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Two-dimensional Groundwater Contamination

Source Reconstruction :  Future Sequential

Regularization Method.

Student : Yu-Ting Wang Adviser : Hund-Der Yeh

Institute of Environmental Engineering
National Chiao-Tung University

ABSTRACT

As a site is found to have groundwater contamination, the reconstruction of the
source release history can provide helpful forensic information to identify the
responsible parties at a known source location since the owner of the contaminated
source changes several times. The objective of this study is to use a full-estimation
technique and Future-sequential regularization method (FSRM) incorporated with a
fundamental solution of the groundwater transport equation to recover the source
release history of a groundwater contamination. This method can transform the
plume release function from the ill-posed problem into a well-posed one with a
solution satisfying the unique and stable conditions. A lectured two-dimensional
(2-D) groundwater contamination case is used to assess the performance of the

source identification. In addition, we used two different source release functions
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(namely the triangle function and the step function) to evaluate the effectiveness of

FSRM in recovering the release history.

The FSRM is capable of recovering a release history based on the concentration

measurements sampled from a monitoring well. With an appropriate value of

regularization parameter, FSRM is robust in recovering the optimal release history

in terms of the triangle or step source release function. In order to have better

representation to the field conditions, the problems of two dimensional plumes are

considered to originate from an area source and the aquifer can be of finite or

infinite width. Besides, this thesis also investigates the problems of observation

data with non-uniform time- intervals, ~data “with measurement errors, and

comparisons with the solutions obtained by other inverse methods.
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The release strength of the plume

The measurement of the spread of the release function
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Beginning coordinate of the source in the y-direction
Ending coordinate of the source in the y-direction
Concentration

The change in solute concentration with time [ML>T™']

The contaminant concentration in the groundwater [ML?]

The exact concentration at location x, at time T
The measured concentration at location x,, at time 7'
Contaminant source release function [ML™]

The ith contaminant source release function

The hydraulic dispersion coefficient tensor [L*T™']
x-component of the dispersion tensor
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The error magnitude
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CHAPTER 1 INTRODUCTION

1.1 Background

Recently, many soil and groundwater contamination events have been reported in
Taiwan. These reports reveal that people’s health may be impaired if living near the
contaminated sites. Therefore, an effort should be made to investigate the
contaminant source and assess the remedial measures. Generally speaking,
groundwater contaminants may originate from the disposal of wastewater for various
purposes. All sources and causes ;of \¢ontamination can be classified into two
categories: point sources and non-point sources. « Point sources, characterized by the
presence of identifiable sources,-include’storagertanks, pipeline releases, and chemical
manufacturing locations. Non-point sources are referred to as larger-scale and more
diffuse contamination originated from many smaller sources; for example, the
agricultural fertilizers leaching through soil and finally affecting aquifers (Chen and
Yeh, 2006).

The remediation of groundwater contamination may be expensive, and the
responsible party rather than the public should pay the costs. In addition, the
assessment of the remediation needs to know the total contaminant mass before

groundwater remediation. This information could be estimated while the source



release history, including the release concentration and release time, is reconstructed.

Groundwater contamination is a water quality problem which may affect the

utility of an aquifer. To minimize the potential hazardous effect of the contamination,

the contaminant concentrations for some crucial species in the aquifer must be

rectified to the regulated acceptable levels. The advection and dispersion are the

main mechanisms affecting the transport of a contaminant in a groundwater flow

system. The recovery of a contaminant release history portrays the temporal

distribution of the source concentration when entering the groundwater system. The

recovery of the release history from a known.contamination source can provide

forensic information to identify-patties responsible for groundwater contamination.

The reconstruction of contaminant release history can help us understand the

temporal distribution of the source concentration when entering the groundwater

system. As a site is found to have groundwater contamination, the reconstruction of

the source release history can provide helpful forensic information to identify the

responsible parties at a known source location since the owner of the contaminated

source changes several times. Utilizing these concentration data in an inverse model

with responsible estimates of the transport parameters can reconstruct the release

history from the plume source.



1.2 Literature Review

Groundwater transport mainly contains advection and dispersion processes,

which are irreversible. Therefore, modeling the contaminant transport using

reversed time is an ill-posed problem. The implications of this problem are

twofold. First, the ill-posed problem is extremely sensitive to errors in the input

data, so small errors in the measurement of existing plume may drastically change

the recovered source release history. Second, the ill-posed problem results in

unstable numerical schemes making it impossible to run transport models with

reversed time and obtain an accurate contamination history (Skaggs and kabala,

1994).

Various methods were proposed-in literature-to solve the problem of source

identification in the past two decades. Atmadja and Bagtzoglou (2001) reviewed

the methods that had been developed to identify the contaminant source location and

recover the time-release history. They classified the contaminant transport

inversion methods into four categories. They are: direct approaches, analytical

solution and regression approaches, probabilistic and geo-statistical simulation

approaches, and optimization approaches.

1.2.1 Direct approaches

Various methods are also applied to solve the Fredholm integral equation in the



mathematical field. Amato and Hughes (1991) used a regularization method by

minimizing the functional of the Fredholm integral equation of the first kind

numerically. Conditioning on the data and the regularization parameter, this

procedure was shown to be a correct regularization method. Several numerical

experiments were given and comparisons with Tikhonov regularization (TR)

schemes were also presented. Hansen (1992) reviewed several numerical tools that

can be applied for the analysis and solution of systems of linear algebraic equations

originated from Fredholm integral equations of the first kind. Those tools were

developed on the basis of the .singular value decomposition (SVD) and the

generalized SVD which can be-used to study many details of the integral equation.

Lamm (1995) generalized the idea of Beck (1985).1n solving the heat flow problem

and viewed that method as one in a large class of regularization methods. The

solution of an ill-posed first kind Volterra equation is converted to be the limit of a

sequence of well-posed second kind Volterra equations.

Skaggs and Kabala (1994) used Tikhonov regularization to solve the solute

transport equations reversely and recover the spatial release history of the

contaminant plumes in a one-dimensional (1-D), homogeneous system. Perhaps,

TR is the most widely used technique for regularizing discrete ill-posed problems

(Aster et al., 2005). Basically, TR is to transfer the ill-posed problem to a



well-posed minimization problem and find the best value of the regularization

parameter via the method of Lagrange multipliers. In addition, Skaggs and Kabala

(1995) also applied the quasi-reversibility (QR) method to the same problem solved

by TR and employed a Monte Carlo methodology to recover the release history of

an arbitrary plume in a medium with dispersive properties. Woodbury and Ulrych

(1996) used minimum relative entropy (MRE) approach to recover the release

history of a pollutant for 1-D transport with constant known velocity and

dispersivity system. Fundamentally, MRE is an information-theoretic method in

solving the problems. They showed that MRE method yields exact expressions for

the expected values of the linear inverse problem-and the posterior probability

density function (pdf) if given prior mformation of an upper and lower bounds, a

prior bias, and constraints in terms of measured data. Woodbury et al. (1998)

extended the MRE method to recover the source release history of a

three-dimensional plume. They pointed out that the relative entropy measure can

indicate the reduction in uncertainty between the posterior and prior pdfs if the new

information provided by the physical constrains and data.

1.2.2 Analytical solution and regression approaches

Lawson and Hanson (1995) proposed the least squares (LS) and Stark and

Parker (1995) used the bounded valuables least squares (BVLS) for recovering the



release history. Aster (2005) also applied both LS, BVLS to the inverse problems

and gave an example for the illustration of the recovery of the release history. The

problem of solving for a least squares solution with LS and BVLS includes the

minimizing or maximizing a linear function to bounds constraints and that solutions

to this problem can be estimated. Sun et al. (2006) formulated a new variant of the

robust least squares (RLS), called constrained robust least squares (CRLS) and

allowed for imposing nonnegativity constraints, for identifying the contaminant

source release histories. Originated in the field of robust identification, the RLS

estimator considers the errors arising from model uncertainty and reduces the

sensitivity of the optimal solution to perturbations in-model and data. The authors

demonstrated the use of CRLS in.selving one- and two-dimensional test problems in

the ill-conditioned and uncertain system and showed that CRLS gave much better

performance than its classical counterpart, the nonnegative least squares.

1.2.3 Probabilistic and geostatistical simulation approaches

Butera and Tanda (2003) utilized a geo-statistical approach to identify the

probability of the source location for the same problem solved by TR. Their

applications focused on the case of non-point and multiple sources in a 2-D

groundwater flow system of an infinite domain. Boano et al. (2005) also applied

geo-statistical method to identify the contaminant sources in the river pollution



problems.

1.2.4 Optimization approaches

Sayeed and Mahinthakumar (2005) developed a parallel

simulation-optimization framework including genetic algorithms and several local

search approaches for solving PDE-based inverse problems. Their hybrid

optimization algorithms were demonstrated to recover the groundwater contaminant

source release history successfully. Newman et al. (2005) applied a hybrid method

based on the simulated annealing and minimum relative entropy to estimate the

magnitude and transverse spatial distribution of mass flux through a plane. When

applying to a numerically generated test problem and-a tracer experiment, the results

demonstrated that the hybrid method is a very:effective tool in inferring the

contaminant mass flux probability density function, expected flux values, and

confidence limits. Chen and Yeh (2006) used simulated annealing (SA) in

incorporating with an exponential type of source release function and a fundamental

solution of the groundwater transport equation to recover the release history of a

groundwater contamination. The SA generates trial values for the parameters in

the assumed release function expressed in terms of exponential functions. The

simulated concentrations are then obtained from the fundamental solution with the

trial source release function. While minimizing the sum of square errors between



the simulated and sampling concentrations, SA can determine the optimal

parameters of the assumed release function.

1.3 Objectives

Although various methods for solving the release history recovery problem can
be found in groundwater literature, most of them focused only on the case of the
source release pattern expressed in terms of the exponential function. The case that
the source release history is in a form of triangle or step function, which may pose
the problem of numerical oscillation in the inversion process, has not yet been
addressed.

The objective of this thesis.is to design a novel’approach capable of solving the
source release history recovery problem in‘an easy and effective way and to
demonstrate that the proposed method is-applicable to point source and non-point
source cases as well. Using the FSRM recovers the source release history in the
form of the triangle or step function. Note the FSRM in solving the inverse
problem requires that the observed data are of a fixed time interval. Thus, cubic
spline is adopted to interpolate the observed data of non-uniform time intervals into
uniformly distributed ones. Such an interpolation approach enable the FSRM to
recover the release history in the case that the observed data have non-uniform time

intervals.



CHAPTER 2 METHODS

2.1 Advection-Dispersion Equation

Advection and hydrodynamic dispersion are the main mechanisms that make
the dissolved contaminant migrate and spread in groundwater. Advection, the most
significant mass transport process that the contaminant carried by the flowing
groundwater, results from the gradient in fluid head. Hydrodynamic dispersion, a
microscopic phenomenon, is caused by a combination of mechanical dispersion and
molecular diffusion. Mechanical dispersion causes contaminant to spread out,
owing to the variation of flow path and velocity in the groundwater movement.
Molecular diffusion is the process in which the contaminants move from high
concentration area to low concentration'arca due to concentration gradient.

The advection-dispersion equation for a conservative contaminant in a steady
uniform flow field can be written as (Yeh, 1981):
a—C:D 62—(;+D)62—C—va—c (1)

ot *ox Y oy’ Ox

where 8C/6t is the change in solute concentration with time [ML™>T™]; D, and D, are
the hydraulic dispersion coefficient [L*T'] in the x and y direction, respectively; v is
the average linear velocity vector[LT '] in the x direction.

For the problem of recovering the release history of a contaminant, the source

location is generally treated as a known. The release history of a groundwater



contamination from a known site may be written as

Clx,,3,.t)=C,(¢) @)
where x;and y,, are the x- and y- coordinates of the plume source [L], respectively,
and Cj,(?) represents the contaminant source release function [ML™].

Contaminant transport is a dispersive and irreversible process; as a result,
modeling groundwater contaminant transport with reversed time is an ill-posed
problem whose solution does not satisfy general condition of uniqueness or stability.
Accordingly, the strategy of the proposed method is to avoid solving the ill-posed
problem directly. Instead, a relative well-posedproblem is formulated and solved.
2.2 Analytical model

Analytical model is easy to-employ as a preliminary site assessment tool in
predicting contaminant transport. The analytical solutions for the transient, 1-, 2-,
and 3-D models (AT123D) given by Yeh (1981) can be used to simulate the
spatial-temporal concentration distribution of a contamination in a groundwater
system.

Assume that the aquifer is isotropic and homogeneous, the flow is steady and
uniform and the release of contaminant from the source is continuous. The
concentration distribution of the contamination plume may be written as (Skaggs

and kabala, 1994):

10



C(x,y,z,T)= IOT C, (0)F(x,y,z,T —t)dr 3)
where C(x, y, z, T) is the plume concentration in the groundwater [ML?], Tis the
sampling time, Cj(z) is the contaminant source release function [ML™], and
F(x,y,z,T —7) is the kernel function which is the fundamental solution of Eq. (1)
and depends on the source geometry and the aquifer configuration (Yeh, 1981).
Note that the left-hand side of Eq. (3) is dimensionless if Cj,(7) is represented by a
dimensionless source release function.
For the case of two-dimensional transport, F(x, y, 7-7) may be represented as

(Yeh, 1981):
F(x,,T-7)=XY, (4)
where X and Y express the area:source in x and y direction, respectively, and the
subscripts i and j denote the type of the source geometries and the aquifer
configurations. The selection of fundamental function depends on the source
geometry and aquifer condition. Once F(x, y, T-7) is selected, the distribution of a
groundwater plume concentration can be simulated by applying the Gaussian
quadrature to estimate Eq. (3) with a given source release function, Cj,(z), and
sampling time.

Three types of source geometries and two kinds of aquifer configurations are

considered herein as examples. The source geometry is point, area, or volume

11



sources and the aquifer configuration is of finite width or infinite width. Hence,
the functions JX;, Y}, and Z,, are given as follows for some specific cases, according
to Yeh (1981). Once F(x,y,z,T-7) is selected for an appropriate source geometry and
aquifer configuration, the distribution of plume concentration can be simulated by
applying the Gaussian quadrature to Eq. (1) with a given source release function,
Cin(7), and sampling time.

If, for example, a conservative contaminant released from an area source in an
aquifer of infinite width with a steady uniform flow, then the kernel function in Eq.

(3) is equal to XY, (Yeh, 1981), that:is:

x—L -T-7) XLy +HT=r)
JaD 7= | 2\ D@5

F(x,y,T—z'):i{er

)
y _Bl y_Bz
Cerf| —— || —
\/m [ADy(T —7)
where B is the width of the aquifer [L], L;, B; and L,, B; are the beginning of the x-,
y- and the end of the x-, y- coordinates of the area source [L], respectively.
2.3 Source release functions

A commonly-used release function expressed in a dimensionless exponential

form is, given by Skaggs and Kabala (1994),

C,0=3a, exp[— =) J ©)

2b,

J

where ¢, is the source release time; b; is the measurement of the spread of the release

function; g; is the release strength of source.

12



Two cases of the source release histories in terms of triangle and step functions

are considered. The triangle release history function represents the contaminant

concentration increasing linearly from zero to a certain value and then decreasing

linearly to zero, while the step release history function represents the contaminant

source released suddenly and maintained a constant concentration for a certain

period of time. Both two cases occur very likely in the real world.

A dimensionless triangle source release function can be expressed as

r—t
M, for t,<t<t,
L1
=, -t
Cin(t) Q’ Jor t <t<t, (7)
=4

0, for t<t, and t>t,

where the source release begins-at (time)-#y and-ends at ¢z, and the peak concentration

occurs at #;.  The dimensionless unit steprelease history function can be written as

0, t<¢
C,(6)=141, 1 <t<t, (8)
0, t>¢,

The source releases at a constant rate from #; to ¢, and there is no release at other

times.

2.4 Contamination concentration

Based on Eq. (3), the concentration distribution of a contaminant plume can be

estimated if the aquifer configuration and the source location, geometry, and release

history are known. In other words, once the Ci,(?) and F(x,y,z,T—7) are

13



determined, the contamination concentration can be predicted by Eq. (3).
Conversely, if the contaminant concentrations are obtained from field measurements,
one might treat the C;,(2) as an unknown and solve Eq. (3) as an inverse problem.

2.5 Future-Sequential Regularization Method

In fact, Eq. (3), which involves definite integral with a constant lower limits
and a variable upper limit dependent on the time 7, is the Volterra integral equation
of the first kind (Press et al., 1992). If the upper limit of integration is also a
constant; then Eq. (3) can be characterized as the Fredholm equation. The solution
of Eq. (3) is extremely sensitive to ‘arbitrarily small perturbations of the system.
The development of stable and reliable numerical methods particularly suited for the
solution of Eq. (3) has therefore always'been a challenge.

A reasonable way to compute a meaningful ‘smooth’ solution to Eq. (3), i.e., a
solution which has some useful properties in common with the exact solution to the
underlying and unknown-unperturbed problem, is to somehow filter out the
high-frequency components associated with the small singular values. The classical
way to filter out the high-frequency components associated with the small singular
values is to apply regularization to the problem. It is standard terminology today to
classify any method that seeks to compute a ‘smooth’ solution as a regularization

method and regularization is commonly applied directly to solve the Volterra integral

14



equation of the first kind (Hansen, 1992).

The follows introduce how the FSRM solves Eq. (3) inversely. Lamm (1995)
extended the theoretical context of the FSRM developed by Beck (1985) to solve the
inverse heat conduction problem. For the application of FSRM in solving the
groundwater plume source identification problem, Eq. (3) can be expressed as a
first-kind Volterra equation with convolution kernel £ and given data /. That is
j;k(t —swu(s)ds = £(t), te[0, 1] 9)
where u(s) is an unknown contaminant release history function. If an extra
unknown function occurs on the left-hand side of Eq. (9), it is known as the Volterra
equation of the second kind. Thatis
u(t)+ J'O[ k(t—s)u(s)ds = f(¢), t€]0, t] (10)
The right-hand side f{#) and the kernel function & are assumed to be known (Linz,
1985).

Lamm (1995) used a very effective stabilization method to analyze the
inversion of linear Volterra operators of convolution type. The FSRM is a special
case in a class of regularization methods in which the solution of an ill-posed,
first-kind Volterra equation is found to be the limit of a sequence of solutions of
well-posed, second-kind Volterra equation. A physical problem is considered as

well-posed if there exists a unique solution that depends continuously on the
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non-uniform data.

With the Volterra integral operator 4, the solution of Eq. (9) starts with the
following collocation equation
Au(t;) = f(1;) (11)
for i=12,...,N and N is the number of data points. One has u = Zi]il c;x; for
some real ¢;, which are the unknown contaminant release history and y; is the
characteristic function defined by y(¢) = 1 for ¢,; < t < ¢, and y(t) = 0 otherwise.
Thus, Eq. (11) is reduced to
Au(t)) = 24{: ke, .y —s)ds (12)
By defining A E'[Ot‘ k(t,—s)ds forpi=12,...;-Eq. (12) can thus be expressed as a
matrix form. In fact, the ill-posed original problem leads to poor conditioning of
the lower-triangular matrix 4", especially as A; gets to zero. Therefore, there are
errors introduced in calculating ¢, ¢, and so on. The nature of a Volterra equation
is such that the output of ¢ at time ¢ is only influenced by the input data f at times
prior to z. It is common for stabilizing the inversion process to impose additional
constraints that bias the solution, a process referred to as regularization. Therefore,
it makes sense to use future data f(7:;), f(ti+2),...in computing ¢;. To illustrate,
suppose that » has been fixed, and select ¢; minimizing the least squares fit to data J;

as
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J(e)) = |[Ae ) = £ +|Ae (2 + 1)) — £+ .
+HAe, (4 20+ 2 @) - £

In Equation (13) the solution ¢; is influenced from f{z;) to f(¢,), and from ¢; to ¢,
where the function ¢; is the optimal solution at the time period. For the ¢, the
period from ¢, to #.+; overlaps the function c;, thus the process amends the solutions
and regularizes in the presence of data error to get the optimal solutions. After
estimating the solution of ¢;, and hold ¢, fixed, then the optimal solution of ¢, is
chosen by the same way based on minimizing the least square and so on. For this
approach, when Jj(c;)=0, each ¢; is determined as the optimal value.

After a series of mathematical; manipulation, Eq. (9) could be written as the
regularized equation

[ [Z 5,k ( + (i =D)AL - S)ju(s)ds " u(z)(i S'ZHJ

= zr:sl. fle+GE-1Ar)

(14)

with A, = A, + A, +..+ A, and s,=A,/A, for i=1,2,...,r where ris a
regularization parameter. Equation (14) is a well-posed, second-kind integral
equation. The unknown u in Eq. (14) has to be solved sequentially with the
lower-triangular matrix and appropriate regularization parameter r. Note that
required total numbers of sampling data when applying the FSRM is N+r-1 and the

recovered concentration is still V.
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2.6 Choice of regularization parameter in FSRM

The choice of the value of 7 is important. If 7 is too small, the solution will
have numerical oscillation. In contrast, larger » gives a dispersed solution.
Different kinds of source release history may use different value of , which actually
may depend on the location of monitoring well, dispersion coefficient, average
linear velocity, and the sampling time period. However, an appropriate value of
is usually found by trial-and-error. For recovering the source release history, Eq.
(14) is solved in matrix form using the observed concentrations. The solution of
FSRM depends strongly on the value of the regularization parameter », where » may
equal 1,2, .... This method uses'no regularization if » = 1 and some regularization
as r increases. One may start with 7 = 2 for recovering the release history. If the
recovered release history exhibits obvious oscillation, then » should be increased
until the oscillation is significantly diminished. When r gets larger, the curve of
recovered history becomes dispersed or stabilized. FSRM utilizes future observed
data if » > 2 in recovering the release history. The value of -/ represents the
numbers of future measured data used in the analysis. In other words, a larger
value of r requires more future sampled concentration data. Nevertheless, the
number of r required to perform well in recovering the release history depends on

the shape of the release pattern and source geometry.
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2.7 Cubic spline

Field observed concentration data were usually not sampled uniformly. The
implementation of FSRM requires that the time interval for sampling the temporal
plume concentration data should be fixed. Therefore, a piecewise polynomial
approximation such as the cubic spline can be used to interpolate the observation
data from a non-uniform time interval into a uniform one.

Consider a set of third-degree polynomials, y;, between each pair of contiguous
data points from x; to x;+;. The cubic spline constructs an interpolating polynomial
that is smooth in the first derivative, and continuous in the second derivative, both

within an interval and at its boundaries. A géneral expression for cubic spline is

hi—lSi—l + 2(hi—l + hi )Sz + hiSH—l = 6( yi+lh— yi — yi }: yi_l ) (15)

I i—1
where h; = x;+;- x; represents the width of ith interval and S; denotes the second
derivative at the point (x; y;). Leng and Yeh (2003) used Eq. (15) to generate the
interpolated data successfully for the observed drawdown data of non-uniform time

intervals in order to facilitate the application of the Extend Kalman filter.

2.8 Measurement errors
Field sampled concentration data inevitably contains measurement errors. A
multiplicative error model is used to generate random measurement error on the

sample data. The multiplicative error model is expressed as
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Cmeas (xn 2 T) = CEX[ (x}’l > T) + gé‘ll Cext (x}’l > T) (16)

where Cieus(xn, T) denotes the measured concentration at location x, at time 7,

Cex(xn, T) represents the exact concentration (or simulation concentration) at location

x, at time T, x, is the location of the nth sample, ¢ is the error level, J, is the nth

random deviate from a Gaussian standard population (standard normal), and the

product £9,C,,, is equal to the measurement error at x,,
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CHAPTER 3 CONCENTRATION DATA

3.1 Measured concentrations

Recovering the source release history of a groundwater contamination needs to
be inferred from the plume concentration measurements. Therefore, to asses the
performance of FSRM in recovering the source release history, the measured
concentrations are generated by Eq. (3) using hypothetical release functions.
Consider an area contaminant source which has the dimensions of 5Sm x 5m. The
concentration distribution is simulated based on Eq. (5) with v = 1 m/day, D, = 0.5
m?/day, and D, = 0.05 m?/day for.a'two dimefisional contaminant transport. The
monitoring well is installed at (x, 1) = (30, 6) near the source of contaminant, which
is located at the origin (0, 0).
3.2 Sampling concentration data

Previously, Skaggs and Kabala (1994) used 1-D spatial concentration data to
recover the release history. The plumes generated by the source history function,
ie.,, Eq (3), were given at time 7 = 300 day and 25 different locations for the
distance x =[0.01 m, 25.05 m, 50 m, ... , 250 m, 275 m, 300 m] with a 10 m interval
for x ranging from 50 to 250 m. Therefore, a total of 25 spatial concentration data
were used in the recovery of source release history. After that, most articles in

recovering the release history adopts their concentration data set for case studies.
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In addition, Woodbury and Ulrych (1996) also used 1-D spatial concentration data

sampled at the downstream of source ranging from 5 m to 300 m with a 5 m interval

and thus a total of 60 data points were used in the recovery of source release history.

In principle, the sampling data should cover the whole range of plume concentration

in order to recover the entire release history.

Consider three source history patterns, namely the exponential function, the

triangle function and the step function. The concentration data generated by those

release patterns and measured from a monitoring well, where data points are less

than those of used in previous studies, are used to recover the source release

histories by FSRM.
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CHAPTER 4 CASE STUDIES AND RESULTS
4.1 Two-dimensional source recovery

This study is based on the analytical approach to recover the source release
history, each case assumes that the aquifer is isotropic and homogeneous; the flow is
steady and uniform; the contaminant is conservative, no decay, and no adsorbed on
the aquifer. Various aquifer parameters and the source geometry and location are
assumed known. The target of this study is to reconstruct the contaminant release
history in the groundwater by FSRM. The method has an advantage that it can be
used to reconstruct release history with arbitrary pattern, including smooth curve and
non smooth curve. However) FESRM has a limitation that the observed
concentration data must be uniform time interval.« In this study, cubic spline was
used to overcome the problem. For the concentration data with uniform time
interval, three source patterns are designed to demonstrate the proposed method in
solving the source release history recovery problem.

Three cases are designed to demonstrate the application of FSRM to the cases
of two-dimensional area source for three different source release patterns. The
aquifer is assumed to be homogeneous, isotropic, and of infinite width and the
groundwater flow is steady and uniform. The contaminant is conservative. Case

1 attempts to recover the release history for a release pattern expressed in terms of a
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combination of exponential functions. Cases 2 and 3 aim to recover the source
release history in terms of the triangle and step functions, respectively.
4.2 Scenario 1: Recovering release history with FSRM
4.2.1 Sampling time with a 7 day interval

Figure 1(a) shows the behavior of a “true” source release history generated
based on the exponential functions of Eq. (6) with #= 130, 150, and 190, b, =5, 10,
and 7, and @; = 1, 0.3, and 0.5 and the recovered release histories estimated by
FSRM. The value r is chosen to be 3, 4 or 5 to assess the performance of the
FSRM in case 1.1. The recoveryof the entire release history needs the sampled
data covering the full range of plume concentrations-in response to the true release
history. Note the monitoring well is Tocated at the:downstream of the source with a
distance of 30m and the average groundwater velocity is 1 m/day. The plume
concentration is sampled starting at the time 112 day with a 7 day interval and thus
22 data points are uniformly spaced for an exponential source pattern. ~ For » = 3,
the solution of FSRM is divergent as indicated in Fig. 1(a). When r is increased to
4, the recovered release history is in fairly good agreement with the true release
history although the peaks of the concentration curve are slightly lower and shifted.
For r =5, FSRM gives a smoother curve with significant lower concentration in the

peaks than the true ones.
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Figure 1(b) displays the distribution of the “true” source release history with

the triangle function of Eq. (7) with z, = 100, ¢, = 175 and ¢, = 250 days for case 1.2.

For triangle function form, 28 measured data points are uniformly sampled from ¢ =

98 to t = 287 days. The recovered release history for a triangle form gives fairly

good match with the assumed release history for FSRM with » = 4, 5, and 6.

However, Fig. 1(b) indicates that the shape of the source release history is better

recovered for FSRM with » = 5 than that with » = 4 and 6.

The case 1.3 considers that the source release function is a step function, Eq.

(8), with #;, = 130 and £, = 225 days.  Twenty eight data points with a fixed time

interval are in the range from ¢ = 119 to £ = 273 days- Figure 1(c) shows that when

r =4, an obvious oscillation is observed at the beginning of the step function. The

recovered release history almost has no oscillation throughout the whole step

function when »=5. Although the release times at the beginning and the end of the

step function are not recovered exactly, the percent of error of the release period is

about 12%. As r is increased to 6, the time shifting is more obvious. Those

results imply that FSRM can recover the release history reasonably well with an

appropriate value of parameter 7.

4.2.2 Sampling time with 1 day and 3 day interval

The use of smaller time interval, i.e., more sampling data, for the observed data
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may improve the estimated results of recovering release history. This section

intends to investigate the use of of smaller sampling time interval on the estimated

results.

For an exponential source release pattern of Eq. (6), the sampling period of the

observed data is exactly the same as that used in section 4.2.1, yet, the sampling

time intervals are reduced to 1 day and 3 day instead of 7 day. The plume is

sampled starting at the time 112 day with 1 day and 3 day intervals and thus

resulting 114 data and 48 data points, respectively. For the cases of the time

intervals 1 day and 3 day, the solutions of FSRM.with » = 5 and » = 3, respectively,

are shown in Fig. 2(a). For the case with 1-day time interval, the recovered release

history has a very good agreement with' the true release history. On the other hand,

for the case of 3 day time interval, the solution still matches well with the true one

although the first peak of the concentration curve is slightly lower.

For the source release in terms of the triangle function, 158 and 64 measured

data points are uniformly sampled from ¢ = 98 days with time intervals 1 day and 3

day, respectively. Fig. 2(b) demonstrates that the FSRM with » =5 and » = 4 gives

fairly good recovered release histories if compared with the true one.

For the step function form, the observed data are sampled from ¢ = 119 with

time intervals 1 day and 3 day; and thus the totals of available data are 120 and 52,
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respectively. Figure 2(c) shows that when » = 5, the release time is recovered
reasonably well, although a small oscillation is observed at the beginning of the step
function. The recovered release history exhibits no oscillation throughout the
whole step function when » = 4 with 3 day time interval. Obviously, those results
indicate that the use of smaller time interval will yield better estimations.
4.3 Scenario 2: Nonuniform sample data and Cubic spline
interpolation

In reality the concentration measurements may not be sampled with a fixed
time interval, which restricts the use of FSRM. in recovering the source release
history. Under this circumstance; the cubic spline can be chosen to interpolate the
nonuniform observed concentration “'data into- uniform ones. A set of 25
concentration data produced by the analytical model for the sampling period from
100 day to 300 day with non-uniform time intervals illustrated in Figure 4 is
considered. The interpolated concentrations with 7 day interval by the cubic spline
are used for FSRM in recovering the release history. Thus, a total number of
temporal concentrations, the same as those used in scenario 1, are used to recover
the source release history.

Figure 3(a) shows the interpolated data and recovered release history for the

case that the source pattern is of exponential function. The result indicates that the
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recovered release history with interpolated concentration data by cubic spline is still

as good as the one obtained by FSRM with the uniformly spaced data. The

recovered history exhibits three peaks clearly with » = 4, though the peaks are

slightly lower and the location is lightly shifted. Moreover, the FSRM gives a poor

result when » > 4.

In the case of a triangle release function, the recovered history using FSRM

with interpolated concentration data is almost identical to that with nonuniform

observed concentrations for » = 5 as indicated in Fig. 3(b). Similarly, the recovered

history shown in Figure 3(c) for the:case of a step release obtained by FSRM with r

=5 and interpolated data is also-close to the one obtained with nonuniform observed

data.

4.4 Scenario 3: Measurement errors

One of the major advantages of using FSRM in recovering release history is

that the solutions are not affected apparently by the measured error. Three cases

with different magnitudes of uncertainty representing possible field measurement

errors are considered. The error is added to the concentration data generated by Eq.

(3) with assumed release history and known aquifer configuration. Cases 3.1 to 3.3

consider that the ¢ in Eq. (16) are 0.01, 0.05, and 0.1, respectively, representing

different level of measurement error. Those data with measurement errors are
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shown in Fig. 4. Table 1 lists the mean and the standard deviation of the
measurement error £0,C,,; for different error level ¢ in those three cases. With
different values of ¢, the recovered histories by FSRM with » = 4 for the exponential
release function are shown in Fig. 5 (a), with » = 5 for the triangular function are
shown in Fig. 5 (b), and with » = 5 for the step function are shown in Fig. 5 (¢).
The results indicate that the recovered release histories are very close to those
without the measurement error except that the data with larger uncertainty give
small fluctuation in the recovered history.
4.5 Scenario 4: Five other methods for the source recovery

Five methods included the least squares (LS), bounded variables least squares
(BVLS), minimum relative entropy (MRE), second-order Tikhonov regularization
(TR), and simulated annealing (SA) with the exponential function fitting approach
are used to recover the release histories for the triangle and step source history
functions in this scenario. Except SA and MRE methods, the other four methods
are applied to the case of 1-D solute transport with the observed spatial
concentrations sampled from 25 monitoring wells at time 7" = 300 day where the
data points are given by Skaggs and Kabala (1994). For the MRE method, a total
of 60 data points given in Woodbury and Ulrych (1996) are used. The computer

codes developed in Aster (2005) for LS, BVLS, MRE, and TR are used to recover
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the release history for the triangle and step function patterns.

Using the temporal concentration data in scenario 1, SA method with the

exponential function fitting approach developed in Chen and Yeh (2006) is applied to

recover the release histories. Figures 6 (a) and (b) demonstrates the recovering

release histories for the triangle and step functions, respectively, by SA when j is

equal to 1, 2, or 3. For the case of triangle function, when j = 1, the solution is the

best although the climax of concentration is slightly lower than that of the true one.

However, the recovered history has a long tail at very low concentration region which

gives poor prediction at the beginning and end periods of the release history in

triangle shape. As j is increased to 2, the recovered history deviates from the true

one significantly after time 7= 225. ~For j =3, aspike appears at time 7'= 125 which

reflects that an extra exponential term used in the fitting model gives a poor result.

The recovering release histories for various j are shown in Fig. 6(b) exhibit sinuous

curves with obvious oscillation when j = 2 and 3. These results imply that the

exponential function is not suitable to recover the source release pattern in the form of

triangle and step functions

The recovered result by the MRE method for the case of a triangle pattern is

shown in Fig. 7(a) which indicates that the recovered release history has obvious

fluctuation, especially on the left-hand side of the triangle. In addition, Fig. 7(b)
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shows the recovered result by the MRE method for the case of the step release

function. Similar to the previous case, the recovered history also has some

oscillation on the plateau and obvious dispersion at the sharp edges. Figure 8

shows the recovered results by the LS, BVLS and TR methods for the cases of

triangle and step release functions. The recovered histories for the triangle pattern

exhibited in Fig. 8(a) demonstrates that the LS and TR methods give acceptable

results, while the BVLS method yields the result with drastic fluctuation. However,

the results in the case of the step function shown in Fig. 8(b) reveal that the

recovered release histories exhibit,obvious oscillation within the release period by

those three methods and obvious dispersion at the sharp edges by the methods of LS

and TR. Based on those case studies, the .FSRM method does give better

reproducibility for the cases of triangle and step release functions than other

methods mentioned above.
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CHAPTER 5 CONCLUSIONS

An approach, based on FSRM and a fundamental solution of the groundwater

transport equation, is proposed to recover the release history of a contaminant from a

known source site. Case studies for the recovery of source release history are

demonstrated for contaminant transport in a two-dimensional infinite aquifer system.

Three different source release functions, namely the exponential function, triangle

function, and step functions are selected to evaluate the performance of FSRM in

recovering the release history and other inverse methods such as SA, LS, BVLS,

MRE, and TR. The FSRM can only analyze the uniformly distributed temporal

concentration data; therefore, the cubic spline’is applied to transform the nonuniform

data into uniform ones in ordet.to facilitate the use of FSRM in recovering the

release history recovery.

The results obtained from the case studies in scenarios 1 and 2 indicate that the

proposed approach perform reasonably well in recovering the release history. The

following conclusions can be drawn from this study:

1. The proposed method, FSRM, is effective in recovering arbitrary source

release history for contaminant transport in one-, two- and three-dimensional

domains. Various source geometry and aquifer configuration can be considered if

the fundamental solution is chosen from AT123D (Yeh, 1981).
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2. Most of existing methods in recovering the release history of a contamination

plume requires the use of spatial concentration data which in fact is very costly to

obtain from many monitoring wells. In contrast, the FSRM is capable of

recovering the release history from the temporal concentration data sampled from

only one monitoring well. This implies that the FSRM is a cost-effective method

in terms of the number of monitoring wells used in practical applications.

3. The recovered release history is generally sensitive to the measurement error.

However, the FSRM perform reasonably well in recovering the source release

history if the regularization parameter » 1s properly chosen. According to this study,

the appropriate value of 7 is 4 for the exponential source pattern and 5 for the release

history in terms of triangle function ot step function:

4. The FSRM is generally more effective than other existing methods such as

SA, LS, BVLS, MRE, and TR in recovering the release histories for the triangle and

step source release functions.
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Table 1 The mean and standard deviation of measurement error for different error

level & ofthree cases.

Error level Exponential function (x107) Triangle function (x107) Step function (x10™)
£ ME SDE ME SDE ME SDE
0.01 1.95 2.73 3.66 5.02 6.90 5.76
0.05 10.26 14.66 21.12 21.24 36.50 35.22
0.1 20.52 29.31 37.02 37.68 73.00 70.43

* ME = mean value

* SDE = standard deviation
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(c) step function for r =5 and r =4
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FIGURE 3 Non-uniform observed data, interpolated data, cubic spline, and

recovered source release history of (a) exponential function for » = 4

(b) triangle function for » = 5 (c) step function for r =5
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FIGURE 4 The observed data with measurement error ¢ = 0.01, 0.05, and 0.1

(a) exponential function (b) triangle function (¢) step function
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FIGURE 5 The source release history with measurement error € = 0.01, 0.05, and

0.1 (a) exponential function (b) triangle function (c) step function
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FIGURE 6 (a) SA method for triangle function source history solution (b) SA

method for step function source history solution
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------ Recovered history, MRE
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FIGURE 7 (a) MRE method for triangle function source history solution (b) MRE

method for step function source history solution
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FIGURE 8 LS, BVLS and TR methods for source history solution

(a) triangle function form (b) step function form
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