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This study develops a two-period overlapping generations model in which adults
undertake educational investment decisions on behalf of young agents. In addition to
educational investment, we argue that the accumulation of human capital is also
dependent upon the externality from average human capital within the economy. In a
departure from the previous literature in this area, we assume that there is a reduction in
the overall productivity of human capital accumulation brought about by human
capital externality, and show that complicated dynamics will emerge under this
circumstance. In addition to displaying the chaotic dynamics in the sense of Li and
Yorke, we also verify the existence of Devaney’s chaos and Smale’s chaos.

Keywords: chaotic dynamics; externality; human capital accumulation

1. Introduction

There has been increasing interest over recent years surrounding the study of chaotic
behaviour during the overall process of economic development. Utilizing a standard
neoclassical model with capital accumulation in order to investigate the possibility of
complicated dynamics, Day [1,2] showed that chaotic trajectories would emerge under
certain conditions on savings and productivity, and indeed, chaotic motion is an important
element in the study of economic development because it suggests that future economic
performance cannot be predicted from a prior developmental pattern. As such, the tiniest
of differences between two initial conditions will result in very different trajectories.

Following Day’s consideration of a model with a negative capital externality in [1,2],1

Boldrin et al. [3] subsequently went on to develop a two-sector endogenous growth model
with positive capital externality which demonstrated that chaotic equilibrium will exist
within such an environment. Adopting the model in [3] as an example, Mitra [4] provided a
sufficient condition for topological chaos which is applicable to endogenous models when
the Li–Yorke criterion in [5] is not satisfied.

Although the growth literature relating to chaotic dynamics has tended to focus on
models with capital accumulation, Lucas [6] and Becker et al. [7] argued that human
capital also plays an important role in economic growth. Our aim in this article is therefore
to develop a model with human capital accumulation within which complex behaviour will
be an inherent factor. We develop a two-period overlapping generations (OLG) model in
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which adults make educational investment decisions on behalf of young agents, and argue
that in addition to educational investment, the accumulation of human capital is also
dependent upon the externality from average human capital within the economy. The
average human capital here refers to the common knowledge and information that exists
within the economy. Notice that we do not distinguish between terminologies relating to
knowledge, information and human capital in this article; however, Dasgupta and David
[8] noted that knowledge is the product of research, and that information is the
codification of such knowledge.

Galor and Tsiddon [9] set up an accumulation function of human capital with (local)
home environment and (global) technological externalities in order to study the linkage
between economic growth and income distribution. Their work captured local externalities
in the form of educational investment and parental human capital, whereas the global
externality was represented by the average human capital within the economy. Positive
global externality was assumed by introducing a non-decreasing function of average
human capital. Such a positive externality, from average human capital to human capital
accumulation, was also used by De la Croix and Doepke [10,11] in order to study the role
of differential fertility during the overall process of economic growth.2

Although a high level of average human capital can contribute to the overall
accumulation of human capital, we argue that it can also cause a reduction in the level of
productivity of human capital accumulation. Stephan [12, Subsection 9A] argued that in
discovery, excessive knowledge is a bad thing because it ‘encumbers’ researchers.
Moreover, when there is an increase in the average human capital, people need to spend
more time on examining and digesting the knowledge or information they receive. Since
the invention of the internet, people nowadays can get information and knowledge easily
and even instantly. However, too much information and knowledge may cause the
problem of ‘information pollution’.3 Also, the wrong information and knowledge may be
widespread through the internet and will lower the individual’s human capital if one
accepts the wrong information or knowledge.4 Hence, in contrast to the previous literature
on endogenous growth theory, we assume that with a rise in average human capital, there
will be a corresponding increase in the overall degradation of human capital accumulation
productivity.

Numerous works have concentrated on the study of the complicated dynamics that are
present in OLG models. Based upon the assumption that children inherit their
consumption tastes from their parents, De la Croix [16] showed that this would generate
endogenous oscillations. Nishimura and Shimomura [17] extended the model in [16] to a
trade model and went on to argue that such child–parent externalities, along with
international trade, will together generate chaos. Chen and Li [18] and Chen et al. [19]
showed that for OLG models, expectation formation is an important determinant to the
occurrence of chaos. Medio and Negroni [20] examined the complicated dynamics that
occurred in a two-dimensional OLG model with production function, whereas Yokoo [21]
subsequently proposed a two-dimensional OLG model with government debt.

When analysing the one-dimensional dynamical system, the Li–Yorke criterion has
been the general focus of the literature studying chaotic motion in economic models.
Day [1] and Boldrin et al. [3] examined Li–Yorke chaos in growth models. Complex
dynamics can also easily arise in a monetary economy. Auray et al. [22] also used the
Li–Yorke criterion to examine the presence of chaotic motion in a ‘cash-in-advance’
model with habit persistence based upon catching up with the Joneses literature. A further
contribution of this article is that, in addition to demonstrating chaotic dynamics in the
sense of Li and Yorke, we also use the first-order nonlinear difference equation in human
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capital, generalized by our model, to verify the presence of Devaney’s chaos and Smale’s
chaos.

The remainder of this article is organized as follows. The next section presents a simple
model with human capital accumulation. We then derive the law of motion of human
capital in an economy occupied by homogeneous agents. In Section 3, we show that with
human capital externality, the chaotic equilibrium dynamics in the sense of Li and Yorke
will present. Besides the Li–Yorke chaos, we also illustrate the presence of Devaney’s and
Smale’s chaos in Section 4. A numerical example is also given in this section. The final
section provides the conclusions drawn from this study.

2. The model

We adopt an infinite-horizon, discrete time OLG model within which agents live for two
periods, corresponding to childhood (young agents) and adulthood (old agents). Each
adult gives birth to a single child, there is no population growth, and we normalize the
population size to one. Earnings for an adult are equal to his/her human capital, ht.

2.1. Schools

We assume that parents make educational investment decisions qt for their children,
5 that

is they decide how much tuition they want to pay. Moreover, we make the following
‘assumptions of schools’ (AS):

(AS1) For any level of educational expenditure chosen by a parent, there always
exists a school charging the tuition at the same amount to accept his/her
child.

(AS2) A school will charge the same tuition fees for all types of students.
(AS3) Schools earn zero profit.
(AS4) School quality is measured by its expenditure per student.

(AS1) implies that every young agent has a school to attend. (AS2) indicates that there
is no price discrimination amongst students within a school; therefore, private schools can
be perfectly segregated by their tuition fees.6 (AS3) along with (AS4) illustrate that school
quality can be represented by its tuition.

2.2. Human capital accumulation function

What makes this article different from the previous literature of human capital is the
accumulation function of the human capital. The key to the model is that there is a negative
externality of the average human capital when forming human capital accumulation.
The justification given for this is the remark of Stephan [12, p. 1220] in discovery:

Fourth, there is anecdotal evidence that ‘too’ much knowledge can be a bad thing in discovery
in the sense that it ‘encumbers’ the researcher. There is the suggestion, for example, that
exceptional research may at times be done by the young because the young ‘know’ less than
their elders and hence are less encumbered in their choice of problems and in the way they
approach a questions.

Besides, a negative externality of the average human capital may arise when some of
knowledge/information is wrong. One good example is the problem of the information
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quality on the internet. The invention of the internet provides another way for agents to
exchange information and to accumulate human capital. However, the discovery of the
internet makes users overwhelmed with information. When there is too much information,
agents need to spend lots of time on digesting it, not to mention that some of the
information might be wrong and the wrong information would lower the human capital
accumulation. During his interview by the BBC [14], Jakob Nielsen mentioned that:

the entire ideology of information technology for the last 50 years has been that more
information is better, that mass producing information is better. But the net is now so much a
machine with all the answers instantly, it has mutated into ‘procrastination apparatus’ which
spews information without much prioritisation.

He defined ‘information pollution as information overload taken to the extreme’ and
likened it to pollution in the physical environment. He also argued that ‘information
pollution can become an impediment to your ability to get your work done’. This indicates
that information pollution may reduce working productivity.

We then incorporate the ideas of Stephan [12] and Nielsen [14] when forming the
human capital accumulation function. One can think that there is a saturation level of the
average human capital representing the situation in which there is so much knowledge/
information within the economy that people cannot distinguish between right and wrong
information/knowledge and hence an increase in the average human capital contributes
nothing to (or even reduces) the accumulation of human capital.

Following the literature, we assume that human capital is accumulated according to a
Cobb–Douglas learning technology:7

htþ1 ¼ Aq
Z
t H

d
t ðm�HtÞb; ð2:1Þ

where A 4 0 is the productivity of human capital accumulation, qt is the educational
investment, Ht is the average human capital for the society, m 4 0 is the saturation level of
Ht. The parameters Z, d, b 2 [0,1] are the corresponding elasticity of qt, Ht and (m 7 Ht)
to future human capital.

Equation (2.1) is a variation of the traditional human capital accumulation function
by including the externality term. As we have explained in the introduction, there is a
saturation level of the average human capital Ht in economy, which is represented by m.
When Ht is much less than m, we have that higher average human capital is beneficial for
the accumulation of human capital by the factor Hd

t . By contrast, when Ht is close to m,
the benefit no longer exists. The factor (m 7 Ht)

b represents the impact of reduction
in the productivity of human capital accumulation caused by excessive information. As
Ht approaches m, this factor approaches zero. Thus, as Ht becomes larger the human
capital htþ1 accumulates at a lower rate. If Ht is large, the human capital declines. We
restrict all factors devoted to the accumulation of human capital to exhibit diminishing or
constant returns to scale.

2.3. The maximization problem for households

We assume parents care about their consumption ct and their children’s human capital
htþ1. All agents have the same utility function over their life cycle, which is:

ln ct þ o ln htþ1; ð2:2Þ
where o 4 0 represents preference towards human capital.
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Parents need to decide how to allocate their income between consumption and
educational investment for their children. Hence, the budget constraint for adults is

ct þ qt ¼ ht: ð2:3Þ

2.4. Equilibrium

Given h1, an equilibrium comprises sequences of individual human capital stock {ht}t�1,
the average human capital stock {Ht}t�1, and individual decisions {ct,qt}t�1 such that:

(1) the household maximization problem is solved by {ct,qt}t�1, maximizing the utility
function subject to Equations (2.1) and (2.3); and

(2) young agents will accumulate human capital following Equation (2.1).

2.5. The law of motion of human capital

It is easy to see that for the maximization problem, the optimal choice of educational
investment that parents choose for their children is

qt ¼
Zo

1þ Zo
ht: ð2:4Þ

Equation (2.4) shows that investment in education increases along with any increase in
parental human capital and is a linear function of ht. By substituting Equation (2.4) within
the human capital accumulation function of Equation (2.1), we have the law of motion of
human capital:

htþ1 ¼ A
Zo

1þ Zo

� �Z

h
Z
t H

d
t ðm�HtÞb: ð2:5Þ

Equation (2.5) indicates that the human capital accumulation function is an increasing
function of parental human capital, all other things being held constant. Under an
economy occupied with homogeneous agents, the law of motion of human capital becomes

Htþ1 ¼ A
Zo

1þ Zo

� �Z

H
Zþd
t ðm�HtÞb: ð2:6Þ

Equation (2.6) shows that the economy can be represented by a one-dimensional
dynamical system in human capital.

3. Chaotic dynamics: Li–Yorke chaos

In this section, we study the dynamical behaviour of the average human capital based on
the law of motion of human capital (2.6). Without loss of generality, we may assume that
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m ¼ 1. Let l ¼ A
� Zo
1þZo

�Z
, a ¼ Z þ d , and x ¼ Ht, then the model (2.6) turns into the

family of functions fl,a,b : [0,1] ! R defined by

fl;a;bðxÞ ¼ lxað1� xÞb; ð3:1Þ

where l 4 0, 0 5 a � 2 and 0 5 b � 1 are real parameters. For simplicity, we write
f ¼ fl,a,b, denote the identity function by f 0, and inductively define fn ¼ f � fn71 for
positive integer n.

Figure 1 indicates that the dynamic behaviour of Equation (3.1) with a ¼ 2 and b ¼ 1
varies from simple dynamics to chaotic dynamics as l increases.

Before proving the existence of chaotic dynamics, we give elementary analysis on the
model (3.1). By calculating the derivative f 0, we find that the maximum of f occurs at the
critical point a

aþb. Moreover, f is strictly increasing on
�
0; a

aþb
�
and strictly decreasing on�

a
aþb ; 1

�
. Hence, f

�
a

aþb
�
� 1 if and only if f([0,1]) \ [0,1]. By computing the second

derivative f 00, one has that f 0 is strictly increasing on [0,a] for some 0 5 a 5 1 and is
strictly decreasing on [a,1] if a þ b – 1 4 0, and f 0 is strictly decreasing on [0,1]
otherwise. By the intermediate value theorem, f

�
a

aþb
�
> a

aþb implies that there exist
0 < p� <

a
aþb < p < 1 such that

fðp�Þ ¼ fðpÞ ¼ p: ð3:2Þ

3.1. Li–Yorke chaos

Following the article of Li and Yorke [5], we define the Li–Yorke chaos.

Definition 3.1: Let h : I ! I be a map, where I is an interval. We say that h exhibits
Li–Yorke chaos on I if:

Figure 1. The bifurcation diagram of fl,2,1 (x) in l.
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(1) h has periodic points of all periods; here by a periodic point p of period n, we mean
that f n(p) ¼ p and f i(p) 6¼ p for 0 5 i 5 n;

(2) there exists an uncountable set S \ I such that

(i) if x, x, y 2 S with x 6¼ y then

lim sup
n!1

jhnðxÞ � hnðyÞj > 0 and lim inf
n!1

jhnðxÞ � hnðyÞj ¼ 0;

(ii) if x 2 S and y 2 I is periodic then

lim sup
n!1

jhnðxÞ � hnðyÞj > 0:

We recall some related theorems. The Li–Yorke Theorem in [5, Theorem 1]
says that any continuous map on an interval with a periodic point of period three
exhibits Li–Yorke chaos. A periodic point of period one is also called a fixed point. The
existence of a fixed point is guaranteed by the well-known fixed point theorem: if I is a
closed interval, h : I ! R is a continuous function, and h(I) [ I, then f has a fixed
point in I.

By using the theorems mentioned above, we establish the existence of Li–Yorke chaos
for our model for the case when the maximum of f is equal to one.

Theorem 3.2: Let f ¼ fl,a,b be given by Equation (3.1). If f
�

a
aþb
�
¼ 1, then f has periodic

orbits of all periods and exhibits Li–Yorke chaos on [0,1].

Proof: Let I1 ¼
�
0; a

aþb
�
and I2 ¼

�
a

aþb ; 1
�
. Because f(0) ¼ 0, f(1) ¼ 0, and f

�
a

aþb
�
¼ 1,

f(I1) [ I1 [ I2 and f(I2) [ I1 [ I2. Because f(I1) [ I1, there is a closed subinterval A1 of
I1 such that f (A1) ¼ I1. Because f (I2) [ I1 [ A1, there is a closed subinterval A2 of I2 such
that f(A2) ¼ A1. Again, because f (I1) [ I2 [ A2, there is a closed subinterval A3 of I1 such
that f(A3) ¼ A2. Hence f3(A3) ¼ f2(A2) ¼ f (A1) ¼ I1 [ A3. Because f3 is continuous,
the fixed point theorem implies that f3 has a fixed point, namely z, in A3. Then f(z) 2 A2

and f3(z) ¼ z. Because the common point of I1 and I2 is a
aþb and f 3

�
a

aþb
�
¼ 0, z 6¼ a

aþb.
Therefore, z is a periodic point of period three for f. By the Li–Yorke Theorem, f exhibits
Li–Yorke chaos. ¤

Before the maximum f
�

a
aþb
�
attains the number one, we can have that f2 exhibits

Li–Yorke chaos. Although similar results can be found in [4, Proposition 2.3], our
methodology is very different from his. We use the method of interval covering to prove
the existence of Li–Yorke chaos for f2.

Theorem 3.3: Let f ¼ fl,a,b be given by Equation (3.1), where l, a, b satisfy f
�

a
aþb
�
> a

aþb,
and let p_ be given by Equation (3.2). If f 2

�
a

aþb
�
� p�, then f has periodic orbits of all even

periods on [0,1] and f2 exhibits Li–Yorke chaos on [0,1].

Proof: Let I1 ¼
�
p�;

a
aþb
�
and I2 ¼

�
a

aþb ; p
�
. Because f2(p7) ¼ f2(p) ¼ p and f 2

�
a

aþb
�
� p�,

the continuity of f2 implies that f2(I1) [ I1 [ I2 and f2(I2) [ I1 [ I2. By the same
argument as in the proof of Theorem 3.2, f6 has a fixed point, namely z, in I1,
and f2(z) 2 I2. Because f 2

�
a

aþb
�
� p�, z 6¼ a

aþb. Therefore, the point z is a periodic
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point of period three for f2 and of period six for f. By the Li–Yorke Theorem, f2 exhibits
Li–Yorke chaos. ¤

One can see from Figure 2 that the model fl,a,b in Equation (3.1), with l ¼ 6.5, a ¼ 2
and b ¼ 1, satisfies the conditions of Theorem 3.3.

If the dynamics of Equation (2.6) exhibits Li–Yorke chaos, then irregular cycles will
emerge with the development of economics. Hence, unlike [1] and [3], which concentrated
on the possibility of endogenous fluctuations in an economy with capital accumulation,
our result enriches this line of studying by showing that it is also likely to obtain Li–Yorke
chaos in an economy with human capital accumulation.

4. Other types of chaos

Besides verifying the possibility of the presence of chaos in the sense of Li and Yorke when
there is negative externality of human capital, in this section we show that this nonlinear
first-order difference equation in human capital can also exhibit Devaney’s and Smale’s
chaos under certain conditions. Although most theoretical studies of complex dynamics in
economic models tend to focus on the examination of Li–Yorke chaos due to the
mathematical convenience, we provide the other two alternative considerations of chaos.
A numerical example is given at the end of the section.

4.1. Devaney’s chaos

In his popular textbook, Devaney [29] gives the following definition for chaos.

Figure 2. The graph of f6.5,2,1 (x).
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Definition 4.1: Let h : I ! I be a map, where I is a closed interval. We say that h exhibits
Devaney’s chaos on I if the following conditions are satisfied:

(1) the set of periodic points is dense in I;
(2) the map h is topologically transitive, i.e. for any given pair of nonempty open sets

U and V in I, there is a positive integer n such that fn(U) \ V 6¼ ø; and
(3) the map h has sensitive dependence on initial conditions, i.e. there exists a 4 0

such that for any x 2 I and any E 4 0, there are y 2 I and n 2 N such
that jx – yj 5 E and j hn(x) – hn(y) j 4 a.

We also need the following definition. For a C3 map h : I ! I, where I is an interval,
the Schwarzian derivative of h is defined by

ShðxÞ ¼
h000ðxÞ
h0ðxÞ �

3

2

h00ðxÞ
h0ðxÞ

� �2

for x 2 I with h0(x) 6¼ 0. By using the chain rule, one has that Sh 5 0 implies Sh 2 < 0.
Thus, we have the following property that

if Sh < 0; then Shn < 0 for all n � 1: ð4:1Þ

Moreover, Sh 5 0 implies that h0 cannot have a positive local minimum or a negative local
maximum. Indeed, if c is a critical point of h0, then h000ðcÞ=h0ðcÞ ¼ ShðcÞ < 0 and hence
h000(c) and h0(c) have opposite signs. Therefore, by continuity of h0, we have that if h0 6¼ 0
and Sh 5 0 on [a, b] then for any x 2 (a,b),

either h0ðxÞ > min fh0ðaÞ; h0ðbÞg > 0 or h0ðxÞ < max fh0ðaÞ; h0ðbÞg < 0: ð4:2Þ

Return to our study on the model f ¼ fl,a,b in Equation (3.1). Assume a � 1 and
f
�

a
aþb
�
¼ 1. Then there are p7 5 p as defined in Equation (3.2). Because f 0 is strictly

decreasing on [0,1], the mean value theorem implies that 0 and p are the only fixed points
of f. Because f2(p7) ¼ f2(p) ¼ p and f 2

�
a

aþb
�
¼ 0 < p�, the intermediate value theorem

implies that there exist p7 5 ‘1 5 r1 5 p such that

f 2ð‘1Þ ¼ f 2ðr1Þ ¼ p�: ð4:3Þ

In fact, such a pair ‘1 and r1 satisfying Equation (4.3) is unique due to the monotonicity of
f on

�
p�;

a
aþb
�
and

�
a

aþb ; 1
�
.

For the case when the maximum attains one, we have shown that the model (3.1)
exhibits the Li–Yorke chaos in Theorem 3.2. Furthermore, Devaney’s chaos may exist.

Theorem 4.2: Let f ¼ fl,a,b be given by Equation (3.1) with a � 1 and f
�

a
aþb
�
¼ 1 and let

p7 5 ‘1 5 r1 5 p be as in Equations (3.2) and (4.3). If min{j f 0(p7)j, j f 0(p)j} 4 1,
max

�
r1 � a

aþb ;
a

aþb� ‘1
	
< p� and the Schwarzian derivative Sf(x) 5 0 for x 2 [0, 1], then f

exhibits Devaney’s chaos on [0,1].

Mathematical and Computer Modelling of Dynamical Systems 579

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

7:
11

 2
5 

A
pr

il 
20

14
 



Proof: Let J ¼ ½p�; p�n
�

a
aþb
	
. For x 2 J, define t(x) ¼ min{n 2 N : fn(x) 2 [p7,p]}. Then

t(x) is well defined. Indeed, let x 2 J then f(x) 2 [p, 1) and so f2(x) 2 (0, p]. Because
f(y) 4 y for all y 2 (0, p7), there exists a positive integer n such that fn(x) 2 [p7, p].

First, we claim

jðftðxÞÞ0ðxÞj > 1 for all x 2 J: ð4:4Þ

For n � 1, let In ¼
�
x 2

�
a

aþb ; p
�

: tðxÞ ¼ n
	

and În ¼
�
x 2

�
p�;

a
aþb
�

: tðxÞ ¼ ng. Then
J ¼ [1n¼1ðIn [ ÎnÞ, I1 ¼ {p}, Î1 ¼ {p7}, and j f 0(x) j 4 1 for x 2 I1 [ Î1. Consider n � 2.
The continuity of f implies that In ¼ [rn72, rn71) and În ¼ (‘n72, ‘n71] for some
p7 ¼ ‘0 � ‘n72 5 ‘n71 5 rn72 5 rn71 � r0 ¼ p. It is easy to check that fn(rn72) ¼ p7,
fn(rn71) ¼ p, and fn maps

�
a

aþb ; rn�2
�
and [rn72, rn71] homeomorphically onto [0, p7] and

[p7, p], respectively. By the mean value theorem applied to fn on
�

a
aþb ; rn�2

�
and [rn72,

rn71], respectively, one gets that there exist yn 2
�

a
aþb ; rn�2

�
and zn 2 (rn72, rn71) such

that ð f nÞ0ðynÞ ¼ p�
rn�2� a

aþb
and ðf nÞ0ðznÞ ¼ p�p�

rn�1�rn�2. Because
�

a
aþb ; rn�2

�
�
�

a
aþb ; r1

�
,

r1 � a
aþb < p� and (rn72, rn71) � (p7,p), we have ð f nÞ0ðynÞ � p�

r1� a
aþb
> 1 and (f n)0(zn) 4 1.

Because Sf 5 0, by (4.1) we have Sf n < 0 and hence by Equation (4.2) applied to fn, we
obtain (fn)0(rn72) 4 min{( f n)0(yn), ( f

n)0(zn)} 4 1. Because r0 ¼ p we have (f2)0(r0) 4 1.
Thus, inductively we have that for n � 3,

ðf nÞ0ðrn�1Þ ¼ f0ðfn�1ðrn�1ÞÞ � ðfn�1Þ0ðrn�1Þ ¼ f0ðp�Þ � ðfn�1Þ0ðrn�1Þ > 1:

By Equation (4.2) again, we get that (fn)0(x) 4 min {(fn)0(rn72), (f
n)0(rn71)} 4 1 for all

x 2 In ¼ [rn72, rn71). By using the same argument as above, we have that (fn)0(x) 5 –1
for all x 2 În ¼ ð‘n�2; ‘n�1�. The desired claim follows.

Second, we claim that for every x 2 [0,1] whose orbit does not go through a
aþb, there

exists a positive integer nx such that

jðfnxÞ0ðxÞj > 1: ð4:5Þ

For x 2 J, claim (4.5) follows Equation (4.4) by taking nx ¼ t(x). Next, we consider
x 2 [0,p7]. Because Sf 5 0 and f 0 4 0 on [0, p7], by Equation (4.2) we have that
f 0(x) � min {f 0 (0), f 0 (p7)} 4 1 for all x 2 [0,p7]. Thus, Equation (4.5) holds for
x 2 [0,p7] by taking nx ¼ 1. Finally, consider x 2 [p,1]. Then f(x) 2 [0,p] and so the
above result implies that jðf mxÞ0ðfðxÞÞj > 1 for some integer mx � 1. Because Sf 5 0
and f 0 5 0 on [p, 1], by Equation (4.2) we have f 0(x) � max{f 0(p), f 0(1)} 5 –1.
Thus jðf mxþ1Þ0ðxÞj ¼ jðf mxÞ0ðfðxÞÞ � f0ðxÞj > 1. Therefore, Equation (4.5) holds by taking
nx ¼ mx þ 1. We have finished the proof of the claim.

Third, we claim that for any nonempty open set U \ [0,1], there exists a positive integer
n such that

f nðUÞ 	 ½0; 1�: ð4:6Þ

Let U be an interval in [0,1]. Because f(x) 4 x for x 2 (0,p7] and f([p,1)) \ (0,p], there are
a positive integer n and a subinterval U0 \ U such that fn(U0) \ J. For convenience, we
denote R(x) ¼ ft (x) (x) for x 2 J. The claim (4.4) says that R expands the lengths of
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intervals in J and hence there exists an integer k 4 0 and a subinterval V0 \ fn(U0) such
that Rk (V0) contains a discontinuity point of R. Thus, there exists m 4 0 such that
p 2 f m(V0). Now it remains to prove that fm þ ‘ (V0) ¼ [0,1] for some ‘ 4 0. Because
f maps [p, 1] homeomorphically onto [0, p], there exists a unique d 2 [p,1] such
that fðdÞ ¼ a

aþb. Then f mþ2‘̂ðV0Þ 	
�

a
aþb ; d

�
for some ‘̂ > 0. Indeed, because j (f2)0(y)j ¼ j

( f t(x))0(x) j 4 1 for x 2 [r1,p] and f 2ðxÞ ¼ fðfðxÞÞ � fðfðr1ÞÞ ¼ p� <
a

aþb < x for
x 2

�
a

aþb ; r1
�
, we have that f2(x) 5 x for all x 2

�
a

aþb ; p
�

and hence f2(x) 4 x for
all x 2 (p,d ]. Thus, there exists ‘̂ > 0 such that f mþ2‘̂ðV0Þ 	

�
a

aþb ; d
�
. Because

f 2
��

a
aþb ; d

��
¼ f
��

a
aþb ; 1

��
¼ ½0; 1�, f mþ2‘̂þ2ðV0Þ 	 f 2

��
a

aþb ; d
��
¼ ½0; 1�. The proof of the

desired claim is complete.
Finally, we are in position to obtain the three properties of Devaney’s chaos. Let U be

any nonempty open interval in [0,1]. Then there exist a nonempty open interval V and a
closed interval W such that V \ W \ U. By claim (4.6), there exists a positive integer n
such that fn(V) \ [0,1] and hence fn(W) [ W. By the fixed point theorem, fn has a fixed
point inW. Therefore, f has a periodic point inW and so in U. We have proved that the set
of periodic points is dense in [0,1]. The claim (4.6) immediately implies that f is
topologically transitive. For sensitive dependence of f, we take Z ¼ 1

4. Let x 2 [0,1] and
E40 be arbitrary. Take U to be the interval

�
x; xþ E

2

�
or
�
x� E

2 ; x
�
provided it is well

defined. By claim (4.6), we have fn(U) [ [0,1]. Thus, there exists y 2 U such that
jf nðxÞ � f nðyÞj > 1

4 ¼ Z. The proof of the theorem is complete. ¤

Now we consider the case when a 4 1 and f
�

a
aþb
�
> a

aþb. Let p7 5 p be as in
Equation (3.2). Then f 0(0) ¼ 0 and hence there exists a unique point, namely q, in (0, p7)
such that

fðqÞ ¼ q: ð4:7Þ

Similar to Equation (4.3), we have that if f 2
�

a
aþb
�
� q, then there exist p7 5 ‘1 5 r1 5 p

such that

f 2ð‘1Þ ¼ f 2ðr1Þ ¼ p�: ð4:8Þ

Moreover, if f 2
�

a
aþb
�
< q, the intermediate value theorem implies that there exist

p7 5 ‘1 5 q7 5 qþ 5 r1 5 p such that

f 2ðq�Þ ¼ f 2ðqþÞ ¼ q: ð4:9Þ

Under the condition f 2
�

a
aþb
�
¼ q, Theorem 3.3 says that f2 exhibits Li–Yorke chaos.

In fact, the existence of Devaney’s chaos is also possible.

Theorem 4.3: Let f ¼ fl,a,b be given by Equation (3.1) with a 4 1 and f 2
�

a
aþb
�
¼ q, where q

is in Equation (4.7), and let ‘1, r1 as in Equation (4.8). If min {jf 0(q)j, j f 0(p) j} 4 1,
max

�
r1 � a

aþb ;
a

aþb� ‘1
	
< p� � q and the Schwarzian derivative Sf(x) 5 0 for

x 2
�
q; f
�

a
aþb
��
, then f exhibits Devaney’s chaos on

�
q; f
�

a
aþb
��
.

The proof is similar to the one for Theorem 4.2. We omit it here.
If Devaney’s chaotic motion presents, then the initial condition will be an important

determinant to the future development for the economy. This result contradicts the
traditional Solow growth model because two economies which only differ from each other
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at initial conditions will behave very differently not only in the short run but also in the
long run.

4.2. Smale’s chaos

Based on the pioneering article by Smale [30] in dynamical systems, one can define Smale’s
chaos as follows (see also [31]).

Definition 4.4: Let h : R ! R be a map and L be a subset of R. We say that h exhibits
Smale’s chaos on L if there exist an integer N 4 1 and a function j : L ! SN, where
SN ¼ fs0s1s2 � � � j si ¼ 1; 2; � � �, or N for all i � 0}, such that j is continuous and one to one
from L onto SN, its inverse j71 is continuous, and for any x 2 L,

jðhðxÞÞ ¼ sðjðxÞÞ;

where s is the shift map on SN defined by

sðs0s1s2 � � �Þ ¼ s1s2s3 � � � :

For the case when f 2
�

a
aþb
�
< q, our model can exhibit Smale’s chaos.

Theorem 4.5: Let f ¼ fl,a,b be given by Equation (3.1) with a 4 1 and f 2
�

a
aþb
�
< q, where

q is in Equation (4.7), and let p7 5 ‘1 5 q7 5 qþ 5 r1 as in Equations (4.8) and
(4.9). Let

L ¼ fx 2 ½q; fðqþÞ� : f nðxÞ 2 ½q; fðqþÞ� for all n � 0g:

If one of the following holds:

(H1) min{j f 0(q7)j, j f 0(qþ) j} 4 1;
(H2) max{r1 – qþ, q7 – ‘1} 5 p7 – q, f0(p) 5 –1 and the Schwarzian derivative

Sf(x) 5 0 for x 2 [q, f(qþ)],

then:

(1) the set L is invariant under f and is a Cantor set (i.e. closed, bounded, totally
connected, and perfect);

(2) the map f has periodic points of all periods in L;
(3) the map f exhibits Smale’s chaos on L; and
(4) every orbit with an initial point in [0,1]\L converges to the origin.

Proof: Consider the case when (H1) holds. For item (1), first we show that the invariance
f(L) ¼ L. It follows immediately from the definition of L that f (L) \ L. We prove
L \ f(L) by contraction. Let x 2 L. Because f([q, q7]) ¼ [q, f(qþ)], there exists y 2 [q,q7]
such that f (y) ¼ x. Suppose y 62 L. Then there is m � 1 such that fm(y) 62 [q, f(qþ)] and so
fm71(x) ¼ fm71(f(y)) ¼ fm(y) 62 L. This contradicts the fact that f(L) \ L. Second, we
show that L is compact. Because L \ [0,1], L is bounded. Let J0 ¼ [0,1] and inductively
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define Jn ¼ {x 2 [0,1] : f(x) 2 Jn71} for n � 1. By the definition of L, we have
L ¼ \1n¼0Jn. Because f is continuous, Jn is closed for all n � 0. Hence, L is closed and
so is compact.

Next, we claim that there exists l 4 1 such that for any x 2 L \ [q, f(qþ)],

jf0ðxÞj � l: ð4:10Þ

Because 0, q, p are fixed points for f, the mean value theorem implies that there are
0 5 a 5 q 5 b 5 p such that f 0(a) ¼ f 0(b) ¼ 1. Because f 00 has at most one root on (0,1),
(H1) implies that f 0(x) 4 1 for all x 2 [q,q7] and f 0(x) 5 –1 for all x 2 [qþ, f(qþ)]. The
desired claim follows from the continuity of f 0.

Now we prove that L is totally disconnected. Suppose, on the contrary, that L [ [y,z]
for some y 5 z. Because L is invariant for f, fn([y,z]) \ fn(L) \ L \ [q, f (qþ)] \ [0,1]. This
leads to a contradiction. Indeed, the mean value theorem and the claim (4.10) together
imply that

jf nðyÞ � f nðzÞj ¼ jðf nÞ0ðxÞjjy� zj � lnjy� zj ! 1 as n!1:

To prove that L is perfect, first notice that Jn consists of 2
n disjoint closed intervals. We

order the 2n components of Jn from left to right on the real line and denote the ith
component by Jn,i. Also notice that the endpoints of each Jn,i are contained in L.
Let x 2 L and for n � 0, let Jn,i(n,x) be the component of Jn that contains x. Then
Jnþ1, i(nþ1,x) \ Jn, i(n,x) for all n � 0 and x 2 \1n¼0Jn;iðn;xÞ. Because L is totally disconnected,
the length of Jn,i(n,x) converges to 0 as n goes to ? . Therefore, there are endpoints from
Jn,i(n,x)

0s arbitrarily close to x. This proves that L is perfect. We have finished the proof of
item (1).

For items (2) and (3), let I1 ¼ [q, q7] and I2 ¼ [qþ, f(qþ)]. Then f(I1) [ I1 [ I2 and
f(I2) [ I1 [ I2. By using the same argument as in the proof of Theorem 4.2, the result in
item (2) follows. Let s be the shift map on S2. Define j : L ! S2 by j(x) ¼ s0s1s2. . .,
where si ¼ 1 if f i(x) 2 I1 and si ¼ 2 if f i(x) 2 I2. Let x 2 L, j(x) ¼ s0s1s2. . ., and
j(f (x)) ¼ t0t1t2. . .. Then for any i � 0, f i(f(x)) ¼ f iþ1(x) 2 ISiþ1

and f i( f (x)) 2 Iti.
Because I1\I2 ¼ ø, siþ1 ¼ ti. Thus, j( f (x)) ¼ s(j(x)). Based on claim (4.10), it becomes
a routine process to prove that j is continuous, one to one, and onto, and j71 is
continuous. For details, refer to the proof of Theorem 5.1 in [31, Chapter II]. Hence, the
statement of item (3) is true.

For item (4), let x 2 ½0; 1�nL. Then there exists m � 0 such that fm(x) 2 [0,q) [ ( f(qþ),
1] and hence fmþ1(x) 2 [0, q). Because f(y) 5 y for all y 2 (0,q) and 0 is the unique fixed
point in [0,q) for f. The continuity of f implies that fn(x) tends to 0 as n goes to the infinity.

Consider when hypothesis (H2) holds. By using the same argument as in the proof of
Theorem 4.2, we have the result, similar to claim (4.5), that for every x 2 L, there exists an
integer nx � 1 such that jð f nxÞ0ðxÞj > 1. Based on this, the rest of the proof is very similar
to the one given above for hypothesis (H1). We leave the details to the readers. ¤

Theorem 4.5 implies that the dynamical system (2.6) will display cycles of all periods
under certain conditions, and hence Smale’s chaos is possible. From Theorems 3.2, 3.3,
4.2, 4.3 and 4.5, the chaotic motion depends crucially on parameter values. Let us consider
the model (3.1) with a ¼ 2 and b ¼ 1, and l varying, that is fl (x) ¼ lx2 (1 – x).
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If 0 < l < 27
4 , then f([0,1]) \ [0,1]. Moreover, if l 4 4, then 0 and

1þ
ffiffiffiffiffiffi
1�4

l

p
2 are fixed points

for f. Also a simple calculation implies that its Schwarzian derivative

SfðxÞ ¼
�6ð1� 4xþ 6x2Þ
ð2x� 3x2Þ2

;

which is negative for all x 2 (0,1) except the critical point 2
3. See also Figure 1 for its

bifurcation diagram. Corresponding Theorems 3.2, 3.3, 4.2, 4.3 and 4.5, we have the
following results.

Example 4.6: Let fl : ½0; 1� ! R be given by fl(x) ¼ lx2(1 – x), where 4 � l � 6.75 is a
parameter. Then one has the following properties:

(1) If l ¼ 6.75, then fl has periodic orbits of all periods and fl exhibits Li–Yorke
chaos.

(2) If 6 5l5 6.75, then fl has periodic orbits of all even periods and f 2
l exhibits

Li–Yorke chaos.
(3) There exists l 
 6.545 such that fl exhibits Devaney’s chaos.
(4) If 6.6 �l� 6.75, then there is a Cantor subset L of [0,1] such that fl has periodic

points of all periods in L and exhibits Smale’s chaos on L, and every orbit with an
initial point in [0,1]\L converges to the origin. Note that since L has Cantor
structure, Figure 1 appears that for 6.6 � l 5 6.75, almost all orbits converge to
the origin.

5. Conclusion

In this article, we have shown the existence of chaotic behaviour in an overlapping
generations model with human capital accumulation. In addition to presenting the chaos
in Li and Yorke condition, we also illustrate the chaotic trajectories in the sense of
Devaney and Smale. Unlike other studies, we assume that excessive knowledge/
information will reduce the productivity to accumulate human capital. Because traditional
approach of human capital accumulation does not take the negative externality of human
capital into account, it excludes the possibility of complex dynamics. Hence, our study
highlights the important role of human capital externality and indicates that a more
accurate estimation of the human capital accumulation function will be needed in the
future study. Furthermore, the policy implications of our results considering the negative
externality of human capital will be very different from those obtained from traditional
studies.8 Another work for the future study is to extend the model to a higher-dimensional
dynamical system. This can be achieved by including persistent habits in the model or by
changing the formation of human capital accumulation.
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Notes

1. Day [1] argued that an excessive amount of capital will reduce overall productivity because of
the ‘pollution effect’.

2. Average human capital was used by De la Croix and Doepke [10] to represent the quality of
teachers.

3. The concept of ‘information pollution’ was introduced by Nielsen [13]; see also his interview by
the BBC in [14].

4. For example, Eysenbach et al. [15] demonstrated the importance of the quality of medical
information on the internet because misinformation can damage one’s human capital or even
life.

5. We assume that there are only private schools in the economy. For studies considering
educational systems, see [23–25].

6. Caucutt [26] has developed a model where schools could engage in price discrimination amongst
students.

7. See [6], [10], [11], [23], [27], [28].
8. A good discussion about implications of policy decision when chaos presents can be found in

Bullard and Butler [32].
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