# 國立交通大學

# 電子物理系碩士班

# 畢業論文

利用液態晶體之兆赫波偏振器研究 Study on Liquid Crystal Polarizer for Terahertz Waves

研究生:賴玉倩

指導教授:趙如蘋 教授

中華民國九十六年七月

## 利用液態晶體之赫波偏振器研究

### Polarizing Terahertz Wave with Liquid Crystal

研究生: 賴玉倩

Student : Yu-Chien Lai

指導教授:趙如蘋

Advisor : Ru-Pin Pan

國立交通大學

電子物理系碩士班

#### 碩士論文

A Thesis Submitted to Department of Electrophysics College of Science National Chiao Tung University

for the Degree of

Master of Science

in

Electeophysics

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

## 利用液態晶體之兆赫波偏振器研究

研究生:賴玉倩

指導教授:趙如蘋 博士

## 國立交通大學電子物理系碩士班

### 摘要

本實驗設計利用磁控向列型液晶 E7 製作兆赫波之偏振器。利用 液晶的雙折射性,以及 Snell 的全反射效果,選擇適當的入射角度, 達到偏振器的效果。實驗改變不同厚度的液晶層,來探討厚度對 Feunsser 偏振器效果的影響。結果顯示: A 樣品 (1.95 mm)與 B 樣 品 (1.25 mm)偏振器效果最佳,其 Extinction Ratio 值可達  $10^4 \sim$  $10^5$ ,偏極化程度值分別在 0.2 ~ 0.9 THz 與 0.3 ~ 0.9 THz 的範圍內可 達 0.98 以上。D 樣品 (0.75 mm) Extinction Ratio 值可達  $10^4$ ,偏極化 程度值在 0.45 ~ 0.9THz 範圍達 0.95 以上。C 樣品 (0.5mm)效果最差, Extinction Ratio 值為  $10^3$ ,偏極化程度值在 0.45 ~ 0.9THz 範圍可達 0.9 以上。

# Study on Liquid Crystal Polarizer for Terahertz Waves

Student: Yu-Chien Lai

Advisor: Pro. Ru-Pin Pan

Department of Electrophysics National Chiao Tung University

### ABSTRACT

ANIMAR,

We demonstrate a terahertz polarizer by using nematic liquid crystal (NLC), E7. The Polarizer has a Feuessner-type structure with the NLC layer between two fused silica prisms. We fabricated four difference thickness of LC layers, 1.95mm, 1.25mm, 0.75mm and 0.40mm. For LC layer with 1.95mm-thick and 1.25mm-thick, both of them exhibit polarization factors greater than 0.98 in the frequency range 0.2~ 0.9 THz and 0.3~0.9 THz, respectively. The polarization factor exceeds 0.95 and 0.90 from 0.45~ 0.9 THz for 0.75mm-thick and 0.40mm-thick LC layer, respectively.

## 誌謝

碩士班兩年一下子就過去了,在這期間非常感謝趙如蘋老師的教 導,當我在實驗上遇到困難時,趙老師會適時的給予幫助,讓我得到 許多寶貴的經驗;同時感謝潘犀靈老師,在兆赫波的實驗上給予協助。

感謝卓帆學長,一路辛苦的幫忙我,不僅是當我在實驗上遇到問題,甚至是理論給予我相當多意見。實驗室的家任、宇泰、信穎、阿達以及雅峰學長,謝謝你們在實驗上給我許多指教。還有俊賢、誌佑、 政穎,謝謝你們的陪伴,讓我在這段期間充滿了歡笑,大家一起討論 功課,一起打球,這些日子我會將它牢牢的記住的。光電所宜貞、晏 毓、偉文謝謝你們在實驗上的幫助。

謝謝學妹逸君、孟秋,跟你們聊天很開心,學弟聖嵐、天昱、昱 智,實驗室有了你們,多了許多有趣的事。

最後要謝謝我的家人,你們總是在背後默默支持我,當我難過的 時候聽我訴苦,給我許多溫暖,尤其是妹妹玉琳,你總是能在我難過 的時候逗我開心,謝謝!!

謝謝我身邊每一個幫助過我的人,沒有你們不會有今天的我,真 的很謝謝你們!

|  | 中文摘要  |              | i   |
|--|-------|--------------|-----|
|  | 英文摘要  |              | ii  |
|  | 誌謝    |              | iii |
|  | 目錄    |              | iv  |
|  | 圖表目錄  |              | vi  |
|  | - \   | 導論·····      | 1   |
|  | 1-1   | 兆赫波簡介        | 1   |
|  | 1-2   | 液態晶體簡介       | 2   |
|  | 1-3   | 偏振器簡介與實驗動機   | 5   |
|  | 1-4   | 論文架構         | 6   |
|  | ニ、    | 實驗系統及架構      | 7   |
|  | 2-1   | 兆赫波量測系統      | 7   |
|  | 2-1-1 | 兆赫波產生與偵測原理簡介 | 7   |
|  | 2-1-2 | 兆赫波量测系統架構    | 9   |
|  | 2-2   | 樣品設計         | 10  |
|  | 2-2-1 | 選擇適當材料       | 10  |
|  | 2-2-2 | 設定適當入射角度     | 14  |
|  | 2-2-3 | 樣品結構與製作      | 14  |
|  | 2-3   | 實驗方法         | 18  |
|  | 三、    | 理論分析         | 21  |
|  | 3-1   | 非尋常光理論       | 21  |
|  | 3-2   | 尋常光理論        | 25  |



|   | 3-3   | 不同角度下穿透光強度變化 28     |
|---|-------|---------------------|
| 四 | •     | 結果與討論               |
|   | 4-1   | 穿透率量測結果             |
|   | 4-1-1 | 非尋常光實驗結果            |
|   | 4-1-2 | 尋常光實驗結果 42          |
|   | 4-1-3 | 不同角度下的穿透率 44        |
|   | 4-2   | 偏振器效果參數 50          |
|   | 4-2.1 | Extinction Ratio 50 |
|   | 4-2.2 | 偏極化程度               |
| 五 | `     | 結論與未來展望 58          |
| 參 | 考文獻   |                     |



# 圖表目錄

| 圖 1-1       | 液晶的種類                  | 4  |
|-------------|------------------------|----|
| 圖 2-1.1 (a) | 兆赫波產生器與接收器天線           | 8  |
| 圖 2-1.1 (b) | 低溫成長之砷化鎵能帶圖            | 8  |
| 圖 2-1.2     | 兆赫波時域頻譜系統              | 8  |
| 圖 2-1.3     | 兆赫波時域訊號                | 11 |
| 圖 2-1.4     | 兆赫波頻譜圖                 | 11 |
| 圖 2-2.1     | 液晶 E7 折射率              | 13 |
| 圖 2-2.2     | 不同材料之折射率實部與虛部          | 13 |
| 圖 2-2.3 (a) | 不同入射角下非尋常光的穿透率         | 15 |
| 圖 2-2.3 (b) | 不同入射角下尋常光的穿透率          | 15 |
| 圖 2-2.4     | 樣品設計圖                  | 17 |
| 圖 2-2.5     | 使用磁場驅動不同狀況下之液晶分子示意圖    | 17 |
| 圖 2-2.6     | 樣品實際圖                  | 19 |
| 圖 2-2.7     | A樣品實際圖                 | 19 |
| 圖 3-1.1     | 空氣與熔融的二氧化矽的訊號頻譜圖       | 24 |
| 圖 3-1.2     | 不同液晶層厚度樣品之非尋常光穿透光強度 Ie | 24 |
| 圖 3-2       | 不同液晶層厚度樣品之尋常光穿透光強度 I。  | 27 |
| 圖 3-3       | 樣品在尋常光與非尋常光狀況示意圖       | 27 |

| 圖 4-1.1  | A 樣品尋常光及非尋常光時域圖 31                |
|----------|-----------------------------------|
| 圖 4-1.2  | B 樣品尋常光與非尋常光時域圖31                 |
| 圖 4-1.3  | C 樣品尋常光與非尋常光時域圖 32                |
| 圖 4-1.4  | D 樣品尋常光與非尋常光時域圖 32                |
| 圖 4-1.5  | A 樣 品 之 頻 域 圖                     |
| 圖 4-1.6  | B 樣品之頻域圖                          |
| 圖 4-1.7  | C 樣品之頻域圖                          |
| 圖 4-1.8  | D 樣 品 之 頻 域 圖                     |
| 圖 4-1.9  | 不同液晶層厚度樣品之非尋常光穿透率 36              |
| 圖 4-1.10 | A樣品重複兩次實驗之兆赫波強度相除 38              |
| 圖 4-1.11 | B 樣品重複兩次實驗之兆赫波強度相除 38             |
| 圖 4-1.12 | C 樣品重複兩次實驗之兆赫波強度相除 39             |
| 圖 4-1.13 | D 樣品重複兩次實驗之兆赫波強度相除 39             |
| 圖 4-1.14 | A 樣品之尋常光與非尋常光實驗與理論計算的穿透<br>率40    |
| 圖 4-1.15 | B 樣品之尋常光與非尋常光實驗與理論計算的穿透<br>率      |
| 圖 4-1.16 | C 樣品之尋常光與非尋常光實驗與理論計算的穿透<br>率      |
| 圖 4-1.17 | 一<br>D 樣品之尋常光與非尋常光實驗與理論計算的穿透<br>率 |
| 圖 4-1.18 | 7 不同液晶層厚度樣品之尋常光穿透率 43             |
| 圖 4-1.19 | A 樣品之光強度隨角度變化時域圖 46               |

| 圖 4-1.20 | B 樣品之光強度隨角度變化時域圖 46               |
|----------|-----------------------------------|
| 圖 4-1.21 | C 樣品之光強度隨角度變化時域圖 47               |
| 圖 4-1.22 | D 樣品之光強度隨角度變化時域圖 47               |
| 圖 4-1.23 | A 樣品之各角度下穿透光頻域圖48                 |
| 圖 4-1.24 | B 樣品之各角度下穿透光頻域圖 48                |
| 圖 4-1.25 | C 樣品之各角度下穿透光頻域圖 49                |
| 圖 4-1.26 | D 樣品之各角度下穿透光頻域圖 49                |
| 圖 4-1.27 | 各樣品在 0.3 THz 處穿透光隨角度變化與 Malus's   |
|          | Law 比較                            |
| 圖 4-2.1  | A 樣品之 Extinction Ratio 實驗與理論比較 53 |
| 圖 4-2.2  | B 樣品之 Extinction Ratio 實驗與理論比較 53 |
| 圖 4-2.3  | C 樣品之 Extinction Ratio 實驗與理論比較 54 |
| 圖 4-2.4  | D 樣品之 Extinction Ratio 實驗與理論比較 54 |
| 圖 4-2.5  | A 樣品之偏極化程度量測結果56                  |
| 圖 4-2.6  | B 樣品之偏極化程度量測結果56                  |
| 圖 4-2.7  | C 樣品之偏極化程度量測結果 57                 |
| 圖 4-2.8  | D 樣品之偏極化程度量測結果                    |
| 表 3-1    | 兆赫波在非尋常光狀況下在液晶層經歷的厚度對照<br>表       |
| 表 5-1    | 各樣品實驗結果整理表                        |

### 第一章 導論

#### 1-1 兆赫波簡介

兆赫波 (Terahertz wave, THz Wave) 一般是指波長由 0.3 cm 到 10<sup>-3</sup> cm, 或頻率範圍從毫波 (~ 0.1THz) 到遠紅外區 (~ 30 THz) 的電磁波 (1THz =10<sup>12</sup> Hz, λ=0.03 cm)。廣義來說,任何有關頻率範圍在 0.1 到 100 THz 之間的電磁波研究,都可以視為兆赫波科學範疇。

一般常見的產生遠紅外線波段光源有弧光燈、Globar 燈、自由電子雷射 和同步輻射源等。傳統的紅外線光譜量測使用弧光燈為發射光源,輻射熱 測器當檢測器。但弧光燈在長波長的功率很弱,檢測器只能偵測到微弱的 訊號,且易受背景的黑體輻射的干擾。

1970年代初期,由於飛秒級的超短脈衝雷射的研發成功,帶動了兆赫波 頻譜技術及其相關研究領域的發展 [1]。目前常見的兆赫波產生與偵測系統 是「兆赫波時域頻譜儀」(THz time domain spectroscopy, THz-TDS)。 THz-TDS系統利用10~100 fs的近紅外光(λ= 800 nm) 脈衝,來激發和偵測 兆赫波脈衝 [2][3],透過使用飛秒級的時間間隔來解析遠紅外光(~ ps)。本 文實驗所使用的量測系統即為THz-TDS。當超短脈衝打到砷化鎵光導天線 上時,將載子從價帶激發到導帶,同時對天線外加偏壓,使之輻射出兆赫 波。由馬克斯威爾方程式可知當電流隨時間產生變化時,會輻射出電磁波。 兆赫波經過待測樣品後,由偵測天線接收兆赫波,可以量得其電場在時間 上的分布,於第二章中將有詳細的說明。經由快速富立葉轉換後,不僅量 到脈衝的強度,同時也可得到兆赫波相位的資訊。相位和振幅和樣品的折 射係數及吸收係數相關,THz-TDS在量測材料時不需使用 Kramers-Kronig analysis 來計算就可得到複數形式的介電常數。

至於兆赫波的應用方面,在1968年已有報告指出有許多材料的特性能階 對應到此波段 [4]。現今在此領域的研究範圍包括:時域光譜探測 [5]、影 像技術 (Terahertz Imaging) [6]、雷達偵測 [7] 與生物科技 [8] 等。以遠 紅外時域光譜探測而言,可將其應用在對物質的探測上,對於一些生物組 織的檢驗 (如異常血紅素探測或燒燙傷檢測…等)皆有相當的價值性。而 影像技術更可應用在機場,港口、車站及海關之保安檢查及醫學上的實驗 檢測,對於X光無法偵測的物質,如粉末、弱鍵結物質及炭坦病毒…等,兆 赫波影像技術都可加以檢測;且其極低的能量及敏銳穿透的特性,可以長 時間連續的使用且不破壞待測體之本質。進一步更可應用於生物科技的影 像研究,如癌症細胞、蛋白質結構等。所以這個波段非常適合應用在生物 探測系統上。綜合以上可知,這個頻率範圍的應用不但廣泛且實際。

#### 1-2 液態晶體簡介

液態晶體 (Liquid Crystal, LC),其相介於固態和液態之間,兼具液體的 流動性與晶體的特定規則排列性之材料。西元1888年由奧地利植物學家 F. Reinitzer [10]發現。隔年德國物理學家 O. Lehmann [11]利用一座具有加熱

功能的偏光顯微鏡去探討液晶降溫結晶之過程。O. Lehmann 觀察到液晶具 有特殊的光學特性,即液晶的介電常數與磁化率具有異向性 (anisotropy),也就是所謂的雙折射(birefringence)性質。經過一百多年 的發展,液晶的特性逐漸被人們了解,甚至在近幾十年被拿來應用在顯示 器上,液晶成了大家耳熟能詳的名詞。

液晶可分成向列型液晶(Nematic Crystal, N)、層狀液晶(Semetic Crystal,S) 與膽固醇型液晶(Cholesteric Crystal,N\*)。向列型液晶又稱絲 狀液晶(見圖1-1 (a)),因結構在顯微鏡下像絲線一般而得名;此類液晶分 子為長型或圓盤狀,質心位置排列無秩序性,但 director (通常是取液晶分 子的對稱軸方向為 director)有一個平均的方向性;本實驗所使用之液晶即 為向列型液晶。層狀液晶也稱皂狀液晶 (見圖1-1 (b)),因結構如同肥皂溶 液般具有層狀結構而稱之,是三種液晶態中最具規則性的;其單層分子質 心位置無秩序性,但同層分子director有特定的平均方向,可視為二維規則 排列的物質。膽固型液晶(見圖1-1 (c)) 因由此類液晶為膽固醇的衍生物而 命名;液晶分子的排列在局部看來會和向列型液晶相似,但其 director 方 向會隨空間某一方向變化,也就是說 director 方向會如同螺紋一般旋轉。 液晶分子不僅具有折射率之異向性,同時也具有介電場數及磁化率之異向 性;故可透過外加電場和磁場來改變液晶分子排列方向(因其會往能量較 小的方式排列)。除了利用外加場的方式使液晶配向之外,還可處理與液





(a)

(b)



**圖 1-1** 液晶的種類;(a) 向列型液晶;(b)層狀液晶;(c) 膽固醇型液晶。

晶分子接觸的表面,來達到讓液晶排列整齊的目的。目前常用的表面處理 方式是在表面鍍上配向劑後,利用絨布摩刷表面,讓液晶分子順著或垂直 摩刷方向排列。除了使用絨布摩刷之外,還可利用光配向、離子轟擊基板 的方式來達到使液晶分子配向的目的。本文實驗中所使用的配向方式是使 用外加磁場來讓液晶分子排列整齊。

在1960年代後液晶的光學性質逐漸被清楚了解後,應用性的研究也逐漸 出現。例如某些液晶會因不同的溫度或壓力,反射出不同頻率的電磁波, 可將其製作成溫度計,或者是應用在電子攝影上。利用將液晶塗佈在物體 表面,觀查顏色分佈就可知物體表面溫度分布。到了1963年發現液晶在施 加電場後,可藉由旋轉液晶來控制電磁波的偏振態,才將液晶逐漸引導至 顯示器產業上。而到了現在,不論大小尺寸的液晶螢幕皆已是眾所皆知且 廣泛使用的顯示器。

#### 1-3 偏振器簡介與實驗動機

兆赫波對於基礎科學及實際應用上尚有許多發展空間,但可用於此波段 的光學元件如偏振片 (polarizer / analyzer)、相移器 (phase shifter)及波 長選擇器 (wavelength selection filter) 等等,可說是相當缺乏。因此,兆赫 波元件之研究開發的工作是非常重要且刻不容緩。

目前金屬光柵偏振器(Wire Grid Polarizer) 是在兆赫波段下常用的偏振器;而金屬光柵偏振器的理論及操作原理已經被詳細的研究[12]。但金屬光

柵偏振器的製作過程非常不容易;必須將金屬線以特定的直徑及間距,用 很高張力固定住。且其價格昂貴,又因以高張力固定,極易損壞;故本文 嘗試使用一個成本較低廉的方式來製做兆赫波段下偏振器,此元件具有比 金屬光柵偏振器高的偏振化程度 (Polarization Factor) 且堅固耐用的特 性。在紅外到紫外波段已有使用雙折性材料做成的 Glan-Thompson偏振器 [13];故我們想到利用全反射達到過濾偏振光的效果。

本文利用液晶的雙折射性及可透過磁場來控制液晶分子方向等特性,來 製做兆赫波段下的偏振器。在經過量測幾種常見液態晶體 (5CB、 PCH-5 and E7)之光學參數 (n<sub>e</sub> 及 n<sub>o</sub>),發現液態晶體 (5CB and E7)在兆赫波 段下其雙折射性比起一般材料大。本文選擇 E7 做為主要的實驗材料;因 在兆赫波段下 E7 的雙折射性為 0.13 且吸收較小 (~0.02)。另一方面我們 選擇適合的基板熔融的二氧化矽在兆赫波段下的吸收 (~0.002) 很小,折射 率 (~1.95)。透過設計合適的入射角來使液晶和熔融的二氧化矽介面產生 全反射來達到偏振器的效果。此種利用液晶雙折性的偏振器相對於金屬光 柵偏振器,不僅製作較為簡單且堅固、便宜及高偏振化程度,是其優點。

#### 1-4 論文架構

本文第二章將介紹實驗使用的兆赫波系統,及樣品的設計和製作;第三 章則介紹本實驗所用之光學理論與計算;第四章將實驗所得之結果做討論 並與理論相比較;最後第五章則對本實驗作結論以及探討未來的工作方向。

#### 第二章 實驗系統及樣品製作

本章將介紹在實驗中使用之兆赫波量測系統原理及架設,其次,再介紹樣品的設計概念及製作過程,最後介紹實驗量測方法。

#### 2-1 兆赫波量测系统

本實驗使用的量測系統為兆赫波時域頻譜儀 (THz-TDS)。系統使用砷化 鎵光導天線做為兆赫波發射器及偵測器,利用步進馬達延遲偵測光的光 程,將兆赫波在時域的波形描繪出來。

#### 2-1-1 兆赫波產生與偵測原理簡介

實驗使用的光導天線其結構為:在矽基板上低溫成長一層砷化鎵 (LT-GaAs),並於其上製作由Ni/Ge/Au 合金組成的導線(如圖 2-1.1 (a)所 示)。天線產生兆赫波脈衝的方式是利用波長 800 nm,脈衝時間為 100 fs 的 超快雷射,激發砷化鎵中的載子由價帶到導帶 [14][15],能帶結構如圖 2-1.1 (b)。透過外加 1000 V/cm 的電場,載子加速輻射出電磁波,此電磁波即為 兆赫波。

在偵測器部份,其天線結構與發射器相同,仍需超快雷射激發載子,但 不需外加偏壓。當兆赫波打入天線時提供一個很大的順變電場,驅動載子 在天線間隙中流動,由一端跑到另一端。可藉由鎖相放大器來收集電流訊 號,電流訊號大小與兆赫波的電場大小有關。而要繪出完整的兆赫波脈衝, 必須藉由延遲偵測光的光程來得到整個時域訊號。量測得到的兆赫波訊號



圖 2-1.1 (a) 兆赫波產生器與接收器天線; (b) 低溫成長之砷化鎵能帶圖。



圖 2-1.2 兆赫波時域頻譜系統。

是電場隨時間變化的訊號,值的大小是相對的,但值的正負號是代表電場 方向。

2-1-2 兆赫波量测系統架構

系統架構圖如上頁圖 2-1.2 所示。將波長 800 nm,脈衝時間為 100 fs, 重複率為 90 MHz 的超快雷射導入 THz-TDS 系統中;利用分光器 (Beam Splitter)將雷射光分成兩道,分別以 35 mw 和 25 mw 的功率垂直入射至激 發天線與偵測天線。在天線之前放一個無色散之聚焦物鏡,讓光可以準確 的打在天線的間隙上;天線背面貼上矽半球,使激發兆赫波從砷化鎵出射 至空氣時的折射角減小,增加收集率。輻射出的兆赫波入射到拋物面鏡後, 形成一道平行光;量測時會將樣品放置於兩個拋物面鏡之間來做測量,並 於樣品前放置光圈,以確保兆赫波是完全由樣品通過。

由天線激發出的兆赫波會有特定方向的偏振態,線偏振方向為水平天線 的間隙方向(以圖 2-1.1 (a))來說,兆赫波的線偏振方向為上下)。故在擺放 偵測天線時必須配合發射天線的方向,才能偵測到兆赫波。

要得到一個完整的兆赫波脈衝時域訊號,必須透過延遲偵測光的光程來 達到目的。一開始雷射光經過分光器分別入射到發射與偵測天線,假設此 時激發光加兆赫波與偵測光的光程是相同的,令此時 t=0,則偵測器偵測到 的是 t=0 時的兆赫波的電場強度。當我們利用步進馬達移動偵測光路的長度 時,則偵測光被延遲了 t'秒,此時偵測到的兆赫波是經過 t'秒時的兆赫波電 場強度。藉由此種方法即可將一個兆赫波脈衝完整的描繪出來。

另外,在兆赫波段下,有幾個水氣吸收頻率;在使用 THz-TDS 系統時, 利用壓克力罩蓋住系統,並在其中充入乾燥的氮氣,在量測時控制溼度小 於 5% RH,減緩水氣對兆赫波的吸收。圖 2-1.3 為量測所得之時域訊號,圖 (a)是未除濕訊號,圖(b)是已除濕訊號。由圖可知未除濕的訊號在主訊號之 後會有震盪,經過除濕過後震盪會明顯變少。時域訊號經過處理轉換成頻 域訊號;圖 2-1.4 為頻域圖。圖 2-1.4 (a)為未除濕之訊號,顯示在 0.55 THz、 0.75 THz、0.99 THz、1.11 (1.09) THz、1.16 THz、1.2 (1.22) THz、1.41 THz 位置,有明顯的水氣吸收。圖 2-1.4 (b)是經過除濕後訊號,可見特定水氣 吸收的頻率皆有顯著改善

本篇論文主要是利用液態晶體雙折射的特性,設計及製作一個在兆赫波 段下的偏振器。其優點缺點將在第四章詳細說明。在設計偏振器時,要考 慮元件組成材料在兆赫波段下的特性。其特性包括在此波段下必須是可穿 透(吸收係數小),折射係數必須能夠和液晶配合。使得在適當的入射角入 射下,可藉由旋轉樣品來控制兆赫波的穿透率,完成樣品設計。

#### 2-2-1 選擇適當材料

在選擇材料時,折射係數是一個重要的參數,而在計算折射率上,因折射率的實部與虛部是互相為函數關係,必須透過先假設一組折射率值,重



**圖 2-1.3** 兆赫波時域訊號,(a)未除濕之訊號;(b)除濕訊號。

![](_page_20_Figure_2.jpeg)

圖 2-1.4 兆赫波頻譜圖,(a)水氣吸收頻譜圖;(b)除濕後頻域訊號。

複代入得出一組最適當的折射率值。

在此實驗中使用的液晶是 E7 (Merck)。首先定義入射的兆赫波偏振方向 與液晶長軸方向垂直時,稱為尋常光 (Ordinary Ray, o-ray),此時兆赫波 經歷液晶的折射率是 n<sub>o</sub>;若兆赫波偏振方向與長軸方向平行,稱為非尋常 光 (Extraordinary Ray, e-ray),這時的折射率是 n<sub>e</sub>。

E7 折射係數量測結果如圖 2-2.1 所示,其中縱軸右側 n 代表折射率  $\kappa$ 為折射率虛部;在 0.2 THz ~ 1 THz 範圍內,其 $n_o$  值與 $n_e$  值分別為 1.58 ± 0.01 及 1.71±0.01; 虛數折射率皆小於 0.02。由於液晶為流體,必須選擇一個適 當折射率的材料來當容器。我們選擇了幾種材料: 塑鋼 (POM)、氯乙烯 (PVC)、 塑鋼與鐵氟龍合成物 (POF)、聚乙烯 (PE)及熔融的二氧化矽 (Fused Silica)。這些材料在兆赫波段下的折射係數,其量測結果如圖 2-2.2 所示。在兆赫波波段下,實部折射率部份: PE 為 1.51 ± 0.01, POM 為 1.62 ± 0.01, PVC 為 1.62 ± 0.02, POF 是 1.62 ± 0.01, Fused Silica 則為 1.95 ± 0.02。 虛數折射率部份,此五種材料皆小於 0.03,也就是說這些材料於兆赫波段 下無明顯的吸收。

在我們的樣品設計上,由於 n<sub>o</sub><n<sub>e</sub>,設定 o-ray 產生全反射, e-ray 可使 兆赫波通過樣品;且為了實用性,預定入射角介於 40°~50°範圍內。故在選 擇容器的折射率上,必須選擇折射率至少大於 1.71 (E7 折射率 n<sub>e</sub>=1.71), 故我們選擇熔融的二氧化矽作為實驗的容器。

![](_page_22_Figure_0.jpeg)

圖 2-2.1 液晶 E7 折射率。圖中實心點對應至左邊縱軸,是折射率實部 n;
 圖中空心點對應至右邊縱軸,是折射率虛部 κ。

![](_page_22_Figure_2.jpeg)

圖 2-2.2 不同材料之折射率;實心為折射率實部,空心為折射率虛部。其中 POM 為塑鋼, PVC 為氯乙烯, POF 為塑鋼與鐵氟龍合成物, PE 為聚乙烯, Fused Silica 為熔融的二氧化矽。

#### 2-2-2 設定適當入射角度

選定液晶與盛裝容器後,可以計算兆赫波在 e-ray 及 o-ray 的狀況下,各自對應的臨界角。由 Snell's Law 來看:

$$n_{e} \cdot \sin \theta_{e} = n \cdot \sin \theta_{1}$$

$$n_{o} \cdot \sin \theta_{o} = n \cdot \sin \theta_{2}$$
(2-2.6)

又在產生全反射狀況下, $\theta_1$ 、 $\theta_2$ 為 90°;其中 n = 1.95為熔融的二氧化矽折 射率,液晶的折射率  $n_e \approx n_o \beta$ 別為 1.71及 1.58。所以對 e-ray 而言臨界角  $\theta_e = 61.27^\circ$ ,對 o-ray 而言臨界角 $\theta_o = 54.12^\circ$ ;圖 2-2.3為兩種光在不同入射角 度的穿透率。在樣品的入射角度選擇上必須要大於 54.12°,如此才能讓 o-ray 產生全反射;且由圖 2-2.3 可知,對 e-ray 而言入射角度越小,穿透率越高。 再者考量樣品製作時角度的精確度,估計誤差範圍為 1°,因此我們設定入 射角為 56°。

#### 2-2-3 樣品結構與製作

兆赫波段下偏振器樣品選定使用 E7 液晶、熔融的二氧化矽為盛裝液晶 容器。樣品結構示意圖如圖 2-2.4 所示。在液晶層厚度設計上,根據入射光 波長(0.3 THz =1 mm),設計 A、B、C、D 四個樣品,其對應實際厚度為 1.95 ± 0.025 mm、1.25 ± 0.025 mm、0.40 ± 0.025 mm及 0.75 ± 0.025 mm; 長×寬×高尺寸 A、B、C 分別為 22.45 mm×15.20 mm×15.30 mm、22.45 mm × 15.15 mm×18.00 mm、22.35 mm×15.20 mm×15.25 mm,D 為 29.50 mm× 19.90 mm×19.90 mm。入射角由 A 到 D 分別為 55.90°、55.99°、55.78°和

![](_page_24_Figure_0.jpeg)

(**a**)

![](_page_24_Figure_2.jpeg)

**(b)** 

**圖 2-2.3** (a) 不同入射角下非尋常光的穿透率;(b) 不同入射角下尋常光的 穿透率。

56.35°受限於樣品製作,無法利用一般摩刷配向的方式來達到讓液晶排列, 所以本實驗使用外加磁場的方式來達到配向效果。

一個已有特定配向方向的樣品,要靠外加場來讓液晶轉動時, Fréedericksz Transition 是一個用來估計驅動液晶分子的最小(臨界)電場或 磁場的方法。其中臨界磁場可以表示為 [16]:

$$H_{c,i} = \frac{\pi}{d} \sqrt{\frac{K_i}{\mu_0 \chi_a}} \qquad \text{in MKS }$$
 (2-2.7)

式中 d 為液晶層厚度;  $K_i$  是液晶的彈性係數, i=1, 2, 3;  $\chi_a$  是磁化率;  $\mu_0$ 是磁導率。液晶分子在不同的狀況下(圖 2-2.5), 適用的彈性係數都不同, 一般以 Case3 狀況下所使用的  $K_3$  為最大; 假設以 E7 彈性係數最大的情況 下(E7 的  $K_3$  為 17.1×10<sup>-6</sup> N), 估計不同厚度之臨界磁場分別約為 0.0231 T (for 1.95 mm)、0.0462 T (for 1.25 mm)、0.0924 T (for 0.4 mm)、0.0615T (for 0.75 mm)。實驗上外加的磁場為 0.2 T, 大於臨界磁場, 亦即外加的磁場大 小已確定可使液晶排列整齊。

在樣品的製作上,使用兩種製作方式:第一種方法(樣品實際圖如圖 2-2.6 所示),使用一整塊熔融的二氧化矽塊材,在長方形的塊材上直接切割出溝 槽,依照設計的液晶層厚度,切出適當的溝槽寬度。此種方法的缺點是, 因溝槽深度受限於製作溝槽的工具,當所需的溝槽溝寬越小,能夠下挖的 深度有限,以 0.40 mm 的溝寬來說,下挖的深度大約是 5 mm,如此一來樣 品的可視面積會受到限制,造成穿過樣品的兆赫波訊號過小,以致無法分

![](_page_26_Figure_0.jpeg)

**圖 2-2.4** 樣品設計圖;其中液晶層厚度有 1.95 mm、1.25 mm 及 0.4 mm 三

種。

![](_page_26_Figure_2.jpeg)

圖 2-2.5 使用磁場驅動不同狀況下之液晶分子示意圖

辨訊號與雜訊。

第二種製作方式(樣品實際圖如圖 2-2.7 所示),是利用兩塊直角三角形的 熔融的二氧化矽塊材,再將熔融的二氧化矽用 AB 膠黏在一塊經過計算尺寸 銘板上,以此來控制所需的溝槽寬度。溝槽深度是與熔融的二氧化矽塊材 本身的高度設計有關,故這種製作方法可以得到較大的可視面積;另外溝 槽面透過拋光過程,也可以有較好的平整度。樣品組成步驟,首先將熔融 的二氧化矽清洗乾淨,清洗順序為將熔融的二氧化矽依序放入清潔劑、丙 酮、甲醇、去離子水中,以超音波震盪器清洗 10 分鐘,再使用氮氣將水吹 去,最後放入烤箱烘乾水氣後,冷卻備用。清洗完成後,第一種樣品製作 只需將液晶灌入樣品中,使用塑膠膜蓋住封口,再用 AB 膠密封起來,即可 完成樣品製作;第二種樣品製作則需將塊材固定於鋁板上,再將溝槽兩側 用 AB 膠封好後,再放入液晶,蓋上另一片鋁板,最後用 AB 膠固定即可。 2-3 實驗方法

THz-TDS系統產生的兆赫波偏振方向為水平方向。若要讓經過樣品的兆 赫波為 e-ray 的狀況,則外加的磁場方向需為水平方向,讓液晶為水平配向 方向,也就是說讓兆赫波經歷的液晶折射係數為 n<sub>e</sub>;定此時的樣品擺放角 度為0度。假設是在 o-ray 狀況下,則同時轉動樣品及磁場,使磁場方向為 垂直方向,兆赫波經歷的液晶折射率為 n<sub>o</sub>;設定此時的角度為 90 度。

在改變不同角度的實驗中,角度定義為磁場與水平方向的夾角,在轉動

![](_page_28_Picture_0.jpeg)

**圖 2-2.6** 樣品實際圖; (a) B 樣品; (b) C 樣品。

![](_page_28_Picture_2.jpeg)

圖 2-2.7 A樣品實際圖。

磁場的同時,也需同時轉動樣品。當樣品介於0度與90度之間,兆赫波會 分成垂直與水平液晶長軸方向的兩道光,換言之,會有部分光穿透,部分 光被全反射,隨著樣品轉動的角度越大,穿透光的分量會漸漸減少,直到 90度 o-ray 的狀況,兆赫波被全反射。除了轉動不同角度的量測實驗之外, 另外還有改變不同液晶厚度的實驗量測。在不同液晶厚度的實驗量測中, 經由不同樣品的量測結果,可以得出一個有最佳偏振效果厚度的樣品。

![](_page_29_Picture_1.jpeg)

#### 第三章 理論分析

在本實驗中,定義當入射光偏振方向與液晶長軸方向垂直,此時液晶的 折射率對兆赫波而言為 n<sub>o</sub>,這種狀態下的入射光為尋常光(Ordinary Ray, o-ray);若入射光偏振方向和液晶長軸平行,兆赫波經歷液晶的折射率為 n<sub>e</sub>,稱此種光為非尋常光 (Extraordinary Ray, e-ray)。在這一章節中,將 針對當旋轉液晶方向時,改變兩種光分量時的穿透光強度變化,並用 Snell 及 Fresnel 光學理論來分析探討。

#### 3-1 非尋常光理論

在樣品設計上,設定在 e-ray 狀況下,兆赫波是被允許通過元件。當電 磁波由介質一傳輸到介質二時,在介面處會有反射及折射兩種狀況發生: 若被反射的電磁波不會再進入介質二,隨著兩介質的折射率相差越大,反 射損耗就越大;而折射的電磁波可以在介質二中繼續前進,在介質二中傳 遞時會有材料吸收所造成能量的損失。而在最後由介質二回到介質一時, 又再經歷一次反射折射過程。

首先,考慮介面反射損耗。由 Fresnel's equation 知,在入射光為由介質 一入射到介質二的狀況下,反射的電場振幅與入射的電場比值可表示為:

$$r = \frac{\widetilde{n}_1(\omega)\cos\theta_1 - \widetilde{n}_2(\omega)\cos\theta_2}{\widetilde{n}_1(\omega)\cos\theta_1 + \widetilde{n}_2(\omega)\cos\theta_2}$$
(2-3.1)

其中 $\tilde{n}_1(\omega)$ 、 $\tilde{n}_2(\omega)$ 為介質一和介質二之折射率, $\theta_1$ 和 $\theta_2$ 則為入射角與折射角。又電磁波強度的反射率為 $R = r^2$ ,穿透率則為T = 1 - R。

電磁波共經歷四次介面,分別為:1. 空氣到 Fused Silica,2. Fused Silica 到液晶,3. 液晶到 Fused Silica,以及 4. Fused Silica 到空氣。其中第 1 及 第 4 部分,因電磁波為垂直入射及出射,所以 $\theta_1$ 和 $\theta_2$ 皆為 90 度,又空氣 折射率為 1,Fused Silica 折射率在兆赫波段下為 1.95;計算穿透率結果皆 為 0.8963 ( $T_1=T_4$ )。而第 2 和第 3 部份,將已知的入射角 $\theta_1$  (樣品 A ~ D 分別為 55.9°、55.99°、55.78°、56.35°),而折射角 $\theta_2$ 可利用 Snell's Law 分 別計算出來 (樣品 A ~ D 分別為 70.31°、70.48°、70.08°、70.67°);液晶折 射率為  $n_e = 1.71$ ,故由計算可得穿透率  $T_2$ 和  $T_3$  ( $T_2=T_3$ ),而樣品 A ~ D 分 別為 0.9049、0.9032、0.9071、0.9032。所以考慮各介面上的反射損耗,總 穿透率可寫成:

$$T_{total} = T_1 \times T_2 \times T_3 \times T_4 \tag{3-1.2}$$

其次,考慮電磁波在液晶層中,被液晶吸收所造成的損耗;由之前選擇 適當材料時的折射率量測,可知 Fused Silica 的折射率虛部很小 (<0.001), 暫時將 Fused Silica 對兆赫波的吸收部分忽略。電磁波電場可表示為:

$$E(\omega) = E_0(\omega) \times e^{i[n(\omega) + i\kappa(\omega)]kd}$$
(3-1.3)

而電場強度則可由上式計算可得:

$$I(\omega) = I_0(\omega) \times e^{-2\kappa(\omega)kd}$$
(3-1.4)

其中, $n(\omega)$ 和  $\kappa(\omega)$ 是液晶折射率的實部與虛部,k為液晶中的波數(wave number),d為液晶層厚度,但考慮電磁波在液晶層中,因入射光非垂直入射,故實際兆赫波在液晶經歷的光程d'>d。利用 Snell's Law 計算的折射角 $\theta_2$ ,修正後光程可表示成 $d'=d/(\cos \theta_2)$ ;表 3-1 為各樣品實際厚度與修正後

厚度的對照表。

综合以上電磁波的介面反射與液晶層吸收的損耗,e-ray 的穿透光強度 可以表示成 :

$$I_{e}(\omega) = \frac{I'(\omega)}{I_{ref}(\omega)} = \frac{T_{total} \times I_{0}(\omega) \cdot e^{-2\kappa(\omega)kd'}}{I_{0}(\omega)} = T_{total} \times e^{-2\kappa(\omega)kd'} \quad (3-1.5)$$

將已知的  $T_{total}$  、 $\kappa$ 、k 及 d'代入 (3-1.5) 式中,即可求得理論的  $I_e$  值。上式 中將  $I_e$  取對數後,可以得到  $\log I_e$  會與  $-\kappa fd$ '成正比關係 (因 k =  $2\pi f/c$ ), 而若  $\log I_e$  對頻率 f 做圖,其斜率會隨著 d'增加而增加。

另外,在先前理論估計中,在熔融的二氧化矽的吸收方面,因吸收係數 過小,忽略不計,但由後來的實驗結果得知 (圖 3-1.1),熔融的二氧化矽在 頻率越高時吸收效果越明顯,對於兆赫波強度的影響也越重要。因此為了 去除熔融的二氧化矽的效應,將參考樣品由空氣改為熔融的二氧化矽塊材 來取代。而 (3-1.5) 式中只需考慮液晶與熔融二氧化矽的介面反射損耗, *T<sub>total</sub>*改為 T<sub>2</sub>×T<sub>3</sub>代入即可。

圖 3-1.2 為樣品 A ~ D 所計算的理論值。圖中樣品穿透率的理論值隨著 厚度的增加而減少。另外,穿透率也隨著頻率上升而下降,這是因為當頻 率越高時所對應的波長越短,在同樣的液晶層厚度下,高頻波在介質中所 走的波數目會比低頻波來的多;換句話說,可以將其視為相同的厚度下高 頻波在介質中有較長的光程。故介質的吸收造成的損耗對高頻而言相對較 多,穿透率自然就會較低。

|          | A樣品     | B樣品     | C樣品     | D樣品     |
|----------|---------|---------|---------|---------|
| 實際厚度 d   | 1.95 mm | 1.25 mm | 0.40 mm | 0.75 mm |
| 修正後光程 d' | 5.79 mm | 3.74 mm | 1.17 mm | 2.26 mm |

表 3-1 兆赫波在 e-ray 狀況下在液晶層經歷的光程對照表。

![](_page_33_Figure_2.jpeg)

**圖 3-1.2** 不同液晶層厚度樣品之非尋常光穿透光強度 Ie。

#### 3-2 尋常光理論

在樣品設計上 o-ray 是會被全反射,所以按照理論來說,將沒有電磁波 通過元件;但在實驗中,卻可量到些微弱訊號,故我們引入衰逝波 (Evanescent Wave)的概念。

當一束光以大於臨界角的角度入射至介面時,入射光能量會被全部反 射,但卻仍有微弱的電磁波可穿透介面,此時這電磁波稱為衰逝波。假設 一道光以入射角β由折射率n1的介質入射到折射率為n2的介質中(折射角 為φ),穿透介面的電場強度可表示為 [16]:

$$E_{t}(\omega) = E_{0}(\omega) \cdot e^{i(\vec{k} \cdot \vec{r} - \omega \cdot t)}$$

又

$$\vec{k} \cdot \vec{r} = k' \times x \sin \varphi - k' \times y \cos \varphi$$
$$= k \times x \sin \beta - k' \times y \sqrt{1 - \frac{\sin^2 \beta}{n^2}}$$
(3-2.1)

其中  $k \rightarrow k'$ 為在介質一及介質二之波數, 且  $k' = n_2 k$ ,  $n \rightarrow n_2 / n_1$ ,  $x \rightarrow h^2$ 介面方向, y 為電磁波穿透方向。透過 Snell's Law 可將 (3-2.1) 式中, 折射 角  $\varphi$  換算成以入射角  $\beta$  形式來表示; 而當全反射發生時,  $\sin \beta > n$ , 則 cos  $\varphi$  是虛數, 所以 (3-2.1) 式可改寫成:

$$\vec{k} \cdot \vec{r} = k \times x \sin \beta - i n_2 k \times y \sqrt{\frac{\sin^2 \beta}{n^2} - 1}$$

故電場可表示為:

$$E_t(\omega) = E_0(\omega) \cdot e^{-\alpha \times y} \cdot e^{i(k \times x \sin \beta - \omega \cdot t)}$$
(3-2.2)

其中  $\alpha$  為衰減係數,定義  $\alpha = k' \sqrt{\frac{\sin^2 \beta}{n^2} - 1}$ 。由 (3-2.2)式可知,衰逝波可沿

著介質面方向傳遞,但當越深入介質時強度會以指數的方式衰減;若介質 厚度不夠厚,則將有電磁波穿透。在本實驗中的樣品,若液晶層不夠厚, 將有電磁波會穿透樣品。

若考慮將介質中的折射率  $n_2$ 為複數,表示成 $\tilde{n}_2 = n_2 + i\kappa_2$ ,則一般電磁波 在介質中的電場表示形式為:

$$E'_{t} = E_{0}(\omega) \cdot e^{i(\tilde{n}_{2}kd)}$$

$$= E_{0}(\omega) \cdot e^{i(n_{2}+i\kappa_{2})kd}$$

$$= E_{0}(\omega) \cdot e^{in_{2}kd} \cdot e^{-\kappa_{2}kd}$$

$$= E_{0}(\omega) \cdot e^{-\kappa_{2}kd} \cdot e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

$$= E_{0}(\omega) \cdot e^{-\kappa_{2}kd} \cdot e^{-\alpha \times d} \cdot e^{-i(k \times x \sin \beta - \omega t)}$$
(3-2.3)

上式中 d 為介質厚度, n2 為介質的實部折射率, K2 為介質虛部折射率。

以上衰逝波的理論,若是以空氣當參考樣品,必須再考慮電磁波在空氣 與熔融的二氧化矽介面的反射造成的能量損失。由 3-1 節中的穿透率計算可 以得知,在空氣與熔融的二氧化矽介面造成的反射損耗後的總穿透率 T。但 由於熔融的二氧化矽在兆赫波下的強度會隨頻率增加而衰減,故改以熔融 的二氧化矽為參考樣品,所以總穿透率 T 視為 1,對於 o-ray 部份的總穿透 光可表示為:

$$I_{o}(\omega) = \frac{E_{t}(\omega) \times E_{t}^{*}(\omega)}{E_{0}^{2}(\omega) \cdot e^{2(k \times x \sin \beta - \omega t)}} = T \times e^{-2\kappa_{2}kd} \times e^{-2\alpha d}$$
(3-2.4)

圖 3-2 顯示,在不同樣品的液晶厚度下,以 (3-2.4)式所得到的穿透光強

![](_page_36_Figure_0.jpeg)

圖 3-3 樣品在尋常光與非尋常光狀況示意圖。

度。圖中顯示液晶層厚度越厚,理論穿透的衰逝波強度越弱,且頻率越高, 強度衰減越明顯;因此在圖中會觀察到光強度隨著厚度與頻率增加而減少。 **3-3 不同角度下穿透光強度變化** 

在 e-ray 狀況下,液晶配向方向(磁場方向)與兆赫光偏振方向(x 方向)平行,設定此時的選轉角度 γ為0度;若在 o-ray 情形下,液晶配向 與偏振方向垂直,設定角度 γ為90度。圖 3-3 為樣品在 e-ray 及 o-ray 情形 之示意圖。可沿著圖 3-3 的 z 軸旋轉樣品,改變液晶分子與兆赫波偏振方向 的夾角來量測元件。

由 Malus's Law 知,當一道光經過偏振片時,穿透光強度隨著光的偏振 方向與偏振片穿透軸的夾角變化而改變。假設入射光之電場偏振方向與偏 振片穿透軸方向夾一個角度 $\gamma$ ,則入射光通過的偏振器的電場可以寫成:  $E_t = E_0 \cos(\gamma)$  (3-3.1)

所以穿透光強度可以表示為:

$$I_{t} = I_{0} \cos^{2}(\gamma)$$
(3-3.2)  
也就是說穿透光強度會與  $\cos^{2}\gamma$  成正比。

在本實驗中,當兆赫波經過液晶分子時,會分解成垂直液晶長軸方向、 與平行液晶長軸方向的兩道光;平行方向的兆赫波會通過液晶分子,而垂 直方向的兆赫波會被全反射。所以可以將液晶元件視為和

偏振片有相等的效果之偏振器;故當轉動液晶元件時,就相當於改變(3-3.2) 式中的 y,穿透光強度也會隨著角度變化而改變。 又實驗使用的系統中,激發與接收兆赫的天線,也具有選擇特定偏振光 的特性,故實際上可視為將樣品放置於兩偏振器中,穿透光強度實際上會 與 cos<sup>4</sup>y 成正比。

![](_page_38_Picture_1.jpeg)

## 第四章 結果與討論

本章節將討論實驗結果理論計算結果的比較。將分成以下幾個部份來討論;首先針對各樣品 e-ray 及 o-ray 兆赫波穿透率的部份做討論,其次探討 在不同旋轉角度下樣品穿透率變化情形,最後引進兩個參數來討論樣品偏 振效果。

#### 4-1 穿透率量测結果

由 THz-TDS 系統中量測所得之訊號,是兆赫波電場時域圖。本實驗使 用的液晶為正型液晶 E7,其折射率 n<sub>e</sub>>n<sub>o</sub>,故 e-ray 的訊號會比 o-ray 訊號 在液晶中的光程長,也就是說 e-ray 的訊號被延遲的較後面。圖 4-1.1 到 4-1.4 為四個不同樣品之 e-ray、O-ray 與參考樣品的兆赫波時域圖;圖中的兆赫波 電場強度因每次實驗的訊號條件有些許不同,所以必須先除以每次的參考 樣品訊號再互相比較,即樣品的 e-ray 及 o-ray 之穿透率是絕對的。

其中最厚液晶層的 A 樣品 (1.95 mm) 其 e-ray 及 o-ray 訊號強度比最大 (約 100 倍), B 樣品 (1.25 mm) 次之 (約 22 倍), D 樣品 (0.75 mm) 與 C 樣 品 (0.40 mm) 最小 (約 4.5 倍)。故由時域圖可知 e-ray、o-ray 訊號強度比值 與液晶層厚度正比。實驗使用之樣品 A ~ C 為方法一製成之樣品, 樣品 D 則是用方式二做成的,為何要用不同方法製作樣品,其原因將於 4-1.1 討論。

本實驗使用的 THz-TDS 系統之兆赫波中心頻率約在 0.3 THz 處,其對應的波長是 1 mm, 故元件中的液晶層厚度設計在 1 mm 會有較好的效果。其

![](_page_40_Figure_0.jpeg)

**圖 4-1.2** B 樣品尋常光與非尋常光時域圖。

![](_page_41_Figure_0.jpeg)

**圖 4-1.4** D 樣品尋常光與非尋常光時域圖。

他如高頻的 0.9 THz,其波長換算為 0.33 mm;而在低頻的 0.1 THz,其對應 波長為 3 mm。換句話說,以中心波長的角度,厚度 1 mm 的液晶層可以使 偏振器達到較好的效果,若想要使高頻區有較好的效果,則需減少液晶層 厚度;相反的,若要低頻訊號有較好的效果,就要將液晶層加厚。

#### 4-1.1 非尋常光 (e-ray)實驗結果

將時域訊號透過快速傅立葉轉換 (FFT) 得到頻域訊號,可得知不同頻率 下兆赫波強度分布之頻域圖 (圖 4-1.5 ~ 圖 4-1.8);再將樣品訊號除以參考 樣品的訊號後,可以得到樣品穿透率 (Transmittance)。

從理論估計結果得知, e-ray 穿透率在液晶層越厚的狀況下,穿透率越低, 且隨頻率上升訊號也隨之變弱,這是因高頻對應之波長相對較小, 在相同厚度的液晶樣品中, 高頻兆赫波的光程較低頻長, 相對液晶吸收兆赫波的損耗也越顯著, 穿透率自然就降低, 故穿透率是會隨著液晶厚度與頻率的增加而降低。

各樣品在不同頻率下之強度分布如圖 4-1.9 所示。圖中可觀察到不同樣品之穿透率由大到小依序為: C、D、B、A,其順序為樣品由薄到厚的排列。 由此可歸納出一個的結論:穿透率與厚度有著厚度越厚穿透率越低的關係。而各樣品的穿透率也隨著頻率的增加有降低的趨勢,實驗結果與理論預期相符合。

其中 C 樣品為利用方式一所製作的樣品,其實際的可視面積因溝槽深度

![](_page_43_Figure_0.jpeg)

**圖 4-1.6** B 樣品之頻域圖

![](_page_44_Figure_0.jpeg)

Frequency (THz)

0.2

1.4

圖 4-1.8 D樣品之頻域圖

![](_page_45_Figure_0.jpeg)

較淺,約為一直徑為4mm的圓,在量測時入射兆赫波強度相對其他樣品 (可 視範圍為 10mm) 較弱,易受雜訊影響,致使量測訊號跳動明顯。因此為改 善此問題,我們改用第二種製作樣品方式,來達到增加可視面積、入射光 強度可提升,進而達到增加訊噪比的目的。D 樣品即在此種想法下製作出 來。

樣品訊號的可信度可由訊號的強度得知,實驗時會重復取訊號數次,若 所量得的兆赫波訊號可重複性越高,代表所量得的訊號越可信,於是將同 次實驗取得的兩次實驗結果相除,若值在1 附近代表訊號重複率越高,其 結果可信度越高。圖 4-1.10 ~ 圖 4-1.13 為各樣品在同次量測中得到之兩次 訊號強度相除結果。由圖可知,對於 A ~ D 樣品其 e-ray 量測結果皆為可信 的;o-ray 部份,對 A 樣品在 0.2 ~ 0.3 THz 是可信的,對於 B 樣品則是在 0.2 ~ 0.55 THz 範圍重複性高,C 樣品在 0.2 ~ 0.65 THz 範圍為可信的,而 D 樣品是在 0.2 ~ 0.7 THz 範圍重複率好。

圖 4-1.14 到 4-1.17 為實驗數據與理論的比較。圖中可見實驗與理論計算 結果大致相符;尤其是 B 樣品實驗結果幾乎與理論估計吻合,而 A、D 樣 品量測結果則較理論估計稍小,唯 C 樣品因訊號較差,故與理論相差較多。 以 e-ray 穿透率的立場來評估, D 樣品的穿透率結果是最佳。

影響 e-ray 穿透率的原因,可就幾點來討論:以兆赫波的波長來說,當 厚度增加或頻率上升時,液晶層是波長的數倍,在液晶層內光程越大,液

![](_page_47_Figure_0.jpeg)

**圖 4-1.11** B 樣品重複兩次實驗之兆赫波強度相除。

![](_page_48_Figure_0.jpeg)

**圖 4-1.13** D 樣品重複兩次實驗之兆赫波強度相除。

![](_page_49_Figure_0.jpeg)

圖 4-1.14 A 樣品之 e-ray 及 o-ray 實驗與理論計算的穿透率。

![](_page_49_Figure_2.jpeg)

圖 4-1.15 B 樣品之 e-ray 及 o-ray 實驗與理論計算的穿透率。

![](_page_50_Figure_0.jpeg)

圖 4-1.16 C 樣品之 e-ray 及 o-ray 實驗與理論計算的穿透率。

![](_page_50_Figure_2.jpeg)

圖 4-1.17 D 樣品之 e-ray 及 o-ray 實驗與理論計算的穿透率。

晶吸收的效果明顯,對穿透率影響大。

#### 4-1.2 尋常光 (o-ray)實驗結果

在 o-ray 設計上的兆赫波是被全反射的,但實際上卻能在樣品之後收集 到微弱的訊號,因此理論方面是以衰逝波的觀點來解釋未被吸收的殘餘兆 赫波。當樣品的液晶層越薄,液晶的吸收效應越不明顯,衰逝波穿透訊號 越強。故在理論預期上,越厚的液晶樣品會有越小的 o-ray 穿透光強度,其 全反射效果最佳。

由圖 4-1.18 不同樣品的實驗數據可觀察出: o-ray 穿透光強度依序為 C >D>B>A;液晶層厚度越厚,能穿透的兆赫波強度越小,故實驗結果與 理論預期效果相同。且透過 o-ray 結果中可以更明顯的看到兆赫波隨頻率增 加,強度衰減的情況。

當頻率越高頻,液晶厚度相對於波長的波數越大,越能清楚看到液晶吸收效果,強度衰減現象更為明顯。

理論計算與量測結果如圖 4-1.14~4-1.17 所示。以A 樣品來說,液晶厚 度越厚造成的吸收影響越顯著,所以 o-ray 整體的穿透率都不高,且隨頻率 上升迅速衰減,到達系統可解析的訊噪比極限,無法分辨量測訊號與雜訊, 因此造成實驗無法完全吻合理論估計。但就各樣品 o-ray 實驗結果而言,A 樣品穿透之兆赫波強度最小,這表示樣品對於不能其偏振器效果越佳。

B 樣品之實驗結果與理論趨勢大致符合,但隨著頻率上升至 0.65 THz,

![](_page_52_Figure_0.jpeg)

訊號開始出現跳動,這是由於系統限制造成的。C 樣品液晶厚度較薄,相對可通過的 o-ray 訊號較大,訊號隨著頻率增加而衰減的趨勢則可持續到 0.7 THz。數據上可見強度衰減的趨勢比理論預計更

快,這是因 C 樣品的入射光能量太小 (可視面積受限),造成強度衰減過快 而無法以理論估計,但整體而言, o-ray 穿透訊號仍高。

D 樣品則是所有實驗結果中與理論估計最為吻合的。因樣品的兆赫波入 射面積相對較大,兆赫波之訊噪比最好,且液晶層厚度較 A、B 樣品薄,穿 透的兆赫波強度較大,隨頻率增加強度衰減程度尚未達系統極限,可明顯 解析訊號。

各樣品數據中,在高頻部分的跳動明顯且無法預測。這是因為系統訊噪 比限制的關係,無關於液晶層厚度的條件。系統在頻率大於 0.7 THz 後,訊 號的訊噪比會開始變差,所造成誤差也較大。

#### 4-1.3 不同角度下的穿透率

將樣品擺放在兆赫波通過樣品是 e-ray 的狀況,也就是說兆赫波經歷的 液晶折射率是 ne 時,設定此時的旋轉角度 y 為 0 度。若兆赫波通過樣品是 在 o-ray 狀況時,設定此時的旋轉角度 y = 90 度。若樣品在其他旋轉角度, 光強度會介於這兩種狀況之間,且是以不同比例的 e-ray 和 o-ray 兩種分量 組成。當角度越接近 0 度, e-ray 分量越多,光強度越強;反之若接近 90 度,則 e-ray 分量越少,光強度越弱。

圖 4-1.19 到 4-1.22 為各樣品隨角度變化下之時域圖。由圖可知隨著角度 的增加,訊號 (最大處)往下遞減,整體兆赫波強度也隨之減弱,也就是說 角度變大 e-ray 的分量減少 (因主要的光強度貢獻是來自於 e-ray)。透過時 域圖可以概略的了解到訊號整體的行為,但若要實際了解各頻率狀況,則 仍需將時域訊號透過 FFT 轉換到頻域訊號,觀察實際各角度各頻率之穿透 光訊號狀況。

圖 4-1.23 到 4-1.26 為頻域訊號 (未除以參考樣品訊號),圖中以每 20 度 或 30 度為角度間隔,探討兆赫波強度隨角度的變化情形。經由轉動樣品角 度,各樣品穿透兆赫波強度減弱的情形,與 Malus's Law 的關係。在 A 樣 品實驗結果中,0 度與 90 度訊號強度比值為 10<sup>2</sup>~10<sup>4</sup>倍;B 樣品中,0 度與 90 度訊號比值為 10~10<sup>3</sup>;C 樣品訊號比值為 2~10<sup>2</sup>;D 樣品訊號比值為 3~10<sup>3</sup>。故可知當樣品液晶層厚度越厚,訊號衰減速度越快。亦即液晶厚度 越厚, o-ray 被全反射的量越多,能夠穿透過的兆赫波越少,可以達到更好 的濾波效果,所以當角度增加時,o-ray 分量增加並不會造成穿透光強度有 明顯增加的狀況。若 o-ray 沒有完全的被全反射掉,則增加角度時 o-ray 分 量增加,就會造成穿透光強度的減弱情形不明顯。

由頻域圖可以得出和時域圖類似的結果,當樣品中的液晶層厚度增加, 隨著角度越接近90度,在時域圖上會看到訊號最大處有明顯的下降,頻域

![](_page_55_Figure_0.jpeg)

**圖 4-1.20** B 樣品之光強度隨角度變化時域圖。

![](_page_56_Figure_0.jpeg)

**圖 4-1.22** D 樣品之光強度隨角度變化時域圖。

![](_page_57_Figure_0.jpeg)

**圖 4-1.24** B 樣品之各角度下穿透光頻域圖。

![](_page_58_Figure_0.jpeg)

圖 4-1.26 D 樣品之各角度下穿透光頻域圖

圖中則可觀察到在越厚的樣品中穿透訊號強度越小;也就是說越厚的液晶 層可以達到更好的濾波效果。

又針對 0.3 THz 頻率訊號處,探討在此特定波長下各樣品的偏振效果,比較 不同角度的情形。由於實驗使用的液晶元件為偏振器,故可使用 Malus's Law 來探討不同厚度之液晶元件的偏振器效果。圖 4-1.27 為 0.3 THz 下實驗結 果與 Malus's Law 比較。圖中顯示樣品 A 與理論估計最為符合,而隨著樣 品厚度的減少 (樣品厚度 B>D>C),實驗點與理論估計差距越大,這是因 o-ray 的全反射不完全 (液晶層相對較薄之故),由於實驗上量測的穿透光則 同時有 e-ray 和 o-ray 的效果,致使在其他角度時,數據點較理論估計值高。 4-2 偏振器效果參數

本節將引入兩種參數來探討利用液晶製作而成的偏振器元件效果。第一 種參數為 Extinction Ratio,另一個參數為 Polarization Factor;兩種參數皆在 以下有詳細的定義及描述。

#### **4-2.1 Extinction Ratio**

Extinction Ratio 通常是在一般量產的偏振器中用來描述偏振器效果 的參數,一般 Extinction Ratio 公式,是用衰減波的光強度除以穿透偏振器 的光強度;在本實驗中的定義為:ER=I<sub>To</sub>/I<sub>Te</sub>,其中 I<sub>Te</sub> 及 I<sub>To</sub> 為 e-ray 及 o-ray 的穿透光強度。藉由兩種光的比例,來得知偏振效果。在本實驗中 o-ray 會 被全反射,若全反射效果不完全,則 e-ray 和 o-ray 比例越接近,Extinction

![](_page_60_Figure_0.jpeg)

Ratio 值就會越大,代表偏振器效果越差。反之,若 o-ray 幾乎被全反射, o-ray 的穿透光強度越小,則 e-ray 和 o-ray 的穿透光差距越大, Extinction Ratio 值就會越小,代表偏振器效果越好。

Extinction Ratio 實驗數據與理論比較如圖 4-2.1 到 4-2.4 所示。圖 4-2.1 可以觀察到頻率大於 0.3 THz 範圍, Extinction Ratio 值已經趨於一固定範圍 (~10<sup>-4</sup>);這是因為大於 0.3 THz 頻率的波長相對較小,而 A 樣品之液晶層厚 度為 1.95 mm,已經是波長的數倍,液晶吸收造成的影響較大, e-ray 穿透 率隨頻率增加有明顯的下降,但 o-ray 的訊號到 0.3 THz 就已達到最低穿透 的限度,故 Extinction Ratio 值很快就達到定值。圖 4-2.3 是樣品中液晶層最 薄的 C 樣品的結果,因 o-ray 的產生全反射的量相對較少, o-ray 穿透光的 比例高, e-ray 穿透率也高,所以兩者比例接近, Extinction Ratio 值最低可 達 10<sup>-3</sup>,相較於其他樣品,其偏振效果差。圖 4-2.2 的樣品 B 實驗結果,其 e-ray 的穿透率高,且液晶層厚度也足夠讓 o-ray 產生全反射, Extinction Ratio 值可達 10<sup>-5</sup>,偏振效果是各樣品中最好。而圖 4-2.4 的樣品 D 之 Extinction Ratio 值可達  $10^{-4}$ , 雖偏振效果非最好, 但實驗數據與理論計算是 最為吻合的。

#### 4-2.2 偏極化程度

在一般光學書上,偏極化程度 P 是一個時常被用來探討偏振化程度時使 用的參數,其常用的形式是:

![](_page_62_Figure_0.jpeg)

**圖 4-2.2** B 樣品之 Extinction Ratio 實驗與理論比較。

![](_page_63_Figure_0.jpeg)

**圖 4-2.4** D 樣品之 Extinction Ratio 實驗與理論比較。

$$P = \frac{I_{pol} - I_{unpol}}{I_{pol} + I_{unpol}}$$

其中, Ipol 代表被偏振的光強度, Iunpol 代表非偏振光強度,此參數可以用來 探討偏振光在總強度中所佔的比例。

在本文中借用相同概念,將此參數定義為 [12]:

$$P = \frac{I_{Te} - I_{To}}{I_{Te} + I_{To}}$$

其中 I<sub>Te</sub>及 I<sub>To</sub>為 e-ray 及 o-ray 的穿透光強度;在一個理想的偏振器狀況下, 非偏振方向的光會被完全反射或吸收,其穿透光強度為 0,則

此參數在這種狀況下其值為1。也就是說偏極化程度值為1是最理想的狀態。 圖 4-2.5 到 4-2.8 為實際量測結果與理論比較圖。在 A 樣品中, 偏極化程 度值在 0.2~0.9 THz 範圍大於 0.98; B 樣品在大於 0.3 THz 範圍的偏極化程 度值可達 0.98 以上; C 樣品則須大於 0.45 THz 範圍, 偏極化程度值會大於 0.9; 最後 D 樣品則在大於 0.45 THz 範圍, 偏極化程度值會超過 0.95。故由 實驗數據的偏極化程度值來看, A 樣品是具有最佳效果的樣品。與理論預 期厚度越厚的樣品, 偏極化程度值越接近 1, 效果越好的結果吻合。

![](_page_65_Figure_0.jpeg)

**圖 4-2.6** B 樣品之偏極化程度量測結果。

![](_page_66_Figure_0.jpeg)

**圖 4-2.7** C 樣品之偏極化程度量測結果。

![](_page_66_Figure_2.jpeg)

**圖 4-2.8** D 樣品之偏極化程度量測結果。

### 第五章 結論與未來展望

經由第四章的結果與討論可以得出(整理於表 5-1 中):當液晶層厚度 越大,樣品所具有的偏振器效果越好(A、B 樣品),可由 Extinction Ratio 值與偏極化程度值將其效果量化,但其穿透率較低;液晶層厚度小的樣品 (D 樣品),可得到較高穿透率,但由 Extinction Ratio 與偏極化程度知其偏低 器效果相對較差。故可根據不同的需求來選擇不同厚度的樣品。而 C 樣品 則因可視面積較小,入射兆赫波強度小,導致訊號之訊噪比不好,故與理 論差異較大。因此可知訊號若能在系統訊噪比可解析的極限下,使用越厚 的液晶樣品可得到對比度較高的偏振器效果,但隨著厚度的增加穿透率降 低,導致訊噪比變差。

由實驗中的理論計算可知,當入射的角度越大,造成反射的損耗越大, 可選擇其他材料來作為盛裝液晶的容器,使入射角度可降低,但此種作法 必須選用折射率更大於溶融的二氧化矽材料,會增加空氣-溶融的二氧化矽 之間的反射率,故也可在溶融的二氧化矽上鍍一層抗反射膜,或者。對於 目前改進實驗的方法,可直接加大樣品尺寸,使入射訊號更強,避免訊噪 比太差的問題產生。

| Sample | 厚度      | e-ray<br>穿透率 | o-ray<br>穿透率 | Extinction Ratio | Polarization Factor               |
|--------|---------|--------------|--------------|------------------|-----------------------------------|
| A      | 1.95 mm | 低            | 低            | $10^{-4}$        | 0.2 ~ 0.9 THz > 0.98              |
| В      | 1.25 mm | 中            | 中            | 10 <sup>-5</sup> | $0.3 \sim 0.9 \text{ THz} > 0.98$ |
| C      | 0.40 mm | 最高           | 最高           | 10 <sup>-3</sup> | 0.5 ~ 0.9 THz >0.95               |
| D      | 0.75 mm | 高            | 高            | 10 <sup>-4</sup> | 0.45 ~ 0.9 THz > 0.95             |

## 表 5-1 各樣品實驗結果整理圖。

![](_page_68_Picture_2.jpeg)

## Reference

- Matthew C. Beard, Gordon M. Turner, and Charles A. Schmuttenmaer J. Phys. Chem. B, 106, 7146-7159 (2002).
- [2] Smith, P. R, Auston, D. H., and Nuss, M. C. *IEEE J. Quantum Electron.*, 24, 255-260 (1988).
- [3] Fattinger, C. and Grischkowsky, D. Appl. Phys. Lett., 54, 490-492 (1989).
- [4] L. H. Palmer and M. Tinkham, Phys. Rev. 165, 588 (1968).
- [5] M. V. Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
- [6] B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).
- [7] R. A. Cheville and D. Grischkowsky, Appl. Phys. Lett. 67, 1960 (1995).
- [8] A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, Physics in Medicine and biology 47, R67 (2002).
- [9] S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, Phys. Med. Biol. 46, 101 (2001).
- [10] F. Reinitzer, Z. Phys. Chem., 9, 241 (1888)
- [11] O. Lehmann, Z. Phys. Chem., 4, 262 (1889)
- [12] J. P. Auton, Appl. Opt., 6, 1023 (1967).
- [13] E. Hecht, "Optics", 4<sup>ed</sup>, Addison Wesley, 1996.
- [14] Dongfeng Liu and Jiayin Qin, Appl. Optics, 42, 3678 (2003).
- [15] P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, J. Opt. Soc. Am. B, 11, 2533 (1994).
- [16] P. G. de Gene and J. Prost "The Physics of Liquid Crystals", 1993.