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安全數位盲簽章機制之設計與應用  

 

學生 : 吳林全             指導教授 : 葉義雄  

國立交通大學資訊工程學系博士班  

 

摘要  

近年來由於網際網路應用快速地發展，使得網路購物和網路競標等

電子交易服務日漸普及。目前這些服務所採用的認證方式大多為身份 -

密碼（ ID-Password）機制，因其不具備不可否認（non-repudiation）的

性質。因此，植基於公開金鑰基礎建設（PKI）之數位簽章機制能夠達

到交易上之不可否認性，建立電子商務應用和服務之穩定基礎。  

然而，在電子現金或電子投票等應用中，須額外滿足使用者對匿名

性（anonymity）的要求，以保障使用者的隱私權。因此，數位盲簽章機

制的設計即是要解決此一問題，以提供使用者達到不可追蹤性

(untraceability)目的，使得在計算上簽章之簽署者事後無法識別所簽署之

簽章是由何人所持有；換句話說就是要追蹤出該簽章的持有人在計算上

是不可行的。  
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本論文主要是提出偽造即停盲簽章機制（ fail-stop blind signature 

scheme）來解決傳統盲簽章機制在面對擁有無限計算能力的偽造者總是

能夠成功地偽造簽章，且對偽造即停盲簽章機制所須具備的安全性質加

以定義，並證明所提出之簽章機制是安全的。  

本論文亦針對現有各種植基於整數分解、二次剩餘以及離散對數之

盲簽章機制，提出一些在安全上和效率上的改善方法。同時也探討代理

盲簽章機制之不可偽造性（unforgeability）和不可追蹤性（untraceability）

等安全議題。最後，提出具備偽造即停盲簽章機制之電子現金系統和具

備資訊隱藏和不可追蹤性之電子票卷協定，期能建構更安全的電子交易

系統之理論基礎和應用服務。  

 

關鍵字 : 不可追蹤性 , 偽造即停盲簽章機制 , 盲簽章機制 , 密碼學 , 資

訊安全  
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Abstract 

Recently, Internet applications are developed rapidly, such that 

electronic transaction services like purchasing and bidding on Internet are 

more popular.  The ID-Password mechanism is mainly used for 

authentication, but it cannot achieve the non-repudiation property.  

Therefore, the digital signature scheme based on PKI can achieve the 

non-repudiation property in electronic transactions.  It can be the 

well-constructed basis for electronic commerce services and applications. 

However, in electronic cash or electronic ticket applications, the 

anonymity property must be satisfied for the participants to preserve their 
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privacy.  Thus, the digital blind signature scheme is proposed for this 

purpose.  The untraceability property is an important property in digital 

blind signature scheme, it makes the signer computationally cannot identify 

the signature which is owned by someone.  In the other words, the signer 

is computationally infeasible to trace the signature. 

In this dissertation, a fail-stop blind signature scheme is proposed to 

solve the problem that a forger with more powerful computational 

capability can always forge a signature successfully.  A secure fail-stop 

blind signature scheme is also defined.  Moreover, our proposed signature 

scheme is proved secure. 

Some improved digital blind signature schemes, in security and 

efficiency, based on integer factorization, quadratic residue, and discrete 

logarithm cryptosystems are also be presented in this dissertation.  

Furthermore, the unforgeability and untraceability properties of proxy blind 

signature schemes are discussed.  Finally, an electronic cash system based 

on fail-stop blind signature scheme and an electronic ticket protocol with 

information hiding are proposed.  They can be established for more secure 

electronic transaction systems in theoretical basis and applications. 
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關鍵字 : Untraceability, Fail-stop Blind Signature Scheme, Blind Signature 

Scheme, Cryptography, Information Security.  
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Chapter 1   Introduction 

1.1 Motivations 

Due to Internet applications are developed rapidly, such that electronic 

transaction services like that purchasing and bidding on Internet are more 

popular.  These applications are mainly using the ID-Password mechanism 

for authentication, but this mechanism cannot achieve the non-repudiation 

property.  For protect the users against malicious parties, some advanced 

techniques to enhance the security of the electronic transaction services are 

required.  Therefore, the digital signature scheme based on Public Key 

Infrastructure (PKI) can achieve the non-repudiation property.  It is also 

the key component for electronic commerce services and applications. 

Although the digital signature scheme can achieve the non-repudiation 

property, it cannot provide the privacy for the users.  In some applications 

like electronic cash or electronic ticket systems, the anonymity property is 

very important and should be satisfied.  Thus, the digital blind signature 

scheme is proposed to ensure the unforgeability for the signer and achieve 

the untraceability for the users.  The untraceability property makes the 
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signer computationally cannot identify the signature which is owned by 

someone.  Hence, the signer is computationally infeasible to trace the 

signature. 

However, the traditional digital blind signature schemes cannot protect 

the signer against a forger with more powerful computational capability to 

forge a signature.  This means that there is no mechanism to protect the 

signer against a forged signature which has succeeded in signature 

verification.  Namely, if a signed message succeeds in signature 

verification it is assumed to be generated by the owner of the private key.  

Thus, a fail-stop blind signature scheme is proposed to solve this problem 

in this dissertation. 

Recently, a lot of misunderstandings on digital blind signature 

schemes and proxy blind signature schemes are submitted.  They claim 

that some blind signature schemes cannot satisfy the untraceability property.  

However, these claims are incorrect and they will be analyzed and 

corrected. 

 

1.2 Research Objectives and Contributions 
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In this dissertation, a secure fail-stop blind signature scheme based on 

the integer factorization is defined, proposed and proved.  It can be 

applied in more critical system like electronic payment systems which need 

higher security against more powerful forger and can preserve the users’ 

privacy.  Furthermore, some misunderstanding claims on digital blind 

signature schemes are discussed and corrected in detail.  The 

untraceability property of the proxy blind signature schemes is also 

analyzed in this dissertation.  Finally, some more secure electronic 

transaction systems are designed by using our proposed schemes. 
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Chapter 2   Digital Signature Schemes 

The ordinary handwritten signature is used to specify the responsibility 

of the person and can achieve the non-repudiation property.  A digital 

signature scheme is a method to sign the message in electronic form and can 

provide analogous to the ordinary handwritten signature.  Any digital 

information including digital signatures can be copied easily, so digital 

signatures cannot be the digitalized version of handwritten signatures.  To 

overcome this problem, digital signature schemes are designed by using 

mathematical functions and interactive protocols.  The following sections 

describe the various digital signature schemes in detail. 

 

2.1 Rivest-Shamir-Adleman Signature Scheme 

The concept of digital signature scheme was introduced by Diffie and 

Hellman [12] in 1976.  Generally, a digital signature scheme has the 

signing algorithm and the verification algorithm.  The fundamental idea is 

that everyone has pair of keys: a signing/private key and a 

verification/public key.  The signing key is to sign the message by using 
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the signing algorithm and the verification key is to verify the correctness of 

the signature by using the public verification algorithm.  Especially, the 

verification key can be published and the signing key must be kept secretly. 

In 1978, Rivest, Shamir, and Adleman [43] proposed the first digital 

signature scheme based on the integer factorization problem.  The signer 

and the requester are two kinds of participants in RSA signature scheme.  

The four phases in RSA signature scheme are: (1) Initialization, (2) 

Requesting, (3) Signing, (4) Verification.  Initially, the signer publishes 

the necessary information for the participants.  In the requesting phase, 

the requester sends the message to the signer.  The signer signs on that 

message in the signing phase.  Finally, anyone can verify the correctness 

of the signature using the message-signature pair in the verification phase.  

Figure 2.1 shows the block diagram of RSA signature scheme for signing 

and verification.  The detailed signature scheme is described as follows. 

 

Figure 2.1  Block diagram of RSA signature scheme 
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(1) Initialization: The signer randomly selects two large primes p  

and q , and calculates qpn ⋅=  and )1()1()( −⋅−= qpnφ .  Next, the 

signer selects a large random number )(1 nd φ<<  such that 

)(mod1 nde φ≡⋅ .  Thus, d  is the private key of the signer and e  is the 

public key. 

(2) Requesting: The requester prepares the message m  and sends it to 

the signer. 

(3) Signing: The signer calculates the signature nms d mod=  on the 

message m  and sends s  to the requester. 

(4) Verification: Anyone can verify the correctness of the signature s  

received from the requester by checking whether nmse mod=  because e  

is public. 

The protocol diagram of RSA signature scheme is illustrated in Figure 

2.2. 
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primeqp :,
)1)(1()(, −−== qpnpqn φ

keypublicneGCDe :1))(,( =∋ φ
keyprivatenedd :))((mod1 φ=∋

messagem : m
)(mod nms d=

en,

messagem :
mmessageofsignatures :

)(mod nsm e=

s
mmessageofsignatures :

 

Figure 2.2  Protocol diagram of RSA signature scheme 

Anyone can forge a signature by using multiplication attack in RSA 

signature scheme.  To prevent this attack, hash function can be used 

within the signature scheme to reduce the problem. 

 

2.2 ElGamal Signature Scheme 

ElGamal [13] presented another digital signature scheme in 1985.  

The security of ElGamal scheme is based on the difficulty of computing 

discrete logarithm.  There are many valid signatures for any given 

message in ElGamal scheme, and any of these valid signatures are authentic 

by the verification algorithm.  Thus, ElGamal is called the 
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non-deterministic signature scheme.  The major shortcoming in ElGamal 

scheme is the double length of any message.  The block diagram of ElGamal 

signature scheme for signing and verification is shown by Figure 2.3. 

  

Figure 2.3  Block diagram of ElGamal signature scheme 

The four phases of ElGamal scheme are described in the following. 

(1) Initialization: The signer randomly chooses a prime number p  

such that discrete logarithm problem in pZ  is intractable.  Let *
pZg ∈  

be a primitive root and x  be the private key of the signer.  The public 

key of the signer is defined by pgy x mod= . 

(2) Requesting: The requester sends the message m  to the signer. 

(3) Signing: The signer selects a random number k .  Then s/he can 

compute pgr k mod=  and )1(mod)(1 −−= − pxrmks .  The ),( sr  is the 

signature on the message m . 

(4) Verification: Anyone can verify the correctness of the signature 

),( sr  by checking whether pgry msr mod=  is true. 
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Figure 2.4 illustrates the protocol diagram of ElGamal signature 

scheme. 

primep :
pofgeneratorZg p :*∈

keyprivateZx p :∈
keypublicpgy x :)(mod=

messageZm p :∈ m
numberrandomZk p :∈

)(mod pgr k=
)1(mod)(1 −−= − prxmks),( sr

mmessageofsignaturesr :),(

qtoprimerelativelymessagem :
mmessageofsignaturesr :),(

)(mod pryg srm =
 

Figure 2.4  Protocol diagram of ElGamal signature scheme 

 

2.3 Rabin Signature Scheme 

In 1979, Rabin [40] proposed a signature scheme based on the 

quadratic residue problem.  The security of Rabin scheme is based on the 

difficulty of computing square root modulo a composite number.  Rabin 

scheme is computationally secure against chosen-plaintext attack.  Figure 

2.5 shows the block diagram of Rabin signature scheme for signing and 

verification and the details are described as follows. 
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Figure 2.5  Block diagram of Rabin scheme 

(1) Initialization: The signer can selects two random prime numbers 

p  and q , where 4mod3=p  and 4mod3=q .  Then s/he calculates 

qpn ⋅=  and )1()1()( −⋅−= qpnφ .  Thus, p  and q  are the private key 

and n  is the public key. 

(2) Requesting: The requester prepares the message m  and sends it to 

the signer. 

(3) Signing: The signature is the square root of the message m .  

Thus, the signer can calculate the signature nms mod2/1=  and sends s  to 

the requester. 

(4) Verification: Anyone can verify the signature s  by checking 

whether nms mod2 =  is true. 

The protocol diagram of Rabin signature scheme is illustrated detailed 

in Figure 2.6. 
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primeqp :4mod3,4mod3 ==
)1)(1()(, −−== qpnpqn φ

messagem : m
)(mod2/1 nms =

n

messagem :
mmessageofsignatures :

)(mod2 nsm =

s
mmessageofsignatures :

 

Figure 2.6  Protocol diagram of Rabin scheme 

 

2.4 Chaum Blind Signature Scheme 

Chaum [8] presented the first blind signature scheme based on RSA 

digital signature scheme in 1982.  The blind signature scheme allows a 

requester to obtain a message signed by the signer without revealing 

message.  Therefore, the signer cannot link/trace any message-signature 

pair practically later.  The blind signature scheme can be used in 

electronic payment systems or electronic voting systems to preserve the 

participants’ anonymity.  The detailed scheme is described in the 

following. 

(1) Initialization: The signer chooses two large primes p  and q  
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randomly, and computes pqn =  and )1)(1()( −−= qpnφ .  Then, the 

signer selects two random numbers e  and d  such that )(mod1 ned φ≡ , 

where )(1 ne φ<<  and )(1 nd φ<< .  Finally, the signer publishes ),( en  

as his public key and a one-way hash function H  like SHA-1. 

(2) Blinding and requesting: The requester selects a random number 

r  as the blinding factor, where *
nZr∈ .  Then, the requester sends the 

blinded message nmHrm e mod)(~ =  to the signer. 

(3) Signing: After the signer receives the blind message m~ , s/he 

calculates dms ~~ =  and sends it to the requester. 

(4) Unblinding: The requester can compute the signature 

nsrs mod~1−=  from the blinded signature s~ . 

(5) Verification: Anyone can easily verify the message-signature pair 

),( sm  by checking that nmHse mod)(=  is true. 

The signer cannot recognize which messages was actually signed and 

know which blind signatures was actually generated due to the blinding 

factor r .  Therefore, Chaum blind signature scheme can achieve the 

unlinkability/untraceability property. 

Figure 2.7 illustrates the protocol diagram of Chaum blind signature 
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scheme. 

SignerRequester
primeqp :,

)1)(1()(, −−== qpnpqn φ
keyprivateneGCDe :1))(,( =∋ φ
keypublicnedd :))((mod1 φ=∋

messagem :

m~
)(mod~~ nms d=

en,

Verifier
messagem :

mmessageofsignatures :
)(mod nsm d=

s~

mmessageofsignaturemsrs d :~1 == −

numberrandomr :
)(mod~ nmrm e=

)(mod~ nrms d=

 

Figure 2.7  Protocol diagram of Chaum signature scheme 

 

2.5 Susilo-Safavi-Pieprzyk Fail-stop Signature 

Scheme 

The traditional digital signature schemes cannot protect the signer 

against a forger with more powerful computational capability to forge a 

signature.  This means that there is no mechanism to protect the signer 

against a forged signature which has succeeded in signature verification.  

Namely, if a signed message succeeds in signature verification it is assumed 
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to be generated by the owner of the private key. 

To overcome this kind of attack, Waidner and Pfitzmann [50, 38] 

proposed the first fail-stop signature scheme.  Fail-stop signature can 

protect a signer against a forger even with more powerful computational 

capability because the possibility of finding the signer’s right private key in 

the fail-stop signature is negligible.  The signer can use “proof of forgery” 

algorithm to prove the signature is forgery.  It achieves “proof of forgery” 

by showing that the underlying computational assumption has been broken.  

The signer can stop the system if a forgery occurs – hence named fail-stop 

signature scheme.  The signer is unconditionally secure and the requester 

is cryptographically secure in the fail-stop signature scheme. 

In 1992, van Heyst and Pedersen constructed a fail-stop signature 

scheme based on the discrete logarithm problem [46] and their scheme is a 

Lamport-like one-time signature [26].  Susilo, Safavi-Naini and Pieprzyk 

[48] presented two RSA-based fail-stop signature schemes with and without 

a trusted dealer in 1999.  We only consider the scheme with trusted dealer 

here for simplicity.  Actually, the signer and the receiver can instead of 

trusted dealer to perform the initialization phase by using Boneh-Franklin’s 

algorithm [3].  There are three kinds of participants, which are the trusted 
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dealer, the sender and the receiver in the Susilo et al.’s scheme with trusted 

dealer.  A forged signature can be proved by using Miller’s [33] and 

Bach’s [2] methods to reveal non-trivial factors for the signer.  The 

detailed scheme is described as follows. 

(1) Initialization: The two large prime numbers p  and q  are 

chosen by the trusted dealer D , such that 1'2 += pp  and 1'2 += qq , where 

'p  and 'q  are also prime.  Then, D  computes pqn =  and 

)1)(1()( −−= qpnφ .  Next, D  chooses Dd  as her/his private key and 

computes )(mod1 nde DD φ−= , where 1))(,( =ndGCD D φ . Then, D  selects a 

random number *
nZ∈α  and computes nDd modαβ = .  Finally, D  

publishes her/his public key ),( nα  and sends ),( βDe  to the signer S  

securely.  

(2) Key generation: The signer S  selects four random numbers, 

which are 1k , 2k , 3k  and 4k  as the private key, where *
ni Zk ∈ , 41 ≤≤ i .  

Next, S  computes nkk mod34
1 βαβ = , nkk mod13

11 βαα =  and 

nkk mod24
12 βαα = .  Finally, s/he publishes her/his public key ),,( 211 ααβ . 

(3) Signature generation: The signer S  computes 211 kxky +=  and 

432 kxky += , where *
nZx∈  is a message.  Then, s/he publishes the 

signature ),( 21 yy  on message x . 
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(4) Signature verification: The receiver R  can verify the signature 

by checking the formula nxyy mod211
12 ααβα = .  If it is true, this signature 

is a valid one. 

(5) Proof of forgery: If a forged signature )','( 21 yy  on message x  

succeeds in signature verification phase, S  can prove that a forgery has 

occurred by executing the following steps. 

1. To construct the right signature ),( 21 yy  on message x . 

2. To compute )'( 111 yyZ −=  and )'( 222 yyZ −= . 

3. To compute )()( 13142 ncZkZkZeD φγ =−−=  

4. To find non-trivial factors of n  by using Miller’s [33] and Bach’s 

[2] methods. 

5. The non-trivial factors of n  is the proof of forgery. 

 

2.6 Mambo-Usuda-Okamoto Proxy Signature Scheme 

The proxy signature scheme based on the discrete logarithm problem 

was presented by Mambo et al. [30] in 1996.  It can allow the designated 

proxy signer to sign messages on behalf of the original signer.  For 
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example, when a manager is going on a vacation, s/he can delegate her/his 

secretary to sign the messages on behalf of her/him.  There are three types 

of delegation: full delegation, delegation by warrant and partial delegation 

in the proxy signature scheme. 

In full delegation, the original signer gives her/his private key to the 

designated proxy signer and then the original signer and the proxy signer 

can both generate the same signatures.  However, the signatures generated 

by the original signer and the proxy signer are not distinguishable.  Thus, 

the dispute between the original signer and the proxy signer on the 

signature cannot be settled. 

The warrant is used to show that the proxy signer is legal and to 

describe the needed information between the original signer and the proxy 

signer in delegation by warrant.  It can be implemented by using ordinary 

signature scheme.  However, it needs to execute the proxy signature 

verification process and then the ordinary signature verification process. 

In partial delegation, the original signer uses her/his private key to 

generate the proxy secret key and sends it to the proxy signer securely.  

The signatures can be distinguished from the original signer and the proxy 

signer.  Thus, partial delegation scheme is more practical than full 
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delegation scheme and more efficient than delegation by warrant scheme.  

We describe Mambo et al.’s partial delegation proxy signature scheme in 

detail as follows. 

(1) Initialization: The original signer randomly chooses a large prime 

number p  and a generator *
pZg ∈ .  Let x  be the private key of the 

original signer and y  be the corresponding public key such that 

pgy x mod= . 

(2) Proxy delegation: The original signer randomly selects a number 

ok , and calculates pgr ok
o mod=  and )1(mod −+= prkxs ooo .  Next, the 

original signer sends ),( oo sr  to the proxy signer in a secure manner.  

After the proxy signer receives ),( oo sr , s/he can verify it by checking the 

correctness of the equation pyrg oo r
o

s mod= .  If ),( oo sr  satisfies that 

equation, s/he can accept it as a valid proxy.  Finally, the proxy signer 

computes her/his proxy secret key qxss popr mod+= . 

(3) Requesting: The requester sends the prepared message m  to the 

signer. 

(4) Signing: The proxy signer chooses k  randomly, and computes 

pgr k mod=  and )1(mod)(1 −−= − pxrmks , where m  is the message to be 

signed. 
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(5) Verification: Anyone can verify the correctness of the signature 

),( sr  by checking that the equation pgry msr mod=  holds. 

Figure 2.8 illustrates the protocol diagram of Mambo et al.’s proxy 

signature scheme. 

primep :
pofgeneratorZg p :*∈

keyprivateZx p :∈
keypublicpgy x :)(mod=

messageZm p :∈ m

numberrandomZk po :∈
)(mod pgr ok

o =
)1(mod −+= prkxs ooo),( oo sr

qtoprimerelativelymessagem :
mmessageofsignaturesr :),(

)(mod pryg srm =

)(mod pyrg oo r
o

s =
)1(mod −+= pxss popr

numberrandomZk p :∈
)(mod pgr k=

)1(mod)(1 −−= − pxrmks),( sr
signaturesr :),(

 

Figure 2.8  Protocol diagram of Partial delegation proxy 
signature scheme 
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Chapter 3  Analysis of Some Blind Signature 

Schemes 

In Section 3.1, we introduce the cryptanalysis on a new Rabin-like 

blind signature scheme based on the quadratic residue problem.  A 

traceability attack on RSA-Based partially signature with low computation 

is analyzed and corrected in detail In Section 3.2.  Lee et al. claimed that 

ElGamal blind signature scheme is traceable but we show that their claims 

are incorrect in Section 3.3.   Finally, we analyze Sun et al.’s traceability 

attack on proxy blind signature scheme in Section 3.4. 

 

3.1 Cryptanalysis on a New Rabin-like Blind 

Signature Scheme 

The Rabin digital signature scheme [40] is based on the square-root 

problem.  Its security is relying on the difficulty of finding the square 

roots of a quadratic residue under a modulus n and it has been proved to be 

as hard as factoring n [40].  Compared to the RSA cryptosystem [43], the 

signature verification only requires one modular multiplication. 



 21

The blind signature scheme was proposed by Chaum [7] and it is based 

on the RSA cryptosystem [43].  In addition to the unforgeability of the 

signatures, it must satisfy two requirements: (1) the contents of messages 

are unknown to the signer when signing and (2) the signer cannot trace the 

signed messages after the senders have revealed the signatures publicly.  

Because of the unlinkability property, blind signature can protect the 

senders’ privacy in digital transactions and it can be applied in electronic 

voting systems and electronic cash systems. 

Recently, Chen et al. [10] proposed a new Rabin-like blind signature 

scheme, which is based on the square-root problem.  Although their 

scheme is simple and efficient, it can be compromised when choosing some 

particular blinding factors.  In this section, we propose an attack on Chen 

et al.’s scheme and demonstrate that their scheme is not secure. 

Let }1),(|Z{Z * =∈= nkGCDk nn  be the multiplicative group under 

modulus n , where n  is a positive integer.  An integer a is called a 

quadratic residue (QR) in *Zn , if there exists an integer *Znx∈  such that 

ax n≡
2 .  If no such x  exists, a  is called a quadratic non-residue (QNR) 

in *Zn .  The set of all quadratic residues under modulus n  is denoted by 

nQ  and the set of all quadratic non-residues under modulus n  is denoted 
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by nQ .  That is, { }axZxZaQ nnnn ≡∈∃∈= 2** ,|  and nnn QZQ −= *  [32, 

44, 46]. 

Let p  be an odd prime and let α  be a generator in *Z p .  An 

integer *
pZa∈  is a quadratic residue modulo p  if and only if i

pa α≡  

where i  is an even integer.  It follows that 2/)1(|||| −== pQQ pp , i.e. half 

of the elements in *Z p  are QR’s and the other half are QNR’s. 

Let p  be an odd prime and a  be an integer.  The Legendre symbol 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  is defined below. 

P

P

Qaif
Qaif

apif

p
a

∈
∈
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⎪
⎨

⎧

−
=⎟⎟

⎠

⎞
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⎝

⎛

,
,

|,

1
1
0

 

Let n  be a product of two distinct odd primes p  and q , i.e., 

qpn ⋅= .  An integer *
nZa∈  is a quadratic residue under modulo n  if 

and only if *
pZa∈  and *

qZa∈ . Therefore, 

4/)1)(1(|||||| −−== qpQQQ qpn  and 4/)1)(1(3|| −−= qpQn . 

Let 3≥n  be an odd integer with prime factorization 

ke
k

ee pppn ⋅⋅⋅= 21
21  and let a  be an integer.  The Jacobi symbol [32] is 

defined below. 
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Let 3≥n  be an odd integer and 
⎭
⎬
⎫

⎩
⎨
⎧

=⎟
⎠
⎞

⎜
⎝
⎛∈= 1|*

n
aZaJ nn .  

nnn QJQ −=
~  is defined to be the set of pseudo-squares under modulus n .  

Thus the Jacobi symbol is a generalization of the Legendre symbol [32] 

where n  is not necessarily to be prime. 

Let qpn ⋅=  be a Blum integer, i.e., p  and q  are distinct primes 

and 344 ≡≡ qp .  If nQx∈ , then  nx qpn mod8/)5( +−−  is a square root of 

x .  If nJx∈ , then 

⎩
⎨
⎧

∈−
∈

=
n

nd

Qxifxn
Qxifx

x ~,
,2  

where 8/)5( +−−= qpnd . 

Let qpn ⋅=  be a Williams integer [32], i.e., p  and q  are distinct 

primes and 38≡p  and 78≡q .  Thus, 2 is a quadratic non-residue under 

modulus n  with Jacobi symbol 12
−=⎟

⎠
⎞

⎜
⎝
⎛

n
.  Hence, multiplication of any 

integer x  by 2 or 2-1 mod n  reverses the Jacobi symbol of x . 

 

3.1.1 Chen et al.’s Blind Signature Scheme 

Chen, Qiu and Zheng presented a new blind signature scheme [10] 
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based on Rabin’s signature scheme.  There are two kinds of participants, 

senders and the signer in the blind signature scheme.  The sender requests 

signatures from the signer, and the signer issues signatures on the blinded 

messages to the sender.  The protocol consists of three phases: (1) 

requesting, (2) signing and (3) extraction.  A sender submits a blinded 

message to the signer in the requesting phase to obtain a signature.  In the 

signing phase, the signer computes the signature on the blinded message 

and returns the result to the sender.  Finally, the sender extracts the 

signature from the result that he received in the extraction phase. 

Let qpn ⋅=  be a Williams integer and ),( qp  be kept secret by the 

signer.  Let H  be a one-way hash function.  The details of the scheme 

are described as follows. 

(1) Requesting: To request the signature of the message m , the sender 

computes )(mH .  Then s/he randomly chooses the blinding factor *
nZr ∈ .  

The sender chooses appropriate bits a  and b . 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

=
1)(,1

1)(,0

n
mHif

n
mHif

a    

such that n
a JnmH ∈− mod)(2 , and sends the blinded message 
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nmHrm a mod)(2~ 4−=  to the signer. 

(2) Signing: After the signer receives m~ , s/he computes 

nmHrs da mod))(2(~ 4−=  where 8/)5( +−−= qpnd  is the private key of 

the signer, and sends s~  back to the sender. 

(3) Extraction: The sender computes nrss mod)~( 2−=  and forms 

),,( bas  such that )(2)1(2 mHs n
ab ≡− .  One can verify the correctness of 

the signature ),,( bas  on the message m  by checking the formula 

)(2)1(2 mHs n
ab ≡− . 

 

3.1.2 Cryptanalysis on Chen et al.’s Scheme 

In this section, we demonstrate that Chen-Qiu-Zheng scheme [10] is 

not secure against the chosen-ciphertext attack. 

Theorem 3.1: Given two integers x  and y  in *Zn , where 

qpn ⋅=  is a Blum integer.  If 22 yx n≡  and nyx mod±≠ , then 

=+ ),mod( nnyxGCD p  or q . 

Proof: By the Chinese remainder theorem, an integer w  in *Zn  can 

be represented by >< 21 , ww , where )mod(1 pww =  and )mod(2 qww = .  

For each >=< 21 , kkk  and >=< 21 , www  in *Zn , 
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>++>=<+< qwkpwknwk mod,modmod 2211  

>⋅⋅>=<⋅< qwkpwknwk mod,modmod 2211  

>>=<< − qkpknk mod,modmod 21
1  

>−−>=<−< qkpknk mod,modmod 21  

Besides, for every >< 21 , kk  and >< 21 , ww  in *Zn , 

>>=<< 2121 ,, wwkk  if and only if pwk mod11 =  and qwk mod22 = . 

Let >=< 21 , xxx  in *Zn , where )mod(1 pxx =  and )mod(2 qxx = , 

and let )mod( 2 nxt = .  The integer t  has four square roots 

},,,,,,,{ 21212121 >−−<>−<>−<>< xxxxxxxx , where >−=< 21 , xxy  or 

>−=< 21 , xxy  since )mod( nyx ±≠ .  If >−=< 21 , xxy , then 

>=<+ qxnyx mod2,0)mod( 2 .  Hence, )mod( nyx +  can be divided by 

p  and pnnyxGCD =+ ),mod( .  If >−=< 21 , xxy , then 

>=<+ 0,mod2)mod( 1 pxnyx  = <2x1 mod p, 0>.  Thus, )mod( nyx +  

can be divided by q  and qnnyxGCD =+ ),mod( .  � 

In Chen-Qiu-Zheng scheme, someone tries to compromise this 

scheme, s/he can send ) mod )(2( 2 nmhra− , instead of ) mod )(2( 4 nmhra−  to 

the signer without being detected by the signer since it is blinded, and then 

obtains ) mod ))(2((~ 2 nmhrs da−= .  The integer s~  is a square root of 
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) mod )(2( 2 nmhra−  with probability 1/2, and ) mod ~( 1 nrs −  is a square root 

of ) mod )(2( nmha−  with probability 1/2, too.  Then, the sender randomly 

selects another r̂ , and sends ) mod )(ˆ2( 2 nmhra−  to the signer, so that he 

can receive ) mod ))(ˆ2((ˆ 2 nmhrs da−= .  If the integer ) mod ˆˆ( 1 nrs −  is a 

square root of ) mod )(2( nmha−  and different from ) mod ~( 1 nrs −±  where 

the probability is 
4
1

2
1

2
1

=⋅ , then ), mod ˆˆ~( 11 nnrsrsGCD −− +  is one of the 

prime factors of n  by Theorem 3.1.  This kind of chosen-ciphertext 

attack can compromise Chen-Qiu-Zheng scheme.  

 

3.2 RSA-Based Partially Blind Signature Scheme 

In AsiaCrypt’96, Abe and Fujisaki [1] submitted the first partially 

blind signature scheme to inject the common information, like the date, on 

the signature.  Chien et al. [11] proposed more efficient RSA-based 

partially blind signature scheme than Abe-Fujisaki’s scheme later.  

Recently, Hwang et al. [21] claimed Chien et al.’s scheme cannot meet the 

untraceability property of the blind signature.  In this section, we show 

that Hwang et al.’s claim is incorrect and Chien et al.’s scheme is still the 

untraceable scheme. 



 28

Recently, Chien et al. proposed RSA-based partially blind signature 

with low computation for mobile and smart-card applications.  Hwang et 

al. claimed that Chien et al.’s scheme cannot meet the untraceability 

property of the blind signature later.  In this section, we show that Hwang 

et al.’s claim is incorrect and Chien et al.’s scheme is still satisfy the 

untraceability property. 

 

3.2.1 Chien et al.’s scheme  

In 2001, Chien et al. proposed an efficient partially blind signature 

based on RSA cryptosystem.  To compare with Abe-Fujisaki’s scheme, 

Chien et al.’s scheme can reduce the amount of computations by almost 

98% for the requester.  Therefore, Chien et al.’s scheme is suitable for 

mobile client and smart-card applications. 

The signer and the requester are two kinds of participants in the 

Chien’s partially blind signature.  The requester obtains a partially blind 

signature from the signer and the signer cannot link any message-signature 

pair later.  The four phases in Chien et al.’s scheme are (1) Initialization, 

(2) Requesting, (3) Signing, (4) Extraction and verification.  Initially, the 

signer initially publishes the necessary information for participants.  In 
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the requesting phase, the requester sends a blinded message and the agreed 

common information to the signer.  The signer signs on the blinded 

message with the common information in the signing phase.  Finally, the 

requester obtains the signature from the blinded signature without removing 

the injected common information in the extraction and verification phase.  

Anyone can verify the correctness of the signature using the 

message-signature pair and the agreed common information.  The detailed 

scheme is describe as follows. 

(1) Initialization: The signer randomly selects two large primes p  

and q , and calculates qpn ⋅=  and )1()1()( −⋅−= qpnφ .  Then, the 

signer selects large integers d  such that )(mod1 nde φ≡⋅ , where 3=e .  

Thus, d  is the private key of the signer and the signer publishes his public 

key ),( ne  and a secure one-way hash function )(⋅h  like SHA-1. 

(2) Requesting: The requester prepares the common information a  

according to the predefined format.  Then, s/he randomly selects two 

integers nZr ∈  and nZu∈ .  The requester calculates 

numhr e mod)1)(( 2 +=α  and sends ),( αa  to the signer.  After the signer 

verifying the agreed common information a , s/he randomly chooses a 

integer +∈ nZx , where nx < , and sends it to the requester.  After the 
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requester receives x , s/he selects a random number k  and computes 

rkb = .  Finally, the requester computes nxube mod)( −=β  and sends β  

to the signer. 

(3) Signing: The signer calculates nmod1−β  and 

nxaht dd mod))1(()( 222 −+= βα  then s/he sends ),( 1 t−β  to the requester. 

(4) Extraction and verification: After the requester receives ),( 1 t−β , 

s/he obtains the signature by calculating nbuxc e mod)1( 1−+= β  and 

nktrs mod42= .  The 3-tuple ),,( sca  is a signature on the message m , 

and anyone can verify the correctness of ),,( sca  by checking whether 

ncmhahse mod)1)(()( 22 += . 

If ),,( sca  is a signature of the message m  generated by Chien et 

al.’s partially blind signature scheme, then ncmhahse mod)1)(()( 22 +=  

must be held.  The detailed proof can be found in [11]. 

 

3.2.2 Hwang et al.’s Traceability Attack 

In Hwang et al.’s claim [21], the signer can keep a set of record for all 

blinded messages and use them to trace back the blind signature.  Thus, 

Hwang et al. claimed that Chien et al.’s scheme cannot meet the 



 31

untraceability of the blind signature.  The detailed procedures of Hwang et 

al.’s cryptanalysis are described as follows. 

1. The signer can keep a set of records ),,,,( 1−
iiiii tx ββα  for each 

instance i  in Chien et al.’s scheme. 

2. When the requester reveals ),,,( msca  to the public, the signer can 

compute nxccxu iii mod))(1(~ 1−−+=  for each instance i  since 

nxuxubxuc iiii
e

iiii mod))(1()1( 11 −− −+=+= β . 

3. The signer can obtain nxub d
ii

d
ii mod)~(~ −−= β  for each instance i  

since nxube mod)( −=β .   

Note: nxub e
ii

d
ii mod)~(~

−= β  is wrong in Hwang et al. [21]. 

4. The signer can then compute numhr d
i

dd
ii mod)1~()(~ 2 −− += α  for each 

instance i  since numhr i
e

ii mod)1)(( 2 +=α .   

Note: numhr
d

i
ed

ii mod)1~()(~ 2 +=α  is also wrong in Hwang et al. [21]. 

5. The signer can obtain nrbk iii mod~~~ 1−=  for each instance i  since 

nkrb iii mod= . 

6. Finally, the signer can check if nkrts iii mod~~ 42 ⋅⋅= .  If it is true, 

the signer can trace back the blind signature. 

Therefore, Hwang et al. claimed that Chien et al.’s scheme cannot meet 
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the untraceability property of the blind signature. 

 

3.2.3 Analysis of Hwang et al.’s Attack 

In 1995, Harn [19] claimed that Camenisch et. al.’s blind signature 

scheme [5] is traceable.  Horster et al. [20] proved that Harn’s 

cryptanalysis is incorrect later.  However, Theorem 3.2 shows that Hwang 

et al.’s claim on Chien et al.’s scheme is incorrect. 

Theorem 3.2: For given a message-signature pair ),,,( msca , the 

signer can derive 4-tuple  )~,~,~,~( iiii krbu  such that nkrts iii mod~~ 42 ⋅⋅=  is 

always satisfied for each ),,,,( 1−
iiiii tx ββα .   

Proof: According to Hwang et al.’s claim, the signer can keep 

),,,,( 1−
iiiii tx ββα  for each instance i  in Chien et al.’s scheme.  When 

the requester reveals ),,,( msca  to the public, the signer can compute 

nxccxu iii mod))(1(~ 1−−+=  for each instance i .  Then s/he can obtain 

nxub d
ii

d
ii mod)~(~ −−= β .  The signer can compute 

numhr d
i

dd
ii mod)1~()(~ 2 −− += α  and nrbk iii mod~~~ 1−= .  Finally, the signer 

can check whether the formula nkrts iii mod~~ 42 ⋅⋅=  is true or not.  

However, the formula nkrts iii mod~~ 42 ⋅⋅=  is always true for each instance 
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i  in the following derivations. 

)~~( 42
iii krt ⋅⋅  

nrbrxah iii
d

iii
d mod)~~(~))1(()( 412222 −− ⋅⋅+⋅≡ βα  

nrbxah ii
d

iii
d mod~~))1(()( 24222 −− ⋅⋅+⋅≡ βα  

numhxuxah d
i

dd
i

d
ii

d
i

d
iii

d mod))1~()(())~(())1(()( 224222 −−−−− +⋅−⋅+⋅≡ αββα  

numhxuxah d
i

dd
i

d
ii

d
i

d
i

d
i

d
i

d mod))1~()(())~(())1(()( 2222444222 +⋅−⋅+⋅≡ −−− αββα  

numhxuxah d
i

dd
ii

d
i

d mod))1~()(()~()1()( 222422 +⋅−⋅+⋅≡ −  

nuxuxmhah d
iiii

dd mod)]1~()~()1[()()( 22222 +⋅−⋅+⋅⋅≡ −  

nuxuxmhah d
iiii mod])]1~()~()1[()()([ 22222 +⋅−⋅+⋅⋅≡ −  

nuxuxmhah d
iiii mod])]1~()~()1[()()([ 22222 +⋅−⋅+⋅⋅≡ −  

nuxuxxumhah d
iiiiii mod])]1~~()~[()()([ 2222222 +++⋅−⋅⋅≡ −  

nxuxuuxuxxumhah d
iiiiiiiiii mod])]~2~21~~()~[()()([ 2222222 −++++⋅−⋅⋅≡ −  

nxuuxxumhah d
iiiiii mod])])~()1~(()~[()()([ 22222 −++⋅−⋅⋅≡ −  

ncmhah d mod]]1[)()([ 222 +⋅⋅≡  

ns mod≡  � 

Thus, Hwang et al.’s cryptanalysis on Chien et al.’s scheme is incorrect.  

Chien et al.’s partially blind signature scheme is still obtain the 
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untraceability property and it is an untraceable scheme. 

 

3.3 Untraceable ElGamal Blind Signature Scheme 

In Eurocrypt’94, Camenisch et al. presented the blind signature 

schemes based on the discrete logarithm problem.  Recently, Lee et al. 

asserted that Camenisch et al.’s schemes cannot satisfy the untraceability 

property of the blind signature scheme.  We will analyze that Lee et al.’s 

traceability attack is failed and Camenisch et al.’s schemes are still 

untraceable here.  Although Lee et al. presented an untraceable scheme, it 

needs more computations and storages than Camenisch et al.’s schemes.  

Hence, Lee et al.’s scheme is unnecessary. 

A blind signature scheme is a protocol to allow the requester to obtain 

a signature without revealing message and the signer cannot trace any 

message-signature pair later.  It can achieve the unforgeability property 

for the signer and the untraceability for the requester.  The first blind 

signature scheme was presented by Chaum [8] and it is based on the integer 

factoring problem.  Camenisch et al. [5] proposed DSA [34] and 

Nyberg-Rueppel [35] blind signature schemes based on the discrete 
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logarithm problem in Eurocrupt’94.  Harn [19] pointed out that Camenisch 

et al.’s schemes are traceable in 1995.  Horster et al. [20] showed that 

Harn’s cryptanalysis is incorrect later.  Recently, Lee et al. [27] claimed 

Horster et al.’s comment is improper and asserted Camenisch et al.’s 

schemes cannot satisfy the untraceability property of the blind signature 

scheme.  However, we show that Lee et al.’s traceability attack on 

Camenisch et al.’s schemes is failed in this section. 

 

3.3.1 Camenisch et al.’s scheme 

There are two kinds of participant: the signer and the requester in 

Camenisch et al.’s blind signature scheme.  Initialization, requesting, 

signing, and verification are four phases in their schemes and the details of 

DSA blind signature scheme are described in the following. (The concept of 

Nyberg-Rueppel blind signature scheme is similar to DSA blind signature 

scheme and its details are omitted here.) 

(1) Initialization: Two large primes p  and q  are randomly chosen 

by the signer such that )1(| −pq .  Next, s/he selects *
pZg ∈  of order q  

and a random number qZx∈ , and computes )(mod pgy x= .  Thus, the 

signer’s secret key is x  and the corresponding public key is y .  Finally, 
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the signer randomly selects qZk ∈ˆ  and calculates )(modˆ ˆ pgr k= , and 

sends r̂  to the requester. 

(2) Requesting: To sign a message m  which is relatively prime to q , 

the requester selects two random numbers qZba ∈,  and computes 

)(modˆ pgrr ba= .  Then, s/he calculates the blinded message 

)(modˆˆ 1 qrramm −=  and sends m̂  to the signer. 

(3) Signing: After the signer receives m̂ , s/he computes 

)(modˆˆˆˆ qmkrxs +=  and sends ŝ  back to the requester. 

(4) Verification: The requester can calculate the signature s  by the 

equation )(modˆˆ 1 qbmrrss += − .  Thus, ),( sr  is the signature on the 

message m .  Anyone can verify the signature by checking whether 

)(mod pryg mrs =  holds. 

 

3.3.2 Lee et al.’s Traceability Attack 

Recently, Lee et al. [27] asserted that Camenisch et al.’s schemes [5] 

cannot satisfy the untraceability property of the blind signature scheme.  

The detailed procedures of Lee et al.’s traceability attack on Camenisch et 

al.’s DSA blind signature scheme are described as follows. (The 
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traceability attack on Nyberg-Rueppel blind signature scheme is similar to 

DSA blind signature scheme and its description is omitted for concise.) 

1. The signer can record all instances )ˆ,ˆ,ˆ,ˆ( iiii smrk  in Camenisch et 

al.’s scheme. 

2. After the requester publishes ),,( msr , the signer can calculate    

)(mod)ˆˆ( 11 qrrssmb iii
−− −=  for all instances because of 

)(modˆˆ 1 qbmrrss += − . 

3. Next, the signer can compute )(modˆˆ 11 qrrmma iii
−−=  for all 

instances because of )(modˆˆ 1 qrramm −= . 

4. Finally, the signer can check whether )(modˆ pgrr ii ba
i=  holds.  If 

it is true, the signer can trace the blind signature. 

Thus, Lee et al. asserted that Camenisch et al.’s schemes cannot satisfy 

the untraceability property of the blind signature. 

 

3.3.3 Analysis of Lee et al.’s Attack 

Recently, Hwang et al. [22] asserted that Chaum’s blind signature 

scheme [8] is traceable and presented an untraceable blind signature scheme 

based on integer factoring problem.  Lee and Wu [29] showed that Hwang 
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et al’s claim is invalid later.  There are several papers [23, 24] claimed 

that many blind signature schemes incurred the traceability attack.  

However, many cryptanalysts [28, 14] have showed the traceability attack 

is failed later.  We analyze that Lee et al.’s traceability attack is failed in 

the following. 

Based on Lee et al.’s traceability attack, the signer can keep 

)ˆ,ˆ,ˆ,ˆ( iiii smrk  for all instances in Camenisch et al.’s schemes.  After the 

requester publishes ),,( msr , the signer can calculate 

)(mod)ˆˆ( 11 qrrssmb iii
−− −=  and )(modˆˆ 11 qrrmma iii

−−=  for all instances.  

Then, the signer can check whether )(modˆ pgrr ii ba
i=  holds.  If the result 

is true, Lee et al. asserted that the signer can trace the blind signature in 

Camenisch et al.’s schemes.  Indeed, we analyze that )(modˆ pgrr ii ba
i=  

is always true for all instances in the following. 

)(modˆ pgr ii ba
i  

)(mod)ˆˆ(ˆ 11

pgg iiii rrssmak −− −=  

)(mod)ˆˆ()ˆˆ(ˆ 1111

pgg iiiii rrssmrrmmk −−−− −=  

)(mod)ˆˆ()ˆˆ(ˆ 1111

pg iiiii rrssmrrmmk −−−− −+=  

)(mod)ˆˆˆˆˆ( 111

pg iiiii rrssrrmkm −−− −+=  
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)(mod)ˆ)ˆˆˆ(ˆˆˆ( 111

pg iiiiiii rrmkrxsrrmkm −−− +−+=  

)(mod))ˆˆˆ(ˆˆˆ( 111

pg iiiiii rrmkxrsrrmkm −−− +−+=  

)(mod)ˆˆˆˆˆˆ( 111

pg iiiiii rrmkxrsrrmkm −−− −−+=  

)(mod)(1

pg xrsm −−

=  

)(mod
11

pgg xrmsm −− −=  

)(mod)(
11

pgry xrmmmr −− −=  

)(mod)(
11

pgry xrmrm −− −=  

)(mod)(
11

pgrg xrmxrm −− −=  

)(mod pr=  

For a given message-signature pair ),,( msr , the signer can derive 

),( ii ba  such that )(modˆ pgrr ii ba
i=  is always held for all instances 

)ˆ,ˆ,ˆ,ˆ( iiii smrk .  Hence, Lee et al.’s traceability attack on Camenisch et 

al.’s schemes is failed.  Although Lee et al.’s scheme satisfies the 

untraceability property, it needs more computations and storages than 

Camenisch et al.’s schemes.  Thus, Lee et al.’s scheme is unnecessary. 

 

3.4 The Secure Proxy Blind Signature Schemes 
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The proxy blind signature scheme allows the designated proxy signer 

using the proxy secret key to generate a blind signature on behalf of the 

original signer.  Tan et al. presented the DLP-based and ECDLP based 

blind signature schemes.  Lal and Awasthi proposed a improved 

DLP-based scheme later.  Recently, Sun et al. presented linkability attack 

on Tan et al.’s and Lal-Awasthi’s proxy blind signature schemes 

respectively.  In this section, we show that Sun et al.’s attack is invalid 

and these schemes are still satisfy the unlinkability property. 

Mambo et al. [30] presented the proxy signature scheme to allow the 

designated proxy signer to sign messages on behalf of the original signer.  

For example, when a manager is going on a vocation, s/he can delegate 

her/his secretary to sign messages on behalf of her/him.  The defined three 

types of delegation in the proxy signature scheme are full delegation, 

partial delegation and delegation by warrant.  In full delegation, the 

original signer gives her/his private key to the designated proxy signer and 

then the original signer and the proxy signer can both generate the same 

signatures.  The original signer uses her/his private key to generate the 

proxy secret key and sends it to the proxy signer securely in partial 

delegation.  In delegation by warrant, the warrant is used to show that the 
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proxy signer is legal and to describe the information between the original 

signer and the proxy signer. 

The blind signature scheme was first proposed by Chaum [8] in 

Crypto’83.  The security of Chaum’s scheme is based on the difficulty of 

integer factoring.  The blind signature scheme can allow the receiver to 

obtain a signature signed by the signer without revealing message and the 

signer cannot link any message-signature pair later.  It can achieve the 

unforgeability property for the signer and the unlinkability for the receiver.  

Hence, it is useful in electronic payment systems and electronic voting 

systems. 

In 2002, Tan et al. [49] presented two proxy blind signature schemes to 

allow the proxy signer to generate a blind signature on behalf of the 

original signer.  Lal and Awasthi [25] showed a forgery attack on Tan et 

al.’s schemes and proposed a more secure proxy blind signature scheme 

later.  Recently, Sun et al. [47] pointed out that neither Tan et al.’s 

schemes nor Lal-Awasthi’s scheme can satisfy the unlinkability property of 

the proxy blind signature scheme.  In this section, we show that Sun et 

al.’s attack is invalid and these schemes are still satisfy the unlinkability 

property. 
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3.4.1 The Proxy Blind Signature Schemes 

The system parameters in the following proxy blind signature schemes 

are defined as follows. 

System Parameters: 

qp, : two large prime numbers, where )1(| −pq . 

g : element of *
pZ  of order q . 

oo yx , : secret key and public key of the original signer respectively, where 

pgy ox
o mod= . 

pp yx , : secret key and public key of the proxy signer respectively, where 

pgy px
p mod= . 

()h : a secure and public one way hash function. 

|| : the concatenation of strings. 

3.4.1.1 Tan et al.’s proxy blind signature schemes 

Tan et al. [49] presented two proxy blind signature schemes based on 

the discrete logarithm problem (DLP) and elliptic curve discrete logarithm 

problem (ECDLP) in 2002.  They also defined the required security 
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properties of proxy blind signature scheme.  There are three kinds of 

participants: original signer, the proxy signer and the receiver in their 

schemes.  The three phases in their schemes are (1) Proxy delegation, (2) 

Signing and (3) Verification.  The details of Tan et al.’s DLP-based 

scheme are described as follows. 

(1) Proxy delegation: The original signer randomly selects a number 

ok , and calculates pgr ok
o mod=  and qrxks oooo mod+= .  Then, the 

original signer sends ),( oo sr  to the proxy signer in a secure way.  After 

the proxy signer receives it, s/he can verify it by checking the correctness 

of the equation pryg o
r

o
s oo mod= .  Finally, the proxy signer computes 

her/his proxy secret key qxss popr mod+= . 

(2) Signing: The proxy signer chooses a random number k , computes 

pgt k mod=  and sends ),( tro  to the receiver.  After receiving it, the 

receiver randomly chooses two numbers a  and b  and calculates 

pryytgr a
o

r
o

ba
p

b o mod)( −−−= , qmrhe mod)||(= , pyryu e
o

be
o

r
o

o mod)( −+−=  and 

qbaee mod)(' −−= .  Then, the receiver sends 'e  to the proxy signer.  

Next, the proxy signer calculates the blinded signature qkses pr mod'' +=  

and sends 's  back to the receiver.  Finally, the receiver computes 

qbss mod'+= .  The signature of the message m  is ),,,( esum . 
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(3) Verification: Anyone can verify the correctness of the proxy blind 

signature ),,,( esum  by checking that qmpuyyghe e
o

e
p

s mod)||mod( −=  

holds. 

The descriptions of Tan et al.’s ECDLP-based proxy blind signature 

scheme is omitted here because it is similar to DLP-based scheme except to 

replace discrete logarithm cryptosystem parameters by elliptic curve 

cryptosystem parameters. 

 

3.4.1.2 Lal and Awasthi’s proxy blind signature scheme 

Lal and Awasthi [25] showed a forgery attack on Tan et al.’s schemes 

and proposed a more secure and efficient proxy blind signature scheme later.  

Proxy-unprotected and proxy-protected are two kinds of schemes according 

to whether the original signer can generate the same proxy signature as the 

proxy signer.  In proxy-protected schemes, the proxy signer and the 

original signer both can generate valid proxy signatures.  Only the proxy 

signer can generate valid proxy signatures that s/he cannot repudiate it later 

in proxy-protected schemes.  The participants, phases and system 

parameters are the same as Tan et al.’s schemes. The detailed scheme is 

described in the following. 
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(1) Proxy delegation: The original signer chooses a random number 

ok , and computes pgr ok
o mod=  and qrkxs oooo mod+= .  Next, the 

original signer sends ),( oo sr  to the proxy signer via a secure channel.  

After the proxy signer receives it, s/he can verify it by checking whether the 

equation pryg oo r
oo

s mod=  holds.  In proxy-unprotected case, the proxy 

signer uses opr ss =  as her/his proxy secret key and pryy or
oopr mod=  as 

her/his proxy public key.  In proxy-protected case, the proxy signer 

computes qxss propr mod+=  as her/his proxy secret key and 

pyryy p
r

oopr
o mod=  as her/his proxy public key.  (Note that the proxy 

public keys in Sun et al.’s paper must be exchanged each other in 

proxy-unprotected and proxy-protected cases.) 

(2) Signing: The proxy signer randomly chooses a number k  and 

computes pgt k mod=  and sends ),( tro  to the receiver.  After receiving 

it, the receiver selects two random numbers a  and b .  Then s/he 

calculates pytgr b
pr

a mod−−= , qmrhe mod)||('= , and qbee mod)'( += .  

The receiver sends e  to the proxy signer.  Next, the proxy signer 

calculates the blinded signature qesks pr mod' −=  and sends 's  back to 

the receiver.  Finally, the receiver computes qass mod'−=  from the blind 

signature 's .  The signature of the message m  is )',,( esm . 



 46

(3) Verification: Anyone can verify the correctness of the proxy blind 

signature )',,( esm  by checking whether qmpyghe e
pr

s mod)||mod(' '=  

holds. 

 

3.4.2 Sun et al.’s Traceability Attack 

In Sun et al.’s [47] linkability attack, they pointed out that the proxy 

signer can record all blinded messages and use them to trace back the 

corresponding blind signatures.  Hence, Sun et al. claimed that all Tan et 

al.’s schemes and Lal-Awasthi’s scheme cannot satisfy the unlinkability 

property of the blind signature.  The details of Sun et al.’s attack are 

described as follows. 

3.4.2.1 Sun et al.’s attack on Tan et al.’s schemes 

We only describe the detailed Sun et al.’s attack on Tan et al.’s 

DLP-based proxy blind signature scheme because Tan et al.’s ECDLP-based 

scheme is similar to it. 

1. The proxy signer can keep all set of records )',',( iii set  for each instance 

i  in Tan et al.’s DLP-based scheme, where pgt ik
i mod= . 

2. When the receiver reveals ),,,( esum  to the public, the proxy signer can 
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compute qssb ii mod'' −=  for each instance i  since qbss mod'+= . 

3. The proxy signer can calculate qebea iii mod)''(' −−=  for each instance i  

since qbaee mod)(' −−= .   

4. Then the proxy signer can compute pryygtr ioiii a
o

r
o

ba
p

b
ii mod)(' '''' −−−=  for 

each instance i  since pryytgr a
o

r
o

ba
p

b o mod)( −−−= . 

5. Finally, the proxy signer can check that puyygr e
o

e
p

s
i mod' −=  holds.  If 

it is true, the proxy signer can trace back the blind signature. 

Hence, Sun et al. claimed that Tan et al.’s schemes cannot satisfy the 

unlinkability property of the blind signature. 

3.4.2.2 Sun et al.’s attack on Lal-Awasthi’s scheme 

1. The proxy signer can keep all set of records )~,',( iii set  for each instance 

i , where pgt ik
i mod= . 

2. After the receiver reveals ),,( esm  to the public, the proxy signer can 

calculate qssa ii mod~' −=  for each instance i  since qass mod~ −= . 

3. The proxy signer can calculate qeeb ii mod)'(' −=  for each instance i  

since qbee mod)(' += . 

4. The proxy signer then can compute pygtr ii b
pr

a
ii mod' '' −−=  for each 

instance i  since pytgr b
pr

a mod−−= . 
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5. Finally, the proxy signer can check whether pygr e
pr

s
i mod'=  holds.  If 

the equation is true, the proxy signer can trace back the blind signature. 

Thus, Sun et al. claimed that Lal-Awasthi’s scheme cannot satisfy the 

unlinkability property of the blind signature. 

 

3.4.3 Analysis of Sun et al.’s Attack 

In this section, we show that Sun et al.’s linkability attack is failed and 

Tan et al.’s [49] and Lal-Awasthi’s [25] proxy blind signature schemes are 

still unlinkable. 

3.4.3.1 Analysis of Sun et al.’s attack on Tan et al.’s schemes 

According to Sun et al.’s linkability attack, the proxy signer can keep 

all set of records )',',( iii set  for each instance i  in Tan et al.’s DLP-based 

scheme.  After the receiver reveals ),,,( esum  to the public, the proxy 

signer can calculate qssb ii mod'' −=  for each instance i .  Next, s/he can 

obtain qebea iii mod)''(' −−= .  Then the proxy signer can calculate 

pryygtr ioiii a
o

r
o

ba
p

b
ii mod)(' '''' −−−= .  Finally, the proxy signer can check 

whether the equation puyygr e
o

e
p

s
i mod' −=  holds.  However, we show that 

the equation is always true for each instance i  in the following.  
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pryygt ioiii a
o

r
o

ba
p

b
i mod)( '''' −−−  

pryygt eeb
o

r
o

ssebe
p

ss
i

iioiiii mod)( '''''' −+−+++−−≡  

pryyygtg eeb
o

r
o

sseb
p

e
p

s
i

s iioiiii mod))(()( '''''' −+−++−−≡  

pryyygtg eeb
o

r
o

ssess
p

e
p

s
i

s iioiiii mod))(()( '''''' −+−++−−−≡  

pryyygtg eeb
o

r
o

e
p

e
p

s
i

s iioii mod))(()( '''' −+−−≡  

pryryyygtg ioioii e
o

r
o

eb
o

r
o

e
p

e
p

s
i

s mod)())(()( '''' −−−≡  

pyyryryyygtg e
o

e
o

e
o

r
o

eb
o

r
o

e
p

e
p

s
i

s ioioii mod)()())(()( '''' −−−−≡  

pyryryygtyyg e
o

e
o

r
o

eb
o

r
o

e
p

s
i

e
o

e
p

s ioioii mod)()())()(( '''' −−−−≡  

pyryryyggyyg e
o

e
o

r
o

eb
o

r
o

e
p

kseke
o

e
p

s ioioiiprii mod)()())()(( '''' −−−−−≡  

pyryryyggyyg e
o

e
o

r
o

eb
o

r
o

e
p

xsekke
o

e
p

s ioioipoiii mod)()())()(( ''')(' −−+−−−≡  

pyryryggyyg e
o

e
o

r
o

eb
o

r
o

xexsee
o

e
p

s ioiopipoi mod)()())()(( ''')(' −−+−−≡  

pyryrygyyg e
o

e
o

r
o

eb
o

r
o

see
o

e
p

s ioiooi mod)()())()(( ''' −−−−≡  

pyryryryyyg e
o

eb
o

r
o

e
o

r
o

e
o

r
o

e
o

e
p

s ioioio mod)()()())(( ''' −−−−≡  

pyryyyg e
o

eb
o

r
o

e
o

e
p

s io mod)())(( ' −−−≡  

puyyg e
o

e
p

s mod−≡  

pri mod'≡  
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For a given message-signature pair ),,,( msca , the proxy signer can 

derive 3-tuple  )',','( iii rab  such that puyygr e
o

e
p

s
i mod' −=  is always held 

for each )',',( iii set .  Hence, Sun et al.’s claim is incorrect and Tan et al.’s 

DLP-based scheme is still satisfy the unlinkability property.  The 

cryptanalysis of Sun et al.’s linkability attack on Tan et al.’s ECDLP-based 

scheme is similar to above description. 

3.4.3.2 Analysis of Sun et al.’s attack on Lal-Awasthi’s scheme 

Based on Sun et al.’s linkability attack, the proxy signer can records all 

set of )',,( iii set  for each instance i  in Lal-Awasthi’s scheme.  After the 

receiver reveals )',,( esm  to the public, the proxy signer can compute 

qssa ii mod)'(' −=  for each instance i .  Then s/he can calculate 

qeeb ii mod)'(' −= .  Next, the proxy signer can compute 

pygtr ii b
pr

a
ii mod' '' −−= .  Finally, the proxy signer can check if the equation 

qmpyghe e
pr

s mod)||mod(' '−=  holds.  We show that the equation is always 

true for each instance i  in the following. 

qmpygth ii b
pr

a
i mod)||mod( '' −−  

qmpygth ii ee
pr

ss
i mod)||mod( '' −−≡  

qmpygtgh ii ee
pr

s
i

s mod)||mod( '' −−≡  
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qmpygtgh iipri ee
pr

kse
i

s mod)||mod( '−−≡  

qmpygggh ipriii ee
pr

sekks mod)||mod( '−−≡  

qmpyggh ipri ee
pr

ses mod)||mod( '−≡  

qmpyygh ii ee
pr

e
pr

s mod)||mod( '−≡  

qmpygh e
pr

s mod)||mod( '≡  

'e≡  

For a given message-signature pair )',,( esm , the proxy signer can 

derive 3-tuple  )',','( iii rab  such that qmpyghe e
pr

s mod)||mod(' '−=  is 

always held for each )',,( iii set .  Hence, Sun et al.’s linkability attack is 

failed again on Lal-Awasthi’s scheme.  Lal-Awasthi’s scheme is still 

satisfy the unlinkability property of the proxy blind signature scheme. 
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Chapter 4 The Proposed Digital Blind Signature 

Schemes 

To establish the basis of electronic transaction services, we will present 

several secure digital blind signature schemes in the following sections.  

The fail-stop blind signature scheme that can obtain unforgeability property 

for the signer and anonymity property for the participants is described in 

Section 4.1.  Then, an improved blind signature scheme based on the 

elliptic curve cryptosystem is presented in Section 4.2.  It can reduce 50% 

storage requirements for each signature and speed up performance more 

than 36% compared with Yeh-Chang’s scheme.   

 

4.1 A Fail-stop Blind Signature Scheme 

The fail-stop signature scheme was proposed by Pfitzmann and 

Waidner [39, 38, 50].  It can protect the signer against a forger with more 

powerful computational capability to forge a signature.  It is 

unconditionally secure for the signer and cryptographically secure for the 

requester.  One important application of the fail-stop signature is 

electronic payment system [39].  The anonymity of participants is very 

important in electronic payment systems.  However, it cannot be achieved 
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in the fail-stop signature scheme. 

Chaum [7, 8] introduced the concept of a blind signature scheme which 

can protect the anonymity of participants.  The blind signature scheme 

allows a user to obtain a message signed by the signer without revealing 

message and the signer cannot link any message-signature pair later.  The 

blind signature scheme can be used in electronic payment systems to 

preserve participants’ anonymity. 

Thus, a fail-stop blind signature scheme is proposed to solve this 

problem.  The presented fail-stop blind signature scheme is based on 

Susilo-Safavi-Pieprzyk [48] scheme (mentioned in Section 2.5).  Our 

scheme can provide “proof of forgery” for signers and guarantee 

“anonymity” for the participants/requesters.  We will give proof to show 

that the proposed scheme satisfies the conditions of fail-stop signature and 

blind signature. 

 

4.1.1 The Proposed Blind Signature Scheme 

The fail-stop blind signature scheme combines the advantages of both 

fail-stop signature and blind signature.  Our proposed scheme is a 
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modification of Susilo et al.’s scheme with trusted dealer.  There are 

seven phases (1) Initialization, (2) Key generation, (3) Blinding, (4) 

Signing, (5) Unblinding, (6) Verification and (7) Proof of forgery in the 

fail-stop blind signature scheme.  The three kinds of participants in our 

scheme are the same as the section 2.  The detailed scheme is described 

bellow. 

(1) Initialization: Initially, the trusted dealer D  chooses two large 

primes p  and q  such that 1'2 += pp  and 1'2 += qq , where 'p  and 'q  

are also prime.  D  computes pqn =  and )1)(1()( −−= qpnφ .  Next, De  

and Dd  are chosen by the trusted dealer D  such that )(mod1 nde DD φ≡ .  

Then, D  chooses a integer *
nZ∈α  randomly and computes 

nDd modαβ = .  Finally, D  publishes her/his public key ),( nα , keeps 

her/his private key Dd  secretly and sends ),( βDe  to the signer S  via a 

secure channel.  

(2) Key generation: The signer S  randomly chooses his(her) private 

key ( 1k , 2k , 3k , 4k ), where *
ni Zk ∈  and computes nkk mod34

1 βαβ = , 

nkk mod13
11 βαα =  and nkk mod24

12 βαα = .  Finally, S  publishes her/his 

public key ),,( 211 ααβ  and a one-way hash function H . 

(3) Blinding: For a message m , the receiver R  selects a random 
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numbers r  in *
nZ .   R  computes nmrHm mod)(~ =  with a blinding 

factor r , where )(mH  is the hashed value of message m .  Then, R  

sends the blinded message m~  and nrHx mod)(=  to S . 

(4) Signing: In this phase, the signer S  computes )(~~
211 kxkms +=  

and )(~~
432 kxkms += .  S  sends the blinded signature )~,~( 21 ss  on blinded 

message m~  to R . 

(5) Unblinding: After the receiver R  obtains the blinded signature 

)~,~( 21 ss , he(she) performs the unblinding operation by computing 1
1

1
~srs −=  

and 2
1

2
~srs −= .  Then, ),( 21 ss  is the signature on hashed message )(mH . 

(6) Verification: Anyone can verify the message-signature 

),,),(( 21 ssxmH  by checking if nmHss mod2
)(

11
12 ααβα = . 

(7) Proof of forgery: This phase is similar to Susilo et al.’s scheme.  

The signer can prove that a forgery has occurred by revealing the 

non-trivial factors of n . 

 

4.1.2 Security Analysis 

A secure fail-stop blind signature scheme must satisfy four conditions 

as follows. 
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(1) The forger is nearly infeasible to forge a signature with more powerful 

computational capability. 

(2) The signer can use a polynomial-time algorithm to prove that a forgery 

has occurred. 

(3) The polynomial-bounded signer cannot forge a signature and prove it a 

forgery later. 

(4) The signer is computationally infeasible to link the message he actually 

signed and the corresponding signature for verification later. 

 

Theorem 4.1: There exists the matching private keys for each public 

key, such that different private key can generate different signature on the 

same message. 

 

Theorem 4.2: The signer can prove that a forgery has occurred by 

factorizing n  if a forged signature )','( 21 ss  on a message m  succeeds 

in verification phase. 

 

Theorem 4.3: The signer can prove that a forgery has occurred by the 
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probability  
)(

1)(
n

n
φ

φ − . 

 

The second condition of a secure fail-stop blind signature is satisfied 

by Theorem 4.2.  The following theorem shows that a forger with more 

powerful computational capability is still existing )(nφ  possible private 

keys for that signature. 

Theorem 4.4: The forger with more powerful computational capability 

is still existing )(nφ  possible private keys for that blinded signature 

)~,~( 21 ss  on the blinded message m~  together with corresponding public 

key. 

Proof: To Assume the forged blinded signature on the blinded message 

m~  is )'~,'~( 21 ss  and the public key of the signer is ),,( 211 ααβ .  If a forger 

with more powerful computational capability can solve the discrete 

logarithm and factorization problem successfully, he can obtain these 

equations as follows. 

)(mod~)('~
211 nmkxks φ+=  

)(mod~)('~
432 nmkxks φ+=  

)(mod)( 131 nwkkc φ+=  
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)(mod)( 242 nwkkc φ+=  

Where )(~ mrHm = , *
21,, nZccx ∈  and 341log kdkw D+== βα .  Then, a 

forger can rewrite these equations by using matrix representation. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

1

2

1

4

3

2

1

'~
'~

100
010

~~00
00~~

c
c
s
s

k
k
k
k

w
w

mmx
mmx

 

The above matrix’s rank is 3 because 0~~
4213 =+−− rmrwrrmx , where ir  

is the i-th row of the matrix.  There are )(nφ  possible private keys for 

that blinded signature since the solutions of equations are )(nφ .  

 

Theorem 4.5: The forger with more powerful computational capability 

cannot generate the blinded signature on a new message. 

 

Theorem 4.6: The polynomial-bounded signer cannot generate a valid 

signature and prove it a forgery later. 

Proof: The polynomial-bounded signer must have another private key 

)',',','( 4321 kkkk  which can match the corresponding public key ),,( 211 ααβ  

to deny a generated valid signature, such that nkk mod'
1

'
1

13 βαα =  and 
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nkk mod'
1

'
2

24 βαα = .  The difficulty to find another private key 

)',',','( 4321 kkkk  is equivalent to solve the discrete logarithm problem.  

Moreover, it is difficult to find Dd  without knowing )(nφ  since the 

difficulty of integer factorization.  

 

Theorem 4.7: There exists a correct private key selected by the signer 

corresponding to the public key, such that )~,~( 21 ss  is the blind signature on 

the blinded message m~  and )'~,'~( 21 ss  is also the blind signature on the 

blinded message '~m , where '~~ mm ≠ . 

Proof: The signer can organize these equations as follows. 

)(mod~)(~
211 nmkxks φ+=  

)(mod~)(~
432 nmkxks φ+=  

)(mod'~)('~
211 nmkxks φ+=  

)'(mod'~)('~
432 nmkxks φ+=  

)(mod)( 131 nwkkc φ+=  

)(mod)( 242 nwkkc φ+=  

Where )(~ mrHm = , *
21,, nZccx ∈  and 341log kdkw D+== βα . The 

matrix representation of above equations can rewrite as follows. 
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Since '~~ mm ≠ , The above coefficient matrix’s rank is 4.  Hence, the 

private key is the correct private key selected by the signer corresponding 

to the public key.  

 

Theorem 4.8: The signer computationally cannot link the blinded 

message m~  he actually signed and the corresponding signature ),( 21 ss  

for verification later. 

Proof: In the signing phase, the signer can obtain the blinded message 

)(~ mrHm =  and nrHx mod)(= .  The signer can obtain the signature 

),( 21 ss  in the verification phase, where 

)()(~
211

1
1 mHkxksrs +== −

 

)()(~
432

1
2 mHkxksrs +== −

 

The signer is computationally infeasible to link the blinded message 

and the signature for verification later since a blinding factor is chosen 

randomly by the receiver.  
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Hence, the fail-stop blind signature scheme can obtain the 

unforgeability property for the signer and the anonymity property for the 

requesters.  It also can be applied in more critical system like electronic 

payment systems which need higher security against more powerful forger 

and can preserve participants’ anonymity.  Recently, Chang et al. [6] 

presented a fail-stop blind signature scheme based on pairings.  Their 

scheme can work in any Gap Diffie-Hellman group. 

 

4.2 The Enhanced Generic Blind Signature Scheme 

By modifying the generic blind signature scheme presented in [17], we 

propose an enhanced scheme in the followings.  Let M  be the underlying 

set of messages and R  be a finite set of random strings.  The proposed 

blind signature scheme consists of five elements ),,,,( VUSHB , where 

(1) MRMB →×:  is a blinding function.  Without r , it is 

infeasible for the signer to compute m  from ),( rmB .  The integer r  is 

called the blinding factor of the message m , and r  is randomly chosen 

from R  and kept secret by some user.  Besides, ),( rmB  is called the 
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blinded message. 

(2) MMH →:  is a public one-way hash function. 

(3) MKMS →:  is a signing function.  S  is kept secret by the 

signer and K  is a positive integer, where MMK =  when 1=K  and 

MMKMK ×= −1  when 2≥K .  Without S , it is computationally 

infeasible to compute ))(( mHS , where ))(( mHS  is called the signer's 

signature on the message m  in the scheme. 

(4) MKRMKU →×:  is an unblinding function.  For every Mm∈  

and Rr ∈ , )())),,((( mSrrmBSU = , and it is computationally infeasible to 

derive )(mS  from )),(( rmBS  through U  without r .  

(5) },{: FalseTrueMMKV →×  is a public verification formula.  

TruemtV =),( , where MKt ∈  if and only if t  is the signer's signature on 

m , i.e., ))(( mHSt = . 

The corresponding protocol is described in detail below. 

(1) Blinding: A user randomly selects a blinding factor Rr ∈  and 

chooses a message Mm∈ , where some message may be hidden in m .  

Then s/he computes the blinded message )),(( 2 rmHBu =  and submits it to 

the signer to request the signer's signature on )(2 mH , where 
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))(()(2 mHHmH = . 

(2) Signing: The signer applies S  to u , and then sends )(uS  to the 

user. 

(3) Unblinding: After receiving the signing result )(uS  , the user 

computes )),(( ruSU  to obtain ))(( 2 mHS . 

The user shows the signature-message pair ))()),((( 2 mHmHS  for 

verification and that 2-tuple can be verified by examining whether 

TruemHmHSV =))()),((( 2  or not.  Later, the user can reveal m for further 

verification.  Besides, given the pair ))),((( 2 mmHS , the signer cannot link 

))),((( 2 mmHS  to the pair ))),(()),),(((( 22 rmHBrmHBS  since it is 

computationally infeasible for the signer to derive )(2 mH  from 

)),(( 2 rmHB  or to convert ))),((( 2 rmHBS  into ))(( 2 mHS  without r . 

 

4.3 The Enhanced Blind Signature Scheme Based on 

the Elliptic Curve Cryptosystem 

The elliptic curve cryptosystem has more advantages than RSA or DSA 

such as smaller key length and low bandwidth on equivalent security 

strength.  Recently, Yeh and Chang presented the first blind signature 
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scheme based on the elliptic curve cryptosystem and it is a modification of 

Okamoto’s signature.  In this section, we propose a Schnorr-type blind 

signature scheme based on the elliptic curve that can reduce 50% storage 

requirements for each signature and speed up more than 36% performance 

compared with Yeh-Chang’s scheme.  We also show that our scheme is a 

secure blind signature scheme here. 

 

4.3.1 Yeh-Chang’s Blind Signature Scheme 

Recently, Yeh and Chang [51] presented a blind signature scheme 

based on the elliptic curve cryptosystem and it is the modification of 

Okamoto’s signature [36].  Yeh-Chang’s scheme is a secure blind 

signature scheme and it can preserve the properties of unforgeability and 

untraceability.  Yeh-Chang’s scheme can reduce the storage requirements 

by 33% and speed up performance ration more than 6 compared with 

Okamoto’s blind signature. 

Let p  be a prime and let E  be an elliptic curve over pZ .  It 

satisfies the equations )(mod32 pbaxxy ++=  and 

)(mod)0274( 23 pba ≠+  together with a special point at infinity denoted by 

O , where pZba ∈,  [31].  The three phases in Yeh-Chang’s scheme are 
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initialization, signature generation and signature verification.  The 

detailed scheme is described as follows. 

(1) Initialization: The signer chooses two points EGG ∈21 ,  with 

prime order q  and selects two random numbers qZxx ∈21 ,  as private 

keys.  Then s/he computes )(mod111 qGxY −=  and )(mod222 qGxY −= , 

where EYY ∈21 , . 

(2) Signature generation: The signer selects two random numbers 

qZrr ∈21 ,  and calculates )(mod2211 qGrGrR += .  Then the signer sends 

1Y , 2Y  and R  to the requester.  After the requester receiving R , the 

requester randomly chooses two numbers qZba ∈,  and computes 

)(mod)(~
21 qbYGGaRR +++= , where )(mod21 qYYY += .  The requester 

calculates )~||( xrmht = , where m  is the message, )~,~(~
yx rrR =  and ()h  is 

one-way hash function.  Then the requester computes )(mod~ qbtm +=  

and sends m~  to the signer.  The signer calculates )(mod~~
111 qxmrs +=  

and )(mod~~
222 qxmrs +=  and sends 1

~s  and 2
~s  to the requester.  After 

the requester receiving 1
~s  and 2

~s , s/he calculates )(mod~
11 qass +=  and 

)(mod~
22 qass += .  The signature of the message m  is ),~( 21 ssR . 

(3) Signature verification: Anyone can verify the correctness of the 

signature ),~( 21 ssR  by checking )~||( xrmht = , where 
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)(mod)~,~( 2211 qtYGsGsrrV yx ++== . 

 

4.3.2 The Enhanced Signature Scheme 

To improve the efficiency of Yeh-Chang’s scheme, we propose a fast 

blind signature scheme modified from Schnorr’s signature [45] based on the 

ECDLP.  The elliptic curve cryptosystem assumptions are briefly 

described as follows.  Let E  be an elliptic curve over pZ  and the set of 

points ),( yx  satisfy the equation baxxy ++= 32 , where pZbayx ∈,,,  and 

)(mod0274 23 pba ≠+ .  O  is a special point on E  at infinity [31].  The 

proposed scheme consists of four phases: (1) initialization, (2) blinding, (3) 

signing and (4) unblinding and verification.  The signer will publish 

system parameters in the initialization phase.  The requester sends a 

blinded message to the signer in the blinding phase.  In the signing phase, 

the signer generates the blind signature and sends it back to the requester.  

The requester obtains the signature derived from the blind signature and 

anyone can verify the correctness of the signature in the unblinding and 

verification phase.  The details of proposed scheme are described as 

follows. 

(1) Initialization: The signer selects a point EG∈  with prime order 
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q  and chooses a random number qZx∈  as private key.  Then the signer 

computes )(mod qxGY −= .  The signer randomly chooses a number 

qZr∈  and computes )(mod qrGR = .  Then the signer sends Y  and R  

to the requester. 

(2) Blinding: After receiving R , the requester selects two random 

numbers qZba ∈,  and calculates )(mod~ qbYaGRR −+= .  Then the 

requester computes )(mod)~||( qrmht x= , where ()h  is one-way hash 

function, )~,~(~
yx rrR =  and m  is the message.  Finally, the requester 

calculates )(mod)(~ qbtm +=  and sends the blinded message m~  back to 

the signer. 

(3) Signing: The signer computes the blind signature 

)(mod~~ qxmrs +=  and sends s~  back to the requester. 

(4) Unblinding and verification: The requester computes 

)(mod~ qass +=  and the signature of the message m  is ),~( sR .  Anyone 

can examine the correctness of the signature by checking 

)(mod)'||( qrmht x= , where )(mod)','( qtYsGrr yx += . 
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4.3.3 Security Analysis 

In this section, we discuss the correctness, randomness, unforgeability 

and unlinkability of the proposed scheme. 

The following theorem can ensure the correctness of the proposed 

scheme. 

Theorem 4.5: If ),~( sR  is a valid signature of the message m , then 

)(mod)'||( qrmht x= , where )(mod)','( qtYsGrr yx +=  

Proof : )(mod)','( qtYsGrr yx +=  

)(mod)~( qtYGas ++=  

)(mod)~( qtYGaxmr +++=  

)(mod))(( qtYGaxbtr ++++=  

)(mod)( qtYtxGGabxr ++++=  

)(mod)( qaGbxGrG ++=  

)(mod)( qaGbYR +−=  

)(mod~ qR=  

)(mod)~,~( qrr yx=  

The requester can examine the correctness of the signature by checking  
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)(mod)'||( qrmht x=  since )(mod~' qrr xx = .  If )(mod)'||( qrmht x=  is 

hold, the signature ),~( sR  on the message m  is a valid one.  

In the proposed scheme, the signer randomized the blinded message 

using the random number r .  The attacker is computationally infeasible 

to remove r  from )(mod~ qbYaGrGR −+= , since s/he has to solve the 

elliptic curve problem and it is hard to be solved.  The signature ),~( sR  of 

the proposed scheme has the randomness property. 

In the blinding phase, the requester randomly selects qZba ∈,  and 

computes the blinded message m~ .  Since )(mod))~||((~ qbrmhm x += , 

where )(mod)~,~( qbxGaGrGrr yx −+= , the signer cannot know the message 

m .  Hence, the blindness property can be obtained in the proposed 

scheme. 

The security of the proposed scheme is based on the difficulty of 

solving the elliptic curve problem.  It is hard to forge a valid signature 

),~( sR  on any message m  to pass the signature verification equation 

)(mod)'||( qrmht x= , where )(mod)','( qtYsGrr yx += . 

Unlinkability property means that the signer cannot link any valid 

signature ),~( sR  to the corresponding message m .  The following 

theorem shows that the proposed scheme can possesses unlinkability 
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property. 

Theorem 4.6: For any valid signature ),~( sR  of the corresponding 

message m , the signer can derive 'ia  and 'ib  for any )~,~( ii sm  such that 

)(mod)'(~ qbtm iii +=  

)(mod''~ qYbGaRR iiiii −+=  

)(mod'~ qass ii +=  

Proof: If )(mod)'(~ qbtm iii +=  then we have )(mod)~(' qtmb iii −= . 

If )(mod'~ qass ii +=  then we have )(mod)~(' qssa ii −= . 

)(mod'' qYbGaR iiiii −+  

)(mod)~()~( qYtmGssR iiiiii −−−+=  

)(mod)~~( qYtYmGssGGr iiiiiiiii +−−+=  

)(mod)~~~( qYmGsRGr iiiiii −−+=  

)(mod)~)~(~( qYmGxmrRGr iiiiiiii −+−+=  

)(mod)~~~( qYmGxmR iiiii −−=  

)(mod)~~~( qYmYmR iiii −+=  

)(mod~ qR=  

According to the above derivations, the signer can derive 'ia  and 'ib  
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for any recorded )~,~( ii sm .  

Therefore, for any valid signature ),~( sR  of the corresponding 

message m , the signer can always derive the blinding factors 'ia  and 'ib  

for any )~,~( ii sm .  It is demonstrate that all message-signature pairs are 

indistinguishable for the signer.  Hence, it is computationally infeasible to 

derive the link between the signature and its corresponding instance of 

signing process. 

 

4.3.4 Performance Comparison 

Because of Schnorr’s signature scheme is simple than Okamoto’s 

signature scheme, we can reduce some storage requirements directly from 

Schnorr’s scheme.  In Yeh-Chang’s scheme, the storage requirements of 

the elliptic curve points are 8 ( 1G , 2G , 1Y , 2Y , Y , R , R~  and V ) and 

are 4 ( G , Y , R  and R~ ) in our scheme.  Yeh-Chang’s scheme uses 6 

( 1x , 2x , 1r , 2r , a  and b ) random numbers and our scheme only uses 4 

( x , r , a  and b ) random numbers.  The number of signatures are 4 ( 1
~s , 

2
~s , 1s  and 2s ) in Yeh-Chang’s scheme and are 2 ( s~  and s ) in our 

scheme.  Hence, the proposed scheme can reduce 50% storage 

requirements compared with Yeh-Chang’s scheme for each signature.  The 
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comparison results of the storage requirements are shown in Table 4.1. 

Table 4.1  The comparison of required storage requirements 

 Our 
scheme 

Yeh-Chang’s 
scheme 

Improvement 

Elliptic curve 
points 

4 8 50% 

Random 
numbers 

4 6 33.3% 

Signatures 2 4 50% 

The proposed scheme can reduce some modular multiplication 

operations in signature signing phase because Schnorr’s signature scheme is 

more efficient than Okamoto’s scheme.  Comparing with Yeh-Chang’s 

scheme, Table 4.2 shows that the number of multiplication, addition and 

negative operations can be reduced more than 36%. 

Table 4.2  The comparison of required operations 

 Our 
scheme 

Yeh-Chang’s 
scheme 

Improvement 

Multiplication 7 11 36% 
Addition 6 12 50% 
Negative 1 2 50% 

Hence, the proposed scheme can reduce 50% storage requirements for 

each signature and speed up more than 36% performance compared with 

Yeh-Chang’s scheme.  It is efficient and more suitable for applying in 

thin-client applications to preserve anonymity. 
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Chapter 5 Applications of Some Blind Signature 

Schemes 

Because of the networking technologies are developed rapidly, the 

electronic commerce is becoming more practical and important.  Based on 

the proposed schemes, we will present two applications of the secure blind 

signature schemes. 

The electronic cash is a popular electronic payment technique for the 

electronic commerce.  It makes the payer from anywhere to pay his/her 

electronic cash conveniently through electronic communication channel.  

First, the untraceable fail-stop electronic cash scheme is proposed based on 

RSA cryptosystem in Section 5.1.  The proposed electronic cash scheme 

has the fail-stop capability for the signer/bank against a forger with 

powerful computational capability.  It also can obtain the unforgeability 

for the signer and the untraceability property for the participants. 

Therefore, the electronic ticket system is another feasible application 

of electronic commerce.  A generic blind signature scheme with double 

hashed messages is presented in Section 5.2.  It can provide an easily 
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implemented solution for untraceable electronic ticket systems.  Thus, we 

design an untraceable electronic ticket protocol based on the generic blind 

signature scheme for information hiding. 

 

5.1 The Untraceable Fail-stop Electronic Cash 

Scheme 

Chaum [8] introduced the untraceable electronic payment scheme to 

obtain the untraceability property for the participants.  Chaum’s scheme is 

based on RSA public key cryptosystem and its security relies on the 

difficulty of integer factorization problem.  There are three kinds of 

participants: the bank, a group of payers, and a group of payees in Chaum’s 

scheme.  The payer can withdraw the electronic cash from the bank, and 

then pays it to the payee.  The payee can forward the electronic cash to the 

bank and deposit the electronic cash into his/her account.  The 

untraceability property means that the bank cannot link the electronic cash 

and the payer after the transactions are completed. 

Brand [4] presented the untraceable off-line electronic cash scheme 

based on the representation problem in 1993.  Okamoto [37] proposed the 
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universal electronic cash scheme to achieve the divisiability property.  

Fan and Lei [15] proposed a low computation electronic cash scheme based 

on the quadratic residue problem and it can reduce the amount modular 

computations for the payer by almost 99%.  However, these schemes are 

only computationally secure for the signer because a forger always can 

forge a signature with more powerful computational capability.  Thus, if a 

signature passes the signature verification successfully it is assumed to be 

generated by the owner of the private key. 

In this section, we propose a RSA-based [43] electronic cash scheme 

which has the fail-stop capability for the signer and can obtain the 

untraceability property for the participants.  We will also give sufficient 

proofs to show that our proposed scheme is secure and untraceable. 

 

5.1.1 Chaum’s Untraceable Electronic Cash Scheme 

Chaum’s untraceable electronic cash scheme [9] contains three kinds of 

participants: the bank, a group of payers, and a group of payees.  There are 

four phases: initializing, withdrawing, unblinding, and depositing in 

Chaum’s scheme.  The details of Chaum’s scheme are described as 

follows. 
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(1) Initializing: The bank chooses two large prime numbers p  and q  

randomly.  Then s/he calculates qpn ⋅=  and )1()1()( −⋅−= qpnφ .  Next, 

the signer selects two large random numbers e  and d  such that 

)(mod1 nde φ=⋅  and 1))(,( =neGCD φ .  Finally, the signer’s publishes 

),( en  as her/his public key and keeps her/his private key d  secretly.  

Any electronic cash issued by the bank is assumed worth w  dollars. 

(2) Withdrawing: The payer randomly selects a number nZr ∈  which 

is related prime to n  as blinding factor.  Next, s/he calculates 

nmHr e mod)(⋅=α  and sends α  to the bank, where m  is the message 

and ()H  is a one-way hash function.  After receiving it, the bank 

calculates nt d modα= , sends t  back to the payer, and deducts w  

dollars from the payer’s account. 

(3) Unblinding: After receiving t , s/he calculates ntrs mod1 ⋅= − .  

The 2-tuple ),( sm  is an electronic cash in Chaum’s scheme. 

(4) Depositing: When the payer want to pay the electronic cash, s/he 

can send ),( sm  to the payee.  The payee checks the correctness of the 

electronic cash by verifying whether the formula nmHse mod)(=  is true.  

Then s/he requests the bank to check if the electronic cash is fresh or not 

double-spent.  If the electronic cash is correct and fresh, the payee can 
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accept this electronic cash.  Then the bank stores ),( sm  in the database 

for further double-spending checking and deposits w  dollars to the 

payee’s account. 

Because of the blinding factor r  is randomly selected and kept 

secretly by the payer, it is infeasible for the bank to link the payer and 

electronic cash.  This is the untraceability property in the electronic cash 

scheme. 

 

5.1.2 The Proposed Electronic Cash Scheme 

Because of Chaum’s scheme is only computationally secure for the 

signer, a forger always can forge a signature with more powerful 

computational capability.  We propose a fail-stop electronic cash scheme 

to provide the fail-stop capability for the signer and the untraceability 

property for the participants.  Three kinds of participants and four phases 

of the proposed scheme are the same as Chaum’s scheme.  In addition, a 

trusted dealer is needed to generate public key-pair in the initializing phase 

and “Proof of forgery” algorithm is provided for the signer to prove the 

signature is forgery.  If a forgery occurs, the signer can show that the 

underlying computational assumption has been broken and stop the system.  
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The detailed scheme is described bellow. 

(1) Initializing: The trusted dealer randomly selects two large primes 

p  and q  such that 1'2 += pp  and 1'2 += qq , where 'p  and 'q  are also 

primes.  Then s/he calculates pqn =  and )1)(1()( −−= qpnφ .  The 

trusted dealer randomly chooses De  and Dd  such that )(mod1 nde DD φ≡ .  

Then s/he selects a random number *
nZ∈α  and computes nDd modαβ = .  

The trusted dealer publishes her/his public key ),( nα , keeps his private key 

Dd  secretly and sends ),( βDe  to the bank via secure manner.  After 

receiving it, the bank randomly selects her/his private key ( 1k , 2k , 3k , 4k ), 

where *
ni Zk ∈  and computes nkk mod34

1 βαβ = , nkk mod13
11 βαα =  and 

nkk mod24
12 βαα = .  Finally, the bank publishes her/his public key 

),,( 211 ααβ  and a one-way hash function ()H . 

(2) Withdrawing: The payer randomly selects a integer r  as the 

blinding factor and calculates nmrHm mod)(~ = , where m  is the message.  

Then the payer sends the blinded message m~  and nrHx mod)(=  to the 

bank.  After receiving it, the bank computes  )(~~
211 kxkms +=  and 

)(~~
432 kxkms += , sends )~,~( 21 ss  to the payer, and deducts w  dollars from 

the payer’s account. 
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(3) Unblinding: The payer computes 1
1

1
~srs −=  and 2

1
2

~srs −= .  The 

3-tuple ),,( 21 ssm  is the electronic cash in our fail-stop electronic cash 

scheme. 

(4) Depositing: When the payee receives an electronic cash ),,( 21 ssm  

from the payer, s/he can check the correctness of the electronic cash by 

verifying whether the formula nmHxss mod)( )(
211

12 ααβα =  is true.  Then 

s/he requests the bank to check whether the electronic cash is fresh or not.  

The payee accepts this electronic cash when the electronic cash is correct 

and fresh.  The bank will store this electronic cash ),,( 21 ssm  in the 

database and deposits w  dollars to the payee’s account. 

Proof of forgery algorithm.  When the forged electronic cash 

)',',( 21 ssm  satisfies the verification formula, the bank can prove that a 

forgery has occurred by executing the following steps. 

a. To construct the right signature ),( 21 ss  on the message m . 

b. To compute )'( 111 ssZ −=  and )'( 222 ssZ −= . 

c. To compute )()( 13142 ncZkZkZeD φγ =−−=  

d. To compute ch2=γ , where Zh∈  and c  is odd.  To select a 

random number *
nZa∈  and to calculate nac c mod0 = , where 10 ≠c .  
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Next, to compute ncc ii mod2
1−=  until 1=ic  (if nci mod11 −=− , to 

re-select a ).  Finally, to calculate ),1( 1 ncGCD i +−  to obtain the 

non-trivial factors of n , where i  is the minimal indexing such that 

1=ic .  (This is the Miller-Bach’s method [33, 2] to factor the integer). 

(5) The non-trivial factors of n  is the proof of forgery. 

The bank can prove that a forgery has occurred by revealing the 

non-trivial factors of n  and then the bank can stop electronic cash scheme. 

 

5.1.3 Security Analysis 

The proposed fail-stop electronic cash scheme is secure and it satisfies 

the following properties: 

(1) Correctness: Any valid electronic cash which produced by the bank 

can be verified through the verification formula. 

(2) Unforgeability: The polynomial-bounded bank cannot forge an 

electronic cash and the forger with more powerful computational 

capability is nearly infeasible to forge an electronic cash. 

(3) Proof of forgery: The bank can use a polynomial-time algorithm to 

prove that a forgery has occurred. 
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(4) Untraceability: Given an electronic cash that produced by the 

proposed scheme, the bank is computationally infeasible to trace the 

instance of the withdrawing phase that produces that electronic cash. 

The proposed scheme is based on the fail-stop blind signature and its 

correctness, proof of forgery, and unforgeability properties are similar to 

the fail-stop blind signature scheme.  We show the untraceability property 

is also satisfied in the proposed scheme as follows. 

Theorem 4.1: The bank is computationally infeasible to trace the 

instance of the withdrawing phase that produces that electronic cash 

),,( 21 ssm . 

Proof: The bank obtains )(~ mrHm =  and nrHx mod)(=  in the 

withdrawing phase.  In the unblinding phase, the bank can obtain 

)()(~
211

1
1 mHkxksrs +== −  and )()(~

432
1

2 mHkxksrs +== − .  Because the 

blinding factor r  is randomly selected by the payer, the bank is 

computationally infeasible to trace the instance of the withdrawing phase 

that produces that electronic cash.  The proposed electronic cash scheme 

satisfies the untraceability property that can preserve the anonymity of the 

payers. 

Hence, the traditional electronic cash schemes are only 
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computationally secure for the bank because a forger always can forge an 

electronic cash with more powerful computational capability.  In this 

section, we propose a RSA-based electronic cash scheme which has the 

fail-stop capability for the bank to overcome that weakness and it also can 

obtain the untraceability property for the participants. 

 

5.2 An Untraceable Electronic Ticket Scheme for 

Information Hiding 

In carrying out electronic commerce over the internet, it is necessary to 

consider the case where anonymity of participator is concerned.  

Untraceable electronic ticket (e-ticket) makes it possible for customers to 

transmit their e-tickets through communication networks during 

transactions under privacy protection.  Because the security and privacy of 

e-ticket can be guaranteed and the scenario of e-ticket transactions is 

similar to that of paper-ticket transactions, this kind of advanced digital 

ticket will be popular in electronic commerce. 

In an untraceable electronic ticket protocol, a payer first purchases an 

e-ticket from the bank and then pays it to a web server for some designated 
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services such as movie watching, page viewing, and so on.  The key point 

is that it is computationally infeasible for the bank to derive the link 

between the purchasing stage and the paying stage, i.e., given an e-ticket, 

the bank cannot derive the instance of the purchasing protocol which 

producing that e-ticket.  It is usually referred to as the untraceability (or 

unlinkability) property [1, 5, 8, 16, 18, 41, 42] of the e-ticket.  This 

section presents an efficient electronic ticket protocol for information 

hiding.  Furthermore, the method can be applied to the electronic ticket 

systems which require freshness (or double-used) checking of e-ticket 

without affecting their infrastructures. 

 

5.2.1 The Proposed Electronic Ticket Scheme 

Based on the enhanced generic blind signature scheme with double 

hashed message described in section 4.2, the proposed electronic ticket 

scheme is introduced as follows.  The identity of the web server is 

embedded into e-ticket to reduce the overhead of double-used checking.  

Besides, the identity of a payer is also embedded into her/his e-ticket to 

make this protocol more flexible.  The proposed protocol consists of three 

parties (a bank, payers, and a group of web servers) and four stages 
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(initializing, purchasing, paying, and depositing).  The bank and the 

payers of the electronic ticket protocol are regarded as the signer and the 

users of the blind signature scheme respectively.  The detailed protocol is 

described as follows.  

(1) Initializing: Initially, every payer performs an account 

establishment protocol with the bank to open an account in the bank. 

(2) Purchasing: To purchase an e-ticket which costs w  dollars for a 

web server with identity WID  from the bank, a payer with identity PID  

forms a message MyIDm P ∈= )||( , where Ry∈  is chosen at random by 

the payer and || is the string concatenation operator.  The payer randomly 

chooses a blinding factor Rr ∈ , and then computes and submits 

)),||)((( rIDmHHB W  to the bank.  After verifying the identity of the payer 

through a secure identification protocol [7, 9], the bank computes 

))),||)(((( rIDmHHBS W  and sends it back to the payer.  Then, the bank 

deducts w  dollars from the payer's account in the bank.  After receives 

the signing result ))),||)(((( rIDmHHBS W , the payer performs the 

unblinding operation ))),),||)((((( rrIDmHHBSU W  to obtain the signature 

))||)((( WIDmHHS .  The signature-message pair 

)||)()),||)(((( WW IDmHIDmHHSt =  is an electronic ticket in the protocol.  
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(3) Paying: When the payer pays a web server, namely WID , the 

e-ticket, s/he sends t  to the web server.  After verifying TruetV =)( , the 

web server has to check whether the e-ticket is double-used or not.  If t  

is not found in the web server's database which records all used e-ticket, 

then the web server will accept this payment.  Finally, the web server 

stores the e-ticket in its database for future double-used checking. 

(4) Depositing: When the web server's database is full or some event 

specified by the web server occurs, the server deposits all of the e-tickets in 

database into its account in the bank and clear its database.  Since the 

identity of web server is embedded into e-ticket, each web server can check 

whether the e-ticket is double-used or not by itself.  In other words, the 

traffic between the web server and the bank is largely reduced. 

 

5.2.2 Security Analysis 

The proposed electronic ticket scheme satisfies the following 

properties. 

(1) Ownership: In some special situations such as to claim the 

ownership of a lost or stolen e-ticket, the e-ticket owner has to convince the 

bank or others of the ownership of her/his e-ticket.  When a payer decides 
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to prove that s/he is the owner of her/his e-ticket 

)||)()),||)(((( WW IDmHIDmHHS , then s/he just needs to show m , where 

)||( yIDm P= .  Due to the uninvertability property of the one-way hash 

function ()H , given )(mH , no one except the payer knows the value of m .  

In fact, PID  can be replaced by any other meaningful messages for other 

specific purposes. 

(2) Untraceability: In the 2-tuple )||)()),||)(((( WW IDmHIDmHHSt =  

produced by the above protocol, ))||)((( WIDmHHS  is the signer's signature 

on WIDmH ||)( .  According to S  and V  defined in section 4.2.1, we 

have that TruetV =)( , and it is computationally infeasible for any one to 

compute the signature ))||)((( WIDmHHS  on WIDmH ||)(  without the 

signing function S .  Besides, due to the blinding factor r , the bank 

cannot link the e-ticket to the payer.  In other words, given the e-ticket 

)||)()),||)(((( WW IDmHIDmHHS , it is computationally infeasible for the bank 

to derive the instance of the purchasing stage which produces that e-ticket.  

Thus, the proposed scheme can achieve the untraceability/unlinkability 

property.  
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Chapter 6  Conclusions 

We have presented cryptanalysis on a new Rabin-like blind signature 

scheme to show that Chen et al.’s scheme can be compromised when 

choosing some particular blinding factors.  Then, the traceability attack 

claims on RSA-Based partially blind signature scheme, ElGamal blind 

signature scheme and proxy blind signature schemes are also analyzed and 

corrected in this dissertation. 

A fail-stop blind signature scheme is proposed to protect the signer 

against a forger with more powerful computational capability and obtain the 

anonymity property for the participants.  It can be applied in more critical 

system like electronic payment systems which need higher security against 

more powerful forger.  We also presented an improved blind signature 

scheme based on the elliptic curve cryptosystem.  Comparing with 

Yeh-Chang’s scheme, it can reduce 50% storage requirements for each 

signature and speed up performance more than 36%. 

Based on the proposed fail-stop blind signature, we have constructed a 

untraceable fail-stop electronic cash scheme.  The proposed electronic 
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cash scheme has the capability for the bank to stop the electronic cash 

scheme when a signature is forged.  It can obtain the unforgeability for the 

bank and the untraceability property for the participants.  We have 

presented a generic blind signature scheme and design an untraceable 

electronic ticket protocol for information hiding.  The untraceable 

electronic ticket protocol can check whether the e-ticket is double-used. 

In future research, we will consider to design some signature schemes 

with fail-stop capability for the signer against the forger with more 

powerful computational capability.  Moreover, the untraceable signature 

scheme is also the important issue to be discussed. 
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