89	- L/M :	35/104: 130-14(.012)					80.725	<2		O	O	8.
			Sign.	27.				1				
ea :	nwB:	ey:	orgin.	1000			82.136	1 2		3	D	3
lef:							82.659	6		2	.2	4
							83.146	4		3	1	2
							93.217	1 2	1	2	1	7
Color: Color	less	A State A Sugar Mar	ional toa	4 60	Sout	h Amboy	94.178	1 4		3	0	5
Pattern take	nat 25 C. S	ample obtained trom Nac	hunchite	lortho	rhomb	ic) are	10 11		12.			
New Jersey,	USA. Anatase	and another polymorph	BIOOKILE	Oatto	vn va	viewed by	95 139	4		' 3	2	1
converted to	rutile (tetr	agonal) by heating abov	e roo c.	Fatte	Nort	h Dakota	98.315	1 2	i	1	D	9
Kolzer, J.,	McCarthy, G.,	North Dakota State Uni	versicy,	nral a	nd	() paraca,	99,801	2		2	0	8
USA, ICDD Gr	ant-in-Aid (1	(990). Agrees well with	experiment	u cale		d nattern	101.217	1 2	i.	3	2	3
calculated p	atterns. 021	i type. PSC: CI12. Va	TTGaceo D	y care	urace	a Parcorn.	107.444	4	i	3	1	6
	Rolume CDI.	1 46 41					the second second second	100 XXXX	17. C			

2-theta Int.	h k 1	2-theta Int.1	h k l	2-theta	Int.	h k l
100 050 L 4 L	4 0 0	120.099 2	2 2 8	1 137.384	4	4 1 5
112 835 42	307	121.720 <2	4 1 3	143.978	2	309
113.857 2	3 2 5	122.331 2	4 0 4	150.028	4	4 2 4
114.904 2	4 1 1	131.029 2	4 2 0	152.622	2	0 0 12
118.434 4	219	135.991 <2	3 2 7	1		000000000000000000000000000000000000000

					••••				2 that-	Tur				• ,
тіо								[2-cneca	1 INC.	 +	h	к.	4
z											ł			
Titanium	Ovida								25.339	100		1	2	0
r r catri ula	OXIDE						-		25.689	80		1	1	1
Brookite									30.807	90	ł	1	z	1
/							×1		32.790	4	<u>.</u>	2	0	0
Rad - CuKa	al I.	ambda 1 5405	6	ilter. Ni					36.251	5.	lan. L	0	1	2
Suroff.	т. D	nt: Diffracto	weter T	/Icor: NI		-sp:			10 000			1.	1200	ал 1923 —
Ref: Nar.	L. Bur S	rand (U.S.)	Monogr 25	3 57 (19264)					37.296	18		2	0	1
			nonoge, es, .	3 37 (1)941					37.933	6		1	\$	1
									38.370	4	1	4	2	0
Sys: Orth	aorhombic	S.	G : Pcab (61)	1					30.373			2	1	1
a: 5.4558	3	b: 9.1919	c: 5.14	429	A: 0.5942	C: 0	5601		55.204				-	
N :		в:	C:		Z: 8	map :			39,966	8	i i	1		2
Ref: Ibio	d .		1.11		YONNA ATT			1	40.151	1 18	i i	0	2	2
									42.339	16	ii.	2	2	ĩ
DK: 4.12	2 Dm :	4.14 SS	/FOM: F30-58	(.012,45)				1	46.071	16	1	0	3	2
• • • • •				••			•		48.011	30	ì	2	3	1
a: 2.58	31 nº	v8: 2.5843	ey: 2.7004	4 Sign	: + 2V:	-28 deg	2	1			ì	_	-	-
Ref: Dana	a's System	n of Mineralo	gy, 7th Ed.,	I 588 (194-	4]	-		i	49.171	18	i i	1	3	2
								i	49.692	1 3	i i	2	1	2
								·	52.011	1 3	i i	2	4	0
Color: B	lack '							1	54.203	20	Î.	3	2	0
Pattern t	caken at	25 C. Specim	ien from Magne	et Cove, Arl	kansas, USA	USNM :	97661).	1	55.233	30	1	2	4	1
Spectrog	caphic and	1ysis: 0.1-1	0¥ Si; 0.01	-0.1% each d	of Al, Fe,	and V;	1	1	2.5	1	£ *			
0.001-0.0)1% Mg. /	Niobian brook	ite from Moza	ambique [Ch	emical anal	ysis (wi	t.%):	1	55.710	1 . 5	1	1	5	1
F102 80.1	7; Nb205	4.1; FeO 5.5	3]; Carvalho	et al., Re	v. Cien. C	eol. Ser	τ.	1	57.174	13	J	1	1	3
A, 7 61	(1974) re	ports an iden	tical pattern	n. Intensi	ties verifi	ed by		1	57.683	2		2	3	2
calculate	ad pattern	 02Ti type 	. PSC: 0P24	. To replac	ce 16-617 a	nd valid	dated	1	59.990	7	r –	1	2	з
by calcul	lated path	iern. Mwt: 7	9.90. Volume	e [CD] + 257.1	53.			1	62.064	10		0	5	2
			·····								1.8			
				۰,										
2-theta	Int.	h k l	2-ti	heta Int.	1	kl -	2	-theta	Int.		h k 1			1
53.063	4	160	71.9	929 2	2	3 3	9	5.989	2		2 8 1			1
53.414	j 9	3 1 2	73.6	646 2	0	04	9	7.606	4		3 2 4		1	i
63.642	12	2 5 1	76.9	946 10	0	2 4	1	02.556	2	8	1 2 5		1	i
64.103	12	2 Q 3	79.0	022 2	4	31	1	03.198	4	3 7	2, 2	5	4	i
	6	1 3 3	79.3	281 1	1	2 4				2010 - 194 194		10220		
64.601	1 10 1	213	83.6	640 4	3	33			1					
64.601 65.001	1 10 1		1 84 -	285 2	0	8 0			1 i				1	i
64.601 65.001 55.874	9	161	104.4											
64.601 55.001 55.874 \$8.766	9	161 400	84.	721 2	4	4 1	e j		i i					i i
54.501 55.001 55.874 58.766 70.430	9 5 8	161 400 332	84.	721 2 740 4	4 0	41 44	× Ì			R.				İ

Handbook of X-ray Photoelectron Spectroscopy

A Reference Book of Standard Spectra r Identification and Interpretation of XPS Data

> by John F. Moulder William F. Stickle Peter E. Sobol Kenneth D. Bomben

> > Edited by Jill Chastain

Published by Perkin-Elmer Corporation Physical Electronics Division 6509 Flying Cloud Drive Eden Prairie, Minnesota 55344 United States of America

Titanium Ti Atomic Number 22

2p1/2

470

460 Binding Energy (eV)

2p1/2 460 2p_{3/2} 454 3s 59 3p 33

2s 561

> Perkin-Elmer Corporation Ph sical Electronics Division

X-ray Photoelectron Spectroscopy

TitaniumTiAtomic Number22

Perkin-Elmer Corporation Physical Electronics Division

73

Silver Ag Atomic Number 47

Perkin-Elmer Corporation Physical Electronics Division

Handbook of X-ray Photoe ec ro

С Carbon 6

Handbook of X-ray Photoelectron Spectroscopy

Atomic Number

X-ray Photoelectron Spectroscopy

Perkin-Elmer Corporation Physical Electronics Division

41

Handbook of X-ray Photoelectron Spectroscopy

Oxygen O Atomic Number 8

Handbook of X-ray Photoelectron Spectroscopy

Oxygen O Atomic Number 8

Physical Electronics Division

圖:銀之 Pourbaix 熱力學平衡氧化物種圖(Pourbaix,1974)

圖:銅之 Pourbaix 熱力學平衡氧化物種圖(Pourbaix,1974)

項目/metal	Ag	Cu
特性	吸附氧氣,釋出銀離子,殺菌	空軌域,捕捉電子,殺菌
應用	殺菌,有機物分解	可見光,殺菌,有機物分解
屬性	貴重金屬	過渡金屬
可填充最低軌域	5s4d5p	4s3d4p
氧化態	+1 , +2	+1 , +2
導電度	$6.3 \times 10^7 \text{S/m}$	5.8 $\times 10^7$ S/m
電阻率(20 ℃)	1.59×10 ⁻⁶ 歐・米	1.7241×10 ⁻⁶ 歐・米
標準還原電位	0.76mV	0.337mV
熱導度	418 W/m • s(100°C)	
熔點(℃)	909	900
表面能(mJ/m2)	1140	1750
藥品級成本	120NT/g	12.8NT/g

表: Ag 與 Cu 之物化特性

