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利用量子球檯介觀波函數類比研究大面積面射型雷射之橫向模態 

      學生：陳建誠                             指導教授：陳永富 

 

國立交通大學電子物理學系博士班 

摘 要       

    近軸近似光學與二維量子力學之間的類比性是本篇論文的核心概念。基

於 Helmholtz 方程式與非時變 Schrödinger 方程式之間的相似性，我們可以用

量子球檯的介觀波函數解釋大面積面射型雷射的高階近場橫向模態。相反

地，非可積量子球檯的波函數雖然沒有解析解，但我們可以利用混沌形狀的

面射型雷射做類比觀察。除此之外，同調波突然從量子球檯釋放出來之後的

演變也可以透過面射型雷射之橫向模態的傳遞做類比觀察。由於二維量子系

統與近軸光學的類比性不僅止於波函數與橫向模態，還包括它們的軌道角動

量，所以藉由計算同調波從量子球檯釋放出來之後的軌道角動量可以類比分

析面射型雷射光束的軌道角動量。更有趣的是，面射型雷射的模態除了線性

偏振之外，還可以形成一種偏振與空間糾纏的向量場。既然光的偏振乃是對

應於量子波的自旋，分析面射型雷射之中的向量場可以提供重要的資訊給考

慮電子自旋的量子球檯系統。  
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Analogous Investigations on the Transverse Modes of Broad-Area Vertical-Cavity 
Surface-Emitting Lasers by Mesoscopic Wave Functions of Quantum Billiards 

    Student：Chien-Cheng Chen              Advisor： Yung-Fu Chen 

 

Department of Electrophysics 
National Chiao Tung University 

ABSTRACT 

The analogies between paraxial optics and two-dimensional (2-D) quantum mechanics lie in 

the heart of this thesis.  Based on the similarity between Helmholtz equation and 

time-independent Schrödinger equation, mesoscopic wave functions of quantum billiards are 

used to interpret the high-order transverse modes of broad-area Vertical-Cavity 

Surface-Emitting Lasers (VCSELs).  Reversely, chaotic-shaped VCSELs can be employed to 

analogously observe the wave functions of non-integrable billiards which have no analytic 

solutions.  In addition, the free-time evolution of coherent waves suddenly released from 

quantum billiards can be analogously observed from the free-space propagation of lasing modes 

emitted from VCSELs.  Furthermore, the analogies are not restricted to quantum wave 

functions and optical transverse modes, the orbital angular momentum (OAM) density carried 

by a light beam emitted from VCSELs can be analogously analyzed by calculating the OAM of 

coherent waves abruptly set free from quantum billiards.  More interestingly, the lasing modes 

of VCSELs are not only linearly-polarized but can form the vector fields, in which the 

polarization is spatially dependent.  Since the polarization of light corresponds to the spin of 

quantum wave, the analyses of the vector fields in VCSELs can provide important information 

for quantum-billiard systems (such as ballistic quantum dots) with consideration on electronic 

spin. 
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Fig. 1.1-1. Schematic diagram for a 2D flat billiard. The particle in the billiard goes in 

straight lines. The incidence angle on the wall equals the reflection angle. 

The energy of the particle is constant. 

Fig. 1.2-1. (a) Demonstration of the shutter problem. (b) Red curve displays the 

temporary interference pattern and blue dash line indicates a classical result. 

(See Appendix A for a more detailed discussion.) 

Fig. 1.3-1. A color wheel. At the center the color becomes undefined. 

Fig. 1.3-2. (a)-(b) Vector fields with vortex, saddle, and source, respectively; (a’)-(b’) 

The corresponding orientation angle function of vector fields shown in 

(a)-(b). 

Fig. 1.3-3. (a)-(c) The phase structures of singularities, saddle, and maximum 

(extremum).  The gradient of these phases will result in the vector fields 

shown in Fig. 1.3-2 (a)-(c), respectively. 

Fig. 1.4-1. Schematic diagram of an edge-emitting laser.  The laser output is parallel to 

the semiconductor layers.  The out put beam is highly diverged due to the 

thin emission region. 

Fig. 1.4-2. Schematic diagram of a VCSEL. The laser output is perpendicular to the 

wafer. The isotropic aperture results in a good beam quality. 
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Fig.2.1-1. Some classical periodic orbits denoted by ( , , )p q  , where p and q are two 

positive integers describing the number of collisions with horizontal and 

vertical walls, and the parameter   (      ) that is related to the wall 

positions of specular reflection points. 



Fig.2.1-2. First some eigenstates and the one of 1 2( , ) (30,30)n n  . We can expect that 

conventional eigenstates do not manifest the properties of classical periodic 

orbits even in the correspondence limit of large quantum numbers. 

Fig.2.1-3. Stationary coherent states , ,
50,20 ( , )p q x y  associated with classical periodic 

orbits ( , , )p q  . 

Fig.2.1-4. The N dependence of the wave pattern .  It can be seen that 

N is related to the mode order. 

1,1,0.6 2
,5| ( ,NC x y ) |

) |Fig.2.1-5. The M dependence of the wave patterns .  It can be seen 

that M is related to the localization of the patterns. 
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Fig.2.2-1. Some classical periodic orbits ( , , )p q  , where p and q are two positive 

integers with restriction p q , and the parameter   (      ) is 

related to the initial point of the billiard ball. 

Fig.2.2-2. Some eigenstate of equilateral-triangular billiard ( )
, ( , )C

m n x y . 

Fig.2.2-3. Some eigenstate of equilateral-triangular billiard ( )
, ( , )S

m n x y . Notice that 

. ( )S

|

2 , ( , ) 0n n x y 

Fig.2.2-4. Stationary coherent states 2
50,15| ( , ; , , )Tri x y p q   associated with classical 

periodic orbits ( , , )p q  . 

Fig.2.2-5. The N dependence of the wave pattern .  It can be 

seen that N is related to the mode order. 

2
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|Fig.2.2-6. The M dependence of the wave patterns .  It can be 

seen that M is related to the localization of the patterns. 

2
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Fig. 2.3-1. The stadium billiard. The trajectory in chaotic billiard is generally ergodic. 

Fig. 2.3-2. Some unstable periodic orbits in the stadium billiard. 

Fig. 2.3-3. First eight eigenstates of the stadium billiard. The result is similar to 

rectangular billiard. 
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Fig. 2.3-4. (a)-(d) The 152nd, 165th, 175th, and 208th exited states of a slightly 

asymmetric stadium billiard are shown to exhibit random patterns that do not 

exist in regular billiard. 

Fig. 2.3-5. (a) A random superposition of several eigenstates with quantum number 

satisfying 2 2
1 254 55n n   , as illustrated in (b)   

Fig. 2.3-6. (a)-(b) The statistics for the amplitude and intensity of the random wave 

shown in the previous figure.  The fitting curves are Gaussian and 

Porter-Thomas distributions, respectively. 

Fig. 2.3-7. (a)-(d) The scars appear in the 122nd, 132nd, 207th, and 258th exited states 

of the slightly asymmetric stadium billiard.  The highlighted lines indicate 

the unstable periodic orbits. 

Chapter3  

Fig.3.1-1. (a) The schematic diagrams for vertical-cavity surface-emitting laser. he 

separability of the wave function in the VCSEL device enables the wave 

vectors to be decomposed into kz and kt.  (b) The illustration of a wave a 

wave incident upon the current-guiding oxide boundary would undergo total 

internal reflection for . t zk  k

Fig.3.2-1. The schematic diagrams for the experimental setup. 

Fig.3.2-2. (a) The VCSEL mounted on the copper holder. (b) Side view of the 

cryogenic system. (c) The objective lens with NA=0.9 (d) Face view of the 

cryogenic system. 

Fig. 3.3-1. The SEM image of square VCSEL device 

Fig. 3.3-2. Optical microscope image view from the aperture of the VCSEL.  The 

bright region display the spontaneous emission to manifest the details on the 

square boundary. 

Fig. 3.3-3. (a) The temperature dependence of the threshold current and the lasing 

modes observed at temperatures of (b) 295K (room temperature) (c) 285K 

(d) 250K (e) 230K. 
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Fig. 3.3-4. (a)-(c) The bouncing ball modes observed in different square VCSEL 

devices. (a’)-(c’) The theoretical explanations of (a)-(c), which are expressed 

by Eq. (3.3.2)-(3.3.4), respectively. 

Fig. 3.3-5. a)-(c) Various superscar modes observed in different square VCSEL 

devices.  (a’)-(c’) Theoretical interpretation of (a)-(c) by SU(2) coherent 

states , , and  respectively 36,10 ( , )C x y 38,6 ( , )C x 40,25 ( , )C x

Fig. 3.3-6. (a)-(c) Various multi-POs superscar modes observed in different square 

VCSEL devices.  (a’)-(c’) Theoretical patterns of (a)-(c) given by  Eq. 

(3.3.6)-(3.3.8), respectively. 

Fig. 3.4-1. Experimental pattern of the spontaneous emission to manifest the details on 

the ripple boundary. 

Fig. 3.4-2. Near-threshold lasing patterns of the rippled VCSEL at temperatures of 

(a) 260T   and (b) 220T K . 

Fig. 3.4-3. (a) An unknown wave function (b) The intensity distribution (c) Square Root 

of intensity distribution (d) Positive part of the wave function (e) 

Demonstration of |2 ( ) | ( )p x x   (f) The result of 2 ( ) | ( ) |p x x  . 

Fig. 3.4-4. (a) and (b) The intensity plots of the positive wave functions |),(| jip yx

for experimental results shown in Figs. 3.4-2 (a) and (b), respectively. 

Fig. 3.4-5. (a) and (b) Distribution of the coefficients  obtained by Eq. (3.4.6) 

for experimental results shown in Figs. 3.4-1 (a) and (b). 

,| m nC |

Fig. 3.4-6. (a) and (b) The reconstructed patterns with the eigenfunction expansion 

method for experimental results. 

Fig. 3.4-7. (a) and (b) Tthe amplitude distributions of the wave functions shown in Fig. 

3.4-6 (a) and (b), respectively. 

Fig. 3.4-8. (a) and (b) The intensity distributions of the patterns shown in Fig. 3.4-6 (a) 

and (b), respectively. 

Fig. 3.5-1. (a) Optical microscope image of the VCSEL device. (b) Zoom-in view of (a) 

and is operated with an electric current under threshold current at room 
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temperature. (c) The spontaneous emission to manifest the details on the 

triangular boundary temperature. 

Fig. 3.5-2. Temperature dependence of the threshold current of the equilateral 

tr.iangular VCSEL. 

Fig. 3.5-3. (a)-(i) The near-threshold lasing patterns of triangular VCSEL at 

temperatures labeled by A-I in Fig 3.5-2, respectively. 

Fig. 3.5-4. (a) Experimental pattern observe at 195K. (b) Numerical wave pattern of 

eigenstate ( ) 2
5,55| ( , )x y . 

Fig. 3.5-5. Experimental pattern observe at (a)275K and (b)135K; Numerical wave 

pattern of coherent state (c) 2Tri
36, 9| ( , ;1, 0, 0.23 ) |C x y  and (d) 

2Tri
20, 6| ( , ; 1, 1, 0.35 ) |C x y  ; The classical periodic orbits that the wave 

functions localized on are depicted in the insets of (c) and (d). 

Fig. 3.5-6. The intensity plots of the positive wave functions |),(| jip yx  for 

experimental results shown in Figs. 3.5-3 (f). 

Fig. 3.5-7. (a) Experimental pattern observe at 175K. (b) Reconstructed pattern of (a). 

(c) Intensity statistics of (b) with fitting curve to be Porter-Thomas intensity 

distribution. 
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Fig. 4.1-1. (a)-(k) Intensity plots of ( , ;10)S x t  at t  0T -T , respectively, with equal 

time interval . (l) Intensity plots of 0.1t  T 10 ( , )x t  at t .  The 

intensity pattern preserves its shape after 

 1.5T

t  1.5T . 

Fig. 4.2-1. Numerical patterns to illustrate the wave patterns 
2

15,15 ( , , )x y t  at t = (a) 

, (b) , (c) , (d) , (e) , (f) , (g) , (h) 

, and (i) . 

0T
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Fig. 4.2-2. Numerical patterns to illustrate the wave patterns 
21,1,0.6

35,13 ( , , )x y t  at t = 

(a) , (b) , (c) , (d) , (e) , (f) , (g)  

(h) , and (i) . 

0T

2.0 
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T



Fig. 4.2-3. Numerical patterns to illustrate the wave patterns 
21,1,0.6

35,13 ( , , )C x y t  at t = (a) 

, (b)  (c) , (d) , (e) , (f) , (g) , (h) 

, and (i) . 

0T
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T 1.0 , 0.2 T 0.3 T 0.4 T 0.7 T T 0.1

T

Fig. 4.2-4. Numerical patterns to illustrate the wave patterns 
2

( , , )chaos x y t  at t = (a) 

, (b)  (c) , (d) , (e) , (f) , (g) , (h) 

, and (i) . 

0T

3.0 

T 1.0 , 0.2 T 0.4 T 0.55 T 0.8 T 1.5 T

T

Fig. 4.3-1. Experimental patterns of a superscar mode with propagation distance at z = 

(a) , (b) , (c) , (d) , (e) , (f) , (g) 

, (h) , and (i) 20cm, where 

0 dz

 dz

0.1 dz
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0.2 dz 0.3 dz

~d
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z m
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1.0 72 . 

Fig. 4.3-2. Experimental patterns of a chaotic mode with propagation distance at z = (a) 

, (b) , (c) , (d) , (e) , (f) , (g) , 

(h) , and (i) 20cm, where 

0 dz 0.1 dz

 dz

0.2 dz 0.4 dz

~ 1d

0.55 dz

z m
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3.0 38 . 

Fig. 4.4-1. (a)-(f) The vector plot of 15,15 ( , , )j x y t


 at 0.1t T , , , , 

, and , respectively. 

0.2T 0.3T 0.4T

0.5T 1.0T

Fig. 4.4-2. (a)-(f) show the density plots of 15,15 ( , , )l x y t


 at 0.1t T , , , 

, , and , respectively. 

0.2T 0.3T

0.4T 0.5T 1.0T

Fig. 4.4-3. The OAM spectrum of 15,15 ( , , )x y t . 

Fig. 4.4-4. (a)-(f) The vector plot of 1,1,0.6
35,13 ( , , )J x y t


 at 0.1t T , , , 

, , and , respectively. 

0.2T 0.3T

0.4T 0.5T 1.0T

Fig. 4.4-5. (a)-(f) The density plots of 1,1,0.6
35,13 ( , , )L x y t

 at 0.1t T , , , 

, , and  are presented in Fig. 4.3-9 (a)-(f), respectively. 

0.2T 0.3T

0.4T 0.5T 1.0T

Fig. 4.4-6. The OAM spectrum of 1,1,0.6
35,13 ( , , )x y t . 

Fig. 4.4-7. (a)-(c) The intensity patterns of 1,1,
35,13 ( , , )x y t  with 0  , 0.25 , and 

0.5 , respectively; (a’)-(c’) The OAM spectra of the coherent states shown 

in (a)-(c), respectively. 
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Fig. 4.4-8. (a)-(f)The vector plot of 1,1,0.6
35,13 ( , , )Jc x y t

 at 0.1t T , , , 

, , and , respectively. 

0.2T 0.3T

0.4T 0.7T 1.0T

Fig. 4.4-9. (a)-(f)The density plots of 1,1,0.6
35,13 ( , , )Lc x y t

 at 0.1t T , , , 

, , and , respectively. 

0.2T 0.3T

0.4T 0.7T 1.0T

Fig. 4.4-10. The OAM spectrum of . 1,1,0.6
35,13 ( , , )C x y t

Fig. 4.4-11. (a)-(f) The vector plot of ( , , )chaosj x y t


 at 0.1t T , , , 

, , and , respectively. 

0.2T 0.4T

0.55T 0.8T 1.55T

Fig. 4.4-12. (a) The vector plot of ( , ,0.1 )chaosj x y T


. (b)-(d) Zoom-in views of small 

regions marked by the hollow squares in (a). Backgrounds are the 

corresponding contour plots of phase functions. 

Fig. 4.4-13. (a) The vector plot of ( , ,0.2 )chaosj x y T


. (b)-(d) Zoom-in views of small 

regions marked by the hollow squares in (a). Backgrounds are the 

corresponding contour plots of phase functions. 

Fig. 4.4-14. (a) The vector plot of ( , ,0.4 )chaosj x y T


. (b)-(d) Zoom-in views of small 

regions marked by the hollow squares in (a). Backgrounds are the 

corresponding contour plots of phase functions. 

Fig. 4.4-15. (a)-(f) The density plot of ( , , )chaosl x y t


 at 0.1t T , , , 

, , and , respectively. 

0.2T 0.4T

0.55T 0.8T 1.55T

Fig. 4.4-16. The OAM spectrum of ( , , )chaos x y t . 
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Fig. 5.1-1. (a) Reference of the polarization angle (b) The threshold currents of the two 

polarizations.  Simultaneous lasings occur at temperatures around 

and . 

295K

255K

Fig. 5.1-2. (a)-(d) The lasing patterns in , , , and 0 45 90 45  and (e) The total 

intensity pattern observed at . 295K

Fig. 5.1-3. (a)-(d) The lasing patterns in , , , and 0 45 90 45  and (e) The total 
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intensity pattern observed at . 255K

Fig. 5.1-4. (a)-(d) The reconstructed patterns of Fig. 5.2-3(a)-(d), respectively. 

Fig. 5.1-5. (a) The contour plot of the angle function ( , )x y . (b) Zoom-in view of the 

small regions highlighted by the white square. (c) The vector plot of the 

polarization vector with vortices and saddles labeled by “＋” and “－” signs, 

respectively. 

Fig. 5.2-1. Experimental polarization-resolved near-field patterns observed at the 

operating temperature of T=265 K with polarization in (a) 0°(perpendicular) 

(b) 90° (horizontal) (c)45° (d)135°. 

Fig. 5.2-2. (a) and (b) Intensity plots of the positive wave functions |),(| jip yx  for 

experimental results shown in Figs. 5.2-1(a) and 5.2-1(b), respectively. 

Fig. 5.2-3. (a) and (b) Distribution of the coefficients  obtained by Eq. (3.4.6) 

for experimental results shown in Figs. 5.2-1(a) and (b), respectively. 

,| m nC |

Fig. 5.2-4. (a)-(d): Reconstructed patterns with the eigenfunction expansion method for 

experimental results shown in Fig. 5.2-1(a)-(d), respectively. 

Fig. 5.2-5. Amplitude distributions of the polarization-resolved wave functions (blue 

step lines) for experimental results shown in Fig. 5.2-1(a)-(d), respectively. 

Red lines: Gaussian distributions (Eq. (2.3.2)). 

Fig. 5.2-6. Intensity distributions of the polarization-resolved wave functions (blue step 

lines) for experimental results shown in Fig. 5.2-1(a)-(d), respectively. Red 

lines: Porter-Thomas distributions (Eq. (2.3.3)). 

Fig. 5.3-7. (a) The contour plot of the angle function ( , )C x y . (b)-(c) Zoom-in view 

of the two small regions with the hollow circles on the singularities. 

  

 

xiii 



Ch1 Introduction                                                         

Chapter 1  

Introduction 

 

1 



Ch1 Introduction                                                         

 

1.1 Quantum Billiards 

     

Billiards is known as a dynamical system in which a particle goes in straight line 

and elastically reflects from the hard-wall boundary, as illustrated in Fig. 1.1-1.  In 

general the region enclosed by the boundary of the billiards can be multi-dimensional 

and even in non-Euclidean space [KL91], but here subject is restricted to the billiards 

in two-dimensional (2D) plane.  Depending on the initial conditions, initial position 

and velocity, there are infinitely possible trajectories and they are all deterministic, i. e. 

they can be traced.  Besides, the Poincare map of the billiards can be easily obtained 

by calculating particle’s incident angle on the circumference.  As a result, billiards is 

often used as a paradigm in study chaos [Sina70, Buni79]. 

    Quantum billiards [Stöc99], a quantum analogue of classical dynamic billiards, is 

actually a 2D infinite potential well in arbitrary shape.  According to 

Bohr-Sommerfeld quantization rule, the eigenenergies of the quantum billiards can be 

calculated from the classical periodic orbits (POs).  In 1917 Einstein suggested that 

the close integral in Bohr-Sommerfeld quantization rule can be evaluated in phase 

space in which the energy surface of an integrable system forms a torus [Enge97, 

Ston05].  Meanwhile, Einstein raised a question: how to quantize a classically 

nonintegrable system, since there is no close loop in phase space.  The survey 

concerns the quantum manifestation of classical chaos was then termed quantum 

chaos [BÅ00, Stöc99] or quantum chaology [Berr87].   

Even though quantum mechanics has been well developed in 1920s, Einstein’s 

question was not answered until Gutzwiller used trace formula to connect the 

quantum mechanical energy density with classical POs of chaotic systems in 1970s 

[Gutz71, Gutz80, Gutz90].  The periodic-orbit theory has been experimentally tested 

by microwave billiards [SS90, Rich01].  Furthermore, the periodic-orbit theory was 

utilized to show that the statistics of nearest-neighbor energy spacing of chaotic 

system should obey Wigner distribution, in contrast to Poisson distribution of regular 
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system [Berr83].  This level statistics is often used as a signature of quantum chaos 

and has been intensively studied in quantum billiards [MK79,SS90] as well as in other 

various systems [DG86, Haak91, Wint87, WKL+89]. 

    On the other hand, the wave-function aspect, Berry used semiclassical approach 

to show that the autocorrelation function of chaotic wave function is Bessel-type and 

suggested that chaotic wave function should be Gaussian random waves [Berr77].  

With the numerical computation, this conjecture was validated by McDonald and 

Kaufman who showed that the eigenfuntion of stadium billiard indeed exhibits 

random pattern [MK79, MK88].  Although the chaotic eigenfunctions were shown to 

be generally ergodic, Heller showed that high-order eigenfunctions of stadium billiard 

would concentrate on the classical unstable periodic orbits [Hell84].  Such a 

localized wave function has been called the “scar [Hell84].”   

The scar has been shown to play a vital role in a wide variety of physical systems.  

For examples, the lasing mechanism of high-power directional emission in deformed 

microdisk lasers has been analogously interpreted with the scar effect in chaotic 

billiards [GCN+98, LLHZ06, LLZ+07, NS97, NSC94, RTS+]; the conductance 

fluctuations of quantum dots, in which electronic motion is predominately ballistic in 

nature, have also been shown to be closely related the scarred wave functions 

[BAF+99]; the efficiency of fiber laser can be enhanced by selectively amplification 

of scarred optical wave [MDLM07].   

Even if the scar has been shown to be very important, direct experimental 

observation of scarred matter wave is very few [CSG+03] since the wave function of 

2D system is very difficult to measure.  The observations of the scar were mostly 

performed in analogous experiments.  Due to the analogy between 2D Helmholtz 

equation and 2D time-independent Schrödinger equation, the first experimental 

visualization of scars was realized in the microwave cavity [KKS95, Srid91, SS92].  

As well as microwave cavity, scar modes were also manifested in acoustic wave 

cavity [CH96, KAG01,].  Besides, the scarred optical patterns were also shown to 

appear in the transverse mode of optical fiber [DLM01]. 

    In addition to scars, the other significant high-order states are the so-called 

3 



Ch1 Introduction                                                         

superscars [BS04, BDF+06].  The terminology “superscar” was originally used by 

Heller [Hell84] to refer the wave functions localized on stable periodic orbits in 

stadium billiard and to make a difference with scar.  Recently its meaning was 

extended to wave function localized on stable periodic orbits in pseudointegrable 

billiard [BS04, BDF+06].  Superscar has also been shown to closely relate to the 

conductance fluctuation of quantum dots [AF99, CLO+97, LMH+06] and the mode 

characteristics of microdisk lasers with regular shapes [AYL+06, CKH+00, HGW00, 

HGYL01, LCG+04, PCC01, YAK+07].  However the analogous observations of the 

superscars are much fewer than that of scars [BDF+06, HCLL02].  The main aim of 

this thesis is to analogously observe the superscar mode by broad-area vertical-cavity 

surface emitting lasers (VCSELs) [HCLL02, CHLL03a, CLS+07, CSCH08].  

Besides, the coherent states to describe the superscars in square and 

equilateral-triangular billiards will be developed [CH03, CHL02]. 
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Fig. 1.1-1. Schematic diagram for a 2D flat billiard. The particle in the billiard 

goes in straight lines. The incidence angle on the wall equals the reflection 

angle. The energy of the particle is constant. 
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1.2 Diffraction in Time 

 

Diffraction is a particular behavior of waves, which occurs when propagating 

waves encounter obstructions.  It may results in a digression from the geometrical 

path including deflection into geometrically forbidden regimes.  As well as classical 

waves (such as light, sound, or water waves), matters (such as electron, neutron, or 

proton) can also be diffracted due to wave-particle duality [DG27, SWMD48, WS48].  

The diffraction mentioned above are spatial, while Moshinsky showed that matter 

wave can be also diffracted in time [Mosh52], i. e. waves can be deflected into a time 

zone which is classically prohibited.  Consider the following shutter problem 

proposed by Moshinsky: A monochromatic non-relativistic particle beam, moving 

parallel to the x -axis, incidents on a completely absorbing shutter placed at , 

as illustrated in Fig. 1.2-1 (a).  If the shutter is suddenly opened, what will be the 

transient particle current observed at a distance behind the shutter?  By the analogy 

between paraxial optics and non-relativistic quantum mechanics [DD04], it was 

showed that the transient wave function has remarkable temporary interference 

pattern (as shown in Fig. 1.2-1 (b)) analogous to the spatial interference pattern of 

light diffracted by a sharp edge [Mosh52] (See Appendix A for a more detailed 

discussion).  Since Moshinsky first put forward this idea, diffraction in time has 

received considerable attentions.  The time evolution of various bound states 

[Godo02, Godo03] and even arbitrary initial conditions [GM05] have been 

investigated for an abrupt potential change.  Besides, the transient dynamics has also 

been studied for potentials with different time modulations [dCMM07].  Moreover, 

the case of matter wave diffraction simultaneously in space and time has also been 

considered [BZ97].  The experimental test for this diffraction-in-time effect was 

indeed hard to reach at the time of the first introduction.  However, due to the 

development in ultrafast laser [PLW+03], atom cooling, and optical trapping 

[WPW99], the transient dynamics has been recently observed in wide variety of 

0x 
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systems including neutrons [HFG+98], ultracold atoms [SSDD95], electrons 

[LSW+05], and Bose-Einstein condensates [CMPL05]. 

    The explorations of diffraction in time are not only for scientific interests but 

also have some potential applications, as the transient response to abrupt changes of 

the confined potential in semiconductor structures and quantum dots would exhibit 

diffraction-in-time effect [DCM02, DMA+05].  As indicated in previous section, 

semiconductor quantum dots have been widely used as 2-D quantum billiards to 

explore the properties of quantum chaos [NH04].  Understanding the time evolution 

of suddenly released quantum-billiard waves can provide the nanostructure transport 

properties for developing novel ultrahigh-speed semiconductor devices [DCM02, 

DMA+05].  Moreover, it is closely related to atom laser dynamics from a tight wave 

guide whose boundary shape can be modified with the laser-trapping beam [dCL+08].  

However the presented theoretical analysis only focuses on 1D potential barrier, the 

diffraction in time of 2D quantum-billiard wave functions has never been explored.  

In 1-D systems the current flow is monotonous since it is linear and can only flow to 

two direction, x  or x  axes.  However, the 2-D probability current density 

becomes much complicated because its multi directionalities.  Moreover, orbital 

angular momentum (OAM), which is an important physical quantity both in classical- 

[GPS02] and quantum-mechanical [BVD65] systems, will naturally arise due to the 

2D current flow.   

In this dissertation, the time evolutions, probability currents, and OAM densities 

of eigenstate, coherent state, and chaotic state released from 2D square billiard are 

theoretically investigated.  Besides, the evolution of the time-diffracted wave 

functions are analogously observed by the free space propagation of lasing modes of 

VCSEL based on the similarities between paraxial optics and non-relativistic quantum 

mechanics.  However, the analogies between paraxial optics and 2-D quantum 

system are not only restricted to the correspondence between amplitude distribution 

and wave function but also consist in the similarity between optical and quantum 

OAM densities [ZB06, ZB07].  Recent years have been increased attention being 

given to optical OAM [ABSW92, FAAP08] for its wide applications in atom trapping 
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[KTS+97], optical tweezers [MRS+99], and optical spanner [SADP97].  

Furthermore, OAM of light beam can be encoded as qudit and has great potential 

applications in quantum information [MVWZ01].  Therefore, the analysis on 

quantum OAM of wave functions released from 2D billiard can be served as an 

analogous investigation on optical OAM of lasing modes emitted from VCSEL. 
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Fig. 1.2-1. (a) Demonstration of the shutter problem. (b) Red curve displays 

the temporary interference pattern and blue dash line indicates a classical 

result. (See Appendix A for a more detailed discussion.) 
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1.3 Singularities in Optical Waves 

 

Singularities are places at which some quantities become undefined.  For 

example, as shown in Fig. 1.3-1, the center of a color wheel is a color singularity at 

which the color becomes undefined.  The basic reasons study singularities is because 

of their ubiquity and structural stability [Berr80].  For optical waves, there are 

mainly two kinds of singularities being concerned: phase singularities and 

polarization singularities [Nye99].  The survey of these singularities has becomes a 

very modern area of interest in contemporary physics and is named singular optics 

[SV01]. 

Generally, phase singularities [Berr98] are points in plane and lines in space at 

which intensity vanishes and the phase of complex scalar wave field become 

undefined.  In this work only 2D complex scalar field is concerned, which stand 

either for 2-D quantum wave function or for transverse modulus of light beam.  It is 

convenient to introduce the mathematical form 

( , ) ( , )  ( , )x y R x y i I x y   .                                     (1.3.1) 

with ( , )R x y  and ( , )I x y  to be real.  By defining 2 2( , ) ( , ) ( , )x y R x y I x y    

and ( , ) arg[ ( , )]x y x y  , the scalar field can rewrite as 

    ( , ) ( , ) exp[ ( , )]x y x y i x y   .                                 (1.3.2) 

The positions at which ( , )R x y  and ( , )I x y  simultaneously equal to zero such that 

the amplitude ( , )x y  vanishes and the phase ( , )x y  becomes undefined are the 

phase singularities.  These nodal points in 2D plane are analogous to crystal 

dislocation and are also referred as phase dislocation [NB74]. 

Another important quantity related to the phase is the probability current density 
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which is generally given by  

*( , ) Im[ ( , ) ( , )]j x y x y x y
m

  
 

.                               (1.3.3) 

Substituting Eq. (1.3.2) in to Eq. (1.3.3), the probability current density can be 

alternatively expressed as the gradient of the phase ( , )x y  

( , ) ( , ) ( , )j x y x y x y
m
  

 
.                                   (1.3.4) 

According to fundamental calculus, the curl of j


 will be zero at all positions except 

for the phase singularities.  Hence, phase singularity is also termed as vortex for the 

circulating current density around it.  The vortices have been involved in a wide 

variety of coherent phenomena such as superconducting films [MFDM03], superfluid 

[MFDM03], Bose-Einstein condensate [MAH+99], microwave billiards [ŠHK+97], 

quantum ballistic transport [BSS02], and liquid crystal films [dGP93]. 

One important characteristic of a phase singularity is its topology charge (also 

named as winding number or dislocation strength) defined by  

1 1
ˆ( , ) (   )

2 2
ˆx y

C C

s d x y dx a dy 
 

       a                        (1.3.5) 

, where C  is arbitrary closed loop containing only one singularity inside.  The 

charge is positive (negative) if the phase circulates counterclockwise (clockwise).  A 

crucial topological property of singularities is the sign rule which indicates that the 

charge of the neighboring singularities on a constant phase contour must have 

opposite signs [Freu95]. 

Due to the underlying analogy between optical momentum density and the 

probability current density (See Appendix B for a more detailed discussion), the phase 

singularity of the amplitude distribution of light beam manifest itself as optical vortex 
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[VS99].  Consequently, optical vortices is intimately related to optical OAM 

[SGV+97].  As revealed in last section, optical OAM has attracted much interest 

because of the wide applications, such as atom trapping [KTS+97], optical tweezers 

[MRS+99], optical spanner [SADP97], and quantum information [MVWZ01].   

In singular optics to generate optical vortex is one of the predominant topics.  

Typically, optical vortices can be generated by passing a fundamental-mode Gaussian 

beam through such as cylindrical-lens mode converters [BAv+93], holograms 

[HMS+92], spiral phase plates [BCKW94], axicons [KKS+07], uniaxial crystals 

[VSF+06], and glass wedges [YAC+07].  Besides, spontaneous formations of optical 

vortices in laser system have also been reported in solid-state lasers [CL01, OC09], 

Na2 laser [BBL+91] and proton-implanted vertical-cavity surface-emitting laser 

(VCSEL) [SO99].  The mechanism of the vortex formation in proton-implanted 

VCSEL is due to transverse mode locking, assisted by the laser nonlinearity, of nearly 

degenerate Lagurre-Gaussian modes [SO99].  Different from proton-implanted 

VCSEL, the near-field transverse modes of oxide-confined VCSELs were shown to be 

analogous to closed-quantum-billiard wave functions [HCLL02, CHLL03a, CLS+07, 

CSCH08], which are purely real and contain only zero phases.  However, transverse 

field becomes complex as soon as it propagates out of the VCSEL cavity [CYC+09] 

and contains intricate vortex structure, as will be shown in chapter4. 

    In addition to phase singularity of complex scalar waves, the singularities at 

which the orientations of a real vector field become undefined are the so-called vector 

field singularities [Denn01], or vector singularities [Freu01] in brief.  In terms of 

mathematical expression, a 2-D real vector field can be written as 

ˆ( , ) ( , ) ( , ) ˆx x yV x y V x y a V x y a 


y .                                (1.3.6) 

The vector singularities are the positions at which  and  equal to 

zero simultaneously such that the orientation angle determined by the angle function  

( , )xV x y ( , )yV x y
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( , ) [ ( , ), ( , )]x yx y angle V x y V x y                                  (1.3.7) 

becomes undefined.  The topological charge of a vector singularity given by  

1 1
ˆ ˆ( , ) (   )

2 2P x

C C

yI d x y dx a
 

        dy a                      (1.3.8) 

is called Poincaré index of zero [Denn01], where the contour C should be a very small 

path around the singularity.  The vector singularities with Poincaré index to be 1  

can be categorized into vortices, sources and sinks, and saddles.  Fig. 1.3-2 (a)-(c) 

show the distributions of the real vector field around a vortex, saddle, and source, 

respectively.  The contour plots of orientation angles functions of the vector fields 

shown in Fig. 1.3-2 (a)-(c) are depicted in Fig. 1.3-2 (a’)-(c’).  It can be seen that 

both vortex and source have their Poincaré indices to be 1 and the Poincaré index of a 

saddle is .  In fact the probability current density is one kind of the most familiar 

vector fields.  The locations in phase function 

1

( , )x y  correspond to the vector 

singularities of current density ( , )j x y


 are called critical points.  The critical points 

of phase giving rise to vortices, sources and sinks, and saddles in current density are 

singularities, extrema, and saddle.  Assume the vector fields shown in Fig. 1.3-2 

(a)-(c) are probability current densities of some wave functions.  We depict the 

corresponding phase structures of the wave functions, which containing phase 

singularity, maximum, and saddle, in Fig. 1.3-3 (a)-(c), respectively.  In conclusion, 

these critical points of scalar function become crucial as some vector field is 

expressed as the gradient of the scalar function. 

    Vector singularities have also been involved in a wide variety of physics.  For 

optical waves, vector singularities are isolated, stationary points in a plane at which 

the orientation of the electric vector of a linearly polarized real vector field becomes 

undefined [Freu01].  The features of the vector singularities have been 

experimentally observed in laser modes with the interrelated behavior of spatial 
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structures and polarization states [Gil93, VKMR01, LCH07, Erdo92, PTMA97].  In 

this work, the vector singularities embedded in the near filed patterns of VCSELs will 

be analyzed in an unambiguous way [CHLL03b, CSL+07]. 
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Fig. 1.3-1. A color wheel. At the center the color becomes undefined. 
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Fig. 1.3-2. (a)-(b) Vector fields with vortex, saddle, and source, respectively; 

(a’)-(b’) The corresponding orientation angle function of vector fields shown 

in (a)-(b). 
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Fig. 1.3-3. (a)-(c) The phase structures of singularities, saddle, and extremum.  

The gradient of these phases will result in the vector fields shown in Fig. 1.3-2 

(a)-(c), respectively. 
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1.4 Vertical-Cavity Surface-Emitting Lasers 

 

Stimulated emission is one of basic interactions between light and matter.  

During this process an excited electron is perturbed by an incident photon with 

specifying energy and then jumps to a lower energy level accompanied with emission 

of another photon with the same energy, polarization, phase, and direction as the 

incident photon.  Coherent amplification of radiation by stimulated emission was 

first realized with microwave by Townes et al in 1954 [GZT54].  Four years later 

Schawllow and Townes proposed that coherent amplification can be applied to 

infrared and optical wave [ST58].  In 1960 Maiman first demonstrated laser, light 

amplification by stimulated emission of radiation, operation with a ruby crystal 

[Maim60].  The superiors of laser over other light source, such as light bulbs and 

neon tubes, consist in the high directionality and intensity, coherence, and 

monochromatism of the output light.  Based on these advantages, laser has had great 

applications in many fields of science and influenced people’s life in various aspects. 

    Laser is mainly composed by gain medium, optical cavity, and pumping source 

[Sieg86].  One way to catalog lasers is in accordance with the types of the gain 

medium: For example, solid-state and gas lasers have solid crystal and gas as their 

gain medium, respectively.  Among all types of lasers, semiconductor lasers have the 

greatest impact on human’s everyday life: they are applied to the CD-ROM, 

DVD-player, laser printer, etc.   

The first semiconductor laser was demonstrated with a p-n junction by Nathan et 

al at IBM in 1962 [NDB+62].  However, a simple p-n junction laser is not efficient 

and a great improvement by using heterostructure was proposed by Kroemer [Kroe63].  

The device structure of a typical hetero-structure laser diode is depicted in Fig. 1.4-1.  

The electrons in the valence band of active medium are electrically pumped to 

conduction band to achieve population inversion.  The resonator cavity is formed by 

the cleaved facets which have a reflectivity of about 30% due to the large 
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discontinuity of refraction indices between semiconductor and air.  The laser output 

is parallel to the epitaxial layers and emitting from the edge of the device.  As a 

result such laser diodes are commonly referred as edge-emitting lasers (EELs).   

There are many advantages of semiconductor laser over other types of lasers: 

They are compatible with modern electronics and are easy to use; the whole device is 

manufactured by traditional semiconductor process such that they are compact and 

low-cost; their lasing wave length can be engineered for special purposes.  However, 

due to the extremely narrow emitting region, the beam profile of an EEL is elliptical 

with high divergence in one direction and is detrimental for coupling into optical fiber.  

Besides, EEL is typically under multi-mode operation because of the long cavity 

length and this would induce longitudinal mode hopping that is undesirable for 

application.  These critical drawbacks motivated the invention of VCSEL.  

    The device structure of a modern VCSEL structure is schematically shown in Fig. 

1.4-2 to make a comparison with an EEL.  As indicated by its name, the directions of 

laser oscillation and output are perpendicular to the semiconductor wafer.  The first 

VCSEL is invented by Iga and co-workers in 1979 [SIKS79], while only pulsed 

operation is permitted at cryogenic temperature.  With usage of distributed Bragg 

reflector (DBR) as cavity mirror [OHKY83], room-temperature continuous wave 

(CW) lasing of VCSEL was achieved by the inventors in 1989 [KKI89].  On the 

other hand, the efficiency of VCSEL has a big breakthrough with the introduction of 

quantum wells as active medium [JHT+89].  The efficiency is also closely related to 

the lateral electric current confinement, which also guides the optical field.  There 

are four types of electrical and optical confinement, air-post, ion-implanted, regrown, 

and oxide-confined structures, for the modern VCSEL devices [CC+97].  Among 

these, oxide-confined VCSEL has the highest efficiency and lowest threshold and the 

devices used in this work are of this type. 

    Resulted from the symmetric transverse optical confinement, VCSEL has good 

beam quality as was expected.  The cavity length of VCSEL is consequently 

designed to be about one wavelength and permits single longitudinal mode lasing.  

Due to the thin active layer, VCSEL can be modulated with an ultra-high speed 
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[STB+93].  Since the reflected mirrors of VCSELs are fabricated during epitaxial 

growth, batch processing and on-wafer testing make VCSEL more cost-efficient.  

Meanwhile, VCSELs can be arranged to high-fill-factor 2D laser arrays [GMJ+99] 

and can be monolithically integrated with photodetector [HTW+91], waveguide 

[LLP+05], modulator [GGK+96], and mirror [KDR+08], etc.  Owing to these 

advantages, VCSEL has been widely used in optical communication [EFM+96, 

GAL98]. 

    Despite that VCSEL is superior to EEL in many aspects VCSEL still has two 

shortcomings that do not exist in EEL.  First, the output power of VCSEL is limited 

by the thin active medium.  In contrast, high output power can be achieved by 

enhancing the length of the laser diode.  Though high output power of VCSEL can 

be realized by enlarging the aperture, this will simultaneously result in high 

divergence angle since the Fresnel number of a cavity is proportional to the transverse 

area.  Second, the polarization of EEL is fixed due to the extremely asymmetric 

emission region; while the polarization of VCSEL is unstable because its transverse 

aperture is isotropic.  There is much effort to deal with these two problems: 

High-power fundamental-mode operation of broad-area VCSEL can be attained by 

manufacturing a photonic crystal on the surface [KSL+08] and integrating with 

monolithic micromirror [KDR+08]; the polarization of VCSEL can be controlled by 

several way [BCSR99, VdS+06].  However, our goal here is not to overcome the two 

problems but base on the two characteristics to explore interesting pattern formations 

in VCSELs. 

    Pattern formation [Lam98, CH99] is the spontaneous development of spatial 

(-temporal) nonuniformities of non-equilibrium systems under homogeneous external 

condition and has attracted much interest in chemistry [POS97], biology [LLM06], 

and physics [GL99].  Recently, Hegarty et al. have reported interesting pattern 

formations in the transverse mode of large-aperture oxide-confined VCSELs 

[HHMC99, HHP+99].  Besides, optical vortices have also been shown to 

spontaneously form in implanted VCSEL [SO99].  More recently, broad-area 

VCSELs have been shown to maintain cavity solitons [BTB+02, TAFJ08].  Most 

20 



Ch1 Introduction                                                         

importantly, it has also shown that the near-field transverse patterns of broad-area 

oxide-confined VCSEL are analogous to the mesoscopic wave functions of quantum 

billiards [HCLL02, CHLL03a, CLS+07, CSCH08].  The main idea of this 

dissertation is based on this interesting analogy. 

    As mentioned above, the polarization of VCSEL is unstable due to the isotropic 

gain region and birefringence.  Generally, VCSEL emits linearly polarized light field 

in one direction at near-threshold current.  As the injection current increases, the 

polarization behaviors of VCSEL becomes more complicated.  One general 

condition is that two orthogonal linear polarization states independently coexist.  

Another interesting phenomenon is the polarization switching, in the process the 

lasing polarization state switches to the perpendicular one [AS01, MFM95, 

vEWW98].  Here a third case in which the transverse pattern has different 

morphology at different polarization angles is concerned [Erdo92, PTMA97].  In fact, 

this condition corresponds to the formation of vector field [CHLL03b], which also has 

been studied in various laser systems [Gil93, VKMR01, CLH06, LCH07].  Final part 

of this dissertation is to analyze the vector singularities embedded in the vector field 

emitted from VCSEL.   
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Top Contact 

p-Layer  

Oxide 

Active Layer 

n-Layer  

Bottom Contact 

Fig. 1.4-1. Schematic diagram of an edge-emitting laser.  The laser output is 

parallel to the semiconductor layers.  The out put beam is highly diverged due 

to the thin emission region. 
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Microsoft Office PowerPoint 2003.lnk  

Fig. 1.4-2. Schematic diagram of a VCSEL. The laser output is perpendicular 

to the wafer. The isotropic aperture results in a good beam quality. 
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1.5 Overview of Thesis  

 

The main text of this dissertation is structured as follow: 

In chapter2 quantum billiards is employed to explore the classical-quantum 

correspondence of regular and chaotic systems.  In Sec. 2.1 the classical POs and 

quantum eigenstates of square are reviewed and then the coherent states with wave 

functions localized on classical POs will be introduced.  Similar process is done for 

an equilateral-triangular billiard in Sec. 2.2.  In the final section of chapter2, the 

stadium billiard is used to demonstrate the quantum properties of chaotic systems. 

    In chapter3 the analogous observations on various quantum-billiard wave 

functions from transverse modes VCSELs are presented.  The first section of this 

chapter justifies the analogy between the transverse mode of VCSELs and the wave 

functions of quantum billiards.  After which the experimental setup will be shown.  

The typical lasing modes of the square billiard are presented in Sec. 3.3.  What 

follows is the chaotic modes generated by a rippled-square VCSEL.  Finally, 

equilateral-triangular shaped VCSEL are shown to exhibit mixed properties of regular 

and chaotic system. 

    In chapter4, we investigate the time evolutions, probability currents, and OAM 

densities of eigenstate, coherent state, and chaotic state released of 2D square billiard. 

The time evolution of a stationary wave function abruptly released from 1-D infinite 

potential is first reviewed in the opening section.  In Sec. 4.2, we extend to study the 

transient dynamics of various wave functions with a suddenly removal of 2-D square 

billiards.  In third section of chapter4, we utilize the similarity between paraxial 

optics and 2-D non-relativistic quantum mechanics to analogously observe the time 

evolutions of coherent waves released from quantum billiards by free-space 

propagation of transverse modes of VCSELs.  In final part of chapter4 we are to 

analyze the linear and angular momentum densities of the light beam emitted from 

VCSELs by analogously calculating the probability current and angular momentum 

24 



Ch1 Introduction                                                         

25 

densities of coherent waves released from quantum billiard. 

     From chapter1 to chapter4, the observed patterns are all lasing in 

unipolarization and have their phasor amplitudes to be scalar field.  In chapter5, we 

will consider the vector field formation in the transverse modes of VCSELs.  In first 

section of chapter5 we present a polarization-entangled pattern associated with two 

superscars modes in a square shaped VCSEL.  We reconstruct the patterns in two 

orthogonal polarization states by SU(2) coherent states to manifest the vector field 

and vector singularities.  Similar experimental method as that in Sec. 5.1 is applied 

to originally generate a chaotic vector in Sec. 5.2.  By using the eigenfunction 

expansion technique, the vector field is reconstructed to unambiguously analyze the 

vector singularities embedded in a chaotic vector field. 
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Chapter 2 

Wave Functions of  

Quantum Billiards 
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    As revealed in Sec. 1.1, the eigenenergy of a regular quantum system can be 

determined by the old quantum theory with the help of the classical POs.  On the 

other hand, the behavior of the quantum particle was not understood until Schrodinger 

particle was not understood until Schrodinger put developed the wave mechanics and 

Born interpreted the wave function by probability density.  With Schrodinger 

equation, the wave function of integrable system can be analytically solved.  In 

contrary, the wave function of chaotic system is still mysterious until Berry 

conjectured that chaotic wave function should be Gaussian random wave [Berr77].  

With numerical calculation, the morphology of chaotic wave function was visualized 

[MK79, MK88].  More importantly, Heller showed that in addition to random phase 

filed some eigenstates of chaotic system will localize on the unstable PO [Hell84]s.  

Such kind of wave functions were called scar [Hell84].  For a chaotic system, both 

types of high-order wave functions, random wave or scar exhibit classical behaviors, 

as indicated by Bohr’s correspondence principle.  Nevertheless, the highly-excited 

eigenstate of regular system do not reveal classical properties even with quantum 

number approaching to infinity.   

    In this chapter quantum billiards, which is one of the standard models (the other 

two are harmonic oscillator and Hydrogen atom) for studying quantum physics, is 

employed to explore the classical-quantum correspondence of regular and chaotic 

systems.  In first section the classical POs and quantum eigenstates of square are 

reviewed and then the wave functions of superscar will be introduced.  In Sec. 2.2 

similar process is done for an equilateral-triangular billiard.  Finally, the stadium 

billiard is used to demonstrate the quantum properties of chaotic systems.   

 

 

2.1 The Square Billiard 
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The square billiard is one of the simplest billiards that is completely integrable in 

classical mechanics [Wier01, dSF01].  In a square billiard each family of periodic 

orbits can be denoted by three parameters ( , , )p q  , where p and q are two positive 

integers describing the number of collisions with horizontal and vertical walls, and the 

parameter   (     

/ )

) that is related to the wall positions of specular reflection 

points [BB97, vonO94, Robi97].  Some examples of orbit families are shown in Fig. 

2.1-1.  It can be seen that the trajectory constitute a single, nonrepeated orbit 

provided that p and q are relatively prime.  On the other hand, if p and q have a 

common factor f, the orbit family can be recast as the primitive periodic orbit 

( / , / ,p f q f f  and f is the number of repetitions of the primitive periodic orbit. 

Since the square billiard is separable, the quantum eigenstates of square billiard 

are just the multiplication of the eigenstates of 1-D infinite potential well with 

variables in x and y                                

1 2

1 2
,

2
( , ) sin( )sin( )n n

n x n y
x y

a a a

                                  (2.1.1) 

Fig. 2.1-2 displays some of the eigenstates with their quantum numbers labeled below 

the figures.  We can see that conventional eigenstates of a square billiard do not 

manifest the properties of classical periodic orbits even in the correspondence limit of 

large quantum numbers. 

To construct the wave functions associated with periodic orbits, the SU(2) 

coherent state are extended to the square billiard [CHL02, CHLL03a]  
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(2.1.2) 

In order to understand the properties of the stationary coherent, we rewrite it as  
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, where 

1 [ ( )]

0

( , ; )
p qM iK x y
a a

K

F x y e
  


   




  ,  

1 [ ( )]

0

( , ; )
p qM iK x y
a a

K

G x y e
  


   




  , 

and ( , ) [ ] ( 1)x y qN x pN y q M
a a

y
a

  
     .  Since the property of the 

functions ( , ; )F x y   and ( , ; )G x y   is similar to the Dirichelet kernel, the 

stationary coherent state has maximum value whenever  

2
p q

x y
a a

 
n                                             (2.1.4) 

, which coincide with the classical trajectories of periodic orbits labeled as ( , , )p q  .   

Fig. 2.1-3 displays the stationary coherent states , ,
50,20 ( , )p q x y  associated with the 

periodic orbits shown in Fig. 2.1-1.  It can be seen that the wave functions of 

, ,
, ( , )p q

N M x y  well localize on the periodic orbits ( , , )p q  .  Furthermore, the 

distribution of , , 2
,| ( ,p q

N M ) |x y  illustrates Bohr’s correspondence principle: the 
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velocity of classical particle is at minimum at the specular reflection points and 

therefore , , 2
,| ( ,p q

N M ) |x y  becomes extremely large at these points.   

The wave given in (2.1.2) represents a traveling-wave property.  The 

standing-wave representation can be obtained by using , , * , ,
, ,( , ) ( , )p q p q

N M N Mx y x   y .  

Including the normalization constant, the standing-wave forms can be expressed as  
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and  
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  (2.1.6). 

Here we only show the wave pattern  because the wave pattern 

 generally has the same properties.  The N dependence of the wave 

pattern  is presented in Fig. 2.1-4.  We can see that large value of N 

naturally results in high mode order, since  stands for the central quantum 

number in the expansion.  The M dependence of the wave pattern  is 

presented in Fig. 2.1-5.  It can be seen that the larger the value of M is, the more 

strongly the wave pattern localize.  This fact can be understood from the expressions 

of 

, , 2
,| ( , )p q

N MC x y

( , )qN pN

|

|

, ,
,| (p q

N MS x
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; )y
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(G x, ; )y   and  , which are similar to Dirichlet kernel having narrower 

width for larger M. 
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Fig.2.1-1. Some classical periodic orbits denoted by ( , , )p q  , where p and q are 

two positive integers describing the number of collisions with horizontal and 

vertical walls, and the parameter   (      ) that is related to the wall 

positions of specular reflection points. 
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Fig.2.1-2. First some eigenstates and the one of 1 2( , ) (30,30)n n  . We can 

expect that conventional eigenstates do not manifest the properties of classical 

periodic orbits even in the correspondence limit of large quantum numbers. 
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Fig.2.1-3. Stationary coherent states , ,
50,20 ( , )p q x y  associated with classical 

periodic orbits ( , , )p q  . 
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Fig.2.1-4. The N dependence of the wave pattern 1,1,0.6 2
,5| ( , ) |NC x y .  It can be 

seen that N is related to the mode order. 
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Fig.2.1-5. The M dependence of the wave patterns 1,1,0.6 2
30,| ( , ) |MC x y .  It can be 

seen that M is related to the localization of the patterns.  
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2.2 The Equilateral-Triangular Billiard 

 

The equilateral-triangular billiard is a classically integrable but non-separable 

system.  Let three vertices of an equilateral-triangular billiard to be set at , (0,0)

( / 2, 3 / 2)a a , and ( / 2, 3 / 2a a ) .  The formation of classical periodic orbits can 

be also denoted by three parameter ( , , )p q  , where the parameter p and q are 

nonnegative integers with the restriction that p q ; the parameter   is in the range 

of  0 to  .   The sign of   and the parameter p and q correspond to the initial 

angle of the billiard ball by [DB02, CH03] 

1
tan( ) sgn( )

3

p q

p q
  




                                        (2.2,1) 

, where the initial angle   is with respect to horizontal.  Assuming the initial 

position to be on y axis, the parameter   can be related to the initial position by  

0

1 3 |

2

a
y

p q

|





.                                            (2.2.2) 

Some sample orbit families are given in Fig. 2.2-1.  In terms of p and q, the path 

length can be written as  

2 2
, 3p qL a p q   pq ,                                       (2.2.3) 

except for the isolated orbits such as (1,1, )  [DB02]. 

The eigenstates in an equilateral triangular quantum billiard have been derived 

by several groups [Shaw74, RB81, LB85].  The wave function for the two 

degenerate stationary states can be expressed as 
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( )
, ( , )C

m n x y  and ( )
, ( , )S

m n x y  have the following characteristics:  

( )
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, ,( , ) ( , )C C
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m nx y  x y , and ( ) ( )

, ,( , ) ( , )S S
m m n m nx y x   y .                 (2.2.6) 

Hence, the condition of  is required to keep all eigenstates to be linearly 

independent to each other.  Figures 2.2-2 and 2.2-3 show some of the 

2m  n

( )
, ( , )C

m n x y  

and ( )
, ( , )S

m n x y  with their quantum number labeled below the pictures.  Notice that 

the conventional eigenstates do not manifest the properties of classical periodic orbits 

even in the limit of large quantum number. 

For the construction of the coherent states associated with the periodic, it is 

mandatory to use the traveling wave states from linear combination of eigenstates in 

Eq. (2.2.4) and (2.2.5): 
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        (2.2.7) 

Similar to stationary coherent state in square billiard, the stationary coherent state 

associated with periodic orbit denoted by ( , , )p q   in equilateral-triangular billiard 

can be expressed as [CH03]  

0 0

1

, ,
0

1
( , ; , , ) ( , )

2

M
Tri M iK
N M K m pK n q M KM

K
( 1 )x y p q C e x y




   


   ,          (2.2.8) 

with  and , where M stands for the number of 

eigenstates that are involved in the superposition and N is related to the mode order.  

To show the stationary coherent state will indeed localize on the classical periodic 

orbits, we rewrite (2.2.8) as 

0 (2 )m q p  N N0 (2 )n p q 
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Similar to (2.1.3), the stationary coherent state , ( , ; , , )Tri
N M x y p q   will localize on 

the six families of lines, 
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                         (2.2.10) 

, which make up the classical periodic orbits that have been presented in Fig.2.2-1.  

Fig. 2.2-4 display the stationary coherent states 2
50,15| ( , ; , , )Tri x y p q |  associated with 
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the periodic orbits shown in Fig. 2.2-1.  It can be seen that the wave functions of 

2
50,15| ( , ; , , )Tri x y p q |  indeed localize on the periodic orbits ( , , )p q  .  Similar to the 

stationary coherent state in square billiard, the distribution of 2
15| ( , ; , , )x y p q50,

Tri |  

has a peak at specular reflection points. 

As we can see, , ( , ; , , )Tri
N M x y p q   represents the traveling wave and the 

expression for the standing wave can be given by 

*
, , ,) ( , , , , ) ( , , ,Tri Tri

N M N Mx y p q x y p( , , , ,Tri
N MC x y p q , )q                (2.2.11) 

and  

*
, , ,) ( , , , , ) ( , , ,Tri Tri

N M N Mx y p q x y p( , , , ,Tri
N MS x y p q , )q                (2.2.12) 

Here we only show the wave pattern 2
,| ( , ; , , )Tri

N MC x y p q | , because the wave pattern 

2
,| ( , ; , , ) |Tri

N MS x y p q   have similar characteristics.  Figs. 2.2-5 and 2.2-6 demonstrate 

the N and M dependences of the wave pattern ,| (Tri
N MC x 2) |, ; , ,y p q  , respectively.  

The results are the same as that of square billiard. 
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Fig.2.2-1. Some classical periodic orbits ( , , )p q  , where p and q are two 

positive integers with restriction p q , and the parameter   (      ) is 

related to the initial point of the billiard ball. 
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Fig.2.2-2. Some eigenstate of equilateral-triangular billiard ( )
, ( , )C

m n x y . 
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Fig.2.2-3. Some eigenstate of equilateral-triangular billiard ( )
, ( , )S

m n x y . Notice 

that ( )
2 , ( , ) 0S

n n x y  . 

(7,3)

(3,1) (4,1)

(5,1) (6,1) (6,2)

(7,1) (7,2)

(5,2)

(7,3)

43 



Ch2 Wave Functions of Quantum Billiards                                    

 



Fig.2.2-4. Stationary coherent states 2
50,15| ( , ; , , ) |Tri x y p q   associated with 

classical periodic orbits ( , , )p q  . 

(p,q)
ψ

(1,0)

(1,1)

(2,1)

3
 2

3


0 
2

Line



(p,q)
ψ

(1,0)

(1,1)

(2,1)

3
 2

3


0 
2

Line



(p,q)
ψ

(1,0)

(1,1)

(2,1)

3
 2

3


0 2

Line

44 



Ch2 Wave Functions of Quantum Billiards                                    

 

Fig.2.2-5. The N dependence of the wave pattern 2
,10| ( , ;1,0, / 3) |Tri

NC x y  .  It 

can be seen that N is related to the mode order. 

2
20,10| ( , ;1,0, / 3) |TriC x y 

2
30,10| ( , ;1,0, / 3) |TriC x y 

2
40,10| ( , ;1,0, / 3) |TriC x y 
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2
40,5| ( , ;1,0, / 3) |TriC x y 

2
40,10| ( , ;1,0, / 3) |TriC x y 

2
40,15| ( , ;1,0, / 3) |TriC x y 

Fig.2.2-6. The M dependence of the wave patterns 2
40,| ( , ;1,0, / 3) |Tri

MC x y  .  It 

can be seen that M is related to the localization of the patterns.  
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2.3 The Chaotic Billiards 

 

Chaotic billiards has long been used as a paradigm to study the classical and 

quantum chaos [Stöc99].  Among all kinds of chaotic billiards, stadium billiard (as 

shown in Fig. 2.3-1) is the most popular model for which is a strong chaotic system 

[Hell84].  The trajectories in stadium billiard are generally ergodic, they spread all 

over the phase space.  In addition to ergodic trajectories, Fig. 2.3-2 displays some of 

the unstable POs which are intimately related to the quantum energy density [Gutz91].  

Unlike integrable billiards, the quantum eigenstates of stadium billiard have no 

analytic forms and can only be obtained by numerical computation.  In this section 

the expansion method [KKS99] is utilized to investigate the wave functions of 

stadium billiard.   

The first eight eigenstates of stadium billiard are depicted in Fig. 2.3-3.  As we 

can see that the low-order wave function behaves like that of regular billiard.  Fig. 

2.3-4 (a)-(d) present the 152nd, 165th, 175th, and 208th eigenstates, respectively.  

Notice that symmetry has been intentionally broken in this calculation.  Unlike 

regular billiard, high order wave function exhibits random patterns.  The morphology 

of such chaotic waves can be mimicked by a random superposition of plane waves 

with fixed wave-vector magnitude but uncorrelated amplitudes, directions, and phases 

[Berr77].  Fig. 2.3-5 (a) shows the random wave of  

    
1 2

1 2

1 2
,

2
( , ) cos( )sin( )sin( )chaos

n n
n n

n x n y
x y

a a a

                    (2.3-1) 

with random phase factors 
1 2,n n  and quantum numbers satisfying 

2 2
1 254 55n n   , as illustrated in Fig. 2.3-5 (b).  The signatures of such chaotic 

quantum wave functions consist in [Stöc99] the Gaussian distribution for amplitudes 
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2

2

1
( ) exp( )

22
P


 

                                       (2.3-2) 

where σ is the standard deviation given by 1/ A   with A denotes the area of the 

billiard, and Porter-Thomas distribution for intensities 

1
( ) exp( )

22

I
P I

I
  ,                                        (2.3-3) 

, where 2| |I  .  The histograms in Fig. 2.3-6 (a) and (b) validate the statistics of 

wave function and intensity of ( , )rnd x y  are actually in Gaussian and 

Porter-Thomas distributions, respectively. 

    In addition to these chaotic wave functions, some scar modes are also found in 

the calculation.  Fig. 2.3-7 (a)-(d) depicts the 122nd, 132nd, 207th, and 258th 

eigenstate, respectively.  The classical POs on which the scars localize on are 

highlighted by orange lines.  In consistence with Bohr’s correspondence principle, 

the highly-excited eigenstates of stadium billiard, random waves or scars, exhibit the 

properties of classical trajectories. 
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Fig. 2.3-1. The stadium billiard. The trajectory in chaotic billiard is generally 

ergodic. 
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Fig. 2.3-2. Some unstable periodic orbits in the stadium billiard. 

50 



Ch2 Wave Functions of Quantum Billiards                                    

 

Fig. 2.3-3. First eight eigenstates of the stadium billiard. The result is similar to 

rectangular billiard. 
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(a) (b) 

(c) d) (c) d) ((

Fig. 2.3-4. (a)-(d) The 152nd, 165th, 175th, and 208th exited states of a 

slightly asymmetric stadium billiard are shown to exhibit random patterns that 

do not exist in regular billiard.   
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Fig. 2.3-5. (a) A random superposition of several eigenstates with quantum 

number satisfying 2 2
1 254 55n n   , as illustrated in (b)   
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Fig. 2.3-6. (a)-(b) The statistics for the amplitude and intensity of the random 

wave shown in the previous figure.  The fitting curves are Gaussian and 

Porter-Thomas distributions, respectively.   
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55 

 

(b) (a) 

(d) (c) 

Fig. 2.3-7. (a)-(d) The scars appear in the 122nd, 132nd, 207th, and 258th 

exited states of the slightly asymmetric stadium billiard.  The highlighted 

lines indicate the unstable periodic orbits. 
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In Sec. 1.1 the significance of quantum-billiard wave functions corresponding to 

classical POs has been introduced and their formations have also been theoretically 

demonstrated in chapter 2.  Since 2D wave function is difficult to directly visualized, 

the experimental observations on quantum-billiard wave functions are mostly 

performed in an analogous way.  In this chapter VCSELs are employed to 

analogously observe the wave function of quantum billiards.   

VCSELs inherent emit in single longitudinal mode due to their extremely short 

cavity length, but broad-area VCSELs can exhibit complex high-order transverse 

mode structures.  Hegarty et al. reported interesting transverse mode patterns from 

square-shaped large-aperture (VCSELs) [HHMC99, HHP+99].  Their experimental 

results revealed that a wave incident upon the current-guiding oxide boundary would 

undergo total internal reflection because of large index discontinuities between oxide 

layer and the surrounding semiconductor material.  That is, VCSEL can be 

considered as a planar wave guide with a dominant wave vector along the vertical 

direction.  Because of the analogy between the Helmholtz equation and Schrödinger 

equation, it is essentially feasible to use the oxide-confined VCSEL cavity to present 

quantum mechanical potential wells.  In this case, the transverse patterns can reveal 

the probability density of the corresponding wave functions to the 2D quantum 

billiards. Most importantly, the superiority of oxide-confined VCSELs consists in 

their longitudinal wave vector kz that can bring out the near-field patterns to be 

directly reimaged with simple optics. 

In this chapter the analogous observations of various quantum-billiard wave 

functions are presented.  The remainder of this chapter is structured as follows: The 

first section explains why the transverse mode of VCSELs can be analogous to the 

wave functions of quantum billiards.  After which the experimental setup will be 

shown.  The typical lasing modes of the square billiard are presented in Sec. 3.3.  

What follows is the chaotic modes generated by a rippled-square VCSEL.  Finally, 

equilateral-triangular shaped VCSEL are shown to exhibit mixed properties of regular 

and chaotic system. 

57 



Ch3 Analogous Observation on Quantum-Billiard Wave Functions from VCSELs     

 

 

3.1 The Analogy between VCSELs and Quantum Billiard 

     

The function of 2D wave-billiard wall in the VCSEL device comes from the fact 

that the large index discontinuity between the oxide layer and surrounding 

semiconductor leads to a total internal reflection of a wave incident upon the 

boundary.  As shown in Fig. 3.1-1 (a), the separability of the wave function in the 

VCSEL device enables the wave vectors to be decomposed into kz and kt, where kz is 

the wave-vector component along the direction of vertical emission and kt is the 

transverse wave-vector component.  The vertical dimension of the cavity is designed 

to have a large kz component and a relatively small transverse component kt, generally 

kt < 0.12 kz.  The angle between the photon-velocity vector and the normal vector of 

the boundary surface, )(tan 1
tz kk , can be calculated to be greater than 1.45 rad.  

On the other hand, the critical angle for the total reflection is given by 

)(sin 1
GaAsox nn , , where  is the effective refractive index of the oxide layer and 

 is the effective refractive index of the semiconductor cavity.  With 1.5 

and 3.5, it can be confirmed that the angle between the photon-velocity vector 

and the normal vector of the boundary surface is certainly greater than the critical 

angle for the total reflection, as illustrated in Fig. 3.1-1 (b).  As a consequence, the 

lateral oxide boundaries can be modeled as rigid walls and the losses through the wall 

boundaries are extremely low. 

oxn

GaAsn

n

oxn

GaAs

Under the circumstance of paraxial optics, kt << kz, the longitudinal field is 

significantly small in comparison with the transverse field.  Therefore, the electric 

field can be approximated to have only transverse components and no longitudinal 

component, i.e. so-called quasi-TEM waves.  After separating the z component in the 

wave equation, we are left with a two-dimensional Helmholtz equation: 
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    0,22  yxktt  , where 2
t  means th lacian operator operating on the 

coordinates in the transverse plane and 

e Lap

 yx,  is a scalar wave function that 

describes the transverse distribution of the laser mode.  As a result, the transverse 

eigenfunctions of the oxide-confined VCSEL device are equivalent to the 

eigenfunctions of the 2D Schrodinger equation with hard wall boundaries of the same 

geometry. 
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(b) 

Plane of Incidence

Fig.3.1-1. (a) The schematic diagrams for vertical-cavity surface-emitting 

laser. he separability of the wave function in the VCSEL device enables the 

wave vectors to be decomposed into kz and kt.  (b) The illustration of a wave 

a wave incident upon the current-guiding oxide boundary would undergo total 

internal reflection for . t zk  k

noxide=1.5

kt
nGaAs=3.5

k

kz

Plane of Incidence
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3.2 Experimental Setup 

 

The experimental setup is schematically depicted in Fig. 3.2-1 and Fig, 3.2-2 

present the detailed photos of the equipments.  The VCSEL devices are mounted on 

a cooper holder (Fig. 3.2-2 (a)) with good thermal conductance and placed in the 

cryogenic system (Janis, VPF-100, Fig. 3.2-2 (b)) that is operating with liquid 

nitrogen.  The temperature is controlled by a temperature controller (Neocera, 

LTC-11) with a temperature stability of 0.1 K at the range of 80-300 K.  The VCSEL 

is driven by a DC power supplier (KEITHLEY 2400) with a precision of 0.005 mA.  

The near-field patterns were re-imaged into a CCD camera (Coherent, 

Beam-Code) with a microscope objective lens (Mitsutoyo, M Plan Apo, NA=0.9, 

Fig.3.2-2 (c)).  The objective lens is placed in a tube that is connected with the 

cryogenic system and can be tilted by the seven valves (Fig.3.2-2 (d)).  A polarizer 

was used to obtain polarization-resolved near field patterns.  The spectral 

information of the laser output was measured by a Fourier optical spectrum analyzer 

(ADVANTEST Q8347) with a Michelson interferometer. 
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Fig.3.2-1. The schematic diagrams for the experimental setup. 
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(b) (a) 

(b) (c) 

Fig.3.2-2. (a) The VCSEL mounted on the copper holder. (b) Side view of the 

cryogenic system. (c) The objective lens with NA=0.9 (d) Face view of the 

cryogenic system. 
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3.3 Typical Lasing Modes of Square VCSEL 

 

The SEM image and the optical microscope image of the square VCSEL device 

used in this work are shown in Fig. 3.3-1 and Fig. 3.3-2, respectively.  The bright 

region in Fig. 3.3-2 displays the spontaneous emission to manifest the details on the 

square boundary.  The edge length of the aperture is measured to be about 40 μm.  

The control parameters of this experiment are the device temperature and pumping 

currents.  Since the lasing patterns will become multi modes, we only focus on the 

lasing modes at near-threshold currents.  The temperature dependence of threshold 

current is shown in Fig. 3.3-3 (a) and Fig. 3.3-3 (b)-(d) depicts the experimental 

near-field patterns of one of our square VCSEL devices at temperatures as indicated.  

These patterns are robust; they remain unchanged for the durations of at least 1.0mA, 

and can be reproduced under the same experimental circumstances.  The lasing 

pattern shown in Fig. 3.3-3(b) is obtained at room temperature.  The lasing patterns 

of VCSEL are typically multi-mode emission because of the thermal fluctuations.  

The lasing state at the operating temperature of 285K becomes a bouncing-ball mode, 

as seen in Fig. 3.3-3(c).  When the operating temperature further decreases to 250K, 

the near-field pattern dramatically changes to a multi-diamond pattern hat is a 

superscar mode associated with several POs, as shown in Fig. 3.3-3(d).  For the 

operating temperature below 230K, the experimental pattern shown in Fig. 3.3-3(e) 

corresponds to another superscar mode that is localized on a single PO.  The 

behaviors of each VCSEL devices are different but their characteristics are generally 

the same.  In conclusion, the temperatures at which the bouncing-ball or superscar 

modes appear are not all the same for all devices, but it can be sure that the 

bouncing-ball mode appears at a higher temperature than that for the superscar mode.  

The multi-POs superscar mode does not always exist, but the temperature at which it 

appears is higher than the temperature for a single-PO superscar mode if it ppears.  

Most devices lase with single-PO superscar mode at low temperatures. 
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  These lasing patterns can be analogously interpreted by the quantum-billiard model.  

The eigenstates of square billiard are given by (2.1.1) 

1 2

1 2
,

2
( , ) sin( )sin( )n n

n x n y
x y

a a a

   .                              (3.3.1) 

We find that the bouncing-ball mode shown in Fig. 3.3-3(c) is not merely an 

eigenstate but more like a linear combination of two eigenstates 

43,11 42,16( , ) sin(0.6 ) ( , ) cos(0.6 )x y x y                            (3.3.2) 

The experimental result and theoretical simulation are depicted in Fig. 3.3-4 (a) and 

(a’), respectively, for convenient comparison.  Such kind of bouncing-ball modes are 

prevalent in square VCSEL; we show some other two cases in Fig. 3.3-4 (b) and (c).  

The corresponding mathematical expressions of Fig. 3.3-4 (b’) and (c’) are  

40,11 39,14( , )sin(0.35 ) ( , ) cos(0.35 )x y x y                          (3.3.3) 

and 

11,44 14,43( , )sin(0.7 ) ( , ) cos(0.7 )x y x y                            (3.3.4) 

, respectively.   

    The other representative lasing pattern is the superscar mode that localized on the 

diamond-shaped PO.  As discussed in chapter 2, the superscar can be expressed as 

1
, ,
, 1

02

0

2 / ( )
( , ) cos( )sin[ ]

cos ( )

( ( 1 )
                                                          sin[

M
p q M
N M KM
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a q
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C K

pN q M K y
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 N pK x














  



     (3.3.5) 
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It can be found that the superscar mode shown in Fig. 3.3-3 (e) can be interpreted by 

.  We can compare the experimental and theoretical patterns from Fig. 

3.3-5(a) and Fig. 3.3-5(a’).  The low-temperature lasing modes of most square 

VCSELs are dominated by the superscar modes.  Fig. 3.3-5 (b) and (c) display two 

other similar superscar modes observed from the other devices.  The corresponding 

theoretical results are also shown in Fig. 3.3-5 (b’) and (c’) for comparisons. 

1,1,0.57
36,10 ( , )C x y

y

y

y

    We can also reconstruct the multi-POs superscar mode by superposing SU(2) 

coherent states.  Based on thorough numerical analysis, the experimental multi-POs 

superscar modes can be found to be well reconstructed by 

1,1,0.25 1,1,0.57 1,1,0.8
32,20 32,30 32,20( , ) 0.7 ( , ) 0.9 ( , )C x y C x y C x                       (3.3.6) 

Fig. 3.3-6 (a) and (a’) depict the experimental and theoretical results.  Although the 

multi-POs mode is not as prevalent as the bouncing-ball and single-POs superscar 

mode, it also commonly appears in the transition regime between the two popular 

modes.  Fig. 3.3-6 (b) and (c) show the other two paradigmatic multi-POs superscar 

modes.  The two typical multi-POs modes can be reconstructed by  

1,1,0.28 1,1,0.64
40,18 40,15( , ) ( , )C x y C x                                      (3.3.7) 

and  

1,1,0.3 1,1,0.55 1,1,0.8
40,30 40,30 40,30( , ) ( , ) ( , )C x y C x y C x                             (3.3.8) 

and are shown in Fig. 3.3-6 (b’) and (c’), respectively.  As we have demonstrated, 

the transverse mode of square VCSELs can be well reconstructed by quantum-billiard 

wave functions. 
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Cathode Anode

Submount

Cathode Anode

Submount

Fig. 3.3-1. The SEM image of square VCSEL device 
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Fig. 3.3-2. Optical microscope image view from the aperture of the VCSEL.  

The bright region display the spontaneous emission to manifest the details on 

the square boundary. 
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Fig. 3.3-3. (a) The temperature dependence of the threshold current and the 

lasing modes observed at temperatures of (b) 295K (room temperature) (c) 

285K (d) 250K (e) 230K.  

69 



Ch3 Analogous Observation on Quantum-Billiard Wave Functions from VCSELs     

 

(a’) (a) 

(c’) (c) 

(b’) (b) 

Fig. 3.3-4. (a)-(c) The bouncing ball modes observed in different square 

VCSEL devices. (a’)-(c’) The theoretical explanations of (a)-(c), which are 

expressed by Eq. (3.3.2)-(3.3.4), respectively.  
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(a’) (a) 

(b’) (b) 

(c’) (c) 

Fig. 3.3-5. (a)-(c) Various superscar modes observed in different square 

VCSEL devices.  (a’)-(c’) Theoretical interpretation of (a)-(c) by SU(2) 

coherent states , , and  respectively.  1,1,0.57
36,10 ( , )C x y 1,1,0.46

38,6 ( , )C x y y1,1,0.8
40,25 ( , )C x
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Fig. 3.3-6. (a)-(c) Various multi-POs superscar modes observed in different 

square VCSEL devices.  (a’)-(c’) Theoretical patterns of (a)-(c) given by  

Eq. (3.3.6)-(3.3.8), respectively.  

(b) (b’) 

(c) (c’) 

(a’) (a) 
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3.4 Chaotic Wave Function in Rippled-Square VCSEL 

 

Recently, Li et al. reported interesting quantum chaotic phenomena in ripple 

billiard [LRW02].  In last section we have confirmed that transverse mode of 

VCSEL is equivalent to the wave function of quantum billiard.  Hence, we can 

analogously observe the quantum chaotic wave function and experimentally 

investigate the statistical properties of the chaotic wave functions.  Although the 

statistical properties of chaotic wave function have been theoretically well studied 

[MK88], the experimental wave functions are interfered in the measuring processes.  

It is known that microwave cavities have been used to obtain the statistics of chaotic 

wave state [KKS95, ŠHK+97, SHS04].  However, the statistical properties of the 

chaotic wave functions emitted from VCSELs have never been studied. 

Fig. 3.4-1 shows the pattern of the spontaneous emission that manifests the 

details on the ripple boundary.  The forms for the bottom and top walls of the ripple 

are approximately expressed as 

1
0.044 1 exp 13.5     for the bottom wall

2

( )

1
0.044 1 exp 13.5     for the top wall

2

x
a

a

Y x

x
a a

a

   
     

  
 
            

 ,    (3.4.1) 

where  is the central length of the ripple boundary.  The right and left walls of the 

ripple are described with the same functional form.  The size of the oxide aperture is 

45×45μm

a

2.  Figures 3.4-2 (a) and (b) show the near-threshold lasing patterns of the 

rippled VCSEL at temperatures of 260T K  and 220T K , respectively.  It can 

be seen that the two patterns exhibit similar morphology as a chaotic wave function as 

shown in Ref. [OGH87].  We can validate that the two patterns are chaotic wave 
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functions or not by testing its statistical properties.  Since the intensity patterns do 

not contain sufficient information, the reconstruction of the wave functions is 

practically useful for studying the statistical properties of the chaotic modes. 

    We first demonstrate the logic of the method for reconstructing the wave function 

before going on.  As demonstrated in Fig. 3.4-3, consider an unknown function 

( )x  which is the stationary wave function of the system.  Experimentally, one can 

only observed its intensity distribution 2| ( ) |x .  How can we obtain ( )x  from 

the experimental result 2| ( ) |x ?  Firstly, we have to find the square root of 2| ( ) |x , 

i. e. | ( ) |x .  Then we can see that | ( ) |x  is formed by many nodal domains 

which are separated by the nodes.  In | ( ) |x  these nodal domains are all positive 

but they actually may be negative in ( )x  and the signs of the neighboring two 

nodal domains are different.  We set the nodal domains with minus signs to be zero 

and obtain the positive part of ( )x  denoted as ( )p x .  Finally, ( )x  can be 

obtained by 

( ) 2 ( ) | ( ) |px x x                                            (3.4.2)  

Extending to 2D case, the patterns shown in Fig. 3.4-2 (a) and (b) are the 

experimentally observed intensity distributions and we are going to obtain the 

corresponding wave function.  In order to reconstruct the wave functions, we need to 

deduce the field point matrix ),( ji yx from the experimental intensity point matrix 

, where the indices (i, j) denote the pixel positions of the CCD camera and 

the total pixel number of the experimental data is 200×200.  Since the nodal lines 

separate the positive and negative domains of the wave function, a so-called positive 

wave distribution 

2|),(| ji yx

|),(| jip yx  can be obtained by preserving the wave amplitude 

|),(| ji yx  for the domains with the same sign and setting the wave amplitude to be 

zero for the domains with the opposite sign [SHS04]. 
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    Figures 3.4-4(a) and (b) depict the patterns of |),(| jip yx  for two chaotic 

modes shown in Figures 3.4-2 (a) and (b), respectively.  With the positive wave 

distribution |),(| jip yx , the experimental wave function ), ji yx(  can be 

determined by 

( , ) 2 | ( , ) | | ( , )i j p i j i j |x y x y x y                     .      (3.4.3) 

Since the experimental wave functions are too coarse to explore the statistical 

properties completely, the eigenfunction expansion technique is utilized to find 

analytical expressions for ),( ji yx .  With the eigenstates of 2D square billiards as 

a basis, the experimental chaotic wave function can be expressed as 

1 2

1 2

1 2
,( , ) sin sinn n

n n

n n
x y C x

a a

 
y      

  
 




                 (3.4.4) 

where  is the length of the square boundary,  and  are the quantum number 

in the x and y direction, respectively, and  denote the expansion coefficients.  

Even though some other bases can be chosen for the expansion, the simple analytical 

form of the eigenstates of 2D square billiards leads to the calculation to be extremely 

straightforward.  The orthogonality relation leads  to be 

a 1n

2

2n

1 ,n nC

nmC ,

1 2

1 2
,

0 0

( , ) sin sin
a a

n n

n n
C x y x

a a

         
     y dx dy ,               (3.4.5) 

With the experimental wave function ),( ji yx , the integral in Eq. (3.4.5) can be 

numerically calculated by a summation: 
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1 2

1 2
,

1 1

( , ) sin sin
N N

n n i j i j i j
i j

n n
C x y x y x

a a

 
 

       
   

 y

|

     .     (3.4.6) 

Figures 3.4-5(a) and (b) show the intensity plots of |  corresponding to Figures 

3.4-2 (a) and 3.4-2(b), respectively.  These ring areas signify the random directional 

distribution of transverse wave vectors k, since  corresponds to the weighting 

in k-space.  The distribution of  in Figure 3.4-5(a) has a mean radius 

1 2,| n nC

1 2, |n n| C

1 2,| n nC

260 60.14R   and standard deviation , while in Figure 3.4-5(b) 260
r 1.62

220 60.92R   and .  Here the mean radius 220 1.35r  R  and standard deviation 

r  are defined as  

1 2 1 2

1 2

2
,

,

| |n n n n
n n

,R C r   and 
1 2 1 2

1 2

22
, ,

,

[ | | ( ) ]r
n n n n

n n

C r R    1/ 2            (3.4.7) 

, where the radius  is given by 
1 2,n nr

1 2

2
, 1n nr n n  2

2 .  Naturally 260R  is smaller 

than 220R  because the detuning at T=260K is smaller than that at T=220K.  On the 

other hand, 260
r  is larger than 220

r  because the thermal fluctuation at T=260K is 

larger than that at T=220K.   

    With the expansion coefficients  the experimental wave functions can be 

reconstruct by inserting  into Eq. (3.4.4).  The reconstructed intensity 

patterns for Fig. 3.4-2 (a) and (b) are displayed in Fig. 3.4-6 (a) and (b), respectively.  

We can see that it is very successful in reconstructing the experimentally observed 

chaotic modes.  The statistical properties of the two chaotic modes can now be 

precisely studied.  As discussed in Sec. 2.3, one obtains chaotic wave function in the 

form of a Gaussian distribution for amplitude, 

1 2,| n nC |

|
1 2,| n nC
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2

2

1
( ) exp( )

22
P


 

                                       (3.4.8) 

, where σ is the standard deviation given by 1/ A   with A denotes the area of the 

billiard.  Fig. 3.4-7 (a) and (b) depict the amplitude distributions of the wave 

functions shown in Fig. 3.4-8 (a) and (b), respectively, with the fitting curves 

described by Eq. (3.4.8).  In addition to Gaussian amplitude distribution, the 

intensity distribution of a chaotic wave function is shown to be Porter-Thomas 

distribution 

1
( ) exp( )

22

I
P I

I
 

K

.                                        (3.4.9) 

Figs. 3.4-9 (a) and (b) illustrate the intensity distributions of the reconstructed patterns 

Figs. 3.4-7 (a) and (b), respectively. 

    It can be seen that there are slight variations between our statistical results and 

theoretical predictions, especially for the case of 260T  .  This phenomena may 

be caused by the thermal fluctuation that results in a broadening of the deviation ( r ) 

of the nearly degenerate modes in experiment.    
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0y 

y a

Fig. 3.4-1. Experimental pattern of the spontaneous emission to manifest the 

details on the ripple boundary. 
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(a) (b) 

Fig. 3.4-2. Near-threshold lasing patterns of the rippled VCSEL at 

temperatures of (a)T  and (b)T K260 K 220 . 

79 



Ch3 Analogous Observation on Quantum-Billiard Wave Functions from VCSELs     

 

0 0.1 0.2 0.3 0.4 0.5 0.60.7 0.8 0.

-2 

0

2

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9

0 

-5

5

0 0.1 0.2 0.3 0.4 0.5 0.60.7 0.8 0.

-2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-4

0

4

0 0. 0.2 0.3 0.4 0.5 0.6 0.7 0. 0.9

-2 

0

2

- + ++ + + +- - - - - -

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

( )x ( )p x

2 ( ) | ( ) |p x x  2| ( ) |x

| ( ) | ( ) 2 ( ) | ( ) |px x x   x

Fig. 3.4-3. (a) An unknown wave function (b) The intensity distribution (c) 

Square Root of intensity distribution (d) Positive part of the wave function (e) 

Demonstration of 2 ( ) | ( )p |x x   (f) The result of 2 ( ) | ( )p |x x  .   
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(b) Fig. 3.4-4. (a) and (b) The intensity plots of the positive wave functions 
|),(| jip yx  for experimental results shown in Figs. 3.4-2 (a) and (b), 

respectively. 

(b) (a) 
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(a) (b) 

n1 

n2 

n1 

n2

Fig. 3.4-5. (a) and (b) Distribution of the coefficients  obtained by Eq. 

(3.4.6) for experimental results shown in Figs. 3.4-1 (a) and (b). 
,| m nC |
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Fig. 3.4-6. (a) and (b) The reconstructed patterns with the eigenfunction 

expansion method for experimental results. 

(b) (a) 
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(a) 

(b) 

Fig. 3.4-7. (a) and (b) Tthe amplitude distributions of the wave functions 

shown in Fig. 3.4-6 (a) and (b), respectively.  
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(a) 

(b) 

Fig. 3.4-8. (a) and (b) The intensity distributions of the patterns shown in Fig. 

3.4-6 (a) and (b), respectively.  
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3.5 Typical Lasing Modes in Equilateral-Triangular VCSEL  

 

Equilateral triangular billiard is a special polygonal billiard, which is classically 

nonseparable but integrable system [DR02].  The experimental observation of the 

lasing modes in equilateral triangular VCSEL may provide useful information for the 

microdisk lasers experiments with equilateral triangular resonators [CKL+00, HGL00, 

HGYL01, LCG+04, YAK+07, ] and electron transport phenomena in equilateral 

triangular quantum dots [CLO+97]. 

    Fig. 3.5-1(a) and (b) show the optical microscope image of the device operated 

with an electric current under threshold current at room temperature.  The bright 

region indicates the equilateral triangular pattern of spontaneous emission, which can 

be more clearly visualized in CCD camera as shown in Fig. 3.5-1(c).  The edge 

length of the oxide aperture was measured to be approximately 66.8 μm. 

    Similarly, we only focus on the lasing patterns at near threshold current.  Fig. 

3.5-2 shows the temperature dependence of the threshold current in the range from 

300K to 120K.  Figures 3.5-3(a)-(i) depict the experimental near-field patterns that 

are characteristically observed at different device temperatures.  It is found that the 

lasing patterns are generally robust and reproducibly observed under the same 

experimental circumstances.  The lasing pattern shown in Fig. 3.5-3(a) is obtained at 

the operating temperature of 295K and the optical spectrum indicates it to be a 

multi-mode emission.  The lasing state at the operating temperature of 275K is found 

to dramatically change to a superscar mode that is similar to Fabry-Pérot modes 

impinging on lateral sides vertically [MMN64], as seen in Fig. 3.5-3(b).  When the 

operating temperature decreases to 195K, the lasing pattern shown in Fig. 3.5-3(e) 

exhibits a honeycomb structure.  As discussed later, the honeycomb morphology 

corresponds to the pattern of an eigenstate.  When the operating temperature further 

decreases to 175K, the near-field pattern shown in Fig. 3.5-3(f) behaves like a chaotic 

wave state that can be described as a random superposition of plane waves [OGH87].  
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For the operating temperature below 135K, the experimental pattern shown in Fig. 

3.5-3(i) corresponds to another superscar mode that is related to a geometrical PO 

[DR02].  This superscar mode is found to be unchanged when the temperature 

decreases from 135K to 80K.  Intriguingly, the lasing pattern displays the transition 

and coexistence of the chaotic and superscar modes at the other operating temperature.  

As shown in Fig. 3.5-3(c), the lasing mode at 255K is a superscar mode like Fig. 

3.5-3(b) but with a background of random wave.  Fig. 3.5-3(d) is a mixing of 

honey-comb eigenstate and random wave.  The transition from chaotic wave 

function to superscar mode is clearly displayed from Fig. 3.5-3(f)-(i).  The lasing 

patterns of each VCSEL devices are different but their characteristics are generally 

the same. 

The analogy between the electromagnetic wave equation in paraxial 

approximation and the Schrödinger equation enables us to make a detailed connection 

between the quantum wave functions and the experimental patterns.  As discussed in 

Sec. 2.2, the quantum eigenstates of the equilateral triangular billiard are given by 
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 ,               (3.5.1) 

with .  The eigenstates  are the representation of traveling waves.  

The standing-wave wave representation of  can be expressed as 

mn 2

( , )

),(, yxnm


, )

),(, yxnm


( )
, , ( , ) ( ,S

m n m n m nx y x y 

( )
5,5 |S

x y 

2
5| ( , )

.   The experimental honeycomb pattern shown 

in Fig. 3.5-3 (e) can be numerically confirmed to correspond to the wave intensity of 

x y , as depicted in Fig. 3.5-4 (b).  Superscar modes that are associated 
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with classical POs can be analytically expressed with the representation of quantum 

coherent states 

0 0

1

, ,
0

1
( , ; , , ) ( , )

2

M
Tri M iK
N M K m pK n q M KM

K
( 1 )x y p q C e x y




   


             (3.5.2) 

Similarly, , ( , ; , , )Tri
N M x y p q   represents the traveling wave and the expression 

for the standing wave can be given by 

*
, , ,( , , , , ) ( , , , , ) ( , , , , )Tri Tri Tri

N M N M N MC x y p q x y p q x y p q     .           (3.5.3) 

Based on thorough numerical analysis, the experimental superscar modes can be 

found to be well reconstructed with the coherent states of 36, 9 ( , ; 1,0, 0.23 )TriC x y   

and 22, 6 ( , ;1,1, 0.35 )TriC x y  .  Figures 3.5-5(c) and (d) depict the numerical wave 

patterns of  and 2|)23.0,0,1;, y9,36 (| xC 2
20, 6 ( , ; 1, 1, 0.35 ) |C x y|   

corresponding to the experimental patterns shown in Fig. 3.5-5 (a) and (b), 

respectively.  The excellent agreemen between the experimental and numerical 

patterns confirms that the quantum formulism is of great importance in describing 

distinct branches of physics because of the underlying structural similarity.   

Conversely, the present analysis also provides a further indication that laser resonators 

can be designed to demonstrate the quantum phenomenon in mesoscopic physics. 

Although an ideal equilateral triangular billiard is integrable, some experimental 

patterns reveal the property of quantum chaotic modes, as seen in Fig. 3.5-6(a).  To 

prove this pattern is chaotic, the method used in last section is employed to 

reconstruct this experimental result.  Since the eigenstates of equilateral-triangular 

form a complete set of basis, the wave function can be spanned by [DB02] 
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( )
, ,

2 0

( )
, ,

2 0

( , ) 1 ( , )

            2 ( , )

C
m n m n

m n n

S
m n m n

m n n

x y c x

c x

y

y


 

 

 

 

 

 

 

 
.                                 (3.5.4) 

Based on the orthogonality of the eigenstates, the expansion coefficients can be 

obtained by 

( )
, ,1 ( , ) ( , )C

m n m n

S

c x y x y  dxdy

dxdy

                                  (3.5.5) 

and 

( )
, ,2 ( , ) ( , )S

m n m n

S

c x y x y                                   (3.5.6) 

, where the integration area S is the entire equilateral-triangle billiard.  Similarly, the 

experimental wave function ( , )i jx y  can be found by 

    2 | ( , ) | | ( , ) |p i j i jx y x   y                                       (3.5.7) 

, where ( , )p i jx y  shown in Fig. 3.5-6 is the positive wave distribution.  With the 

experimental wave function ( , )i jx y , the integrals in Eq. (3.5.5) and (3.5.6) can be 

numerically calculated by summations: 

( )
, ,1 ( , ) ( , )C

m n i j m n i j i j
i j

c x y x y x   y                          (3.5.8) 

and 
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( )
, ,2 ( , ) ( , )S

m n i j m n i j i j
i j

c x y x y   x y                          (3.5.9) 

, with the indices  satisfying ( , )i j
3

3 3
2i j i j jx y x y y      a .  Inserting 

the expansion coefficients  and  into Eq. (3.5.4), we can obtain the 

reconstructed wave function as shown in Fig. 3.5-7(b).  Besides, it has been 

discussed that the intensity statistics of the chaotic wave functions obey the 

Porter-Thomas distribution 

,1m nc ,2m nc

2/2/1)(IP IeI 





  .  We evaluate the intensity 

statistics for the reconstructed wave function, as shown in Fig. 3.5-7(c).  The good 

agreement validates that the wave pattern corresponds to a chaotic wave function.  

The origin of stationary chaotic modes is inspected to arise from spontaneous 

imperfections, such as roughness on boundary or unequal of the three internal angles.  

In other words, the spontaneous symmetry breaking may cause the real devices with 

idealized integrable confinements to exhibit the characteristics of nonintegrable 

systems.  As discussed in Ref. [BU94], although a triangular billiard with internal 

angles to be slightly different from / 3  is intrinsically chaotic, the wave functions 

can still be scarred by families of POs.  Briefly, tiny symmetry breaking can lead to 

the emergence of superscar as well as chaotic modes in the almost integrable systems.  

Our experimental results are utterly consistent with the theoretical findings. 
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Fig. 3.5-1. (a) Optical microscope image of the VCSEL device. (b) Zoom-in 

view of (a) and is operated with an electric current under threshold current at 

room temperature. (c) The spontaneous emission to manifest the details on the 

triangular boundary temperature. 

265μm 
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    (c) 
66.8μm 
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Fig. 3.5-2. Temperature dependence of the threshold current of the equilateral 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

C BA 

D E F 

G H I 

Fig. 3.5-3. (a)-(i) The near-threshold lasing patterns of triangular VCSEL at 

temperatures labeled by A-I in Fig 3.5-2, respectively. 
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(a) (b) 

E 

Fig. 3.5-4. (a) Experimental pattern observe at 195K. (b) Numerical wave 

pattern of eigenstate ( ) 2
5,55| ( , )S |x y . 
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(a) (b) 

I B

(d) (c) 

Fig. 3.5-5. Experimental pattern observe at (a)275K and (b)135K; Numerical 

wave pattern of coherent state (c) | 2
36, 9 ( , ;1, 0, 0.23 ) |TriC x y  and (d) 

2
20, 6| ( , ; 1, 1, 0.35 ) |TriC x y  ; The classical periodic orbits that the wave 

functions localized on are depicted in the insets of (c) and (d). 
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Fig. 3.5-6. The intensity plots of the positive wave functions |),(| jip yx  

for experimental results shown in Figs. 3.5-3 (f). 
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Fig. 3.5-7. (a) Experimental pattern observe at 175K. (b) Reconstructed 

pattern of (a). (c) Intensity statistics of (b) with fitting curve to be 

Porter-Thomas intensity distribution. 
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One of the most relevant quantum transient phenomena in matter waves is the 

diffraction-in-time effect for a suddenly released coherent beam, which appears to 

have first been introduced by Moshinsky in 1952 [Mosh52].  The hallmark feature of 

the diffraction-in-time effect is the temporal quantum interference patterns, by 

analogy with the spatial interference patterns of light diffracted by a sharp edge 

[MMS99, Godo02, GM05, dCMM07].  The experimental test for this effect was 

indeed hard to reach at the time of the first introduction.  However, due to the 

development in ultrafast laser [PLW+03], atom cooling, and optical trapping 

[WPW99], the transient dynamics has been recently observed in wide variety of 

systems including neutrons [HFG+98], ultracold atoms [SSDD95], electrons 

[LSW+05], and Bose-Einstein condensates [CMPL05].  

Another physical connection to the diffraction-in-time effect would be the 

transient response to abrupt changes of the confined potential in semiconductor 

structures and quantum dots [DCM02, DMA+05].  Semiconductor quantum dots, in 

which electronic motion is predominately ballistic in nature, have been widely used as 

two-dimensional (2D) quantum billiards to explore the properties of quantum chaos 

[AF99, ZB97, BAF+99].  Understanding the time evolution of suddenly released 

quantum-billiard waves has some important applications, as it can provide the 

nanostructure transport properties for developing novel ultrahigh-speed 

semiconductor devices [DCM02].  Moreover, it is closely related to atom laser 

dynamics from a tight waveguide whose boundary shape can be modified with the 

laser trapping-beam [DMA+05, dCL+08].  Nevertheless, the investigation for the 

transient dynamics of 2D quantum-billiard coherent waves has not been performed as 

yet. 

This chapter is structured as follow:  The time evolution of a stationary wave 

function abruptly released from 1-D infinite potential is quickly reviewed in the 

opening section.  Secondly, similar problem will be extended to various wave 

functions with a suddenly removal of 2-D square billiards.  In third section, we 

utilize the similarity between paraxial optics and 2-D non-relativistic quantum 
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mechanics to analogously observe the time evolutions of coherent waves released 

from quantum billiards by free-space propagation of transverse modes of VCSELs.  

In final section our aim is to analyze the linear and angular momentum densities of the 

light beam emitted from VCSELs by analogously calculating the probability current 

and angular momentum densities of coherent waves released from quantum billiard. 

 

 

4.1 Stationary States Suddenly Released from 1-D Infinite 

Potential Well 

     

Since Moshinsky first proposed the shutter problem in 1952 [Mosh52], 

diffraction in time has received considerable attentions.  Recently, the transient 

dynamics of an initially bounded stationary state suddenly released from 1-D infinite 

potential well has been studied by Godoy [Godo02].  Before investigating the 

transient dynamics of a particle suddenly released from 2D quantum billiard, we first 

reviewed the work done by Godoy. 

Consider that a particle is confined in a 1-D box as 0t  , and then the box is 

abruptly removed at .  What will be the time evolution of this particle?  The 

problem implies to solve the Schrödinger equation 

0t 

2

2
( , ) ( , )

2
i x t x

t m x
 

 
 

 t                                    (4.1.1) 

with initial condition 

sin[ ( )]  / 2< / 2
( ,0) 2

0 
n

n a
x if a x a

x a
otherwise




    


.                      (4.1.2) 

In terms of the free propagator (Appendix A), the free time evolution of the initial 
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wave function is given by 

/ 2 2

/ 2

( ')
( , ) ( ,0) exp[ ] '

2 2

a

a

m im x x
x t x

i t t
dx 

 


  

.                   (4.1.3) 

Substituting Eq. (4.1.2) into Eq. (4.1.3), after some algebra (a process similar to that 

done in Appendix A), ( , )n x t  is expressed as follow  


3

( , ) ( , ; , ) ( , ; , )
4

n
i

E t

n n

e nx t G x t k a G x t k
i a

a


 




a

                    (4.1.4) 

, where /nk n , 2 2 2n nE k  m

n

, and 

  ( / 2)( , ; , ) ( / 2, ; ) ( / 2, ; )nik x a
n nG x t k a e F x a t k F x a t k            (4.1.5) 

with ( ) ( ) ( )F C iS     denoting the complex Fresnel’s integral.  Fig. 4.1-1 (a)-(k) 

display the intensity of ( , ;10)S x t  at t  0T -  with equal time interval 

, where 

T

0.1Tt  2T m na k  corresponds to the round-trip time of the wave.  

The complicated interference patterns at t T  is a quantum-mechanical 

phenomenon, since a classical particle released from a box will simply go in x  or 

x  directions with equal probability.  Notice that this solution corresponds to the 

diffraction of optical wave from sinusoidal grating [Good05].   

As the time satisfies the condition of , Eq. (4.1.3) can be 

approximated to 

2 /t ma 

2

2 '
( , ) ( ',0)exp( ) '

2

mx
i

t
m imxx

x t e x
i t t

dx 






 

 
                      (4.1.6) 

, which is an analogy of Fraunhofer’s diffraction in optics and is just a Fourier 
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transform.  In other words, ( , )x t  with  essentially corresponds to the 

momentum-space wave function of 

2 /t ma 

( ,0)x  

'1
( ) ( ',0) exp( ) '

2
x

x

ip x
p x 







  
dx .                           (4.1.7) 

Neglecting the phase factor, we have the correspondence x xp mv  with  

denoting the average velocity to arrive 

/xv x t

x .  Therefore, the momentum-space wave 

function can be alternatively interpreted as free time evolution of the real-space wave 

function with time approaches to infinity.   

For the case of sine function released from 1-D box, Eq. (4.1.6) becomes 

2 2

2 2

sin( )2 2   
( ) ( )

( , )
cos( )2 2   

( ) ( )

n

F

max
n t if n even

mx na
t ax t

max
n ti if n odd

mx na
t a













 
 

 











                       (4.1.8) 

Hence, as the time satisfies the condition that , the wave function 

preserves its form as shown in Fig. 4.1-1 (l). 

2 /t ma 
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Fig. 4.1-1. (a)-(k) Intensity plots of ( , ;10)S x t  at t  0T -T , respectively, 

with equal time interval 0.1t T . (l) Intensity plots of 10 ( , )x t  at 

t  1.5T .  The intensity pattern preserves its shape after t 1.5T . 
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4.2 Transient Dynamics of Coherent Waves Released from 

Quantum Billiard 

 

In Sec. 4.1 we have discussed the time evolution of a stationary wave function 

abruptly released from 1-D infinite potential well and similar problem will be 

extended to 2-D square billiards in this section.   

The 2-D square billiard is one of the simplest billiards that is completely 

integrable in classical mechanics [Wier01, CHL02].  The quantum eigenstates 

1 2, ( , )n n x y  for the vertices are at )2/,2/( aa   and )2/,2/( aa   are given by 

     
1 2 1 2, ( , ) 2 / sin / 2 sin / 2n n n nx y a k x a k y a         ,         (4.2.1) 

where ankn /  ( ) and a is the length of the square boundary.  

Extending Eq. (4.1.3) to 2D, the free time evolution of the eigenstates 

,...3,2,1n

1 2, ( , )n n x y  

suddenly released at time  is given by 0t

1 2

1 2

,

2 2/ 2 / 2

,

/ 2 / 2

( , , )
2

( ) ( )
                       exp ( ', ')

2

n n

a a

n n

a a

m
x y t

i t

i m x x y y
x y dx dy

t





 

 

         
  

 





   (4.2.2) 

The wave function 
1 2, ( , , )n n x y t  is just a 2-D extension of Eq. (4.1.4) 

,1 2

1 2 1 1

2 2

, 3
( , , ) ( , ; , ) ( , ; , )

4

                                   ( , ; , ) ( , ; , )

n n
i

E t

n n n n

n n

e
x y t G x t k a G x t k a

i a

G y t k a G y t k a




   

    


             (4.2.3) 
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, where 
1 2 1 2

2 2 2
, ( ) (2n n n n )E k k m   and  , ( , ; , )nG x t k a  F , and ( , ; )x t k  are the 

same as those have been defined in last section. 

Fig. 4.2-1(a)-(i) depict the numerical results calculated with Eq. (4.2.3) and the 

parameters of  to illustrate the wave patterns 1 2( , ) (15,15)n n 
1 2

2

, ( , , )n n x y t  at 

,  , , , ,  , and , respectively, 

where T defined as 

0t T T 1.0 , 0.2 T 0.3 T 0.4 T 0.5T T 0.1 , 2.0 T

1nk2T m a   corresponds to the roundtrip time of the wave in 

the x-direction.  In these presentations, the spatial range  of these figures varies 

with  in the relation of 

S

t 152
k

m
 


S a

T1.

t  to fit the dimension of the patterns.  The 

time-evolution wave distributions clearly exhibit strong interference patterns in the 

time interval between  and 0 T .  Note that the wave function 
1 2, ( , , )n n x y t  in 

an infinite time is just the Fourier transform of the initial wave function.  In 2-D case, 

1 2,n n ( , , )x y t  with  can be approximated to  2 /t ma 

1 2 1 2, ( , , ) ( , ) ( , )F F F
n n n nx y t x t y t   .                                  (4.2.4) 

Therefore, the four-lobed beam pattern in Fig. 4.2-1(i) reveals the momentum 

distribution.   

The results of recent studies of open square quantum dots show that the wave 

functions localized on classical periodic orbits are not only the persistent states but 

also are associated with the striking phenomena of conductance fluctuations [AF99, 

ZB97, BAF+99].  As discussed in chapter 2, the wave functions associated with 

periodic orbits ),,( qp  is analytically expressed as 

1
, ,
,

0

1
( , ) ( , )

2

M
p q M iK
N M K qN pK pN q M KM

K
, ( 1 )x y C e 



   


   x y                (4.2.5) 

Note that the asymptotic property indicates that the coherent states  are 

stationary states in the classical limit, i.e., 

),(,,
, yxqp
MN


N .  Since the Fresnel’s transform is 

a linear operation, the free time evolution of the coherent states  ), y(,,
, xqp
MN

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suddenly released at time  can be directly expressed as 0t

1

,
0

M

K

, ,
, ( 1 )

1
( , , ) ( , , )

2

p q M iK
N M K qN pK pN q M KM

x y t C e x y t      



 .            (4.2.6) 

Fig. 4.2-2 (a)-(i) presents the intensity distributions of 1,1,0.6
35,13 ( , , )x y t  at , 

, , , , , , , and , respectively.  In this 

case 

0t T

T 1.0 0.2 T 0.3 T 0.4 T 0.5T T 0.1 2.0 T

2 qNa kT m  corresponds to the round-trip time of the PO.  This transient 

dynamics can be well connected with the classical picture of an orbiting particle 

suddenly released from a box.  After the billiard is removed the particle may go in 

the four ways along the moving directions on the four segments of the PO.   Besides, 

the probabilities of the four directions in which the particle may go are proportional to 

the length of the four segments and this fact can be observed from the asymmetry of 

the four spots in Fig. 4.2-2(i).  Actually this picture nicely demonstrates the 

formation of directional emission in microdisk laser [GCN+98, LLHZ06, LLZ+07, 

NS97, NSC94, RTS+]. 

Note that the coherent states  behave as the traveling waves in the 

billiards, while the superscar mode in VCSEL is associated with the standing-wave 

representation  

),(,,
, yxqp
MN


, , , , , ,
, , ,( , ) ( , )x y ( , ) 2p q p q p q

N M N M N MC x y x y      

y

.                     (4.2.7) 

As a result, the time evolution of the coherent states  suddenly released at 

time  can be given by  

, ,
, ( , )p q

N MC x

0t

, , , , ( ,x y  , ,
, , ,( , , ) , ) ( , , ) 2p q p q p q

N M N M N MC x y t t x y t     .                 (4.2.8) 

Figures 4.2(a)-(i) illustrate the numerical patterns for the wave patterns 

2, ,
, ( , , )p q

N MC x y t  with the parameters of )1,1(),( qp , , and ( , ) (35,13)N M 
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 6.0  at ,  , , , ,  , and , 

respectively.  It can be seen that the transient dynamics of the coherent state displays 

not only the feature of classical flow but also the salient interference patterns, 

especially in the regime of 

0t T T 1.0 , 0.2 T

t T

0.3 T 0.4 T 0.7T T 0.1 , 2.0 T

 .  From Eq. (4.2.4) we can figure out that 

 is also purely real or imaginary. , ,
, ( ,p q

N MC x ,y )

, ,
,

p q
N M ( , )x y

( ,chaos

In contrast to the eigenstate 
1 2, ( ,n n )x y  and superscar , the third 

type of wave function to be concerned is the chaotic wave function )x y  that 

presents an irregular pattern.  It has been shown that the universal features of 

stationary chaotic wave functions in quantum billiards can be manifested with a 

superposition of plane waves of fixed wave-vector magnitude with random amplitude, 

phase, and direction [Berr77].  As revealed in Sec. 2.3, the standing-wave chaotic 

wave functions in a square-shaped quantum billiard can be described as  

1 2

1 2

n n
n n

1 2, , ( ,n n( ,s ) )chao x y C x y 

( , )

                                (4.2.9) 

1 2,n n x y, where the eigenstates  in the summation are subject to the condition that 

the values 
1

2
nk 

2

2
n

( ,chaos

k  are nearly constant and the phase factors  are random.  

With the superposition principle, the free time evolution of the chaotic wave  

is then given by 

1 2,n nC

),( yx

1 2

1 2

n n 1 2, ,n n
,

, )
n n

( , , )x y t C x y t   .  To connect with our 

experiment, we demonstrate this transient dynamics by a chaotic mode reconstructed 

from experimental result shown in next section.  With the expansion coefficients 

 found by the same method as that used in Sec. 3.4, we display the intensity 

patterns of 

1 2,n nC

( ,chaos , )x y t  at , , , , , , , 

, and  in Fig. 4.2-4(a)-(i), respectively.  Unlike the regular wave functions 

(shown in Figures 4.2-1, 4.2-2, and 4.2-3) exhibiting high directionality, the chaotic 

patterns at time interval of 

0t T

0.1

T 1.0

1t T

0.2 T 0.4 T 0.55 T 0.8 T 1.5 T

3.0 T

 

of intr

 display a striking feature of random 

branching behavior with the appearance icate interference fringes. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

2

15,15 ( , , )Fig. 4.2-1. Numerical patterns to illustrate the wave patterns x y t  

at t = (a) 0T , (b) T 1.0 , (c) 0.2 T , (d) 0.3 T , (e) 0.4 T , (f) 0.5 T , (g) 

T 0.1 , (h) 2.0 T , and (i) . 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

21,1,0.6
35,13 ( , , )Fig. 4.2-2. Numerical patterns to illustrate the wave patterns x y t  

at t = (a) 0T , (b) T 1.0 , (c) 0.2 T , (d) 0.3 T , (e) 0.4 T , (f) 0.5 T , (g) 

T 0.1 , (h) 2.0 T , and (i) . 
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Fig. 4.2-3. Numerical patterns to illustrate the wave patterns 
21,1,0.6

35,13 ( , , )C x y t  

at t = (a) 0T , (b) T 1.0 , (c) 0.2 T , (d) 0.3 T , (e) 0.4 T , (f) 0.7 T , (g) 

T 0.1 , (h) 2.0 T , and (i) . 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Fig. 4.2-4. Numerical patterns to illustrate the wave patterns 
2

( , , )chaos x y t  

at t = (a) 0T , (b) T 1.0 , (c) 0.2 T , (d) 0.4 T , (e) 0.55 T , (f) 0.8 T , (g) 

1.5 T , (h) 3.0 T , and (i) . 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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4.3 Analogous Observations on Coherent Waves Released 

from Quantum Billiard by Free-Space Propagating 

Transverse Modes of VCSELs 

 

The time evolutions of coherent waves released from quantum billiards have 

been shown in Sec. 4.2.  Our theoretical analysis can provide useful information for 

developing ultra-fast semiconductor device.  However, the transient dynamics are 

very difficult to be experimentally observed.  In this section, we utilize the similarity 

between paraxial optics and 2-D non-relativistic quantum mechanics to analogously 

observe the time evolutions of coherent waves released from quantum billiards by 

free-space propagation of transverse modes of VCSELs.   

For a time-harmonic electromagnetic wave in free space, the phasor amplitude of 

the emission field distribution  zyxE ,,  would obey Helmholtz equation  

                                    (4.3.1) 

, where is the wave number.  Since the vertical emission through the top DBR 

represents the coupling of the wave field from the inside cavity to the outside 

environment, the phasor amplitude 

2 2( , , ) ( , , ) 0E x y z k E x y z 

k  

 zyxE ,,  of a light beam satisfies the paraxial 

approximation  

                                     (4.3.2) 

, where is the amplitude distribution.  Substituting Eq. (4.3.2) into Eq. 

(4.3.1), d that the amplitude distribution 

   , , , , ikzE x y z u x y z e

 , ,u x y z  

we can fin  , ,u x y z  satisfies the paraxial 

wave equation [Haus84] 
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21
( , , ) ( , , )

2 ti u x y z u x y z
z k


  


                                 (4.3.3)

2 2 2 2 2

 

, where / /t x y        

This paraxial wave equation co

Schrödinger equation (Eq (4.1.1)) for 

is the Laplacian operator for the transv

mpletely has the same ma

erse coordinate.  

thematical form as 

2-D systems with the analogies  and t z

/m  k .  Hence, the amplitude distribution  , ,u x y z  can be shown to relate 

with the amplitude distribution at 0z   by the similar process from Eq. (A.3) to Eq. 

(A.9)  

2 2
0 0[( ) ( ) ]

2
0 0( , , ) ( , ,0)

2

k
i x x y y

z
i k

u x y z u x y e dx dy
z

  
  .                 (4.3.4) 

Combining Equations (4.3.2) and (4.3.4), the phasor amplitude  , ,E x y z  can be 

shown to relate with  , ,0E x y  snel transform [Good05] by the Fre

 
2 2k

0 0[( ) ( ) ]
2

0 0( , , ) , ,0
ikz i x x y y

z
e

E x y z E x y e dx dy
i z

  
                    (4.3.5) 

t the near-field transverse modes 

In brief, the time evolution of a 2D quantum state is equivalent to the Fresnel 

transformation of a near-field optical wave.  For VCSELs, in chapter3 we have 

demonstrated tha  , ,0E x y  are analogous to the 

wave functions of quantum bi

space propagation of coherent modes emitted from VCSELs is analogous to the time 

 of quantu

used is a square-shaped VCSEL with aperture size to be about 

lliard with the same geometry.  Therefore, the free 

evolution m-billiard wave functions.   

    The experimental set up is similar to that described in Sec. 3.2.  The device first 

240 40 m .  It was 

operated at a temperature of 220 T K  and near threshold current of 38.3 I mA  

to generate a linearly polarized superscar mode similar to that shown in Fig. 4.2-3(a), 
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as shown in Fig. 4.3-1(a).  The measurement of the optical spectrum indicates that 

the pattern is a single mode with 

propagation from near field to far field, we defocus the large-NA objective lens by 

translating the stage.  Figures 4.3-1(b)-1(g) are the experimental transverse patterns 

observed at propagation distances of ,  

its wavelength to be 804.06 nm.  To observe 

0.1 zd d d d d

1.0 dz , and 2.0 dz , respectively, where 2 /d z tz ak k

, 0.2 z , 0.3 z , 0.4 z , 0.7 z

  is the characteristic length 

nalogous to characteristic time T  in Sec. 4.2.  The transverse and 

t

that is a

 and longitudinal wave vectors, k zk , can be found by the half angle of diffraction 

 .  In this eexperim nt the angle   is measured to be 24  and such that dz  can 

be evaluated to be about 72 m . 

creen distance of ~20 

d pattern with the 

central bright region to be the background lum nescence.  The good agreem

ed f  

entally study the transient dynam
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chaotic billiard systems.  The sam
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ce and the scattered light was 

e  

ro

ra. 

m

 quantum

between Figs. 4.3-1 and 4.2-3 validates that that the free space propagation of 

coherent modes emit

t e functions released from 2D 

e

chaotic-shaped VCSEL to obtain a linearly polarized chaotic wave state, as shown in 

Fig. 4.3-2(a), with the operating temperature at 295T K and threshold current 

56.0I mA .  The measurement of the optical spectr ows that the pattern is 

a single mode with its wavelength to be 827.08 nm.  Figures 4.3-2(b)-(g) display the 

experimental transverse patterns observed at propagation distances of 0.1 dz , 

0.2 dz , 0.4 dz , 0.55 dz , 0.8 dz , 1.5 dz , an

um

d 3.0 z

 also sh

d , respectively.  The half 

angle of diffraction was measured to be 30  and dz  is about 138 m .  In fact, the 

experimental near-field pattern has been employed to study the transient dynamics of 

a suddenly released chaotic w . 4.2.  Comparing Figs. 4.3-2 and 4.3-4, it ave ein S c
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can be seen that our reconstruction of chaotic modes not only match the experimental 

results in near field but for the whole propagation process.  This agreement further 

confirms the method for reconstructing the chaotic mode and the presented analysis. 

115 



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard: 
    Analogous Studies on the Propagation of Lasing Modes Emitted from VCSELs 

116 

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.3-1. Experimental patterns of a superscar mode with propagation 

distance at z = (a) 0 dz , (b) 0.1 dz , (c) 0.2 dz , (d) 0.3 dz , (e) 0.4 dz , 

(f) 0.7 dz , (g) 1.0 dz , (h) 2.0 dz , and (i) 20cm, where ~ 72dz m . 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 4.3-2. Experimental patterns of a chaotic mode with propagation distance 

at z = (a) 0 dz , (b) 0. , (c) 0.2  (d) 0 e) 0.5 f) 0.8 ) 

1.5 ) 3. where ~ 138dz m

1 dz  dz , .4 dz , ( 5 dz , (  dz , (g

 dz , (h 0 dz , and (i) 20cm,  . 
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4.4 Probability Current and Angular Momentum Densities 

of Coherent Waves Released from Quantum Billiard: 

Optical Vortices Generated by VCSEL 

 

In Sec. 4.1 we first review the free time evolution of a sine function with 

suddenly removal of the 1-D infinite potential well.  Next, the problem is extended 

to the transient dynamics of various types of coherent waves released from square 

billiard in second section.  In 1-D systems the current flow is monotonous since it is 

linear and can only flow in two direction, x  or x  axes.  However, the 2-D 

probability current density becomes much complicated because it forms a vector field.  

As indicated in Sec. 1.3, 2-D current field has three kinds of vector singularities, sink 

and source, saddle, and vortex, which correspond to the phase minima and maxima, 

saddle, and singularity, of the wave function.  Moreover, angular momentum, which 

is an important physical quantity both in classical- [GPS02] and quantum-mechanical 

[BVD65] sys , will naturally arise due to the 2D current flow.   

On the other hand, the analogy between transverse modes emitted from VCSEL 

and wave functions released from quantum billiards has been established and 

experimentally verified in Sec. 4.3.  However, the analogies between paraxial optics 

and 2-D quantum system are not only restricted to the correspondence between 

amplitude distribution and wave function.  For a non-stationary state, the probability 

current is defined by the continuity equation of probability density 

tems

( , , )
( , , )

x y t
j x y t

t


   




                                      (4.4.1

2( , , , , ) |

) 

, where  ( , , )x y t , ( , , )j x y t


 ) | (x y x y t  .  In terms oft  is expressed as  
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*( , , ) Im[ ( , , ) ( , , )]j x y t x y t x y t
m

  
 

.                           (4.4.2) 

ve is related to the amplitude distribution of electric field 

On the other hand, the transverse linear momentum density of a linearly polarized 

quasi-TEM wa  by 

B07] (See Appendix B for a detailed discussion.) 

( , , )u x y z

[Z

*0( , , ) Im[ ( , , ) ( , , )]
2

p x y z u x y z u x y z

  

.                        (4.4.3) 

Since the wave function ( , , )x y t  is analogous to amplitude distribution ( , , )u x y z , 

the probability current density ( , , )j x y t


 has the sim

momentum density ( , , )

ilar behavior as the optical 

p x y z


.  Moreover, the orbital angular momentum (OAM) 

density of the two systems expressed by 

0( , , ) ( ) ( , , )l x y t m r r j x y t  
  

 and 0( , , ) ( ) ( , , )zl x y z r r p x y z   
   

    (4.4.4) 

, resp

rent waves emitted 

from VCSELs has never been investigated.  In this section our aim is to analyze the 

linear and angular momentum densities of the light beam emitted from VCSELs by 

analogously calculating the pr

coherent waves released from quantum billiard. 

have to first deal with

ectively, are also in the same mathematical form.  

     Recent years have been increased attention being given to optical OAM 

[ABSW92, FAAP08] for its wide applications in atom trapping [KTS+97], optical 

tweezers [MRS+99], and optical spanner [SADP97].  Furthermore, OAM of light 

beam can be encoded as qudit and has great potential applications in quantum 

information [MVWZ01].  However, the OAM carried by the cohe

obability current and angular momentum densities of 

j


We    in order to obtain .  By definition,   is 

written as 
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ˆ ˆ, )( , , ) ( , , ) ( ,x x yy t x y t a x y
x y

   
  

 
t a                        (4.4.5) 

Consider the eigenstate of square billiard Eq. (4.2.3), we have 

,1 2n n
i

E t
e

1 2 1 1

2

, 3
( , , ) ( , ; , ) ( , ; , )

4

                                        ( , ; , )

n n n n

n 2
( , ; , )n

x y t H x t k a H x t k a
x i a

G y t k a

     

G y t k a


 

           (4.4.6) 

   

and  

,1 2

1 2 1 1, ( , , ) , ) ( , ; , )

                                        ( , ;

n n
i

E t

n n n n

e
x y t G a G x t k a

y i

H y t




     

2 2

3
( , ;

4

, ) ( , ; , )n n

x t k
a

k a H y t k a    

, where  is given by 



          (4.4.7) 

1
( , ; , )nH x t k a

2 2
1 11

1

2 2 2( , ; , ) n

nH x t k a e e e
t

( , ; ) ( , ; )( / 2) 2n n
a a

i x t k i x t kik x am      
  

 

             



1 1
( , ; , )n nik G x t k a

                                  (4.4.8) 

Hence, the probability current density of a eigenstate released from square billiard an 

be expressed as  

1 2 1 2 1 2

*
, , ,( , , ) Im[ ( , , ) ( , , )]n n n n n nj x y t x y t x y t

m
  

 
                     (4.4.9) 

Fig. 4.4-1 (a)-(f) depict the vector plots o 15,15 ( , , )j x y t


f  with corresponding 

15,15 ( , , )x y t  as background at 0.1Tt  , 0.2T , 0.3T 0.4T , 0.5T , and T , 

respectivel

, 1.0

y.  In the vector plot, the arrows point to the directions of the flow on that 
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position and the length of the arrows is proportional to the strength of the flow.  

From equations (4.2.1) and (4.2.4) we can know that the wave function 15,15 ( , , )x y t  

 such that we have 15,15 ( ,j x ,0) 0y 


 and 

 pattern is led 

is purely real at and 0 t  t  

15,15 ( , , ) 0j x y  


.  It can be clearly seen that the motion of the intensity

re billiard, the OAM density is given by 

by the current flow

For the eigenstate releas

1 2
( , , ) (n nl x y t m



15,15 ( , , )l x y t


 at 

. 

 the squa

.  Fig. 4.4-2 (a)-(f) show the density plots of 

ed from

, , )x y t
1 2

( ,nr  
, 0 ) nr j



0.1t T , 0.2T

olor ded contour 

, 0.3T , 0.4T , 0.5T

plots are given aside with unit in 

, and   1.0T , respectively.

2( / )S , where The scale of the c -co

12 nk
S a t

m
 


 is the tim

tion ax

e-dependen

(negative) value of angular m

rotation with rota is point

t

ome

s to 

 spatial range fo

ndicates a counter

r calculations.  The positive 

-clockwise (clockwise) ntum i

ˆza .   

 anti-symmetric and such that the net OAM computed by 

y                 

is always zero for any .  A fu

density depends on the choice of rotation axis, but the net value 

We can see that the distribution of OAM 

,n nl x

is always

1 2 2
( , , ) ( ,n nl x y t l x dxd 

1, ,| n n 


t

, ) |  y t

rthe

            (4.4.9) 

( , , )y t

r analysis indicates that the distribution of OAM 

1 2
   does 

 

not.  The OAM has such an axis-independent net value was said to be intrinsic 

[CZDV06].  The OAM can be validated to be intrinsic by veri

               

OAM densit  is defined as follow 

fying the relation 

 ( , , ) j x y t dxdy


0 .      

m

                    (4.4.10) 

    One can calculate the OAM spectrum [MTTT02] to further analyze an intrinsic 

y.  The OAM spectru  
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2|( ) | ( , )P a r t   .11) rdr                                          (4.4

, where  

2

0

1
( , ) ( , , ) 

2
ia r t x y t e d



 


  
 .                               (4.4.12) 

2 2r x y   and 1tan ( / )y x 

lications in quantum

.  The wave function should be normalized 

 information [MVWZ01].  Although 

with 

such that ( ) 1



 .  The OAM spectrum is experimental measurable [GCP+04] 

 density depends on t  (or z  for a light beam), the OAM is 

an invariance of t  (or z ) [MTTT02].  Fig. 4.4-3 shows the OAM spectrum of the 

eigenstate 15,15 ( , , )

P 

and has great potential app

the distribution of OAM

x y t .  Since the tate 15,15 ( , )eigens x y  has a / 2  symmetry (i. 

e. the wave-function distributions in the four quadrants are identical), the OAM 

spectrum .  The net OAM can be 

alternatively calculated from OAM spectru

 only has values as   equals to the multiples of four

m by 

1 2, ( , , )  ( ) n nl x y t P




   


     .                              (4.4.13) 

Obviously, we have 0  for the symmetric OAM spectrum and this result is 

consistent with the value calculated by Eq. (4.4.9).  The OAM spectra of all 

eigenstates of square billiard are symmetrically distributed and have their peaks 

centered at .  Hence, all eigenstates have their net OAM to be zero.  As 

revealed by Zambrini and Barnett, it is more accurate to say that the OAM with 

indicator rotation axis for calculating 

OAM density is the dimensionless variance of OAM spectrum [ZB06], which is given 

by 

0

axis-independent net value but axis-dependent density distribution is quasi-intrinsic 

[ZB06].  The of the relevance of the position of 
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2( ) ( ) 0V P




 


    .       

f eigenstate 

                               (4.4.14) 

For the OAM spectrum o ( , , )15,15 x y t , the variance V  is evaluated to 

be 158.7 .  the eigenstate 15,15 ( , , )  Although x y t  do not exist in our experiments, 

our analysis may provide useful information for the chessboard-like patterns emitted 

from phase-coupled VCSEL arrays or photonic resonator crystals [PKM02]. 

The probabil ty curr nt of coherent state , ,
, ( , , )p q

N Mi e x y t  can be expressed as 

, , * , , , ,
, , ,( , , ) Im[ ( , , ) ( , , )]p q p q p q

N M N M N MJ x y t x y t x y t
m

    


                  (4.4.15) 

Since the partial differential operator is linear, we



 have 

, , 1
,

, ( 1 )
0

( , , ) 1
( , , )qN pK pN q M K x y t     


        (4.4.16) 

2

p q M
N M M iK

KM
K

x y t
C e

x x

 






 

and 

    
, , 1
,

, ( 1 )
0

( , , ) 1
( , , )

2

p q M
N M M iK

K qN pK pN q M KM
K

x y t
C e x y t

y y


 



   


 


  .        (4.4.17) 

The vector plots of , ,
, ( , , )p q

N MJ x y t
 with parameters 35N  , 6M  , and 

( , , ) (1,1,0.6 )p q    at 0.1t T , 0.2T , 0.3T , 0.4T , 0.5T , and 1.0T  are 

presented in Fig. 4.4-4 (a)-(f), respectively.  As expected, the current flux displays 

high directionality indicated by the motion classical particle.  The OAM density 

distribution of a coherent state is much interesting and can be easily expected from the 

distribution of current density.  The OAM density of superscar can be expressed as   
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, , , ,
, 0 , )p q p q

N ML x y t m r r J x y t   
  

,( , , ) ( ) ( ,N M 4.4.18) 

The density plots of 1,1,0.6
35,13 ( , , )L x y t

 at 0.1t T

.                           (

 , 0.2T , 0.3T , 0.4T , 0.5T , 

and are presented -  

ic and has a lar

1.0T  

still intrins

 in Fig. 4.4-5 (a)

ge net value 

(f), resp

35,13 ( ,

ectively. 

, )

In this case the OAM is 

1,1,0.6L x y t   

m

num

.  It can be s  illustra t 

erically com

te

puted to be 

4-6 thaabout 60

the coherent state 

 een from

0.6
13 ( , , )

 the OAM spectru d in Fig. 4.

1,1,
35, x y t   has only negative OAM component.  Besides, the 

peak does not center at 0  but shifts to 62  .  

1,1,0.6

The net OAM calculated from 

OAM spectrum has the same value as 35,13 ( , , )L x y t  .  

It can be seen that there are two small peaks embedded in a big peak.  To 

further understand this phenomenon, we show the OAM spectra of the coherent states 

 The OAM variance is

evaluated to be 255.7 .   

1,1,
35,13 ( , , )x y t  with  equals to 0, 0.25  , and 0.5   in Fig. 4.4-7(a’)-(c’), 

 We find that two opposite segments of the perscar will result in one 

h the O M spectrum only ha lues as even 

respectively. 

in whic

 su

 is peak because of the   A s va 

symmetry.  

gene

Since the PO has two pairs of opposite segments, the OAM spectru

 of 

m 

rally has two peaks as shown in Fig. 4.4-7(b’).  In the critical case 0 

 t

, the 

o be 

even.  As / 2

stationary coherent state becomes a standing wave and has its OAM spectrum

  , the two peaks completely overlap and the OAM spectrum only 

has values as   equals to multiples of four due to the / 2  symmetry.  Hence, 

there are actually only two partially overlapped peaks in the OAM spectrum shown in 

Fig. 4.4-6.   

The predominant lasing modes in the broad-area square-shaped oxide-confined 

VCSEL are the superscar modes tha

standing-wave representation of stationary coherent state t   Although 

real, it becom mplex oved  

t are analogously interpreted by the 

, ,
, ( , , )p q

N MC x y .

, ,
, ( , , )p q

N MC x y t  is purely es co as soon as the billiard is rem . 
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The probability current of , ,
, ( , ,p q

N MC x y t )  is given by 

, , , ,
, , ,( , , ) , , ) ( , , )]p q p q

N M N MJc x y t x y t C x y t  


                  (4.4.19) 

, where 

* , ,[ (p q
N MC Im

m



, , , , , ,
, , ,

1
( , , ) ( , , ) ( , , )

2
p q p q p q
N M N M N MC x y t x y t x y t         .            (4.4.20) 

)-(f) ill trate the vector dist utions of , ,
, ( , , )p q x y t

N MJc


Fig. 4.4-8 (a us rib  at 0.1t T , 

0.2T , 0.3T , 0.4T , 0.7T , and 1.0T , respectively.  At 0t T the coherent state 

, ,
, ( , , )p q

N MC x y t  is a standing wave that is composed by two completely overlapped 

traveling waves, one ( , ,
, ( , , )p q

N M x y t ) rotates clockwise and the other ( , ,
, , )p q

N M ( ,x y t ) 

counter-clockwise.  Although the two components begin to split as the coherent state 

, ,
, ( , ,p q

N MC x y t ased, they still partially overlap in some regions.  In these 

overlapped regions, the currents of the two traveling-wave ponents interfere and 

destroy each other.  As the time 2 /t ma  , the two components start to merge.   

On the ot

)  is rele

com

her hand, th  of t can be expressed as  e OAM density

, 0 N M

, ,
, ( , , )p q

N MC x y  

, , , ,( , , ) ( ) ( , , )p q p qLc x y t m r r Jc x y t   
 

,N M

 

Fig. 4.4-9 (

                          (4.4.21) 

a)-(f) depict the distribution of 1,1,0.6
35,13| ( , , ) |Lc x y t

 at 0.1t T , 0.2T , 

0.3T , 0.4T , 0.7T , and tively.  Sinc1.0T , respec e , ,
, ( ,p q

N MC x , )y t  is composed by 

, ,
,

p q
N M ( , , )x y t  and , 1,1,0.6

35,13| ( , , )Lc x y t |


 will natu

 OAM spectr

rally be

a of

, ,
, ( , , )p q

N M x y t  

 

anti-symmetr

OAM spectrum

, , )

ically distributed and has a zero net value. 

, , ( , , )C x y t  

 As shown in Fig. 4.4-10, the 

 of ,
p q
N M is just a combination of

, ,
, (p q

N M x  and , ,
, )p q

N M ( , ,x y t .   y t However, such a OAM spectrum had a variance 
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as large as .   

The zero net value and large variance of OAM make the

by t  have less applications.  However, Zou and Mathis recently 

light beams with differen

onent [ZM05].  If such a device

decom ing-wave t into two traveling waves 

3718

( , , )y

p

pose the stand

 lasing modes interpreted 

, ,
,

p q
N MC x

OAM com

proposed a scheme for OAM beam splitter to separate t 

 can be realized, we can employ it to 

, ,
,

, ,
,( , , )p q

N MC x y  ( , , )p q
N M x y t  

, ,
, ,p q

N Mand ( , )x y t

, )

.  The ligh  with their lasing mode inter  t beam preted by

( ,, ,
,

p q
N M x y t  

applications.   

In the abov



directions.  For the chaotic wave function ( , , )chaos

 has its OAM as shown in Figs. 4.4-5 and 4.4-6 to be m

for 

e three regular cases, the probability currents all flow in definite 

ore convenient 

x y t , the current flux becomes 

much complicated.  We first write down the expression of probability current 

( , , ) Im[ ( , , ) ( , , )]chaos chaos chaosj x y t

( ,

x y t x y t
m

  
 

                   (4.4.22) 

By the principle of superposition, we have  

( , )
1 2 1 2

1 2

, ,)chaos n n n n
n n

x y    C x y .                          (4.4.23) 

Fig. 4.4-11 (a)-(f) display the vector plots of ( , , )chaosj x y t


 at 0.1t T , 0.2T , 

0.4T , 0.55T , 0.8T respectively.  Unlike the regular current flows, 

ectors mly distributed flux.  In order to make a more 

explicit vis tion o

, and  

r hibit

f t, the zoom  three  

1.5T ,

 rando

 the curren

the cu

chaos

rent v

ualiza

ex

-in views of  small regions of

j ( , ,0.1 )x y T  are shown in Fig. 4.4-12 (b)-(d).  Strikingly, several pronounced 

vortices are induced in the current flux as the chaotic wave function is released.  

Such discrete vortices have been widely observed in Bose-Einstein condensate 

[MAH+99], superfluid [MFDM03] and Type-II superconductor films [MFDM03].  


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The length of the vectors has been modified by setting 0.9' / | |j j j
  

 to enhanced the 

vortex structures.  As discussed in Sec. 1.3, the vortices in probability current 

essentially correspond to the phase singularities of the com  In order 

to verify the vortices, we draw the contour plots of the phase 

plex scalar field. 

 

( , , ) arg[ ( , , )]chaosx y t x y t                                     (4.4.24) 

and show them as backgrounds of the vector plots for a convenient comparison.  The 

contour plot is color-coded with red and purple corresponding to 2  and , 

respectively.  The singularities are at the points wh

white and black curves in the contour pl

imaginary parts of wave function, respectively.  e ection  

. i

singularities more quickly and accurately.   

out the singularities with topological charges equal to 

0

s

nd the 

ere all colors get together.  The 

ots stand for the nodal lines for real and 

By the definition, th

 This result can help us

 inters

 to fof white and black curves are singularities

The red squares and pink triangles point

1  and 1 , respectively.  It 

can be easily checked that the clockwise and count -clockwise vortices are 

ities.  analysis wel

demo trates t  sign at th

labeled by “1, 2

er

 Besides, ourcoincident with the positive and negative singular l 

ns he rule th e nearest neighbor singularities on any contour of 

constant phase are required to have opposite signs [Freu95].   

    The minute feature of vortices and phase singularities in the small regions 

, and 3” in Fig. 4.4-13(a) of ( , ,0.2 )chaosj x y T


 are displayed in Fig. 

4.4-14(b)-(d), respectively.  From the figures, we can find that both the spatial 

density and size of vortices decreases as the distance from the origin increases.  This 

result arises from the fact that all the currents flow out of originally-confined region in 

a radial way.  Therefore, we suggest that the vortices y interference of 

the many randomly-oriented currents that is still inside the originally-confined region.  

This phenomenon becomes more obvious as t  increases.  Fig. 4.4-14(b)-(d) depict 

the vector plots of ( , ,0.4 )chaos

are formed b

j x y T


 in the small regions marked in Fig. 4.4-14(a).  

It can be seen that there is no vortex in the region shown in Fig. 4.4-14(d).  As the 

wave completely leaves the originally-confined region, all currents are radially 
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flowing and the vortices become trivial. 

    For the chaotic wave funct

calculated by  

)

ion released from the billiard, the OAM density is 

0( , , ) ( ) ( , , )chaos chaosl x y t m r r j x y t  
  

.                            (4.3.21  

The density plots of | ( , , ) |chaosl x y t


 at 0.1t T , 0.2T , 0.4T , 0.55T , 0.8T , 

and 1.5T  are illustrated in Fig. 4.4-15 (a)-(f), respectively.  We can see that the 

chaotic wave function has very complicated OAM density.  Such a complex OAM 

density is validated to be intrinsic and has a zero net value.  Since the chaotic wave 

function ( , , )chaos x y t  is composed by eigenstates with ficient, 

the OAM spectrum of ( , , )chaos

 real expansion coef

x y t  is still symmetrically distributed as displayed in 

Fig. 4.4-16.  Due to the intricacy of the OAM spectrum, the OAM variance of 

( , , )chaos x y t  has an extremely large value of 2576.  As revealed by the Zambrini 

and Barnett, this large variance of OAM is probably resulted from the formation of 

off-axis vortices as those shown in Figs. 4.4-12, 4.4-13, and 4.4-14. 
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(a) 

(c) (f)

(d)

(b) (e)

Fig. 4.4-1. (a)-(f) The vector plot of 15,15 ( , , )j x y t


 at 0.1t T , 0.2T , 0.3T , 

0.4T , 0.5T , and 1.0T , respectively. 
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Fig. 4.4-2. (a)-(f) show the density plots of 15,15 ( , , )l x y t


 at 0.1t T , 0.2T , 

0.3T , 0.4T , 0.5T , and 1.0T , respectively. 
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Fig. 4.4-3. The OAM spectrum of 15,15 ( , , )x y t . 
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(a) 

(b) 

(d)

(c) 

(e)

(f)

Fig. 4.4-4. (a)-(f) The vector plot of 1,1,0.6
35,13 ( , , )J x y t

 at 0.1t T , 0.2T , 

0.3T , 0.4T , 0.5T , and 1.0T , respectively. 
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Fig. 4.4-5. (a)-(f) The density plots of 1,1,0.6
35,13 ( , , )L x y t

 at 0.1t T , 0.2T , 

0.3T , 0.4T , 0.5T , and 1.0T  are presented in Fig. 4.3-9 (a)-(f), 

respectively. 

(a)

(b)

(d)

(c)

(e)

(f)

2
625 ( )

S




0

2
845 ( )

S




0

2
1425 ( )

S




0

2
3820 ( )

S




0

2
2395 ( )

S




0

2
1935 ( )

S




0
(a)

(b)

(d)

(c)

(e)

(f)

2
625 ( )

S




0

2
1935 ( )

S




0

0

2
845 ( )

S



2

2395 ( )
S




0

2
1425 ( )

S




0

2
3820 ( )

S




0

133 



Ch4 Transient Dynamics of Coherent Waves Released from Quantum Billiard: 
    Analogous Studies on the Propagation of Lasing Modes Emitted from VCSELs 

 

Fig. 4.4-6. The OAM spectrum of 1,1,0.6
35,13 ( , , )x y t . 
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Fig. 4.4-7. (a)-(c) The intensity patterns of 1,1,
35,13 ( , , )x y t  with 0  , 0.25 , 

and 0.5 , respectively; (a’)-(c’) The OAM spectra of the coherent states 

shown in (a)-(c), respectively. 
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(a) 

 

(d)

(c) 

(e)

(f)

(b)

Fig. 4.4-8. (a)-(f)The vector pl 1,1,0.6ot of 35,13 ( , , )Jc x y t


 at 0.1t T , 0.2T , 

0.3T , 0.4T , 0.7T , and 1.0T , respectively. 
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Fig. 4.4-9. (a)-(f)The density plots of 1,1,0.6
35,13 ( , , )Lc x y t
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Fig. 4.4-10. The OAM spectrum of C x1,1,0.6
35,13 ( , , )y t . 
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(f)

Fig. 4.4-11. (a)-(f) The vector plot of ( , , )chaosj


 at 0.1t Tx y t  , 0.2T , 

0.4T , 0.55T , 0.8T , and 1.55T , respectively. 
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Fig. 4.4-12. (a) The vector plot of ( , ,0.1 )chaosj x y T


. (b)-(d) Zoom-in views of 

small regions marked by the hollow squares in (a). Backgrounds are the 

unctions. corresponding contour plots of phase f
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Fig. 4.4-13. (a) The vector plot of ( , ,0.2 )chaosj x y T


. (b)-(d) Zoom-in vi

small regions marked by the hollow squares 

ews of 

in (a). Backgrounds are the 

corresponding contour plots of phase functions. 
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Fig. 4.4-14. (a) The vector plot of ( , ,0.4 )chaosj x y T


. (b)-(d) Zoom-in views of 

 squares in (a). Bsmall regions marked by the hollow ackgrounds are the 

corresponding contour plots of phase functions. 
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Fig. 4.4-15. (a)-(f) The density plot of ( , ,chaosl x y )t


 at 0.1t T , 0.2T , 

0.4T , 0.55T , 0.8T , and 1.55T , respectively. 
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Fig. 4.4-16. The OAM spectrum of ( , , )chaos x y t . 
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Chapter 5  

Vector Fields and Vector  

Singularities in VCSELs  
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    In chapter3 we have shown many interesting near-field patterns observed at 

threshold currents.  However, the presented experimental results are restricted to 

linear polarization.  Unlike EEL has unipolarization, VCSEL has a more intriguing 

polarization state to the birefringence and isotropic gain region.  VCSEL typically 

emits linearly polarized light field in one direction at near-threshold current.  As the 

injection current increases, one common condition is that two orthogonal linear 

polarization states independently coexist.  In this case the wavelengths of two 

polarization states are different.  Besides, this condition is easy to operate in 

multi-mode lasing that will result in cloudy pattern.  Another interesting 

phenomenon is the polarization switching, the lasing polarization state switches to the 

perpendicular one [AS01, MFM95, vEWW98] as the injection current increases.  

Here a third circumstance that has the transverse patterns to be polarization-entangled, 

i. e. it has different morphology at different polarization angles, is concerned.  In fact, 

this phenomenon corresponds to the formation of vector field which has been widely 

studied in various laser systems [[Gil93, VKMR01, CLH06, LCH07], as well as in 

VCSELs [Erdo92, PTMA97, CHLL03b].  Since the near-field pattern that is 

analogous to quantum-billiard wave function is purely real, VCSELs can be employed 

to manifest vector singularities.  Vector singularities are isolated, stationary points in 

a plane at which the orientation of the electric field of a real vector field becomes 

undefined.  Vector singularities as well as phase singularities play a vital role in 

singular optics.   

This chapter is organized as follows.  In first section we present a 

polarization-entangled pattern associated with two superscars modes in a square 

shaped VCSEL.  We reconstruct the patterns in two orthogonal polarization states by 

SU(2) coherent states to manifest the vector field and vector singularities.  Similar 

experimental method as that in Sec. 5.1 is applied to originally generate a chaotic 

vector.  By using the eigenfunction expansion technique, the vector field is 

reconstructed to unambiguously analyze the vector singularities embedded in a 

chaotic vector field.  Since the polarization of light corresponds to the spin of 
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quantum wave, the analyses of the vector fields in VCSELs can provide important 

information for quantum-billiard systems (such as ballistic quantum dots) with 

consideration on electronic spin. 

 

 

5.1 Vector Fields in Square VCSEL 

     

As revealed in the introduction of this chapter, the near-threshold lasing modes 

of VCSELs are usually linearly-polarized and VCSELs can simultaneously lase in two 

polarizations when injection current increase.  However, the increase of injection 

current tends to lead to multi-mode lasing and result in cloudy pattern.  Since the 

threshold current of VCSEL varies with device temperature, we can alternatively 

make the lasing thresholds of two orthogonally polarized modes to be nearly the same 

by means of adjusting the operating temperature.  The temperature dependence 

shown in Fig. 3.3-3 (a) of one square VCSEL has neglected the polarization of the 

lasing modes.  Fig. 5.1-1(b) shows the polarization-resolved temperature dependence 

of threshold currents of another VCSEL.  It can be found that the two polarizations 

simultaneously lase at temperatures around  295  and .  The 0  of the 

polarization is along the [110] direction of the (001)-GaAs crystal, as illustrated in Fig. 

5.2-1(a).  Fig. 5.1-2 (a)-(d) present the lasing patterns at temperature of  in 

, , , and , respectively.  It can be seen that the patterns in  and 

 have different morphology and the patterns in  and 

K

45

255K

45



295K

00

90

45 90 45
   are just the total 

intensity pattern that can be observed by removing the polarizer, as shown Fig. 

5.2-2(e).  Notice that the wave lengths of the two polarizations at  and  are 

measured to be different.   

0 90

To understand this result, we can express the wave amplitude at arbitrary 

polarization angle   by the phasor amplitude at  and  0 90
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1
0 90( , , ) ( , ) cos ( , )sini t i tE x y t E x y e E x y e 2 

    .                   (5.1.1) 

The intensity is then given by  

2( , , ) | ( , , ) |I x y t E x y t 
 

2 2 2 2
0 90| ( , ) | cos | ( , ) | sinE x y E x y    

1 2 2 1( ) ( )* *
0 90 0 90

sin 2 sin 2
( , ) ( , ) ( , ) ( , )

2 2
i t i tE x y E x y e E x y E x y e      

 (5.1.2) 

The experimental patterns are actually time-averaging observations 

2 2 2 2
0 90( , , ) | ( , ) | cos | ( , ) | sinI x y t E x y E x y    

 

1 2

2 1

( )*
0 90

( )*
0 90

sin 2
( , ) ( , )

2
sin 2

( , ) ( , )
2

i t

i t

E x y E x y e

E x y E x y e

 

 









  

  

2

                   (5.1.3)                

For the condition that 1 

45

, the time average of the oscillating term  

results in zero such that the interference term vanishes.  Therefore, the observed 

patterns in  and  are just the total intensity pattern.  However, if 

1 2( )i te   

1 245    

then the orthogonally polarized components can mutually interfere to lead to various 

patterns in other polarizations. 

Fig. 5.1-3 (a) and (c) show the polarization resolved near-field patterns in  

and  at operating temperature of .  It can be seen that the patterns in  

and  are no longer the total intensity pattern (Fig.5.1-3(e)) and have greatly 

different morphologies, as presented in Fig.5.1-3(b) and (d).  In other words, the 

pattern is linearly polarized, but the polarization is not the same for different spatial 

points.  In contrast to the case at , the measurement of the optical spectrum 

indicates that the orthogonal polarization modes have the same wavelength.  As 

0

4590

45

255K

295K


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mentioned in the previous discussion, the fact that orthogonal polarization modes are 

phase synchronized to a common frequency is a basic requirement for a polarization- 

entangled pattern.  From Eq. (5.1.1) we can see that, for the two polarization state 

with the same frequency ( 1 2 

9ˆ ( ,

), the phasor amplitude of the total field can be 

written in form of vector field 

    0 0( , ) ( , ) ) ˆ x yE x y E x y a a 


E x y

45

.                               (5.1.4) 

To understand the vector field and manifest vector singularities, we have to find 

the wave functions of lasing modes in two orthogonal polarizations as basis.  In this 

case the lasing modes in  and 45  are easier to reconstruct.  Based on 

thorough numerical analysis, the lasing modes in  and 45 45  can be well 

reconstructed by the SU(2) coherent states 1,
45 23) 11,0.6 )C 1( , ;x y( ,E x y   and    

1,1
45 23( , ) ( , ;11,0.E x y C x y 3 )  , respectively.  The reconstructed patterns are 

displayed in Fig. 5.1-4 (b) and (d).  In terms of the two bases, the whole vector field 

can be expressed as 

45 45 45( , ) ( , ) )E x y E x y a a 


45ˆ ( ,E x y ˆ ,                             (5.1.5) 

with 45

ˆ ˆ
ˆ

2
x ya a

a


  and 
ˆ ˆ

2
x

45ˆ yaa
a






 to be unit vector in  and , 

respectively.  The patterns in 0  and  can be obtained by projecting the vector 

field into 

45 45

90

x   and  directions: y 

0 45

1
ˆ( , ) ( , ) [ ( , ) ( , )]

2
xE x y E x y a E x y E x y   


45

;                   (5.1.6) 

90 45 45

1
ˆ( , ) ( , ) [ ( , ) ( , )]

2
yE x y E x y a E x y E x y   


.                  (5.1.7) 

The similarities between Fig. 5.1-3 (a)-(d) and Fig. 5.1-4 (a)-(d) verify our theoretical 
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reconstruction of the experimental results.  Note that the formations of  and 

 are critically depended on  and .  Only if  

and  really match the experimental results, one can well reconstruct 

 and . 

0 ( , )E x y

45E x90 ( , )E x y

45

0 ( , )E x y

45 ( , )E x y 45 ( , )E x y ( , )y

( , )E x y

90 ( , )E x y

The vector singularities are generally described by the orientation angle function:  

0 90( , ) [ ( , ), ( , )]x y angle E x y E x y                        (5.1.8) 

The vortices of the angle function ),( yx  correspond to the vector singularities at 

which the orientation of the electric field vector is undefined.  Figure 5.1-5(a) depicts 

the numerical pattern of the angle function ),( yx  for the experimental vector field.  

Here the angle is color-coded by hue and the singularities are at the points where all 

colors get together.  A small region highlighted by white square area with edge equal 

to  of the vector field is depicted in Fig. 5.1-5(b) to demonstrate the novel 

lattice structure of the vector singularities.  The white and black curves stand for the 

nodal lines of  and , respectively.  It can be validated that the 

crossings of white and black curves coincide with the singularities at which all color 

get together.  Besides, it is of pedagogical importance to confirm the sign rule that 

the nearest neighbor singularities on any contour of constant phase are required to 

have opposite signs [Freu95]: The singularities with topological charge  and 

/10a

0 ( , )E x y 90E x( , )y

1 1  

are labeled by white squares and black triangles, respectively.  Furthermore, the 

vector field distribution in this region is manifested in Fig. 5.1-5(c).  It can be seen 

that the singularities with topological charge equal to 1  correspond to saddle points 

of the vector flow and those with topological charge equal to 1  are all vortices, no 

source or sink point are found in our thorough analysis.   
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0° 

Fig. 5.1-1. (a) Reference of the polarization angle (b) The threshold currents of 

the two polarizations.  Simultaneous lasings occur at temperatures around 

295K  and 255K . 
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(a) (b) 

(c) (d) 

(e) 

Fig. 5.1-2. (a)-(d) The lasing patterns in , , , and 0 45 90 45  and (e) The 

total intensity pattern observed at . 295K
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(a) (b) 

(c) (d) 

(e) 

Fig. 5.1-3. (a)-(d) The lasing patterns in , , , and 0 45 90 45  and (e) The 

total intensity pattern observed at . 255K
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(c) (d) 

Fig. 5.1-4. (a)-(d) The reconstructed patterns of Fig. 5.2-3(a)-(d), respectively. 

(b) (a) 
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(a) 

(b) (c) 
0 

2π 

a

Fig. 5.1-5. (a) The contour plot of the angle function ( , )x y . (b) Zoom-in 

view of the small regions highlighted by the white square. (c) The vector plot 

of the polarization vector with vortices and saddles labeled by “＋” and “－” 

signs, respectively.  
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5.2 Chaotic Vector Field in VCSEL 

 

As well as that have been discussed in last section, the features of the vector 

singularities have been experimentally observed in laser modes with the interrelated 

behavior of spatial structures and polarization states [Gil93, VKMR01, CLH06, 

LCH07, Erdo92, PTMA97, CHLL03b].  However, so far all experimental 

demonstrations were related to the regular lasing modes of integrable optical cavities; 

no experiments have demonstrated explicitly the entanglement of polarization and 

spatial structures in chaotic laser resonators.  In this section we use the VCSEL that 

is similar to that used in Sec. 3.4 to generate the 2D chaotic vector fields. 

Figures 5.2-1(a) and (b) show the polarization-resolved near-field patterns with 

operating temperature of T=265 K, the threshold current of I=26.9 mA, and 

polarizations in 0° and 90° directions, respectively.  The orthogonally polarized 

modes clearly exhibit to have remarkably distinct chaotic patterns.  The 

measurement of the optical spectrum indicates that the whole experimental wave is 

phase synchronized to a single frequency at 806.45 nm.  As a consequence, the 

orthogonally polarized components can mutually interfere to lead to a greatly different 

pattern in the polarization resolved near-field image, as shown in Fig. 5.2-1 (c) for 45° 

polarization and Fig.5.2-1 (d) for -45° polarization.  Explicitly, the entanglement of 

spatial structures and polarization states lead to the formation of an optical vector field.  

We investigated the dependence of the 2D chaotic vector field on the operating 

parameters, and it turns out that the experimental vector field remains unchanged for 

262.5 K < T < 267.5 K and for 26.9 mA < I < 27.6 mA.  The width of these ranges 

indicates that generation of 2D chaotic vector fields is a robust phenomenon.  To our 

best knowledge, the present result proffers the first experimental realization of 2D 

chaotic vector fields in a microcavity laser. 

Since it is not feasible to measure polarization vector fields in a straightforward 

way, the reconstruction of the orthogonally polarized wave functions is practically 
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useful for analyzing the property of vector singularities. We use the same 

eigenfunctions expansion method as that described in Sec 3.4 to reconstruct the 

polarization resolved patterns.  Figures 5.2-2(a) and 5.2-2(b) depict the patterns of 

|),(| jip yx  for two orthogonally polarized modes shown in Fig. 5.2-1(a) and 

5.2-1(b), respectively.  Figures 5.2-3(a) and 5.2-3(b) show the intensity plots of 

 obtained from Eq. 3.4-5 for the experimental polarization-resolved modes at 

0° and 90°, respectively.  Figures 5.2-4(a) and (b) depict the wave patterns of the 

analytical wave functions corresponding to the experimental polarization-resolved 

modes at 0° and 90°, respectively.  It can be clearly seen that the experimental 

polarization-resolved patterns are well-reconstructed with the analytical wave 

functions. 

1 2,| |n nC

Let  and  denote the polarization-resolved wave functions at 

0° and 90°, respectively.  In terms of   and , the vector field 

distribution for the experimental pattern is given by 

0 ( , )E x y 90 ( , )E x y

0 ( , )E x y 90 ( , )E x y

0 90ˆ ˆ( , ) ( , ) ( , ) x yE x y E x y a E x y a 


.                         (5.2.1) 

With the vector field  the polarization-resolved wave functions at 45° and -45° are 

given by 

E


45 0 90

1
( , ) ( , ) ( , )

2
E x y E x y E x y                                 (5.2.2) 

and 

 45 0 90

1
( , ) ( , ) ( , )

2
E x y E x y E x y  

.                         (5.2.3) 

Figures 5.2-4(c) and 5.2-4(d) depict the numerical results for the intensity patterns of 

 and 2
45 |),(| yx 2

45| ( , ) |x y , respectively.  The good agreement between the 

numerical and experimental patterns evidences the accuracy of the reconstructed wave 

function in representing the observed vector field. 
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To further validate the experimental observation to be a chaotic vector field, we 

use the reconstructed wave functions to calculate the amplitude and intensity 

distributions.  For the chaotic wave function of Berry’s conjecture, the amplitude 

distribution is a Gaussian function (Eq. 2.3-2) and the intensity distribution is shown 

to be a Porter-Thomas distribution (Eq. 2.3-3).  Figures 5.2-5 (a)-(b) show the 

amplitude distributions of the reconstructed wave functions with polarizations in , 

, , and , respectively.  In addition, 5.2-6 (a)-(b) illustrate and intensity 

distributions corresponding to Fig. 5.2-5 (a)-(b), respectively.  All amplitude and 

intensity distributions of the polarization-resolved wave functions are found to be 

fairly good agreement with the theoretical distributions. 

0

90 45 45

With the reconstructed vector field we can do the similar process as what has 

been done in last section to analyze the properties of vector singularities in the chaotic 

case.  The angle function is again employed to describe the vector singularities:  

 0 90( , ) ( , ), ( , )c x y angle E x y E x y  .                   (5.2.4) 

Figure 5.2-7(a) depicts the numerical pattern of the angle function ( , )c x y  for the 

experimental vector field.  Different from the lattice structure of regular vector field, 

the chaotic polarization vector field is clearly seen to reveal a highly sophisticated 

interlace pattern.  Fig. 5.2-7(b) is the zoom-in views of the central region with edge 

length equal to .  Although the singularities are randomly distributed, the sign 

rule of the nearest neighbor singularities is still obeyed.  The polarization vectors of 

the chaotic field as show in Fig. 5.3-7(c) become very intricate.  However, one can 

still find that the singularities with 

/10a

1  topological charge are all vortices.   

As mentioned by Freund [Freu95], the phase of a chaotic wave with real and 

imaginary parts to be  and  is identical to the orientation phase 

shown in Fig. 5.3-7(a).  In fact such a complex chaotic wave function does exist.  

The vector field expressed as eq. (5.2.1) can be decomposed into a linear combination 

of orthogonal circularly-polarized helical modes  

0 ( , )E x y 90 ( , )E x y
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ˆ( , ) ( , ) ( , ) R R LE x y E x y a E x y a 


ˆL                                (5.2.5) 

, where  

0 90( , ) [ ( , ( , )] / 2RE x y E x y iE x y                                 (5.2.6) 

, and  

0 90( , ) [ ( , ( , )] / 2LE x y E x y iE x y  .                              (5.2.7) 

ˆ ˆ ˆ ( ) /R x ya a ia  2  and ˆ ˆ ˆ ( ) /L x ya a ia  2  are the helical basis unit vectors for 

the right- and left-handed circular polarizations, respectively.  Hence, the phase 

function of  is completely the same as ( , )RE x y ( , )c x y .  In addition to 

singularities, it is also meaningful to analyze the critical points in ( , )c x y .  Based 

on the thorough numerical analysis, it is found that all saddle points are manifestly 

found to be open saddles with no joined arms.  In other words, no phase extrema are 

observed in the experimentally generated random phase filed.  This result is 

consistent with the theoretical analysis that the phase extrema are really rare because 

there is little room left in the phase field to accommodate them [Freud95].  Since the 

circular polarization of light corresponds to the spin of quantum wave, the analyses of 

( , )c x y  can provide important information for chaotic quantum-billiard systems 

(such as ballistic quantum dots) with consideration on electronic spin. 
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Fig. 5.2-1. Experimental polarization-resolved near-field patterns observed at 

the operating temperature of T=265 K with polarization in (a) 

0°(perpendicular) (b) 90° (horizontal) (c)45° (d)135°. 

(c) (d) 

(b) (a) 
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(a) (b) 

Fig. 5.2-2. (a) and (b) Intensity plots of the positive wave functions 

|),(| jip yx  for experimental results shown in Figs. 5.2-1(a) and 5.2-1(b), 

respectively. 
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(a) (b) 

n1 n1 

n2 n2

Fig. 5.2-3. (a) and (b) Distribution of the coefficients  obtained by Eq. 

(3.4.6) for experimental results shown in Figs. 5.2-1(a) and (b), respectively. 

,| |m nC
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Fig. 5.2-4. (a)-(d): Reconstructed patterns with the eigenfunction expansion 

method for experimental results shown in Fig. 5.2-1(a)-(d), respectively. 

(c) (d) 

(b) (a) 
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(a) 

Fig. 5.2-5. Amplitude distributions of the polarization-resolved wave functions 

(blue step lines) for experimental results shown in Fig. 5.2-1(a)-(d), 

respectively. Red lines: Gaussian distributions (Eq. (2.3.2)). 
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Fig. 5.2-6. Intensity distributions of the polarization-resolved wave functions 

(blue step lines) for experimental results shown in Fig. 5.2-1(a)-(d), 

respectively. Red lines: Porter-Thomas distributions (Eq. (2.3.3)). 
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(a) 

(b) (c) 

2π 

0 

a

a/10

Fig. 5.3-7. (a) The contour plot of the angle function ( , )C x y . (b)-(c) 

Zoom-in view of the two small regions with the hollow circles on the 

singularities.
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Chapter 6  

Summary and Future Work 
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6.1 Summary 

 
    In this work we have studied the analogies between high-order transverse modes 

of VCSELs and mesoscopic wave functions of quantum billiards in several aspects.  

In chapter2 we first introduce the mesocopic wave functions of square, 

equilateral-triangular, and chaotic billiards.  The properties of chaotic system are 

demonstrated by means of various eigenstates of stadium billiard.  In Sec. 2.3, it can 

be found that the low-order eigenstates of stadium billiard are just similar to that of 

rectangular billiard.  However, the highly-excited eigenstates can be random patterns 

or scars.  The two kinds of high-order eigenstates correspond to the classical ergodic 

trajectories and unstable PO, respectively.  However, as illustrated in sections 2.1 

and 2.2, the eigenstates of regular billiards do not have corresponding classical 

properties.  This inconsistence with Bohr’s correspondence for regular eigenstates 

has long been overlooked.  In sections 2.1 and 2.2 we develop the stationary 

coherent states to generate the so-called superscars, wave functions localized on the 

stable POs, of square and equilateral-triangular billiards, respectively. 

    With the analytic expressions of superscars, we can reconstruct the lasing modes 

observed in VCSEL.  Sec. 3.3 presents the typical near-field lasing modes of the 

square-shaped VCSEL.  The agreement between theoretical patterns and 

experimental results confirm the analogy between near-field transverse modes of 

VCSELs and mesoscopic wave functions of quantum billiards.  We claim that the 

formation of superscar modes arises from natural imperfection of the real device.  In 

Sec. 3.4 we fabricate a rippled-squared VCSEL that is analogous to the ripple billiard 

by selective oxidization to generate chaotic modes.  Besides, we develop a method of 

eigenfuntion expansion to reconstruct the wave functions of the chaotic lasing modes.  

With the reconstructed wave functions, we can test the statistical properties of 

experimentally generated chaotic wave functions.  Unlike square VCSEL, in Sec. 3.5 
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an equilateral-triangular shaped VCSEL are shown to exhibit mixed properties of 

regular and chaotic systems with no deliberate perturbation.  According to this result, 

we suggest that spontaneous symmetry breaking due to natural imperfection can lead 

to the emergence of superscar as well as chaotic modes in the integrable but 

non-separable systems. 

    The analogies are not only between near-field patterns and stationary wave 

functions but also between free-space propagation of transverse modes of VCSELs 

and free time evolution of waves suddenly released from quantum billiards.  In Sec. 

4.2 we first theoretically investigate the transient dynamics of various wave functions 

released from square billiard.  From our analysis, it can be seen that regular and 

chaotic wave functions have quite different behaviors.  The interesting time 

evolutions are analogously observed from the free-space propagations of lasing modes 

emitted from VCSELs.  Since the optical OAM density has the same mathematical 

form as quantum OAM density, we can analyze the OAM carried by the light beams 

emitted from VCSELs by means of calculating the quantum OAM of abruptly 

released quantum-billiard wave functions.  Although the superscar mode generated 

by VCSEL is a standing wave and caries zero net OAM, it can be decomposed to two 

counter-traveling parts which have distinct OAM components and both carry large net 

OAM.  Based on the OAM beam splitter, we propose a scheme to generate light 

beams carrying large OAM.  Besides, temporary vortices formations are found in the 

time evolution of the chaotic wave function that is suddenly released from quantum 

billiard.  The embedded vortices result in a complex OAM spectrum of chaotic 

modes and a large OAM variance that is an indicator for the quasi-intrinsic character.  

Moreover, according to the presented analysis, we suggest that the VCSELs can be 

employed to generate optical vortices by just slightly defocusing the objective lens. 

    Due to the isotropic gain region and birefringence, the lasing modes of VCSELs 

are not necessarily be linearly-polarized as considered in chapter3 and chapter4.  The 

final part of this thesis deal with the near-field transverse modes that form the vector 

fields, in which the polarization is spatially dependent.  In Sec. 5.1, a vector field 

associated with two superscars is observed in a square VCSEL.  With the stationary 
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coherent states developed in chapter2, we reconstruct the vector field and analyze the 

vector singularities contained.  The vector vortices are shown to locally make up a 

lattice structure.  Quite different from the regular vector field, the orientation phase 

structure of the vector field comprising two chaotic modes presents a random 

distribution of vector singularities.  However, we do not find any phase extremum in 

such a complicated phase structure.  Since optical polarization corresponds to the 

electronic spin, the analyses of the vector fields in VCSELs can provide important 

information for quantum-billiard systems (such as ballistic quantum dots) with 

consideration on electronic spin. 
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6.2 Future Works 

 
    One of our aims in this thesis is to study the singularities embedded in the lasing 

modes emitted from VCSELs.  Although the near-field amplitude distribution is 

purely real and contains no singularities, we showed that the amplitude distribution 

becomes complex scalar field as soon as the light beam propagates out of the laser 

cavity and carries phase singularities.  On the other hand, the vector singularities 

existing in the real vector field formed by two near-field transverse modes of VCSELs 

have also been explored.  However, the most general state of optical field is the 

complex vector field which can be achieved by the propagation of the real vector field 

in near field.  In the complex vector field, the light field is generally 

elliptically-polarized but the polarization is spatially dependent.  There are two 

special conditions of Stokes singularities, C lines and L surfaces [Freu01], in complex 

vector field.  C lines in a light beam are the locations at which the orientation of 

major and minor axes of the ellipse becomes undefined, i. e. the light field becomes 

circularly-polarized.  On L surfaces the field is linearly-polarized and the handedness 

of the ellipse is undefined.  In the transverse section of a light beam, C lines present 

as isolated points and L surfaces reduce to continuous lines.  Our future researches 

will be devoted to explore the polarization singularities [Nye83, SDE04, Berr04] in 

the complex vector fields generated by VCSELs. 
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Appendix A 

Diffraction in Time: Moshinsky’s Shutter Problem 

 
Consider the following shutter problem proposed by Moshinsky: A 

monochromatic non-relativistic particle beam with kinetic energy 2 2
0 0 / 2E k m  , 

moving parallel to the x -axis, incidents on a completely absorbing shutter placed at 

, as illustrated in Fig. 1.2-1.  If the shutter is suddenly opened at , what 

will be the transient particle current observed at a distance behind the shutter?  The 

problem implies to solve the Schrödinger equation 

0x  0t 

2

2
( , ) ( , )

2
i x t x

t m x
 

 
 

 t                                     (A.1) 

with initial condition 

0exp( )  0
( ,0)

0 

ik x if x
x

otherwise



 


.                                     (A.2) 

For a free particle, the time-dependent wave function can be spanned by plane waves 

( )
( , ) ( )

E
i kx t

x t k e dk






   .                                       (A.3) 

At  Eq. (A.3) becomes 0t 

( ,0) ( ) ikxx k e dk




                                            (A.4) 
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which implies that  is the Fourier component of initial condition and can be 

obtained by inverse Fourier transform 

( )k

'1
( ) ( ',0) '

2
ikxk x e








   dx .                                     (A.5) 

To achieve a more general expression we preserve the integral to the final step 

and first replace the  in Eq. (A.3) by Eq. (A.5) ( )k

( )'1
( , ) [ ( ',0) ']

2

E
i kx tikxx t x e dx e dk 



 


 

    .                         (A.6) 

In this problem we apply the dispersion relation 
2 2

2

k
E

m



 and rearrange the integral 

21
( , ) ( ',0){ exp[ ( ') ] } '

2 2

k
x t x ik x x t d

m
k dx 



 

 

   


.                (A.7) 

After some algebra and a Gaussian integral, Eq. (A.7) becomes 

2( ')
( , ) ( ',0)exp[ ] '

2 2

m im x x
x t x

i t t
dx 








  

.                      (A.8) 

Notice that 
2( ')

exp[ ]
2 2

m im x x

i t t


 
 is just the propagator of free particle.  

Moreover, this equation is similar to the formula of 1D Fresnel diffraction [Good05] 

    
2( ')

( , ) ( ',0) exp[ ] '
2

ikze ik x x
x z x

iz z
dx 








                           (A.9) 

with the analogies  and t  z k/m  .  We have neglect the phase difference 
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ikze  in Eq. (A.9) since only probability intensity is concerned. 

Inserting the initial condition for the shutter problem Eq. (A.2) into Eq. (A.8), it 

becomes 

2

0

0 ( ')
' 2( , ) '

2

im x x
ik x t

m
x t e e

i t
dx







  


.                               (A.10) 

Completing the square in the exponent, we obtain 

0
0

0
( ) 20( , ) exp{ [ ' ( )] } '

2 2

E
i k x t km m

x t e i x x t
i t t m

dx






  
 

 .            (A.11) 

Change variable by setting 0' (
kt

)x u x t
m m


  


 to obtain a more compact 

expression 

    

0

0
0

[ ]

( ) 21
( , ) exp{ }

2

km
t x

E t m
i k x t

2
x t e i u

i

 
du






 




 .                      (A.12) 

The integral in Eq. (A.12) is associated with the Fresnel integral 

2

0

( ) cos( )
2

C u d
    u  and 2

0

( ) sin( )
2

S
    u du                     (A.13) 

In terms of ( )C   and ( )S   the transient wave function of shutter problem is finally 

given by 

2
0

0( )
2

0

1 1
( , ) {[ ( ( , ; )) ]+ [ ( ( , ; )) ]}

2 2

k
i k x t

mx t e C x t k i S x t k
i 0

1

2
  


 



          (A.14) 
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, with 0
0( , ; ) [ ]

km
x t k t x

t m








 .  The red curve in Fig. 1.2-1(b) shows the time 

variation of the probability density observed at distance  behind the shutter.  The 

blue dotted line indicates the probability of receiving the particles in a classical view.  

The 

d

x  axis has unit in the arrival time  of a classical particle with kinetic energy T

2 2
0

2

k

m


0E   and we have 

0( / )

d
T

k m



.  Notice that in quantum-mechanical aspect 

one has probability to receive particles before the classical arrival time .  For this 

deflection into the classically forbidden time zone and temporal interference pattern, 

which are similar to the behavior of light diffracted by an infinite straight edge, 

Moshinsky termed the name “diffraction in time [Mosh52].” 

T
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Appendix B 

Angular Momentum Density of a Light Beam 

 
    The electric field and magnetic field for a light beam propagating along z-axis 

can be expressed as 

-

* - * - * -

ˆ ˆ ˆ( , ) Re[( ) ]

1
ˆ ˆ        {[ ]   [ ]   [ ] }

2

ikz i t
x x y y z z

i i i i i i ˆx x x y y y z z

e r t E a E a E a e

E e E e a E e E e a E e E e a



     

  

     

 

z

    (B.1) 

and 

-

* - * - * -

ˆ ˆ ˆ( , ) Re[( ) ]

1
ˆ ˆ        {[ ]   [ ]   [ ] }

2

ikz i t
x x y y z z

i i i i i i ˆx x x y y y z z

b r t B a B a B a e

zB e B e a B e B e a B e B e a



     

  

     

 

    (B.2) 

, where  is wave number, k   is angular frequency, and  -kz t  .  Under 

paraxial approximation, the amplitudes of electric field are assumed to depends only 

on ( , )x y  

( , ) E E x yx x and .                                 (B.3) ( , )y yE E x y

From Gauss’s law which state that 0e   for source-free space, we have the 

relation 

**
- - -y yi i i i i ix x

z z

E EE E
e e e e e ikE e ikE e

x x y y
       

      
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 * - 0 .        (B.4) 
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Hence, the longitudinal amplitude can be expressed by transverse amplitudes  

( yx
z

EEi
E

k x y


 

 
)                                             (B.5) 

On the other hand, Faraday’s Law states that 
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    (B.6) 

, we have the following relations: 

* - * -- -i i i
y y x xikE e ikE e i B e i B e i       ( x  part);                      (B.7) 

* - * -- -i i i
x x y yikE e ikE e i B e i B e i       ( y  part);                      (B.8) 

* *
- *( - ) ( - ) -y yi i ix x
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 ( z  part);           (B.9) 

Then the amplitudes of magnetic filed can be also expressed by xE  and yE : 

x y

k
B E


  , y x

k
B E


 , and 

1
( y )x

z

E E
B

i x y
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 
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.                 (B.10) 

According to Poynting’s theorem, the momentum density  of 

electromagnetic (EM) waves can be obtained by  

(r,t)p


0( , ) [ ( , ) ( , )]p r t e r t b r t 
    

.                                     (B.11) 

, where 0  is the permittivity in vacuum.  For a paraxial light beam, the linear 
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momentum density is then expressed as  

* - * - * -
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      (B.12) 

In the part we obtain the relation z 

* * * *0(r,t) [  ]
4z x y x y y x y xp E B E B E B E B oscillating terms


    
           (B.13) 

In practice, only time-averaging result is concerned  

* * * *0< (r,t)> [ ( ) ( )]
4 x yz x x x y y

k k k k
yp E E E E E E E E
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2 20 (| | | | )
2 x y
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

 
                                 (B.14) 

, where < > denotes 
2

02
dt




  .  The energy density stored in the EM field is 

20 (| | | | )
2e xW E E 2

y


   and e

z

W
p

C
  , which means that all the energy stored in 

the field all propagates along z-direction. 

In the transverse plane, we have 
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and 
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.             (B.16) 

It is convenient to define the transverse momentum density by 

yˆ( , , )= ( , ) + ( , )x xp x y z p r t a p r t a      
                         (B.17) 

and ( , , )p x y z


 can be rearranged as  

* *0( , , ) [Im( ) Im( ) ( )]
2 x x y yp x y z E E E E
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             (B.18) 

, where  and * ˆIm( )x yE E z  yˆxa â
x y
 

  
 

 is the del operator in the transverse 

plane.  The angular momentum density can then be expressed as  

0( , , ) ( ) ( , , )l x y z r r p x y z   
              

* *0 { [Im( ) Im( )] ( )}
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              (B.19) 

, where  is the position vector on transverse plane and  is location 

of rotation axis.  To further appreciate 

yˆ  xr x a y a  
0r


( , , )l x y z


, we set 0 0r   in Eq. (B.19) and 

find the following the equality 
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( ) ( ) ( ) 2r r r                        .                        (B.20) 

In addition expressing the gradient operation in polar coordinate 

1
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and inserting into Eq. (B.19), it can be lead to  
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and 
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Finally, the angular momentum density can be written as 

* *0 ˆ( , , ) { Im[ ] }
2

yx 0
x y

EE
l x y z E E a

 
   
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 


z


.                     (B.24) 

It can be seen that the angular momentum density ( , , )l x y z


 comprises three terms.  

The first two are in the same form and are essentially the orbital angular momentum 

(OAM) arose from the variations of x   and y  components of electric field by the 

polar angle.  On the other hand, the third term in Eq. (B.24) is the spin angular 

momentum (SAM) resulted from the circular polarization of light field.  For a light 

beam to carry angular momentum, the amplitude functions, xE  or , must be 

complex,.   

yE

For a linearly polarized light beam (assuming 0yE  ), the transverse linear 
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momentum density reduces to 

*0( , , ) [Im( )]
2 x xp x y z E E

  

                                   (B.25) 

, whose mathematical form is the same as that of probability current density of 2D 

quantum systems.  Moreover, the SAM   vanishes and angular momentum density 

becomes  

*0( , , ) Im( )
2

x
x

E
l x y z E


 







                                      (B.26) 

that is also analogous to the angular momentum density of 2D quantum systems. 
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