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A Study on Material and Physical Properties of  
CoTiO3 High-κ Dielectric Prepared by  

Sol-Gel Spin Coating Method 
 

Student：Kuo-Hsing Kao                     Advisors：Dr. Tien-Sheng Chao 

Institute of Electrophysics 

National Chiao Tung University 

Abstract 
 

In this thesis we form the high-κ dielectric CoTiO3 by sol-gel spin coating 

method followed by different annealing temperature 600~900oC. The image of 

transmission electron microscopy (TEM) reveals that 2.2 nm interfacial layer is 

between Si-sub and CoTiO3 annealed at 400oC. According to X-ray diffraction (XRD) 

analysis, crystallization temperature of the spin-on dielectric is between 600 and 

700oC. Scanning probe microscope (SPM) describes surface morphology of the 

spin-on dielectrics with different annealing temperature and the surface roughness 

abruptly increases as annealing temperature higher than 600 oC. Electron spectroscopy 

for chemical analysis (ESCA) shows that higher temperature annealing results in 

thicker interfacial layer and pure chemical bonding. Furthermore ESCA also confirms 

that the spin-on dielectric with 600oC annealing has atomic concentration ratio 

[Co]:[Ti]:[O]~1:1:3. The spin-on film CoTiO3 with 600oC annealing has Schottky 

emission conduction mechanism for the TaN/ CoTiO3/ Si-sub structure. And the 

trapping characteristics of spin-on film CoTiO3 with 600oC annealing is affected by 

temperature, applied stress voltage and stress time.  

High electrical permittivity (k~40.2) of CoTiO3 dielectric is extracted via the 

high resolution transmission electron microscopy (HR-TEM) image and C-V curves. 



 

II 

In addition, the valence energy band offset between thermally grown SiO2 and spin-on 

CoTiO3 is about 4.0eV, which is detected by high resolution X-ray photoelectron 

spectroscopy (HR-XPS). The band energy gaps of thermally grown SiO2 and spin-on 

CoTiO3 are 9.0 and 2.2 eV, respectively. The energy band alignment of spin-on 

CoTiO3 directly with SiO2 and indirectly with Si is successfully determined in this 

thesis. 
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利用溶膠旋轉塗佈法備製鈦酸鈷高介電層 

與其材料和物理特性之研究 

研 究 生 : 高國興                              指導教授 : 趙天生 博士 

國立交通大學 

電子物理研究所碩士班 

 

摘要 

在這篇論文裡，我們利用溶膠旋轉塗佈法備製具有高介電係數的鈦酸鈷

CoTiO3介電層，並且對 600~900oC 不同溫度退火後的樣品做詳細的研究。穿透式

電子顯微鏡(TEM)的影像顯示著，CoTiO3 與矽基板之間經過四百度的氧化後會產

生 2.2 奈米的間隙層(interfacial layer)。根據 X光繞射(XRD)圖形分析可知，

這塗佈上去的 CoTiO3 介電層的結晶溫度大約介於六百到七百度之間。我們也利

用掃描式探針顯微鏡(SPM)描繪出經過不同溫度退火的 CoTiO3 介電層的表面形

貌，而高於六百度退火的樣品，其表面粗操度會有急遽上升的現象發生。化學分

析電子能譜儀(ESCA)的結果顯示，較高溫度的退火會導致較厚的間隙層與較純的

化學鍵結。而更進一步的 ESCA 分析確定了這塗佈上去並且經過六百度退火的介

電層的原子濃度比例，[Co]:[Ti]:[O]約為 1:1:3。經過六百度退火的 CoTiO3的

電子傳導性質，在氮化鉭(TaN)/ CoTiO3/矽基板這樣的結構中由蕭基發射機制主

導。而經過六百度退火的 CoTiO3 捕捉電子的特性會受到溫度、施加電壓與加電

壓時間的影響。介電質 CoTiO3的高介電常數(k~40.2)是藉由高解析度 TEM 影像

與電容電壓(C-V)曲線求得。另外，我們利用高解析度 X 光電子能譜儀(HR-XPS)

偵測出二氧化矽與 CoTiO3 間的價帶能量差(ΔEv) ，其值大約為 4.0 電子伏特；

二氧化矽與 CoTiO3的能隙(Eg)分別為 9.0 與 2.2 電子伏特。因此，在這篇論文中，

CoTiO3與二氧化矽的直接校準，CoTiO3與 Si 的間接校準也就被成功地決定了! 
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Chapter 1 

Introduction 

In this chapter, the reasons for why traditional silicon dioxide should be replaced 

by high-κ gate dielectrics will be addressed. Then the fundamental properties of 

high-κ materials will be introduced. We will briefly illustrate the requirements for 

high-κ gate dielectrics. Finally, we will introduce the method of sol-gel spin coating 

used in this thesis and the ESCA analyzing technique. 

 

1.1  Motivation of High-κ Gate Dielectrics Project 

    The speedy progress of complementary metal-oxide-semiconductor（CMOS）

integrated circuit technology has made our chips more powerful, even cheaper and 

met several requirements. The requirements include higher speed, lower consumption, 

and so on. And these have been accomplished by scaling down the transistor feature 

size, such as channel length and gate silicon-oxide （SiO2） thickness. According to 

Moore’s law, an exponential growth in the number of transistors per chip was 

predicted and had been proven true as shown in figure 1.1 [1]. 

One reason that Si-based devices have played the main roles in microelectronic 

fabrication is that Si has a high quality and easily-formed SiO2. And it exhibits low 

trap density, large band gap, low interface state density, high carrier mobility and 

good thermal stability with Si. Unfortunately, significant gate leakage current 

increases and boron penetration occurs when SiO2 is scaled less than 30Å as shown in 

figure 1.2 [2]. However, a temporary solution, silicon nitride or oxynitride（SiOxNy）, 

relaxes the problems. SiOxNy owns slightly higher dielectrics constant（κ~7.5）and 

which reduces the gate leakage current due to thicker physical film. The particular 

Si-O-N network bonding in SiOxNy greatly suppresses boron penetration through the 

dielectrics. But, a further problem is that the dielectrics constant value of SiOxNy is 
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not high enough. And it is necessary to find a candidate material which has higher 

dielectric constant for replacing conditional gate dielectrics. 

 

1.2  Metal Oxide Material for High-κ Gate Dielectrics 

    As the description in the classical electrostatics, the internal polarization P of a 

substance is induced when an external electric field E is applied on it. And which can 

be formulated simply as below equation, 

 

                                                                 (1-1) 

 

where D is the electric displacement and εo is the permittivity of free space. However, 

we can rewrite Eq. (1-1) and replace the internal polarization P by a coefficient κ 

called dielectric constant, 

 

                                                                 (1-2) 

 

Comparing Eq. (1-1) with Eq. (1-2), therefore, we know that dielectric constant κ is 

used to tell the degree of the polarization of certain material while the external 

electrical field is applied. 

    Figure 1.3 illustrates the relation between the real (εr’) and imaginary (εr”) parts 

of the dielectric permittivity and the frequency, and also marks the current frequency 

range for CMOS operation (100MHz~10GHz) [3]. There are two main contributions 

to the dielectric constant which give rise to the polarization: electronic and ionic 

dipoles. In general, atoms with higher atomic number demonstrate more electron 

dipole response to an external electrical field, because there are more electrons to 

respond to the field. And this electronic contribution tends to increase the permittivity 

D=εoE+P,  

D=εoκE. 
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at ultrahigh frequency (~1016 Hz) as a result of the light electrons. 

    The ionic contribution to the permittivity could be much larger than the 

electronic portion such as (Ba, Sr)TiO3 which exhibits ferroelectric behavior 

(perovskite crystal structure) below Curie Temperature. As shown in figure 1.4, Ti 

ions in the unit cells are displaced in response to an applied electric field. This 

displacement of Ti ions results in a huge polarization in the material, and thus can 

give rise to large dielectric constants (SrTiO3 ~175 [4]). Since ions respond more 

slowly than electrons to an applied field, the ionic contribution begins to decrease at 

very high frequency (~1012 Hz), as shown in Figure 1.3. 

    Furthermore, we can modify the polarization behavior of an insulator by low 

level incorporation. This low level incorporation actually changes the localized 

bonding order and the vibration mode of the network ions in that insulator. G.. 

Lucovsky and B. Rayner demonstrated this phenomenon by low level doping Zr (or 

Hf) atoms in the SiO2 film; and the dielectric constant of the insulator increased due 

to the discernable change in bonding order and in vibration modes [5].  

    In summary, we can briefly tell the main contributions to the polarization of 

insulators for gate dielectrics: electronic, ionic and low level incorporation. However, 

the above contributions will be distinguished when the atoms own more electrons and 

higher atomic number. And that’s why metal oxide exhibits higher permittivity than 

the SiO2. 

 

1.3  Requirements for High-κ Gate Dielectrics 

In order to successfully replace gate SiO2, the alternative high-κ material should 

possesses some required properties for next generation devices. In this section, we are 

going to talk about this issue. 
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1.3.1 Permittivity and Barrier Height 

    As previous discussion, an insulator with higher permittivity reduces the gate 

leakage current due to thicker physical thickness. However, leakage mechanism 

actually is dominated by intrinsic properties and is affected by extrinsic properties. 

The intrinsic properties of the insulator include band gap (Eg), the dielectric constant 

(κ) and the conduction band offset (ΔEC). The extrinsic properties of the insulator 

include physical thickness, film morphology, the method of deposition, temperature 

and applied electrical field to the insulator. And several basic conduction processes in 

insulators are listed in table 1.1 [6]. 

Therefore, as described in table 1.1, the direct tunneling current will be obviously 

suppressed by increasing the physical thickness and the conduction band offset. 

1.3.2 Thermodynamic Stability on Silicon 

    So far, most of the studied high-κ metal oxide systems have unstable interfaces 

with Si; they react with Si to form an undesirable interfacial layer. However, that will 

reduce the effective oxide thickness (E.O.T.) and degrade the carrier mobility under 

the interfacial layer [7]. So it is important to understand the thermodynamics of these 

systems and thereby attempt to control the interface with Si. 

    Because Si devices will undergo several high temperature processes after high-κ 

deposition on Si-sub, possible interfacial reaction are given as follows: 

 

 

 

(1-3) 

 

(M: metal, MOx: high-κ metal oxide, MSi x: metal silicide, MSiOx: metal silicate) 

 

Si + MOx  M + SiO2 

Si + MOx  MSix + SiO2 

Si + MOx  MSix + MSiOx 

Si + stable MOx + O2  stable MOx + SiO2 

(1-3) 
(1-4) 
(1-5) 
(1-6) 
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Although the interfacial metal-silicon products are usually detrimental to the gate 

oxide performance, the metal silicate which is shown in Eq. (1-5) is even helpful in 

some aspects. Taking HfO2 and HfSiO4 for example, the interface and crystallization 

temperature of HfSiO4 are sharper and higher than those of HfO2, respectively [7][8]. 

And we will discuss high-κ material crystallization temperature more detail later. 

In addition to the issue of thermodynamics stability between high-κ material and 

bare Si-sub, the Eq. (1-6) describes that the excess oxygen atoms diffuse through the 

high-κ metal oxide and react with Si at high temperature. Especially in the ultra-thin 

film regime, this reaction will cause undesirable interfacial layer more easily. 

    Therefore, in order to precisely control the EOT of high-κ gate oxide and obtain 

better interface between gate oxide and Si-sub, we need to find certain high-κ metal 

oxide which has good thermodynamics stability with Si-sub at high temperature. 

1.3.3 Interface Quality 

    A definite goal of any potential high-κ gate dielectric is to have a sufficiently 

high-quality interface with Si channel, as close as possible to that of SiO2. And the 

SiO2 gate dielectric has a midgap interface state density Dit ~2×1010 states/cm2 [6]. 

However, most of the investigated high-κ materials represent Dit ~1011-1012states/cm2, 

and exhibit a flatband voltage shift ΔVFB > 300mV [7]. Therefore, in order to obtain 

an optimal high-κ-Si interface quality, it is critical to understand the origin of the 

interface properties of any high-κ gate dielectric. 

Because of the lattice structure mismatch, there certainly exists some interface 

defect states between high-κ gate oxide and Si-sub. It is empirically shown that if the 

average number of bonds per atom Nav>3 at the interface, the interface defect density 

will increase proportionally, and the device performance will be degraded also. Metal 

oxides which contain elements with a high coordination, such as Ta and Ti, will have 

a high Nav, and form an overconstrained interface with Si. And degradation in leakage 
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current and electron channel mobility is also observed [9]. Furthermore, the silicide 

bonding which forms near the Si channel interface will tend to give rise to detrimental 

bonding conditions, leading to significant leakage current and poor carrier channel 

mobility. 

    As mentioned earlier in Eq. (1-6), oxygen atoms may diffuse through the high-κ 

dielectric and react with Si. And ZrO2 and HfO2 have been studied as having high 

oxygen diffusivities [10]. Although we know that there exists better interface between 

SiO2 and Si-sub ( Dit ~2×1010 states/cm2), an uncontrolled interfacial SiO2 will 

severely compromise the capacitance gain from any high-κ material in that gate stack 

structure. Therefore, the character of resisting to oxygen diffusion in the annealing 

ambient should be considered when we are assessing the interface stability of high-κ 

dielectric. 

    Furthermore, the ideal gate dielectric stack may well turn out to have an 

interfacial layer composed of several monolayers of Si-O and a high-κ dielectric is 

used on the top of the interfacial layer. And this stack structure could possess better 

quality interface like that of SiO2 and higher capacitance because of the high-κ 

material. 

1.3.4 Film Morphology 

    The work by R. Chandrasekharan et al. investigated the film morphology of 

high-κ dielectric Ta2O5 and recognized the relation between oxidation time and 

crystallization temperature [11]. Figure 1.5 shows that no peak of crystalline Ta2O5 is 

observed until after 1.5min of oxidation. Between 1.5 and 2 min of oxidation, 

crystalline phases of Ta2O5 begin to appear. Furthermore, as the oxidation time 

increases, the intensity of crystal formation also increases. And figure 1.6 shows that 

the surface morphology of Ta2O5 film with different oxidation time. For the 

1-min-oxidated sample, no change of surface morphology is observed; for the 
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3-min-oxided sample, the surface becomes rough and small cracks start to appear 

while the oxide grains are formed; and the 4-min-oxided one, the surface becomes 

rougher and more cracks are observed while larger grains are formed.  

Because grain boundaries serve as highly leaky paths, it is expected to find a 

material which remains in an amorphous phase even if the film undergoes high 

temperature processes. 

1.3.5 Gate Compatibility 

As mentioned in 1.3.2, when high-κ materials directly contact with Si-sub, they 

will react with Si and form unfavorable interfacial layers. The similar reactions will 

also occur when high-κ materials meet poly-Si gate electrodes [12]. Furthermore, the 

dopant diffusion through high-κ gate dielectric will cause an unfavorable Vth shift 

[13][14]. And metal gate is one of possible solutions to suppressing dopant diffusion, 

poly depletion and sheet resistance constraint. In addition, the use of metal gates in 

gate processes can lower the thermal budge by eliminating the need for the dopant 

activation of poly-Si electrode [7]. 

Since doped poly-Si is the incumbent gate electrode material, it should be carried 

out to investigate how dopants in poly-Si diffuse through high-κ materials. However, 

current roadmap predicts that the metal gate technology will replace the doped poly-Si 

gates [15]. It is therefore necessary to focus efforts on dielectric materials systems 

which are compatible with potential metal gate materials. 

1.3.6  Process Compatibility 

There are several studying methods to deposit a high-κ dielectric: physical vapor 

deposition (PVD) [16], chemical vapor deposition (CVD) [12], molecular beam 

epitoxy (MBE) [4] and sol-gel spin coating method [17][18][19]. 

PVD principally includes evaporation and sputtering. Though these two PVD 

methods could be carried out at normal temperature for unlimited substrate materials, 
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the poor step coverage is the most challenge to deposit an uniform gate dielectric. In a 

sputtering process, however, the inevitable plasma damage results in surface damage 

and thereby creates unwanted interfacial states [7].  

CVD mainly involves metal organic chemical vapor deposition (MOCVD) and 

atomic layer deposition (ALD). Though most of CVD methods have proven to give 

more uniform step coverage, the ALD method seems to provide much promise to 

deposit better-quality high-κ gate dielectrics than that of MOCVD. Furthermore, as 

far as the throughput and the requirements for instrument are concerned, it is 

obviously that ALD method is better than MOCVD and MBE methods [7]. 

This study mainly uses the sol-gel spin coating method to form the high-κ gate 

dielectrics. However, the more detail introduction about this method will be provided 

in the next section. 

 

1.4   Sol-Gel Spin Coating Method  

Recently, many technologies have been used to prepare various high-κ 

dielectrics, such as atomic layer deposition (ALD), chemical vapor deposition (CVD) 

and physical vapor deposition (PVD). Nevertheless, the sol-gel spin coating method 

also catches much attention; it is utilized to form the high-κ dielectric films [17] and 

memory charge trapping layers [18][19]. 

In the sol-gel processes, hydrolysis, condensation, and polymerization, the 

step-by-step formation leads to a metal-oxide network. And there is an arresting 

character of sol-gel spin coating method and which is an ability to synthesize new 

types of high-κ materials, called “inorganic-organic hybrid” [20]. 

The sol-gel spin coating method could be executed in the normal pressure 

environment rather than high vacuum system. And thin film formation with spin 

coating is simpler than ALD, PVD, or MBE to deposit an insulator because of its 



 

9 

cheaper precursors and tools. 

 

1.5   Electron Spectroscopy for Chemical Analysis (ESCA) 

    In this section it is worth introducing the fundamental principle of ESCA because 

the most following analysis for material and physical properties are performed by 

ESCA technique. 

    ESCA, also known as XPS, is used to characterize the chemical bonding and 

film composition. Since the photon energy range of interest for material analysis 

corresponds to the x-ray energy (1-10 keV), photoelectron spectra with specific 

binding energies produced by x-ray radiation of a sample present chemical bonding 

information about given elements. Figure 1.7 shows relevant energy levels for ESCA 

measurements [21]. Binding energies of photoelectrons can be obtained from Eq. 

(1-7), based on Figure 1.7. 

                           ,kin b specE h Eν φ= − −                      (1-7) 

where Ekin is kinetic energy of the photoelectron, h is Plank’s constant, ν is the 

frequency of he photon, Eb is the binding energy, and Øspec is the work-function of the 

spectrometer. 

    However the ejected photoelectrons from ESCA analysis undergo inelastic 

energy losses due to collective oscillations (plasmon) and single particle excitation 

(electron-hole band to band transitions). More importantly, the excitation of a single 

electron from the valence band to the conduction band can also be detected at the 

onset of plasma energy loss, as illustrated in Figure 1.8 [22]. This onset point of 

plasma energy loss can be utilized to determine the band gap energy [23-25]. 

Photo-excited electrons lose their kinetic energies due to collective oscillations of 

outer shells, resulting in a plasmon spectrum. Single electron excitation from valence 
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band edge to conduction band edge also takes place at the onset of a plasmon 

spectrum. Ec, Ev, Eg, and hν denote conduction band minimum, valence band 

maximum, band gap energy, and photon energy of X-ray irradiation, respectively. 
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Figure 1.2   Calculated（lines）and measured（dots）results for 
tunneling currents from inversion layers through oxides [2]. 

Figure 1.1   Moore’s law for microelectronic industry. The 
exponential increase of transistors count as a function of time for 
distinct generations of microelectronics has been realized [1]. 
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Fig. 1.4   The symmetric perovskite crystal structure (a) is not polarized when 
there is no applied electric field. And the applied field polarizes the structure (b).  

Figure 1.3   The frequency dependence of the real (εr’) and 
imaginary (εr”) parts of the dielectric permittivity. In CMOS 
devices, ionic and electronic contributions are present. 
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Fig. 1.5   XRD pattern of Ta thin film oxided at 
700 ﾟ C for 1, 1.5, 2,3 and 4 min [11]. 
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Fig. 1.6   The evolution of surface morphology resulted from 
thermal oxidation at 700 ﾟ C for 1(a), 3(b) and 4(c) min [11]. 
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Fig. 1.8   Illustration of band gap energy by O 1s or N 1s photoelectron 
energy loss spectrum.  

Fig. 1.7   Schematic of the relevant energy levels for XPS binding 
energy measurements. Note that a conducting specimen and 
spectrometer are in electrical contact and thus have common Fermi 
levels. 
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Table 1.1   Basic conduction processes in insulators [6]. 
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Chapter 2 

Experimental Procedures 

In this chapter we will illustrate the device fabrication process with figures and 

list the instruments for material and physical properties measurements. 

2.1   Device Fabrication 

In this investigation, CoTiO3 films were prepared by sol-gel spin coating method 

in a controlled environment, where was maintained at 22oC and 43 % RH. The 

process flow was illustrated in figure 1. First, n-type single crystal Si wafers with 

resistivity 4-7 Ωcm underwent standard RCA cleaning followed by a dilute-HF dip to 

remove the native SiO2. Then, the sol-like precursor for CoTiO3 was directly spun on 

the Si substrates at about 3000 revolutions per minute, and the spin speed was 

maintained for 30 seconds. However the precursor for cobalt and titanium elements 

were cobalt acetate tetrahydrate Co(OOCCH3)2．4H2O and titanium isopropoxide 

Ti(OCHC2H6)4, respectively. These two precursors were dissolved in 

2-methoxyethanol for spin coating method. After the spin-coating of the precursor, in 

order to remove the solvent, the samples were baked at 90oC for 1.5 min on a hotplate. 

And the procedure (coating-and-baking) was repeated for 5 times. Afterward the films 

were oxidized at 400oC in an N2/O2 ambient for 10 min, in which both N2 and O2 flow 

were 50 sccm. In order to study the properties of CoTiO3 high-k dielectrics after high 

temperature treatment, rapid thermal annealing (RTA) was performed. The samples 

were annealed at 600oC, 700oC, 800oC or 900oC for 30s in N2 ambient. 

Photolithography was used to define gate areas and then TaN metal was deposited on 

the top of samples by reactive DC-sputtering. Lift-off was performed to form the MIS 

capacitors. Thereafter, ohmic contacts were formed by thermal evaporation of 

300-nm-thick aluminum (Al) electrode on the backside of the samples. 
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2.2   Material and Physical Properties Measurements 

The microstructure of spin-on CoTiO3 film and Si substrate were studied by 

JEOL JEM-2100F field emission transmission electron microscopy (TEM) equipped 

with Link ISIS-300 energy dispersive X-ray analyzer (EDS). And the TEM EDS with 

a 5-nm electron beam probe was used to perform chemical analysis qualitatively. 

The characteristic of crystallization of spin-on CoTiO3 films with different 

annealing temperature were identified by PANalytical X’Pert Pro X-ray diffraction 

system under normal atmosphere. Optical module with X-ray mirrors and a parallel 

plate collimator was used to perform gracing incident X-ray diffraction (angle of 

incidence θi ~1˚). The beam source originated from Cu Kα radiation with a 0.154-nm 

wavelength and this beam source was operating at 1.8 kW. 

Surface morphology of spin-on CoTiO3 films with different annealing 

temperature was obtained by Veeco dimension 5000 scanning probe microscope 

(SPM) under normal atmosphere. The highest resolution in X-Y plane and Z direction 

were about 1.5 nm and few angstroms, respectively. And the tip curvature radius was 

about 2 nm. 

    A ULVAC-PHI Quantera high resolution X-ray photoelectron spectrometer 

(HR-XPS) with 180˚ spherical capacitor analyzer was used to analyze quantitatively 

the chemical composition of the dielectrics CoTiO3 prepared by sol-gel coating 

method. 

    The capacitance-voltage (C-V) curves and current-voltage (I-V) curves were 

measured in the same probe station by HP 4284 and Keithly 4200, respectively. 
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Fig. 2.1   The key process flow of sol-gel spin coating CoTiO3. 
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Chapter 3 

Material Properties 

In this chapter, we will report the material properties of spin-on CoTiO3 thin 

films analyzed by Transmission Electron Microscope (TEM), Energy Dispersive 

Spectrometer (EDS), Grazing Incident X-Ray Diffraction (GI-XRD), Scanning Probe 

Microscope (AFM), Auger Electron Microprobe (AEM) and Electron Spectroscopy 

for Chemical Analysis (ESCA). 

3.1   Si-sub/CoTiO3 Interface Quality 

    In figure 3.1, the graph is the cross-section of Al-electrode/1-coated CoTiO3 thin 

film/bare Si substrate structure and the CoTiO3 thin film is annealed at 400oC. There 

are two interfacial layers astride the CoTiO3 thin film. The interfacial layer between 

Si-sub and CoTiO3 thin film is about 2.23 nm and the interfacial layer between 

Al-electrode and CoTiO3 thin film is about 1.88 nm. Furthermore, the thickness of the 

1-coated CoTiO3 thin film on Si-sub is about 5.27 nm. 

In order to qualitatively recognize the composition of the spin-on dielectric, EDS 

analysis is performed. As shown in figure 3.2 (a), the three principal elements, Cobalt, 

Titanium and oxygen, are detected. However, as shown in figure 3.2 (b), Al peak and 

Si peak maybe come from the interfaces beside the dielectric, and the Cu peak should 

be contributed to the Cu net which is used to hold the sample. Therefore there are 

three main elements, cobalt, titanium and oxygen in the spin-on dielectric. 

 

3.2   Surface Morphology  

As mentioned in section 1.3.4, it is desirable that the surface morphology of 

high-κ dielectric is still smooth though it undergoes high temperature treatment. 

PANalytical  X'Pert  Pro (XRD) and Veeco Dimension 5000 Scanning 



 

21 

Probe Microscope (D5000) are used to analysis surface morphology of films 

with different high temperature annealing. 

Figure 3.3 presents the GI-XRD spectra of the CoTiO3 thin films. No significant 

signals could be found for samples treated at temperatures below 600oC, indicating 

amorphous CoTiO3 films to begin with. When a sample was annealed at a temperature 

above 700oC, signals of crystallized CoTiO3 phases were found. This suggests the 

crystallization temperature of spin-on CoTiO3 films being 600~700°C. Furthermore, 

signals of Si substrates were also found in the GI-XRD spectra for samples annealed 

at temperatures beyond 800oC. It is speculated that the crack of CoTiO3 films has 

partially exposed the Si substrate after annealed at elevated temperatures. 

Figure 3.4 shows the SPM images of CoTiO3 films with different high 

temperature treatments. From figure 3.4(a) to figure 3.4(f) are the flattened and 3-D 

images of samples baked or annealed at 200oC, 400oC, 600oC, 700oC, 800oC, and 

900oC, respectively. The extended dark regions was found in the images for 

600~900oC annealed samples. Serious cracks of the CoTiO3 thin film can be found 

after annealed at 900oC, as shown in figure 3.4(f). And figure 3.5 reports that the 

roughness of samples suddenly becomes serious when annealing temperature is higher 

than 600 oC. 

 

3.3 Composition Analysis 

3.3.1   Auger Electron Microscope Analysis 

The incorporation of carbon element in a dielectric will decrease the effective 

dielectric constant [26]. Therefore Auger depth profile is used to analyze the elements 

in spin-on dielectric CoTiO3 with 600oC annealing. As shown in figure 3.6, it is 

obvious that carbon element signal only exists at the start of analysis, i.e. at surface. 

The surface carbon may be resulting form the absorption of residual in the air. Hence 
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there is no carbon element in the dielectric formed by this sol-gel spin coating 

method. 

In this analysis, because we didn’t have the reference sample to derive the 

relative sensitivity factor for evaluating atomic concentration in depth profile, there is 

an error in the atomic percentage in the figure 3.6. Despite this deviation, the 

qualitative composition result could be acceptable. 

3.3.2   Electron Spectroscopy for Chemical Analysis 

There is no doubt that the spin-on dielectrics only contains cobalt, titanium and 

oxygen elements, which is confirmed by EDS analysis in section 3.1 and Auger depth 

profile in section 3.1. However, we still don’t know the chemical properties and 

atomic concentration ratio of this dielectric prepared by sol-gel spin coating. In the 

section we use electron spectroscopy for chemical analysis (ESCA) to obtain further 

information. 

Figure 3.7 shows ESCA results of the dielectric formed by sol-gel spin coating 

method and the dielectric under analysis is 1-coated and annealed at 600oC. From 

figure 3.7(a) to 3.7(d) are the spectrums of silicon 2p orbital, oxygen 1s orbital, cobalt 

2p orbital and titanium 2p orbital, respectively. As shown in figure 3.7(a), two main 

peaks identify single crystalline silicon (99.3 eV) and silicon dioxide (103.3 eV) in 

the silicon 2p orbital spectrum. We also observe that the shift and the growth of the 

silicon-dioxide-peak increases, as the annealing temperature is increased, which 

means that more complete structure and thicker silicon oxide are formed after higher 

temperature annealing. The spectrum of oxygen 1s orbital shown in figure 3.7(b) 

reveals that there may be two kinds of metal-oxygen bonds with lower binding energy 

near 531 eV , e.g. Co-O and Ti-O for all samples. However, the broader binding 

energy distribution for the sample annealed at 200oC may be resulting from 

hydroxides in the dielectric [27]. Furthermore, the samples with 800oC and 900oC 
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annealing have silicon oxide bond with binding energy near 533 eV, which is 

consistent with the results in figure 3.7(a). We also notice that two shake-up peaks 

with higher binding energy than two main peaks (2p3/2 and 2p1/2) appear in the Co 

spectrum, as shown in figure 3.7(c). 

    In order to confirm the atomic concentration ratio of the dielectric prepared by 

sol-gel spin coating method, more detailed ESCA analysis for the spin-on dielectric 

annealed at 600 oC is executed. After background removal by Shirley method and 

curve fitting for oxygen-metal bonds (oblique line area) in oxygen spectra, we 

integrate the intensity from 775 to 810 eV for cobalt spectra, from 453 to 468 eV for 

titanium spectra and from 527 to 535 eV for oxygen spectra, as shown in figure 3.8. 

The relative sensitivity factors for cobalt, titanium and oxygen are 3.529, 2.077 and 

0.733, respectively. And the atomic concentration ratio is obtained as, 

 
93175.67 53580.63 53828.65[ ] :[ ] :[ ] : : : :

3.529 2.077 0.733
Co Ti O

Co Ti O

A A ACo Ti O
SF SF SF

= =  

 
1:0.97 :3.04≈ . 

 
Therefore, the atomic concentration ratio is almost close to 1:1:3. 
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Fig. 3.1   TEM image of Al-electrode/1-coated CoTiO3 
thin film/bare Si structure. 

Fig. 3.2   Electron dispersive spectra (EDS), associated with the TEM 
image showed in Fig. 3.1, of the CoTiO3 dielectric annealed at 400oC. 
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Fig. 3.3   XRD spectra of spin-on CoTiO3 films. The marked 
peaks correspond to crystallized CoTiO3 phases. 
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(f) 

Fig. 3.4   SPM images of spin-on CoTiO3 films with various thermal treatments 
at (a) 200oC, (b) 400oC, (c) 600oC, (d) 700oC, (e) 800oC and (f) 900oC. The image 
size is 1 μm by 1 μm. 
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Fig. 3.5   Surface roughness of spin-on dielectrics as functions of annealing 
temperature. 

Fig. 3.6   Auger depth profile of the CoTiO3 dielectric annealed at 600oC. 
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Fig. 3.7   ESCA spectra of Si 2p(a), O 1s(b), Co 2p(c) and Ti 2p(d) with different 
annealing temperature. 
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Fig. 3.8   ESCA spectra of Co 2p(a), Ti 2p(b) and O 
1s(c) for the spin-on dielectric annealed at 600oC.
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Chapter 4 

Physical Property 

In this chapter, we will report the physical properties of spin-on CoTiO3 thin 

films, such as dielectric permittivity, C-V and I-V characteristics, current transport 

mechanism, band energy gap and band alignment. 

4.1   Dielectric Permittivity  

According to section 3.1.1, it is easy to form an interfacial layer between Si-sub 

and a CoTiO3 film. However, it is imprecise and difficult to extract the κ value of 

CoTiO3 film from measuring capacitance. In order to estimate the dielectric constant 

of CoTiO3 thin films, a thermal oxidation is used to grow a high quality SiO2 thin 

layer before the CoTiO3 spin-coating. The C-V characteristics of both 

TaN/CoTiO3/SiO2/Si and TaN/SiO2/Si capacitors are demonstrated in Fig. 4.1. The 

well C-V characteristics can be observed for both two capacitors without flat-band 

voltage shift, as shown in Fig. 4.1. The capacitance effective thickness (CET) is 

extracted from C-V curves at 100 kHz without considering quantum effect. The CET 

of CoTiO3/SiO2 and SiO2 are 4.66nm and 4.27nm, respectively. However figure 4.2 

shows HR-TEM image of the Si/SiO2/CoTiO3/TaN structure. Thicknesses of 1-coated 

high-k dielectric and thermal oxide are 4.02 and 4.27 nm, respectively, as shown in 

this TEM image. As a result, the exact dielectric constant of CoTiO3 thin film is found 

to be 40.2, which is matched the value of CoTiO3 films fabricated by direct oxidation 

of sputtered Co/Ti layers [28][29], indicating that the high permittivity CoTiO3 films 

can also been deposited by simple sol-gel spin coating method. 

 

4.2   C-V and I-V Characteristics 

Figure 4.3 shows the C-V characteristics of CoTiO3 gate dielectric with different 
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thermal treatments. The sample with 600oC RTA shows a steeper C-V slope in the 

depletion region, suggesting a better CoTiO3/Si interface. RTA temperatures beyond 

600oC result into flatter C-V curves which may be due to the sub-stoichiometric 

interfacial-oxide growth and thermal stress. 

Figure 4.4 shows the I-V characteristics of CoTiO3 gate dielectrics. The leakage 

current density increases with increasing RTA temperature (600~900oC), even though 

the C-V curves suggest a larger effective oxide thickness (EOT) for samples annealed 

at higher temperatures. This can be explained by the cracks and crystallization of 

CoTiO3 thin films, as discussed before. Finally we sum up the fundamental electrical 

behavior of spin-on CoTiO3 dielectric in figure 4.5, and the dielectric annealed at 

600oC has the smallest EOT. 

 

4.3   Current Transport Mechanism 

Figure 4.6 shows the I-V curves measured at elevated temperatures. The CoTiO3 

film under test was annealed at 600oC. The I-V curves were fitted by the Schottky 

emission model (inset), and the barrier heights of 0.74, 0.72, 0.70, and 0.69eV were 

extracted at room temperature, 40oC, 50oC, and 60oC, respectively. Fittings with the 

Frenkel-Poole (FP) conduction model were also carried out. Figure 4.7 

demonstrates that the current conduction is not dominated by the FP conduction but 

by the Schottky emission, which shows a smaller Si/CoTiO3 barrier height. 

 

4.4   Band Energy gap and Band Alignment 

    As mentioned in Section 1.5, XPS technique can be utilized to determine the 

band gap energy. In this section we characterize the band gaps of SiO2 and the spin-on 

CoTiO3 dielectric annealed at 600oC. In order to align the band diagram, we also use 

high resolution XPS analyzer to detect the maximum valence energy band level of 
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thermally grown SiO2 and the spin-on CoTiO3 dielectric [30]. 

As mentioned in Section 1.5, the background rise below XPS core level peaks is 

due to inelastic scattering effects of the photon-electrons. More importantly, the 

excitation of the electrons from valence band to conduction band can also be detected 

at the onset of plasma energy loss. As a result, the onset of the background increase 

relative to the peak position corresponds with the band gap of the material. Figure 4.8 

shows the spectrum of oxygen 1s orbital for SiO2, which is illustrating that the energy 

band gap of thermal SiO2 is about 9.0 eV. This value is almost close to the common 

results [6][7]. Furthermore, the high resolution core level and band gap spectra of 

spin-on CoTiO3 film is shown in Fig. 4.9. The energy band gap of spin-on CoTiO3 is 

about 2.2 eV, which is close to the value of CoTiO3 powders fabricated by a modified 

Pechini method [31]. 

On the other hand, the measurements are performed on thermal SiO2 (~15nm) 

and the 5-coated dielectric CoTiO3 (~20nm)/SiO2 (~15nm) stacks. The valance band 

spectrum for these layers contains the information about the density of states of both 

the CoTiO3 and SiO2 films. The maximum valence energy band and the valence band 

offset (ΔEv) between CoTiO3 and SiO2 films can thus be determined as about 4.0 eV, 

as indicated in Fig. 4.10. 

    As mention in figure 4.7, the energy barrier height between silicon substrate and 

spin-on CoTiO3 dielectric is about 0.74 eV at room temperature. Because the energy 

band alignment between Si and SiO2 is a well-known result, we can deduce the band 

alignment between Si, SiO2 and spin-on CoTiO3 dielectric, as shown in figure 4.11. 

Figure 4.11 shows the energy band alignment between Si, SiO2 and high-k dielectric 

CoTiO3, which serves to summarize the key results we have obtained from the 

analysis of HR-XPS and Schottky emission characteristics. And this deduction is 

consistent with the result in figure 4.9. 
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Fig. 4.1   TEM micrograph of an ultrathin CoTiO3 film spin-coated 
on a high quality thermal SiO2 layer and annealed at 600oC. 

Fig. 4.2   C-V curves of capacitors with TaN/CoTiO3/SiO2/Si 
and TaN/SiO2/Si stack structures. 
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Fig. 4.4   I-V curves of spin-on CoTiO3 films with 
different thermal treatments. 

Fig. 4.3   C-V curves of spin-on CoTiO3 films 
with different thermal treatments.
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Fig. 4.5   Effective oxide thickness and current 
density of spin-on dielectrics as functions of annealing 
temperature. 
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Fig. 4.7   Effective barrier heights extracted from I-V curves 
by using Schottky-emission and Frenkel-Poole models. 

Fig. 4.6   I-V curves measured at RT and elevated temperatures. 
(Inset) Extracted Schottky-emission barrier heights. 
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Fig. 4.8   ESCA spectra of O 1s for thermally grown 
15 nm-SiO2.  

Fig. 4.9   ESCA spectra of O 1s for the spin-on 15 nm-CoTiO3 
dielectric annealed at 600oC. 
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Fig. 4.11   Band alignment between Si, SiO2 and 
spin-on CoTiO3 dielectric with 600oC annealing. 

Fig. 4.10   Maximum valence energy band spectra of thermally 
grown 15 nm-SiO2 and spin-on 20 nm CoTiO3 dielectric annealed at 
600oC measured by high resolution ESCA. 
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Chapter 5 

Conclusions 

In this chapter we will summarize the important results of spin-on CoTiO3 as 

mentioned in previous chapters and make conclusions for this these. 

5.1   Conclusions 

In this thesis we form the dielectric CoTiO3 by sol-gel spin coating method 

followed by different annealing temperature 600~900oC. The image of transmission 

electron microscopy (TEM), as shown in Fig. 3.1, reveals that 2.2 nm interfacial layer 

is between Si-sub and CoTiO3 with 400oC annealing. According to X-ray diffraction 

(XRD) pattern in Fig. 3.3, crystallization temperature of the spin-on dielectric is 

between 600 and 700oC. As shown in Fig. 3.4 and Fig. 3.5, scanning probe 

microscope (SPM) describes surface morphology of the spin-on dielectrics with 

different annealing temperature and the surface roughness abruptly increases as 

annealing temperature higher than 600 oC. Electron spectroscopy for chemical 

analysis (ESCA) in Fig. 3.7 shows that higher temperature annealing results in thicker 

interfacial layer and pure chemical bonding. Furthermore ESCA in Fig. 3.8 also 

confirms that the spin-on dielectric with 600oC annealing has atomic concentration 

ratio [Co]:[Ti]:[O]~1:1:3. The spin-on film CoTiO3 with 600oC annealing has 

Schottky emission conduction mechanism for the TaN/ CoTiO3/ Si-sub structure and 

the evidences are presented in Fig. 4.6 and Fig.4.7. And the trapping characteristics of 

spin-on film CoTiO3 with 600oC annealing is affected by temperature, applied stress 

voltage and stress time.  

High electrical permittivity (k~40.2) of CoTiO3 dielectric is extracted via the 

high resolution transmission electron microscopy (HR-TEM) image and C-V curves, 

as shown in Fig 4.1 and Fig. 4.2. In addition, the band energy gaps of thermally 
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grown SiO2 and spin-on CoTiO3 are 9.0 and 2.2 eV, respectively, as shown in Fig. 4.8 

and Fig. 4.9. The valence energy band offset between thermally grown SiO2 and 

spin-on CoTiO3 is about 4.0eV, which is detected by high resolution X-ray 

photoelectron spectroscopy (HR-XPS) in Fig. 4.10. The energy band alignment of 

spin-on CoTiO3 directly with SiO2 and indirectly with Si is successfully determined in 

this thesis, as shown in Fig. 4.11. 
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