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Analogous Investigations on the Transverse Modes of Broad-Area Vertical-Cavity
Surface-Emitting Lasers by Mesoscopic Wave Functions of Quantum Billiards

Student : Chien-Cheng Chen Advisor : Yung-Fu Chen

Department of Electrophysics
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ABSTRACT

The analogies between paraxial optics and two-dimensional (2-D) quantum mechanics lie in
the heart of this thesis. Based on the similarity between Helmholtz equation and
time-independent Schrédinger equation, mesoscopic wave functions of quantum billiards are
used to interpret the high-order transverse modes of broad-area Vertical-Cavity
Surface-Emitting Lasers (VCSELS). Reversely, chaotic-shaped VCSELSs can be employed to
analogously observe the wave functions of non-integrable billiards which have no analytic
solutions. In addition, the free-time evolution of coherent waves suddenly released from
quantum billiards can be analogously observed from the free-space propagation of lasing modes
emitted from VCSELs. Furthermore, the analogies are not restricted to quantum wave
functions and optical transverse modes, the orbital angular momentum (OAM) density carried
by a light beam emitted from VCSELSs can be analogously analyzed by calculating the OAM of
coherent waves abruptly set free from quantum billiards. More interestingly, the lasing modes
of VCSELs are not only linearly-polarized but can form the vector fields, in which the
polarization is spatially dependent. Since the polarization of light corresponds to the spin of
quantum wave, the analyses of the vector fields in VCSELSs can provide important information
for quantum-billiard systems (such as ballistic quantum dots) with consideration on electronic

spin.
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Fig.2.1-1.

List of Figures

Schematic diagram for a 2D flat billiard. The particle in the billiard goes in
straight lines. The incidence angle on the wall equals the reflection angle.

The energy of the particle is constant.

(a) Demonstration of the shutter problem. (b) Red curve displays the
temporary interference pattern and blue dash line indicates a classical result.

(See Appendix A for a more detailed discussion.)
A color wheel. At the center the color becomes undefined.

(a)-(b) Vector fields with vortex, saddle, and source, respectively; (a’)-(b’)

The corresponding orientation angle function of vector fields shown in

(a)-(b).

(@)-(c) The phase structures of singularities, saddle, and maximum
(extremum). The gradient of these phases will result in the vector fields

shown in Fig. 1.3-2 (a)-(c), respectively.

Schematic diagram of an edge-emitting laser. The laser output is parallel to
the semiconductor layers. The out put beam is highly diverged due to the

thin emission region.
Schematic diagram of a VCSEL. The laser output is perpendicular to the

wafer. The isotropic aperture results in a good beam quality.

Some classical periodic orbits denoted by (p,q,¢), where p and g are two

positive integers describing the number of collisions with horizontal and

vertical walls, and the parameter ¢ (-7 <¢ <) that is related to the wall

positions of specular reflection points.
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First some eigenstates and the one of (n,,n,)=(30,30). We can expect that

conventional eigenstates do not manifest the properties of classical periodic

orbits even in the correspondence limit of large quantum numbers.

Stationary coherent states ‘Pg’df‘z'g‘(x, y) associated with classical periodic

orbits (p,q,4).

The N dependence of the wave pattern |Cy*7(x,y)[*. It can be seen that

N is related to the mode order.

The M dependence of the wave patterns |Cyyn®” (x,y)[*. It can be seen

that M is related to the localization of the patterns.

Some classical periodic orbits (p,q,4), where p and g are two positive
integers with restriction p>q, and the parameter ¢ (-7 <¢<xz) is

related to the initial point of the billiard ball.

Some eigenstate of equilateral-triangular billiard ®©) (x,y).

m,n

Some eigenstate of equilateral-triangular billiard CDEnSY)n(x, y) . Notice that

D) (x,y)=0.

Stationary coherent states |‘P;§'15(x, y: p,0,0)|° associated with classical

periodic orbits (p,q,¢).

The N dependence of the wave pattern |CLﬁ‘10(x, y;1,0,7/3)[. It can be

seen that N is related to the mode order.

The M dependence of the wave patterns |CL§fM (x,y;1,0,7/3)]*. It can be

seen that M is related to the localization of the patterns.

The stadium billiard. The trajectory in chaotic billiard is generally ergodic.

Some unstable periodic orbits in the stadium billiard.
First eight eigenstates of the stadium billiard. The result is similar to

rectangular billiard.
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Fig.3.1-1.
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Fig. 3.3-1.

Fig. 3.3-2.

Fig. 3.3-3.

(@)-(d) The 152nd, 165th, 175th, and 208th exited states of a slightly
asymmetric stadium billiard are shown to exhibit random patterns that do not

exist in regular billiard.

(@) A random superposition of several eigenstates with quantum number
satisfying 54 <./n?+n,? <55, as illustrated in (b)

(@)-(b) The statistics for the amplitude and intensity of the random wave
shown in the previous figure. The fitting curves are Gaussian and
Porter-Thomas distributions, respectively.

(a)-(d) The scars appear in the 122nd, 132nd, 207th, and 258th exited states
of the slightly asymmetric stadium billiard. The highlighted lines indicate

the unstable periodic orbits.

(@) The schematic diagrams for vertical-cavity surface-emitting laser. he
separability of the wave function in the VCSEL device enables the wave
vectors to be decomposed into k, and k;. (b) The illustration of a wave a
wave incident upon the current-guiding oxide boundary would undergo total

internal reflection for k, < k,.

The schematic diagrams for the experimental setup.

(@ The VCSEL mounted on the copper holder. (b) Side view of the
cryogenic system. (c) The objective lens with NA=0.9 (d) Face view of the
cryogenic system.

The SEM image of square VCSEL device

Optical microscope image view from the aperture of the VCSEL. The

bright region display the spontaneous emission to manifest the details on the

square boundary.

(@) The temperature dependence of the threshold current and the lasing
modes observed at temperatures of (b) 295K (room temperature) (c) 285K
(d) 250K (e) 230K.
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(@)-(c) The bouncing ball modes observed in different square VCSEL
devices. (a’)-(c’) The theoretical explanations of (a)-(c), which are expressed
by Eq. (3.3.2)-(3.3.4), respectively.

a)-(c) Various superscar modes observed in different square VCSEL

devices. (a’)-(c’) Theoretical interpretation of (a)-(c) by SU(2) coherent

states Car " (X,Y), Cae® (X,y),and Cypo™(x,y) respectively

(@)-(c) Various multi-POs superscar modes observed in different square
VCSEL devices. (a’)-(c’) Theoretical patterns of (a)-(c) given by Eqg.
(3.3.6)-(3.3.8), respectively.

Experimental pattern of the spontaneous emission to manifest the details on
the ripple boundary.

Near-threshold lasing patterns of the rippled VCSEL at temperatures of
(@T =260K and (b)T =220K.

(@) An unknown wave function (b) The intensity distribution (c) Square Root
of intensity distribution (d) Positive part of the wave function (e)

Demonstration of 2y (X)—[w(X)| (f) The result of 2y (X)-|w(X)].
() and (b) The intensity plots of the positive wave functions |y, (X;,Y;) |
for experimental results shown in Figs. 3.4-2 (a) and (b), respectively.

(@) and (b) Distribution of the coefficients |C_ | obtained by Eq. (3.4.6)

for experimental results shown in Figs. 3.4-1 (a) and (b).

(@ and (b) The reconstructed patterns with the eigenfunction expansion

method for experimental results.

(a) and (b) Tthe amplitude distributions of the wave functions shown in Fig.
3.4-6 (a) and (b), respectively.

(@) and (b) The intensity distributions of the patterns shown in Fig. 3.4-6 (a)
and (b), respectively.

(a) Optical microscope image of the VCSEL device. (b) Zoom-in view of (a)

and is operated with an electric current under threshold current at room
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Fig. 4.1-1.

Fig. 4.2-1.

Fig. 4.2-2.

temperature. (c) The spontaneous emission to manifest the details on the

triangular boundary temperature.

Temperature dependence of the threshold current of the equilateral
tr.iangular VCSEL.

(@)-(i) The near-threshold lasing patterns of triangular VCSEL at
temperatures labeled by A-1 in Fig 3.5-2, respectively.

(a) Experimental pattern observe at 195K. (b) Numerical wave pattern of

eigenstate | DL (X, Y) .

Experimental pattern observe at (a)275K and (b)135K; Numerical wave
pattern of coherent state (c) |Cgo(x,¥;10,0.237) and (d)
|Cos(X, ¥ 1 1 0.357); The classical periodic orbits that the wave

functions localized on are depicted in the insets of (c) and (d).

The intensity plots of the positive wave functions |y  (X;,y;)| for
experimental results shown in Figs. 3.5-3 (f).
(a) Experimental pattern observe at 175K. (b) Reconstructed pattern of (a).

(c) Intensity statistics of (b) with fitting curve to be Porter-Thomas intensity
distribution.

(a)-(k) Intensity plots of °(x,t;10) at t= 0T -T, respectively, with equal
time interval At=0.1T . (I) Intensity plots of y,,(x,t) at t=1.5T. The

intensity pattern preserves its shape after t=1.5T .

Numerical patterns to illustrate the wave patterns ‘ Wiss(X, Y, 1) ‘2 att = (a)

0T, (b) 01T, (c) 0.2T, (d) 0.3T, (e) 04T, (f) 05T, (g 1.0T, (h)
20T ,and (i) .

Numerical patterns to illustrate the wave patterns ‘ Wit (X, ¥, 1) ‘2 at t =

@ 0T, () 0.1T,(c) 02T, (d)03T,(e) 04T, () 05T, (g 10T,
(h) 2.0T,and (i) .
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0T, (b) 0.1T,(c) 02T, (d) 0.3T, (e) 04T, (f) 0.7T, (g) 10T, (h)
20T ,and (i) oo.

Numerical patterns to illustrate the wave patterns |y g...(x,y,t) | att = (a)
0T, (b) 0.1T,(c) 0.2T,(d) 04T, (e) 055T, () 0.8T,(g) 15T, (h)
3.0 T, and (i) .

Experimental patterns of a superscar mode with propagation distance at z =
(@ 0z,, (b) 0.1z,, (c) 0.2z,, (d) 0.3z,, (e) 0.4z,, (f) 0.7z,, (9)
1.0z,,(h) 2.0z, and (i) 20cm, where z, ~72um.

Experimental patterns of a chaotic mode with propagation distance at z = (a)
0z,, (b) 0.1z, (c) 0.2z,, (d) 0.4z,, (e) 0.55z,, (f) 0.8z, (9) 1.5z,
(h) 3.0z, and (i) 20cm, where z, ~138um.

(@)-(f) The vector plot of ]15115(x, y,t) at t=0.1T, 0.2T, 0.3T, 04T,

0.5T , and 1.0T , respectively.

(a)-(f) show the density plots of I‘lsyls(x, y,t) at t=0.1T, 0.2T, 0.3T,

04T, 0.5T,and 1.0T, respectively.

The OAM spectrum of ;. (X, Y,1).

(a)-(f) The vector plot of Jzo™(x,y,t) at t=01T, 02T, 0.3T,

04T, 0.5T,and 1.0T, respectively.

(a)-(f) The density plots of L;z%7(xy,t) at t=0.1T, 02T, 03T,

04T, 0.5T,and 1.0T are presented in Fig. 4.3-9 (a)-(f), respectively.
The OAM spectrum of W27 (x, y, t).

(a)-(c) The intensity patterns of W7, (x,y,t) with ¢=0, 0.25z, and

0.5z, respectively; (a’)-(c’) The OAM spectra of the coherent states shown

in (a)-(c), respectively.
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(a)-(fThe vector plot of Jczro"(x,y,t) at t=0IT , 02T, 03T,

04T, 0.7T ,and 1.0T, respectively.

(a)-(f)The density plots of Lcgp"(x,y,t) at t=0.1T, 02T, 0.3T,

04T, 0.7T ,and 1.0T, respectively.
The OAM spectrum of C3:7,%" (X, Y, t).

(@)-(f) The vector plot of j,..(xVyt) at t=0IT, 02T, 04T,
0.55T, 0.8T,and 1.55T , respectively.

(@) The vector plot of j,...(X,y,0.1T). (b)-(d) Zoom-in views of small

regions marked by the hollow squares in (a). Backgrounds are the

corresponding contour plots of phase functions.

(@) The vector plot of J,...(X,¥,0.2T). (b)-(d) Zoom-in views of small

regions marked by the hollow squares in (a). Backgrounds are the
corresponding contour plots of phase functions.

(@) The vector plot of j,. . (X Y,0.4T). (b)-(d) Zoom-in views of small

regions marked by the hollow squares in (a). Backgrounds are the
corresponding contour plots of phase functions.

(@)-(f) The density plot of I

chaos

(x,y,t) at t=0.1T , 0.2T , 04T,
0.55T, 0.8T,and 1.55T , respectively.

The OAM spectrum of . (X, Y,t).

(a) Reference of the polarization angle (b) The threshold currents of the two
polarizations. Simultaneous lasings occur at temperatures around 295K
and 255K.

(a)-(d) The lasing patterns in 0", 45, 90", and —45 and (e) The total
intensity pattern observed at 295K .

(a)-(d) The lasing patterns in 0", 45, 90", and —45 and (e) The total
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(a)-(d) The reconstructed patterns of Fig. 5.2-3(a)-(d), respectively.

(@) The contour plot of the angle function ©(X,y). (b) Zoom-in view of the

small regions highlighted by the white square. (c) The vector plot of the

polarization vector with vortices and saddles labeled by “+” and “—" signs,

respectively.

Experimental polarization-resolved near-field patterns observed at the
operating temperature of T=265 K with polarization in (a) 0°(perpendicular)
(b) 90° (horizontal) (c)45° (d)135°.

(a) and (b) Intensity plots of the positive wave functions |y (X;,y;)| for

experimental results shown in Figs. 5.2-1(a) and 5.2-1(b), respectively.

(@) and (b) Distribution of the coefficients |C_ | obtained by Eq. (3.4.6)
for experimental results shown in Figs. 5.2-1(a) and (b), respectively.

(a)-(d): Reconstructed patterns with the eigenfunction expansion method for
experimental results shown in Fig. 5.2-1(a)-(d), respectively.

Amplitude distributions of the polarization-resolved wave functions (blue
step lines) for experimental results shown in Fig. 5.2-1(a)-(d), respectively.
Red lines: Gaussian distributions (Eq. (2.3.2)).
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Chl Introduction

1.1 Quantum Billiards

Billiards is known as a dynamical system in which a particle goes in straight line
and elastically reflects from the hard-wall boundary, as illustrated in Fig. 1.1-1. In
general the region enclosed by the boundary of the billiards can be multi-dimensional
and even in non-Euclidean space [KL91], but here subject is restricted to the billiards
in two-dimensional (2D) plane. Depending on the initial conditions, initial position
and velocity, there are infinitely possible trajectories and they are all deterministic, i. e.
they can be traced. Besides, the Poincare map of the billiards can be easily obtained
by calculating particle’s incident angle on the circumference. As a result, billiards is
often used as a paradigm in study chaos [Sina70, Buni79].

Quantum billiards [St6c99], a quantum analogue of classical dynamic billiards, is
actually a 2D infinite potential well in arbitrary shape. According to
Bohr-Sommerfeld quantization rule, the eigenenergies of the quantum billiards can be
calculated from the classical periodic orbits (POs). In 1917 Einstein suggested that
the close integral in Bohr-Sommerfeld quantization rule can be evaluated in phase
space in which the energy surface of an integrable system forms a torus [Enge97,
Ston05]. Meanwhile, Einstein raised a question: how to quantize a classically
nonintegrable system, since there is no close loop in phase space. The survey
concerns the quantum manifestation of classical chaos was then termed quantum
chaos [BA0O, St6c99] or quantum chaology [Berr87].

Even though quantum mechanics has been well developed in 1920s, Einstein’s
question was not answered until Gutzwiller used trace formula to connect the
guantum mechanical energy density with classical POs of chaotic systems in 1970s
[Gutz71, Gutz80, Gutz90]. The periodic-orbit theory has been experimentally tested
by microwave billiards [SS90, RichO1]. Furthermore, the periodic-orbit theory was
utilized to show that the statistics of nearest-neighbor energy spacing of chaotic

system should obey Wigner distribution, in contrast to Poisson distribution of regular



Chl Introduction

system [Berr83]. This level statistics is often used as a signature of quantum chaos
and has been intensively studied in quantum billiards [MK79,SS90] as well as in other
various systems [DG86, Haak91, Wint87, WKL+89].

On the other hand, the wave-function aspect, Berry used semiclassical approach
to show that the autocorrelation function of chaotic wave function is Bessel-type and
suggested that chaotic wave function should be Gaussian random waves [Berr77].
With the numerical computation, this conjecture was validated by McDonald and
Kaufman who showed that the eigenfuntion of stadium billiard indeed exhibits
random pattern [MK79, MK88].  Although the chaotic eigenfunctions were shown to
be generally ergodic, Heller showed that high-order eigenfunctions of stadium billiard
would concentrate on the classical unstable periodic orbits [Hell84]. Such a
localized wave function has been called the “scar [Hell84].”

The scar has been shown to play a vital role in a wide variety of physical systems.
For examples, the lasing mechanism of high-power directional emission in deformed
microdisk lasers has been analogously interpreted with the scar effect in chaotic
billiards [GCN+98, LLHZ06, LLZ+07, NS97, NSC94, RTS+]; the conductance
fluctuations of quantum dots, in which electronic motion is predominately ballistic in
nature, have also been shown to be closely related the scarred wave functions
[BAF+99]; the efficiency of fiber laser can be enhanced by selectively amplification
of scarred optical wave [MDLMO7].

Even if the scar has been shown to be very important, direct experimental
observation of scarred matter wave is very few [CSG+03] since the wave function of
2D system is very difficult to measure. The observations of the scar were mostly
performed in analogous experiments. Due to the analogy between 2D Helmholtz
equation and 2D time-independent Schrddinger equation, the first experimental
visualization of scars was realized in the microwave cavity [KKS95, Srid91, SS92].
As well as microwave cavity, scar modes were also manifested in acoustic wave
cavity [CH96, KAGO01,]. Besides, the scarred optical patterns were also shown to
appear in the transverse mode of optical fiber [DLMO1].

In addition to scars, the other significant high-order states are the so-called
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superscars [BS04, BDF+06]. The terminology “superscar” was originally used by
Heller [Hell84] to refer the wave functions localized on stable periodic orbits in
stadium billiard and to make a difference with scar. Recently its meaning was
extended to wave function localized on stable periodic orbits in pseudointegrable
billiard [BS04, BDF+06]. Superscar has also been shown to closely relate to the
conductance fluctuation of quantum dots [AF99, CLO+97, LMH+06] and the mode
characteristics of microdisk lasers with regular shapes [AYL+06, CKH+00, HGWOO,
HGYLO1, LCG+04, PCCO01, YAK+07]. However the analogous observations of the
superscars are much fewer than that of scars [BDF+06, HCLL02]. The main aim of
this thesis is to analogously observe the superscar mode by broad-area vertical-cavity
surface emitting lasers (VCSELs) [HCLLO2, CHLLO3a, CLS+07, CSCHO08].
Besides, the coherent states to describe the superscars in square and
equilateral-triangular billiards will be developed [CHO03, CHLO02].
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Fig. 1.1-1. Schematic diagram for a 2D flat billiard. The particle in the billiard
goes in straight lines. The incidence angle on the wall equals the reflection

angle. The energy of the particle is constant.
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1.2 Diffraction in Time

Diffraction is a particular behavior of waves, which occurs when propagating
waves encounter obstructions. It may results in a digression from the geometrical
path including deflection into geometrically forbidden regimes. As well as classical
waves (such as light, sound, or water waves), matters (such as electron, neutron, or
proton) can also be diffracted due to wave-particle duality [DG27, SWMD48, WS48].
The diffraction mentioned above are spatial, while Moshinsky showed that matter
wave can be also diffracted in time [Mosh52], i. e. waves can be deflected into a time
zone which is classically prohibited. Consider the following shutter problem
proposed by Moshinsky: A monochromatic non-relativistic particle beam, moving
parallel to the x-axis, incidents on a completely absorbing shutter placed at x=0,
as illustrated in Fig. 1.2-1 (a). If the shutter is suddenly opened, what will be the
transient particle current observed at a distance behind the shutter? By the analogy
between paraxial optics and non-relativistic quantum mechanics [DDO04], it was
showed that the transient wave function has remarkable temporary interference
pattern (as shown in Fig. 1.2-1 (b)) analogous to the spatial interference pattern of
light diffracted by a sharp edge [Mosh52] (See Appendix A for a more detailed
discussion). Since Moshinsky first put forward this idea, diffraction in time has
received considerable attentions. The time evolution of various bound states
[Godo02, Godo03] and even arbitrary initial conditions [GMO05] have been
investigated for an abrupt potential change. Besides, the transient dynamics has also
been studied for potentials with different time modulations [dACMMO07]. Moreover,
the case of matter wave diffraction simultaneously in space and time has also been
considered [BZ97]. The experimental test for this diffraction-in-time effect was
indeed hard to reach at the time of the first introduction. However, due to the
development in ultrafast laser [PLW+03], atom cooling, and optical trapping
[WPW99], the transient dynamics has been recently observed in wide variety of
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systems including neutrons [HFG+98], ultracold atoms [SSDD95], electrons
[LSW+05], and Bose-Einstein condensates [CMPLO05].

The explorations of diffraction in time are not only for scientific interests but
also have some potential applications, as the transient response to abrupt changes of
the confined potential in semiconductor structures and quantum dots would exhibit
diffraction-in-time effect [DCM02, DMA+05]. As indicated in previous section,
semiconductor quantum dots have been widely used as 2-D quantum billiards to
explore the properties of quantum chaos [NHO4]. Understanding the time evolution
of suddenly released quantum-billiard waves can provide the nanostructure transport
properties for developing novel ultrahigh-speed semiconductor devices [DCMO02,
DMA+05]. Moreover, it is closely related to atom laser dynamics from a tight wave
guide whose boundary shape can be modified with the laser-trapping beam [dCL+08].
However the presented theoretical analysis only focuses on 1D potential barrier, the
diffraction in time of 2D quantum-billiard wave functions has never been explored.
In 1-D systems the current flow is monotonous since it is linear and can only flow to
two direction, +x or —x axes. However, the 2-D probability current density
becomes much complicated because its multi directionalities. Moreover, orbital
angular momentum (OAM), which is an important physical quantity both in classical-
[GPS02] and quantum-mechanical [BVD65] systems, will naturally arise due to the
2D current flow.

In this dissertation, the time evolutions, probability currents, and OAM densities
of eigenstate, coherent state, and chaotic state released from 2D square billiard are
theoretically investigated. Besides, the evolution of the time-diffracted wave
functions are analogously observed by the free space propagation of lasing modes of
VCSEL based on the similarities between paraxial optics and non-relativistic quantum
mechanics. However, the analogies between paraxial optics and 2-D quantum
system are not only restricted to the correspondence between amplitude distribution
and wave function but also consist in the similarity between optical and quantum
OAM densities [ZB06, ZB07]. Recent years have been increased attention being
given to optical OAM [ABSW92, FAAPQ8] for its wide applications in atom trapping
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[KTS+97], optical tweezers [MRS+99], and optical spanner [SADP97].
Furthermore, OAM of light beam can be encoded as qudit and has great potential
applications in quantum information [MVWZ01]. Therefore, the analysis on
guantum OAM of wave functions released from 2D billiard can be served as an

analogous investigation on optical OAM of lasing modes emitted from VCSEL.
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Fig. 1.2-1. (a) Demonstration of the shutter problem. (b) Red curve displays
the temporary interference pattern and blue dash line indicates a classical

result. (See Appendix A for a more detailed discussion.)
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1.3 Singularities in Optical Waves

Singularities are places at which some quantities become undefined. For
example, as shown in Fig. 1.3-1, the center of a color wheel is a color singularity at
which the color becomes undefined. The basic reasons study singularities is because
of their ubiquity and structural stability [Berr80]. For optical waves, there are
mainly two kinds of singularities being concerned: phase singularities and
polarization singularities [Nye99]. The survey of these singularities has becomes a
very modern area of interest in contemporary physics and is named singular optics
[SVO01].

Generally, phase singularities [Berr98] are points in plane and lines in space at
which intensity vanishes and the phase of complex scalar wave field become
undefined. In this work only 2D complex scalar field is concerned, which stand
either for 2-D quantum wave function or for transverse modulus of light beam. It is

convenient to introduce the mathematical form

w(X,y)=R(X y)+i I(x,y). (1.3.1)

with R(x,y) and I(x,y) to be real. By defining p(x,y)=R*(x,y)+I1%(X,Y)

and 6(x,y)=arg[w(x,Y)], the scalar field can rewrite as

v (X, y) =~/ p(x.y) explio(x, y)I. (1.32)

The positions at which R(x,y) and 1(x,y) simultaneously equal to zero such that

the amplitude ./po(x,y) vanishes and the phase €(x,y) becomes undefined are the

phase singularities. These nodal points in 2D plane are analogous to crystal
dislocation and are also referred as phase dislocation [NB74].

Another important quantity related to the phase is the probability current density

10
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which is generally given by

i) =%lm[z/(x, YV (%, ). (13.3)

Substituting Eq. (1.3.2) in to Eq. (1.3.3), the probability current density can be

alternatively expressed as the gradient of the phase &(x,y)

j(x,y) = %p(x, Y)VO(x,Y). (13.4)

According to fundamental calculus, the curl of j will be zero at all positions except

for the phase singularities. Hence, phase singularity is also termed as vortex for the
circulating current density around it. The vortices have been involved in a wide
variety of coherent phenomena such as superconducting films [MFDMO03], superfluid
[MFDMO03], Bose-Einstein condensate [MAH+99], microwave billiards [SHK+97],
quantum ballistic transport [BSS02], and liquid crystal films [dGP93].

One important characteristic of a phase singularity is its topology charge (also

named as winding number or dislocation strength) defined by

1 1 A A
s=—¢dd=—¢PVa(x,y)-(dxa, +dy a 135
22 P00 =7 9VO0y) (x4, +dy a) (1.35)

, Where C is arbitrary closed loop containing only one singularity inside. The
charge is positive (negative) if the phase circulates counterclockwise (clockwise). A
crucial topological property of singularities is the sign rule which indicates that the
charge of the neighboring singularities on a constant phase contour must have
opposite signs [Freu95].

Due to the underlying analogy between optical momentum density and the
probability current density (See Appendix B for a more detailed discussion), the phase
singularity of the amplitude distribution of light beam manifest itself as optical vortex

11
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[VS99]. Consequently, optical vortices is intimately related to optical OAM
[SGV+97]. As revealed in last section, optical OAM has attracted much interest
because of the wide applications, such as atom trapping [KTS+97], optical tweezers
[MRS+99], optical spanner [SADP97], and quantum information [MVVWZ01].

In singular optics to generate optical vortex is one of the predominant topics.
Typically, optical vortices can be generated by passing a fundamental-mode Gaussian
beam through such as cylindrical-lens mode converters [BAv+93], holograms
[HMS+92], spiral phase plates [BCKW94], axicons [KKS+07], uniaxial crystals
[VSF+06], and glass wedges [YAC+07]. Besides, spontaneous formations of optical
vortices in laser system have also been reported in solid-state lasers [CLO1, OCQ9],
Na, laser [BBL+91] and proton-implanted vertical-cavity surface-emitting laser
(VCSEL) [SO99]. The mechanism of the vortex formation in proton-implanted
VCSEL is due to transverse mode locking, assisted by the laser nonlinearity, of nearly
degenerate Lagurre-Gaussian modes [SO99]. Different from proton-implanted
VCSEL, the near-field transverse modes of oxide-confined VCSELs were shown to be
analogous to closed-quantum-billiard wave functions [HCLLO02, CHLL03a, CLS+07,
CSCHO08], which are purely real and contain only zero phases. However, transverse
field becomes complex as soon as it propagates out of the VCSEL cavity [CYC+09]
and contains intricate vortex structure, as will be shown in chapter4.

In addition to phase singularity of complex scalar waves, the singularities at
which the orientations of a real vector field become undefined are the so-called vector
field singularities [Denn01], or vector singularities [Freu01] in brief. In terms of

mathematical expression, a 2-D real vector field can be written as
V(% y)=V,(xY) & +V,(xy) &, . (1.3.6)

The vector singularities are the positions at which V,(x,y) and V,(x,y) equal to

zero simultaneously such that the orientation angle determined by the angle function

12
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©(x,y) = angle[V, (x,y),V, (x,y)] (1.3.7)
becomes undefined. The topological charge of a vector singularity given by

1 1 . .
l,=—@dO=—@pVO(Xx,y)-(dx a, +dy a 1.3.8
=2 27[?:5 (x,y)-(dx & +dy &) (1.3.8)

is called Poincaré index of zero [Denn01], where the contour C should be a very small
path around the singularity. The vector singularities with Poincaré index to be +1
can be categorized into vortices, sources and sinks, and saddles. Fig. 1.3-2 (a)-(c)
show the distributions of the real vector field around a vortex, saddle, and source,
respectively. The contour plots of orientation angles functions of the vector fields
shown in Fig. 1.3-2 (a)-(c) are depicted in Fig. 1.3-2 (a’)-(c’). It can be seen that
both vortex and source have their Poincaré indices to be 1 and the Poincaré index of a
saddle is —1. In fact the probability current density is one kind of the most familiar

vector fields. The locations in phase function &(x,y) correspond to the vector
singularities of current density j(x,y) are called critical points. The critical points

of phase giving rise to vortices, sources and sinks, and saddles in current density are
singularities, extrema, and saddle. Assume the vector fields shown in Fig. 1.3-2
(a)-(c) are probability current densities of some wave functions. We depict the
corresponding phase structures of the wave functions, which containing phase
singularity, maximum, and saddle, in Fig. 1.3-3 (a)-(c), respectively. In conclusion,
these critical points of scalar function become crucial as some vector field is
expressed as the gradient of the scalar function.

\ector singularities have also been involved in a wide variety of physics. For
optical waves, vector singularities are isolated, stationary points in a plane at which
the orientation of the electric vector of a linearly polarized real vector field becomes
undefined [Freu0l].  The features of the wvector singularities have been

experimentally observed in laser modes with the interrelated behavior of spatial

13
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structures and polarization states [Gil93, VKMRO01, LCHOQ7, Erdo92, PTMA97]. In
this work, the vector singularities embedded in the near filed patterns of VCSELs will
be analyzed in an unambiguous way [CHLLO03b, CSL+07].

14
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Fig. 1.3-1. A color wheel. At the center the color becomes undefined.
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Fig. 1.3-2. (a)-(b) \Vector fields with vortex, saddle, and source, respectively;

(@’)-(b’) The corresponding orientation angle function of vector fields shown

in (a)-(b).
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0

Fig. 1.3-3. (a)-(c) The phase structures of singularities, saddle, and extremum.
The gradient of these phases will result in the vector fields shown in Fig. 1.3-2

(a)-(c), respectively.
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1.4 Vertical-Cavity Surface-Emitting Lasers

Stimulated emission is one of basic interactions between light and matter.
During this process an excited electron is perturbed by an incident photon with
specifying energy and then jumps to a lower energy level accompanied with emission
of another photon with the same energy, polarization, phase, and direction as the
incident photon. Coherent amplification of radiation by stimulated emission was
first realized with microwave by Townes et al in 1954 [GZT54]. Four years later
Schawllow and Townes proposed that coherent amplification can be applied to
infrared and optical wave [ST58]. In 1960 Maiman first demonstrated laser, light
amplification by stimulated emission of radiation, operation with a ruby crystal
[Maim60]. The superiors of laser over other light source, such as light bulbs and
neon tubes, consist in the high directionality and intensity, coherence, and
monochromatism of the output light. Based on these advantages, laser has had great
applications in many fields of science and influenced people’s life in various aspects.

Laser is mainly composed by gain medium, optical cavity, and pumping source
[Sieg86]. One way to catalog lasers is in accordance with the types of the gain
medium: For example, solid-state and gas lasers have solid crystal and gas as their
gain medium, respectively. Among all types of lasers, semiconductor lasers have the
greatest impact on human’s everyday life: they are applied to the CD-ROM,
DVD-player, laser printer, etc.

The first semiconductor laser was demonstrated with a p-n junction by Nathan et
al at IBM in 1962 [NDB+62]. However, a simple p-n junction laser is not efficient
and a great improvement by using heterostructure was proposed by Kroemer [Kroe63].
The device structure of a typical hetero-structure laser diode is depicted in Fig. 1.4-1.
The electrons in the valence band of active medium are electrically pumped to
conduction band to achieve population inversion. The resonator cavity is formed by
the cleaved facets which have a reflectivity of about 30% due to the large
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discontinuity of refraction indices between semiconductor and air. The laser output
is parallel to the epitaxial layers and emitting from the edge of the device. As a
result such laser diodes are commonly referred as edge-emitting lasers (EELS).

There are many advantages of semiconductor laser over other types of lasers:
They are compatible with modern electronics and are easy to use; the whole device is
manufactured by traditional semiconductor process such that they are compact and
low-cost; their lasing wave length can be engineered for special purposes. However,
due to the extremely narrow emitting region, the beam profile of an EEL is elliptical
with high divergence in one direction and is detrimental for coupling into optical fiber.
Besides, EEL is typically under multi-mode operation because of the long cavity
length and this would induce longitudinal mode hopping that is undesirable for
application.  These critical drawbacks motivated the invention of VCSEL.

The device structure of a modern VCSEL structure is schematically shown in Fig.
1.4-2 to make a comparison with an EEL. As indicated by its name, the directions of
laser oscillation and output are perpendicular to the semiconductor wafer. The first
VCSEL is invented by Iga and co-workers in 1979 [SIKS79], while only pulsed
operation is permitted at cryogenic temperature. With usage of distributed Bragg
reflector (DBR) as cavity mirror [OHKY®83], room-temperature continuous wave
(CW) lasing of VCSEL was achieved by the inventors in 1989 [KKI89]. On the
other hand, the efficiency of VCSEL has a big breakthrough with the introduction of
guantum wells as active medium [JHT+89]. The efficiency is also closely related to
the lateral electric current confinement, which also guides the optical field. There
are four types of electrical and optical confinement, air-post, ion-implanted, regrown,
and oxide-confined structures, for the modern VCSEL devices [CC+97]. Among
these, oxide-confined VCSEL has the highest efficiency and lowest threshold and the
devices used in this work are of this type.

Resulted from the symmetric transverse optical confinement, VCSEL has good
beam quality as was expected. The cavity length of VCSEL is consequently
designed to be about one wavelength and permits single longitudinal mode lasing.

Due to the thin active layer, VCSEL can be modulated with an ultra-high speed
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[STB+93]. Since the reflected mirrors of VCSELs are fabricated during epitaxial
growth, batch processing and on-wafer testing make VCSEL more cost-efficient.
Meanwhile, VCSELSs can be arranged to high-fill-factor 2D laser arrays [GMJ+99]
and can be monolithically integrated with photodetector [HTW+91], waveguide
[LLP+05], modulator [GGK+96], and mirror [KDR+08], etc. Owing to these
advantages, VCSEL has been widely used in optical communication [EFM+96,
GAL98].

Despite that VCSEL is superior to EEL in many aspects VCSEL still has two
shortcomings that do not exist in EEL. First, the output power of VCSEL is limited
by the thin active medium. In contrast, high output power can be achieved by
enhancing the length of the laser diode. Though high output power of VCSEL can
be realized by enlarging the aperture, this will simultaneously result in high
divergence angle since the Fresnel number of a cavity is proportional to the transverse
area. Second, the polarization of EEL is fixed due to the extremely asymmetric
emission region; while the polarization of VCSEL is unstable because its transverse
aperture is isotropic. There is much effort to deal with these two problems:
High-power fundamental-mode operation of broad-area VCSEL can be attained by
manufacturing a photonic crystal on the surface [KSL+08] and integrating with
monolithic micromirror [KDR+08]; the polarization of VCSEL can be controlled by
several way [BCSR99, VdS+06]. However, our goal here is not to overcome the two
problems but base on the two characteristics to explore interesting pattern formations
in VCSELSs.

Pattern formation [Lam98, CH99] is the spontaneous development of spatial
(-temporal) nonuniformities of non-equilibrium systems under homogeneous external
condition and has attracted much interest in chemistry [POS97], biology [LLMO06],
and physics [GL99]. Recently, Hegarty et al. have reported interesting pattern
formations in the transverse mode of large-aperture oxide-confined VCSELs
[HHMC99, HHP+99]. Besides, optical vortices have also been shown to
spontaneously form in implanted VCSEL [SO99]. More recently, broad-area
VCSELs have been shown to maintain cavity solitons [BTB+02, TAFJ08]. Most
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importantly, it has also shown that the near-field transverse patterns of broad-area
oxide-confined VCSEL are analogous to the mesoscopic wave functions of quantum
billiards [HCLLO2, CHLLO03a, CLS+07, CSCH08]. The main idea of this
dissertation is based on this interesting analogy.

As mentioned above, the polarization of VCSEL is unstable due to the isotropic
gain region and birefringence. Generally, VCSEL emits linearly polarized light field
in one direction at near-threshold current. As the injection current increases, the
polarization behaviors of VCSEL becomes more complicated. One general
condition is that two orthogonal linear polarization states independently coexist.
Another interesting phenomenon is the polarization switching, in the process the
lasing polarization state switches to the perpendicular one [AS01, MFM95,
VEWW098]. Here a third case in which the transverse pattern has different
morphology at different polarization angles is concerned [Erdo92, PTMA97]. In fact,
this condition corresponds to the formation of vector field [CHLLO3b], which also has
been studied in various laser systems [Gil93, VKMRO01, CLH06, LCHO07]. Final part
of this dissertation is to analyze the vector singularities embedded in the vector field
emitted from VCSEL.
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Fig. 1.4-1. Schematic diagram of an edge-emitting laser. The laser output is
parallel to the semiconductor layers. The out put beam is highly diverged due

to the thin emission region.
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Fig. 1.4-2. Schematic diagram of a VCSEL. The laser output is perpendicular

to the wafer. The isotropic aperture results in a good beam quality.
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1.5 Overview of Thesis

The main text of this dissertation is structured as follow:

In chapter2 quantum billiards is employed to explore the classical-quantum
correspondence of regular and chaotic systems. In Sec. 2.1 the classical POs and
guantum eigenstates of square are reviewed and then the coherent states with wave
functions localized on classical POs will be introduced. Similar process is done for
an equilateral-triangular billiard in Sec. 2.2. In the final section of chapter2, the
stadium billiard is used to demonstrate the quantum properties of chaotic systems.

In chapter3 the analogous observations on various quantum-billiard wave
functions from transverse modes VCSELSs are presented. The first section of this
chapter justifies the analogy between the transverse mode of VCSELs and the wave
functions of quantum billiards.  After which the experimental setup will be shown.
The typical lasing modes of the square billiard are presented in Sec. 3.3. What
follows is the chaotic modes generated by a rippled-square VCSEL. Finally,
equilateral-triangular shaped VCSEL are shown to exhibit mixed properties of regular
and chaotic system.

In chapter4, we investigate the time evolutions, probability currents, and OAM
densities of eigenstate, coherent state, and chaotic state released of 2D square billiard.
The time evolution of a stationary wave function abruptly released from 1-D infinite
potential is first reviewed in the opening section. In Sec. 4.2, we extend to study the
transient dynamics of various wave functions with a suddenly removal of 2-D square
billiards. In third section of chapter4, we utilize the similarity between paraxial
optics and 2-D non-relativistic quantum mechanics to analogously observe the time
evolutions of coherent waves released from quantum billiards by free-space
propagation of transverse modes of VCSELs. In final part of chapter4 we are to
analyze the linear and angular momentum densities of the light beam emitted from

VCSELSs by analogously calculating the probability current and angular momentum
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densities of coherent waves released from quantum billiard.

From chapterl to chapter4, the observed patterns are all lasing in
unipolarization and have their phasor amplitudes to be scalar field. In chapter5, we
will consider the vector field formation in the transverse modes of VCSELs. In first
section of chapter5 we present a polarization-entangled pattern associated with two
superscars modes in a square shaped VCSEL. We reconstruct the patterns in two
orthogonal polarization states by SU(2) coherent states to manifest the vector field
and vector singularities. Similar experimental method as that in Sec. 5.1 is applied
to originally generate a chaotic vector in Sec. 5.2. By using the eigenfunction
expansion technique, the vector field is reconstructed to unambiguously analyze the

vector singularities embedded in a chaotic vector field.
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Chapter 2

Wave Functions of

Quantum Billiards
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As revealed in Sec. 1.1, the eigenenergy of a regular quantum system can be
determined by the old quantum theory with the help of the classical POs. On the
other hand, the behavior of the quantum particle was not understood until Schrodinger
particle was not understood until Schrodinger put developed the wave mechanics and
Born interpreted the wave function by probability density. With Schrodinger
equation, the wave function of integrable system can be analytically solved. In
contrary, the wave function of chaotic system is still mysterious until Berry
conjectured that chaotic wave function should be Gaussian random wave [Berr77].
With numerical calculation, the morphology of chaotic wave function was visualized
[MK79, MK88]. More importantly, Heller showed that in addition to random phase
filed some eigenstates of chaotic system will localize on the unstable PO [Hell84]s.
Such kind of wave functions were called scar [Hell84]. For a chaotic system, both
types of high-order wave functions, random wave or scar exhibit classical behaviors,
as indicated by Bohr’s correspondence principle. Nevertheless, the highly-excited
eigenstate of regular system do not reveal classical properties even with quantum
number approaching to infinity.

In this chapter quantum billiards, which is one of the standard models (the other
two are harmonic oscillator and Hydrogen atom) for studying quantum physics, is
employed to explore the classical-quantum correspondence of regular and chaotic
systems. In first section the classical POs and quantum eigenstates of square are
reviewed and then the wave functions of superscar will be introduced. In Sec. 2.2
similar process is done for an equilateral-triangular billiard. Finally, the stadium

billiard is used to demonstrate the quantum properties of chaotic systems.

2.1 The Square Billiard
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The square billiard is one of the simplest billiards that is completely integrable in
classical mechanics [Wier01, dSF01]. In a square billiard each family of periodic

orbits can be denoted by three parameters (p,q,¢), where p and g are two positive

integers describing the number of collisions with horizontal and vertical walls, and the

parameter ¢ (—z <¢ <) that is related to the wall positions of specular reflection

points [BB97, von0O94, Robi97]. Some examples of orbit families are shown in Fig.
2.1-1. It can be seen that the trajectory constitute a single, nonrepeated orbit
provided that p and ¢ are relatively prime. On the other hand, if p and ¢ have a
common factor f, the orbit family can be recast as the primitive periodic orbit
(p! f.ql f,¢! f) and fis the number of repetitions of the primitive periodic orbit.
Since the square billiard is separable, the quantum eigenstates of square billiard
are just the multiplication of the eigenstates of 1-D infinite potential well with

variables in x and y

Vo, (5 y)——sm( 5)sin(=2) (212)
Fig. 2.1-2 displays some of the eigenstates with their quantum numbers labeled below
the figures. We can see that conventional eigenstates of a square billiard do not
manifest the properties of classical periodic orbits even in the correspondence limit of
large quantum numbers.

To construct the wave functions associated with periodic orbits, the SU(2)
coherent state are extended to the square billiard [CHL02, CHLLO03a]

M-
‘sz‘?w \/— z \C elK¢WqN+pK PN+q(M-1-K) (x, )

M-

C[/;/Iequﬁ Sln[(qN+pK)”x]Sln[(pN+q(M_l_K)ﬂ.y]
a

(2.1.2)

In order to understand the properties of the stationary coherent, we rewrite it as
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ZyMd ik (-1 p))
a e a a

K=0

-1 l[qN x+pN 51 lq(M -1)

\Pp,q,r/ﬁ(x y) - e
N,M 1
2aM

~ilgNTxe pNT] —igm )Ty M ik (PR 9E gy

+e a a e a a a

=0

TN " x=pN 7] —zq(M—l)”y ik (I )

a a a

—¢ ¢ € (2.1.3)

K=0

—€ e e

T — . T T
N T x-pN )] ig(M LA S 7 QB L) |
a a a
K=0

e IF (3, i)+ I (5, vi)

Za\/_
*OIG, (x,yig) = e G (xyid)}

, Where

e Y QS LAY |

Fi(x,y;¢)=Ze = iy )

G Ky

G.(x,y:9) = Ze :

and ®i(x,y):[qN£x+pN£y]iq(M—1)£y. Since the property of the
a a a

functions F.(x,y;¢) and G (x,y;¢) is similar to the Dirichelet kernel, the

stationary coherent state has maximum value whenever

L L (2.1.4)
a a

, Which coincide with the classical trajectories of periodic orbits labeled as (p,q,9).
Fig. 2.1-3 displays the stationary coherent states W%’ (x,») associated with the

periodic orbits shown in Fig. 2.1-1. It can be seen that the wave functions of

lPg’y‘;f(x,y) well localize on the periodic orbits (p,q,¢) . Furthermore, the

distribution of |‘P”"’(x )P illustrates Bohr’s correspondence principle: the
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velocity of classical particle is at minimum at the specular reflection points and

therefore |} 19 (x, )" becomes extremely large at these points.

The wave given in (2.1.2) represents a traveling-wave property. The

standing-wave representation can be obtained by using ‘{”’”’(x y)+¥ ”“’(x y).

Including the normalization constant, the standing-wave forms can be expressed as

€ () =l 3 cos(gysin[ WP
\/ > C cos® (K ¢) K= a
><Sin[(pN+q(M—1—K)7ry] 215
and
SPe (x,y) = — - Z\/C75|n(K¢)S|n[(qN+pK)ﬂx]
\/ZCMsm (Kg)
><Sin[(pNqu(M—l—K)ﬂy] 016

Here we only show the wave pattern |C§'§f’(x, y)|* because the wave pattern
|S”¢(x ) generally has the same properties. The N dependence of the wave
pattern |C74/(x,y)[* is presented in Fig. 2.1-4. We can see that large value of N
naturally results in high mode order, since (¢gN, pN) stands for the central quantum
number in the expansion. The M dependence of the wave pattern |C’””’(x P

presented in Fig. 2.1-5. It can be seen that the larger the value of M is, the more
strongly the wave pattern localize. This fact can be understood from the expressions

of F.(x,y;¢) and G_(x,y;¢), which are similar to Dirichlet kernel having narrower

width for larger M.
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¢ i i 2
®.9) 0 3 2 3 i
(1,1) O
) O@
(2,1) /
" (/\X/

Fig.2.1-1. Some classical periodic orbits denoted by (p,q,¢), where p and ¢ are
two positive integers describing the number of collisions with horizontal and

vertical walls, and the parameter ¢ (-7 <¢<x) that is related to the wall

positions of specular reflection points.
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(1) (2,1) (1.2) (2,2)
(3.1) (1,3) (3.2) (2,3)
(4,1) (1,4) (3.3) (30,30)

Fig.2.1-2. First some eigenstates and the one of (n,n,)=(30,30). We can

expect that conventional eigenstates do not manifest the properties of classical

periodic orbits even in the correspondence limit of large quantum numbers.
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(r.9)

(LD

2.1)

3.2

Fig.2.1-3. Stationary coherent states Wi%s(x,y) associated with classical

periodic orbits (p,q,9) .
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| Cais ™" (6, 9) [

| Cyos " (%, ) [

| Cias ™" (x, ») [

Fig.2.1-4. The N dependence of the wave pattern | Cy'y® (x,»)[?. It can be

seen that NV is related to the mode order.
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11,0.67
C30 5

11,067
C130,15

| (x, )

C1,1,0.67r
30,20

| (x,»)

Fig.2.1-5. The M dependence of the wave patterns |Cy " (x,¥)[*. It can be

seen that M is related to the localization of the patterns.

35



Ch2 Wave Functions of Quantum Billiards

2.2 The Equilateral-Triangular Billiard

The equilateral-triangular billiard is a classically integrable but non-separable
system. Let three vertices of an equilateral-triangular billiard to be set at (0,0),
(a/2,\/§a/2), and (—a/2,\/§a/2). The formation of classical periodic orbits can
be also denoted by three parameter (p,q,¢), where the parameter p and ¢ are
nonnegative integers with the restriction that p > ¢ ; the parameter ¢ is in the range
of —z0to ~. Thesignof ¢ and the parameter p and ¢ correspond to the initial

angle of the billiard ball by [DB02, CHO3]
1p—yg
tan(@) = sgn(¢) —=—— 2.2,1
(0) =sg (¢)@p+q (2.2,1)

, Where the initial angle @ is with respect to horizontal. Assuming the initial

position to be on y axis, the parameter ¢ can be related to the initial position by

_ 1 3alg]

e (2.2.2)

0

Some sample orbit families are given in Fig. 2.2-1. In terms of p and ¢, the path

length can be written as

L,,=~3a\p’+q*+pq., (2.2.3)

except for the isolated orbits such as (1,1, 7) [DBO02].

The eigenstates in an equilateral triangular quantum billiard have been derived
by several groups [Shaw74, RB81, LB85]. The wave function for the two

degenerate stationary states can be expressed as
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(©) _ |16 27 i _n)2E
D, (x,y)= 737 {COS[(mﬂfz) » x}sm{(m n) NP y}
+COS{ (2m - n)—x}sm{ \/—a } (2.2.4)

~cos| (2n-m) 22 Jsin| m 2. }}

and

@ [16 [ 27
O (x,y) = a23\/§{ sm[(mﬂz) 2 }sm{(m n)\/_a }
+Sin[(2m n)—x}sm[ \/_a } : (2.2.5)

_sin[(Zn m>—x}3'”{ NP }

@ (x,y) and ®Y (x,y) have the following characteristics:

m,n m,n

D (x,3)=0, ¥ (x,»)=0, O (x,»)=-0(x,»), O (x,y)=-0Y (x,),

Hence, the condition of m >2n is required to keep all eigenstates to be linearly

independent to each other. Figures 2.2-2 and 2.2-3 show some of the @7 (x,y)
and @) (x,») with their quantum number labeled below the pictures. Notice that

the conventional eigenstates do not manifest the properties of classical periodic orbits
even in the limit of large quantum number.

For the construction of the coherent states associated with the periodic, it is
mandatory to use the traveling wave states from linear combination of eigenstates in

Eq. (2.2.4) and (2.2.5):
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O, (x,3) =D (x,3) £i®Y (x,y)

= ’a23\/§ {exp[il(m+n)§x}sm[(m—n)Ey} (2.2.7)
+exp[+z(2m n)—x}sm{ \/_a }

exp| 7 (20~ m>—X}S'”[ N }}

Similar to stationary coherent state in square billiard, the stationary coherent state

associated with periodic orbit denoted by (p,q,¢) in equilateral-triangular billiard

can be expressed as [CHO3]

lPT”M (x y p q ¢) \/_ Z VCM 1K¢CD+O+pK ny+q(M-1-K) (x J/) (228)

with m, =29+ p)N and n,=(2p+q)N , where M stands for the number of

eigenstates that are involved in the superposition and N is related to the mode order.
To show the stationary coherent state will indeed localize on the classical periodic

orbits, we rewrite (2.2.8) as
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Yy (i pg.9) = \/1—,/61 13?/— le

i{=[my+ng+q(M l)]fH[mo ng—q(M 1)]\/— YLLK {-(p- q) X+(p+q)J— y+¢}
e e 3a

K=0
Dm0+ g (D2 x-Tg -y~ (M -1 2E MU K- (p-0) =) v}
+e 0o 3a 070 \/ga' e 3a f
K=0

2o (4 DV 3y g (M -DZ YU K2 v-a- T ved)

+e e
K=0
i{[2my—ny—q(M 1)1 x [ng+q (M-} 22y} ML :K{(2p+q) T rq g}
+e */5" e 3a \f
K=0
H{[2ny- mo+2q(M—1)] x+mo LoyM-l k- (2q+p>—x+p ~ 4}
+e f Ze V3a

i{[2ny—my+2q(M 1)] x mo-my} ML K- (2q+p) x p-—y+}
+e \/— e J—
K=0

(2.2.9)

Similar to (2.1.3), the stationary coherent state W', (x,»; p.q,4) will localize on

the six families of lines,

—(p—q)ZlX+(p+q)%y+¢= 2n7x

—(p— q)—x (p+q)\/§ y+¢=2nrx

2 27
2+—x——+=2n7r
(2p+q) qﬁy¢

Zp-l-q —X+q +¢ 2nrx

7Z' 7Z'
—(2g + —x+ —y+¢=2nr
(29 + p) p\/—ay ¢

27
—(2g + —x + 2nr
(29 p) p\/—ay ¢=

, which make up the classical periodic orbits that have been presented in Fig.2.2-1.

Tri

Fig. 2.2-4 display the stationary coherent states | Wi, s (x,»; p,q,¢)[° associated with
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the periodic orbits shown in Fig. 2.2-1. It can be seen that the wave functions of
| Wess(x, v p.q,9) [* indeed localize on the periodic orbits (p,q,¢). Similar to the

stationary coherent state in square billiard, the distribution of | ¥ . (x, »; p,q,9) §

has a peak at specular reflection points.

As we can see, ¥, (x,y;p,q.¢) represents the traveling wave and the

expression for the standing wave can be given by

Cy'y (3, p.q.8) =YY, (x,3.0,q.8) + ¥ (x, 9, 0.9, 9) (2.2.11)
and
Sy ypq.8) =Yy (v, p.q.8) =¥ (5.3, p.q.9) (2.2.12)

Here we only show the wave pattern |Cy", (x, ¥; p,q,4) |*, because the wave pattern
|S§fjw (x,v; p.q,¢)[° have similar characteristics. ~Figs. 2.2-5 and 2.2-6 demonstrate

the N and M dependences of the wave pattern |Cy', (x,; p.q.4) [, respectively.

The results are the same as that of square billiard.
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S VA A
VY YY

Fig.2.2-1. Some classical periodic orbits (p,q,¢), where p and ¢ are two
positive integers with restriction p > ¢, and the parameter ¢ (-7 <¢<r)is

related to the initial point of the billiard ball.
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A

(2,1)

(4,2)

(6,2)

V
A

(6,3)

(7,1)

(7.2)

(7.3)

Fig.2.2-2. Some eigenstate of equilateral-triangular billiard CDEnC) (x, ).
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WV

(3,1) 4
(5,2) (6,1) | (6,2)
7y (72 (1.3

Fig.2.2-3. Some eigenstate of equilateral-triangular billiard <1)ff’ (x,») . Notice

that % (x,)=0.
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0 z z 2z .
(p,q) 3 2 3

DAAAA
"YYVVYV
"VVVVVY

Fig.2.2-4. Stationary coherent states |Wg . (x,v;p.q,4) |> associated with

classical periodic orbits (p,q,9) .
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| CzTSflo(x,yil’O,ﬂB) |2

| CsTgflo(x1y;11017[/3) |2

| Ciono (¥, 11,0, 7/3)

Fig.2.2-5. The N dependence of the wave pattern |Cy5,(x, ;10,7 /3) . It

can be seen that NV is related to the mode order.
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| Clos (%, 11,0, 713) [

| Cfgflo(x,y;l, 0,7/3) |2

| Cous (x, 31,0, 7/3) [

Fig.2.2-6. The M dependence of the wave patterns |Cy',, (x,;1,0,7/3)*. It

can be seen that A is related to the localization of the patterns.
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2.3 The Chaotic Billiards

Chaotic billiards has long been used as a paradigm to study the classical and
quantum chaos [St6c99]. Among all kinds of chaotic billiards, stadium billiard (as
shown in Fig. 2.3-1) is the most popular model for which is a strong chaotic system
[Hell84]. The trajectories in stadium billiard are generally ergodic, they spread all
over the phase space. In addition to ergodic trajectories, Fig. 2.3-2 displays some of
the unstable POs which are intimately related to the quantum energy density [Gutz91].
Unlike integrable billiards, the quantum eigenstates of stadium billiard have no
analytic forms and can only be obtained by numerical computation. In this section
the expansion method [KKS99] is utilized to investigate the wave functions of
stadium billiard.

The first eight eigenstates of stadium billiard are depicted in Fig. 2.3-3.  As we
can see that the low-order wave function behaves like that of regular billiard. Fig.
2.3-4 (a)-(d) present the 152nd, 165th, 175th, and 208th eigenstates, respectively.
Notice that symmetry has been intentionally broken in this calculation. Unlike
regular billiard, high order wave function exhibits random patterns. The morphology
of such chaotic waves can be mimicked by a random superposition of plane waves
with fixed wave-vector magnitude but uncorrelated amplitudes, directions, and phases
[Berr77]. Fig. 2.3-5 (a) shows the random wave of

s (x, ) = fzzcos(qﬁ,h,,,z)sin

mon

nx
( a

)sin(”fy ) (2.3-1)

with  random phase factors ¢, and quantum numbers satisfying

54 <./n’+n,* <55, as illustrated in Fig. 2.3-5 (b). The signatures of such chaotic

guantum wave functions consist in [St0c99] the Gaussian distribution for amplitudes
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1 1//2
P = exp(——— 2.3-2
(w) oy p( = (2.3-2)

where ¢ is the standard deviation given by o =1/ JA with 4 denotes the area of the

billiard, and Porter-Thomas distribution for intensities

P() = (2.3-3)

L (-l
N2rl 2"

, where 7=y [°. The histograms in Fig. 2.3-6 (a) and (b) validate the statistics of

rnd

wave function and intensity of w™(x,y) are actually in Gaussian and

Porter-Thomas distributions, respectively.

In addition to these chaotic wave functions, some scar modes are also found in
the calculation. Fig. 2.3-7 (a)-(d) depicts the 122nd, 132nd, 207th, and 258th
eigenstate, respectively. The classical POs on which the scars localize on are
highlighted by orange lines. In consistence with Bohr’s correspondence principle,
the highly-excited eigenstates of stadium billiard, random waves or scars, exhibit the

properties of classical trajectories.
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Fig. 2.3-1. The stadium billiard. The trajectory in chaotic billiard is generally

ergodic.
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Fig. 2.3-2. Some unstable periodic orbits in the stadium billiard.
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Fig. 2.3-3. First eight eigenstates of the stadium billiard. The result is similar to

rectangular billiard.
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Fig. 2.3-4. (a)-(d) The 152nd, 165th, 175th, and 208th exited states of a
slightly asymmetric stadium billiard are shown to exhibit random patterns that

do not exist in regular billiard.
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0 10 20 30 40 50

Fig. 2.3-5. (a) A random superposition of several eigenstates with quantum

number satisfying 54 <./n’+n,” <55, as illustrated in (b)
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(@)
— Fitting Curve
05 —— Histogram
04 |
0.3 |-
~
> 5
a
0.2 |-
0.1 |-
0.0 !
-4 3 2 1 0 1 2 3 4
v
— Fitting Curve
10° —— Histogram

P()

Fig. 2.3-6. (a)-(b) The statistics for the amplitude and intensity of the random
wave shown in the previous figure. The fitting curves are Gaussian and
Porter-Thomas distributions, respectively.
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(@) (b)

(d)

Fig. 2.3-7. (a)-(d) The scars appear in the 122nd, 132nd, 207th, and 258th
exited states of the slightly asymmetric stadium billiard. The highlighted

lines indicate the unstable periodic orbits.
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Chapter 3

Analogous Observation on
Quantum-Billiard Wave

Functions from VCSELS
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In Sec. 1.1 the significance of quantum-billiard wave functions corresponding to
classical POs has been introduced and their formations have also been theoretically
demonstrated in chapter 2.  Since 2D wave function is difficult to directly visualized,
the experimental observations on quantum-billiard wave functions are mostly
performed in an analogous way. In this chapter VCSELs are employed to
analogously observe the wave function of quantum billiards.

VCSELs inherent emit in single longitudinal mode due to their extremely short
cavity length, but broad-area VCSELs can exhibit complex high-order transverse
mode structures. Hegarty et al. reported interesting transverse mode patterns from
square-shaped large-aperture (VCSELs) [HHMC99, HHP+99]. Their experimental
results revealed that a wave incident upon the current-guiding oxide boundary would
undergo total internal reflection because of large index discontinuities between oxide
layer and the surrounding semiconductor material. That is, VCSEL can be
considered as a planar wave guide with a dominant wave vector along the vertical
direction. Because of the analogy between the Helmholtz equation and Schrédinger
equation, it is essentially feasible to use the oxide-confined VCSEL cavity to present
quantum mechanical potential wells. In this case, the transverse patterns can reveal
the probability density of the corresponding wave functions to the 2D quantum
billiards. Most importantly, the superiority of oxide-confined VCSELs consists in
their longitudinal wave vector k. that can bring out the near-field patterns to be
directly reimaged with simple optics.

In this chapter the analogous observations of various quantum-billiard wave
functions are presented. The remainder of this chapter is structured as follows: The
first section explains why the transverse mode of VCSELs can be analogous to the
wave functions of quantum billiards. After which the experimental setup will be
shown. The typical lasing modes of the square billiard are presented in Sec. 3.3.
What follows is the chaotic modes generated by a rippled-square VCSEL. Finally,
equilateral-triangular shaped VCSEL are shown to exhibit mixed properties of regular

and chaotic system.
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3.1 The Analogy between VCSELSs and Quantum Billiard

The function of 2D wave-billiard wall in the VCSEL device comes from the fact
that the large index discontinuity between the oxide layer and surrounding
semiconductor leads to a total internal reflection of a wave incident upon the
boundary. As shown in Fig. 3.1-1 (a), the separability of the wave function in the
VCSEL device enables the wave vectors to be decomposed into &, and k,, where £, is
the wave-vector component along the direction of vertical emission and k; is the
transverse wave-vector component. The vertical dimension of the cavity is designed
to have a large k. component and a relatively small transverse component &, generally

k; <0.12 k.. The angle between the photon-velocity vector and the normal vector of

the boundary surface, tan'(k./k,), can be calculated to be greater than 1.45 rad.
On the other hand, the critical angle for the total reflection is given by

sin"'(n,, /ng,,.), ,» where n,_ is the effective refractive index of the oxide layer and
n.,. 1s the effective refractive index of the semiconductor cavity. With n,_=~1.5
and ng,, ~3.5, it can be confirmed that the angle between the photon-velocity vector

and the normal vector of the boundary surface is certainly greater than the critical
angle for the total reflection, as illustrated in Fig. 3.1-1 (b). As a consequence, the
lateral oxide boundaries can be modeled as rigid walls and the losses through the wall
boundaries are extremely low.

Under the circumstance of paraxial optics, k&, << k., the longitudinal field is
significantly small in comparison with the transverse field. Therefore, the electric
field can be approximated to have only transverse components and no longitudinal
component, i.e. so-called quasi-TEM waves. After separating the z component in the

wave equation, we are left with a two-dimensional Helmholtz equation:
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(Vf +kt2)z//(x,y):0, where V’ means the Laplacian operator operating on the

coordinates in the transverse plane and z//(x, y) is a scalar wave function that

describes the transverse distribution of the laser mode. As a result, the transverse
eigenfunctions of the oxide-confined VCSEL device are equivalent to the
eigenfunctions of the 2D Schrodinger equation with hard wall boundaries of the same

geometry.
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w

Contact

Oxide Layers

Active Layer

n-type DBR

(b)

Plane of Incidence
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n =1.5
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Fig.3.1-1. (a) The schematic diagrams for vertical-cavity surface-emitting
laser. he separability of the wave function in the VCSEL device enables the
wave vectors to be decomposed into k£, and k,. (b) The illustration of a wave
a wave incident upon the current-guiding oxide boundary would undergo total

internal reflection for k, <« k,.
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3.2 Experimental Setup

The experimental setup is schematically depicted in Fig. 3.2-1 and Fig, 3.2-2
present the detailed photos of the equipments. The VCSEL devices are mounted on
a cooper holder (Fig. 3.2-2 (a)) with good thermal conductance and placed in the
cryogenic system (Janis, VPF-100, Fig. 3.2-2 (b)) that is operating with liquid
nitrogen. The temperature is controlled by a temperature controller (Neocera,
LTC-11) with a temperature stability of 0.1 K at the range of 80-300 K. The VCSEL
is driven by a DC power supplier (KEITHLEY 2400) with a precision of 0.005 mA.

The near-field patterns were re-imaged into a CCD camera (Coherent,
Beam-Code) with a microscope objective lens (Mitsutoyo, M Plan Apo, NA=0.9,
Fig.3.2-2 (c)). The objective lens is placed in a tube that is connected with the
cryogenic system and can be tilted by the seven valves (Fig.3.2-2 (d)). A polarizer
was used to obtain polarization-resolved near field patterns.  The spectral

information of the laser output was measured by a Fourier optical spectrum analyzer

(ADVANTEST Q8347) with a Michelson interferometer.
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DC Power Supplier

Beam CCD Camera
Splitter

Polarizer

— \

- oy

o

Cryogenic System —
Optical Spectrum Analyzer

Fig.3.2-1. The schematic diagrams for the experimental setup.
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Fig.3.2-2. (a) The VCSEL mounted on the copper holder. (b) Side view of the

cryogenic system. (c) The objective lens with NA=0.9 (d) Face view of the

cryogenic system.
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3.3 Typical Lasing Modes of Square VCSEL

The SEM image and the optical microscope image of the square VCSEL device
used in this work are shown in Fig. 3.3-1 and Fig. 3.3-2, respectively. The bright
region in Fig. 3.3-2 displays the spontaneous emission to manifest the details on the
square boundary. The edge length of the aperture is measured to be about 40 um.
The control parameters of this experiment are the device temperature and pumping
currents. Since the lasing patterns will become multi modes, we only focus on the
lasing modes at near-threshold currents. The temperature dependence of threshold
current is shown in Fig. 3.3-3 (a) and Fig. 3.3-3 (b)-(d) depicts the experimental
near-field patterns of one of our square VCSEL devices at temperatures as indicated.
These patterns are robust; they remain unchanged for the durations of at least 1.0mA,
and can be reproduced under the same experimental circumstances. The lasing
pattern shown in Fig. 3.3-3(b) is obtained at room temperature. The lasing patterns
of VCSEL are typically multi-mode emission because of the thermal fluctuations.
The lasing state at the operating temperature of 285K becomes a bouncing-ball mode,
as seen in Fig. 3.3-3(c). When the operating temperature further decreases to 250K,
the near-field pattern dramatically changes to a multi-diamond pattern hat is a
superscar mode associated with several POs, as shown in Fig. 3.3-3(d). For the
operating temperature below 230K, the experimental pattern shown in Fig. 3.3-3(e)
corresponds to another superscar mode that is localized on a single PO. The
behaviors of each VCSEL devices are different but their characteristics are generally
the same. In conclusion, the temperatures at which the bouncing-ball or superscar
modes appear are not all the same for all devices, but it can be sure that the
bouncing-ball mode appears at a higher temperature than that for the superscar mode.
The multi-POs superscar mode does not always exist, but the temperature at which it
appears is higher than the temperature for a single-PO superscar mode if it ppears.

Most devices lase with single-PO superscar mode at low temperatures.
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These lasing patterns can be analogously interpreted by the quantum-billiard model.

The eigenstates of square billiard are given by (2.1.1)

n,7Ty

v, () = sin(7) sin(27Y) (.3.0)
a a

We find that the bouncing-ball mode shown in Fig. 3.3-3(c) is not merely an

eigenstate but more like a linear combination of two eigenstates

W31 (%, )sin(0.677) + 7, 1 (x, y) 08(0.677) (3.3.2)

The experimental result and theoretical simulation are depicted in Fig. 3.3-4 (a) and
(a’), respectively, for convenient comparison. Such kind of bouncing-ball modes are
prevalent in square VCSEL; we show some other two cases in Fig. 3.3-4 (b) and (c).

The corresponding mathematical expressions of Fig. 3.3-4 (b’) and (c’) are

Wa011(X, ¥)sin(0.357) + 5, (x, y) c08(0.357) (3.3.3)
and

Wiiaa (X, ¥)8I0(0.77) + 7, 45 (x, ¥) c08(0.7 7) 3.3.4)
, respectively.

The other representative lasing pattern is the superscar mode that localized on the

diamond-shaped PO. As discussed in chapter 2, the superscar can be expressed as

Cl (r,y) = =2 ZJC_M cos(Kg)sin[ L LT
\/ZCM cos’(K¢) *~ (335)
><Sin[(pN+q(M—1—K)7zy
a
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It can be found that the superscar mode shown in Fig. 3.3-3 (e) can be interpreted by

Cyiye) " (x,y). We can compare the experimental and theoretical patterns from Fig.

3.3-5(a) and Fig. 3.3-5(2’). The low-temperature lasing modes of most square
VCSELs are dominated by the superscar modes. Fig. 3.3-5 (b) and (c) display two
other similar superscar modes observed from the other devices. The corresponding
theoretical results are also shown in Fig. 3.3-5 (b’) and (c¢’) for comparisons.

We can also reconstruct the multi-POs superscar mode by superposing SU(2)
coherent states. Based on thorough numerical analysis, the experimental multi-POs

superscar modes can be found to be well reconstructed by
C3"21,’§625” (x,y)+ 0.7C3]’21,’§(')57” (x,y)+ 0.9C31§1”§68” (x,) (3.3.6)

Fig. 3.3-6 (a) and (a’) depict the experimental and theoretical results. Although the
multi-POs mode is not as prevalent as the bouncing-ball and single-POs superscar
mode, it also commonly appears in the transition regime between the two popular
modes. Fig. 3.3-6 (b) and (c) show the other two paradigmatic multi-POs superscar

modes. The two typical multi-POs modes can be reconstructed by

Cis (6, 2)+ C ™ (x, ) (3.3.7)
and

Cazo (6 3)+Ciyg " (6, 0) + Ciolny ™ (x,) (3.3.8)
and are shown in Fig. 3.3-6 (b’) and (c’), respectively. As we have demonstrated,

the transverse mode of square VCSELSs can be well reconstructed by quantum-billiard

wave functions.
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Fig. 3.3-1. The SEM image of square VCSEL device
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Fig. 3.3-2. Optical microscope image view from the aperture of the VCSEL.
The bright region display the spontaneous emission to manifest the details on

the square boundary.
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Fig. 3.3-3. (a) The temperature dependence of the threshold current and the
lasing modes observed at temperatures of (b) 295K (room temperature) (c)

285K (d) 250K (&) 230K.
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Fig. 3.3-4. (a)-(c) The bouncing ball modes observed in different square
VCSEL devices. (a’)-(c’) The theoretical explanations of (a)-(c), which are
expressed by Eq. (3.3.2)-(3.3.4), respectively.
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(b) (b")

Fig. 3.3-5. (a)-(c) Various superscar modes observed in different square

VCSEL devices. (a’)-(c’) Theoretical interpretation of (a)-(c) by SU(2)

1,1,0. 1,1,0. X :
coherent states C,%"" (x,y), Cao*"(x,y),and C, 72" (x,y) respectively.

71



Ch3 Analogous Observation on Quantum-Billiard Wave Functions from VCSELs

b _(b7)

Fig. 3.3-6. (a)-(c) Various multi-POs superscar modes observed in different
square VCSEL devices. (a’)-(c’) Theoretical patterns of (a)-(c) given by
Eq. (3.3.6)-(3.3.8), respectively.
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3.4 Chaotic Wave Function in Rippled-Square VCSEL

Recently, Li et al. reported interesting quantum chaotic phenomena in ripple
billiard [LRWO02]. In last section we have confirmed that transverse mode of
VCSEL is equivalent to the wave function of quantum billiard. Hence, we can
analogously observe the quantum chaotic wave function and experimentally
investigate the statistical properties of the chaotic wave functions. Although the
statistical properties of chaotic wave function have been theoretically well studied
[MKS88], the experimental wave functions are interfered in the measuring processes.
It is known that microwave cavities have been used to obtain the statistics of chaotic
wave state [KKS95, SHK+97, SHS04]. However, the statistical properties of the
chaotic wave functions emitted from VCSELSs have never been studied.

Fig. 3.4-1 shows the pattern of the spontaneous emission that manifests the
details on the ripple boundary. The forms for the bottom and top walls of the ripple

are approximately expressed as

i —% ‘ﬂ for the bottom wall

a

0.044 a [1 —exp (—13.5

Y(x)= , (3.4.1)

i—% ‘ﬂ for the top wall

a

a—0.044 a {1 - exp[—13.5

where a 1is the central length of the ripple boundary. The right and left walls of the
ripple are described with the same functional form. The size of the oxide aperture is
45x45um’.  Figures 3.4-2 (a) and (b) show the near-threshold lasing patterns of the
rippled VCSEL at temperatures of 7=260K and 7 =220K, respectively. It can
be seen that the two patterns exhibit similar morphology as a chaotic wave function as

shown in Ref. [OGH87]. We can validate that the two patterns are chaotic wave
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functions or not by testing its statistical properties. Since the intensity patterns do
not contain sufficient information, the reconstruction of the wave functions is
practically useful for studying the statistical properties of the chaotic modes.

We first demonstrate the logic of the method for reconstructing the wave function
before going on. As demonstrated in Fig. 3.4-3, consider an unknown function

w(x) which is the stationary wave function of the system. Experimentally, one can
only observed its intensity distribution |y(x)[*. How can we obtain w(x) from

the experimental result | (x)|*? Firstly, we have to find the square root of |y(x)[*,
i. e. |w(x)|. Then we can see that |y(x)| is formed by many nodal domains
which are separated by the nodes. In |y(x)| these nodal domains are all positive
but they actually may be negative in y(x) and the signs of the neighboring two
nodal domains are different. We set the nodal domains with minus signs to be zero

and obtain the positive part of y(x) denoted as y,(x). Finally, y(x) can be

obtained by

y(x) =2y, (x)=y(x)] (3.4.2)

Extending to 2D case, the patterns shown in Fig. 3.4-2 (a) and (b) are the
experimentally observed intensity distributions and we are going to obtain the
corresponding wave function. In order to reconstruct the wave functions, we need to

deduce the field point matrix y/(x,,y;) from the experimental intensity point matrix

lw(x,y,) |*, where the indices (i, /) denote the pixel positions of the CCD camera and

the total pixel number of the experimental data is 200x200. Since the nodal lines
separate the positive and negative domains of the wave function, a so-called positive

wave distribution [y ,(x;, ;)| can be obtained by preserving the wave amplitude
|w(x,,y;)| for the domains with the same sign and setting the wave amplitude to be

zero for the domains with the opposite sign [SHS04].
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Figures 3.4-4(a) and (b) depict the patterns of [y ,(x;,y;)| for two chaotic

modes shown in Figures 3.4-2 (a) and (b), respectively. With the positive wave

distribution |y, (x,,y,)| , the experimental wave function w(x,,y;) can be

determined by

w(x,y,)=21y,(x,y) |- lw(x,y,)] : (3.4.3)

Since the experimental wave functions are too coarse to explore the statistical
properties completely, the eigenfunction expansion technique is utilized to find

analytical expressions for w(x,,y;). With the eigenstates of 2D square billiards as

a basis, the experimental chaotic wave function can be expressed as

w(x,y)= ZZ G, sm[—x) s1n[ﬂyj (3.4.4)

moon a a

where a is the length of the square boundary, n, and n, are the quantum number
in the x and y direction, respectively, and C, , denote the expansion coefficients.

Even though some other bases can be chosen for the expansion, the simple analytical
form of the eigenstates of 2D square billiards leads to the calculation to be extremely

straightforward. The orthogonality relation leads C,,, to be

C,., = j j w(x,y) sin (ﬁ xj sin (M y) dx dy, (3.4.5)
0 0 a a

With the experimental wave function y/(x,,y;), the integral in Eq. (3.4.5) can be

numerically calculated by a summation:
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N N
Com, =ZZw(xi,yj)sin(Mxi]sin(My,) Ax, Ay, : (3.4.6)
i i a a ’

i=l j=1
Figures 3.4-5(a) and (b) show the intensity plots of |C, , | corresponding to Figures
3.4-2 (a) and 3.4-2(b), respectively. These ring areas signify the random directional

distribution of transverse wave vectors K, since | C, ., | corresponds to the weighting

in k-space. The distribution of |C, | in Figure 3.4-5(a) has a mean radius

R,, =60.14 and standard deviation o5, =1.62 , while in Figure 3.4-5(b)

R,, =60.92 and o, =1.35. Here the mean radius R and standard deviation

o’ are defined as

E = Z | Cwnl,n2 |2 'rnl,nz and O_r :[z | Cfnl,n2 |2 '(rnl,nz _E)z]l/z (347)

ny,n, 1y

, where the radius r, is given by 7, , =n’+n’. Naturally R, is smaller

than R,,, because the detuning at T=260K is smaller than that at 7=220K. On the
other hand, o, is larger than o, because the thermal fluctuation at 7=260K is

larger than that at 7=220K.

With the expansion coefficients [C, , | the experimental wave functions can be
reconstruct by inserting [C, | into Eq. (3.4.4). The reconstructed intensity

patterns for Fig. 3.4-2 (a) and (b) are displayed in Fig. 3.4-6 (a) and (b), respectively.
We can see that it is very successful in reconstructing the experimentally observed
chaotic modes. The statistical properties of the two chaotic modes can now be
precisely studied. As discussed in Sec. 2.3, one obtains chaotic wave function in the

form of a Gaussian distribution for amplitude,
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2

exp(— 2'/;2 ) (3.4.8)

1
P =
(¥) oy

, where o is the standard deviation given by o =1/ JA with 4 denotes the area of the
billiard. Fig. 3.4-7 (a) and (b) depict the amplitude distributions of the wave
functions shown in Fig. 3.4-8 (a) and (b), respectively, with the fitting curves
described by Eq. (3.4.8). In addition to Gaussian amplitude distribution, the
intensity distribution of a chaotic wave function is shown to be Porter-Thomas

distribution

P(I) =

exp(—é) . (3.4.9)

1
N2l

Figs. 3.4-9 (a) and (b) illustrate the intensity distributions of the reconstructed patterns
Figs. 3.4-7 (a) and (b), respectively.
It can be seen that there are slight variations between our statistical results and

theoretical predictions, especially for the case of 7'=260K . This phenomena may
be caused by the thermal fluctuation that results in a broadening of the deviation (o)

of the nearly degenerate modes in experiment.
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Fig. 3.4-1. Experimental pattern of the spontaneous emission to manifest the

details on the ripple boundary.
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Fig. 3.4-2. Near-threshold lasing patterns of the rippled VCSEL at
temperatures of (a) 7 =260K and (b)7 =220K .
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Fig. 3.4-3. (a) An unknown wave function (b) The intensity distribution (c)
Square Root of intensity distribution (d) Positive part of the wave function (e)

Demonstration of 2y, (x)—|w(x)| (f) The result of 2y, (x)—|y(x)].
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Fig. 3.4-4. (a) and (b) The intensity plots of the positive wave functions
|y ,(x,,y;)| for experimental results shown in Figs. 3.4-2 (a) and (b),

respectively.
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() (b)

Fig. 3.4-5. (a) and (b) Distribution of the coefficients |C, , | obtained by Eq.
(3.4.6) for experimental results shown in Figs. 3.4-1 (a) and (b).
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Fig. 3.4-6. (a) and (b) The reconstructed patterns with the eigenfunction

expansion method for experimental results.
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Fig. 3.4-7. (a) and (b) Tthe amplitude distributions of the wave functions
shown in Fig. 3.4-6 (a) and (b), respectively.
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Fig. 3.4-8. (a) and (b) The intensity distributions of the patterns shown in Fig.
3.4-6 (a) and (b), respectively.
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3.5 Typical Lasing Modes in Equilateral-Triangular VCSEL

Equilateral triangular billiard is a special polygonal billiard, which is classically
nonseparable but integrable system [DRO02]. The experimental observation of the
lasing modes in equilateral triangular VCSEL may provide useful information for the
microdisk lasers experiments with equilateral triangular resonators [CKL+00, HGLOO,
HGYLO1, LCG+04, YAK+07, ] and electron transport phenomena in equilateral
triangular quantum dots [CLO+97].

Fig. 3.5-1(a) and (b) show the optical microscope image of the device operated
with an electric current under threshold current at room temperature. The bright
region indicates the equilateral triangular pattern of spontaneous emission, which can
be more clearly visualized in CCD camera as shown in Fig. 3.5-1(c). The edge
length of the oxide aperture was measured to be approximately 66.8 pum.

Similarly, we only focus on the lasing patterns at near threshold current. Fig.
3.5-2 shows the temperature dependence of the threshold current in the range from
300K to 120K. Figures 3.5-3(a)-(i) depict the experimental near-field patterns that
are characteristically observed at different device temperatures. It is found that the
lasing patterns are generally robust and reproducibly observed under the same
experimental circumstances. The lasing pattern shown in Fig. 3.5-3(a) is obtained at
the operating temperature of 295K and the optical spectrum indicates it to be a
multi-mode emission. The lasing state at the operating temperature of 275K is found
to dramatically change to a superscar mode that is similar to Fabry-Pérot modes
impinging on lateral sides vertically [MMNG64], as seen in Fig. 3.5-3(b). When the
operating temperature decreases to 195K, the lasing pattern shown in Fig. 3.5-3(e)
exhibits a honeycomb structure. As discussed later, the honeycomb morphology
corresponds to the pattern of an eigenstate. When the operating temperature further
decreases to 175K, the near-field pattern shown in Fig. 3.5-3(f) behaves like a chaotic

wave state that can be described as a random superposition of plane waves [OGHS87].
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For the operating temperature below 135K, the experimental pattern shown in Fig.
3.5-3(1) corresponds to another superscar mode that is related to a geometrical PO
[DRO2]. This superscar mode is found to be unchanged when the temperature
decreases from 135K to 80K. Intriguingly, the lasing pattern displays the transition
and coexistence of the chaotic and superscar modes at the other operating temperature.
As shown in Fig. 3.5-3(c), the lasing mode at 255K is a superscar mode like Fig.
3.5-3(b) but with a background of random wave. Fig. 3.5-3(d) is a mixing of
honey-comb eigenstate and random wave. The transition from chaotic wave
function to superscar mode is clearly displayed from Fig. 3.5-3(f)-(i). The lasing
patterns of each VCSEL devices are different but their characteristics are generally
the same.

The analogy between the -electromagnetic wave equation in paraxial
approximation and the Schrodinger equation enables us to make a detailed connection
between the quantum wave functions and the experimental patterns. As discussed in

Sec. 2.2, the quantum eigenstates of the equilateral triangular billiard are given by

ii(m+n)§—”x 27[’

CD:r‘n’n (x,y)= % {e 2 sin{(m —n)Ey}

2z
Fi(2m-n)—"—x
+e 3a sm[nz—”y} , 3.5.1)

ii(2n—m)§—ﬁx . |: 27[ :|
—e ‘@ smim——y
a

with 2n>m. The eigenstates CDfn’n(x, y) are the representation of traveling waves.

The standing-wave wave representation of @ (x,y) can be expressed as

@f; (x,y)=®, ,(x,y)-®, (x,y). The experimental honeycomb pattern shown
in Fig. 3.5-3 (e) can be numerically confirmed to correspond to the wave intensity of

| D) (x,») >, as depicted in Fig. 3.5-4 (b). Superscar modes that are associated
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with classical POs can be analytically expressed with the representation of quantum

coherent states

lPT”M (x.y;p.q.4) = \/_ Z VCM 1K¢®+0+PK no+q(M—1- K)(x ») (3.5.2)

Similarly, lI’T”M (x,y; p,q,9) represents the traveling wave and the expression

for the standing wave can be given by

Cyy (3, 0.0, =Y (.0, 0.0.0) + ¥ (x, 3, p.q. ) . (3.5.3)

Based on thorough numerical analysis, the experimental superscar modes can be

found to be well reconstructed with the coherent states of C3T6"f9(x, v; 1,0, 0.237)
and C,, ((x,»;1,1,0.357). Figures 3.5-5(c) and (d) depict the numerical wave
patterns  of | Cy,(x, ¥;51,0,0.237) and |Cro6(x, ¥5 1,1, 0357)

corresponding to the experimental patterns shown in Fig. 3.5-5 (a) and (b),
respectively. The excellent agreemen between the experimental and numerical
patterns confirms that the quantum formulism is of great importance in describing
distinct branches of physics because of the underlying structural similarity.
Conversely, the present analysis also provides a further indication that laser resonators
can be designed to demonstrate the quantum phenomenon in mesoscopic physics.
Although an ideal equilateral triangular billiard is integrable, some experimental
patterns reveal the property of quantum chaotic modes, as seen in Fig. 3.5-6(a). To
prove this pattern is chaotic, the method used in last section is employed to
reconstruct this experimental result. Since the eigenstates of equilateral-triangular

form a complete set of basis, the wave function can be spanned by [DB02]
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lr//(x’ y) = Z ZClm,nq)fnc:))z ('x’ y)
m22n n=0 (354)

£33, 0 (xy)

m>2n n=0

Based on the orthogonality of the eigenstates, the expansion coefficients can be

obtained by
cl,,,, = [[w e, )@ x, y)dedy (3.5.5)
5
and
¢2,, = [[w(x, )@ (x, y)dxdy (3.5.6)
5

, where the integration area § is the entire equilateral-triangle billiard. ~Similarly, the

experimental wave function w(x;,y,) can be found by

2y, (x,y ) =y (x, )| (3.5.7)

, where w (x;,y;) shown in Fig. 3.5-6 is the positive wave distribution. With the
experimental wave function y(x,,y;), the integrals in Eq. (3.5.5) and (3.5.6) can be

numerically calculated by summations:
Clm,n :zzy/(xi’yj)q);fr)z(xi’yj)mi Ay] (358)
i

and
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sz,n = ZZW('X:’)/J)(DSi (x,»,yj) Axi ij (359)
iJ

. L o 3 .
, with the indices (i, ;) satisfying x, > —\/gyj AX; < \/gyj NY; <§a. Inserting

the expansion coefficients ¢l and c2

. into Eq. (3.5.4), we can obtain the
reconstructed wave function as shown in Fig. 3.5-7(b). Besides, it has been

discussed that the intensity statistics of the chaotic wave functions obey the

Porter-Thomas distribution P(/ ):(1/ 27 1 )e’ 2. We evaluate the intensity

statistics for the reconstructed wave function, as shown in Fig. 3.5-7(c). The good
agreement validates that the wave pattern corresponds to a chaotic wave function.
The origin of stationary chaotic modes is inspected to arise from spontaneous
imperfections, such as roughness on boundary or unequal of the three internal angles.
In other words, the spontaneous symmetry breaking may cause the real devices with
idealized integrable confinements to exhibit the characteristics of nonintegrable
systems. As discussed in Ref. [BU94], although a triangular billiard with internal
angles to be slightly different from 7z /3 is intrinsically chaotic, the wave functions
can still be scarred by families of POs. Briefly, tiny symmetry breaking can lead to
the emergence of superscar as well as chaotic modes in the almost integrable systems.

Our experimental results are utterly consistent with the theoretical findings.
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Bottom
Contact

Top
Contact

Fig. 3.5-1. (a) Optical microscope image of the VCSEL device. (b) Zoom-in
view of (a) and is operated with an electric current under threshold current at
room temperature. (c) The spontaneous emission to manifest the details on the

triangular boundary temperature.
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Fig. 3.5-2. Temperature dependence of the threshold current of the equilateral
tr.iangular VCSEL.
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(b)

(h) (i)

Fig. 3.5-3. (a)-(i) The near-threshold lasing patterns of triangular VCSEL at
temperatures labeled by A-I in Fig 3.5-2, respectively.
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Fig. 3.5-4. (a) Experimental pattern observe at 195K. (b) Numerical wave

pattern of eigenstate | @ (x,y) [ .
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Fig. 3.5-5. Experimental pattern observe at (a)275K and (b)135K; Numerical

wave pattern of coherent state (c) |Cy,(x,»;1,0,0.237) and (d)
| Cros(x, ¥5 1,1, 0.357) [ ; The classical periodic orbits that the wave

functions localized on are depicted in the insets of (c) and (d).
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Fig. 3.5-6. The intensity plots of the positive wave functions |y ,(x,,¥;) |

for experimental results shown in Figs. 3.5-3 (f).
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Fig. 3.5-7. (a) Experimental pattern observe at 175K. (b) Reconstructed
pattern of (a). (c) Intensity statistics of (b) with fitting curve to be

Porter-Thomas intensity distribution.
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Chapter 4

Transient Dynamics of Coherent Waves Released from
Quantum Billiard: Analogous Studies on the

Propagation of Lasing Modes Emitted from VCSELSs
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One of the most relevant quantum transient phenomena in matter waves is the
diffraction-in-time effect for a suddenly released coherent beam, which appears to
have first been introduced by Moshinsky in 1952 [Mosh52]. The hallmark feature of
the diffraction-in-time effect is the temporal quantum interference patterns, by
analogy with the spatial interference patterns of light diffracted by a sharp edge
[MMS99, Godo02, GMO05, dCMMO7]. The experimental test for this effect was
indeed hard to reach at the time of the first introduction. However, due to the
development in ultrafast laser [PLW+03], atom cooling, and optical trapping
[WPW99], the transient dynamics has been recently observed in wide variety of
systems including neutrons [HFG+98], ultracold atoms [SSDD95], electrons
[LSW+05], and Bose-Einstein condensates [CMPLO05].

Another physical connection to the diffraction-in-time effect would be the
transient response to abrupt changes of the confined potential in semiconductor
structures and quantum dots [DCM02, DMA+05]. Semiconductor quantum dots, in
which electronic motion is predominately ballistic in nature, have been widely used as
two-dimensional (2D) quantum billiards to explore the properties of quantum chaos
[AF99, ZB97, BAF+99]. Understanding the time evolution of suddenly released
quantum-billiard waves has some important applications, as it can provide the
nanostructure transport properties for developing novel ultrahigh-speed
semiconductor devices [DCMO02]. Moreover, it is closely related to atom laser
dynamics from a tight waveguide whose boundary shape can be modified with the
laser trapping-beam [DMA+05, dCL+08]. Nevertheless, the investigation for the
transient dynamics of 2D quantum-billiard coherent waves has not been performed as
yet.

This chapter is structured as follow: The time evolution of a stationary wave
function abruptly released from 1-D infinite potential is quickly reviewed in the
opening section. Secondly, similar problem will be extended to various wave
functions with a suddenly removal of 2-D square billiards. In third section, we
utilize the similarity between paraxial optics and 2-D non-relativistic quantum
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mechanics to analogously observe the time evolutions of coherent waves released
from quantum billiards by free-space propagation of transverse modes of VCSELSs.
In final section our aim is to analyze the linear and angular momentum densities of the
light beam emitted from VCSELSs by analogously calculating the probability current

and angular momentum densities of coherent waves released from quantum billiard.

4.1 Stationary States Suddenly Released from 1-D Infinite
Potential Well

Since Moshinsky first proposed the shutter problem in 1952 [Mosh52],
diffraction in time has received considerable attentions. Recently, the transient
dynamics of an initially bounded stationary state suddenly released from 1-D infinite
potential well has been studied by Godoy [Godo02]. Before investigating the
transient dynamics of a particle suddenly released from 2D quantum billiard, we first
reviewed the work done by Godoy.

Consider that a particle is confined in a 1-D box as t <0, and then the box is
abruptly removed at t=0. What will be the time evolution of this particle? The

problem implies to solve the Schrédinger equation

0 W 0
ih—y(xt)=———w (Xt 41.1
at‘”( ) 2maxzt//( ) (4.1.1)

with initial condition

sin[”—”(x+%)] if —a/2<x<a/2
a .

v, (x,0) = (4.1.2)

0 otherwise

In terms of the free propagator (Appendix A), the free time evolution of the initial
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wave function is given by

al2

v (X1)= th [ v O)exp[M]dx (4.1.3)

—-al2

Substituting Eq. (4.1.2) into Eq. (4.1.3), after some algebra (a process similar to that

done in Appendix A), w,(X,t) isexpressed as follow

i
S Ent

t,//n(x,t)zf'/m [G(x.t; k,,a)-G(x.t; —k,,a)] (4.1.4)

,where k =nz/a, E,=#’k?/2m,and

G(x,t;k,,a) =" A F(&(x-al2,t;k))-F (£(x+al/2,t;k,))] (4.1.5)

with F(&)=C(&)+iS(&) denoting the complex Fresnel’s integral.  Fig. 4.1-1 (a)-(k)
display the intensity of °(x,t;10) at t= OT -T with equal time interval
At=0.1T , where T =2ma/nk, corresponds to the round-trip time of the wave.
The complicated interference patterns at t<T is a quantum-mechanical
phenomenon, since a classical particle released from a box will simply go in +x or

—x directions with equal probability. Notice that this solution corresponds to the

diffraction of optical wave from sinusoidal grating [Good05].

As the time satisfies the condition of t>ma’*/#, Eq. (4.1.3) can be
approximated to

m’ix )dx' (4.1.6)

w(xt)= .z - g j w (X', 0)exp(-

, which is an analogy of Fraunhofer’s diffraction in optics and is just a Fourier
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transform. In other words, w(x,t) with t>ma®/% essentially corresponds to the

momentum-space wave function of w(x,0)

1 _ipX
#p) =7 j (X', 0)exp(-—=)dx'. (4.1.7)

Neglecting the phase factor, we have the correspondence p, <> mv, with v, =x/t

denoting the average velocity to arrive x. Therefore, the momentum-space wave
function can be alternatively interpreted as free time evolution of the real-space wave
function with time approaches to infinity.

For the case of sine function released from 1-D box, Eq. (4.1.6) becomes

i max
2nr sin( 2%t )
a [MXy, Nz,
F (ht = |8 a )
wE(x0) ~ (4.18)
" max
o COS(Th )
- — rtm if neodd
a Ay 7Ty
o - ()

if neeven

Hence, as the time satisfies the condition that t>ma®/#, the wave function

preserves its form as shown in Fig. 4.1-1 (1).
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Fig. 4.1-1. (a)-(k) Intensity plots of °(x,t;10) at t= 0T -T, respectively,
with equal time interval At=0.1T . (I) Intensity plots of w,,(x,t) at

t=1.5T . The intensity pattern preserves its shape after t=1.5T .

103



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard:
Analogous Studies on the Propagation of Lasing Modes Emitted from VCSELSs

4.2 Transient Dynamics of Coherent Waves Released from

Quantum Billiard

In Sec. 4.1 we have discussed the time evolution of a stationary wave function
abruptly released from 1-D infinite potential well and similar problem will be
extended to 2-D square billiards in this section.

The 2-D square billiard is one of the simplest billiards that is completely
integrable in classical mechanics [Wier01l, CHL02]. The quantum eigenstates

Voo (X, y) fortheverticesareat (+a/2,+a/2) and (ta/2,7a/2) aregiven by

Vo, (0 Y) =(2/a)sin[ k, (x+a/2)]sin| k. (y+a/2)], (4.2.1)

where k,=nz/a (n=123,..) and a is the length of the square boundary.
Extending Eq. (4.1.3) to 2D, the free time evolution of the eigenstates v/, , (X,y)

suddenly released at time t=0 is given by

m
Xl lt = -
Vi, (0 3:1) 27r|ht><
4.2.2
al2 al?2 iml:(X_XI)Z_i_(y_yl)Z} ( )
| exp Vo, (X' )XY’
-al2-al2 2ht
The wave function . (x,y,t) isjusta 2-D extension of Eq. (4.1.4)
et
e ™ . .
Vi, (0 Y1) =— 5 [G(xtik,,8)~G(xt; —k, )] (4.2.3)

x[G(y,t; ki, @) —G(y.t; —knz,a)}
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,where E, =n*(k:+k2)/(2m) and G(xtk,a), F(&) and &(xt;k) are the
same as those have been defined in last section.
Fig. 4.2-1(a)-(i) depict the numerical results calculated with Eq. (4.2.3) and the

parameters of (n,n,)=(15,15) to illustrate the wave patterns “//nl,nz(x’ y,t) ‘2 at

t=0T, 01T, 02T,03T,04T, 05T, 10T, 20T, and oo, respectively,
where T defined as T =2m a/h k,, corresponds to the roundtrip time of the wave in

the x-direction. In these presentations, the spatial range S of these figures varies

. . : K : . .
with t in the relation of S =a+2ht to fit the dimension of the patterns. The
m

time-evolution wave distributions clearly exhibit strong interference patterns in the
time interval between 0.1T and T. Note that the wave function v, . (x,y,t) in
an infinite time is just the Fourier transform of the initial wave function. In 2-D case,

Vo, (XY 1) with t>> ma’®/# can be approximated to

Vo 6V D) =y (X O, (Y1) (4.2.4)
Therefore, the four-lobed beam pattern in Fig. 4.2-1(i) reveals the momentum
distribution.

The results of recent studies of open square quantum dots show that the wave
functions localized on classical periodic orbits are not only the persistent states but
also are associated with the striking phenomena of conductance fluctuations [AF99,
ZB97, BAF+99]. As discussed in chapter 2, the wave functions associated with

periodic orbits (p,q,¢) is analytically expressed as

p.q.¢ 1 & M LiKg
FYim (x,y)= \/Z_M KZ_O \/CK € qu+pK,pN+q(M—1—K)(X! y) (4.2.5)
Note that the asymptotic property indicates that the coherent states W'*(x,y) are

stationary states in the classical limit, i.e., N — . Since the Fresnel’s transform is

a linear operation, the free time evolution of the coherent states \P,fjﬁ'ﬂ'"’(x, y)

105



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard:
Analogous Studies on the Propagation of Lasing Modes Emitted from VCSELSs

suddenly released at time t=0 can be directly expressed as

1 [
lPl‘\jly,ql\yllaﬁ(xa y:t) \/Z_M Z CM € K¢l//qN+pK pN+q(M—1—K)(X y t) (426)

Fig. 4.2-2 (a)-(i) presents the intensity distributions of Wi7,>7(x,y,t) at t=0T,
0.1T, 02T7,03T,04T, 05T, 10T, 20T, and o, respectively. In this
case T =2m a/h ke corresponds to the round-trip time of the PO. This transient

dynamics can be well connected with the classical picture of an orbiting particle
suddenly released from a box. After the billiard is removed the particle may go in
the four ways along the moving directions on the four segments of the PO.  Besides,
the probabilities of the four directions in which the particle may go are proportional to
the length of the four segments and this fact can be observed from the asymmetry of
the four spots in Fig. 4.2-2(i). Actually this picture nicely demonstrates the
formation of directional emission in microdisk laser [GCN+98, LLHZ06, LLZ+07,
NS97, NSC94, RTSH].

Note that the coherent states \Ph‘f;ﬁﬁ(x, y) behave as the traveling waves in the

billiards, while the superscar mode in VCSEL is associated with the standing-wave

representation
Co () =[RS ) + ¥R () ]/V2. (4.2.7)

As a result, the time evolution of the coherent states Cﬁ;ﬂ,’,”’(x, y) suddenly released at

time t=0 can be given by
Co 0oy ) =[ PR 00y )+ RS (6 v, D ]/V2. (4.2.8)

Figures 4.2(a)-(i) illustrate the numerical patterns for the wave patterns

‘Cp‘”’(x yt)‘ with the parameters of (p,q)=(1), (N,M)=(3513), and
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$=067 at t=0T, 01T, 02T,03T,04T, 07T, 10T, 20T, and oo,

respectively. It can be seen that the transient dynamics of the coherent state displays
not only the feature of classical flow but also the salient interference patterns,

especially in the regime of t<T . From Eq. (4.2.4) we can figure out that

Clm?(x,y,) isalso purely real or imaginary.
In contrast to the eigenstate y, , (x,y) and superscar ‘Pﬁ,ﬂf (x,y), the third

type of wave function to be concerned is the chaotic wave function ... (X, y) that
presents an irregular pattern. It has been shown that the universal features of
stationary chaotic wave functions in quantum billiards can be manifested with a
superposition of plane waves of fixed wave-vector magnitude with random amplitude,
phase, and direction [Berr77]. As revealed in Sec. 2.3, the standing-wave chaotic
wave functions in a square-shaped quantum billiard can be described as

¥ chaos (X’ y) = zzcnl,nzl//nl,n2 (X’ y) (429)

mom

, where the eigenstates y,, , (x,y) in the summation are subject to the condition that

the values Jk,f1 +kn22 are nearly constant and the phase factors C, = are random.
With the superposition principle, the free time evolution of the chaotic wave ‘W(X,Yy)

is then given by w ...(X,y,t)= z Con, Wan, (X, Y,1) . To connect with our

experiment, we demonstrate this transient dynamics by a chaotic mode reconstructed
from experimental result shown in next section. With the expansion coefficients

C found by the same method as that used in Sec. 3.4, we display the intensity

patterns of w...(x,y,t) at t=0T, 01T, 02T, 04T, 05T, 08T, 15T,
3.0T, and « in Fig. 4.2-4(a)-(i), respectively. Unlike the regular wave functions

(shown in Figures 4.2-1, 4.2-2, and 4.2-3) exhibiting high directionality, the chaotic
patterns at time interval of 0.1<t<I1T display a striking feature of random

branching behavior with the appearance of intricate interference fringes.
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Fig. 4.2-1. Numerical patterns to illustrate the wave pattemns | y;s,;(X, ¥,t) ‘2
att = (a) OT, (b) 0.AT, (c) 0.2T, (d) 0.3T, (&) 04T, (f) 05T, (q)
10T, (h) 20T, and (i) .
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1,0.6

Fig. 4.2-2. Numerical patterns to illustrate the wave patterns ‘ ‘Pé’sylg (x,y,1) ‘2

att = (a) OT, (b) 0.1T, (c) 0.2T, (d) 0.3T, (€) 0.4T, () 05T, ()
1.0T,(h) 2.0T,and (i) .
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Fig. 4.2-3. Numerical patterns to illustrate the wave patterns ‘ Cany (X, ¥,1) ‘2

att=(a) OT, (b) 0.1T, (c) 0.2T, (d) 0.3T, (e) 04T, () 0.7 T, ()
1.0T,(h) 20T, and (i) .
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Fig. 4.2-4. Numerical patterns to illustrate the wave patterns [y/y..., (x, y,t) |

att = () OT, (b) 02T, (c) 0.2T, (d) 04T, (e) 0.55T, (f) 0.8T, (g)
15T,(h) 3.0T,and (i) .
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4.3 Analogous Observations on Coherent Waves Released
from Quantum Billiard by Free-Space Propagating
Transverse Modes of VCSELSs

The time evolutions of coherent waves released from quantum billiards have
been shown in Sec. 4.2. Our theoretical analysis can provide useful information for
developing ultra-fast semiconductor device. However, the transient dynamics are
very difficult to be experimentally observed. In this section, we utilize the similarity
between paraxial optics and 2-D non-relativistic quantum mechanics to analogously
observe the time evolutions of coherent waves released from quantum billiards by
free-space propagation of transverse modes of VCSELS.

For a time-harmonic electromagnetic wave in free space, the phasor amplitude of

the emission field distribution E(x,y,z) would obey Helmholtz equation

V?E(X,Y,2)+k’E(x,y,2)=0 (4.3.1)

, Where k is the wave number. Since the vertical emission through the top DBR
represents the coupling of the wave field from the inside cavity to the outside

environment, the phasor amplitude E(x, Y, z) of a light beam satisfies the paraxial

approximation

E(x,y,z)=u(xy,z) e™ (4.3.2)

, where u(x,y,z) is the amplitude distribution. Substituting Eq. (4.3.2) into Eq.

(4.3.1), we can find that the amplitude distribution u(x, Y, z) satisfies the paraxial

wave equation [Haus84]
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. 0 1_,
I—u(x,y,z)=——V u(x,y,z 4.3.3
P (X, y,2) oK u(x,y,z) (4.3.3)

, where V?=0°/0x*+0%/0y’ is the Laplacian operator for the transverse coordinate.

This paraxial wave equation completely has the same mathematical form as

Schrodinger equation (Eq (4.1.1)) for 2-D systems with the analogies t<«»>z and

m/h <> k. Hence, the amplitude distribution u(x,y,z) can be shown to relate

with the amplitude distribution at z=0 by the similar process from Eq. (A.3) to Eq.
(A.9)

i Tx50) 4 (y-%0)°]

u(x,y,z) :%;Uu(x, y,0)-e dx,dy, . (4.3.4)

Combining Equations (4.3.2) and (4.3.4), the phasor amplitude E(x, y,z) can be

shown to relate with E (x, y,O) by the Fresnel transform [Good05]

gl 1)+ (y-0)7]
E(x,y,2)= s J.'[E(x, y,0)-e dx,dy, (4.3.5)

In brief, the time evolution of a 2D quantum state is equivalent to the Fresnel
transformation of a near-field optical wave. For VCSELs, in chapter3 we have

demonstrated that the near-field transverse modes E(x, y,O) are analogous to the
wave functions of quantum billiard with the same geometry. Therefore, the free
space propagation of coherent modes emitted from VCSELS is analogous to the time

evolution of quantum-billiard wave functions.

The experimental set up is similar to that described in Sec. 3.2.  The device first
used is a square-shaped VCSEL with aperture size to be about 40x40 um®. It was

operated at a temperature of T =220 K and near threshold current of | =38.3 mA

to generate a linearly polarized superscar mode similar to that shown in Fig. 4.2-3(a),

113



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard:
Analogous Studies on the Propagation of Lasing Modes Emitted from VVCSELSs

as shown in Fig. 4.3-1(a). The measurement of the optical spectrum indicates that
the pattern is a single mode with its wavelength to be 804.06 nm. To observe
propagation from near field to far field, we defocus the large-NA objective lens by
translating the stage. Figures 4.3-1(b)-1(g) are the experimental transverse patterns

observed at propagation distances of 0.1z,, 0.2z,, 03z,, 04z,, 0.7z,
1.0z,, and 2.0 z,, respectively, where z,=2ak,/k, is the characteristic length

that is analogous to characteristic time T in Sec. 4.2. The transverse and

longitudinal wave vectors, k, and k,, can be found by the half angle of diffraction

a . In this experiment the angle « is measured to be 24° and such that z, can

be evaluated to be about 72 ym. The far-field pattern was directly projected to a
paper screen at a distance of ~20 cm from the laser device and the scattered light was
captured by a digital camera. Figure 4.3-1(f) depicts the far-field pattern with the
central bright region to be the background luminescence. The good agreement
between Figs. 4.3-1 and 4.2-3 validates that that the free space propagation of
coherent modes emitted from VCSELS can be employed as an analogous observation
of the time evolution of quantum-billiard wave functions.

Next we exploit a deformed-square-shaped VCSEL with a ripple boundary to
experimentally study the transient dynamics of the wave functions released from 2D
chaotic billiard systems. The same experimental method was applied to this
chaotic-shaped VCSEL to obtain a linearly polarized chaotic wave state, as shown in
Fig. 4.3-2(a), with the operating temperature at T =295K and threshold current
I =56.0mA. The measurement of the optical spectrum also shows that the pattern is
a single mode with its wavelength to be 827.08 nm. Figures 4.3-2(b)-(g) display the

experimental transverse patterns observed at propagation distances of 0.1z, ,
02z,, 04z,, 055z,, 08z,, 15z, and 3.0z,, respectively. The half
angle of diffraction was measured to be 30" and z, isabout 138 um. In fact, the

experimental near-field pattern has been employed to study the transient dynamics of
a suddenly released chaotic wave in Sec. 4.2. Comparing Figs. 4.3-2 and 4.3-4, it
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can be seen that our reconstruction of chaotic modes not only match the experimental
results in near field but for the whole propagation process. This agreement further

confirms the method for reconstructing the chaotic mode and the presented analysis.
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Fig. 4.3-1. Experimental patterns of a superscar mode with propagation
distance at z = (a) 0Oz,, (b) 0.1z,, (c) 0.2z,, (d) 0.3z,, (e) 0.4z,

(f) 0.7z,,(g) 1.0z, (h) 2.0z,,and (i) 20cm, where z, ~72um.
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Fig. 4.3-2. Experimental patterns of a chaotic mode with propagation distance
atz = (a) 0z, (b) 0.1z,, (c) 0.2z,, (d) 0.4z,, (e) 0.55z2,, (f) 0.8z, (9)

15z,,(h) 3.0z,,and (i) 20cm, where z, ~138um.
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4.4 Probability Current and Angular Momentum Densities
of Coherent Waves Released from Quantum Billiard:
Optical Vortices Generated by VCSEL

In Sec. 4.1 we first review the free time evolution of a sine function with
suddenly removal of the 1-D infinite potential well. Next, the problem is extended
to the transient dynamics of various types of coherent waves released from square
billiard in second section. In 1-D systems the current flow is monotonous since it is
linear and can only flow in two direction, +x or —x axes. However, the 2-D
probability current density becomes much complicated because it forms a vector field.
As indicated in Sec. 1.3, 2-D current field has three kinds of vector singularities, sink
and source, saddle, and vortex, which correspond to the phase minima and maxima,
saddle, and singularity, of the wave function. Moreover, angular momentum, which
is an important physical quantity both in classical- [GPS02] and quantum-mechanical
[BVD65] systems, will naturally arise due to the 2D current flow.

On the other hand, the analogy between transverse modes emitted from VCSEL
and wave functions released from quantum billiards has been established and
experimentally verified in Sec. 4.3.  However, the analogies between paraxial optics
and 2-D quantum system are not only restricted to the correspondence between
amplitude distribution and wave function. For a non-stationary state, the probability

current is defined by the continuity equation of probability density
Vi yt) = _opx.y.Y) (4.4.1)

ot

,where p(x,y,t) =lw(x,y,t)F. Intermsof w(x,y,t), J(x y,t) isexpressed as
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j(x, y.1) =%lm[w*(x, YOV (x y. 0], (4.4.2)

On the other hand, the transverse linear momentum density of a linearly polarized

quasi-TEM wave is related to the amplitude distribution of electric field u(x,y,z) by
[ZBO07] (See Appendix B for a detailed discussion.)

b, (XY,2) =2“"—;) Im[u’(x,,2)V u(x, y,2)].. (4.4.3)

Since the wave function w(x,y,t) is analogous to amplitude distribution u(x,y,z),
the probability current density j(x,y,t) has the similar behavior as the optical
momentum density p,(x,y,z). Moreover, the orbital angular momentum (OAM)

density of the two systems expressed by

Ty, ) =m(F-R)xj(xyt) and L(xy,2)=(~K)xp.(xy,2)  (444)

, respectively, are also in the same mathematical form.

Recent years have been increased attention being given to optical OAM
[ABSW92, FAAPO8] for its wide applications in atom trapping [KTS+97], optical
tweezers [MRS+99], and optical spanner [SADP97]. Furthermore, OAM of light
beam can be encoded as qudit and has great potential applications in quantum
information [MVWZ01]. However, the OAM carried by the coherent waves emitted
from VCSELSs has never been investigated. In this section our aim is to analyze the
linear and angular momentum densities of the light beam emitted from VCSELSs by
analogously calculating the probability current and angular momentum densities of
coherent waves released from quantum billiard.

We have to first deal with Vi in order to obtain j. By definition, Vi is

written as
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d . 0 .
Vi (x,y,t) =&w(x, y,1)a, +5V/(X, y,t)a, (4.4.5)

Consider the eigenstate of square billiard Eq. (4.2.3), we have

5 hat
V(Y= [H(xtik, @) =Hxt-k,.a)] (4.4.6)
I:G(ya » B, !a) G(yatl_ n, 1 ):I
and
iE t
a o2
oy (00 === [GOutiky, -G lx =k, )] @47
X[H(yt,n,a) H(y.t; —k,,.a)]
, where H(x,t;k,,a) isgiven by
H(xt;k,,a)= ,/ g™ ‘*“’2{'“**‘“ 2" o
+ik, G(x,t; K, ,a) (4.48)

Hence, the probability current density of a eigenstate released from square billiard an

be expressed as

- h .
ooy 06 Y, 1) =AMy, o, 06 Y. OV Y, o, (XY, 1)] (4.4.9)

Fig. 4.4-1 (a)-(f) depict the vector plots of ]15‘15(x, y,t) with corresponding
Wisa5(X, Y, 1) as background at t=0.1T, 0.2T, 0.3T, 04T, 05T, and 1.0T,

respectively. In the vector plot, the arrows point to the directions of the flow on that
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position and the length of the arrows is proportional to the strength of the flow.

From equations (4.2.1) and (4.2.4) we can know that the wave function ;,.(X,y,t)
is purely real at t=0 and t=oo such that we have j,,(xy,00=0 and
Jis1s(X, y,0)=0. It can be clearly seen that the motion of the intensity pattern is led

by the current flow.

For the eigenstate released from the square billiard, the OAM density is given by

I‘nlvnz (X, y,t):m(r—ro)x]nhnz (x,y,t). Fig. 4.4-2 (a)-(f) show the density plots of
Esvls(x, y,t) at t=01T, 02T, 03T, 04T, 05T, and 1.0T, respectively.
The scale of the color-coded contour plots are given aside with unitin (/S?), where
S :a+2ﬁm”lt is the time-dependent spatial range for calculations. The positive

(negative) value of angular momentum indicates a counter-clockwise (clockwise)

rotation with rotation axis points to +a,. We can see that the distribution of OAM

Is always anti-symmetric and such that the net OAM computed by

<l (% y,0) >= j j 1T, . (. y,t)| dxdy (4.4.9)

is always zero for any t. A further analysis indicates that the distribution of OAM

density depends on the choice of rotation axis, but the net value <I, . (x,y,t)> does

not. The OAM has such an axis-independent net value was said to be intrinsic
[CZDV06]. The OAM can be validated to be intrinsic by verifying the relation

j j J(x,y,t) dxdy =0. (4.4.10)

One can calculate the OAM spectrum [MTTTO02] to further analyze an intrinsic
OAM density. The OAM spectrum is defined as follow
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P(0)=[la,(r.t) Prdr (4.4.11)
, Where
a,(r.t) =% j w(xy,t) e dg. (4.4.12)

with r=.x*+y? and g=tan"*(y/x). The wave function should be normalized

0

such that z P(/)=1. The OAM spectrum is experimental measurable [GCP+04]

(=—o0
and has great potential applications in quantum information [MVWZ01]. Although
the distribution of OAM density depends on t (or z for a light beam), the OAM is
an invariance of t (or z) [MTTTO02]. Fig. 4.4-3 shows the OAM spectrum of the

eigenstate .;,;(X,y,t). Since the eigenstate w,,,(X,y) hasa z/2 symmetry (i.

e. the wave-function distributions in the four quadrants are identical), the OAM
spectrum only has values as ¢ equals to the multiples of four. The net OAM can be

alternatively calculated from OAM spectrum by

<Dy Gy ) >=17 h:hi P() ¢. (4.4.13)

(=—0

Obviously, we have /=0 for the symmetric OAM spectrum and this result is
consistent with the value calculated by Eq. (4.4.9). The OAM spectra of all
eigenstates of square billiard are symmetrically distributed and have their peaks
centered at /=0. Hence, all eigenstates have their net OAM to be zero. As
revealed by Zambrini and Barnett, it is more accurate to say that the OAM with
axis-independent net value but axis-dependent density distribution is quasi-intrinsic
[ZB06]. The indicator of the relevance of the position of rotation axis for calculating

OAM density is the dimensionless variance of OAM spectrum [ZB06], which is given

by
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V= i P() (¢-0)*=0. (4.4.14)

(=—0

For the OAM spectrum of eigenstate v.;,;(X,y,t), the variance V is evaluated to

be 158.7. Although the eigenstate v;.;(X,y,t) do not exist in our experiments,

our analysis may provide useful information for the chessboard-like patterns emitted

from phase-coupled VCSEL arrays or photonic resonator crystals [PKMO02].

The probability current of coherent state W75/ (x, y,t) can be expressed as

J4w (%, y,t)=%lm[‘P P (X Y OV R (X, Y, )] (4.4.15)

Since the partial differential operator is linear, we have

QPR (X, Y1) 1

ikg O
~ Jz_MZ*/ ¢ € = Voo onsan-110 (% Y1) (4.4.16)

and

PP (x,y,t) 1 ke O
N'May \/Z_Mz CM “ qN+pK,pN+q(M—1—K)(X1yit)' (4-4-17)

The vector plots of J7%/(x y,t) with parameters N=35, M =6, and

(p,9,¢)=(1,,0.67) at t=0.1T , 0.2T, 03T, 04T, 05T, and 1.0T are
presented in Fig. 4.4-4 (a)-(f), respectively. As expected, the current flux displays
high directionality indicated by the motion classical particle. The OAM density
distribution of a coherent state is much interesting and can be easily expected from the

distribution of current density. The OAM density of superscar can be expressed as
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LS Oy, ) = m(r =)< T80 (x, Y, 1) (4.4.18)

The density plots of Li777(x,y,t) at t=01T, 02T, 0.3T, 04T, 05T,
and 1.0T are presented in Fig. 4.4-5 (a)-(f), respectively. In this case the OAM is
still intrinsic and has a large net value < L5777 (x, y,t) > numerically computed to be

about —607. It can be seen from the OAM spectrum illustrated in Fig. 4.4-6 that

the coherent state W51, (X, y,t) has only negative OAM component.  Besides, the

peak does not center at /=0 but shiftsto /=-62. The net OAM calculated from
OAM spectrum has the same value as < Ly17(X,y,t)>. The OAM variance is
evaluated to be 255.7.

It can be seen that there are two small peaks embedded in a big peak. To
further understand this phenomenon, we show the OAM spectra of the coherent states
Wil(x,y,t) with ¢ equals to 0, 025z, and 05 7 in Fig. 4.4-7(a’)-(c"),
respectively. We find that two opposite segments of the superscar will result in one
peak in which the OAM spectrum only has values as /¢ is even because of the =
symmetry. Since the PO has two pairs of opposite segments, the OAM spectrum
generally has two peaks as shown in Fig. 4.4-7(b’). In the critical case of ¢=0, the
stationary coherent state becomes a standing wave and has its OAM spectrum to be
even. As ¢=rx/2, the two peaks completely overlap and the OAM spectrum only

has values as /¢ equals to multiples of four due to the ~/2 symmetry. Hence,
there are actually only two partially overlapped peaks in the OAM spectrum shown in
Fig. 4.4-6.

The predominant lasing modes in the broad-area square-shaped oxide-confined

VCSEL are the superscar modes that are analogously interpreted by the

standing-wave representation of stationary coherent state Cﬁ;ﬂ,‘,"’ (x,y,t). Although

C,ﬁ;W(x, y,t) is purely real, it becomes complex as soon as the billiard is removed.
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The probability current of C2%¢(x,y,t) is given by

JeR e (x,y, t)_—Im[C NI, Y, HVCER (%, Y, )] (4.4.19)
, Where

VCR (6 Y, 1) =—=[ VIR (X, Y. ) + VIR (% 1) | (4.4.20)

ol
V2

Fig. 4.4-8 (a)-(f) illustrate the vector distributions of Jcfi’(x,y,t) at t=0.1T,
0.2T, 03T, 04T, 0.7T, and 1.0T, respectively. At t=0T the coherent state
C,ﬁ;ﬂ,’,”’(x, y,t) is a standing wave that is composed by two completely overlapped
traveling waves, one (W47 (x, y,t)) rotates clockwise and the other ({5, (X, y,t))

counter-clockwise.  Although the two components begin to split as the coherent state

C,ﬁ’iﬂ,’,“’(x, y,t) is released, they still partially overlap in some regions. In these

overlapped regions, the currents of the two traveling-wave components interfere and
destroy each other. As the time t>>ma®/#, the two components start to merge.

On the other hand, the OAM density of CJ,’(x, y,t) can be expressed as
Lel %/ (x, y,t) =m(F =) x Jef 5 (%, y,t) (4.4.21)

Fig. 4.4-9 (a)-(f) depict the distribution of |Lciyy”(x,y,t)| at t=0.1T, 0.2T,
0.3T, 04T, 0.7T,and 1.0T, respectively. Since CJ1’(x,y,t) is composed by
PR (xy,t)  and  WRGI(xy.t) . [Lean(xy,t)|  will  naturally  be
anti-symmetrically distributed and has a zero net value. As shown in Fig. 4.4-10, the

OAM spectrum of Cp”’(x y,t) is just a combination of OAM spectra of

YRS (% y,t) and Wi ?(x,y,t). However, such a OAM spectrum had a variance
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as large as 3718.

The zero net value and large variance of OAM make the lasing modes interpreted

by Ch‘,"’ﬁ;’j(x, y,t) have less applications. However, Zou and Mathis recently

proposed a scheme for OAM beam splitter to separate light beams with different

OAM component [ZMO05]. If such a device can be realized, we can employ it to

decompose the standing-wave CJ(x,y,t) into two traveling waves W75/ (x, y,t)
and WL ’(x,y,t). The light beam with their lasing mode interpreted by

YR (% y,t) has its OAM as shown in Figs. 4.4-5 and 4.4-6 to be more convenient

for applications.
In the above three regular cases, the probability currents all flow in definite

directions. For the chaotic wave function (X, y,t), the current flux becomes

much complicated. We first write down the expression of probability current

- h
Jchaos (Xl yl t) = E Im[l//chaos (X7 y1 t)v !//chaos (X’ y’ t)] (4422)
By the principle of superposition, we have

Vi gaos 6 ¥) =D C Vi, (X Y). (4.4.23)
Fig. 4.4-11 (a)-(f) display the vector plots of j,..(x,y,t) at t=0.1T, 0.2T,
04T, 0.55T, 0.8T, and 1.5T, respectively. Unlike the regular current flows,

the current vectors exhibit randomly distributed flux. In order to make a more
explicit visualization of the current, the zoom-in views of three small regions of

Jihaos (X, Y,0.1T) are shown in Fig. 4.4-12 (b)-(d). Strikingly, several pronounced

vortices are induced in the current flux as the chaotic wave function is released.
Such discrete vortices have been widely observed in Bose-Einstein condensate
[MAH+99], superfluid [MFDMO3] and Type-Il superconductor films [MFDMO3].
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The length of the vectors has been modified by setting j'=]j/|j|*° to enhanced the

vortex structures. As discussed in Sec. 1.3, the vortices in probability current
essentially correspond to the phase singularities of the complex scalar field. In order

to verify the vortices, we draw the contour plots of the phase

O(X, Y, 1) = argy yaps (X, ¥, 1)] (4.4.24)

and show them as backgrounds of the vector plots for a convenient comparison. The
contour plot is color-coded with red and purple corresponding to 2z and O,
respectively. The singularities are at the points where all colors get together. The
white and black curves in the contour plots stand for the nodal lines for real and
imaginary parts of wave function, respectively. By the definition, the intersections
of white and black curves are singularities. This result can help us to find the
singularities more quickly and accurately. The red squares and pink triangles point
out the singularities with topological charges equal to +1 and -1, respectively. It
can be easily checked that the clockwise and counter-clockwise vortices are
coincident with the positive and negative singularities. Besides, our analysis well
demonstrates the sign rule that the nearest neighbor singularities on any contour of
constant phase are required to have opposite signs [Freu95].

The minute feature of vortices and phase singularities in the small regions
labeled by “1, 2, and 3" in Fig. 4.4-13(a) of j,...(X,¥,0.2T) are displayed in Fig.

4.4-14(b)-(d), respectively. From the figures, we can find that both the spatial
density and size of vortices decreases as the distance from the origin increases. This
result arises from the fact that all the currents flow out of originally-confined region in
a radial way. Therefore, we suggest that the vortices are formed by interference of
the many randomly-oriented currents that is still inside the originally-confined region.
This phenomenon becomes more obvious as t increases. Fig. 4.4-14(b)-(d) depict

the vector plots of j,...(X,¥,0.4T) in the small regions marked in Fig. 4.4-14(a).

It can be seen that there is no vortex in the region shown in Fig. 4.4-14(d). As the

wave completely leaves the originally-confined region, all currents are radially
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flowing and the vortices become trivial.
For the chaotic wave function released from the billiard, the OAM density is

calculated by

Tanaos (% Y2 £) = M(F =) X Jopaos (X, Y1) (4.3.21)

The density plots of |I.

chaos

(x,y,t)| at t=0.1T, 0.2T, 04T, 0.55T, 0.8T,
and 1.5T are illustrated in Fig. 4.4-15 (a)-(f), respectively. We can see that the
chaotic wave function has very complicated OAM density. Such a complex OAM
density is validated to be intrinsic and has a zero net value. Since the chaotic wave
function w, . (X,y,t) is composed by eigenstates with real expansion coefficient,
the OAM spectrum of .. (X, y,t) is still symmetrically distributed as displayed in
Fig. 4.4-16. Due to the intricacy of the OAM spectrum, the OAM variance of
Wenaos (X Y, ) has an extremely large value of 2576. As revealed by the Zambrini

and Barnett, this large variance of OAM is probably resulted from the formation of

off-axis vortices as those shown in Figs. 4.4-12, 4.4-13, and 4.4-14.
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Fig. 4.4-1. (a)-(f) The vector plot of Jj . (x y,t) at t=0.1T,

0.4T,

0.5T , and 1.0T , respectively.

129

P I S TR W

NLELERL Ll
LAl AN Aty
xR ahnakn s
. PN 4 A

enR Al any oy
PR TR PR S
———————

e mrrp R,

WPy

s P s Fr S

PV SR R

i-:-.i-l-.
AN AN L RN N s

aF 2 Ba Ry

s aFasBrly,

- s

A R

DR

ERC R

R SRSy O

S

Cgrg e aan
chgtprar e
[ R IR RO
irressre
PR FYEF ¥
et et ae

g A e o
D S AP

L S
ARR N aw

S R

LR R

LU TN N
i-.u\\-\n-

R W RN

!s\-s\\.\--

L LR L

LI

> 8 e A BF e
Py R LI
‘!F:l!ﬂ:
Y P Y
)

0.2T,

0.3T,



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard:
Analogous Studies on the Propagation of Lasing Modes Emitted from VVCSELSs

Fig. 4.4-2. (a)-(f) show the density plots of Es,ls(X’ y,t) at t=0.1T, 0.2T,

0.3T, 0.4T, 0.5T,and 1.0T, respectively.
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Fig. 4.4-3. The OAM spectrum of .. (X,y,t).
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Fig. 4.4-4. (a)-(f) The vector plot of J35>"(x,y,t) at t=0.1T, 0.2T,
0.3T, 04T, 0.5T,and 1.0T, respectively.
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Fig. 4.4-5. ()-(f) The density plots of Lg%>"(x,y,t) at t=0.1T, 0.2T,
0.3T, 04T, 0.5T,and 1.0T are presented in Fig. 4.3-9 (a)-(f),

respectively.
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Fig. 4.4-6. The OAM spectrum of W57 (X, y,t).
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Fig. 4.4-7. (a)-(c) The intensity patterns of W37,(x, y,t) with ¢=0, 0.257,

and 0.5z, respectively; (a’)-(c’) The OAM spectra of the coherent states

shown in (a)-(c), respectively.
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Fig. 4.4-8. (a)-(f) The vector plot of Jc;; 0" (x,y,t) at t=0.1T, 0.2T,
0.3T, 04T, 0.7T ,and 1.0T, respectively.
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Fig. 4.4-9. (a)-(f)The density plots of Lc;r"(x,y,t) at t=0.1T, 0.2T,

0.3T, 04T, 0.7T ,and 1.0T, respectively.
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Fig. 4.4-10. The OAM spectrum of Cz5>" (x, Y, t).
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Fig. 4.4-11. (a)-(f) The vector plot of j,..(x,y,t) at t=0.1T, 0.2T,
0.4T, 0.55T, 0.8T,and 1.55T, respectively.

139



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard:
Analogous Studies on the Propagation of Lasing Modes Emitted from VVCSELSs

| e e e

Pl L L T T i

PR T Ll
C g

Fig. 4.4-12. (a) The vector plot of j_ (X, y,0.1T). (b)-(d) Zoom-in views of

small regions marked by the hollow squares in (a). Backgrounds are the
corresponding contour plots of phase functions.
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Fig. 4.4-13. (a) The vector plot of j,_ . (X, y,0.2T). (b)-(d) Zoom-in views of

small regions marked by the hollow squares in (a). Backgrounds are the

corresponding contour plots of phase functions.
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Fig. 4.4-14. (a) The vector plot of j,_ (X, Y,0.4T). (b)-(d) Zoom-in views of

small regions marked by the hollow squares in (a). Backgrounds are the
corresponding contour plots of phase functions.
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Fig. 4.4-15. (a)-(f) The density plot of I_

chaos

(x,y,t) at t=0.1T, 0.2T,
04T, 0.55T, 0.8T,and 1.55T, respectively.
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Fig. 4.4-16. The OAM spectrum of ... (X, Y,t).
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Chapter 5

Vector Fields and Vector

Singularities in VCSELS
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In chapter3 we have shown many interesting near-field patterns observed at
threshold currents. However, the presented experimental results are restricted to
linear polarization. Unlike EEL has unipolarization, VCSEL has a more intriguing
polarization state to the birefringence and isotropic gain region. VCSEL typically
emits linearly polarized light field in one direction at near-threshold current. ~ As the
injection current increases, one common condition is that two orthogonal linear
polarization states independently coexist. In this case the wavelengths of two
polarization states are different. Besides, this condition is easy to operate in
multi-mode lasing that will result in cloudy pattern.  Another interesting
phenomenon is the polarization switching, the lasing polarization state switches to the
perpendicular one [AS01, MFM95, VEWW098] as the injection current increases.
Here a third circumstance that has the transverse patterns to be polarization-entangled,
I. e. it has different morphology at different polarization angles, is concerned. In fact,
this phenomenon corresponds to the formation of vector field which has been widely
studied in various laser systems [[Gil93, VKMRO01, CLH06, LCHO07], as well as in
VCSELs [Erdo92, PTMA97, CHLLO3b]. Since the near-field pattern that is
analogous to quantum-billiard wave function is purely real, VCSELSs can be employed
to manifest vector singularities. Vector singularities are isolated, stationary points in
a plane at which the orientation of the electric field of a real vector field becomes
undefined. Vector singularities as well as phase singularities play a vital role in
singular optics.

This chapter is organized as follows. In first section we present a
polarization-entangled pattern associated with two superscars modes in a square
shaped VCSEL. We reconstruct the patterns in two orthogonal polarization states by
SU(2) coherent states to manifest the vector field and vector singularities. Similar
experimental method as that in Sec. 5.1 is applied to originally generate a chaotic
vector. By using the eigenfunction expansion technique, the vector field is
reconstructed to unambiguously analyze the vector singularities embedded in a
chaotic vector field. Since the polarization of light corresponds to the spin of
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guantum wave, the analyses of the vector fields in VCSELs can provide important
information for quantum-billiard systems (such as ballistic quantum dots) with

consideration on electronic spin.

5.1 Vector Fields in Square VCSEL

As revealed in the introduction of this chapter, the near-threshold lasing modes
of VCSELSs are usually linearly-polarized and VCSELSs can simultaneously lase in two
polarizations when injection current increase. However, the increase of injection
current tends to lead to multi-mode lasing and result in cloudy pattern. Since the
threshold current of VCSEL varies with device temperature, we can alternatively
make the lasing thresholds of two orthogonally polarized modes to be nearly the same
by means of adjusting the operating temperature. The temperature dependence
shown in Fig. 3.3-3 (a) of one square VCSEL has neglected the polarization of the
lasing modes. Fig. 5.1-1(b) shows the polarization-resolved temperature dependence
of threshold currents of another VCSEL. It can be found that the two polarizations
simultaneously lase at temperatures around 295K and 255K. The O  of the
polarization is along the [110] direction of the (001)-GaAs crystal, as illustrated in Fig.
5.2-1(a). Fig. 5.1-2 (a)-(d) present the lasing patterns at temperature of 295K in
0", 45, 90°, and —45, respectively. It can be seen that the patterns in 0" and

90" have different morphology and the patterns in 45 and —45 are just the total

intensity pattern that can be observed by removing the polarizer, as shown Fig.

5.2-2(e). Notice that the wave lengths of the two polarizations at 0" and 90  are
measured to be different.

To understand this result, we can express the wave amplitude at arbitrary

polarization angle @ by the phasor amplitude at 0° and 90
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E, (X, Y,t) = E;, (X, y) cos #e"* + E, (X, y)sin e’ . (5.1.1)

The intensity is then given by

L, (X, y,t) = E, (X, y,t) [
= Ey (X, Y) [ c0s” 0+ | Ego (X, Y) [ sin? 6

sin 219 sin 219

'(5"1 )t '(wz—wl)t
By (% V)E (%, )= +E (X Y)E (%, V)5 5.12)
The experimental patterns are actually time-averaging observations
<1,(%, y,t) >=| E, (X, y) | cos® 8+ | Eg (X, y) [ sin® @
FE (X V)E (0, ) SED <t
FE (%, Y)Eqy (%, y) i el S'”Ze <@l (5.1.3)

For the condition that @, # w,, the time average of the oscillating term <g' " >
results in zero such that the interference term vanishes. Therefore, the observed
patterns in 45 and —45  are just the total intensity pattern. However, if o, = o,
then the orthogonally polarized components can mutually interfere to lead to various
patterns in other polarizations.

Fig. 5.1-3 (a) and (c) show the polarization resolved near-field patterns in 0’
and 90" at operating temperature of 255K . It can be seen that the patterns in 45’

and -45" are no longer the total intensity pattern (Fig.5.1-3(e)) and have greatly
different morphologies, as presented in Fig.5.1-3(b) and (d). In other words, the
pattern is linearly polarized, but the polarization is not the same for different spatial
points. In contrast to the case at 295K, the measurement of the optical spectrum

indicates that the orthogonal polarization modes have the same wavelength. As
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mentioned in the previous discussion, the fact that orthogonal polarization modes are
phase synchronized to a common frequency is a basic requirement for a polarization-
entangled pattern. From Eq. (5.1.1) we can see that, for the two polarization state

with the same frequency (@, = w,), the phasor amplitude of the total field can be

written in form of vector field
E(X: y)=Es(xy) éx +Eg (X, Y) é’y ' (5.14)

To understand the vector field and manifest vector singularities, we have to find

the wave functions of lasing modes in two orthogonal polarizations as basis. In this
case the lasing modes in 45 and —45 are easier to reconstruct. Based on
thorough numerical analysis, the lasing modes in 45 and -45 can be well

reconstructed by the SU(2) coherent states E, (x,y)=Cj(x,Y;11,0.6x) and

E (X, y)=Cy;(x,y;11,0.37) , respectively.  The reconstructed patterns are

displayed in Fig. 5.1-4 (b) and (d). In terms of the two bases, the whole vector field

can be expressed as

E(X,¥) = Eus (X, V)85 + E_j5 (X, V)8 g, (5.1.5)
with & _&+4, and & _a4, to be unit vector in 45 and -45
45 \/E —45 \/E I

respectively. The patterns in 0" and 90" can be obtained by projecting the vector

field into x— and y-— directions:

= A ; 5.1.6
E,(x,¥) =E(x,Y)-&, =%[E45(x, y)+E (X ¥)] (516)
Ego (x,y)= E(X’ y)- éy = %[E%(X, y)- E—45 (X, y)] _ (5.1.7)

The similarities between Fig. 5.1-3 (a)-(d) and Fig. 5.1-4 (a)-(d) verify our theoretical
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reconstruction of the experimental results. Note that the formations of E,(x,y) and
E, (X, y) are critically depended on E,(x,y) and E ,(x,y). Only if E,(X,y)

and E ,(x,y) really match the experimental results, one can well reconstruct

Eo,(x,y) and Eg(x,y).

The vector singularities are generally described by the orientation angle function:

O(x, y) = angle[E, (X, y), By (X, Y)] (5.1.8)

The vortices of the angle function ©(x,y) correspond to the vector singularities at

which the orientation of the electric field vector is undefined. Figure 5.1-5(a) depicts

the numerical pattern of the angle function ©(x,y) for the experimental vector field.

Here the angle is color-coded by hue and the singularities are at the points where all
colors get together. A small region highlighted by white square area with edge equal
to a/10 of the vector field is depicted in Fig. 5.1-5(b) to demonstrate the novel
lattice structure of the vector singularities. The white and black curves stand for the

nodal lines of E,(x,y) and E,(X,y), respectively. It can be validated that the

crossings of white and black curves coincide with the singularities at which all color
get together. Besides, it is of pedagogical importance to confirm the sign rule that
the nearest neighbor singularities on any contour of constant phase are required to
have opposite signs [Freu95]: The singularities with topological charge +1 and -1
are labeled by white squares and black triangles, respectively. Furthermore, the
vector field distribution in this region is manifested in Fig. 5.1-5(c). It can be seen
that the singularities with topological charge equal to —1 correspond to saddle points
of the vector flow and those with topological charge equal to +1 are all vortices, no

source or sink point are found in our thorough analysis.
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Fig. 5.1-1. (a) Reference of the polarization angle (b) The threshold currents of
the two polarizations. Simultaneous lasings occur at temperatures around
295K and 255K .
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Fig. 5.1-2. (a)-(d) The lasing patternsin 0", 45, 90°,and —45 and (e) The
total intensity pattern observed at 295K .
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Fig. 5.1-3. (a)-(d) The lasing patternsin 0", 45, 90°,and —45 and (e) The
total intensity pattern observed at 255K .
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() (b)

(c) (d)

Fig. 5.1-4. (a)-(d) The reconstructed patterns of Fig. 5.2-3(a)-(d), respectively.
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view of the small regions highlighted by the white square. (c) The vector plot

of the polarization vector with vortices and saddles labeled by “+” and “—~

signs, respectively.
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5.2 Chaotic Vector Field in VCSEL

As well as that have been discussed in last section, the features of the vector
singularities have been experimentally observed in laser modes with the interrelated
behavior of spatial structures and polarization states [Gil93, VKMRO01, CLHO6,
LCHO7, Erdo92, PTMA97, CHLLO3b]. However, so far all experimental
demonstrations were related to the regular lasing modes of integrable optical cavities;
no experiments have demonstrated explicitly the entanglement of polarization and
spatial structures in chaotic laser resonators. In this section we use the VCSEL that
is similar to that used in Sec. 3.4 to generate the 2D chaotic vector fields.

Figures 5.2-1(a) and (b) show the polarization-resolved near-field patterns with
operating temperature of T=265 K, the threshold current of 1=26.9 mA, and
polarizations in 0° and 90° directions, respectively. The orthogonally polarized
modes clearly exhibit to have remarkably distinct chaotic patterns.  The
measurement of the optical spectrum indicates that the whole experimental wave is
phase synchronized to a single frequency at 806.45 nm. As a consequence, the
orthogonally polarized components can mutually interfere to lead to a greatly different
pattern in the polarization resolved near-field image, as shown in Fig. 5.2-1 (c) for 45°
polarization and Fig.5.2-1 (d) for -45° polarization. Explicitly, the entanglement of
spatial structures and polarization states lead to the formation of an optical vector field.
We investigated the dependence of the 2D chaotic vector field on the operating
parameters, and it turns out that the experimental vector field remains unchanged for
262.5 K < T <267.5 K and for 26.9 mA <1< 27.6 mA. The width of these ranges
indicates that generation of 2D chaotic vector fields is a robust phenomenon. To our
best knowledge, the present result proffers the first experimental realization of 2D
chaotic vector fields in a microcavity laser.

Since it is not feasible to measure polarization vector fields in a straightforward

way, the reconstruction of the orthogonally polarized wave functions is practically
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useful for analyzing the property of vector singularities. We use the same
eigenfunctions expansion method as that described in Sec 3.4 to reconstruct the
polarization resolved patterns. Figures 5.2-2(a) and 5.2-2(b) depict the patterns of

lw,(%,y;)| for two orthogonally polarized modes shown in Fig. 5.2-1(a) and

5.2-1(b), respectively. Figures 5.2-3(a) and 5.2-3(b) show the intensity plots of
|C,,, | obtained from Eq. 3.4-5 for the experimental polarization-resolved modes at
0° and 90°, respectively. Figures 5.2-4(a) and (b) depict the wave patterns of the
analytical wave functions corresponding to the experimental polarization-resolved
modes at 0° and 90°, respectively. It can be clearly seen that the experimental
polarization-resolved patterns are well-reconstructed with the analytical wave
functions.

Let E,(x,y) and Eg(X,y) denote the polarization-resolved wave functions at

0° and 90°, respectively. In terms of E,(x,y) and Eg,(X,y), the vector field

distribution for the experimental pattern is given by
E(x,Y)=Eo(%Y) & +Egp(x.y) &, (5.2.1)

With the vector field E the polarization-resolved wave functions at 45° and -45° are

given by
522
Ess(X,Y) =%[Eo(x, Y)+E(x,Y)] o
and
E (Xy) :%[EO(X, ¥)— Ego (X, y)] (5.2.3)

Figures 5.2-4(c) and 5.2-4(d) depict the numerical results for the intensity patterns of

lw (X, Y)F and |y (X, y)[, respectively. The good agreement between the

numerical and experimental patterns evidences the accuracy of the reconstructed wave

function in representing the observed vector field.
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To further validate the experimental observation to be a chaotic vector field, we
use the reconstructed wave functions to calculate the amplitude and intensity
distributions. For the chaotic wave function of Berry’s conjecture, the amplitude
distribution is a Gaussian function (Eg. 2.3-2) and the intensity distribution is shown
to be a Porter-Thomas distribution (Eq. 2.3-3). Figures 5.2-5 (a)-(b) show the
amplitude distributions of the reconstructed wave functions with polarizations in 0°,
90", 45", and —45', respectively. In addition, 5.2-6 (a)-(b) illustrate and intensity
distributions corresponding to Fig. 5.2-5 (a)-(b), respectively. All amplitude and
intensity distributions of the polarization-resolved wave functions are found to be
fairly good agreement with the theoretical distributions.

With the reconstructed vector field we can do the similar process as what has
been done in last section to analyze the properties of vector singularities in the chaotic

case. The angle function is again employed to describe the vector singularities:

©,(x, y) =angle[E, (X, ¥), Eg (X, Y)]. (5.2.4)

Figure 5.2-7(a) depicts the numerical pattern of the angle function ®_(x,y) for the

experimental vector field. Different from the lattice structure of regular vector field,
the chaotic polarization vector field is clearly seen to reveal a highly sophisticated
interlace pattern. Fig. 5.2-7(b) is the zoom-in views of the central region with edge
length equal to a/10. Although the singularities are randomly distributed, the sign
rule of the nearest neighbor singularities is still obeyed. The polarization vectors of
the chaotic field as show in Fig. 5.3-7(c) become very intricate. However, one can
still find that the singularities with +1 topological charge are all vortices.

As mentioned by Freund [Freu95], the phase of a chaotic wave with real and

imaginary parts to be E;(x,y) and Ey(x,y) is identical to the orientation phase

shown in Fig. 5.3-7(a). In fact such a complex chaotic wave function does exist.
The vector field expressed as eq. (5.2.1) can be decomposed into a linear combination

of orthogonal circularly-polarized helical modes
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E(X,Y) = Eo(X,Y) 4, +E, (X, Y) & (5.2.5)
, where

Eq (X, y) =[E, (X, Y +iEqg (X, Y)]/N2 (5.2.6)
,and

E, (X, ) =[E, (X, y—iEq (X, Y)]/~/2 . (5.2.7)

a, = (éx—iéy)/\/i and & = (éx+iéy)/\/§ are the helical basis unit vectors for

the right- and left-handed circular polarizations, respectively. Hence, the phase
function of E.(x,y) is completely the same as ©.(x,y) . In addition to
singularities, it is also meaningful to analyze the critical points in ®_(x,y). Based
on the thorough numerical analysis, it is found that all saddle points are manifestly
found to be open saddles with no joined arms. In other words, no phase extrema are
observed in the experimentally generated random phase filed. This result is
consistent with the theoretical analysis that the phase extrema are really rare because
there is little room left in the phase field to accommodate them [Freud95]. Since the
circular polarization of light corresponds to the spin of quantum wave, the analyses of

©.(x,y) can provide important information for chaotic quantum-billiard systems

(such as ballistic quantum dots) with consideration on electronic spin.
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Fig. 5.2-1. Experimental polarization-resolved near-field patterns observed at
the operating temperature of T=265 K with polarization in (a)
0°(perpendicular) (b) 90° (horizontal) (c)45° (d)135°.
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(b)

Fig. 5.2-2. (a) and (b) Intensity plots of the positive wave functions
|y, (%, y;) | for experimental results shown in Figs. 5.2-1(a) and 5.2-1(b),

respectively.
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(@) (b)

Fig. 5.2-3. (a) and (b) Distribution of the coefficients |C_ | obtained by Eq.

(3.4.6) for experimental results shown in Figs. 5.2-1(a) and (b), respectively.
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Fig. 5.2-4. (a)-(d): Reconstructed patterns with the eigenfunction expansion

method for experimental results shown in Fig. 5.2-1(a)-(d), respectively.
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Fig. 5.2-5. Amplitude distributions of the polarization-resolved wave functions
(blue step lines) for experimental results shown in Fig. 5.2-1(a)-(d),
respectively. Red lines: Gaussian distributions (Eqg. (2.3.2)).
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Fig. 5.2-6. Intensity distributions of the polarization-resolved wave functions
(blue step lines) for experimental results shown in Fig. 5.2-1(a)-(d),

respectively. Red lines: Porter-Thomas distributions (Eg. (2.3.3)).
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Chapter 6

Summary and Future Work
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6.1 Summary

In this work we have studied the analogies between high-order transverse modes
of VCSELs and mesoscopic wave functions of quantum billiards in several aspects.
In chapter2 we first introduce the mesocopic wave functions of square,
equilateral-triangular, and chaotic billiards. The properties of chaotic system are
demonstrated by means of various eigenstates of stadium billiard. In Sec. 2.3, it can
be found that the low-order eigenstates of stadium billiard are just similar to that of
rectangular billiard. However, the highly-excited eigenstates can be random patterns
or scars. The two kinds of high-order eigenstates correspond to the classical ergodic
trajectories and unstable PO, respectively. However, as illustrated in sections 2.1
and 2.2, the eigenstates of regular billiards do not have corresponding classical
properties. This inconsistence with Bohr’s correspondence for regular eigenstates
has long been overlooked. In sections 2.1 and 2.2 we develop the stationary
coherent states to generate the so-called superscars, wave functions localized on the
stable POs, of square and equilateral-triangular billiards, respectively.

With the analytic expressions of superscars, we can reconstruct the lasing modes
observed in VCSEL. Sec. 3.3 presents the typical near-field lasing modes of the
square-shaped VCSEL. The agreement between theoretical patterns and
experimental results confirm the analogy between near-field transverse modes of
VCSELs and mesoscopic wave functions of quantum billiards. We claim that the
formation of superscar modes arises from natural imperfection of the real device. In
Sec. 3.4 we fabricate a rippled-squared VCSEL that is analogous to the ripple billiard
by selective oxidization to generate chaotic modes. Besides, we develop a method of
eigenfuntion expansion to reconstruct the wave functions of the chaotic lasing modes.
With the reconstructed wave functions, we can test the statistical properties of

experimentally generated chaotic wave functions. Unlike square VCSEL, in Sec. 3.5
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an equilateral-triangular shaped VCSEL are shown to exhibit mixed properties of
regular and chaotic systems with no deliberate perturbation. According to this result,
we suggest that spontaneous symmetry breaking due to natural imperfection can lead
to the emergence of superscar as well as chaotic modes in the integrable but
non-separable systems.

The analogies are not only between near-field patterns and stationary wave
functions but also between free-space propagation of transverse modes of VCSELSs
and free time evolution of waves suddenly released from quantum billiards. In Sec.
4.2 we first theoretically investigate the transient dynamics of various wave functions
released from square billiard. From our analysis, it can be seen that regular and
chaotic wave functions have quite different behaviors. The interesting time
evolutions are analogously observed from the free-space propagations of lasing modes
emitted from VCSELs. Since the optical OAM density has the same mathematical
form as quantum OAM density, we can analyze the OAM carried by the light beams
emitted from VCSELs by means of calculating the quantum OAM of abruptly
released quantum-billiard wave functions. Although the superscar mode generated
by VCSEL is a standing wave and caries zero net OAM, it can be decomposed to two
counter-traveling parts which have distinct OAM components and both carry large net
OAM. Based on the OAM beam splitter, we propose a scheme to generate light
beams carrying large OAM. Besides, temporary vortices formations are found in the
time evolution of the chaotic wave function that is suddenly released from quantum
billiard. The embedded vortices result in a complex OAM spectrum of chaotic
modes and a large OAM variance that is an indicator for the quasi-intrinsic character.
Moreover, according to the presented analysis, we suggest that the VCSELSs can be
employed to generate optical vortices by just slightly defocusing the objective lens.

Due to the isotropic gain region and birefringence, the lasing modes of VCSELS
are not necessarily be linearly-polarized as considered in chapter3 and chapter4. The
final part of this thesis deal with the near-field transverse modes that form the vector
fields, in which the polarization is spatially dependent. In Sec. 5.1, a vector field

associated with two superscars is observed in a square VCSEL. With the stationary
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coherent states developed in chapter2, we reconstruct the vector field and analyze the
vector singularities contained. The vector vortices are shown to locally make up a
lattice structure. Quite different from the regular vector field, the orientation phase
structure of the vector field comprising two chaotic modes presents a random
distribution of vector singularities. However, we do not find any phase extremum in
such a complicated phase structure. Since optical polarization corresponds to the
electronic spin, the analyses of the vector fields in VCSELs can provide important
information for quantum-billiard systems (such as ballistic quantum dots) with

consideration on electronic spin.
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6.2 Future Works

One of our aims in this thesis is to study the singularities embedded in the lasing
modes emitted from VCSELs. Although the near-field amplitude distribution is
purely real and contains no singularities, we showed that the amplitude distribution
becomes complex scalar field as soon as the light beam propagates out of the laser
cavity and carries phase singularities. On the other hand, the vector singularities
existing in the real vector field formed by two near-field transverse modes of VCSELSs
have also been explored. However, the most general state of optical field is the
complex vector field which can be achieved by the propagation of the real vector field
in near field. In the complex vector field, the light field is generally
elliptically-polarized but the polarization is spatially dependent. There are two
special conditions of Stokes singularities, C lines and L surfaces [Freu01], in complex
vector field. C lines in a light beam are the locations at which the orientation of
major and minor axes of the ellipse becomes undefined, i. e. the light field becomes
circularly-polarized. On L surfaces the field is linearly-polarized and the handedness
of the ellipse is undefined. In the transverse section of a light beam, C lines present
as isolated points and L surfaces reduce to continuous lines. Our future researches
will be devoted to explore the polarization singularities [Nye83, SDE04, Berr04] in
the complex vector fields generated by VCSELSs.
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Appendix A

Diffraction in Time: Moshinsky’s Shutter Problem

Consider the following shutter problem proposed by Moshinsky: A
monochromatic non-relativistic particle beam with kinetic energy E, =#%k,”/2m,

moving parallel to the x-axis, incidents on a completely absorbing shutter placed at
x=0, as illustrated in Fig. 1.2-1. If the shutter is suddenly opened at t=0, what
will be the transient particle current observed at a distance behind the shutter? The

problem implies to solve the Schrédinger equation
2
inZ ) =—2— % y(xt) (A1)

ot 2m ox*

with initial condition

w(x,0

exp(ik,x) if x<0
):{O o . (A2)
otherwise

For a free particle, the time-dependent wave function can be spanned by plane waves
% i(ke-Et)
w(x,t) = j dk)e " dk. (A.3)
At t=0 Eg. (A.3) becomes

w(x,0) = T @ (k)™ dk (A.4)
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which implies that ®(k) is the Fourier component of initial condition and can be

obtained by inverse Fourier transform
1 K 1 —ikx' 1
®(k) =— [ p(x'0)e ™ dx". (A.5)
2r ?,

To achieve a more general expression we preserve the integral to the final step
and first replace the ®(k) in Eqg. (A.3) by Eq. (A.5)

© ) . E
yxt)= | [ [w(x.0pe*axe™ k. (A.6)
s,
21,2
In this problem we apply the dispersion relation E = 3 and rearrange the integral
m

w(x,t)= i]il//(x ', 0){]; exp[ik(x—x") —Z—Tnzt]dk}dx' A (A7)

After some algebra and a Gaussian integral, Eq. (A.7) becomes

[ m f , im(x—x")?. .,
w(x,t) = ,/% j (X', 0)expl—_—"Jdx" (A.8)

Notice that /_2 P ex p['m(x )] is just the propagator of free particle.
i27

Moreover, this equation is similar to the formula of 1D Fresnel diffraction [Good05]

|kz 0

j w(x,0) exp[ X X)) (X X) Jdx’ (A.9)

w(X,z)=

with the analogies t<»>z and m/%<> k. We have neglect the phase difference
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ikz

e™ in Eq. (A.9) since only probability intensity is concerned.
Inserting the initial condition for the shutter problem Eg. (A.2) into Eq. (A.8), it
becomes

im(x— x)
pxD =\ je'ko (A10)

Completing the square in the exponent, we obtain

pixt= e j exp{i oo [ (x— e Y (A1)

Change variable by setting x'= /”h u+(x—ﬁt) to obtain a more compact
m m

expression

i(kox Eot)\/;[%t 3
w(xt) = \f | emisudu. (A12)

—00

The integral in Eq. (A.12) is associated with the Fresnel integral
. T Z T
C(&) = j cos(Euz)du and S(&)= j sin(Euz)du (A.13)
0 0

Interms of C(&) and S(&) the transient wave function of shutter problem is finally

given by

w(xb) =ge“k“‘zﬁwt’{[C(f(x,t;ko))+%]+i[8(§(x,t;ko»%]} (A19)
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, with £(x,t;k,) = /%[h—kot—x]. The red curve in Fig. 1.2-1(b) shows the time
zht™ m

variation of the probability density observed at distance d behind the shutter. The
blue dotted line indicates the probability of receiving the particles in a classical view.

The x—axis has unit in the arrival time T of a classical particle with kinetic energy

21, 2
E, = ik, and we have T = d :
2m (7iky / m)

Notice that in quantum-mechanical aspect

one has probability to receive particles before the classical arrival time T. For this
deflection into the classically forbidden time zone and temporal interference pattern,
which are similar to the behavior of light diffracted by an infinite straight edge,
Moshinsky termed the name “diffraction in time [Mosh52].”
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Appendix B

Angular Momentum Density of a Light Beam

The electric field and magnetic field for a light beam propagating along z-axis

can be expressed as

8(r,t) =Re[(E 4, +E,4, +E,4,)e"™]
= " +Ee"]a ¥ L E'e14 i E*ait14 (B.1)
=S{EE"+Ee"I4, + [E"+Ee”]4, + [Ee”+Ee"]d}

and

b(r,t)=Re[(B &, + B,4, + B, )e" ]
1 i * lig1a i < Ligaa " . (B.2)
:E{[Bxe +Be"]a, +[Be”+Be"]a, + [Be”+Be"]a}

, Where k is wave number, o is angular frequency, and ¢= kz-wt. Under
paraxial approximation, the amplitudes of electric field are assumed to depends only
on (x,y)

E.=E(xy) and E =E (xY). (B.3)

From Gauss’s law which state that V-8 =0 for source-free space, we have the

relation
GET . GE, . OE. . o
Vo= Bugio , Frgio , B oio kg goikETe™ = 0. (B.4)
oX oX oy oy
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Hence, the longitudinal amplitude can be expressed by transverse amplitudes

i OE, 8E
E,=—(+—29) (B.5)
k ax oy

On the other hand, Faraday’s Law states that

a, a, a,
D _ve=det| L 2 g (B.6)
X oy 0z
(E”+Ee™) (Ee’+Ee™) (Ee”+Ee™)
, we have the following relations:
. o PR =X~ parit): B.7
-ikE " +ikE e™ = iwB,e" -iwB,e™ Ly (B.7)
ikE,e" -ikEe™ =iwBe” -iwBje™  (y—part); (B.8)
OE, OE 0, 8E A . T
Y T —)e" =iwB,e" -iwB,e™
x oy 2 Gy e TR BT () pany, (B9)
Then the amplitudes of magnetic filed can be also expressed by E, and E,:
oE
sz—iEy, ByzhEx,an =i(——£). (B.10)
@ @ oy

According to Poynting’s theorem, the momentum density p(rt) of

electromagnetic (EM) waves can be obtained by
P(F.t) = &[e(r, 1) xb(r,1)]. (B.11)

, Where g, is the permittivity in vacuum. For a paraxial light beam, the linear
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momentum density is then expressed as

A ~ A

a a a

X y A
p(r,t) = &, det (Exefﬁ + E;e'_”’) (Eye? + E;e'_”’) (Eze% + Eje‘?) (B.12)
(Be”+Be™) (B,e’+Be™) (Be”+Be")

In the z—part we obtain the relation
p,(Tt) = %[Ex B, + E,B, —E,B, —E B, +oscillating terms] (B.13)

In practice, only time-averaging result is concerned

k

<P, (10> = 2[E, LB+~
4 o "

=
(0]

. W
E~E,(-E)-Ej(-——E,)]

_%

k
—(E.?+|E
2a)(| JHTES )

(B.14)

2z
, Where < > denotes Zﬂjow dt. The energy density stored in the EM field is
T

W, :€—2°(| E.IF+|E, ) and <np, >:\%, which means that all the energy stored in

the field all propagates along z-direction.

In the transverse plane, we have

- 8 * * * *
<p(r)> =B +E;B, ~EB ~EB,]

i © e Y =
o le EBg D g B g
4 w OX OX oy oy

* * aE * 8E*
—ExéEX+E Y _E 6EX—EX Ly
x Y oax oy oy (B.15)
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and

<p,(r.t)> =%[EZB:+ E'B, —E,B —EB,]

- aE* * . *
= ii(Ey y + Ex aEX + Ex aEX _ Ey aEx
4 o oy OX oy OX

JOE, . . OE;
s g OB g OB L

-E +
Yoy  “ox o oy Y ooex - (B.16)

It is convenient to define the transverse momentum density by
P (XY, 2)=<p(F,t)>a,+<p,(rt)>& (B.17)

and P, (X,y,z) can be rearranged as
— & * * _
P, (XY,2)= —ﬁ[lm(EXVLEX) +Im(E,V,E))+(V, x5)] (B.18)

, Where & = Im(E:Ey)i and V, :§5X+%éy is the del operator in the transverse
X

plane. The angular momentum density can then be expressed as

r(X, Y, Z) = (rj_ - rO)>< pJ_(X! Y, Z)

&y o * * 4 5
= oA x[IM(E,V [E)) +Im(E,V ED]+Fx(V, <)} (B.19)

,where F, =xda +ya, isthe position vector on transverse plane and r, is location

of rotation axis. To further appreciate I(x,y,z), we set ,=0 in Eqg. (B.19) and

find the following the equality
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Fx(V,x&)=V, (F,-6)—(V,-F)6=-25.

In addition expressing the gradient operation in polar coordinate

and inserting into Eq. (B.19), it can be lead to

* * *

r,<Im(E,VE}) = Im{r,4, ~[E, =24, + 1€, % g1y im[E, Eoga
* en LB E ¢ o
and
(< Im(E,VE)) = Imfr4, <€, 25, + e P gny—imie, Do
X = X I = —
Yor, Y g Y

Finally, the angular momentum density can be written as

[(x,y,2)= { Im[E*aE E—¢]+ o}, .

o¢

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

It can be seen that the angular momentum density T (x,y,z) comprises three terms.

The first two are in the same form and are essentially the orbital angular momentum

(OAM) arose from the variations of x— and y—components of electric field by the

polar angle. On the other hand, the third term in Eqg. (B.24) is the spin angular

momentum (SAM) resulted from the circular polarization of light field.

For a light

beam to carry angular momentum, the amplitude functions, E, or E, , must be

complex,.

For a linearly polarized light beam (assuming E, =0), the transverse linear
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momentum density reduces to

b, (XY, z)=§—;}[lm(E:lex)1 (B.25)

, whose mathematical form is the same as that of probability current density of 2D
quantum systems. Moreover, the SAM & vanishes and angular momentum density

becomes

(x,9,2) =22 Im(E;] %qu
w

) (B.26)

that is also analogous to the angular momentum density of 2D quantum systems.

181



References

[ABSW92]

[AF99]

[ASO1]

[AYL+06]

[BA00]

[BAF+99]

[BAV+93]

[BB97]

[BBL+91]

References

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman,
“Orbital Angular Momentum of Light and the Transformation of
Larguerre-Gaussian Laser Modes,” Phys. Rev. A 45, 8185 (1992).

R. Akis and D. K. Ferry, “Ballistic transport and scarring effects in
coupled quantum dots,” Phys. Rev. B 59, 7529 (1999).

T. Ackemann and M. Sondermann, “Characteristics of polarization
switching from the low to the high frequency mode in vertical-cavity
surface-emitting lasers,” App. Phys. Lett. 78, 3574 (2001).

S.-J. An, J. Yoon, J. Lee, and O. Kwon, “Spectral Analysis of a
Three-Dimensional Photonic Quantum Ring Laser with a Square
Microcavity,” J. Appl. Phys. 99, 033102 (20006).

Quantum Chaos Y2K Proceedings of Nobel Symposium 116, edited
by K. F. Berggren and S. Aberg (World Scientific, Singapore, 2000).
J. P. Bird, R. Akis, D. K. Ferry, D. Vasileska, J. Cooper, Y. Aoyagi,
and T. Sugano, “Lead-Orientation-Dependent Wave Function
Scarring in Open Quantum Dots,” Phys. Rev. Lett. 82 , 4691 (1999).
M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen and J. P.
Woerdman, “Astigmatic Laser Mode Converters and Transfer of
Orbital Angular Momentum,” Opt. Commun. 96, 123 (1993).

M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley,
Reading, MA, 1997), Section 2.7.

M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F.Prati, C. Tamm,
and C. O. Weiss, “Transverse Laser Pattern. I. Phase Singularity

Crystals,” Phys. Rev. A 43, 5090 (1991).

182


http://www.ebookee.com.cn/Quantum-Chaos-Y2K-Proceedings-of-Nobel-Symposium-116_198763.html

References

[BCKW94]

[BCSR99]

[BDF+06]

[Berr77]

[Berr80]

[Berr83]

[Berr87]

[Berr9g]

[Berr04]

[BR84]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen and J. P.
Woerdman, “Helical-wavefront laser beams produced with a spiral
phaseplate,” Opt. Commun. 112, 321 (1994).

P. Besnard, M. L. Chares, G. M. Stéphan, and F. Robert, “Switching
between polarized modes of a vertical-cavity surface-emitting laser
by isotropic optical feedback,” J. Opt. Soc. Am. B 16, 1059 (1999).
E. Bogomolny, B. Dietz, T. Friedrich, M. Miski-Oglu, A. Richter, F.
Schifer, and C. Schmit, “First Experimental Observation of
Superscars in a Pseudointegrable Barrier Billiard,” Phys. Rev. Lett.
97, 254102 (20006).

M. V. Berry, “Regular and Irregular Semiclassical Wave Functions,” J.
Phys. A: Math. Gen. 10, 2083 (1977).

M.V. Berry, “Some geometric aspects of wave motion: wavefront
dislocations,diffraction catastrophes, diffractals,” in Geometry of the
Laplace operator edited by R. Osserman and A. Weinstein, Proc.
Symp. App. Maths, AMS,13 (1980).

M. V. Berry, “Semiclassical Mechanics of regular and irregular
motion,” in Les Houches Lecture Series Session XXXVI, edited by G,
Iooss, R. H. G. Helleman and R Stora, North Holland, Amsterdam,
171 (1983).

M. V. Berry, “Quantum Chaology,” Proc. R. Soc. Lon. A 413, 183
(1987).

M. V. Berry, “Much ado about nothing: optical dislocation lines
(phase singularities, zeros, vortices...),” in Singular optics, Edited by
M. S. Soskin, Frunzenskoe, Crimea, SPIE, vol.3487, p.1 (1998).
M.V. Berry, “The electric and magnetic polarization singularities of
paraxial waves,” J. Opt. A: Pure Appl. Opt. 6, 475 (2004).

M. V. Berry and M. Robnik, “Semiclassical level spacings when
regular and chaotic orbits coexist,” J. Phys. A: Math. Gen. 17, 2413
(1984).

183



References

[BS04] E. Bogomolny and C. Schmit, “Structure of Wave Functions of
Pseudointegrable Billiards,” Phys. Rev. Lett. 92, 244102 (2004).
[BSS02] K. F. Berggren, A. F. Sadreev, and A. A. Starikov, “Crossover from

Regular to Irregular Behavior in Current Flow through Open
Billiards,” Phys. Rev. E 66, 016218 (2002).

[BTB+02] S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M.
Giudici, T. Maggipinto, L. Spinelli, G.. Tissoni, T. Knddl, M. Miller,
and R. Jdger, “Cavity solitons as pixels in semiconductor
microcavities,” Nature 419, 699 (2002).

[BU9%4] P. Bellomo and T. Uzer, “State Scarring by ‘Ghosts’ of Periodic
Orbits,” Phys. Rev. E 50, 1886 (1994).

[Buni79] L. A. Bunimovich, “On the Ergodic Properties of Nowhere
Dispersing Billiards”, Commun Math Phys 65, 295 (1979).

[BVD65] Quantum Theory of Angular Momentum, edited by L. C. Biedenharn
and H. Van Dam, (Academic Press, New York, U. S. 1965).

[BZ97] C. Brukner and A. Zeilinger, “Diffraction of matter waves in space
and in time,” Phys. Rev. A 56, 3804 (1997).

[CCHI7] W. W. Chow, K. D. Choquette, M. Haserot-Crowford, K. L. Lear, and

Hadley, “Design, Fabrication, and Performance of Infared and
Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum
Electron. 33, 1810 (1997).

[CH96] P. A. Chinnery and V. F. Humphrey, “Experimental visualization of
acoustic resonances within a stadium-shaped cavity,” Phys. Rev. E

53, 272 (1996).

[CHI9] M. C. Cross and P. C. Hohenberg, “Pattern formation outside of
equilibrium,” Rev. Mod. Phys. 65, 851 (1993).

[CHO3] Y. F. Chen and K. F. Huang, “Vortex Formation of Coherent Waves in
Nonseparable Mesoscopic Billiards,” Phys. Rev. E 68, 066207
(2003).

[CHLO2] Y. F. Chen, K. F. Huang, and Y. P. Lan, “Localization of wave

184



References

[CHLLO3a]

[CHLLO3b]

[CKH+00]

[CLO1]

[CLHO6]

[CLO+97]

[CLS+07]

[CMPLO5]

patterns on classical periodic orbits in a square billiard,” Phys. Rev. E
66, 046215 (2002).

Y. F. Chen, K. F. Huang, H. C. Lai, and Y. P. Lan, “Rules of selection
for spontaneous coherent states in mesoscopic systems: Using the
microcavity laser as an analog study,” Phys. Rev. E 68, 026210
(2003).

Y. F. Chen, K. F. Huang, H. C. Lai, and Y. P. Lan, “Observation of
Vector Vortex Lattices in Polarization States of an Isotropic
Microcavity Laser,” Phys. Rev. Lett. 90, 053904 (2003).

H. C. Chang, G. Kioseoglou, E. H. Lee, J. Haetty, M. H. Na, Y. Xuan,
H. Luo, A. Petrou, and A. N. Cartwright, “Lasing Modes in
Equilateral-Triangular Laser Cavities,” Phys. Rev. A 62, 013816
(2000).

Y. F. Chen and Y. P. Lan, “Transverse pattern formation of optical
vortices in a microchip laser with a large Fresnel number,” Phys. Rev.
A 65, 013802 (2001).

Y. F. Chen, T. H. Lu, and K. F. Huang, “Observation of spatially
coherent polarization vector fields and visualization of vector
singularities,” Phys. Rev. Lett. 96, 033901 (2006).

L. Christensson, H. Linke, P. Omling, P. E. Lindelof, I. V. Zozoulenko,
and K. —F. Berggren, “Classical and Quantum Dynamics of Electrons
in Open Equilateral Triangular Billiards,” Phys. Rev. B 57, 12306
(1997).

C. C. Chen, C. C. Liu, K. W. Su, T. H. Lu, Y. F. Chen, and K. F.
Huang, “Statistical properties of experimental coherent waves in
microcavity lasers: Analogous study of quantum billiard wave
functions,” Phys. Rev. E. 75, 046202 (2007).

Y. Colombe, B. Mercier, H. Perrin, and V. Lorent, “Diffraction of a
Bose-Einstein condensate in the time domain,” Phys. Rev. A 72,

061601R (2005).

185



References

[CSCHO8]

[CSL+07]

[CSG+03]

[CYC+09]

[CZDVO06]

[DALO6]

[DCMO02]

[DD04]

[DennO1]

C. C. Chen, K. W. Su, Y. F. Chen, and K. F. Huang, ‘“Various
High-Order Modes in Vertical-Cavity Surface-Emitting Lasers with
Equilateral Triangular Lateral Confinement,” Opt. Lett. 33, 509
(2008).

C. C. Chen, K. W. Su, T. H. Lu, C. C. Liu, Y. F. Chen, and K. F.
Huang, “Generation of two-dimensional chaotic vector fields from a
surface-emitting  semiconductor laser Analysis of vector
singularities,” Phys. Rev. E 76, 026219 (2007).

R. Crook, C.G. Smith, A.C. Graham, 1. Farrer, H. E. Beere, and D. A.
Ritchie, “Imaging Fractal Conductance Fluctuations and Scarred
Wave Functions in a Quantum Billiard,” Phys. Rev. Lett. 91, 246803
(2003).

C. C. Chen, Y. T. Yu, R. C. C. Chen, Y. J. Huang, K. W. Su, Y. F.

Chen, and K. F. Huang, “Transient Dynamics of Coherent Waves

Released from Quantum Billiards and Analogous Observation from

Free-Space Propagation of Laser Modes,” Phys. Rev. Lett. 102,

044101 (2009).

J. Courtial, R. Zambrini, M. R. Dennis, and M. Vasnetsov, “Angular
Momentum of Optical Vortex Arrays,” Opt. Express 14, 938 (2006).
P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital
Angular Momentum Transfer between Acoustic and Optical Vortices

in Optical Fibers,” Phys. Rev. Lett. 96, 043604 (2006).

F. Delgado, H. Cruz, and J. G. Muga, “The transient response of a
quantum wave to an instantaneous potential step switching,” J. Phys,
A: Math Gen. 35, 10377 (2002).

D. Dragoman and M. Dragoman, Quantum-Classical Analogies
(Springer-Verlag, Berlin Heidelberg, 2004) and references cited
therein.

M. R. Dennis, Topological Singularities in Wave Fields, PhD thesis,
University of Bristal, 2001.

186



References

[dGP93]

[dCMMO07]

[dCL+08]

[DG27]

[DG86]

[DLMO1]

[DMA+05]

[dSFO1]

[DR02]

[EFM+96]

[Enge97]

P. G. de Gennes and J. Prost, The physics of Liquid crystals (Oxford
University Press, New York, 1993), 2" Ed.

A. del Campo, J. G. Muga, and M. Moshinsky, “Time modulation of
atom sources,” J. Phys. B 40, 975 (2007).
A. del Campo, 1. Lizuain, M. Pons, J. G. Muga, and M. Moshinsky,
“Atom laser dynamics in a tight waveguide,” J. of Phys.: Conference
Series 99, 012003 (2008).

C. Davisson and L. H. Germer, “Diffraction of Electrons by a Crystal
of Nickel,” Phys. Rev. 30, 705 (1927).

D. Delande and J. C. Gay, “Quantum Chaos and Statistical Properties
of Energy Levels: Numerical Study of the Hydrogen Atom in a
Magnetic Field,” Phys. Rev. Lett. 57, 2006 (1986).

V. Doya, O. Legrand, and F. Mortessagne, “Light Scarring in an
Optical Fiber,” Phys. Rev. Lett. 88, 014102 (2001).

F. Delgado, J. G Muga, D. G. Austing, and G. Garcia-Calderon,
“Resonant tunneling transients and decay for a one-dimensional
double barrier potential,” J. Appl. Phys. 97, 013705 (2005)

J. A. de Sales and J. Florencio, “Bohmian quantum trajectories in a
square billiard in the bouncing ball regime,” Physica A 290, 101
(2001).
M. A. Doncheski and R. W. Robinett, “Quantum Mechanical Analysis
of the Equilateral Triangular Billiard: Periodic Orbit Theory and
Wave Packet Revivals,” Ann. Phys. (N.Y.) 299, 208 (2002).

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner and B. Weigl,
“Efficient vertical cavity surface emitting laser diodes for high bit
rate optical data transmission,” Int. J. Electron. Commun. 50, 316
(1996).

A translation of the paper appears in The Collected Papers of Albert
Einstein, vol. 6, A. Engel, trans., Princeton U. Press, Princeton, NJ
(1997), p. 434.

187


http://prola.aps.org/search/field/author/Delande_D
http://prola.aps.org/search/field/author/Gay_J_C

References

[Erdo92]

[FAAPOS]

[Freu95]

[FreuO1]
[GAL9S]

[GBF+05]

[GCN-+98]

[GCP+04]

[GGK+96]

[Gil93]

[Godo02]

[Godo03]

T. Erdogan, “Circularly symmetric operation of a concentric-circle-
surface-emitting, AlGaAs/GaAs

semiconductor laser,” Appl. Phys. Lett. 60,1921 (1992).
S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical

grating, quantum-well

angular momentum,” Laser & Photon. Rev. 2, 299 (2008).

I. Freund, “Saddles, singularities, and extrema in random phase
fields,” Phys. Rev. E 52, 2348 (1995).

I. Freund, “Polarization Flowers,” Opt. Commun. 199, 47 (2001).

K. S. Giboney, L. B. Aronson, and B. E. Lemoff, “The ideal light
source for datanets,” IEEE Spectr. 2, 43 (1998).

T. Gensty, K. Becker, 1. Fischer, W. Elsdler, C. Degen, P. Debernardi,
and G. P. Bava, “Wave Chaos in Real-World Vertical-Cavity
Surface-Emitting Lasers,” Phys. Rev. Lett. 94, 233901 (2005).

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J.
Faist, D. L. Sivco, A. Y. Cho, “High-Power Directional Emission
from Microlasers with Chaotic Resonators,” Science 280, 1556
(1998).

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M.
Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).

C. Gmachl, A. Golshani, A. Kock, E. Gornik, J. F. Walker,
“Vertical-cavity  surface-emitting lasers with monolithically
integrated modulators,” Microcavities and photonic bandgaps:
physics and applications, NATO ASI series, series E, applied science
324, 387 (1996).

L. Gil, “Vector order parameter for an unpolarized laser and its
vectorial topological defects,” Phys. Rev. Lett. 70, 162 (1993).

S. Godoy, “Diffraction in Time: Fraunhofer and Fresnel Dispersion by
a Slit,” Phys. Rev. A 65, 042111 (2002).

S. Godoy, “Diffraction in time of particles released from spherical

traps,” Phys. Rev. A 67, 012102 (2003).

188



References

[Good05]

[GPS02]

[GL99]

[GMO5]

[GMJ+99]

[Gutz71]

[Gutz80]

[Gutz90]

[GZT54]

[Haak91]

[Haus84]

[HCLL02]

[Hell84]

J. W. Goodman, Introduction to Fourier Optics 3" Ed., (Roberts &
Company, Engle, Colorado, U. S. 2005).

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics 3"
Ed., (Addison Wesley, San Francisco, U. S. 2002).
J. P. Gollub and J. S. Langer, “Pattern formation in nonequilibrium
physics,” Rev. Mod. Phys. 71, S396 (1999).

E. Granot and A. Marchewka, “Generic short-time propagation of
sharp-boundaries wave packets,” Europhys. Lett. 72, 341 (2005).
M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J.
Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices
and Densely Packed 2-D-Arrays,” IEEE J. Selected Topics Quantum
Electron. 5, 495 (1999).

M. C. Gutzwiller, “Periodic Orbits and Classical Quantization
Conditions,” J. Math. Phys. 12, 343 (1971).

M. C. Gutzwiller, “Classical Quantization of a Hamiltonian with
Ergodic Behavior,” Phys. Rev. Lett. 45, 150 (1980).
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer-Verlag, New Yrok, 1990), and references cited therein.
J. P. Gordon, H. J. Zeiger, and C. H. Townes, ‘“Molecule Microwave
Oscillator and New Hyperfine Structure in the Microwave Spectrum
of NH3,” Phys. Rev. 95, 282 (1954).

F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin,
1991), and references cited therein.

H. A. Haus, Waves and Fields in Optoelectronics, (Prentice-Hall,
New Jersey, U. S., 1984).

K. F. Huang, Y. F. Chen, H. C. Lai, and Y. P. Lan, “Observation of
the Wave Function of a Quantum Billiard from the Transverse
Patterns of Vertical Cavity Surface Emitting Lasers,” Phys. Rev. Lett.
89, 224102 (2002).

E. J. Heller, “Bound-State Eigenfunctions of Classically Chaotic

189


http://www.ebookee.com.cn/Quantum-Signatures-of-Chaos_252535.html

References

[HFG+98]

[HFH+95]

[HGWO00]

[HGYLO1]

[HHMC99]

[HHP+99]

[HMS+92]

[HTW+91]

Hamiltonian Systems: Scars of Periodic Orbits,” Phys. Rev. Lett. 53,
1515 (1984).

T. Hils, J. Felberg, R. Gdhler, W. Gléser, R. Golub, K. Habicht, and P.
Wille, “Matter-wave optics in the time domain: Results of a
cold-neutron experiment,” Phys. Rev. A 58, 4784 (1998).

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-
Dunlop, “Direct Observation of Transfer of Angular Momentum to
Absorptive Particles from a Laser Beam with a Phase Singularity,”
Phys. Rev. Lett. 75, 826 (1995).

Y.-Z. Huang, W.-H. Guo, and Q.-M. Wang, “Influence of Output
Waveguide on Mode Quality Factor in Semiconductor Microlasers
with an Equilateral Triangle Resonator,” Appl. Phys. Lett. 77, 3511
(2000).

Y.-Z. Huang, W.-H. Guo, L.-J. Yu, and H.-B. Lei, “Analysis of
Semiconductor Microlasers with an Equilateral Triangle Resonator
by Rate Equations,” IEEE J. Quantum Electro. 37, 1259 (2001).

S. P. Hegarty, G. Huyet, J. G. Mclnerney, and K. D. Choquette,
“Pattern Formation in the Transverse Section of a Laser with a
Large Fresnel Number,” Phys. Rev. Lett. 82, 1434 (1999).

S. P. Hegarty, G. Huyet, P. Porta, J. G. Mclnerney, K. D. Choquette,
K. M. Geib, and H. Q. Hou, “Transverse-mode structure and pattern
formation in oxide-confined vertical-cavity semiconductor lasers,” J.
Opt. Soc. Am. B 16, 2060 (1999).

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop,
and M. J. Wagner, “Laser Beams with Phase Singularities,” Opt.
Quant. Electron. 24, 951 (1992).
G. Hasnain, K. Tai, Y.H. Wang, J.D. Wynn, K.D. Choquette, B.E.
Weir, N.K. Dutta, and A.Y. Cho, “Monolithic integration of
photodetector with vertical cavity surface emitting laser,” IEEE

Electro. Lett. 27, 1630 (1991).

190



References

[JHS+91]

[JHT+89]

[KAGO1]

[KDR+08]

[KKI89]

[KKS95]

[KKS99]

[KKS+07]

[KL91]

[Kroe63]

[KSL+08]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez,

“Vertical-Cavity Surface-Emitting Lasers Design, Growth,
Fabrication, Characterization,” IEEE J. Quantum Electro. 27, 1332
(1991).

J. L. Jewell, K. F. Huang, K. Tai, Y. H. Lee, S. L. McCall, and A. Y.
Cho, “Vertical cavity single quantum well laser,” Appl. Phys. Lett.
55, 424 (1989).

A. Kudrolli, M. C. Abraham, and J. P. Gollub, “Scarred patterns in
surface waves,” Phys. Rev. E 63, 026208 (2001).

I. Kardosh, F. Demaria, F. Rinaldi, S. Menzel, and R. Michalzik,
“High-Power  Single = Transverse = Mode  Vertical-Cavity
Surface-Emitting Lasers With Monolithically Integrated Curved

Dielectric Mirrors,” IEEE Photon. Technol. Lett. 20, 2084 (2008).

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous
wave lasing characteristics of a GaAs vertical cavity surface-emitting
laser,” Appl. Phys. Lett. 55, 221 (1989).

A. Kudrolli, V. Kidambi, and S. Sridhar, “Experimental Studies of
Chaos and Localization in Quantum Wave Functions,” Phys. Rev.
Lett. 75, 822 (1995).

D.L. Kaufman, I. Kosztin, and K. Schulten, “Expansion method for
stationary states of quantum billiards,” Am. J. Phys. 67, 133 (1999).
V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, C. S. Tuvey and J. A.
Davis, “Sidelobe Contrast Reduction for Optical Vortex Beams
Using a Helical Axicon,” Opt. Lett. 32, 921 (2007).

H. J. Korsch and J. Lang, “A new integrable gravitational billiard,” J.
Phys. A 24, 45 (1991).

H. Kroemer, “A Proposed Class of Heterojunction Injection Lasers,”
Proc. IEEE 51,1782 (1963).

A. M. Kasten, J. D. Sulkin, Paul O. Leisher, David K. McElfresh,

David K. McElfresh, and Kent D. Choquette, “Manufacturable

191



References

[KTS+97]

[Lam98]

[LBS5]

[LCG+04]

[LCHO7]

[LMH-+06]

[LLHZ06]

[LLMO6]

[LLP+05]

Photonic  Crystal Single-Mode and Fluidic Vertical-Cavity
Surface-Emitting Lasers,” IEEE J. Selected Topics Quantum Electron.
14, 1123 (2008).

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada,
“Novel Optical Trap of Atoms with a Doughnut Beam,” Phys. Rev.
Lett. 78, 4713 (1997).

L. Lam, Nonlinear Physics for Beginners- Fractals, Chaos, Solitons,
Pattern Formation, Cellular Automata, and Complex Systems (World
Scientific, Singapore, 1998).

W. K. Li and S. M. Blinder, “Solution of the Schrédinger Equation for
a Particle in an Equilateral Triangle,” J. Math. Phys. 26, 2784 (1985).
Q.-Y. Lu, X.-H Chen, W.-H. Guo, L.-J. Yu, Y.-Z. Huang, J. Wang,
and Y. Luo, “Mode Characteristics of Semiconductor Equilateral
Triangle Microcavities with Side Length of 5-20 um,” IEEE Photon.
Technol. Lett. 16, 359 (2004).

T. H. Lu, Y. F. Chen, and K. F. Huang, “Generation of polarization-
entangled optical coherent waves and manifestation of vector
singularity patterns,” Phys. Rev. E 75, 026614 (2007).

A. Lofgren, C. A. Marlow, T. E. Humphrey, 1. Shorubalko, R. P.
Taylor, P. Omling, R. Newbury, P. E. Lindelof, and H. Linke,
“Symmetry of magnetoconductance fluctuations of quantum dots in
the nonlinear response regime,” Phys. Rev. B 73, 235321 (2006)

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly Directional
Stadium-Shaped Polymer Microlasers,” Appl. Phys. Lett. 88, 031108
(2006).

R. T. Liu, S. S. Liaw, and P. K. Maini, “Two-stage Turing model for
generating pigment patterns on the leopard and the jaguar,” Phys.
Rev. E 74, 011914 (2006).

H. C. Lin, D. A. Louderback, G. W. Pickrell, M. A. Fish, J. J. Hindi,
M. C. Simpson, and P. S. Guilfoyle, “Vertical-Cavity

192



References

[LLZ+07]

[LRWO02]

[LSW+05]

[MAH+99]

[Maim60]

[MDLMO07]

[MFDMO3]

[MFM95]

[MK79]

[MKS8S]

Surface-Emitting Lasers With Monolithically Integrated Horizontal
Waveguides,” IEEE Photon. Tech. Lett. 17, 10 (2005).

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny,
“Directional emission of Stadium-Shaped Micro-Lasers,” Phys. Rev.
A'75, 033806 (2007).
W. Li, L. E. Reichl, and B. Wu, “Quantum Chaos in Ripple Billiard,”
Phys. Rev. E 65, 056220 (2002).

F. Lindner, M. G. Schitzel, H. Walther, A. Baltuska, E. Gouliemakis,
F. Krausz, D. B. MiloSevi¢, D. Bauer, W. Becker, and G. G. Paaulus,
“Attosecond Double-Slit Experiment,” Phys. Rev. Lett. 95, 040401
(2005).

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.
Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein
Condensate,” Phys. Rev. Lett. 83, 2498 (1999).

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187,
493 (1960).

C. Michel, V. Doya, O. Legrand, and F. Mortessagne, “Selective
Amplification of Scars in a Chaotic Optical Fiber,” Phys. Rev. Lett.
99, 224101 (2007).

V. R. Misko, V. M. Fomin, J. T. Devreese, and V. V. Moshchalkov,
“Stable Vortex-Antivortex Molecules in Mesoscopic
Superconducting Triangles,” Phys. Rev. Lett. 90, 147003 (2003).

M. S. Miguel, Q. Feng, and J. V. Moloney, “Light-polarization
dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52,
1728 (1995).

S. W. McDonald and A. N. Kaufman, “Spectrum and Eigenfunctions
for a Hamiltonian with Stochastic Trajectories,” Phys. Rev. Lett. 42,
1189 (1979).

S. W. McDonald and A. N. Kaufman, “Wave chaos in the stadium:

Statistical properties of short-wave solutions of the Helmholtz

193



References

[MMN64]

[MMS99]

[Mosh52]
[MRS+99]

[MTTTO2]

[MVG+99]

[MVWZ01]

[NB74]

[NDB+62]

[NHO04]

[NS97]

equation,” Phys. Rev. A 37, 3067 (1988).
J. C. Marinace, A. E. Michel, and M. 1. Nathan, “Triangular injection
lasers,” Proc. IEEE 52, 722 (1964).

V. I. Man’ko, M. Moshinsky, and A. Sharma, “Diffraction in time in
terms of Wigner distributions and tomographic probabilities,” Phys.
Rev. A 59, 1809 (1999).

M. Moshinsky, “Diffraction in Time,” Phys. Rev. 88, 625 (1952).

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons,
“Single-Molecule Biomechanics with Optical Methods,” Science 283,
1689 (1999).

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the
Angular Momentum of Light: Preparation of Photons in
Multidimensional Vector States of Angular Momentum,” Phys. Rev.
Lett. 88, 013601 (2002).

H. Martinsson, J. A. Vucusi¢, M. Grabherr, R. Michalzik, R. Jager, K.
J. Ebeling, and A. Larsson, “Transverse Mode Selection in
Large-Area Oxide-Confined Vertical-Cavity Surface-Emitting Lasers
Using a Shallow Surface Relief,” IEEE Photon. Technol. Lett. 11,
1536 (1999).

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the
Orbital Angular Momentum States of Photons,” Nature 412, 313
(2001).

J. F. Nye and M. V. Berry, “Dislocation in Wave Trains,” Proc. R. Soc.
A 336, 165 (1974).

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill Jr., and G. Lasher,
“Stimulated Emission of Radiation from GaAs p-n Junctions,” App.
Phys. Lett. 1, 62 (1962).

K. Nagamura and T. Harayama, Quantum Chaos and Quantum Dots
(Oxford University Press, New York, 2004).
J. U. Nockel and A. D. Stone, “Ray and Wave Chaos in Asymmetric

194



References

[NSC94]

[Nye83]

[Nye99]

[0C09]

[OGHS7]

[OHKYS3]

[PCCO1]

[PKMO2]

[PLW+03]

[POS97]

[PSF+07]

Resonant Optical Cavities,” Nature 385, 45 (1997).
J. U. Nockel, A. D. Stone, and R. K. Chang, “Q Spoiling and
Directionality in Deformed Ring Cavities,” Opt. Letts. 19, 1693
(1994).

J. F. Nye, “Polarization effect in the diffraction of electromagnetic
waves: the role of disclinations,”Proc. R. Soc. A 387, 105 (1983).

J. F. Nye, Natural focusing and fine structure of light : caustics and
wave dislocations (Philadelphia, PA : Institute of Physics Pub.,
1999).

K. Otsuka and S. C. Chu, “Generation of vortex array beams from a
thin-slice solid-state laser with shaped wide-aperture laser-diode
pumping,” Opt. Lett. 34, 10 (2009).

P. O'Connor, J. Gehlen, E.J. Heller, “Properties of random
superpositions of plane waves,” Phys. Rev. Lett. 58, 1296 (1987).

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlGa;«As
multilayer reflector for surface emitting laser diode,” Japan. J. Appl.
Phys. 22, L112 (1983).

A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode Resonance
in Square-Shaped Optical Microcavities,” Opt. Lett. 26, 632 (2001).

H. Pier, E. Kapon, and M. Moser, “Strain effects and phase

transitions in photonic resonator crystals,” Nature (London) 407, 880
(2002).

G. G. Paulus, E. Lindner, H. Walther, A. Baltuska, E. Gouliemakis, M.
Lezius, and F. Krausz, “Measurement of the Phase of Few-Cycle
Laser Pulses,” Phys. Rev. Lett. 91, 253004 (2003).
V. Petrov, Q. Ouyang, H. L. Swinney, "Resonant pattern formation in
a chemical system," Nature 388, 655 (1997).
R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson,
“Topological Stability of Stored Optical Vortices,” Phys. Rev. Lett.
98, 203601 (2007).

195



References

[PTMA97]

[RBS81]

[RichO1]

[Robi97]

[RTS+02]

[SADP97]

[SDE04]

[SF94]

[SFO1]

[SGV+97]

[Shaw74]

F. Prati, G. Tissoni, M. S. Miguel, and N. B. Abraham, “Vector
vortices and polarization state of low-order transverse modes in a
VCSEL,” Opt. Commun. 143, 133 (1997).

R. J. Richens and M. V. Berry, “Pseudointegrable Systems in
Classical and Quantum Mechanics,” Physica D 2, 495 (1981).

A. Richter, “Test of Trace Formulas for Spectra of Superconducting
Microwave Billiards,” Foundations of Physics 31, 327 (2001).

R. W Robinett, “Visualizing classical periodic orbits from the

quantum energy spectrum via the Fourier transform: Simple infinite
well examples,” Am. J. Phys. 65, 1167 (1997).
N. B. Rex, H. E. Tureci, H. G.. L. Schwefel, R. K. Chang, and A. D.
Stone, “Fresnel Filtering in Lasing Emission from Scarred Modes of
Wave-Chaotic Optical Resonators,” Phys. Rev. Lett. 88, 094102
(2002).

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett , “Mechanical
equivalence of spin and orbital angular momentum of light: an
optical spanner,” Opt. Lett. 22, 52 (1997).

M. S. Soskin,V. G. Denisenko, and R. I. Egorov, “Topological
networks of paraxial ellipse speckle-fields,” J. Opt. A: Pure Appl.
Opt. 6, S281 (2004).

N. Shvartsman and I. Fruend, “Vortices in random wave fields:
Nearest neighbor anticorrelations,” Phys. Rev. Lett. 72, 1008 (1994).

J. A. de Sales and J. Florencio, “Bohmian quantum trajectories in a
square billiard in the bouncing ball regime,” Physica A 290, 101
(2001).

M. S. Soskin, V. N. GorshKov, M. V. Vasnetsov, J. T. Malos, and N.
R. Heckenberg, “Topological Charge and Angular Momentum of
Light Beams Carrying Optical Vortices,” Phys. Rev. A 56, 4064
(1997).

G. B. Shaw, “Degeneracy in the Particle-in-a-Box Problem,” J. Phys.

196


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVF-497C5TF-VX&_user=1194694&_coverDate=11%2F01%2F1997&_alid=825672328&_rdoc=1&_fmt=high&_orig=search&_cdi=5533&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000051941&_version=1&_urlVersion=0&_userid=1194694&md5=50587cd5a1a863b731f67ee7cd475b5c
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVF-497C5TF-VX&_user=1194694&_coverDate=11%2F01%2F1997&_alid=825672328&_rdoc=1&_fmt=high&_orig=search&_cdi=5533&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000051941&_version=1&_urlVersion=0&_userid=1194694&md5=50587cd5a1a863b731f67ee7cd475b5c
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVF-497C5TF-VX&_user=1194694&_coverDate=11%2F01%2F1997&_alid=825672328&_rdoc=1&_fmt=high&_orig=search&_cdi=5533&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000051941&_version=1&_urlVersion=0&_userid=1194694&md5=50587cd5a1a863b731f67ee7cd475b5c

References

[SHK+97]

[SHS04]

[Sieg86]

[SIKS79]

[Sina70]

[SKBS99]

[SO99]

[Srid91]

[SS90]

[SS92]

[SSDD95]

[ST58]

AT,1537 (1974).

P. Seba, F. Haake, M. Kus, M. Barth, U. Kuhl, and H.-J. Stockmann,
“Distribution of the wave function inside chaotic partially open
systems,” Phys. Rev. E 56, 2680 (1997).

N. Savytskyy, O. Hul, and L. Sirko, “Experimental investigation of
nodal domains in the chaotic microwave rough billiard,” Phys. Rev.
E 70, 056209 (2004).

A. E. Siegman, Lasers (University Science Books, Mill Valley,
California 1986).

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GalnAsP/InP surface
emitting injection lasers,” Japan. J. Appl. Phys. 18, 2329 (1979).

Y. G. Sinai, “Dynamical systems with elastic reflections: Ergodic
properties of dispersing billiards,” Russ. Math. Surveys 25, 141
(1970).

P. Seba, U. Kuhl, M. Barth, and H.-J. Stéckmann, “Experimental
Verification of topologically induced vortices inside a billiard,” J.
Phys. A: Math. Gen. 32, 8225 (1999).

J. Scheuer and M. Orenstein, “Optical Vortices Crystals: Spontaneous
Generation in Nonlinear Semiconductor Microcavities,” Science 285,
230 (1999).

S. Sridhar, “Experimental observation of scarred eigenfunctions of
chaotic microwave cavities,” Phys. Rev. Lett. 67, 785 (1991).
H. J. Stockmann and J. Stein, “Quantum Chaos in Billiards Studied
by Microwave Absorption,” Phys. Rev. Lett. 64, 2215 (1990)

J. Stein and H. J. Stéckmann, “Experimental determination of billiard
wave functions,” Phys. Rev. Lett. 68, 2867 (1992).

A. Steane, P. Szriftgister, P. Desiolles, and J. Dalibard, “Phase
Modulation of Atomic de Broglie Waves,” Phys. Rev. Lett. 74, 4972
(1995).

A. L. Schawlaw and C. H. Townes, “Infrared and Optical Masers,”

197


http://prola.aps.org/search/field/author/Savytskyy_N
http://prola.aps.org/search/field/author/Hul_O
http://prola.aps.org/search/field/author/Sirko_L

References

[STB+93]

[St6c99]

[Ston05]

[SVO1]

[SWMD48]

[TAFJ0S]

[VdS+06]

[VEWWO9S]

[VKMRO1]

Phys. Rev. 112, 1940 (1958).

G. Shtengel, H. Temki, P. Brusenbach, T. Uchida, M. Kim, C. Parsons,
W. E. Quinn, and S. E. Swirhun, “High-speed vertical-cavity surface
emitting laser,” IEEE Photon. Tech. Lett. 5, 1359 (1993).

H. J. Stéckmann, Quantum Chaos: An Introduction (Cambridge
University Press, Cambridge, U.K., 1999), and references cited
therein.

A. D. Stone, “Einstein's unknown insight and the problem of
quantizing chaos,” Phys. Today 58, 37 (2005).
M. S. Soskin and M. V. Vasnetsov, Chap. 4 of Progress in Optics Vol.
42, edited by E. Wolf (Elsevier, New York, 2001).

C. G. Shull, E. O. Wollan, G. A. Morton, and W. L. Davidson,
“Neutron Diffraction Studies of NaH and NaD,” Phys. Rev. 73, 842
(1948).

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jiger, “Realization of a
Semiconductor-Based Cavity Soliton Laser,” Phys. Rev. Lett. 100,
013907 (2008).

G. Van der Sande, M. Peeters, I. Veretennicoff, J. Danckaert, G.
Verschaffelt, and S. Balle, “The Effects of Stress, Temperature, and
Spin Flips on Polarization Switching in Vertical-Cavity
Surface-Emitting Lasers,” IEEE J. Quantum Electron. 42, 898
(2006).

M. P. van Exter, M. B. Willemsen, and J. P Woerdman, “Polarization
fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58,
4191 (1998).

I. V. Veshneva, A. 1. Konukhov, L. A. Melnikov, and M. V. Ryabinina,
“Vectorial Karhunen-Loeve modes for the description of the
polarization transverse pattern dynamics in lasers and their
classification based on the characterization of the singular points,” J.

Opt. B 3, S209 (2001).

198



References

[vonO94]

[VS99]

[VSF+06]

[Wier01]

[Wint87]

[WKL+89]

[WPW99]

[WS48]

[YAC+07]

[YAK+07]

[ZB97]

F. von Oppen, “Magnetic susceptibility of ballistic microstructures,”

Phys. Rev. B 50, 17151 (1994).

Optical Vortices edited by M. V. Vasnetsov and K. Staliunas (Nova
Science, New York, 1999).

A. Volyar, V. Shvedov, T. Fadeyava, A. S. Desyatnikov, D. N. Neshev,
W. Krolikowski, and Y. S. Kivshar, “Generation of Single-Charge
Optical Vortices with an Uniaxial Crystal,” Opt. Express 14, 3724
(2006).

J. Wiersig, “Quantum-classical correspondence in polygonal billiards,”

Phys. Rev. E 64, 026212 (2001).

D. Wintgen, “Connection between Long-Range Correlations in
Quantum Spectra and Classical Periodic Orbits,” Phys. Rev. Lett. 58,
1589 (1987).

G. R. Welch, M. M. Kash, C. Tu, L. Hsu, and D. Kleppner,

“Experimental Study of Energy-Level Statistics in a Regime of
Regular Classical Motion,” Phys. Rev. Lett. 62, 893 (1989).

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling,
trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253
(1999) and references therein.

E. O. Wollan and C. G. Shull, “The Diffraction of Neutrons by
Crystalline Powders,” Phys. Rev. 73, 830 (1948).

X.-C. Yuan, B. P. S. Ahluwalia, H. L. Chen, J. Bu, J. Lin, R. E. Burge,
X. Peng, and H. B. Niu, “Generation of High-Quality Optical Vortex
Beams in Free-Space Propagation by Microfabricated Wedge with
Spatial Filtering Technique,” Appl. Phys. Lett. 91, 051103 (2007).

J. Yoon, S.-J. An, K. Kim, J. K. Ku, and O. Kwon, “Resonance

Spectrum of a Three-Dimensional Photonic Quantum Ring Laser
with an Equilateral Triangle Microcavity,” Appl. Opt. 46, 2969
(2007)

I. V. Zozoulenko and K. -F. Berggren, “Quantum scattering, resonant

199


http://prola.aps.org/search/field/author/Welch_G_R
http://prola.aps.org/search/field/author/Kash_M_M
http://prola.aps.org/search/field/author/Iu_C_h
http://prola.aps.org/search/field/author/Hsu_L
http://prola.aps.org/search/field/author/Kleppner_D
http://prola.aps.org/search/field/author/Wollan_E_O
http://prola.aps.org/search/field/author/Shull_C_G

References

states, and conductance fluctuations in an open square electron
billiard,” Phys. Rev. B 56, 6931 (1997).

[ZB06] R. Zambrini and S. M. Barnett, “Quasi-Intrinsic Angular Momentum
and the measurement of Its Spectrum,” Phys. Rev. Lett. 96, 113901
(2006).

[ZB07] R. Zambrini and S. M. Barnett, “Angular momentum of multimode
and polarization patterns,” Opt. Express 15, 15214 (2007).

[ZMO5] X. Zou and W. Mathis, “Scheme for optical implementation of orbital
angular momentum beam splitter of a light beam and its application
in quantum information processing,” Phys. Rev. A 71, 042324
(2005).

200



Curriculum Vitae

Personal Data

Name: Chien-Cheng Chen

Sex: Male

Birthday: Nov. 13, 1982

Nationality: Taiwan (Republic of China)

Birthplace: Yilan County

E-mail: makoto.ep94g@nctu.edu.tw
devilscrying@hotmail.com
makotoscorpio@yahoo.com.tw

Mobile Phone: 886-912-297661

Education

2005-2009 Ph.D. in Department of Electrophysics, National Chiao Tung
University, Hsinchu, Taiwan.

2001-2005 B.S. in Department of Physics, National Tsing Hua University,
Hsinchu, Taiwan.

1998-2001 National Yilan Senior High School, Yilan, Taiwan.

Work Experience

2005-2008 T. A. of General Physics
2008-2009 Pre-PhD T. A. of General Physics

Current Research Interests

Vertical-Cavity Surface-Emitting Lasers
Quantum Billiards
Singular Optics

201



Publication List

C. C. Chen (£ 3#), C. C. Liu (%1% %), K. W. Su (#2F), T. H. Lu (£ % 45,

Y. F. Chen (M- %), and K. F. Huang (& #“k ), “Statistical properties of
experimental coherent waves in microcavity lasers: Analogous study of quantum
billiard wave functions,” Phys. Rev. E 75, 046204 (2007).

C.C.Chen (FrzE#) K. W. Su (#%Fr), T. H. Lu (I£ % #2), C. C. Liu (¥ % ),

Y. F. Chen (2 -X %), and K. F. Huang (& 2™k ), “Generation of two-dimensional
chaotic vector fields from a surface-emitting semiconductor laser Analysis of
vector singularities,” Phys. Rev. E 76, 026219 (2007).

C. C. Chen (Muz£3), K. W. Su (#=Pk), Y. F. Chen (X §), and K. F.

Huang (& ¥k ), “Various high-order modes in vertical-cavity surface-emitting
lasers with equilateral triangular lateral confinement,” Opt. Lett. 33, 509 (2008).

C.C.Chen (M%), Y. T. Yu (£ 7 ), Ross C. C. Chen (ft & 1), Y. J. Huang

(% #%iz), K. W. Su (#7%B#), Y. F. Chen (X %), and K. F. Huang (% 2™k ),
“Transient Dynamics of Coherent Waves Released from Quantum Billiards and
Analogous Observation from Free-Space Propagation of Laser Modes,” Phys.
Rev. Lett. 102, 044101 (2009).

Ross C. C. Chen (22 1), Y. T. Yu (£ 2 #£), VY. J. Huang (& %% i), C. C. Chen
(g ), Y. F Chen (X %), and K. F. Huang (& %k ), “Exploring the origin
of the directional emission from a microcavity with a large-aperture

surface-emitting laser,” Opt. Lett. 34, 1810 (2009).

202



	1.Cover
	Analogous Investigations on the Transverse Modes of Broad-Area Vertical-Cavity Surface-Emitting Lasers by Mesoscopic Wave Functions of Quantum Billiards

	3.Abstract+~
	4.Ch1 Introduction
	5.Ch2 Wave Functions of Quantum Billiards
	6.Ch3 VCSEL
	7.Ch4 Diffraction-in-Time
	8.Ch5 Vector Filed
	9.Ch6 Summary&Future Work
	10.Appendix
	11.REFERENCE
	12.Curriculum Vitae
	13. Publication List



