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Thermal fluctuations and disorder in

2D Ginzburg-Landau model

Student : Hung-Yeh Lin Adviser : Prof. Baruch Rosenstein

Institute of Electrophysics

National Chiao Tung University

Abstract

The thermal fluctuations:and disorder-in two difnensional Ginzburg-Landau model in
the quasimomentum basis are studied by Monte Carlo simulation. In the pure vortex system,
the Abrikosov ratio, specific heat, internal energy and structure factor were calculated. The
melting phase transition is weakly first order as is inferred from a double - peak of the internal
energy distribution. The melting reduced (dimensionless) temperature t,,~ -14.1 is
extrapolated for the infinite system size. The behavior of Bragg peaks indicates that the
different of arrangement of solid and liquid states. The temperature and size dependence of
structure factor shows the melting temperature t, of flux-line-lattice and the algebraic
relation of system size and structure factor. The 67, disorder is simulated by adding the
random potential field is added to the quadratic term of the GL energy. The difference
between the pure and the disordered system is demonstrated by snapshots of the vortex
configurations and the structure factor. I tried to locate the glass line of disorder system by

analyzing the distribution of magnetization.
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Chapter 1 Introduction

Type 1I superconductors

Superconductivity is a phenomenon in which electrons pair together into Cooper pairs
creating a coherent state with such remarkable properties as zero resistivity and perfect
diamagnetism. According to the way a superconducting material responds to an external
magnetic field, one can divided superconductors into two different classes: Type I and Type
II. In type I superconductors below the critical value H. magnetic flux is expelled from the
bulk of the material (Messner effect). Raising the external magnetic field past the critical

value H., the Meissner effect is broken and the superconductivity is destroyed.

On the other hand in type Ilisuperconductor, there are three regions divided by two
critical values H.q(T) and «H, (T) inmagnetic phase diagram as shown in Fig. 1.
When external magnetic field H isbelow H_;, the Meissner effect exists in the
superconductor, and the superconductive states have no resistance. In the region H.; <
H < H_, certain amount of the magnetic flux can penetrate the superconductor. The
sample is divided into two states, normal areas (cores) and superconducting areas. At
relatively small magnetic flux penetrates the material mostly in normal cores. The flux lines

enter the material with vorticity quantized, the vortex was also called Abrikosov vortex or
. . . h . . .
fluxion, each vortex carries one unit of flux @, = i This phenomenon is called mixed

state or Shubnikov phase. The superconductivity is destroyed and there are no vortices in
the superconductor while the strength of the external magnetic field H larger than the

second critical value H,,.



Because of type II superconductor can endure stronger magnetic than type I
superconductor, the type II superconductor is quite practicable for both academic and

industrial development.

Normal State
3)

Mixed State
2)

Meissner State

(1)

T, T
Fig. 1-1.

Schematic magnetic phase diagram of a type Il superconductor.
(1) Meissner State (2) Mixed State (3) Normal State.

Abrikosov vortices in the mixed state, lattice and its melting

Two major characteristics of the mixed state are the coherence length § which is the
size of the normal core and the London penetration depth A on whose scale the
supercurrent (current associated with Cooper pair) decays. The regular arrangement of the
vortices is called Abrikosov lattice similar to an atomic lattice. Usually they arrange
themselves in a form of hexagon to minimize mutual repulsion. If we raise the temperature

above a certain value T}, the Abrikosov lattice melts into the vortex liquid phase.

_2-



London and Ginsburg-Landau approximations

The two basic approximations to phenomenologically describe superconductivity on
microscopic scale are London and Ginsburg-Landau approximations. The difference of
these two approximations is that the London approximation assumes the constant order
parameter and Ginsburg-Landau approximation uses the wave function to describe the
order parameter with constant external magnetic field. Microscopic theories like the BCS
theory for conventional s — wave superconductors, while can explain the phenomenon with
homogeneous order parameter successfully, are too complicated to treat an inhomogeneous
mixed state in external magnetic field, Ginsburg-Landau theory can describe the

phenomenon of superconductor more easily.

Layered superconductors

Generally high T, cuprites are layered materials, which consist of the copper-oxide
planes. The electrons comprising Cooper pairs move mostly within the copper-oxide planes
and the properties of superconductivities become largely two dimensional. The anisotropy
parameter gamma is not very large in optimally doped YBCO (y = 5~7), but becomes
very large for BSCCO or underdoped YBCO (of order 50 or higher). In this case, the
thermal fluctuations are practically two dimensional. This is seen experimentally by the
scaling of magnetization, specific heat etc. In addition many other layered materials (like
organic superconductors) are also nearly two dimensional. Recently layered superconductor
BSCCO became a major material for applications like the THz wave generator. In addition
to its phenomenological significance, the 2D system is by far simpler to simulate compared

to the 3D one (which is still rather inaccessible to the MC method).



Present work

This thesis focuses on the properties of the two dimensional type II superconductors
with the external magnetic field in the region H.;y < H < H,, . In this field range, the
superposition of magnetic fields of vortices makes the internal field B nearly
homogeneous. Moreover for |H., — H| < H,, , the magnetic field is high enough so that
so called higher Landau levels excitations can be neglected. Low energy states all belong to
the lowest Landau level (LLL). Therefore we only consider the order parameter ¥ (x,y)
constrained to the LLL. In high T, superconductors (and in some relatively low T,
layered materials), the thermal fluctuations on the microscopic scale are not negligible.
Strongly thermal fluctuations on the microscopic scale affect such characteristics of the
high temperature superconductors asspecific heat, magnetization, structure factor etc. They
lead to Abrikosov lattice melting and complicate the vortex matter phase diagrams. In real
materials vortices are generally pinned by impurities creating disorder in the vortex system.
Disorder determines the most important characteristic of a superconductor — critical current.
The materials keep the main property of a superconductor, its zero resistance, only when
the vortices are pinned. In this case the vortex system become a “vortex glass” or a "Bragg

glass”. Hence, it is important to find the glass line of the vortex system.



Previous simulation and theoretical results

The Monte Carlo simulations on phase transition of type II superconductor were done
over the years by many researchers. Clean system in the presence of thermal fluctuations
was simulated by Y. Kato and N. Nagaosa' who used the quasi-periodic boundary condition
within the LLL approximation in Landau gauge. The finite size scaling of the algorithm
was estimated to be Ng*(N; is defined as the degrees of freedom). J .Hu and A. H.
MacDonald’ used quasimomentum basis to speed up the simulation, so that the finite size
scaling becomes N;. J .Hu and A. H. MacDonald, Kato and Nagaosa, found the first order
phase transition from crystalline to liquid phase, by the double peak in probability of

energy distribution P(E).

Disordered system was first sSimulated only recently by M. S. Li and T. Nattermann®.
They also claimed the model-of the disorder-system with expanding the random Gaussian
disorder in Hermite polynomials, They presented the results of the flux lattice melting
transition and the behavior of different correlation factor. They concluded that the phase
transition from the curves of reduced temperature dependence of structure factor splayed
out near the melting temperature. No glass transition was found for the highest value of

disorder considered the disorder parameter { = 0.01.

Theoretical estimates of melting temperature with and without disorder. D. Li, B.
Rosenstein and V. Vinokur' provided a theory to determine the glass transition in a
disorder vortex system. In their theory, the behavior of the magnetization in vortex glass is
different from the one in vortex liquid. I tried to find the glass line of a disorder system by

analyzing this quantity.



There are six chapters in this thesis: the model of 2D the lowest Landau level GL
free energy and quasi-momentum basis are introduced in Chapter 2. The Metropolis
algorithm and the Monte Carlo calculations are shown in Chapter 3. The results and
discussion of clean system are studied in Chapter 4. The vortex systems with disorder are

analyzed in Chapter 5 and I discussed the conclusion in Chapter 6.

Chapter 2 Model and its major simplifications

2.1 Ginzburg Landau free energy for constant magnetic field

Our starting point is the two dimensional GL free energy:

F = [ dxdy 2 |(v:= = a) lp|2 + o' (D +UC)IPE+ 22w @
here W is the order parameter of the superconductivity, the gauge A = (By,0) describes
a nonfluctuating constant magnetic field. m and e* are the mass and charge of the
Copper pair. a'(T) = aT.(1 —t) and b'(T) are phenomenological parameters; t = T /T,.

Throughout most of the paper will use the following units. Unit of length is magnetic

I3 ) P
length [ = 7 the coherence length & = Gmato) and unit of magnetic field is H,,, so
that dimensionless magnetic field is b = Hi. I introduce weak so called 6T, disorder by
c2

adding a space dependent contribution U(x, y) to the coefficient of quadratic term.



Lowest Landau level approximation and quasimomentum basis

Expanding the field in quasimomentum basis only within the LLL"

Y(x,y) = Xk Ck 1 (2.1.2)
| 2m c [mr(e—1)  2n(x —ky) . 1 " 21 \?
Pk = EZexp l > + " K—xx—§<y+ x—?K> )

(2.1.3)

where the coefficients C), are complex numbers and ¢, are quasi-momentum basis. We
can find the property of ¢, easily
@ = exp{—ixk,}po(x — ky,y+ k). (2.1.4)
It is convention to prove that quasi-momentum basis satisfy magnetic translations'®
which is defined as
Tapi =™ oy, (2.1.5)
here d is a general displacement vector and Ty is magnetic translation operator.
T, = e P, (2.1.5)
with a generator defined by
P, = —id; — Byr; = p; — Bi1y,

_[0 b

B =
0 0

],Ai = By .

B is the Landau gauge matrix.



The sample and periodic boundary conditions

My sample has following dimensions:

L =Ld, + Ld,. (2.1.6)
dy = (a,0), dy =a(3,2). 2.1.7)

here a = \/47\/—7;. Thus, the area of sqewed rectangle is L?d, X d, = 2N, , N = L?.

According to definition of d; and d,, the basis vectors d; and d, of the reciprocal

lattice are

d, = %”(1—%) d, = %”(oj—g) (2.1.8)

we work in reciprocal lattice VGC&W%With the basis vector is

kyd,. (2.1.9)

[ I ] I
(e A o T

H
T
T

I
I

: !IFi.

I
NN
INEN|

IENEEN
10T

d, = (a,0) Fig. 2-1-1.
The general displacement vector of sgewed rectangle.



The quasi-momentum basis satisfy magnetic translations

T, ¥W(x,y) =e™*¥(x,y) (2.1.10)
and then we have
eikL =1
2T
k, = Tnx,nx 0,+1,+2,
2T
k, = — Ny, My = 0,+1,+2,.. (2.1.11)

(2.1.12)

Thus, the basis satisfy magnétic translations and we have the periodic boundary condition.

2.2. Free energy expressed via quasimomentum variables. Clean

case.

The GL free energy equation for pure vortex system is
h?2 ie* 2 br
F=[dxdy —|(v-Sa)¥| +al.A-DWR+Z W[ (22.1)

T x
P2 x> =
12b' 41 l

In order to get the dimensionless LLL free energy, I rescaled ¥2 —

y = % , then we obtain

F
Z = [dxdy |ar|¥)? +21¥)4]. (2.2.2)



Zaﬁnl/zl

here a; = is the reduced temperature, and ag = aT.(1 — b — t).

p'Y211/2
I used some basic formulas'® to calculate the dimensionless GL free energy as follows.

The two function product is

[ dxp(M)ep(r)exp[—ir- q] = 4n*Aq, F(q). (2.2.3)
here
F(@) = exp[Z(QF — Q)] exp |- L — Hee  Txtr] (22.4)

and the Kronecker delta is defined by:

Agi=Ag—k) = { Lif q=k+Q.di +Qzdy (2.2.5)
’ 0, otherwise

The momentum q is composed of an (‘integer part”

Q= 0Q.d; + Q,d,. (2.2.6)
Q= ..,—-1,0,1,.., and @ = ...,—1;0, 1, ..., which belonging to the reciprocal lattice
and a “fractional part”
k=1lkid, +kyd,. (2.2.7)
ki, = 0,%,%, ,L_Tl and k, = O,%,%, ,% which belongs to the Brillouin zone.

The inverse Fourier transform of Eq.(2.2.3) is

. " 5
Po(Mi(r) = Z expli(k + Q) - rlexp [% (Q? + Q1)] exp [_#

Q1d1+Q2d;

i(ke +Q)(ky +Qy)
- 2( r+ Q) + ik, (ky + Qy)].

(2.2.8)

-10-



The quadratic term of GL free energy is

p(x,y) =[x, V)I* = XiiCkCiorer- (2.2.9)

It can be verified by using Eq.( 2.1.4) and Eq.( 2.2.8) to Eq.( 2.2.9), see Appendix A, that

p(x,y) = Z Z exp{ily(kx — lx)} exp[i(kx —L+0,)x+ i(ky -1, + Qy)y
kKl Q

' k—1+0Q)?

— i(ky = Ly + Q)L | exp [%T (Qf - Ql)] exp [_%
[(ky — L+ Q) (ky — L, + _ .

— l( Q )2( y y Qy) + lkx(ky - ly + Qy)] CkCl .

(2.2.10)
and then calculated p(p + P) as the fourier transform of p(x,y), see Appendix B, we

have

plp+P)= Z exp {in [—P’(le 1))

l

1 in
+ E(P1 +2[{ =P"[2(pp, + P) — (p1 + P1)]l} exp [? (P

, (@+P)? .
—P )] exp I——4 Clpatialipo+121 G -

(2.2.11)
with two conditions :
1if (;pm+lL)<1->P =P,P'"=P,
2.if (p1+l1))>1->P =P +1,P'"'=P, +2.
Thus, the inverse Fourier transform of g(x,y) is
p(x,y) = Xp+pP(p + Pexpli(p + P) - 1]. (2.2.12)

-11-



We turn back to calculate the terms of GL free energy.

Quadratic term

1
i e =[5 s Penlitp + )11 = i 2wi0)

ar N
=7LZZC,CI.

(2.2.13)

Quartic term

1
S Y (x, 4
) 1P

1
= Qf Z p(p+ P)expli(p+ P)

xy p+P

1
7] ) p@l PIexplipi P 11 = S 12 D 5o+ P50+ P)

p/+Pr p+P

1
=21 ) 15+ PP

p+P
(2.2.14)

Substitute (2.2.11) into (2.2.14), we have

-12 -



1
— | P&, y)|*
87TLyI (x, y)|

=-12 Z Z exp {in [—P’(le - 1)
pP !l 1

1 in
+ E(P1 + 2l — P[22 + P,) — (p1 + P1)]l} exp [? (P

el

2

, (p+P)?*] .,
—F )] exp I_ 4 C[p1+l1]'[P2+lz]Cl

(2.2.15)
The detail calculation of dimensionless Ginzburg Landau free energy for pure vortex

system is shown by previous work. Next, we calculate the disorder term and define the

dimensionless parameter { which controls-the relative disorder strength.

2.3 Disorder term in the GL free energy

The disorder term of GL free energy function is

[,y aT:(1= UGN (2.3.1)
with white noise correlator.
U(x,y)U(0,0) = R5(x)6(»). (2.3.2)
Rescaling field as 2 - leT'4n P2 and setting dimensionless lengths via x — % y o %,
we obtain the disorder term of dimensionless GL free energy equation:
foy Wy P12 . (2.3.3)

-13-



Here

laT.(1-t)

W y) = 5oz U y)- (2.3.4)

According to Eq. (2.3.3), we have the following variance

W (x,y)W(0,0) = R'§(x)6(y), (2.3.5)

laT,(1-t) 12

where R’ = [—z(nb'r)l/z

Representation of the random potential in terms of a complex random numbers

I used the random potential in the disorder term of GL equation as

Ulx,y) = @0,0,0,0

p1>0,P120,p2=0,P2=0

+ ap, op 08xp[—i(p+P) - T]}

+ z {appexpli(p + P) - 7] + a;, pexp[—i(p + P) - r]}.
p2+P2>0

(2.3.6)

here a is the complex random numbers, a,,p = ai(p +P)

-14 -



a,pexplilp+ P) - r]

o mk a, op cexp[—i(p+P)-1] @g,0,0,0 @y, 00, 08%p[i(p + P)-7]

=

ay pexp[—i(p + P) - 7]

=N

Pyt Py

Fig. 2-3-1.
The distribution of the random potential in momentum space

and its distribution is divided into'five-pattss-see Fig. 2-3-1. The white noise correlator is

U(x,y)U(0,0) = a0

+ Z {a,,0,p,,0%p, 0,p,0exP[i(P + P) - 7]
p1>0,P120,p2=0,P2=0

+ ap. 0p,,0p,,0,p,08Xp[—i(p + P) - T]}

+ Z {ay pappexpli(p + P) - 7] + ap pay pexp[—i(p + P) - rl}.

p2+P2>0
(2.3.7)
with some basic relations as follows:
5 R
ap,0,00 = L2
7 _ 5 _1 R _

Rea? = Ima® =-— = 0%, (2.3.8)

2 27l

-15-



here g2 is the variance of the normal distribution. Substituting Eq.( 2.2.11), Eq.( 2.3.4)
and Eq.(2.3.6) into Eq.(2.3.2), the disorder term of dimensionless GL free energy equation

is

j W e )% ()2
X,y

laT,(1—-1t) | _
= 2mL? 2 T2 p(0)ag 0,00
+ z {ﬁ(p + P)ay, op, 0t C- c.}

P1 >0,P120,p2 =0,P2 =0

+ z {p(p + P)a,p + c. c}}

P2 +P2>0

(2.3.9)

Relation to the disorder parameter T of Li and Nattermann

M. S. Li and T. Nattermann® defined the dimensionless parameter  to control the
relative disorder strength, and expand the random Gaussian disorder in renormalized
Hermite polynomials to express the disorder term of GL free energy equation. In order to
use the disorder parameter C in our simulation, I calculated the relation equation of
standard deviation ¢ and disorder parameter . The disorder term of M. S. Li and T.
Nattermann is

[ d%r a8T,(r)|¥|?, (2.3.10)

here 8T,(r) is real and Gaussian distributed with

-16 -



6T.(r) =0,
8T, (r)8T, (") = (*TFE%8:(r —1"). (2.3.11)
The typical fluctuations 8T.(r) = (T, of the mean field transition temperature. They

defined the disorder parameter with following relation

- b1/2

Connecting our disorder term with their notation, we have
R = L& r272g2 2.3.13
- 47Tb,TZ c f ) ( b )
use the reduce temperature ar we can rewrite R as follows
! 12 Z
R = Ea%fz, (2314)
and substitute Eq.( 2.3.14) into*Eq.( 2,.3.8)
7 A T 23.15)
2(rb!T)1/2 eam2[2 1> "~

Thus, we have the relation between standard deviation ¢ and disorder parameter (. By
controlling the specific { to generate the corresponding complex random fields, we can get

various degree disorder vortex systems.
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2.4 Thermal fluctuations

The general form for partition is
Z = Zall states e_}[/kBT' (2-4-1)
where H is the Hamiltonian for the system, T is the temperature, and kg is the

Boltzmann constant. The partition function is

7= f@zp*(x, Y)DY(x, y) exp (l;T}[T>

a
_ j (1_[ dReC, dlmc,) exp |5 12 Z CiC,
l l
1
+ ZLZ Z 2 exp {in [—P’(le -1)

p,P 1

1 in
+ E(P1 + 2L, =P)2(py + P,) — (p1 + P1)]l} exp [? (P

2

, (p+P)?*]
—F )] exp I_ 4 C[p1+l1]'[P2+lz]Cl

(2.4.2)

We can use Eq.(2.4.2) to calculated the thermodynamic quantities. For a example, the

average of energy is

K
kpT
_ Zall states He "5
Z

(H)

(2.4.3)
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Chapter 3 Monte Carlo Method

3.1 Metropolis algorithm

The standard Monte Carlo method with Metropolis allgorithrn21 was used to simulate
the two-dimensional pure and disordered vortex system. In the classic Metropolis method,
we use a transition probability which depends on the difference of energy AE between the
initial and trial configuration to determine whether the trial configuration is accepted or not.
Now I introduce my Monte Carlo method as follows. First, we choose an initial
configuration and calculate the initial energy E,,. Second, we choose a site C; € CNs
randomly and generate the trial configuration with C;"*" by using the rule: C;"*" —

C ]-"ld + €AC, where AC is a complex number which is chosen randomly from the region

|[ReAC| <1 and |ImAC| <1 inithe complex plane. Third, we calculate the energy E, of
trial configuration and the difference of energy AE, here AE = E,, — E,,,. If AE < 0, the
system accepted the trial configuration, but if AE > 0, the trial configuration is accepted
with a probability exp(—BAE). Generating a random number r uniformly in the

interval [0,1 ], if r < exp(—BAE) the trial configuration is accepted, otherwise it is
rejected. This process is called Monte Carlo step/site (MCS/site). Note that the old
configuration is still counted again for averaging if the trial configuration is rejected. By
using Monte Carlo method, the system will fall into the stable states and reach the

equilibration, and the characteristics of vortex system can be measured.
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3.2 Monte Carlo calculations

Tused Eq.(3.2.1) to vary the value of a specific wave function coefficient C; in our
Monte Carlo simulation

CreY = CP'E +81,-5,81,-j, (3.2.1)

Iyl
here A= eAC. Note that j and [ are vectors which composed of two reciprocal vectors
d, and d,. Furthermore we used Eq.(3.2.1) to calculate the energy of trial configuration
and only discussed the changes of the summation of wave function coefficient product, the
detail of Monte Carlo calculations are worked out in Appendix C. The summation of wave
function coefficient product of trial configuration is

news ~new __ old *(rold
Z Clblz Clblz - Z(Ch,lz e 811—j1812—j2A) (Clblz + 811‘]1812—12A)

11,02 1,0

11,0,

— ld ldx ldx ld A *
- Z(Cloplzcloplz + 611‘]1812—12CO A+8y,-j, 61, Clople +AA )

11,12

— oldx old A* * old roldx
= P A + CP1 A" + AN + 2 ceidc

ll,lz *
l4,l,

(3.2.2)
Evidently Y, ; C l‘ﬁ?z C l‘ilfz* term of Eq.(3.2.2) can be calculated directly by old
configuration, hence we can store it to simulate the vortex system more efficiently. The old
calculation results always can be applied in new one and a lot of computer time is saved,
the CPU time in one Monte Carlo step o L2. There are six different size (4 X 4,6X 6,8 X
8,10 x 10,12 X 12,16 X 16 numbers of vortices) systems in our simulation. We took

5 X 105~1 x 10° MC steps to reach the thermal equilibration and calculated the physical

quantities over 1 X 10 ~ 1 x 107 MC steps. The physical quantities were measured every
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30 ~ 50 MC steps. We control € in a reasonable region to make the acceptance ratio is
0.3 ~ 0.4 and then the vortex system reach the thermal equilibrium state efficiently. All the

simulations were started from the heating processes with the initial configuration which is
defined as follows: C; = /lg—ﬂ , here C; is one of all coefficients of wave function and
A

others are equal to zero, 5, ~ 1.16 is the mean-field value of the Abrikosove ratio.

Chapter 4 Results for the clean system subject to thermal

fluctuations

4.1 Abrikosov ratio, hexagonal symmetry

Abrikosov ratio explains the configuration of the vortex system. At low temperature,
the system is in solid state and the vortices are arrayed regular as a atomic lattice, otherwise
the vortices are arrayed as liquid in high temperature region. The definition of Abrikosov
ratio is

4
’ 2% (J, o)l - @1
[/, @12
The results of Abrikosov ratio for different size are shown in Fig. 4-1-1. The value of S,
is close to the mean-field value 1.16 at low temperature and the vortices are close to each

other. It explains that my Monte Carlo simulation is reasonable. The Monte Carlo data of

various size system N are collapse onto a single curve unless ar near the melting
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temperature. Note that the curves of the larger system size have slightly jumps

while ar ~ t,,.

L —o-Nste /

—o— Ns 36 d
I Ns 64

16 | —v— Ns 100 (\
o | Ns 144 /u
o 1sL o Ns2s6 y
[
3 ://
S 14l /
S
< 13} o

h/E/Q/
12 F o=

Heo-0-0-0-9

1.1 1 f 1 ' 1 L 1 L 1
-20 -15 =10 -5 0

Fig. 4-1-1.
The relation between Abrikosov ratio 84 and reduce temperature ar.
The squares, circles, triangles, inverted triangles, diamonds and
pentangle correspond to system size N; = 16, 36, 64, 100, 144, 256. All
data are in the same curve unless ar~ t,,, this phenomenon indicates
the size dependence is negligible.
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4.2 Normalized specific heat

The definition of normalized specific heat is —. Here

_1[,[ouy? OH,\ 5
¢ =3 |5 - G2l (“2.)
which is the specific heat from the energy fluctuation and AC,, is the mean-field value of
the specific heat. The results of normalized specific heat for different size are shown in Fig.

4-2-1. The curve has a pick indicates that the vortex systems have a melting transition near

the melting temperature. In high temperature region (above t,,), the normalized specific

heat decays quickly.
t2r " Ns16
11 | v - e Ns 36
A - Ns 64
. 8
_tor S ERSTMISERTE L0 v Ns 100
S ool . | Ns 144
s [ # ¢ Ns256
g 08 - N
E 0.7 -— o
= 0.6 -
g -
o 05} .
= -
04
I 8
0.3 [
1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
16 14 12 10 -8 6 -4 2 0 2
aT
Fig. 4-2-1.

. . c .
The normalized specific heat ﬁ as a function of the reduce

v

temperature ar. The squares, circles, triangles, inverted
triangles, diamonds and pentangle correspond to system size
N, = 16,36,64,100, 144, 256.
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4.3 Internal energy and its distribution
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Fig. 4-3-1.
The dimensionless internal energy % versus reduce
temperature ar for vortex number Ny = 256.

Internal energy for Ny = 256 vortex system

The results of the dimensionless internal energy for Ny, = 256 are shown in Fig.
4-3-1.Ttook 3 x 10° Monte Carlo steps to measure this quantity, and used 3 X 10® Monte
Carlo steps for the equilibration. My Monte Carlo data are very close to the results which
were obtained by Kato and Nagaosa and then the simulation method which I used is
reasonable. Note that I didn’t find the indication of phase transition in the results. In order
to discuss the phase transition of 2D vortex system, I measured the probability of energy

distribution P(E) and the history of normalized internal energy.
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The probability of energy distribution P(E)

The probability of energy distribution P(E) for various system sizes are shown in
Fig. 4-3-2. As the result, P(E) has a double-peak, the right peak corresponds to higher
energy which represents the liquid phase and left peak corresponds to lower energy which
represents the solid phase. The double-peak distribution indicates that the vortex system has
a first order phase transition when ar ~ t,, (here ar = —12.5 for Ny = 100,

ar = —12.8 for N, = 144, a; = —13.02 for N, = 256).
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Fig. 4-3-2.

The energy distribution P(E) versus E with different vortex number:
(@) Ng =100, (b) Ng = 144, (c) N, = 256. Each temperature
approach the melting temperature of different Ns and the double peak
is suggests that the first order phase transition exists in the melting
process of the vortex lattice.
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The history of the internal energy
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Fig. 4-3-3.

The history of normalized internal energy E with N; = 256,a; =
—13.02. The sharp transition exists between the two regions
with different energy. This phenomenon suggests the first order
phase transition exists in the melting process.

Fig. 4-3-3 shows the history of the normalized internal energy of Ng = 256 vortex
system at ar = —13.02, we applied the solid initial condition to simulate the vortices
system and recorded the internal energy every Monte Carlo step. Note that we used
2 x 10> Monte Carlo steps to reach the equilibrium which are not shown in the result. The
relaxation processes consists two regions and a sharp transition region. The lower internal
energy region corresponds to the metastable state while the higher internal energy
corresponds to the stable one. Because of the sharp transition region is between the other

two regions, the first order phase transition actually exists in the two locally stable states.
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4. 4 Vortices configuration and Structure factor

Vortices configuration

In Fig. 4-4-1, we shown the snapshots of the spatial distribution of the magnitude of
the order-parameter field |(x,y)|? for ar > t,, and ar < t,,. There are 256
vortices in each system and we used 1 X 10°® Monte Carlo steps to reach the equilibration.
I plotted the snapshots in the form of a rectangle. The range of x and y is 0~L, and 0~L,,
respectively, here L, = 3Y/*m?/2L and L, = 2r'/2L/3/*. As the results, (a) the vortices
are arrayed regular like a lattice at ar = —15 < t,,, otherwise (b) they arrayed randomly at

aT = _8>tm

(a)
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(b)

Fig. 4-4-1
The snapshots of N, = 256 vortex position for (a) liquid state at
ar = —8 (b) solid state at a; = —15. The range of Xand Y

is 0~L, and 0~L, respectively and the dark spots correspond

to vortex cores.

We transfer the spatial distribution into the momentum space by Fourier transform.

The Fourier transform of the density-density correlation function is shown as follows

Xoo(@ = [ [ (@ 2pa)[2)eial=r), (4.4.1)
We transformed Eq.( 4.4.1) into the other form
Xop(q) = 4m2L*e ™0 /2(|A()1?), (44.2)

with
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A(q) = Z exp {m l—p'(zz2 —1)

l

1 .
+ E(P1 + 20 = P")[2(p + P,) — (p + P1)]l} exp [% (P

—P ')] Clpytal o+ 151 C1
(4.4.3)

Here q = p + P is a reciprocal lattice vector of the Abrokosov lattice and we replaced ql

by q.

The results of the snapshots of the diffraction pattern are shown for ar > t,, and
ar < t;, in Fig. 4-4-2, respectively. Lused (|A(q)|?) to characterize the Bragg peaks:
At ar = —15, the Bragg peaks with hexagonal symmetry are separated and very sharp,
indicating the existence of the triangular lattice of the vortices. But the Bragg peaks are
disappeared and the diagram has a‘circular'shape at a; = —8. Thus, the most distinct
difference of Bragg peaks between liquid phase and that of solid phase is the behavior of
rotation symmetry. If the vortex system is in liquid state, the picture has rotation symmetry.
However, the rotation symmetry will be broken while the vortex system is in solid state.
Next, we calculated structure factor to obtain the melting temperature of the

flux-line-lattice.
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(1a@1?)

S
3
(b)
Fig. 4-4-2.
The snapshots of the diffraction pattern (|A(g)|?) for (a) liquid
state at ay = —8 (b) solid state at a; = —15. Here we set

(IA(0)]?) is neglected.
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Structure factor

The definition of structure factor is

A 1is the area of the sample. In order to discuss the phase transition between the vortex

liquid and vortex lattice, I calculated the structure factor S(q) at the maximum

position g, = (4m)'/2/31/%.

Structure Factor S(q)

1000

100

-
o

—_

0.1

0.01

Fig. 4-4-3.

The structure factor S(q) versus reduced temperature a; for
various system size. The squares, circles, triangles, inverted
triangles, diamonds and pentangles correspond to system size

S(q@) = xpp(@)/A ,
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4
Ng = 16,36, 64,100, 144, 256. Here S(q) is in units %
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Fig. 4-4-4.
The structure factor S(q) versus system size N for various
reduced temperature ar. The squares, circles, triangles, inverted
triangles, diamonds and pentangles correspond to system size

4
ar = —18,-15,—13,—10,—7,—5. Here S(q) isin unitsZ—;.

The temperature dependence of the structure factor is shown in Fig. 4-4-3. As the
Monte Carlo data shows, the curves separate for a; < —8 and collapse onto a single
curve for ar > —8. The curves splay out at a; = —12 + 2 where indicates the transition

temperature of the flux line lattice.

Furthermore, Fig. 4-4-4 shows that the size dependence of the structure. While the
vortex system is in quasisoild state for a; < t,, , the structure factors S(q) are proportion
to the system size N, . However, the Monte Carlo data of structure factor S(q) are almost
constant while the vortex system is in quasi-liquid state for ar > t,,. As the result, our
results are close to the results of Kato and Nagaosa', the slope of the dotted line is

approximately 0.97 and S(q) o N, which corresponds to long-range order. The slope of
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the broken line is approximately 0.85 and S(q) o Ns5 / ®, which corresponds to the size

dependence at the melting point of the KTBHNY theory'*™"".

The melting temperature for infinite vortex system size

-15.0 L 1 1 1 L 1 s 1 s 1 s
0.000 0.025 0.050 0.075 0.100 0.125 0.150

NS-1/2

Fig. 4-4-5.
The dependence of melting temperature t,, on system size
Ns_l/z. By fitting the Monte Carlo data linearly, we found the
melting temperature t,, = —14.10932 for the infinite system
size.

Now we turn back to discuss the melting temperature for infinite vortex system size.
I provided four different system sizes, N, = 162,122%,102,82 and the results of the size
dependence of the melting temperature t,,(N;) are shown in Fig. 4-4-5. For Ng =
162,122,10%, we find each double-peak of the internal energy distribution P(E) are
almost the same high. For smaller system size N, = 82, I didn’t find the double-peak in the

energy distribution diagram. I determined the melting temperature of this system by at what

temperature the rotation invariance was disappeared. In Fig. 3-1-10, I fitted the data by the
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linear equation and found the melting temperature t, = —14.1 £ 0.1 for the infinite
system size. Comparing with previous studies, t,, = —14.3 £ 0.2 for Ny~ oo by Kato
and Nagaosa'; t,, = —13.1 for Ny = 144 by Li and Nattermann’; t,, = —13.2 for

N, = 12 x 14 by Hu and MacDonald”. Thus, the melting temperature which I provided is

close to the result of the previous researchers.

Chapter5S Quenched disorder

5.1 Comparison of the structure factor with that of the pure

system
g
gl —"—Gg0 i i
gs|l —*—LO0OD3
o~ o} oz
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:'ﬂ"' - S
o2 n ]
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1Iﬂ -é I ﬂl EI 10
k!
Fig. 5-1-1.
The wave vector dependence of the structure factor for disordered system
at ay = —15. The squares, circles and triangles correspond to { = 0

(clean system), { = 0.03 and { = 0.2, respectively.
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In this section, I added the disorder term to the GL free energy and discussed the
difference between the clean and the disorder system. The results of k,, dependence of
structure factor for three different { with Ny = 100,a; = —15 are shown in Fig. 5-1-1.
We took 1 X 10° Monte Carlo steps to reach equilibrium and 2 X 10® Monte Carlo steps
for measure the quantity. As the result, the Bragg peaks are very sharp for { = 0 case but
they become shorter for { = 0.03 case and { = 0.2 case. Obviously, we do not find the
sharp peaks for { = 0.2 case. Next I discussed the snapshots of the spatial distribution of
vortices position with different  , the results are shown in Fig. 5-1-2. For (a) { = 0 case,
the system has no disorder and the configuration of vortices similar to an Abrikosov lattice.
Then I applied weak disorder with (b) { = 0.03 to the system and found the vortices
location became slightly irregular. The.configuration of vortices is more irregular as the

result of (c) { = 0.2 case. Thus, if we increase the value of disorder parameter { , the

spatial distribution of vortices position becomes more irregular.

(a)
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(b)

X

(c)
Fig. 5-1-2.
The snapshots of the vortex position for (a) { = 0 (clean system),
(b) Z = 0.03, (c) Z= 0.2 with Ny =100, a; = —15. The range of
xandyis 0~L, and 0~L, respectively and the dark spots
correspond to vortex cores.
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I also measured the reduced temperature dependence of structure factor for various
vortex system with weak disorder ¢ = 0.01. There are six different system sizes in Fig.
5-1-3, each Monte Carlo data had been run 1 X 10® Monte Carlo steps for equilibration
and 2 X 10° Monte Carlo steps for measuring the quantity. Besides, the average value was
done by 80 disorder samples. As the results, the curves splay out at ar = —12 + 2 and
collapse onto a single curve for a; > —7. I found the vortex system with weak disorder still
has the melting transition between solid state and liquid state. It is reasonable that the
melting temperature of the disorder system and that of pure system which we presented are

similar since the disorder term I applied here is weak.
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Fig. 5-1-3.

- . . T4
The structure factor S(q) in units =5, Versus reduce

temperature a; with { = 0.01 for different system size. The
squares, circles, triangles, inverted triangles, diamonds and

pentangles correspond to system size
N; = 16,36, 64,100, 144, 256.
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5.2 The glass line of the disorder system

In this section, I tried to find the glass line of the disorder vortex system. I introduce
another disorder parameter r and glass line temperature a? of the theories of

B. Rosenstein and D. Li'>. The definitions are

(1-t)2Rs

"= teevae (5.2.1)

af =2v2 (Vr - \/i;) (5.2.2)

Gi is the Ginzburg number. In theory, the vortex glass become vortex liquid while ar >

9

ar,

see Fig. 5-2-1. If the disorder parameter r is fixed, we can obtain the corresponding

value a“Tq = c. Hence, I simulated the disorder vortex system with fixed r and tried to find

the theoretically value of aj.

ag
T
liquid
glass
‘\\;’
1——1 =
ar
Fig. 5-2-1.

The phase diagram of vortex glass and vortex liquid which
are separated by a? curve
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The magnetization
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Fig. 5-2-2.

The system size dependence of magnetization for various ar. The
squares, circles, triangles, inverted triangles, diamonds and pentangles
correspond to system size ar = —5,—6,—7,—8,—9, —10, respectively.

The vortex systems were simulated with the disorder parameter r = 0.32. The
Monte Carlo data had been run 1 X 10® Monte Carlo steps for equilibration and 2 x 10°
Monte Carlo steps for measuring the quantity. The statistics and averages were done by 80
disorder samples. Fig. 5-2-2 shows the system size dependence of magnetization for
various ar (—=5,—6,—7,—8,—9,—10). As the results, the disorder average of the
magnetization converges very fast with the system size. The physical quantities don’t

depend on the system size, so that my calculation is meaningful.
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The second moments

© o N e~

Second moments m,
T

20 40 60 80 100 120 140 160

Fig. 5-2-3.

The system size dependence of second moments for various ar. The
squares, circles, triangles, inverted triangles, diamonds and pentangles
correspond to system size ar = —5,—6,—7,—8, =9, —10, respectively.

The results of the system size dependence of second moments for various ar are
shown in Fig. 5-2-3. As the result, the curves decay as the system size increases. In the
theory, the second moments converge to a finite value in the vortex glass state; however,
the second moments converge to zero in the vortex liquid state. Here I set the disorder
parameter r = 0.32 and a¥~ — 8 theoretically. In Fig. 5-2-3, the second moments don’t
seem to converge to a finite value in this range of the reduce temperature. Thus, I did not
find the glass line in my Monte Carlo simulation results. The detail values of other

moments and the magnetization for various a; are shown in Table 5-2-1.
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Table 5-2-1

The Monte Carlo data of the nth moments and magnetization for various reduced

temperature ar.

Ns=36 2th 4th 6th ( fr [ ()|2) /N
-5.000000 1.903627 0.968647 0.785916 33.101730
-6.000000 1.496095 0.981333 0.892610 36.307093
-7.000000 1.465578 1.162532 1.412543 40.434934
-8.000000 1.089013 0.759833 0.472182 45.165741
-9.000000 0.668829 0.850774 0.602358 49.849915
-10.000000 0.369992 1.161049 1.184144 54.602529
Ns=64 2th 4th 6th (J. lp(@)I?) /N
-5.000000 1.181913 1.720579 3.088818 33.150994
-6.000000 0.985165 0.801090 0.487614 36.375821
-7.000000 0.888345 0.895439 0.695364 40.407829
-8.000000 0.363408 1.167023 1.046770 45.035289
-9.000000 0.409480 0.766420 0.508653 49.753961
-10.000000 0.514633 1.354023 1.499346 54.862039
Ns=100 2th 4th 6th (. lp@)I?) /N
-5.000000 0.680257 0.942989 0.748037 33.006740
-6.000000 0.523575 0.804231 0.579638 36.496617
-7.000000 0.522493 0.745477 0.418757 40.465406
-8.000000 0.249057 1.048304 0.979836 44.953665
-9.000000 0.215101 0.875568 0.593321 49.882716
-10.000000 0.237399 0.796513 0.490476 54.705229
Ns=144 2th 4th 6th (J. lp(@@)I?) /N
-5.000000 0.590747 0.921689 0.832652 33.065012
-6.000000 0.437729 1.067987 1.070969 36.591659
-7.000000 0.387085 1.045748 0.974747 40.675267
-8.000000 0.283228 0.772528 0.522839 45.222984
-9.000000 0.159739 1.181599 1.227355 50.131457
-10.000000 0.167486 1.089205 1.051271 54.852637
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Chapter 6 Conclusion

I have studied in this thesis certain properties of idealized 2D type Il superconductor
by Monte Carlo simulation in the quasimomentum basis. The vortex system is analyzed by
calculation the Abrikosov ratio, specific heat, internal energy, structure factor and the phase
diagram. Furthermore, I demonstrated the qualitative difference between the clean and
disorder system by the vortices position and the structure factor. In clean case, as the reduce
temperature increases, the values of Abrikosov ratio drop and at certain value ar jumps
indicating the first order melting transition. The data of normalized specific heat for
various N, contain a single curve unless ar~t,,. Near the melting transition, the thermal
fluctuations destroy the Abrikosowv lattice, the system situation lead to liquid state. In the
momentum space, the pattern:shows the property of rotation symmetry while a; > t,,. The
Bragg peaks indicating the eXistenceof the triangular lattice of the vortices while ar < t,,.
The melting transition of the vortex system-is weakly first order by the double-peak of the
energy distribution was found. For the infinite scale, I found the melting temperature t,, =
—14.1 £ 0.1, this value has a good agreement with the results of previous researchers. The
curves splay out in S(k) - ar diagram, indicating that the melting temperature t,, =
—12 + 2 for six system sizes (Ng =4 X 4,6 X 6,8x 8,10 x 10,12 x 12,16 X 16). The
data of structure factor S(k) for various N are converged while ar > t,,. However,
S(k) has algebraic system size dependence while a; < t,, with exponent consistent with
the KTHBNY theory value of 5/6. This is first time the whole range of quantities has been

measured on the same system.
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In disorder case, I added the random potential with white noise correlator to the
vortex system. The disorder parameter { controls the relative disorder strength and T
simulated mild disorder { = 0.01 and a stronger disorder { = 0.03. Abikosov lattice is
destroyed and the Bragg peaks become shorter, while the vortices are pinned by disorder. I
measured distribution of magnetization using up to 80 disorder configurations. Disorder
average of magnetization converges very fast with the system size, while variance and
higher moments decrease. The melting line at small disorder changes insignificantly. For
larger disorder, I tried to find the glass line of the disorder system with fixed material
disorder parameter r. The higher moments were calculated by 40 disorder samples, the
second moments of my results for scaled temperatures down to a; = —10 don’t show
convergence to a finite value characteristic of the vortex glass. I conclude that the glass line

is at lower temperatures, not-accessible to MC simulation at this stage.
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Appendix

Appendix A

The quadratic term of GL function is

p(,y) = W, MI? = Yk CeCrorer, (A1)

we substitute the form of the quasi-momentum

or = exp{—ixk }po(x — ky,y + ky), (A.2)

into the basic formula as

: k + Q)?
P = Y explith+ Q) -rlewp |7 @F + )| exp [—%
Q1d1+Q2d;
ik + Qx)z(ky +0,) St (k,y + Qy)]'
(A.3)
Thus, we have
Po(x, )05 (x = key, y + k)
= exp{—ixk,} ex'p[i(kx + Q,)x
Q1&;22&2
: k + Q)?
+i(ky + 0y )ylewn |5 (@F + @) exp [—%
S Qx}z(ky ") 4 ik (i, +0,)]
(A4)

We can rewrite Eq.(A.1) by using Eq.(A.2)
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p(x,y) = Z CrCr o191
k1

= Z C;Cl exp{ix(kx - lx)}(pg(x - kyry + kx)(po(x - ly'y + lx)-
kl

(A.5)
The two function product is
(po(x -l,y+ lx)<p3(x —ky,y+ kx),
set x' =x—1L,y' =y+1,
and then
0o, y)05 (¥ = (I = 1),y + (e = 1),
set k' =k, —1L,, ky' =k, — Ly'we have
@o(x', ¥ o (¥ <k ¥ +ky')
= exp{——ix’kx’}z explik,’ + Q)x'
Q

(k' + Q)?

+i(ky + Qy)y'|exp [% Qf + Ql)] exp l— y

itk + Q) ky' +Qy) 0,
— 2( y y) + ik, (ky +Qy)],

rewrite x',y’ by x,y and k., k," by kyk,
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<p0(x -, y+ lx)fpé(x —ky,y+ kx)

= ex'p{—i(x - ly)(kx - lx)}z exp[i(kx -, + Qx)(x - ly)
Q

J k-1 2
+i(ky =Ly + Q) + L) ]exp [g (Qf + Ql)] exp [—%

B i(k,— 1L, + Qx)(ky — 1y + QY)
2

+ilky — L) (ky — L, + Qy)]

(A.6)

substituting Eq.(A.6) into Eq.(A.3)

p(x,y) = Z CuCy exp{ix(ky — L)}oo(x — ky, ¥ + ke )@o(x — L,y + 1)

Z Z exp{ix(k, — 1) }exp{—i(x — ly)(kx — L)}explilky — L + Q) (x — ly)

' k-1 2
+illy - L+ QIG L |5 (@2 + @) exp [— @elror

B ik, — L, + Qx)(ky =l + Qy) n

> (ky = L) (ky — 1y + Qy)] CrCi

= Z Z exp{il, (ky — L) Yexp[ilky — L + Q)x — ilky — L + Q)1
Kkl Q

+i(ky, —1,+Q))y

' k—1+Q)?
+ i(ky -1, + Qy)lx]exp [% Q% + Ql)] exp [_%

B ik, — L, + Qx)(ky — 1y + Qy) n

> (ky = L) (ky — 1y + Qy)] CrCi
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= Z Z exp{ily, (ky — L) Yexp[ilky — L + Q)x — iky — L + Q)1

Kkl Q

. k— 1+ Q)2
+ i(ky —ly+ Qy)y]exp [%l (QF + Q1)] exp I—%

il =L+ Q)(ky — L, + Q)

> +ikye(ky — 1, + Qy)] CrCr.

(A7)

Appendix B

We start from the equation of [1(x, y)|?

p(x,y) = Z z exp{ily(kx - lx)} exp[i(kx —L+0Q)x+ i(ky -1, + Qy)y
Kkl Q

: k—1+Q)?

— il — Lot Qx)ly] eip [g Q= Q1)] exp [—%

_ iy — I + Qx)(ky — ly + Qy)
2

+ ik (ky — L, + Qy)] CrCu,

(B.1)

and the Fourier transform of p(x,y) is

p(x,y) =

1 .
L2 f dxdyexp[—i(p + P)

- 1] Z Z exp{il,(ky — Lo Yexplilk, — Ly + Q)x + i(ky, — 1, + Qy)y
Kl Q

: k—1+Q)?
— i(ke = Ly + QL] exp [%T (Qf - Q1)] exp I_%

il = L+ Q) (ky — 1, + Q)
2

+iky(ky — 1y, + Qy)] CCy .
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(B.2)

Integration over x and y

P +P)= ) > 6lp+ P — (k- L+ Qlexp{ily (ke — L)} exp[iChy — L + Qx
kKl Q

+ilky =l + Q) = ik = L + Qb exp | 5 (02

[_ (k=1+Q)* iky—L+Q)(ky =1, +0Qy)
4

- Q1)] exp >

+ikye(ky — 1, + Qy)] CCy .

(B.3)
The Kronecker delta has four solutions &
FI=p00 4 501 4 510 4 511, (B4)
1. Major contribution p°°
lp, + |, < Land p, + 1, < 1]
Q=P ki =p1+1;0, =P ky =p, + 1,
(B.5)

Substitute (B.5) into (B.3)

P +P) = Z exp {i” l_P1(212 - 1)

l

. .
+ E(P1 + 20, = P)[2(p, + P,) — (p1 + P1)]l} exp [g (p,?

— pl)] exp [_ #l

c; Cr.

1+l1,02+1;

(B.6)

2. One umklapp contribution  5°!
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[p1+1;>1 and p, + 1, < 1]
Q=Pi+L ki=p+LL—1,Q, =Py ky=p,+1;
(B.7)

Substitute (B.7) into (B.3)

p*'(p+P) = Z exp {i” l_(P1 + D2, -1)

l

1 .
+§(P1 +20, =P = 2)[2(p,+P,) —(p1 + P1)]l} exp{% [(Py + 1)?

— (P + 1)]} exp [_ (IJ-Z—P)Zl C;1+11—1,p2+12 Cr.
(B.8)
3. One umklapp contribution:  p1?
[pr F <71 and p, + 1, > 1]
Q=P ki'=pr¥l; Q=P+ L ko =p, +1, -1
(B.9)

Substitute (B.10) into (B.3)

p(+P) = Z exp {i” l_P1(212 - 1)

l

. .
+ E(P1 + 20, = P)[2(p, + P,) — (p1 + P1)]l} exp [g (p,?

_ Pl)] exp l— —(p -ZP) l C,

1+ll,p2+lz—1cl "

(B.10)

4. The two umklapp contribution p*?
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[p1+1;>1 and p, + 1, > 1]
Q1:P1+1; k1:p1+l1_1;Q2:P2+1; k2:p2+l2_1
(B.11)

Substitute (B.11) into (B.3)

pH(p+P)= Z exp {i” l_(P1 + D2, -1)

l

1 .
+§(P1 +20, =P = 2)[2(p,+P,) —(p1 + P1)]l} exp{% [(Py + 1)?

*
Cp1+ll—1,p2+lz—1cl "

— (P, + 1)]} exp [— (I)-Z—P)Zl

(B.12)

Finally, we putted all contributions togethetr with two conditions :
1lf (p1+l1)<1_>P,=P1,P”=P1
2lf(p1+l1)>1_>P’=P1+1,P”=P1+2

and we obtain

5(p+P) = Z exp {iﬂ [_P’(le —1)

l

1 .
+ E(P1 + 20 = P")[2(py + P,) — (py + P1)]l} exp [% (P

, ®+P) .
- P )] exp [_T Clps+ialipy+121C -

(B.13)

here Cpp, 41,1 indicates Cop, 11, mod L)-
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Appendix C
The energy of new configuration can be calculated by using

Cnew S Cl(:)l + 8[1 11812 ]ZA (Cl)

11,05

Hence, the new superfluid density term is

new
| wenr =2m Y eereray
Xy

11,02

= ZHLZZ(CH lzcl(i +811 11812 JzA) (Clo1 +811 11812 ]ZA)

l1,l2

= 211> Z(Cg{;iz COE + G A + €M A + AAY)

11,02

old
= j ¥ (x, y) |2 $ 20 L2 (C450 + CP'E A" + AA”).
xY

(C.2)
According to Eq.(2.2.14) and'Eq.(:2:3.9), we can obtain the new interaction term and

disorder term by calculating g(p +°P), so that

5(p+P) = Z exp {m [—P'(zz2 —1)

l

1 .
+ E(P1 + 2L, —P")[2(p + P,) — (p1 + P1)]l} exp [% (P

) (p +P)* P) \
- P )] exp l (COlld+ll [p2+15] +6P1+l1] J1 [p2+12]- A )(Cl(il;iz

+ 811‘]1812 —J2 A)'

(C.3)

This calculation result can be separated into four part for different delta function solutions
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as follows

()

Z exp {i” l_P’(le - 1) +%(P1 + 2l — P")[2(p, + P,) — (p1 + Pl)]l} exp [.2 (P

l

+P
— )| exp [ @ )](cold* o

[p1+141).[p2+12]

(C4)

(b)

Z exp {i” l_P’(le - 1) +%(P1 + 2l — P")[2(p, + P,) — (p1 + Pl)]l} exp [.2 (P

l

) (p +P)° P) \
—P )] exp l (8 [pa+11]- 8[P2+lz]—f2A Cl(ﬁ?z
= exp {i” I_P'(z[jz —p2l=j1 —

1 .
+§(P1 + 2[j1 =pal =P I)[2(p, + P,) — (p1 + P1)]l} exp [%(Plz

—P’)]ex [ (p+P)l( cold ).

U1-p1llz-p2
(C.5)

(©

plp+P)= Z exp {in [—P’(le —-1)

l
1 ., i
45 (r+ 2L = P20 + P) = (or + P | fexp |5 (P
[p1+14]

, (p+P) )
—P)]ex l (COld [p2+1s] 811 11812 ]ZA)
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1
= exp {i” I_P’(zjz —ju) + E(P1 +2j; —P)[2(p, + P,) — (p1 + Pl)]l} exp [2 (P
, (p+ P) cold
- P )] exp l P l ( Plf"'h P2+f2]A)'
(C.6)
(d)
Z exp {i” l_P’(le - 1) +%(P1 + 2l — P")[2(p, + P,) — (p1 + Pl)]l} exp [.2 (P
l
P
B P’)] exp l (p ! ) l (8 [p1+14] 118[P2+lz 12611 11612 ]ZAA*)
1 in
— exp ix |-/ = 1)+ 318, = M) - (e [ P
2
— P’)] exp [— #] (AAY).
(C.7)

Finally, we substitute Eq.(C.4) ~ Eq.(C.7) into Eq.(C.3)

5+ P) = Z exp {iﬂ l—p'(zz2 —1)

l

1 .
+ E(P1 + 2l —P)[2(p, + P,) — (p1 + P1)]l}exp [g (P

+P
—P')] exp [ @ )l(cold* coi

[p1+11)[p2+15]
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+ exp {iﬂ l—P’(ZUz — 02l — 1 — 1D
1 im
+ E(P1 +2[j1 —p1l = P")[2(p2+P,) — (p1 + P1)]l} exp [7 (P

—P')]ex [ (p"’P)l( cold )

U1-p1llz2-p2

1 .
+ exp {iﬂ [—P’(ij —ju) + 5 (p1 +2j1 = P")[2(p2 + P2) — (p1 + P1)]l} exp [% (P

P
-] erp |- 2] ()
1 in
+ exp {in [—P’(ij ) +5 @y = PI2(P) - (Pl)]l} exp 7 (P

- P')] exp l— P

il AAT
4 ]( )

(C.8)
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