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地下水二維污染歷程重建：未來連續正規化法 
 

研究生：王毓婷               指導教授：葉弘德 

國立交通大學   環境工程研究所 

中  文  摘  要 

當一個污染源釋放污染物進入地下水中，經由傳流及延散作

用，會造成地下水污染。當一個場址發現地下水有污染，且其已知

污染源位置上曾更替過數個工廠或工廠的經營者時，污染源釋放歷

程的重建，可以幫助我們得知地下水中，污染源釋放的濃度歷程，

並可釐清各可能責任團體之責任歸屬問題。目前許多地下水污染源

歷程重建的方法，只能求得由指數函數所代表的歷程，在重建激變

性型態如三角形或階梯形的釋放歷程會產生顯著的誤差。 

本研究利用未來連續正規化法(Future-sequential regularization 

method, FSRM)，針對一個地下水的污染場址作採樣分析，結合地下

水污染傳輸控制方程式之基本解，可以重建污染釋放歷程。FSRM

可將污染傳輸方程式，由病態的問題(ill-posed problem)轉換成小康

構成問題(well-posed problem)，使分析結果滿足穩定狀態且有單一

解。我們利用在一個監測井所量得的濃度時間分佈數據，逆推過去

文獻提及的地下水二維污染案例；此外，也重建三角形及階梯形的
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釋放歷程案例。 

為了模擬現地可能之情形，本研究分析的案例，除了時間性數

據的二維面源傳輸案例，另外含水層可以為有限或無限寬度。本研

究除了分析三角及階梯型態的污染源對重建結果的影響，同時也針

對幾個問題進行探討，分別是非等間距時間的採樣數據、採樣濃度

量測誤差、及其他方法重建歷程結果之比較等。 
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Two-dimensional Groundwater Contamination 

Source Reconstruction： Future Sequential 

Regularization Method. 
 

Student：Yu-Ting Wang    Adviser：Hund-Der Yeh 

Institute of Environmental Engineering 
National Chiao-Tung University 

 

ABSTRACT 

As a site is found to have groundwater contamination, the reconstruction of the 

source release history can provide helpful forensic information to identify the 

responsible parties at a known source location since the owner of the contaminated 

source changes several times.  The objective of this study is to use a full-estimation 

technique and Future-sequential regularization method (FSRM) incorporated with a 

fundamental solution of the groundwater transport equation to recover the source 

release history of a groundwater contamination.  This method can transform the 

plume release function from the ill-posed problem into a well-posed one with a 

solution satisfying the unique and stable conditions.  A lectured two-dimensional 

(2-D) groundwater contamination case is used to assess the performance of the 

source identification.  In addition, we used two different source release functions 
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(namely the triangle function and the step function) to evaluate the effectiveness of 

FSRM in recovering the release history.     

The FSRM is capable of recovering a release history based on the concentration 

measurements sampled from a monitoring well.  With an appropriate value of 

regularization parameter, FSRM is robust in recovering the optimal release history 

in terms of the triangle or step source release function.  In order to have better 

representation to the field conditions, the problems of two dimensional plumes are 

considered to originate from an area source and the aquifer can be of finite or 

infinite width.  Besides, this thesis also investigates the problems of observation 

data with non-uniform time intervals, data with measurement errors, and 

comparisons with the solutions obtained by other inverse methods. 
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NOTATION 

aj The release strength of the plume 
bj 
B 

The measurement of the spread of the release function 
Width of the aquifer [L] 

B1 Beginning coordinate of the source in the y-direction 

B2 Ending coordinate of the source in the y-direction 

C Concentration 

∂C/∂t The change in solute concentration with time [ML-3T-1] 

C(x, y, z, t) The contaminant concentration in the groundwater [ML-3] 

Cext(xn,T) The exact concentration at location xn at time T 

Cmeas(xn,T) The measured concentration at location xn at time T 

Cin Contaminant source release function [ML-3] 

Cini The ith contaminant source release function 

D The hydraulic dispersion coefficient tensor [L2T-1] 

Dx x-component of the dispersion tensor 

Dy y-component of the dispersion tensor 

Dz z-component of the dispersion tensor 

F A kernel function defined by Eq.(3) 

hi-1 the width of ith interval 

H Depth of the aquifer [L] 

H1 Beginning coordinate of the source in the z-direction 

H2 Ending coordinate of the source in the z-direction 

k kernel function 

L1 Beginning coordinate of the source in the x-direction 

L2 Ending coordinate of the source in the x-direction 
N The numbers of recovered data 
r Regularization parameter 
s Time 

Si Second derivative at the point (xi, yi) 

t Time 

tj The release times of the plume 

T Sampling time 

u Release history 
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v Average linear velocity vector  [LT-1] 

x Longitudinal coordinate 

xi The x coordinates of the ith plume source 

xs x-coordinate of a point source 

y Transfer coordinate 
yi 

z 
The y coordinates of the ith plume source 
Vertical coordinate 

zi 

δn 
The z coordinates of the ith plume source 
The random number from a Gaussian standard population 

ε The error magnitude 

τ Time 

Δi ( )∫ −≡∆ 1

0

t

ii dsstk  

χi 

 
The characteristic function defined by χi(t) = 1 for ti-1 < t < ti, and χi(t) 
= 0 otherwise 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Recently, many soil and groundwater contamination events have been reported in 

Taiwan.  These reports reveal that people’s health may be impaired if living near the 

contaminated sites.  Therefore, an effort should be made to investigate the 

contaminant source and assess the remedial measures.  Generally speaking, 

groundwater contaminants may originate from the disposal of wastewater for various 

purposes.  All sources and causes of contamination can be classified into two 

categories: point sources and non-point sources.  Point sources, characterized by the 

presence of identifiable sources, include storage tanks, pipeline releases, and chemical 

manufacturing locations.  Non-point sources are referred to as larger-scale and more 

diffuse contamination originated from many smaller sources; for example, the 

agricultural fertilizers leaching through soil and finally affecting aquifers (Chen and 

Yeh, 2006).   

The remediation of groundwater contamination may be expensive, and the 

responsible party rather than the public should pay the costs.  In addition, the 

assessment of the remediation needs to know the total contaminant mass before 

groundwater remediation.  This information could be estimated while the source 
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release history, including the release concentration and release time, is reconstructed.   

Groundwater contamination is a water quality problem which may affect the 

utility of an aquifer.  To minimize the potential hazardous effect of the contamination, 

the contaminant concentrations for some crucial species in the aquifer must be 

rectified to the regulated acceptable levels.  The advection and dispersion are the 

main mechanisms affecting the transport of a contaminant in a groundwater flow 

system.  The recovery of a contaminant release history portrays the temporal 

distribution of the source concentration when entering the groundwater system.  The 

recovery of the release history from a known contamination source can provide 

forensic information to identify parties responsible for groundwater contamination. 

The reconstruction of contaminant release history can help us understand the 

temporal distribution of the source concentration when entering the groundwater 

system.  As a site is found to have groundwater contamination, the reconstruction of 

the source release history can provide helpful forensic information to identify the 

responsible parties at a known source location since the owner of the contaminated 

source changes several times.  Utilizing these concentration data in an inverse model 

with responsible estimates of the transport parameters can reconstruct the release 

history from the plume source. 
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1.2 Literature Review 

Groundwater transport mainly contains advection and dispersion processes, 

which are irreversible.  Therefore, modeling the contaminant transport using 

reversed time is an ill-posed problem.  The implications of this problem are 

twofold.  First, the ill-posed problem is extremely sensitive to errors in the input 

data, so small errors in the measurement of existing plume may drastically change 

the recovered source release history.  Second, the ill-posed problem results in 

unstable numerical schemes making it impossible to run transport models with 

reversed time and obtain an accurate contamination history (Skaggs and kabala, 

1994). 

Various methods were proposed in literature to solve the problem of source 

identification in the past two decades.  Atmadja and Bagtzoglou (2001) reviewed 

the methods that had been developed to identify the contaminant source location and 

recover the time-release history.  They classified the contaminant transport 

inversion methods into four categories.  They are: direct approaches, analytical 

solution and regression approaches, probabilistic and geo-statistical simulation 

approaches, and optimization approaches.   

1.2.1 Direct approaches   

Various methods are also applied to solve the Fredholm integral equation in the 
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mathematical field.  Amato and Hughes (1991) used a regularization method by 

minimizing the functional of the Fredholm integral equation of the first kind 

numerically.  Conditioning on the data and the regularization parameter, this 

procedure was shown to be a correct regularization method.  Several numerical 

experiments were given and comparisons with Tikhonov regularization (TR) 

schemes were also presented.  Hansen (1992) reviewed several numerical tools that 

can be applied for the analysis and solution of systems of linear algebraic equations 

originated from Fredholm integral equations of the first kind.  Those tools were 

developed on the basis of the singular value decomposition (SVD) and the 

generalized SVD which can be used to study many details of the integral equation.  

Lamm (1995) generalized the idea of Beck (1985) in solving the heat flow problem 

and viewed that method as one in a large class of regularization methods.  The 

solution of an ill-posed first kind Volterra equation is converted to be the limit of a 

sequence of well-posed second kind Volterra equations. 

Skaggs and Kabala (1994) used Tikhonov regularization to solve the solute 

transport equations reversely and recover the spatial release history of the 

contaminant plumes in a one-dimensional (1-D), homogeneous system.  Perhaps, 

TR is the most widely used technique for regularizing discrete ill-posed problems 

(Aster et al., 2005).  Basically, TR is to transfer the ill-posed problem to a 
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well-posed minimization problem and find the best value of the regularization 

parameter via the method of Lagrange multipliers.  In addition, Skaggs and Kabala 

(1995) also applied the quasi-reversibility (QR) method to the same problem solved 

by TR and employed a Monte Carlo methodology to recover the release history of 

an arbitrary plume in a medium with dispersive properties.  Woodbury and Ulrych 

(1996) used minimum relative entropy (MRE) approach to recover the release 

history of a pollutant for 1-D transport with constant known velocity and 

dispersivity system.  Fundamentally, MRE is an information-theoretic method in 

solving the problems.  They showed that MRE method yields exact expressions for 

the expected values of the linear inverse problem and the posterior probability 

density function (pdf) if given prior information of an upper and lower bounds, a 

prior bias, and constraints in terms of measured data.  Woodbury et al. (1998) 

extended the MRE method to recover the source release history of a 

three-dimensional plume.  They pointed out that the relative entropy measure can 

indicate the reduction in uncertainty between the posterior and prior pdfs if the new 

information provided by the physical constrains and data. 

1.2.2 Analytical solution and regression approaches   

Lawson and Hanson (1995) proposed the least squares (LS) and Stark and 

Parker (1995) used the bounded valuables least squares (BVLS) for recovering the 
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release history.  Aster (2005) also applied both LS, BVLS to the inverse problems 

and gave an example for the illustration of the recovery of the release history.  The 

problem of solving for a least squares solution with LS and BVLS includes the 

minimizing or maximizing a linear function to bounds constraints and that solutions 

to this problem can be estimated.  Sun et al. (2006) formulated a new variant of the 

robust least squares (RLS), called constrained robust least squares (CRLS) and 

allowed for imposing nonnegativity constraints, for identifying the contaminant 

source release histories.  Originated in the field of robust identification, the RLS 

estimator considers the errors arising from model uncertainty and reduces the 

sensitivity of the optimal solution to perturbations in model and data.  The authors 

demonstrated the use of CRLS in solving one- and two-dimensional test problems in 

the ill-conditioned and uncertain system and showed that CRLS gave much better 

performance than its classical counterpart, the nonnegative least squares.   

1.2.3 Probabilistic and geostatistical simulation approaches   

Butera and Tanda (2003) utilized a geo-statistical approach to identify the 

probability of the source location for the same problem solved by TR.  Their 

applications focused on the case of non-point and multiple sources in a 2-D 

groundwater flow system of an infinite domain.  Boano et al. (2005) also applied 

geo-statistical method to identify the contaminant sources in the river pollution 
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problems.     

1.2.4 Optimization approaches   

Sayeed and Mahinthakumar (2005) developed a parallel 

simulation-optimization framework including genetic algorithms and several local 

search approaches for solving PDE-based inverse problems.  Their hybrid 

optimization algorithms were demonstrated to recover the groundwater contaminant 

source release history successfully.  Newman et al. (2005) applied a hybrid method 

based on the simulated annealing and minimum relative entropy to estimate the 

magnitude and transverse spatial distribution of mass flux through a plane.  When 

applying to a numerically generated test problem and a tracer experiment, the results 

demonstrated that the hybrid method is a very effective tool in inferring the 

contaminant mass flux probability density function, expected flux values, and 

confidence limits.  Chen and Yeh (2006) used simulated annealing (SA) in 

incorporating with an exponential type of source release function and a fundamental 

solution of the groundwater transport equation to recover the release history of a 

groundwater contamination.  The SA generates trial values for the parameters in 

the assumed release function expressed in terms of exponential functions.  The 

simulated concentrations are then obtained from the fundamental solution with the 

trial source release function.  While minimizing the sum of square errors between 
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the simulated and sampling concentrations, SA can determine the optimal 

parameters of the assumed release function. 

1.3 Objectives 

Although various methods for solving the release history recovery problem can 

be found in groundwater literature, most of them focused only on the case of the 

source release pattern expressed in terms of the exponential function.  The case that 

the source release history is in a form of triangle or step function, which may pose 

the problem of numerical oscillation in the inversion process, has not yet been 

addressed. 

The objective of this thesis is to design a novel approach capable of solving the 

source release history recovery problem in an easy and effective way and to 

demonstrate that the proposed method is applicable to point source and non-point 

source cases as well.  Using the FSRM recovers the source release history in the 

form of the triangle or step function.  Note the FSRM in solving the inverse 

problem requires that the observed data are of a fixed time interval.  Thus, cubic 

spline is adopted to interpolate the observed data of non-uniform time intervals into 

uniformly distributed ones.  Such an interpolation approach enable the FSRM to 

recover the release history in the case that the observed data have non-uniform time 

intervals. 
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CHAPTER 2 METHODS 

2.1 Advection-Dispersion Equation 

Advection and hydrodynamic dispersion are the main mechanisms that make 

the dissolved contaminant migrate and spread in groundwater.  Advection, the most 

significant mass transport process that the contaminant carried by the flowing 

groundwater, results from the gradient in fluid head.  Hydrodynamic dispersion, a 

microscopic phenomenon, is caused by a combination of mechanical dispersion and 

molecular diffusion.  Mechanical dispersion causes contaminant to spread out, 

owing to the variation of flow path and velocity in the groundwater movement.  

Molecular diffusion is the process in which the contaminants move from high 

concentration area to low concentration area due to concentration gradient. 

The advection-dispersion equation for a conservative contaminant in a steady 

uniform flow field can be written as (Yeh, 1981): 

x
Cv

y
CD

x
CD

t
C

yx ∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

                                        (1) 

where ∂C/∂t is the change in solute concentration with time [ML-3T-1]; Dx and Dy are 

the hydraulic dispersion coefficient [L2T-1] in the x and y direction, respectively; v is 

the average linear velocity vector[LT-1] in the x direction. 

For the problem of recovering the release history of a contaminant, the source 

location is generally treated as a known.  The release history of a groundwater 
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contamination from a known site may be written as 

( ) ( )tCtyxC inss =,,                                             (2) 

where xs and ys, are the x- and y- coordinates of the plume source [L], respectively, 

and Cin(t) represents the contaminant source release function [ML-3]. 

    Contaminant transport is a dispersive and irreversible process; as a result, 

modeling groundwater contaminant transport with reversed time is an ill-posed 

problem whose solution does not satisfy general condition of uniqueness or stability.  

Accordingly, the strategy of the proposed method is to avoid solving the ill-posed 

problem directly.  Instead, a relative well-posed problem is formulated and solved. 

2.2 Analytical model 

Analytical model is easy to employ as a preliminary site assessment tool in 

predicting contaminant transport.  The analytical solutions for the transient, 1-, 2-, 

and 3-D models (AT123D) given by Yeh (1981) can be used to simulate the 

spatial-temporal concentration distribution of a contamination in a groundwater 

system.  

Assume that the aquifer is isotropic and homogeneous, the flow is steady and 

uniform and the release of contaminant from the source is continuous.  The 

concentration distribution of the contamination plume may be written as (Skaggs 

and kabala, 1994): 
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∫ −=
T

in dTzyxFCTzyxC
0

),,,()(),,,( τττ                                    (3) 

where C(x, y, z, T) is the plume concentration in the groundwater [ML-3], T is the 

sampling time, Cin(τ) is the contaminant source release function [ML-3], and 

),,,( τ−TzyxF  is the kernel function which is the fundamental solution of Eq. (1) 

and depends on the source geometry and the aquifer configuration (Yeh, 1981).  

Note that the left-hand side of Eq. (3) is dimensionless if Cin(τ) is represented by a 

dimensionless source release function.   

  For the case of two-dimensional transport, F(x, y, T-τ) may be represented as 

(Yeh, 1981): 

( ) jiYXTyxF =−τ,,                                                  (4) 

where X and Y express the area source in x and y direction, respectively, and the 

subscripts i and j denote the type of the source geometries and the aquifer 

configurations.  The selection of fundamental function depends on the source 

geometry and aquifer condition.  Once F(x, y, T-τ) is selected, the distribution of a 

groundwater plume concentration can be simulated by applying the Gaussian 

quadrature to estimate Eq. (3) with a given source release function, Cin(τ), and 

sampling time. 

Three types of source geometries and two kinds of aquifer configurations are 

considered herein as examples.  The source geometry is point, area, or volume 
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sources and the aquifer configuration is of finite width or infinite width.  Hence, 

the functions Xi, Yj, and Zk, are given as follows for some specific cases, according 

to Yeh (1981).  Once F(x,y,z,T-τ) is selected for an appropriate source geometry and 

aquifer configuration, the distribution of plume concentration can be simulated by 

applying the Gaussian quadrature to Eq. (1) with a given source release function, 

Cin(τ), and sampling time. 

If, for example, a conservative contaminant released from an area source in an 

aquifer of infinite width with a steady uniform flow, then the kernel function in Eq. 

(3) is equal to X2Y4 (Yeh, 1981), that is: 
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where B is the width of the aquifer [L], L1, B1 and L2, B2 are the beginning of the x-, 

y- and the end of the x-, y- coordinates of the area source [L], respectively.   

2.3 Source release functions 

A commonly-used release function expressed in a dimensionless exponential 

form is, given by Skaggs and Kabala (1994), 
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where tj is the source release time; bj is the measurement of the spread of the release 

function; aj is the release strength of source. 
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 Two cases of the source release histories in terms of triangle and step functions 

are considered.  The triangle release history function represents the contaminant 

concentration increasing linearly from zero to a certain value and then decreasing 

linearly to zero, while the step release history function represents the contaminant 

source released suddenly and maintained a constant concentration for a certain 

period of time.  Both two cases occur very likely in the real world. 

A dimensionless triangle source release function can be expressed as 
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where the source release begins at (time) t0 and ends at t2 and the peak concentration 

occurs at t1.  The dimensionless unit step release history function can be written as 
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The source releases at a constant rate from t1 to t2 and there is no release at other 

times. 

2.4 Contamination concentration  

Based on Eq. (3), the concentration distribution of a contaminant plume can be 

estimated if the aquifer configuration and the source location, geometry, and release 

history are known.  In other words, once the Cin(t) and ),,,( τ−TzyxF  are 
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determined, the contamination concentration can be predicted by Eq. (3).  

Conversely, if the contaminant concentrations are obtained from field measurements, 

one might treat the Cin(t) as an unknown and solve Eq. (3) as an inverse problem. 

2.5 Future-Sequential Regularization Method          

In fact, Eq. (3), which involves definite integral with a constant lower limits 

and a variable upper limit dependent on the time T, is the Volterra integral equation 

of the first kind (Press et al., 1992).  If the upper limit of integration is also a 

constant; then Eq. (3) can be characterized as the Fredholm equation.  The solution 

of Eq. (3) is extremely sensitive to arbitrarily small perturbations of the system.  

The development of stable and reliable numerical methods particularly suited for the 

solution of Eq. (3) has therefore always been a challenge. 

A reasonable way to compute a meaningful ‘smooth’ solution to Eq. (3), i.e., a 

solution which has some useful properties in common with the exact solution to the 

underlying and unknown-unperturbed problem, is to somehow filter out the 

high-frequency components associated with the small singular values.  The classical 

way to filter out the high-frequency components associated with the small singular 

values is to apply regularization to the problem.  It is standard terminology today to 

classify any method that seeks to compute a ‘smooth’ solution as a regularization 

method and regularization is commonly applied directly to solve the Volterra integral 
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equation of the first kind (Hansen, 1992). 

The follows introduce how the FSRM solves Eq. (3) inversely.  Lamm (1995) 

extended the theoretical context of the FSRM developed by Beck (1985) to solve the 

inverse heat conduction problem.  For the application of FSRM in solving the 

groundwater plume source identification problem, Eq. (3) can be expressed as a 

first-kind Volterra equation with convolution kernel k and given data f.  That is 

)()()(
0

tfdssustk
t

=−∫ , t∈[0, t]                                              (9) 

where u(s) is an unknown contaminant release history function.  If an extra 

unknown function occurs on the left-hand side of Eq. (9), it is known as the Volterra 

equation of the second kind.  That is  

∫ =−+
t

tfdssustktu
0

)()()()( , t∈[0, t]                                 (10) 

The right-hand side f(t) and the kernel function k are assumed to be known (Linz, 

1985). 

Lamm (1995) used a very effective stabilization method to analyze the 

inversion of linear Volterra operators of convolution type.  The FSRM is a special 

case in a class of regularization methods in which the solution of an ill-posed, 

first-kind Volterra equation is found to be the limit of a sequence of solutions of 

well-posed, second-kind Volterra equation.  A physical problem is considered as 

well-posed if there exists a unique solution that depends continuously on the 
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non-uniform data. 

With the Volterra integral operator A, the solution of Eq. (9) starts with the 

following collocation equation  

)()( itfitAu =                                                              (11) 

for Ni ,,2,1 …=  and N is the number of data points.  One has ∑ == N
i iicu 1 χ  for 

some real ci, which are the unknown contaminant release history and χi is the 

characteristic function defined by χi(t) = 1 for ti-1 < t < ti, and χi(t) = 0 otherwise.  

Thus, Eq. (11) is reduced to 
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By defining ( )∫ −≡∆ 1

0

t

ii dsstk  for …,2,1=i , Eq. (12) can thus be expressed as a 

matrix form.  In fact, the ill-posed original problem leads to poor conditioning of 

the lower-triangular matrix AN, especially as ∆1 gets to zero.  Therefore, there are 

errors introduced in calculating c1, c2, and so on.  The nature of a Volterra equation 

is such that the output of c at time t is only influenced by the input data f at times 

prior to t.  It is common for stabilizing the inversion process to impose additional 

constraints that bias the solution, a process referred to as regularization.  Therefore, 

it makes sense to use future data f(ti+1), f(ti+2),…in computing ci.  To illustrate, 

suppose that r has been fixed, and select c1 minimizing the least squares fit to data J1 

as  
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In Equation (13) the solution c1 is influenced from f(t1) to f(tr), and from t1 to tr, 

where the function c1 is the optimal solution at the time period.  For the c2, the 

period from t2 to tr+1 overlaps the function c1, thus the process amends the solutions 

and regularizes in the presence of data error to get the optimal solutions.  After 

estimating the solution of c1, and hold c1 fixed, then the optimal solution of c2 is 

chosen by the same way based on minimizing the least square and so on.  For this 

approach, when Ji(ci)=0, each ci is determined as the optimal value. 

After a series of mathematical manipulation, Eq. (9) could be written as the 

regularized equation  
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with ii ∆++∆+∆=∆ ...~
21  and 1

~/~ ∆∆= iis  for ri ,,2,1 …=  where r is a 

regularization parameter.  Equation (14) is a well-posed, second-kind integral 

equation.  The unknown u in Eq. (14) has to be solved sequentially with the 

lower-triangular matrix and appropriate regularization parameter r.  Note that 

required total numbers of sampling data when applying the FSRM is N+r-1 and the 

recovered concentration is still N. 
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2.6 Choice of regularization parameter in FSRM  

The choice of the value of r is important.  If r is too small, the solution will 

have numerical oscillation.  In contrast, larger r gives a dispersed solution.  

Different kinds of source release history may use different value of r, which actually 

may depend on the location of monitoring well, dispersion coefficient, average 

linear velocity, and the sampling time period.  However, an appropriate value of r 

is usually found by trial-and-error.  For recovering the source release history, Eq. 

(14) is solved in matrix form using the observed concentrations.  The solution of 

FSRM depends strongly on the value of the regularization parameter r, where r may 

equal 1, 2, ….  This method uses no regularization if r = 1 and some regularization 

as r increases.  One may start with r = 2 for recovering the release history.  If the 

recovered release history exhibits obvious oscillation, then r should be increased 

until the oscillation is significantly diminished.  When r gets larger, the curve of 

recovered history becomes dispersed or stabilized.  FSRM utilizes future observed 

data if r ≥  2 in recovering the release history.  The value of r-1 represents the 

numbers of future measured data used in the analysis.  In other words, a larger 

value of r requires more future sampled concentration data.  Nevertheless, the 

number of r required to perform well in recovering the release history depends on 

the shape of the release pattern and source geometry.   
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2.7 Cubic spline 

Field observed concentration data were usually not sampled uniformly.  The 

implementation of FSRM requires that the time interval for sampling the temporal 

plume concentration data should be fixed.  Therefore, a piecewise polynomial 

approximation such as the cubic spline can be used to interpolate the observation 

data from a non-uniform time interval into a uniform one. 

Consider a set of third-degree polynomials, yi, between each pair of contiguous 

data points from xi to xi+1.  The cubic spline constructs an interpolating polynomial 

that is smooth in the first derivative, and continuous in the second derivative, both 

within an interval and at its boundaries.  A general expression for cubic spline is 
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where hi = xi+1- xi represents the width of ith interval and Si denotes the second 

derivative at the point (xi, yi).  Leng and Yeh (2003) used Eq. (15) to generate the 

interpolated data successfully for the observed drawdown data of non-uniform time 

intervals in order to facilitate the application of the Extend Kalman filter. 

2.8 Measurement errors 

Field sampled concentration data inevitably contains measurement errors.  A 

multiplicative error model is used to generate random measurement error on the 

sample data.  The multiplicative error model is expressed as 
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),(),(),( TxCTxCTxC nextnnextnmeas εδ+=                                 (16) 

where Cmeas(xn,T) denotes the measured concentration at location xn at time T, 

Cext(xn,T) represents the exact concentration (or simulation concentration) at location 

xn at time T, xn is the location of the nth sample, ε is the error level, δn is the nth 

random deviate from a Gaussian standard population (standard normal), and the 

product εδnCext is equal to the measurement error at xn. 
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CHAPTER 3 CONCENTRATION DATA 

3.1 Measured concentrations 

Recovering the source release history of a groundwater contamination needs to 

be inferred from the plume concentration measurements.  Therefore, to asses the 

performance of FSRM in recovering the source release history, the measured 

concentrations are generated by Eq. (3) using hypothetical release functions.  

Consider an area contaminant source which has the dimensions of 5m × 5m.  The 

concentration distribution is simulated based on Eq. (5) with v = 1 m/day, Dx = 0.5 

m2/day, and Dy = 0.05 m2/day for a two dimensional contaminant transport.  The 

monitoring well is installed at (x, y) = (30, 6) near the source of contaminant, which 

is located at the origin (0, 0).  

3.2 Sampling concentration data 

Previously, Skaggs and Kabala (1994) used 1-D spatial concentration data to 

recover the release history.  The plumes generated by the source history function, 

i.e., Eq (3), were given at time T = 300 day and 25 different locations for the 

distance x = [0.01 m, 25.05 m, 50 m, … , 250 m, 275 m, 300 m] with a 10 m interval 

for x ranging from 50 to 250 m.  Therefore, a total of 25 spatial concentration data 

were used in the recovery of source release history.  After that, most articles in 

recovering the release history adopts their concentration data set for case studies.  
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In addition, Woodbury and Ulrych (1996) also used 1-D spatial concentration data 

sampled at the downstream of source ranging from 5 m to 300 m with a 5 m interval 

and thus a total of 60 data points were used in the recovery of source release history.  

In principle, the sampling data should cover the whole range of plume concentration 

in order to recover the entire release history. 

Consider three source history patterns, namely the exponential function, the 

triangle function and the step function.  The concentration data generated by those 

release patterns and measured from a monitoring well, where data points are less 

than those of used in previous studies, are used to recover the source release 

histories by FSRM. 
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CHAPTER 4 CASE STUDIES AND RESULTS 

4.1 Two-dimensional source recovery 

This study is based on the analytical approach to recover the source release 

history, each case assumes that the aquifer is isotropic and homogeneous; the flow is 

steady and uniform; the contaminant is conservative, no decay, and no adsorbed on 

the aquifer.  Various aquifer parameters and the source geometry and location are 

assumed known.  The target of this study is to reconstruct the contaminant release 

history in the groundwater by FSRM.  The method has an advantage that it can be 

used to reconstruct release history with arbitrary pattern, including smooth curve and 

non smooth curve.  However, FSRM has a limitation that the observed 

concentration data must be uniform time interval.  In this study, cubic spline was 

used to overcome the problem.  For the concentration data with uniform time 

interval, three source patterns are designed to demonstrate the proposed method in 

solving the source release history recovery problem. 

Three cases are designed to demonstrate the application of FSRM to the cases 

of two-dimensional area source for three different source release patterns.  The 

aquifer is assumed to be homogeneous, isotropic, and of infinite width and the 

groundwater flow is steady and uniform.  The contaminant is conservative.  Case 

1 attempts to recover the release history for a release pattern expressed in terms of a 
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combination of exponential functions.  Cases 2 and 3 aim to recover the source 

release history in terms of the triangle and step functions, respectively.   

4.2 Scenario 1: Recovering release history with FSRM 

4.2.1 Sampling time with a 7 day interval 

Figure 1(a) shows the behavior of a “true” source release history generated 

based on the exponential functions of Eq. (6) with tj = 130, 150, and 190, bj = 5, 10, 

and 7, and aj = 1, 0.3, and 0.5 and the recovered release histories estimated by 

FSRM.  The value r is chosen to be 3, 4 or 5 to assess the performance of the 

FSRM in case 1.1.  The recovery of the entire release history needs the sampled 

data covering the full range of plume concentrations in response to the true release 

history.  Note the monitoring well is located at the downstream of the source with a 

distance of 30m and the average groundwater velocity is 1 m/day.  The plume 

concentration is sampled starting at the time 112 day with a 7 day interval and thus 

22 data points are uniformly spaced for an exponential source pattern.   For r = 3, 

the solution of FSRM is divergent as indicated in Fig. 1(a).  When r is increased to 

4, the recovered release history is in fairly good agreement with the true release 

history although the peaks of the concentration curve are slightly lower and shifted.  

For r = 5, FSRM gives a smoother curve with significant lower concentration in the 

peaks than the true ones.  
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Figure 1(b) displays the distribution of the “true” source release history with 

the triangle function of Eq. (7) with t0 = 100, t1 = 175 and t2 = 250 days for case 1.2.  

For triangle function form, 28 measured data points are uniformly sampled from t = 

98 to t = 287 days.  The recovered release history for a triangle form gives fairly 

good match with the assumed release history for FSRM with r = 4, 5, and 6.  

However, Fig. 1(b) indicates that the shape of the source release history is better 

recovered for FSRM with r = 5 than that with r = 4 and 6.  

The case 1.3 considers that the source release function is a step function, Eq. 

(8), with t1 = 130 and t2 = 225 days.  Twenty eight data points with a fixed time 

interval are in the range from t = 119 to t = 273 days.  Figure 1(c) shows that when 

r = 4, an obvious oscillation is observed at the beginning of the step function.  The 

recovered release history almost has no oscillation throughout the whole step 

function when r = 5.  Although the release times at the beginning and the end of the 

step function are not recovered exactly, the percent of error of the release period is 

about 12%.  As r is increased to 6, the time shifting is more obvious.  Those 

results imply that FSRM can recover the release history reasonably well with an 

appropriate value of parameter r. 

4.2.2 Sampling time with 1 day and 3 day interval 

The use of smaller time interval, i.e., more sampling data, for the observed data 
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may improve the estimated results of recovering release history.  This section 

intends to investigate the use of of smaller sampling time interval on the estimated 

results. 

For an exponential source release pattern of Eq. (6), the sampling period of the 

observed data is exactly the same as that used in section 4.2.1, yet, the sampling 

time intervals are reduced to 1 day and 3 day instead of 7 day.  The plume is 

sampled starting at the time 112 day with 1 day and 3 day intervals and thus 

resulting 114 data and 48 data points, respectively.  For the cases of the time 

intervals 1 day and 3 day, the solutions of FSRM with r = 5 and r = 3, respectively, 

are shown in Fig. 2(a).  For the case with 1 day time interval, the recovered release 

history has a very good agreement with the true release history.  On the other hand, 

for the case of 3 day time interval, the solution still matches well with the true one 

although the first peak of the concentration curve is slightly lower. 

For the source release in terms of the triangle function, 158 and 64 measured 

data points are uniformly sampled from t = 98 days with time intervals 1 day and 3 

day, respectively.  Fig. 2(b) demonstrates that the FSRM with r = 5 and r = 4 gives 

fairly good recovered release histories if compared with the true one. 

For the step function form, the observed data are sampled from t = 119 with 

time intervals 1 day and 3 day; and thus the totals of available data are 120 and 52, 
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respectively.  Figure 2(c) shows that when r = 5, the release time is recovered 

reasonably well, although a small oscillation is observed at the beginning of the step 

function.  The recovered release history exhibits no oscillation throughout the 

whole step function when r = 4 with 3 day time interval.  Obviously, those results 

indicate that the use of smaller time interval will yield better estimations. 

4.3 Scenario 2: Nonuniform sample data and Cubic spline 

interpolation 

In reality the concentration measurements may not be sampled with a fixed 

time interval, which restricts the use of FSRM in recovering the source release 

history.  Under this circumstance, the cubic spline can be chosen to interpolate the 

nonuniform observed concentration data into uniform ones.  A set of 25 

concentration data produced by the analytical model for the sampling period from 

100 day to 300 day with non-uniform time intervals illustrated in Figure 4 is 

considered.  The interpolated concentrations with 7 day interval by the cubic spline 

are used for FSRM in recovering the release history.  Thus, a total number of 

temporal concentrations, the same as those used in scenario 1, are used to recover 

the source release history.  

Figure 3(a) shows the interpolated data and recovered release history for the 

case that the source pattern is of exponential function.  The result indicates that the 
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recovered release history with interpolated concentration data by cubic spline is still 

as good as the one obtained by FSRM with the uniformly spaced data.  The 

recovered history exhibits three peaks clearly with r = 4, though the peaks are 

slightly lower and the location is lightly shifted.  Moreover, the FSRM gives a poor 

result when r > 4.   

In the case of a triangle release function, the recovered history using FSRM 

with interpolated concentration data is almost identical to that with nonuniform 

observed concentrations for r = 5 as indicated in Fig. 3(b).  Similarly, the recovered 

history shown in Figure 3(c) for the case of a step release obtained by FSRM with r 

= 5 and interpolated data is also close to the one obtained with nonuniform observed 

data. 

4.4 Scenario 3: Measurement errors 

One of the major advantages of using FSRM in recovering release history is 

that the solutions are not affected apparently by the measured error.  Three cases 

with different magnitudes of uncertainty representing possible field measurement 

errors are considered.  The error is added to the concentration data generated by Eq. 

(3) with assumed release history and known aquifer configuration.  Cases 3.1 to 3.3 

consider that the ε in Eq. (16) are 0.01, 0.05, and 0.1, respectively, representing 

different level of measurement error.  Those data with measurement errors are 
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shown in Fig. 4.  Table 1 lists the mean and the standard deviation of the 

measurement error εδnCext for different error level ε in those three cases.  With 

different values of ε, the recovered histories by FSRM with r = 4 for the exponential 

release function are shown in Fig. 5 (a), with r = 5 for the triangular function are 

shown in Fig. 5 (b), and with r = 5 for the step function are shown in Fig. 5 (c).  

The results indicate that the recovered release histories are very close to those 

without the measurement error except that the data with larger uncertainty give 

small fluctuation in the recovered history. 

4.5 Scenario 4: Five other methods for the source recovery 

Five methods included the least squares (LS), bounded variables least squares 

(BVLS), minimum relative entropy (MRE), second-order Tikhonov regularization 

(TR), and simulated annealing (SA) with the exponential function fitting approach 

are used to recover the release histories for the triangle and step source history 

functions in this scenario.  Except SA and MRE methods, the other four methods 

are applied to the case of 1-D solute transport with the observed spatial 

concentrations sampled from 25 monitoring wells at time T = 300 day where the 

data points are given by Skaggs and Kabala (1994).  For the MRE method, a total 

of 60 data points given in Woodbury and Ulrych (1996) are used.  The computer 

codes developed in Aster (2005) for LS, BVLS, MRE, and TR are used to recover 
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the release history for the triangle and step function patterns. 

Using the temporal concentration data in scenario 1, SA method with the 

exponential function fitting approach developed in Chen and Yeh (2006) is applied to 

recover the release histories.  Figures 6 (a) and (b) demonstrates the recovering 

release histories for the triangle and step functions, respectively, by SA when j is 

equal to 1, 2, or 3.  For the case of triangle function, when j = 1, the solution is the 

best although the climax of concentration is slightly lower than that of the true one.  

However, the recovered history has a long tail at very low concentration region which 

gives poor prediction at the beginning and end periods of the release history in 

triangle shape.  As j is increased to 2, the recovered history deviates from the true 

one significantly after time T = 225.  For j = 3, a spike appears at time T = 125 which 

reflects that an extra exponential term used in the fitting model gives a poor result.  

The recovering release histories for various j are shown in Fig. 6(b) exhibit sinuous 

curves with obvious oscillation when j = 2 and 3.  These results imply that the 

exponential function is not suitable to recover the source release pattern in the form of 

triangle and step functions   

The recovered result by the MRE method for the case of a triangle pattern is 

shown in Fig. 7(a) which indicates that the recovered release history has obvious 

fluctuation, especially on the left-hand side of the triangle.  In addition, Fig. 7(b) 



 31

shows the recovered result by the MRE method for the case of the step release 

function.  Similar to the previous case, the recovered history also has some 

oscillation on the plateau and obvious dispersion at the sharp edges.  Figure 8 

shows the recovered results by the LS, BVLS and TR methods for the cases of 

triangle and step release functions.  The recovered histories for the triangle pattern 

exhibited in Fig. 8(a) demonstrates that the LS and TR methods give acceptable 

results, while the BVLS method yields the result with drastic fluctuation.  However, 

the results in the case of the step function shown in Fig. 8(b) reveal that the 

recovered release histories exhibit obvious oscillation within the release period by 

those three methods and obvious dispersion at the sharp edges by the methods of LS 

and TR.  Based on those case studies, the FSRM method does give better 

reproducibility for the cases of triangle and step release functions than other 

methods mentioned above. 
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CHAPTER 5 CONCLUSIONS 

An approach, based on FSRM and a fundamental solution of the groundwater 

transport equation, is proposed to recover the release history of a contaminant from a 

known source site.  Case studies for the recovery of source release history are 

demonstrated for contaminant transport in a two-dimensional infinite aquifer system.  

Three different source release functions, namely the exponential function, triangle 

function, and step functions are selected to evaluate the performance of FSRM in 

recovering the release history and other inverse methods such as SA, LS, BVLS, 

MRE, and TR.  The FSRM can only analyze the uniformly distributed temporal 

concentration data; therefore, the cubic spline is applied to transform the nonuniform 

data into uniform ones in order to facilitate the use of FSRM in recovering the 

release history recovery.   

The results obtained from the case studies in scenarios 1 and 2 indicate that the 

proposed approach perform reasonably well in recovering the release history.  The 

following conclusions can be drawn from this study: 

1. The proposed method, FSRM, is effective in recovering arbitrary source 

release history for contaminant transport in one-, two- and three-dimensional 

domains.  Various source geometry and aquifer configuration can be considered if 

the fundamental solution is chosen from AT123D (Yeh, 1981).   
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2. Most of existing methods in recovering the release history of a contamination 

plume requires the use of spatial concentration data which in fact is very costly to 

obtain from many monitoring wells.  In contrast, the FSRM is capable of 

recovering the release history from the temporal concentration data sampled from 

only one monitoring well.  This implies that the FSRM is a cost-effective method 

in terms of the number of monitoring wells used in practical applications. 

3. The recovered release history is generally sensitive to the measurement error.  

However, the FSRM perform reasonably well in recovering the source release 

history if the regularization parameter r is properly chosen.  According to this study, 

the appropriate value of r is 4 for the exponential source pattern and 5 for the release 

history in terms of triangle function or step function.    

4. The FSRM is generally more effective than other existing methods such as 

SA, LS, BVLS, MRE, and TR in recovering the release histories for the triangle and 

step source release functions.   
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Table 1 The mean and standard deviation of measurement error for different error 

level ε of three cases. 

Exponential function (×10-3) Triangle function (×10-3) Step function (×10-3) Error level 

ε ME SDE ME SDE ME SDE 

0.01 

0.05 

0.1 

1.95 

10.26 

20.52 

2.73 

14.66 

29.31 

3.66 

21.12 

37.02 

5.02 

21.24 

37.68 

6.90 

36.50 

73.00 

5.76 

35.22 

70.43 

* ME = mean value  

* SDE = standard deviation 
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(a) 

 
(b) 

 

 (c) 
FIGURE 1 The recovered source release history (a) exponential function for r = 3, 4, 

5 (b) triangle function for r = 4, 5, 6 (c) step function for r = 4, 5, 6 
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(a) 

 

(b) 

 
(c) 

FIGURE 2 The recovered source release history with time interval 1 day and 3 day 
(a) exponential function for r = 5 and r = 3 (b) triangle function for r = 5 and r = 4  

(c) step function for r = 5 and r = 4 
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(a) 

 
(b) 

 

 (c) 
FIGURE 3 Non-uniform observed data, interpolated data, cubic spline, and 

recovered source release history of (a) exponential function for r = 4  
(b) triangle function for r = 5 (c) step function for r = 5 
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(a) 

 
(b) 

 

 (c) 
FIGURE 4 The observed data with measurement error ε = 0.01, 0.05, and 0.1  

(a) exponential function (b) triangle function (c) step function 
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(a) 

 
(b) 

 
 (c) 

FIGURE 5 The source release history with measurement error ε = 0.01, 0.05, and 
0.1 (a) exponential function (b) triangle function (c) step function 
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(a) 

 
 (b) 

FIGURE 6 (a) SA method for triangle function source history solution (b) SA 
method for step function source history solution 
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(a) 

 
 (b) 

FIGURE 7 (a) MRE method for triangle function source history solution (b) MRE 
method for step function source history solution 
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(a) 

 
 (b) 

FIGURE 8 LS, BVLS and TR methods for source history solution  
(a) triangle function form (b) step function form 
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