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Abstract

Recently, Internet applications _are developed rapidly, such that
electronic transaction services like/purchasing and bidding on Internet are
more popular. The ID-Password mechanism is mainly used for
authentication, but it cannot achieve the non-repudiation property.
Therefore, the digital signature scheme based on PKI can achieve the
non-repudiation property in electronic transactions. It can be the

well-constructed basis for electronic commerce services and applications.

However, in electronic cash or electronic ticket applications, the

anonymity property must be satisfied for the participants to preserve their
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privacy. Thus, the digital blind signature scheme is proposed for this

purpose. The untraceability property is an important property in digital

blind signature scheme, it makes the signer computationally cannot identify

the signature which is owned by someone. In the other words, the signer

is computationally infeasible to trace the signature.

In this dissertation, a fail-stop blind signature scheme is proposed to

solve the problem that a forger with more powerful computational

capability can always forge a signature successfully. A secure fail-stop

blind signature scheme is alsoidefined. ~Moreover, our proposed signature

scheme is proved secure.

Some improved digital ‘blind signature schemes, in security and

efficiency, based on integer factorization, quadratic residue, and discrete

logarithm cryptosystems are also be presented in this dissertation.

Furthermore, the unforgeability and untraceability properties of proxy blind

signature schemes are discussed. Finally, an electronic cash system based

on fail-stop blind signature scheme and an electronic ticket protocol with

information hiding are proposed. They can be established for more secure

electronic transaction systems in theoretical basis and applications.
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Chapter 1  Introduction

1.1 Motivations

Due to Internet applications are developed rapidly, such that electronic
transaction services like that purchasing and bidding on Internet are more
popular. These applications are mainly using the ID-Password mechanism
for authentication, but this mechanism cannot achieve the non-repudiation
property. For protect the users.against.malicious parties, some advanced
techniques to enhance the security of the electronic transaction services are
required. Therefore, the digital Signatutre scheme based on Public Key
Infrastructure (PKI) can achieve the non-repudiation property. It is also

the key component for electronic commerce services and applications.

Although the digital signature scheme can achieve the non-repudiation
property, it cannot provide the privacy for the users. In some applications
like electronic cash or electronic ticket systems, the anonymity property is
very important and should be satisfied. Thus, the digital blind signature
scheme is proposed to ensure the unforgeability for the signer and achieve

the untraceability for the users. The untraceability property makes the



signer computationally cannot identify the signature which is owned by
someone. Hence, the signer is computationally infeasible to trace the

signature.

However, the traditional digital blind signature schemes cannot protect
the signer against a forger with more powerful computational capability to
forge a signature. This means that there is no mechanism to protect the
signer against a forged signature which has succeeded in signature
verification. Namely, if a signed message succeeds in signature
verification it is assumed to be generated by the owner of the private key.
Thus, a fail-stop blind signature scheme is proposed to solve this problem

in this dissertation.

Recently, a lot of misunderstandings on digital blind signature
schemes and proxy blind signature schemes are submitted. They claim
that some blind signature schemes cannot satisfy the untraceability property.
However, these claims are incorrect and they will be analyzed and

corrected.

1.2 Research Objectives and Contributions



In this dissertation, a secure fail-stop blind signature scheme based on

the integer factorization is defined, proposed and proved. It can be

applied in more critical system like electronic payment systems which need

higher security against more powerful forger and can preserve the users’

privacy. Furthermore, some misunderstanding claims on digital blind

signature schemes are discussed and corrected in detail. The

untraceability property of the proxy blind signature schemes is also

analyzed in this dissertation. Finally, some more secure electronic

transaction systems are designed by using our proposed schemes.



Chapter 2  Digital Signature Schemes

The ordinary handwritten signature is used to specify the responsibility
of the person and can achieve the non-repudiation property. A digital
signature scheme is a method to sign the message in electronic form and can
provide analogous to the ordinary handwritten signature. Any digital
information including digital signatures can be copied easily, so digital
signatures cannot be the digitalized version of handwritten signatures. To
overcome this problem, digital|signature.schemes are designed by using
mathematical functions and-interactive protocols. The following sections

describe the various digital signature schemes in detail.

2.1 Rivest-Shamir-Adleman Signature Scheme

The concept of digital signature scheme was introduced by Diffie and
Hellman [12] in 1976. Generally, a digital signature scheme has the
signing algorithm and the verification algorithm. The fundamental idea is
that everyone has pair of keys: a signing/private key and a

verification/public key. The signing key is to sign the message by using



the signing algorithm and the verification key is to verify the correctness of
the signature by using the public verification algorithm. Especially, the

verification key can be published and the signing key must be kept secretly.

In 1978, Rivest, Shamir, and Adleman [43] proposed the first digital
signature scheme based on the integer factorization problem. The signer
and the requester are two kinds of participants in RSA signature scheme.
The four phases in RSA signature scheme are: (1) Initialization, (2)
Requesting, (3) Signing, (4) Verification. Initially, the signer publishes
the necessary information for the participants. In the requesting phase,
the requester sends the message to the signer: The signer signs on that
message in the signing phases  Finally, anyone can verify the correctness
of the signature using the message-signature pair in the verification phase.
Figure 2.1 shows the block diagram of RSA signature scheme for signing

and verification. The detailed signature scheme is described as follows.

d e

' '

Signing | S=m° (modn) | Verification | M =5 (modn)

m = Algorithm | Algorithm
by !
V2 n

Figure 2.1 Block diagram of RSA signature scheme



(1) Initialization: The signer randomly selects two large primes p
and (, and calculates n=p-q and @¢(n)=(p-1)-(q—1). Next, the
signer selects a large random number I<d<¢g(n) such that
e-d=1mod¢g(n). Thus, d is the private key of the signer and e is the

public key.

(2) Requesting: The requester prepares the message m and sends it to

the signer.

(3) Signing: The signer calculates the signature s=m" modn on the

message M and sends S tosthe requester.

(4) Verification: Anyone can verify the correctness of the signature s
received from the requester by ‘checking whether s* =mmodn because e
is public.

The protocol diagram of RSA signature scheme is illustrated in Figure

2.2.



Requester Signer

p, g: prime
n=pg,¢(n)=(p-NHa-1)

e > GCD(e,¢(n)) =1: public key
ne d >ed =1(mod ¢(n)): private key
<—

m : message m
—
S s=m" (mod n)

s :signature of message m

\ Verifier /

m : message
s :signature of message m
m=s° (mod n)

Figure 2.2 Protocol diagram of RSA signature scheme

Anyone can forge a signature by using multiplication attack in RSA
signature scheme. To prevent this- attack, hash function can be used

within the signature scheme to reduce the problem.

2.2 ElGamal Signature Scheme

ElGamal [13] presented another digital signature scheme in 1985.
The security of ElGamal scheme is based on the difficulty of computing
discrete logarithm.  There are many valid signatures for any given
message in ElGamal scheme, and any of these valid signatures are authentic

by the wverification algorithm. Thus, ElGamal 1is called the



non-deterministic signature scheme. The major shortcoming in ElGamal
scheme is the double length of any message. The block diagram of ElGamal
signature scheme for signing and verification is shown by Figure 2.3.

X ok y

'y '

Signing |7=£ (modp) _ | Verification | V7'=¢" (mod p)
Algorithm | s= (m-xr)i! (mod p-1), Algorithm g

Pt Pt

p g p g

Figure 2.3 Block diagram of EIGamal signature scheme

The four phases of ElGamal.s¢heme’are described in the following.

(1) Initialization: The" signer randomly c¢hooses a prime number p
such that discrete logarithm’problem in™ Z,- is intractable. Let g eZp*
be a primitive root and X be the private key of the signer. The public

key of the signer is defined by y=g¢g" modp.
(2) Requesting: The requester sends the message m to the signer.

(3) Signing: The signer selects a random number k. Then s/he can
compute r=g“modp and s=k'(m—xrymod(p-1). The (r,s) is the

signature on the message m.

(4) Verification: Anyone can verify the correctness of the signature

(r,s) by checking whether y'r*=g" modp is true.
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Figure 2.4 illustrates the protocol diagram of ElGamal signature

scheme.
Requester Signer
p: prime
geZ, :generator of p
X e Z, : private key
y =g" (mod p): public key
m ;
€ Z, : message m
k e Z, : random number
r=g" (mod p)

: (I’,S) s=k'(m-rx)(mod p-1)
(r,s):signature of messagem ~<———

\ Verifier /

m : message relatively primeto q
(r,s):signature of message m

g" =y'r* (mod p)

Figure 2.4 Protocol diagram-of EIGamal signature scheme

2.3 Rabin Signature Scheme

In 1979, Rabin [40] proposed a signature scheme based on the
quadratic residue problem. The security of Rabin scheme is based on the
difficulty of computing square root modulo a composite number. Rabin
scheme is computationally secure against chosen-plaintext attack. Figure
2.5 shows the block diagram of Rabin signature scheme for signing and

verification and the details are described as follows.



Signing s=m"? (mod 17)‘ Verification |12 =5 (mod 17)‘

m =" Algorithm | Algorithm
Pt f
D q n

Figure 2.5 Block diagram of Rabin scheme

(1) Initialization: The signer can selects two random prime numbers

p and q, where p=3mod4 and gq=3mod4. Then s/he calculates
n=p-q and ¢(n)=(p—-1)-(q—1). Thus, p and g are the private key
and n is the public key.

(2) Requesting: The requester'prepares the message m and sends it to
the signer.

(3) Signing: The signdturc “is the square root of the message m.
Thus, the signer can calculate the signature s=m'? modn andsends s to
the requester.

(4) Verification: Anyone can verify the signature S by checking
whether s> =mmodn is true.

The protocol diagram of Rabin signature scheme is illustrated detailed

in Figure 2.6.
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Requester Signer
p=3mod4,q=3mod4: prime

n "=prasMn=(pP-Q-1)

m : message m

\ Verifier /

m : message
s : signature of message m
m = s* (mod n)

Figure 2.6 Protocol diagram of Rabin scheme

2.4 Chaum Blind Signature Scheme

Chaum [8] presented the first blind signature scheme based on RSA
digital signature scheme in 1982:7 The"blind signature scheme allows a
requester to obtain a message signed by the signer without revealing
message. Therefore, the signer cannot link/trace any message-signature
pair practically later.  The blind signature scheme can be used in
electronic payment systems or electronic voting systems to preserve the
participants’ anonymity. The detailed scheme is described in the

following.

(1) Initialization: The signer chooses two large primes p and (

11



randomly, and computes n=pg and ¢N)=(p-1)(q—-1). Then, the
signer selects two random numbers e and d such that ed =1mod¢(n),
where l<e<¢g(n) and l1<d<g¢g(n). Finally, the signer publishes (n,e)

as his public key and a one-way hash function H like SHA-1.

(2) Blinding and requesting: The requester selects a random number
r as the blinding factor, where reZn*. Then, the requester sends the
blinded message M=r°*H(m)modn to the signer.

(3) Signing: After the signer receives the blind message M, s/he

d

calculates S=m" and sends.it to thejrequester.

(4) Unblinding: The requester- cam compute the signature

s=r'Smodn from the blinded signature 'S .

(5) Verification: Anyone can easily verify the message-signature pair

(m,s) by checking that s®*=H(m)modn is true.

The signer cannot recognize which messages was actually signed and
know which blind signatures was actually generated due to the blinding
factor r. Therefore, Chaum blind signature scheme can achieve the

unlinkability/untraceability property.

Figure 2.7 illustrates the protocol diagram of Chaum blind signature

12



scheme.

m : message
r : random number

M =r®m (mod n)

\ Verifier /

Requester Signer
p, q: prime

n=pg,¢(n)=(p-1)aq-1)
e > GCD(e,g(n)) =1: private key

ne d >ed =1 (mod ¢(n)): public key
<—
_m

’g‘ §=m" (mod n)
m? (mod n) )

§ =m“ : signature of messagem

m : message
s : signature of message m

m=s" (mod n)

Figure 2.7 Protocoldiagram_of Chaum signature scheme

2.5 Susilo-Safavi-Pieprzyk Fail-stop Sighature

Scheme

The traditional digital signature schemes cannot protect the signer

against a forger with more powerful computational capability to forge a

signature. This means that there is no mechanism to protect the signer

against a forged signature which has succeeded in signature verification.

Namely, if a signed message succeeds in signature verification it is assumed

13



to be generated by the owner of the private key.

To overcome this kind of attack, Waidner and Pfitzmann [50, 38]

proposed the first fail-stop signature scheme. Fail-stop signature can

protect a signer against a forger even with more powerful computational

capability because the possibility of finding the signer’s right private key in

the fail-stop signature is negligible. The signer can use “proof of forgery”

algorithm to prove the signature is forgery. It achieves “proof of forgery”

by showing that the underlying computational assumption has been broken.

The signer can stop the system if a forgery oeccurs — hence named fail-stop

signature scheme. The signer is unconditionally secure and the requester

is cryptographically secure in‘the fail-stop signature scheme.

In 1992, van Heyst and Pedersen constructed a fail-stop signature

scheme based on the discrete logarithm problem [46] and their scheme is a

Lamport-like one-time signature [26]. Susilo, Safavi-Naini and Pieprzyk

[48] presented two RSA-based fail-stop signature schemes with and without

a trusted dealer in 1999. We only consider the scheme with trusted dealer

here for simplicity. Actually, the signer and the receiver can instead of

trusted dealer to perform the initialization phase by using Boneh-Franklin’s

algorithm [3]. There are three kinds of participants, which are the trusted

14



dealer, the sender and the receiver in the Susilo et al.’s scheme with trusted
dealer. A forged signature can be proved by using Miller’s [33] and
Bach’s [2] methods to reveal non-trivial factors for the signer. The

detailed scheme is described as follows.

(1) Initialization: The two large prime numbers p and Q are
chosen by the trusted dealer D, such that p=2p+1 and g=2q+1, where
p' and Q' are also prime. Then, D computes n=pq and
#p(n)=(p-1(q-1). Next, D chooses d, as her/his private key and
computes €, = dD_1 mod ¢(n) ,where GCD(dy,,¢(n))=1. Then, D selects a
random number ann* and computes S =a® modn . Finally, D
publishes her/his public key+ (a,n) and.sends (ey,f) to the signer S

securely.

(2) Key generation: The signer S selects four random numbers,
which are k,k,,k; and k, as the private key, where k, €Z,, 1<i<4.
Next, S computes B =a"p modn o, = ak3,31k‘ mod n and

a, = ak“ﬂlkz modn. Finally, s/he publishes her/his public key (f,,2,,a,).
(3) Signature generation: The signer S computes Yy, =k X+k, and
y, =k,x+k,, where xeZ, is a message. Then, s/he publishes the

signature (Y,,Y,) on message X.

15



(4) Signature verification: The receiver R can verify the signature
by checking the formula a”pB,”" =a,"a, modn. If it is true, this signature

1s a valid one.

(5) Proof of forgery: If a forged signature (y,',y,') on message X
succeeds in signature verification phase, S can prove that a forgery has

occurred by executing the following steps.
1. To construct the right signature (Y,,Y,) on message X.
2. To compute Z,=(y,'-y,) and Z,=(y,-VY,").
3. To compute y =e,(Z; —K,Z,)=K,Z, =Cg(n)

4. To find non-trivial factors of ‘0 by using Miller’s [33] and Bach’s

[2] methods.

5. The non-trivial factors of n is the proof of forgery.

2.6 Mambo-Usuda-Okamoto Proxy Signature Scheme

The proxy signature scheme based on the discrete logarithm problem
was presented by Mambo et al. [30] in 1996. It can allow the designated

proxy signer to sign messages on behalf of the original signer. For

16



example, when a manager is going on a vacation, s/he can delegate her/his

secretary to sign the messages on behalf of her/him. There are three types

of delegation: full delegation, delegation by warrant and partial delegation

in the proxy signature scheme.

In full delegation, the original signer gives her/his private key to the

designated proxy signer and then the original signer and the proxy signer

can both generate the same signatures. However, the signatures generated

by the original signer and the proxy signer are not distinguishable. Thus,

the dispute between the original signer and the proxy signer on the

signature cannot be settled.

The warrant is used to show that the proxy signer is legal and to

describe the needed information between the original signer and the proxy

signer in delegation by warrant. It can be implemented by using ordinary

signature scheme. However, it needs to execute the proxy signature

verification process and then the ordinary signature verification process.

In partial delegation, the original signer uses her/his private key to

generate the proxy secret key and sends it to the proxy signer securely.

The signatures can be distinguished from the original signer and the proxy

signer.  Thus, partial delegation scheme is more practical than full

17



delegation scheme and more efficient than delegation by warrant scheme.
We describe Mambo et al.’s partial delegation proxy signature scheme in

detail as follows.

(1) Initialization: The original signer randomly chooses a large prime
number p and a generator ¢ eZp*. Let x be the private key of the

original signer and Yy be the corresponding public key such that

y=0"modp.

(2) Proxy delegation: The original signer randomly selects a number

k,, and calculates r, =g modp and-.s, =x+k,r, mod(p—1). Next, the

0>
original signer sends (r,,S,) to theé proxy signer in a secure manner.
After the proxy signer receives (I, S,), s/he can verify it by checking the

correctness of the equation g* =yr," modp. If (r,,s,) satisfies that

equation, s/he can accept it as a valid proxy. Finally, the proxy signer

computes her/his proxy secret key s, =5, +X, modq.

(3) Requesting: The requester sends the prepared message m to the

signer.

(4) Signing: The proxy signer chooses k randomly, and computes
r=g“modp and s=k'(m-xr)mod(p-1), where m is the message to be

signed.
18



(5) Verification: Anyone can verify the correctness of the signature
(r,s) by checking that the equation y'r®*=g"™ modp holds.
Figure 2.8 illustrates the protocol diagram of Mambo et al.’s proxy

signature scheme.

Requester Proxy Signer Original Signer

p: prime

geZ, :generator of p
XeZ,: private key

y=g" (mod p): public key
k, € Z, : random number
r,=9" (mod p)

S, = X+K,r, (mod p—1)

g* =yr," (mod p)
Spr =S, T X, (mod p—1)
meZ, : message m
> kez, :random number
r=g* (mod p)
s=k™'(m-xr)(mod p-1)

(r,s)

‘_

(r,s):signature .~
\ Verifier /

m : message relatively primeto g
(r,s):signature of message m

g" =y'r* (mod p)

Figure 2.8 Protocol diagram of Partial delegation proxy
signature scheme
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Chapter 3 Analysis of Some Blind Signature

Schemes

In Section 3.1, we introduce the cryptanalysis on a new Rabin-like
blind signature scheme based on the quadratic residue problem. A
traceability attack on RSA-Based partially signature with low computation
is analyzed and corrected in detail In Section 3.2. Lee et al. claimed that
ElGamal blind signature scheme is_traceable but we show that their claims
are incorrect in Section 3.3. Finally, we analyze Sun et al.’s traceability

attack on proxy blind signature scheme in Section 3.4.

3.1 Cryptanalysis on a New Rabin-like Blind

Sighature Scheme

The Rabin digital signature scheme [40] is based on the square-root
problem. Its security is relying on the difficulty of finding the square
roots of a quadratic residue under a modulus n and it has been proved to be
as hard as factoring n [40]. Compared to the RSA cryptosystem [43], the

signature verification only requires one modular multiplication.
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The blind signature scheme was proposed by Chaum [7] and it is based
on the RSA cryptosystem [43]. In addition to the unforgeability of the
signatures, it must satisfy two requirements: (1) the contents of messages
are unknown to the signer when signing and (2) the signer cannot trace the
signed messages after the senders have revealed the signatures publicly.
Because of the unlinkability property, blind signature can protect the
senders’ privacy in digital transactions and it can be applied in electronic

voting systems and electronic cash systems.

Recently, Chen et al. [10] proposed a new Rabin-like blind signature
scheme, which is based on ‘the square-root: problem. Although their
scheme is simple and efficient, it. can be compromised when choosing some
particular blinding factors. In this section, we propose an attack on Chen

et al.’s scheme and demonstrate that their scheme is not secure.

Let Z ={keZ, |GCD(k,n)=1} be the multiplicative group under

modulus n, where n is a positive integer. An integer a is called a

*

quadratic residue (QR) in Z_ , if there exists an integer Xe€ Zn* such that

n »

x*=_a. Ifnosuch X exists, a is called a quadratic non-residue (QNR)

n

in Zn*. The set of all quadratic residues under modulus n 1is denoted by
Q, and the set of all quadratic non-residues under modulus n is denoted
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by Q,. Thatis, Q ={aecZz, |3xeZz, ,xX’=,a} and Q =2, -Q, [32,
44, 46].

Let p be an odd prime and let o be a generator in Zp*. An
integer anp* is a quadratic residue modulo p if and only if a= a

where i is aneven integer. It follows that |Q, |:|Q_p|:(p -1)/2, 1.e. half

of the elements in Zp* are QR’s and the other half are QNR’s.

Let p be an odd prime and a be an integer. The Legendre symbol

(Ej 1s defined below.

p
0 , if pla
a .
(—J: 1, ifaeQ;
PJ121 ) ifaeQ,

Let n be a product of two distinct odd primes p and (q, i.e.,
Nn=p-q. An integer ann* is a quadratic residue under modulo n if

* *

and only if ae’, and ael’, . Therefore,

Q. 1=1Q, [1Q, [=(p-1)a-1)/4 and |Q,|=3(p-1)g-1)/4.

Let n>3 be an odd integer with prime factorization
n=p,"p,”---p* and let a be an integer. The Jacobi symbol [32] is

defined below.
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(2)- (1] (1] . £1J "
n P, P, P
Let n>=3 be an odd integer and J, :{ ann* |(Ej:1}
n
(jn =J, —Q, is defined to be the set of pseudo-squares under modulus n.

Thus the Jacobi symbol is a generalization of the Legendre symbol [32]

where n is not necessarily to be prime.

Let n=p-q be a Blum integer, i.e., p and q are distinct primes
and p=,q=,3. If xeQ,, then X" P %% mod n is a square root of

x. If xeld,, then

g { x , if xeQ,

n-x , if xeQ,

where d=(n-p-q+5)/8.

Let n=p-q be a Williams integer [32], i.e., p and ( are distinct
primes and p=;3 and q=; 7. Thus, 2 is a quadratic non-residue under

modulus n with Jacobi symbol (ng—l. Hence, multiplication of any
n

integer X by 2 or 2-1 mod n reverses the Jacobi symbol of X.

3.1.1 Chen et al.’s Blind Signature Scheme

Chen, Qiu and Zheng presented a new blind signature scheme [10]
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based on Rabin’s signature scheme. There are two kinds of participants,
senders and the signer in the blind signature scheme. The sender requests
signatures from the signer, and the signer issues signatures on the blinded
messages to the sender. The protocol consists of three phases: (1)
requesting, (2) signing and (3) extraction. A sender submits a blinded
message to the signer in the requesting phase to obtain a signature. In the
signing phase, the signer computes the signature on the blinded message
and returns the result to the sender. Finally, the sender extracts the

signature from the result that he received in.the extraction phase.

Let n=p-q be a Williams integer and (p, () be kept secret by the
signer. Let H be a one-way hash function. The details of the scheme

are described as follows.

(1) Requesting: To request the signature of the message m, the sender
computes H(m). Then s/he randomly chooses the blinding factor re Zn*.
The sender chooses appropriate bits a and b.

o[t
a=
I

n

such that 2™H(m)mod neJ,, and sends the blinded message
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~

M=2"r*H(m)mod n to the signer.

(2) Signing: After the signer receives M , s/he computes
§=27°r*H(m)) mod n where d=(n-p-q+5)/8 is the private key of

the signer, and sends S back to the sender.

(3) Extraction: The sender computes S=(Sr~”)mod n and forms
(s,a,b) such that s’(=1)’2* = H(m). One can verify the correctness of
the signature (S,a,b) on the message m by checking the formula

s*(=1)°2% =, H(m).

3.1.2 Cryptanalysis on Chen et-al.’s'Scheme

In this section, we demonstrate ‘that Chen-Qiu-Zheng scheme [10] is

not secure against the chosen-ciphertext attack.

Theorem 3.1: Given two integers x and y in Z ', where

2

n=p-q is a Blum integer. If x*=,y> and X#*ymod n, then

GCD(x+ymodn, n)=p or (.

Proof: By the Chinese remainder theorem, an integer W in Z ' can
be represented by <w,,w, >, where W, =(Wwmod p) and w, =(WmodQq).
For each k =<k, k,> and w=<w,w,> in Z,,
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<k+wmodn>=<k, +w, mod p, k,+w, modq>

<k-wmod n>=<k,-w, mod p, k,-w, modq>

<k™ mod n >=<k, mod p, k, mod q >

< —k mod n >=< -k, mod p, —k, mod q >

*

Besides, for every <Kk,k,> and <w,w,> in Z

n 3

<k,,k, >=<w,,w, > if and only if k, =w, mod p and k, =w, modq.

Let X=<X,X,> in Z_

n »°

where X, =(Xmod p) and X, =(Xmodq),
and let t=(x>modn) . The' ‘intéger t has four square roots
(<X, Xy >, <X, =Xy >, < =X, %, >, <X, = X5 >} 5, where Yy=<-X,X,> or
y=<X;,—X,> since X=#(tymodn) .. If y=<-X,X,> , then

(X+ymodn)=<0,2Xx, modq>. Hence, (X+ymodn) can be divided by

p and GCD(x+ymodn,n)y=p . If y=<X,—X,> , then
(X+ymodn)=<2x, mod p,0> = <2x; mod p, 0>. Thus, (X+ Yy modn)
can be divided by g and GCD(Xx+ymodn,n)=(. O

In Chen-Qiu-Zheng scheme, someone tries to compromise this
scheme, s/he can send (27°r*h(m)mod n), instead of (27*r*h(m)mod n) to
the signer without being detected by the signer since it is blinded, and then

obtains §=((27°r*h(m))* mod n). The integer § is a square root of
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(27*r*h(m)ymod n) with probability 1/2, and (5r~' mod n) is a square root
of (27*h(m)mod n) with probability 1/2, too. Then, the sender randomly

selects another f, and sends (27°f*h(m)mod n) to the signer, so that he

1

can receive $=((272F*h(m))° mod n). If the integer (§f ' mod n) is a

1

square root of (27*h(m)mod n) and different from (*5r~ mod n) where

, then GCD(Sr™' +$f " modn, n) is one of the

e

11
the probability is —-—
b Y 22
prime factors of n by Theorem 3.1. This kind of chosen-ciphertext

attack can compromise Chen-Qiu-Zheng scheme.

3.2 RSA-Based Partially Blind Signature Scheme

In AsiaCrypt’96, Abe and Fujisaki [1] submitted the first partially
blind signature scheme to inject the common information, like the date, on
the signature. Chien et al. [11] proposed more efficient RSA-based
partially blind signature scheme than Abe-Fujisaki’s scheme later.
Recently, Hwang et al. [21] claimed Chien et al.’s scheme cannot meet the
untraceability property of the blind signature. In this section, we show
that Hwang et al.’s claim is incorrect and Chien et al.’s scheme is still the

untraceable scheme.
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Recently, Chien et al. proposed RSA-based partially blind signature

with low computation for mobile and smart-card applications. Hwang et

al. claimed that Chien et al.’s scheme cannot meet the untraceability

property of the blind signature later. In this section, we show that Hwang

et al.’s claim is incorrect and Chien et al.’s scheme is still satisfy the

untraceability property.

3.2.1 Chien et al.’s scheme

In 2001, Chien et al. proposed an’efficient partially blind signature

based on RSA cryptosystem. To-compare with Abe-Fujisaki’s scheme,

Chien et al.”’s scheme can reduce the amount of computations by almost

98% for the requester. Therefore, Chien et al.”’s scheme is suitable for

mobile client and smart-card applications.

The signer and the requester are two kinds of participants in the

Chien’s partially blind signature. The requester obtains a partially blind

signature from the signer and the signer cannot link any message-signature

pair later. The four phases in Chien et al.”’s scheme are (1) Initialization,

(2) Requesting, (3) Signing, (4) Extraction and verification. Initially, the

signer initially publishes the necessary information for participants. In
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the requesting phase, the requester sends a blinded message and the agreed
common information to the signer. The signer signs on the blinded
message with the common information in the signing phase. Finally, the
requester obtains the signature from the blinded signature without removing
the injected common information in the extraction and verification phase.
Anyone can verify the correctness of the signature wusing the
message-signature pair and the agreed common information. The detailed

scheme is describe as follows.

(1) Initialization: The signer randomly selects two large primes p
and q, and calculates n=p:q and #(M)=(p-1-(q—1). Then, the
signer selects large integers™ @ such that €-d =1mod ¢(n), where e=3.

Thus, d is the private key of the signer and the signer publishes his public

key (e,n) and a secure one-way hash function h(-) like SHA-1.

(2) Requesting: The requester prepares the common information a

according to the predefined format. Then, s/he randomly selects two

integers rez and uez, . The  requester  calculates

n

a=r°h(m)u’*+1)modn and sends (a,«) to the signer. After the signer

verifying the agreed common information a, s/he randomly chooses a

+

integer XxeZ, , where X<n, and sends it to the requester. After the
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requester receives X, s/he selects a random number Kk and computes
b=rk. Finally, the requester computes S =b°(U—X)modn and sends fS

to the signer.

(3) Signing: The signer calculates S~ modn and

t=h@@)* (a(x* +1)7*)* modn then s/he sends (B, t) to the requester.

(4) Extraction and verification: After the requester receives (£,t),
s/he obtains the signature by calculating c¢c=(ux+1)8"'b* modn and
s=tr’k* modn. The 3-tuple (a,c,s) is a signature on the message m,

and anyone can verify the correctness=of «(a,c,s) by checking whether

s® = h(a)h(m)(c® +1)> mod n.

If (a,c,s) is a signature of the-message m generated by Chien et
al.’s partially blind signature scheme, then s°=h(a)h(m)c’+1)> modn

must be held. The detailed proof can be found in [11].

3.2.2 Hwang et al.’s Traceability Attack

In Hwang et al.’s claim [21], the signer can keep a set of record for all
blinded messages and use them to trace back the blind signature. Thus,

Hwang et al. claimed that Chien et al.’s scheme cannot meet the
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untraceability of the blind signature. The detailed procedures of Hwang et

al.’s cryptanalysis are described as follows.

1. The signer can keep a set of records (a;, X, B.,t., ") for each

instance 1 in Chien et al.’s scheme.

2. When the requester reveals (a,c,S,m) to the public, the signer can
compute U, =(1+cx,)(c—X )" modn for each instance i since

c=@ux +1S b =ux +1)u, —x,)" modn.

3. The signer can obtain 5, :ﬂid(ﬁi —x,)* modn for each instance i

since S =b®(u—x) modng
Note: 5, :ﬂid(LTi - X;)° mod h-7is-wreng in Hwang et al. [21].

4. The signer can then compute T = Ocidh(m)_d @°+1)" modn for each

instance i since «, =r°h(m)u,’+1)modn.
Note: T, =aidh(m)e(ﬁi2 +1)d mod n is also wrong in Hwang et al. [21].

5. The signer can obtain k, =bF™' modn for each instance i since

b, =rk, modn.

6. Finally, the signer can check if s=t -F’ -I?i4 modn. If it is true,

the signer can trace back the blind signature.

Therefore, Hwang et al. claimed that Chien et al.’s scheme cannot meet
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the untraceability property of the blind signature.

3.2.3  Analysis of Hwang et al.’s Attack

In 1995, Harn [19] claimed that Camenisch et. al.’s blind signature
scheme [5] is traceable. Horster et al. [20] proved that Harn’s
cryptanalysis is incorrect later. However, Theorem 3.2 shows that Hwang

et al.’s claim on Chien et al.’s scheme is incorrect.

Theorem 3.2: For given a message-signature pair (a,cC,S,m), the
signer can derive 4-tuple (lTi,Ei,Fi,lzi) such that s=t -F>-k*modn is
always satisfied for each (& X, 3f0t, 8.

Proof: According to Hwang ‘et al.’s claim, the signer can keep

-1 . - . . 5
(o, %, Bi, 4, Bi ) for each instance i in Chien et al.’s scheme. When

the requester reveals (a,c,S,m) to the public, the signer can compute

0 =(+cx)Cc-X%) "' modn for each instance i. Then s/he can obtain
b, = 4@ —x)™ modn . The signer can compute
= O:idh(m)’d (LTi2 +1)* modn and E, = Eiﬁ_l modn. Finally, the signer

can check whether the formula Szti-ﬁz-lzi4 modn is true or not.

However, the formula s=t,-F”-k;* modn is always true for each instance
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I in the following derivations.

~

=h@@)? (o, (x;" + D7) -7 (b; -F')* mod n

=h@° (& (x” +DB 7)™ -b* -7 mod n

=h@)* (e (x" + D)™ (B @ =x)™)* (@ h(m)™* @7 +1)™*)* mod n
=h@)? - (e (6" + D™ B (8" (@ =x) ™) (@ h(m)* @ +1)**) modn
=h(@)" - (x> + D> (@ —x)™* - (h(m> @> +1)**) mod n

=h(@)" -h(m)** -[(x” +1)- ([@=x) (0 #D]* modn

=[h(@) - h(m)* -[(x” +1)- @ —x) 27+ DT mod n

=[h(a)-h(m)* -[(x,” +1)- (@ = XVE(@T+D]*1° mod n

=[h(@)-h(m)” -[(@ = x) 7 - (%0 + % + T, +1I*]* mod n

=[h(@)-h(m)* -[(@ = x) 7 - (%0 + X" +T° +1+ 20, % — 20,%,)]°]° mod n
=[h(@)-h(m)* -[(@ %) - (4T +1D* + (@ —x)*)I*]* mod n

=[h(a)-h(m)* -[c* +1]*]° mod n

=S modnh 0

Thus, Hwang et al.’s cryptanalysis on Chien et al.’s scheme is incorrect.

Chien et al.’s partially blind signature scheme is still obtain the
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untraceability property and it is an untraceable scheme.

3.3 Untraceable EIGamal Blind Signature Scheme

In Eurocrypt’94, Camenisch et al. presented the blind signature
schemes based on the discrete logarithm problem. Recently, Lee et al.
asserted that Camenisch et al.”’s schemes cannot satisfy the untraceability
property of the blind signature scheme. We will analyze that Lee et al.’s
traceability attack is failed and Camenisch et al.’s schemes are still
untraceable here. Although Lee et al. presented an untraceable scheme, it
needs more computations and stotages than Camenisch et al.’s schemes.

Hence, Lee et al.’s scheme is unnecessary.

A blind signature scheme is a protocol to allow the requester to obtain
a signature without revealing message and the signer cannot trace any
message-signature pair later. It can achieve the unforgeability property
for the signer and the untraceability for the requester. The first blind
signature scheme was presented by Chaum [8] and it is based on the integer
factoring problem. Camenisch et al. [5] proposed DSA [34] and

Nyberg-Rueppel [35] blind signature schemes based on the discrete
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logarithm problem in Eurocrupt’94. Harn [19] pointed out that Camenisch
et al.’s schemes are traceable in 1995. Horster et al. [20] showed that
Harn’s cryptanalysis is incorrect later. Recently, Lee et al. [27] claimed
Horster et al.’s comment is improper and asserted Camenisch et al.’s
schemes cannot satisfy the untraceability property of the blind signature
scheme. However, we show that Lee et al.’s traceability attack on

Camenisch et al.’s schemes is failed in this section.

3.3.1 Camenisch et al:’sischeme

There are two kinds of participant: the Signer and the requester in
Camenisch et al.’s blind signature.scheme. Initialization, requesting,
signing, and verification are four phases in their schemes and the details of
DSA blind signature scheme are described in the following. (The concept of
Nyberg-Rueppel blind signature scheme is similar to DSA blind signature

scheme and its details are omitted here.)

(1) Initialization: Two large primes p and (q are randomly chosen
by the signer such that q|(p—1). Next, s/he selects g e Zp* of order q
and a random number XeZ,, and computes y=0" (mod p). Thus, the

signer”s secret key is X and the corresponding public key is y. Finally,
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the signer randomly selects IZeZq and calculates |¢=g'2 (mod p), and

sends f to the requester.

(2) Requesting: To sign a message m which is relatively prime to (,
the requester selects two random numbers a,beZ, and computes
r=7%g° (mod p) . Then, s/he calculates the blinded message

m=amfr~' (mod q) and sends M to the signer.

(3) Signing: After the signer receives M , s/he computes

§ = XF + ki (mod q) and sends § back to the requester.

(4) Verification: The réquester-can calculate the signature s by the
equation s=3$rf"' +bm (modgq) ., ~Thus,- (r,s) is the signature on the
message M. Anyone can verify the ‘signature by checking whether

g°=y'r" (mod p) holds.

3.3.2 Leeetal.’s Traceability Attack

Recently, Lee et al. [27] asserted that Camenisch et al.”s schemes [5]
cannot satisfy the untraceability property of the blind signature scheme.
The detailed procedures of Lee et al.”s traceability attack on Camenisch et

al.”’s DSA blind signature scheme are described as follows. (The
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traceability attack on Nyberg-Rueppel blind signature scheme is similar to

DSA blind signature scheme and its description is omitted for concise.)

1. The signer can record all instances (k;,f,M,,$,) in Camenisch et

al.”s scheme.

2. After the requester publishes (r,s,m), the signer can calculate
b, =m~'(s=§rf™") (mod q) for all  instances  because  of

s=8rf"' +bm (mod q).

3. Next, the signer can compute a =mm”'f'r(modq) for all

instances because of i =amfr ™' (mod @).

4. Finally, the signer can check-whether ' r :ﬁaigbi (mod p) holds. If

it is true, the signer can trace'the blind signature.

Thus, Lee et al. asserted that Camenisch et al.” s schemes cannot satisfy

the untraceability property of the blind signature.

3.3.3  Analysis of Lee et al.’s Attack

Recently, Hwang et al. [22] asserted that Chaum”s blind signature
scheme [8] is traceable and presented an untraceable blind signature scheme

based on integer factoring problem. Lee and Wu [29] showed that Hwang
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et al”s claim is invalid later. There are several papers [23, 24] claimed
that many blind signature schemes incurred the traceability attack.
However, many cryptanalysts [28, 14] have showed the traceability attack
is failed later. We analyze that Lee et al.”s traceability attack is failed in

the following.

Based on Lee et al.”s traceability attack, the signer can keep
(k, £, M, §) for all instances in Camenisch et al.”s schemes. After the
requester publishes (r,s,m) , the signer can calculate
b, =m"'(s=§rf ") (modq) and  a =mm'E>r (modq) for all instances.
Then, the signer can check whether r= ﬁa‘gb' (mod p) holds. If the result
is true, Lee et al. asserted that the signer can trace the blind signature in
Camenisch et al.”s schemes. Indeed, we analyze that r:ﬁaigbi (mod p)

is always true for all instances in the following.
g™ (mod p)
=g"g" ¢ (mod p)
= ghMmTDgm I C S (mod p)
_ glZi(mim”fﬁmm*‘(s—ﬁirﬁ") (mod p)

o amT ki T s =g )
=g (mod p)
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_ gm"(l?irﬁifi"ws—(xfi+I€irﬁi)rf{‘) (mod p)
_ gm"(l?irﬁifi’1r+s—(xr+lzirﬁirfi’l)) (mod p)
_ gm"(Iiirﬁifi’lws—xr—lzirﬁirfi") (mod p)
=g" ™ (mod p)

—m~lxr

=g" g™ ¥ (mod p)

=(y'r™)" g™ (mod p)

=(y™ g™ (mod p)

=(g"™ g™ (mod p)

=T (mod p)

For a given message-signature pair" (I, S, m), the signer can derive
(a,b) such that r=Ff"g" (mod p) is always held for all instances
(lzi,f-,nﬁ- $.). Hence, Lee et al.”s traceability attack on Camenisch et
al.”s schemes is failed. Although Lee et al.”s scheme satisfies the

untraceability property, it needs more computations and storages than

Camenisch et al.”s schemes. Thus, Lee et al.”s scheme is unnecessary.

3.4 The Secure Proxy Blind Signature Schemes
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The proxy blind signature scheme allows the designated proxy signer

using the proxy secret key to generate a blind signature on behalf of the

original signer. Tan et al. presented the DLP-based and ECDLP based

blind signature schemes. Lal and Awasthi proposed a improved

DLP-based scheme later. Recently, Sun et al. presented linkability attack

on Tan et al.’s and Lal-Awasthi’s proxy blind signature schemes

respectively. In this section, we show that Sun et al.’s attack is invalid

and these schemes are still satisfy the unlinkability property.

Mambo et al. [30] presented the proxyssignature scheme to allow the

designated proxy signer to sign messages on behalf of the original signer.

For example, when a manager is going on‘a vocation, s/he can delegate

her/his secretary to sign messages on behalf of her/him. The defined three

types of delegation in the proxy signature scheme are full delegation,

partial delegation and delegation by warrant. In full delegation, the

original signer gives her/his private key to the designated proxy signer and

then the original signer and the proxy signer can both generate the same

signatures. The original signer uses her/his private key to generate the

proxy secret key and sends it to the proxy signer securely in partial

delegation. In delegation by warrant, the warrant is used to show that the
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proxy signer is legal and to describe the information between the original

signer and the proxy signer.

The blind signature scheme was first proposed by Chaum [8] in

Crypto’83. The security of Chaum’s scheme is based on the difficulty of

integer factoring. The blind signature scheme can allow the receiver to

obtain a signature signed by the signer without revealing message and the

signer cannot link any message-signature pair later. It can achieve the

unforgeability property for the signer and the unlinkability for the receiver.

Hence, it is useful in electronic payment systems and electronic voting

systems.

In 2002, Tan et al. [49] présented two proxy blind signature schemes to

allow the proxy signer to generate a blind signature on behalf of the

original signer. Lal and Awasthi [25] showed a forgery attack on Tan et

al.’s schemes and proposed a more secure proxy blind signature scheme

later. Recently, Sun et al. [47] pointed out that neither Tan et al.’s

schemes nor Lal-Awasthi’s scheme can satisfy the unlinkability property of

the proxy blind signature scheme. In this section, we show that Sun et

al.’s attack is invalid and these schemes are still satisfy the unlinkability

property.
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3.4.1 The Proxy Blind Signature Schemes

The system parameters in the following proxy blind signature schemes

are defined as follows.
System Parameters:
p,q: two large prime numbers, where q|(p-1).
g: element of Zp* of order (.

X,,Y,: secret key and public key of the original signer respectively, where
Yy, =g modp.

X,,Y,: secret key and public key. of the proxy signer respectively, where
Y, =9 modp.

h(): a secure and public one way hash function.

||: the concatenation of strings.

3.4.1.1 Tan et al.’s proxy blind signature schemes

Tan et al. [49] presented two proxy blind signature schemes based on
the discrete logarithm problem (DLP) and elliptic curve discrete logarithm

problem (ECDLP) in 2002. They also defined the required security
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properties of proxy blind signature scheme. There are three kinds of
participants: original signer, the proxy signer and the receiver in their
schemes. The three phases in their schemes are (1) Proxy delegation, (2)
Signing and (3) Verification. The details of Tan et al.’s DLP-based

scheme are described as follows.

(1) Proxy delegation: The original signer randomly selects a number

k,, and calculates r,=g“ modp and s, =k, +x,r, modq. Then, the

[0 I

original signer sends (r,,S,) to the proxy signer in a secure way. After
the proxy signer receives it, s/he can verify-it by checking the correctness
of the equation g* =vy,°r; moedp. Finally, the proxy signer computes

her/his proxy secret key s, =§,+ X, modg.

(2) Signing: The proxy signer chooses a random number k, computes
t=g“modp and sends (r,,t) to the receiver. After receiving it, the
receiver randomly chooses two numbers a and b and calculates
r=tg°y, " "(y,°r,) * modp, e=h(r|imymodq, u=(y,"r,)*"y, “modp and
e'=(e—a—-b)modg. Then, the receiver sends €' to the proxy signer.

Next, the proxy signer calculates the blinded signature s'=e's, +k modq

and sends ' back to the receiver. Finally, the receiver computes

s=s+bmodq. The signature of the message m is (m,u,s,e).
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(3) Verification: Anyone can verify the correctness of the proxy blind
signature (m,u,s,e) by checking that e=h(gy, "y, umodp | m)modq

holds.

The descriptions of Tan et al.’s ECDLP-based proxy blind signature
scheme is omitted here because it is similar to DLP-based scheme except to
replace discrete logarithm cryptosystem parameters by elliptic curve

cryptosystem parameters.

3.4.1.2 Lal and Awasthi’sZproxy blind. signature scheme

Lal and Awasthi [25] showed a forgery attack on Tan et al.’s schemes
and proposed a more secure and efficient proxy blind signature scheme later.
Proxy-unprotected and proxy-protected are two kinds of schemes according
to whether the original signer can generate the same proxy signature as the
proxy signer. In proxy-protected schemes, the proxy signer and the
original signer both can generate valid proxy signatures. Only the proxy
signer can generate valid proxy signatures that s/he cannot repudiate it later
in proxy-protected schemes. The participants, phases and system
parameters are the same as Tan et al.’s schemes. The detailed scheme is

described in the following.
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(1) Proxy delegation: The original signer chooses a random number
k,, and computes r,=g*modp and s,=x +kr modq. Next, the

0

original signer sends (r,,s,) to the proxy signer via a secure channel.
After the proxy signer receives it, s’he can verify it by checking whether the
equation g* =y, " modp holds. In proxy-unprotected case, the proxy

as her/his proxy secret key and y, =Y, " modp as

signer uses S, =S,

her/his proxy public key. In proxy-protected case, the proxy signer

computes S, =S,+X, modq as her/his proxy secret key and
Yor :yoror"yp mod p as her/his proxy public key. (Note that the proxy
public keys in Sun et al.’s| paper must be exchanged each other in

proxy-unprotected and proxy=protected cases:)

(2) Signing: The proxy signer randomly chooses a number k and
computes t=g*“ modp and sends (r,,t) to the receiver. After receiving
it, the receiver selects two random numbers a and b. Then s/he
calculates r:tg""‘ypr_b modp , e'=h(r||mymodq , and e=(e+b)modq .
The receiver sends e to the proxy signer. Next, the proxy signer
calculates the blinded signature s'=k-es, modq and sends s' back to
the receiver. Finally, the receiver computes S=s-amodq from the blind
signature S'. The signature of the message m is (m,s,e').
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(3) Verification: Anyone can verify the correctness of the proxy blind
signature (m,s,e') by checking whether e'= h(gsypre' mod p || m) modq

holds.

3.4.2 Sunetal.’s Traceability Attack

In Sun et al.’s [47] linkability attack, they pointed out that the proxy
signer can record all blinded messages and use them to trace back the
corresponding blind signatures. Hence, Sun et al. claimed that all Tan et
al.’s schemes and Lal-Awasthi’s scheme. cannot satisfy the unlinkability
property of the blind signature.| ~The details of Sun et al.’s attack are

described as follows.

3.4.2.1 Sun et al.’s attack on Tan et al.’s schemes

We only describe the detailed Sun et al.’s attack on Tan et al.’s
DLP-based proxy blind signature scheme because Tan et al.’s ECDLP-based

scheme is similar to it.

1. The proxy signer can keep all set of records (;,¢',s;') for each instance

i in Tan et al.’s DLP-based scheme, where t =g“ modp.

2. When the receiver reveals (m,u,s,e) to the public, the proxy signer can
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compute b'=s-s'modq for each instance i since S=S+bmod(.

3. The proxy signer can calculate a'=(e—Db'-¢')modq for each instance I

since e'=(e—a—b)modq.

4. Then the proxy signer can compute F'=tg"y, " (y,*r,)* modp for

each instance i since r =tgbyp_a_b(y0r° r,)* modp.

5. Finally, the proxy signer can check that r'=g°y,"y,umodp holds. If

it is true, the proxy signer can trace back the blind signature.

Hence, Sun et al. claimed that,Tan et al.”’s schemes cannot satisfy the

unlinkability property of the'blind signature.

3.4.2.2 Sun et al.’s attack on:Lal-Awasthi's scheme

1. The proxy signer can keep all set of records (t,,e',S) for each instance
i, where t =g" modp.

2. After the receiver reveals (m,s,e) to the public, the proxy signer can
calculate a,'=S —smodq for each instance i since S=S-amod(.

3. The proxy signer can calculate b'=(e/'-e)modq for each instance I

since e'=(e+b)modq.

4. The proxy signer then can compute ri':tig_ai'ypr_bi'modp for each

instance i since r :tg‘aypr_b modp.
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5. Finally, the proxy signer can check whether r'= gsypre mod p holds. If

the equation is true, the proxy signer can trace back the blind signature.

Thus, Sun et al. claimed that Lal-Awasthi’s scheme cannot satisfy the

unlinkability property of the blind signature.

3.4.3  Analysis of Sun et al.’s Attack

In this section, we show that Sun et al.’s linkability attack is failed and
Tan et al.’s [49] and Lal-Awasthi’s [25] proxy blind signature schemes are

still unlinkable.

3.4.3.1 Analysis of Sun et al.’s"attack on.Tan et al.’s schemes

According to Sun et al.’s linkability attack, the proxy signer can keep
all set of records (t,€',s,'") for each instance i in Tan et al.’s DLP-based

12%

scheme. After the receiver reveals (m,u,s,e) to the public, the proxy

signer can calculate b'=s-s'modq for each instance i. Next, s/he can
obtain a'=(e—b'-e')modq . Then the proxy signer can calculate
ri'=tigb"ypfa"fb"(yor"ro)’a" mod p . Finally, the proxy signer can check

whether the equation r'=g°y, y,'umodp holds. However, we show that

the equation is always true for each instance i in the following.
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tg"y, ™ (y,"r,) ™ mod p

—e+b;'+e; '+s;'-s

=t9°"y, (¥,°F,)" "™ mod p
=g°(tg ™)y, (Y, (Y, )" mod p
=9 (497 )Y, (Y, (Y, )™ ™ mod p

'+e;'-e

=g°(t9™)Y, (¥, (Y, 1) mod p
=069y, (Y, (Y, 1) (Y, )" mod p
=097 )Y, (Y, )Y 1) (¥, 1) (Yo Y, ©) mod p
=(9°Y, Yo GG Y, (Y, )™ F (Y, 1, )%y, ) mod p

S

= (0%, Yo (@ g T (Y ) (Y, 1) (Y, ) mod p

—§ '(SoJrXp)

= (9%, ‘¥, )(g" g Yo It (Y, 1) (Y, ©) mod p
=(0°Y, Yo @ TG (Y, )" (Y, ) (Y, ©) mod p
=(9°Y, Yo G )Y, 1) (Y, 1) (Y, *) mod p
=(0°Y, Yo (Yo 1) (Vo 1) (¥, 1) (Y, *) mod p
=(9°Y, Yo (Yo 1) (Y, ©) mod p

=g°y, Y, umodp

=r'modp
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For a given message-signature pair (a,C,S, m), the proxy signer can
derive 3-tuple (b',a/,r') such that r'=g°y, "y, ;umodp is always held
for each (t,,€,s'). Hence, Sun et al.’s claim is incorrect and Tan et al.’s
DLP-based scheme is still satisfy the unlinkability property. The

cryptanalysis of Sun et al.’s linkability attack on Tan et al.’s ECDLP-based

scheme is similar to above description.

3.4.3.2 Analysis of Sun et al.’s attack on Lal-Awasthi’s scheme

Based on Sun et al.’s linkability attack, the proxy signer can records all

set of (t,e,s;') for each instance jiyindal-Awasthi’s scheme. After the

receiver reveals (m,s,e') to the public, the-proxy signer can compute

a,'=(s;'-s)modq for each Iinstance . Then s/he can calculate
b'=(e, —e)modq . Next, the proxy signer can compute
ri':tig_a"ypr_bi' mod p. Finally, the proxy signer can check if the equation

e

e'=h(g’y, ‘mod p||m)modq holds. We show that the equation is always

true for each instance i in the following.
h(t,g™'y, " mod p||m) modg

e'

=h(t,g*™y," ® mod p|/m)modq
=h(g°t,g ™'y, * mod p|| m) modq
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e'

=h(g°t;g“" "y, " mod p|/m) modq

e'

=h(g°g"“ g™ y," ™ mod p|/m) modq

e'—e

=h(g°g""y, * modp | m)modq
=h(g°y,"y," " modpl|lm)modq

=h(g'y, " mod p|/m) modq

1l
@

For a given message-signature pair (m,S,e'), the proxy signer can

e

derive 3-tuple (b',q', ') sach thati.e'=h(g’y, "mod p||m)modq is

always held for each (t,,¢,8/'). Henee, Sun-et al.’s linkability attack is

failed again on Lal-Awasthi’s scheme.  .DLal-Awasthi’s scheme is still

satisfy the unlinkability property of the proxy blind signature scheme.
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Chapter 4 The Proposed Digital Blind Signature

Schemes

To establish the basis of electronic transaction services, we will present
several secure digital blind signature schemes in the following sections.
The fail-stop blind signature scheme that can obtain unforgeability property
for the signer and anonymity property for the participants is described in
Section 4.1. Then, an improved blind signature scheme based on the
elliptic curve cryptosystem is presented in Section 4.2. It can reduce 50%
storage requirements for each ssignature and speed up performance more

than 36% compared with Yeh-Chang’s-scheme.

4.1 A Fail-stop Blind Signature Scheme

The fail-stop signature scheme was proposed by Pfitzmann and
Waidner [39, 38, 50]. It can protect the signer against a forger with more
powerful computational capability to forge a signature. It is
unconditionally secure for the signer and cryptographically secure for the
requester. One important application of the fail-stop signature is
electronic payment system [39]. The anonymity of participants is very
important in electronic payment systems. However, it cannot be achieved
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in the fail-stop signature scheme.

Chaum [7, 8] introduced the concept of a blind signature scheme which

can protect the anonymity of participants. The blind signature scheme

allows a user to obtain a message signed by the signer without revealing

message and the signer cannot link any message-signature pair later. The

blind signature scheme can be used in electronic payment systems to

preserve participants’ anonymity.

Thus, a fail-stop blind signature scheme is proposed to solve this

problem. The presented fail-stopwblind signature scheme is based on

Susilo-Safavi-Pieprzyk [48] scheme (mentioned in Section 2.5). Our

scheme can provide “proof'iof forgery” for signers and guarantee

“anonymity” for the participants/requesters. We will give proof to show

that the proposed scheme satisfies the conditions of fail-stop signature and

blind signature.

4.1.1 The Proposed Blind Signature Scheme

The fail-stop blind signature scheme combines the advantages of both

fail-stop signature and blind signature.  Our proposed scheme is a
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modification of Susilo et al.’s scheme with trusted dealer. There are
seven phases (1) Initialization, (2) Key generation, (3) Blinding, (4)
Signing, (5) Unblinding, (6) Verification and (7) Proof of forgery in the
fail-stop blind signature scheme. The three kinds of participants in our
scheme are the same as the section 2. The detailed scheme is described

bellow.

(1) Initialization: Initially, the trusted dealer D chooses two large
primes p and ¢ such that p=2p+1 and q=2q9+1, where p' and ('
are also prime. D computes: n=pq and-g(n)=(p-1)(q-1). Next, e,
and d, are chosen by the-trusted dealer D -such that e,d, =1mod¢(n).

Then, D chooses a integer aecZ;

¢ randomly and computes

B=a"™ modn. Finally, D publishes her/his public key (a,n), keeps
her/his private key d, secretly and sends (ey,f) to the signer S via a

secure channel.

(2) Key generation: The signer S randomly chooses his(her) private
key (k,,k,,Kky,k,), where k, €z, and computes p =" A% modn,
o, = ak~‘,81k‘ modn and a,= ak“ﬂlk2 modn. Finally, S publishes her/his

public key (f,,2,,a,) and a one-way hash function H.

(3) Blinding: For a message m, the receiver R selects a random
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*

numbers r in Z R computes M=rH(mM)modn with a blinding

n -

factor r, where H(m) is the hashed value of message m. Then, R

sends the blinded message M and x=H(r)ymodn to S.

(4) Signing: In this phase, the signer S computes S =Mk Xx+Kk,)
and S,=m(k,x+k,). S sends the blinded signature (5,S,) on blinded

message M to R.

(5) Unblinding: After the receiver R obtains the blinded signature
(5.,5,), he(she) performs the unblinding operation by computing s, =r"'S
and s,=r"'S,. Then, (s,,S,) is thessighature on hashed message H(m).

(6) Verification: Amyone “can - verify the message-signature

Hi{(m)

(H(m),x,s,,s,) by checking if ‘e =¢ @, modn.

(7) Proof of forgery: This phase is similar to Susilo et al.”s scheme.
The signer can prove that a forgery has occurred by revealing the

non-trivial factors of n.

4.1.2 Security Analysis

A secure fail-stop blind signature scheme must satisfy four conditions

as follows.
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(1) The forger is nearly infeasible to forge a signature with more powerful

computational capability.

(2) The signer can use a polynomial-time algorithm to prove that a forgery

has occurred.

(3) The polynomial-bounded signer cannot forge a signature and prove it a

forgery later.

(4) The signer is computationally infeasible to link the message he actually

signed and the corresponding signature for verification later.

Theorem 4.1: There exists the matching. private keys for each public
key, such that different private key can generate different signature on the

same message.

Theorem 4.2: The signer can prove that a forgery has occurred by

factorizing n if a forged signature (s,',s,') on a message m succeeds

in verification phase.

Theorem 4.3: The signer can prove that a forgery has occurred by the
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orobability ¢(¢”)_1.

(n

The second condition of a secure fail-stop blind signature is satisfied
by Theorem 4.2. The following theorem shows that a forger with more

powerful computational capability is still existing ¢(n) possible private

keys for that signature.

Theorem 4.4: The forger with more powerful computational capability

is still existing ¢(n) possible private keys for that blinded signature

(5,,5,) on the blinded message - together with corresponding public

key.

Proof: To Assume the forged blinded signature on the blinded message

m is (5,',S,') and the public key of the signer is (f,,a,,,). If a forger

with more powerful computational capability can solve the discrete

logarithm and factorization problem successfully, he can obtain these

equations as follows.

3 '= (k,x +k, )it mod ¢(n)

3,'= (kX +k, )il mod ¢(n)

¢, = (k, +wk, ) mod g(n)
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c, =(k, +wk,) mod ¢(n)

Where fi=rH(m), x,c.,c,eZ, and w=log, B, =k, +d.k,. Then, a

forger can rewrite these equations by using matrix representation.

xit @ 0 ofk] [§
0 0 xm Ak | |5
w 0 1 o0fk| |c
0 w 0 1]k C

The above matrix’s rank is 3 because Xmr,—wr, —r, +mMr, =0, where T;
is the i-th row of the matrix. There are ¢@(n) possible private keys for

that blinded signature since thessolutions 6f equations are ¢(n). O

Theorem 4.5: The forger with. more-powerful computational capability

cannot generate the blinded signature on a new message.

Theorem 4.6: The polynomial-bounded signer cannot generate a valid

signature and prove it a forgery later.

Proof: The polynomial-bounded signer must have another private key

(k,',k,",k;",k,") which can match the corresponding public key (f,,a,,,)

to deny a generated valid signature, such that a1=ak3vﬂ1k"modn and
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a2=ak4'ﬁlk2' modn . The difficulty to find another private key

(k,',k,",k;",k,") is equivalent to solve the discrete logarithm problem.
Moreover, it is difficult to find d, without knowing ¢(n) since the

difficulty of integer factorization. O

Theorem 4.7: There exists a correct private key selected by the signer
corresponding to the public key, such that (5,,S,) is the blind signature on

the blinded message M and (5,',S,') is also the blind signature on the

~

blinded message m', where #i=m':
Proof: The signer can organize‘these-cquations as follows.

S, = (k,x+k;)Mm mod ¢(n)

S, =(kyx+k, )M mod ¢(n)

S,'=(k,x+k,)m' mod ¢(n)
S,'=(k,x+k,)M' mod ¢(n)'

¢, =(k, +wk,) mod ¢(n)

c, =(k, +wk,) mod ¢(n)

Where M=rH(m), xc.c,eZ, and w=log, B =k, +d,k; . The

matrix representation of above equations can rewrite as follows.
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xii i 0 0 5
0 o xm m[k] |3
xi' fmo0 0|k, | |§
0 0 xa Ak | |5
w 0 1 o0k [c
0w 0 1) | C, |

Since mM=m"', The above coefficient matrix’s rank is 4. Hence, the
private key is the correct private key selected by the signer corresponding

to the public key. O

Theorem 4.8: The signer: computationally cannot link the blinded

message mM he actually signed and the corresponding signature (s,,S,)
for verification later.

Proof: In the signing phase, the signer can obtain the blinded message
M=rH(m) and x=H(r)modn. The signer can obtain the signature

(S;,S,) 1n the verification phase, where

S r_l§1 = (k1X+ kz)H (m)

s, =r"'S, =(k,x+k,)H(m)
The signer is computationally infeasible to link the blinded message

and the signature for verification later since a blinding factor is chosen

randomly by the receiver. O
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Hence, the fail-stop blind signature scheme can obtain the
unforgeability property for the signer and the anonymity property for the
requesters. It also can be applied in more critical system like electronic
payment systems which need higher security against more powerful forger
and can preserve participants’ anonymity. Recently, Chang et al. [6]
presented a fail-stop blind signature scheme based on pairings. Their

scheme can work in any Gap Diffie-Hellman group.

4.2 The Enhanced Generic Blind Signature Scheme

By modifying the generic blind signature scheme presented in [17], we
propose an enhanced scheme in the followings. Let M be the underlying
set of messages and R be a finite set of random strings. The proposed

blind signature scheme consists of five elements (B, H, S,U,V), where

(1) B:MxR—>M is a blinding function. Without r , it is

infeasible for the signer to compute m from B(m,r). The integer r is

called the blinding factor of the message m, and r is randomly chosen

from R and kept secret by some user. Besides, B(m,r) is called the
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blinded message.

(2) H:M - M is a public one-way hash function.

(3) S:M > MK is a signing function. S is kept secret by the
signer and K 1is a positive integer, where MK =M when K =1 and

MK=MK"'xM when K=>2. Without S , it is computationally

infeasible to compute S(H(m)), where S(H(m)) is called the signer's

signature on the message m in the scheme.

(4) U:MKxR —> MK is an unblinding function. For every meM
and reR, U(S(B(m,r)),r)=S(m),rand it.is computationally infeasible to

derive S(m) from S(B(m,F)) through U without r.

(5) V:MKxM — {True, False}'"iis'“'a public verification formula.

V(t,m)=True, where te MK if and only if t is the signer's signature on

m,i.e., t=S(H(mM)).

The corresponding protocol is described in detail below.

(1) Blinding: A user randomly selects a blinding factor reR and
chooses a message me M, where some message may be hidden in m.
Then s/he computes the blinded message U= B(H?(m),r) and submits it to

the signer to request the signer's signature on H?*(m) , where
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H?(m) = H(H(m)).

(2) Signing: The signer applies S to u, and then sends S(u) to the

uscer.

(3) Unblinding: After receiving the signing result S(u) , the user

computes U(S(u),r) to obtain S(H?*(m)).

The user shows the signature-message pair (S(H?(m)),H(m)) for
verification and that 2-tuple can be verified by examining whether
V(S(H?*(m)),H(m))=True or not. Later, the user can reveal m for further
verification. Besides, given the pair (S(H?(m)),m), the signer cannot link
(S(H*(m)),m) to the pair (S(B(H*(m),r)),B(H>*(m),r)) since it is
computationally infeasible for/ the/'signer to derive H?(m) from

B(H*(m), r) or to convert S(B(H*(m),r)) into S(H?*(m)) without r.

4.3 The Enhanced Blind Signature Scheme Based on

the Elliptic Curve Cryptosystem

The elliptic curve cryptosystem has more advantages than RSA or DSA
such as smaller key length and low bandwidth on equivalent security

strength. Recently, Yeh and Chang presented the first blind signature
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scheme based on the elliptic curve cryptosystem and it is a modification of
Okamoto”s signature. In this section, we propose a Schnorr-type blind
signature scheme based on the elliptic curve that can reduce 50% storage
requirements for each signature and speed up more than 36% performance
compared with Yeh-Chang”s scheme. We also show that our scheme is a

secure blind signature scheme here.

4.3.1 Yeh-Chang’s Blind Signature Scheme

Recently, Yeh and Chang [51] presented a blind signature scheme
based on the elliptic curve cryptesystem and it is the modification of
Okamoto’s signature [36]. Yeh-Chang’s scheme is a secure blind
signature scheme and it can preserve the properties of unforgeability and
untraceability. Yeh-Chang’s scheme can reduce the storage requirements
by 33% and speed up performance ration more than 6 compared with

Okamoto’s blind signature.

Let p be a prime and let E be an elliptic curve over Z,. It
satisfies the equations y> = x> +ax+b (mod p) and

(4a’ +27b* # 0) (mod p) together with a special point at infinity denoted by

O, where a,beZ, [31]. The three phases in Yeh-Chang’s scheme are
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initialization, signature generation and signature verification. The

detailed scheme is described as follows.

(1) Initialization: The signer chooses two points G,,G, € E with
prime order g and selects two random numbers X, X, €Z, as private
keys. Then s/he computes Y, =-XG, (modq) and Y, =-x,G, (modQq),

where Y,,Y, €E.

(2) Signature generation: The signer selects two random numbers
r,r,eZ, and calculates R=rG, +r,G, (modq). Then the signer sends
Y,, Y, and R to the requester. gAfter the requester receiving R, the

requester randomly chooSes two numbers a,beZ, and computes

R=R +a(G, +G,)+bY (mod q), »where Y-=Y +Y,(modq). The requester
calculates t=h(m|T,), where m is the message, ﬁ:(”x’Fy) and h() is
one-way hash function. Then the requester computes M=t+b (mod Q)
and sends M to the signer. The signer calculates S =r, +Mx, (mod q)
and S, =r,+Mx, (modq) and sends S, and S, to the requester. After

the requester receiving S, and §S,, s/he calculates S, =S +a(modq) and

S, =S,+a(modq). The signature of the message m is (R, S,'S,).

(3) Signature verification: Anyone can verify the correctness of the

signature (R, S, S,) by checking t=h(m|T,) , where
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V =(F,T,) =50, +5,6, +tY (mod q).

4.3.2 The Enhanced Signature Scheme

To improve the efficiency of Yeh-Chang’s scheme, we propose a fast
blind signature scheme modified from Schnorr’s signature [45] based on the

ECDLP. The elliptic curve cryptosystem assumptions are briefly

described as follows. Let E be an elliptic curve over Z; and the set of
points (X,y) satisfy the equation y”>=Xx’+ax+b, where X, y,a,be Z, and
4a’ +27b> #0(mod p). O is'a spe&ial point-on E at infinity [31]. The
proposed scheme consists of four phases: (1) initialization, (2) blinding, (3)
signing and (4) unblinding and verification. The signer will publish
system parameters in the initialization phase. The requester sends a
blinded message to the signer in the blinding phase. In the signing phase,
the signer generates the blind signature and sends it back to the requester.
The requester obtains the signature derived from the blind signature and
anyone can verify the correctness of the signature in the unblinding and
verification phase. The details of proposed scheme are described as

follows.

(1) Initialization: The signer selects a point G € E with prime order
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g and chooses a random number XeZ_  as private key. Then the signer
computes Y =—XG (modqg). The signer randomly chooses a number

reZ, and computes R=rG(modq). Then the signer sends Y and R

to the requester.

(2) Blinding: After receiving R, the requester selects two random
numbers a,beZ, and calculates R=R+aG-bY (modq). Then the
requester computes t=h(m|T,)(modq), where h() is one-way hash
function, Isz(Fx,Fy) and m is the message. Finally, the requester

calculates mM=(t+b)(modq) and sends the. blinded message M back to

the signer.

(3) Signing: The signer computes the blind signature

S=r+Mx(modq) and sends S back to the requester.

(4) Unblinding and verification: The requester computes
s=S+a(modqg) and the signature of the message m is (R,s). Anyone

can examine the correctness of the signature by checking

t=h(m]r', ) (modq), where (r',,r',)=sG+tY (modQq).
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4.3.3 Security Analysis

In this section, we discuss the correctness, randomness, unforgeability

and unlinkability of the proposed scheme.

The following theorem can ensure the correctness of the proposed

scheme.

Theorem 4.5: If (R,s) is a valid signature of the message m, then

t=h(m]r',)(modq), where (r',,r',)=sG+tY (mod Q)

Proof : (r',,r',)=sG+tY (mod q)

=(S+a)G +1tY (mod Q)

=(r+mx+a)G+tY*(mod Q)

=(r+(t+b)x+a)G +tY (mod q)

=(r+bx+a)G +txG +tY (mod q)

=(rG +bxG + aG) (mod q)

= (R-bY +aG) (mod Q)

=R (mod q)

= (T, 1)) (mod q)

The requester can examine the correctness of the signature by checking
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t=h(m|/r',)(modq) since r' =7, (modq). If t=h(m]r',)(modq) is

hold, the signature (R,s) on the message m is a valid one. O

In the proposed scheme, the signer randomized the blinded message
using the random number r. The attacker is computationally infeasible
to remove r from R =rG+aG-bY (modq), since s/he has to solve the
elliptic curve problem and it is hard to be solved. The signature (R,s) of

the proposed scheme has the randomness property.

In the blinding phase, the requester randomly selects a,beZ,  and
computes the blinded message @y Since M= (h(m|T,)+Db)(modq),

where (f,,T,)=rG+aG —bxG (mod q), the signer cannot know the message

X

m. Hence, the blindness property can be obtained in the proposed

scheme.

The security of the proposed scheme is based on the difficulty of
solving the elliptic curve problem. It is hard to forge a valid signature

(R,s) on any message m to pass the signature verification equation

t=h(m]r',)(modq), where (r',,r',)=sG+tY (modq).

Unlinkability property means that the signer cannot link any valid
signature (R,s) to the corresponding message m . The following

theorem shows that the proposed scheme can possesses unlinkability
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property.

Theorem 4.6: For any valid signature (R,s) of the corresponding

message M, the signer can derive @' and b' for any (M,S) such that

M = (t +b") (mod q)

R=R +a,'G, —b'Y, (mod q)

s=S5 +4a,' (mod Q)

Proof: If M, =(t, +b,') (mod q) then we have b,'=(fM, —t) (modq).

If s=5 +4a,"(modq) then wehave @'=(s-5;)(modQ).

R +&'G, —b'"Y, (mod q)

=R, + (5= §)G;=(m; —t,)Y; (mod q)

= (G, + G, — 3G, —fiiY, +1Y,) (mod q)

= (G, + R-5G, —mY,) (mod q)

= (rG, + R—(r, +1fi,x,)G, —MY,) (mod q)

(ﬁ - M x,G; —MY;) (mod q)

(R+MY, —Y,) (mod q)

=R (mod q)

According to the above derivations, the signer can derive a,' and b,
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for any recorded (M,,S;). O

Therefore, for any valid signature (R,s) of the corresponding
message M, the signer can always derive the blinding factors a,' and b,
for any (fM,,S;). It is demonstrate that all message-signature pairs are
indistinguishable for the signer. Hence, it is computationally infeasible to
derive the link between the signature and its corresponding instance of

signing process.

4.3.4 Performance Comparison

Because of Schnorr’s=signaturé scheme-is simple than Okamoto’s
signature scheme, we can reduce -some storage requirements directly from
Schnorr’s scheme. In Yeh-Chang’s scheme, the storage requirements of
the elliptic curve points are 8 (G,, G,, Y,, Y,, Y, R, R and V) and
are 4 (G, Y, R and R) in our scheme. Yeh-Chang’s scheme uses 6
(X, X, I, r,, a and b) random numbers and our scheme only uses 4
(X, r, a and b) random numbers. The number of signatures are 4 (5,,
S,, s, and s,) in Yeh-Chang’s scheme and are 2 (S and S) in our
scheme. Hence, the proposed scheme can reduce 50% storage

requirements compared with Yeh-Chang’s scheme for each signature. The
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comparison results of the storage requirements are shown in Table 4.1.

Table 4.1 The comparison of required storage requirements
Our Yeh-Chang’s
Improvement
scheme scheme
Elliptic curve
i 4 8 50%
points
Random
4 6 33.3%
numbers
Signatures 2 4 50%
The proposed scheme can reduce some modular multiplication

operations in signature signing phase because Schnorr’s signature scheme is
more efficient than Okamoto’s*scheme.

scheme, Table 4.2 shows that the number -of-multiplication, addition and

negative operations can be reduced more than36%.

Comparing with Yeh-Chang’s

Table 4.2 The comparison of required operations

Our Yeh-Chang’s
Improvement
scheme scheme
Multiplication 7 11 36%
Addition 6 12 50%
Negative 1 2 50%

Hence, the proposed scheme can reduce 50% storage requirements for
each signature and speed up more than 36% performance compared with

Yeh-Chang’s scheme.

thin-client applications to preserve anonymity.
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Chapter 5 Applications of Some Blind Signature

Schemes

Because of the networking technologies are developed rapidly, the
electronic commerce is becoming more practical and important. Based on
the proposed schemes, we will present two applications of the secure blind

signature schemes.

The electronic cash is a popular electronic payment technique for the
electronic commerce. It makes the ‘payer from anywhere to pay his/her
electronic cash conveniently throughT€leéctronic communication channel.
First, the untraceable fail-stop electronic cash scheme is proposed based on
RSA cryptosystem in Section 5.1. The proposed electronic cash scheme
has the fail-stop capability for the signer/bank against a forger with
powerful computational capability. It also can obtain the unforgeability

for the signer and the untraceability property for the participants.

Therefore, the electronic ticket system is another feasible application
of electronic commerce. A generic blind signature scheme with double

hashed messages is presented in Section 5.2. It can provide an easily
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implemented solution for untraceable electronic ticket systems. Thus, we
design an untraceable electronic ticket protocol based on the generic blind

signature scheme for information hiding.

5.1 The Untraceable Fail-stop Electronic Cash

Scheme

Chaum [8] introduced the untraceable electronic payment scheme to
obtain the untraceability property:for thé participants. Chaum’s scheme is
based on RSA public key. cryptosystem and its security relies on the
difficulty of integer factorization problem.. There are three kinds of
participants: the bank, a group of payers, and a group of payees in Chaum’s
scheme. The payer can withdraw the electronic cash from the bank, and
then pays it to the payee. The payee can forward the electronic cash to the
bank and deposit the electronic cash into his/her account. The
untraceability property means that the bank cannot link the electronic cash

and the payer after the transactions are completed.

Brand [4] presented the untraceable off-line electronic cash scheme

based on the representation problem in 1993. Okamoto [37] proposed the
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universal electronic cash scheme to achieve the divisiability property.

Fan and Lei [15] proposed a low computation electronic cash scheme based

on the quadratic residue problem and it can reduce the amount modular

computations for the payer by almost 99%. However, these schemes are

only computationally secure for the signer because a forger always can

forge a signature with more powerful computational capability. Thus, if a

signature passes the signature verification successfully it is assumed to be

generated by the owner of the private key.

In this section, we propose a RSA-based [43] electronic cash scheme

which has the fail-stop capability for the signer and can obtain the

untraceability property for the participants.” We will also give sufficient

proofs to show that our proposed scheme is secure and untraceable.

51.1 Chaum’s Untraceable Electronic Cash Scheme

Chaum’s untraceable electronic cash scheme [9] contains three kinds of

participants: the bank, a group of payers, and a group of payees. There are

four phases: initializing, withdrawing, unblinding, and depositing in

Chaum’s scheme. The details of Chaum’s scheme are described as

follows.
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(1) Initializing: The bank chooses two large prime numbers p and (
randomly. Then s/he calculates n=p-gq and ¢(n)=(p—-1)-(q—1). Next,
the signer selects two large random numbers e and d such that
e-d=1mod¢(n) and GCD(e,g(n))=1. Finally, the signer’s publishes
(n,e) as her/his public key and keeps her/his private key d secretly.

Any electronic cash issued by the bank is assumed worth w dollars.

(2) Withdrawing: The payer randomly selects a number reZ, which
is related prime to n as blinding factor. Next, s/he calculates
a=r°-H(m)modn and sendss'@ to the bank, where m is the message
and H() is a one-way hash function. - After receiving it, the bank
calculates t=a" modn, sends. t back to the payer, and deducts w

dollars from the payer’s account.

(3) Unblinding: After receiving t, s/he calculates sS=r"'-tmodn.

The 2-tuple (m,s) is an electronic cash in Chaum’s scheme.

(4) Depositing: When the payer want to pay the electronic cash, s/he
can send (m,S) to the payee. The payee checks the correctness of the
electronic cash by verifying whether the formula s®*=H(m)modn is true.
Then s/he requests the bank to check if the electronic cash is fresh or not

double-spent. If the electronic cash is correct and fresh, the payee can
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accept this electronic cash. Then the bank stores (m,sS) in the database

for further double-spending checking and deposits w dollars to the

payee’s account.

Because of the blinding factor r 1is randomly selected and kept

secretly by the payer, it is infeasible for the bank to link the payer and

electronic cash. This is the untraceability property in the electronic cash

scheme.

5.1.2 The Proposed Electronic:Cash Scheme

Because of Chaum’s scheme is only computationally secure for the

signer, a forger always can forge ia" signature with more powerful

computational capability. We propose a fail-stop electronic cash scheme

to provide the fail-stop capability for the signer and the untraceability

property for the participants. Three kinds of participants and four phases

of the proposed scheme are the same as Chaum’s scheme. In addition, a

trusted dealer is needed to generate public key-pair in the initializing phase

and “Proof of forgery” algorithm is provided for the signer to prove the

signature is forgery. If a forgery occurs, the signer can show that the

underlying computational assumption has been broken and stop the system.
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The detailed scheme is described bellow.

(1) Initializing: The trusted dealer randomly selects two large primes
p and q such that p=2p+1 and q=2q+1, where p' and Q' are also
primes.  Then s/he calculates n=pgq and ¢n)=(p-1)(Q-1). The
trusted dealer randomly chooses e, and d, such that eyd, =1mod¢(n).
Then s/he selects a random number « € Zn* and computes £ =a" modn.
The trusted dealer publishes her/his public key (a,n), keeps his private key
d, secretly and sends (ey,f) to the bank via secure manner. After
receiving it, the bank randomly selects het/his private key (k;,k,,k;,k,),
where k; € Zn* and computes S =a“p° modn, a, = ak3ﬂ1k‘ modn and
a, =ak“ﬂ1k2 modn . Finally; ‘the bank ‘publishes her/his public key

(B,,a,,a,) and a one-way hash function H().

(2) Withdrawing: The payer randomly selects a integer r as the
blinding factor and calculates M =rH(m)modn, where m is the message.
Then the payer sends the blinded message M and X=H(r)modn to the
bank.  After receiving it, the bank computes S, =m(k,x+k,) and
S, =Mm(k,x+Kk,), sends (5,,S,) to the payer, and deducts w dollars from

the payer’s account.
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(3) Unblinding: The payer computes s, =r"'S and s,=r"'S,. The
3-tuple (m,s;,s,) is the electronic cash in our fail-stop electronic cash

scheme.

(4) Depositing: When the payee receives an electronic cash (m,s,,s,)
from the payer, s/he can check the correctness of the electronic cash by
verifying whether the formula a®B,” =(a,"a,)"™ modn is true. Then
s/he requests the bank to check whether the electronic cash is fresh or not.
The payee accepts this electronic cash when the electronic cash is correct
and fresh. The bank will store this eléctronic cash (m,s,,s,) in the

database and deposits w deollars to the payee’s account.

Proof of forgery algorithm. When the forged electronic cash

(m,s,',s,") satisfies the verification formula, the bank can prove that a

forgery has occurred by executing the following steps.
a. To construct the right signature (s,,S,) on the message m.
b. To compute Z, =(s,'-s,) and Z,=(s,-5,").
c. To compute y=e,(Z,—-Kk,Z,)-k,Z, =cg(n)

d. To compute y=2"c, where heZ and ¢ is odd. To select a

random number aeZ '~ and to calculate ¢, =a°modn, where ¢, #1.
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Next, to compute ¢, =c_, modn until ¢ =1 (if ¢_, =-Imodn, to
re-select a ). Finally, to calculate GCD(c, , +1,n) to obtain the
non-trivial factors of n, where i is the minimal indexing such that

¢, =1. (This is the Miller-Bach’s method [33, 2] to factor the integer).
(5) The non-trivial factors of n is the proof of forgery.

The bank can prove that a forgery has occurred by revealing the

non-trivial factors of n and then the bank can stop electronic cash scheme.

5.1.3 Security Analysis
The proposed fail-stop electronic ¢ash scheme is secure and it satisfies

the following properties:

(1) Correctness: Any valid electronic cash which produced by the bank

can be verified through the verification formula.

(2) Unforgeability: The polynomial-bounded bank cannot forge an
electronic cash and the forger with more powerful computational

capability is nearly infeasible to forge an electronic cash.

(3) Proof of forgery: The bank can use a polynomial-time algorithm to

prove that a forgery has occurred.
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(4) Untraceability: Given an electronic cash that produced by the
proposed scheme, the bank is computationally infeasible to trace the

instance of the withdrawing phase that produces that electronic cash.

The proposed scheme is based on the fail-stop blind signature and its
correctness, proof of forgery, and unforgeability properties are similar to
the fail-stop blind signature scheme. We show the untraceability property

is also satisfied in the proposed scheme as follows.

Theorem 4.1: The bank is computationally infeasible to trace the
instance of the withdrawing phasejthat ‘produces that electronic cash
(m,s,,s,).

Proof: The bank obtains M=rH(m) and x=H(r)modn in the
withdrawing phase. In the unblinding phase, the bank can obtain
s,=r"'S =(kx+k)H(m) and s,=r"S, =(k,x+k,)H(m) . Because the
blinding factor r is randomly selected by the payer, the bank is
computationally infeasible to trace the instance of the withdrawing phase
that produces that electronic cash. The proposed electronic cash scheme
satisfies the untraceability property that can preserve the anonymity of the

payers.

Hence, the traditional electronic cash schemes are only
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computationally secure for the bank because a forger always can forge an
electronic cash with more powerful computational capability. In this
section, we propose a RSA-based electronic cash scheme which has the
fail-stop capability for the bank to overcome that weakness and it also can

obtain the untraceability property for the participants.

5.2 An Untraceable Electronic Ticket Scheme for

Information Hiding

In carrying out electronic commerce-over the internet, it is necessary to
consider the case where” anonymity. of . participator is concerned.
Untraceable electronic ticket (e-ticket) makes it possible for customers to
transmit their e-tickets through communication networks during
transactions under privacy protection. Because the security and privacy of
e-ticket can be guaranteed and the scenario of e-ticket transactions is
similar to that of paper-ticket transactions, this kind of advanced digital

ticket will be popular in electronic commerce.

In an untraceable electronic ticket protocol, a payer first purchases an

e-ticket from the bank and then pays it to a web server for some designated
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services such as movie watching, page viewing, and so on. The key point
is that it is computationally infeasible for the bank to derive the link
between the purchasing stage and the paying stage, i.e., given an e-ticket,
the bank cannot derive the instance of the purchasing protocol which
producing that e-ticket. It is usually referred to as the untraceability (or
unlinkability) property [1, 5, 8, 16, 18, 41, 42] of the e-ticket. This
section presents an efficient electronic ticket protocol for information
hiding. Furthermore, the method can be applied to the electronic ticket
systems which require freshness (or double-used) checking of e-ticket

without affecting their infrastructures.

5.2.1  The Proposed Electronic Ticket Scheme

Based on the enhanced generic blind signature scheme with double
hashed message described in section 4.2, the proposed electronic ticket
scheme is introduced as follows. The identity of the web server is
embedded into e-ticket to reduce the overhead of double-used checking.
Besides, the identity of a payer is also embedded into her/his e-ticket to
make this protocol more flexible. The proposed protocol consists of three

parties (a bank, payers, and a group of web servers) and four stages
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(initializing, purchasing, paying, and depositing). The bank and the

payers of the electronic ticket protocol are regarded as the signer and the

users of the blind signature scheme respectively. The detailed protocol is

described as follows.

(1) Initializing: Initially, every payer performs an account

establishment protocol with the bank to open an account in the bank.

(2) Purchasing: To purchase an e-ticket which costs w dollars for a

web server with identity 1D, from the bank, a payer with identity ID;

forms a message M=(ID; || y)€ M pmwhere yeR is chosen at random by

the payer and || is the string concatenation operator. The payer randomly

chooses a blinding factor ‘reR , and  then computes and submits

B(H(H(m)| ID,,),r) to the bank. After verifying the identity of the payer

through a secure identification protocol [7, 9], the bank computes

S(B(H(H(m)| ID, ),r)) and sends it back to the payer. Then, the bank

deducts w dollars from the payer's account in the bank. After receives

the signing result S(B(H(H(m)|/ID,),r)) , the payer performs the

unblinding operation U(S(B(H(H(m)|| ID, ),r)),r) to obtain the signature

S(H(H(m)|| ID,)) : The signature-message pair

t=(S(HHm)| ID,)),H(M)| ID,) is an electronic ticket in the protocol.
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(3) Paying: When the payer pays a web server, namely ID,, the
e-ticket, s/he sends t to the web server. After verifying V(t) =True, the
web server has to check whether the e-ticket is double-used or not. If t
1s not found in the web server's database which records all used e-ticket,
then the web server will accept this payment. Finally, the web server

stores the e-ticket in its database for future double-used checking.

(4) Depositing: When the web server's database is full or some event
specified by the web server occurs, the server deposits all of the e-tickets in
database into its account in the bank and clear its database. Since the
identity of web server is embedded into e-ticket, each web server can check
whether the e-ticket is double-used or not by itself. In other words, the

traffic between the web server and the bank is largely reduced.

5.2.2  Security Analysis

The proposed electronic ticket scheme satisfies the following
properties.

(1) Ownership: In some special situations such as to claim the
ownership of a lost or stolen e-ticket, the e-ticket owner has to convince the
bank or others of the ownership of her/his e-ticket. When a payer decides
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to prove that s/he is the owner of her/his  e-ticket
(S(HH(mM) || ID,, )),H(M) || ID,,), then s/he just needs to show m, where
m= (1D, ||y). Due to the uninvertability property of the one-way hash
function H(), given H(m), no one except the payer knows the value of m.
In fact, ID, can be replaced by any other meaningful messages for other

specific purposes.

(2) Untraceability: In the 2-tuple t=(S(H(H(m)]| ID,)),H(m)| 1D, )

produced by the above protocol, S(H(H(m)|/ ID,,)) is the signer's signature

on H(m)| ID,. According to S and V defined in section 4.2.1, we

have that V(t)=True, and it is computationally infeasible for any one to

compute the signature S(H(HmM)]|ID,) on H(mM)| ID, without the

signing function S. Besides, dueyto-the blinding factor r, the bank

cannot link the e-ticket to the payer.”""Tn other words, given the e-ticket

(S(H(H(mM) || ID, )),H(m) || ID,,), it is computationally infeasible for the bank

to derive the instance of the purchasing stage which produces that e-ticket.

Thus, the proposed scheme can achieve the untraceability/unlinkability

property.
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Chapter 6 Conclusions

We have presented cryptanalysis on a new Rabin-like blind signature
scheme to show that Chen et al.’s scheme can be compromised when
choosing some particular blinding factors. Then, the traceability attack
claims on RSA-Based partially blind signature scheme, ElGamal blind
signature scheme and proxy blind signature schemes are also analyzed and

corrected in this dissertation.

A fail-stop blind signature scheme 'is.proposed to protect the signer
against a forger with more pewerful computational capability and obtain the
anonymity property for the participants. It can be applied in more critical
system like electronic payment systems which need higher security against
more powerful forger. We also presented an improved blind signature
scheme based on the elliptic curve cryptosystem. Comparing with
Yeh-Chang”s scheme, it can reduce 50% storage requirements for each

signature and speed up performance more than 36%.

Based on the proposed fail-stop blind signature, we have constructed a

untraceable fail-stop electronic cash scheme. The proposed electronic
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cash scheme has the capability for the bank to stop the electronic cash

scheme when a signature is forged. It can obtain the unforgeability for the

bank and the untraceability property for the participants. We have

presented a generic blind signature scheme and design an untraceable

electronic ticket protocol for information hiding. The wuntraceable

electronic ticket protocol can check whether the e-ticket is double-used.

In future research, we will consider to design some signature schemes

with fail-stop capability for the signer against the forger with more

powerful computational capability. Moreover, the untraceable signature

scheme is also the important issue to be discussed.
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