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國立交通大學電子物理學系(研究所)碩士班 

 
 

摘要 

 
 
 

本論文旨在建立一套針對奈米晶體/奈米柱系統之少體理論方法。我們採用三維的拋物線

型位能模型，模擬並計算電子的運動行為與能譜結構。拋物線型位能兼具簡單、可與外

加磁場偶合並解析、可在非等向系統中解析等優點，已在解釋二維系統中得到巨大的成

功。首先我們分別計算單電子在(1)等向奈米晶體、(2)等向奈米晶體外加磁場以及(3)非
等向之奈米柱等系統中之能譜結構；之後經由引入庫倫交互作用項，我們依據組態交互

作用法建構少個電子的多體理論，此理論可以計算少量電子在這些奈米系統中的能譜及

電子結構。在組態交互作用法中，我們選取有限數量的組態當作基底並依此基底建構系

統的漢密頓矩陣，透過對角化漢密頓矩陣我們可以得到系統(在此有限組態近似下)的本

徵能量與本徵態。最後，在兩個殼層的近似下，我們實際計算一個雙電子的奈米晶體/
奈米柱系統，並且印證透過外加磁場及改變系統形狀來調控系統電子結構的可行性。 
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ABSTRACT 
 
 
 

The purpose of this thesis is to develop a configuration interaction (CI) method for studying 
the few-body physics of interacting charged nanocrystal (NC) and nanorod (NR) systems. In 
the framework of the effective mass approximation, we develop a CI theory based on a 
three-dimensional (3D) parabolic model for the calculation of the few-electron spectrum of 
crystalline semiconductor nanoparticles with a size comparable to the effective Bohr radius. 
We derive the explicit formulation of the Coulomb matrix elements required in the theory and 
conducted the evaluations in a simple semi-analytical manner. We then apply this theory to 
three simple representative cases: (1) two mutually interacting electrons in a symmetric NC 
without a magnetic field, (2) two mutually interacting electrons in a symmetric NC under an 
external magnetic field, and (3) two mutually interacting electrons in an oblate or a prolate 
NC (NR) in the absence of a magnetic field. We calculate the ground states and the energy 
spectrum of two interacting electrons in nanosystems using the partial CI approach within the 
simple two-shell approximation and explore the possibility of singlet/triplet (S/T) state 
transitions, a physical phenomenon as the manifestation of particle-particle interaction, driven 
by magnetic fields and/or shape deformation. 
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Chapter 1: Introduction 

 
Semiconductor nanocrystals (NCs) are chemically synthesized crystallite semiconductor 

nanoparticles with sizes comparable to or even smaller than the effective Bohr radius [1, 2]. 

The size effects of nanostructures lead to the strong quantization of the electronic structure at 

an energy level typically above 100 meV; further, due to these effects, the material and 

physical properties of nanostructures significantly differ from those of the bulk systems. NCs 

have novel properties and therefore they are widely used as promising nanomaterials for 

various applications in many fields from optoelectronics to biotechnology [3, 4]. Remarkably, 

as compared with other nanostructures, NCs are particularly advantageous in the engineering 

of electronic structures by shape and size control. The sizes of NCs can be controlled over a 

wide range of diameters, typically from 1 to 10 nm, by delicate fabrication processes [5]. 

Significant effects of size on the optical properties of NCs have been explored over the years 

and used for the application of advanced light sources [6]. Moreover, NCs can be synthesized 

in various shapes, from spherical nanoparticles (quasi-0D system) to elongated nanorods 

(quasi-1D system), thereby providing a unique platform for studying various intriguing 

physical phenomena of low-dimensional systems. 

Although NCs have been used in applications such as optoelectronic devices and biological 

fluorescence marking, direct measurements of the electronic structures of individual NCs 

have remained a challenging task for many years. Only the recent advances in tunneling 

spectroscopy based on STM techniques [7, 8] have enabled the measurement of the addition 

energy spectrum of the conduction and valence bound states in an individual NC. The 

polarized optical emission spectra of single NRs and NCs have also been revealed recently by 

using an advanced technique known as single-dot optical spectroscopy [9, 10]. 

Theoretically, the electronic structure and the optical spectrum of NCs have been investigated 
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by using different approaches such as the effective mass approximation, multiband k p⋅  

model, tight-binding theory, and the pseudopotential theory. Rodina, Efros, and Alekseev have 

studied the structure of electron quantum size levels in spherical NCs in the framework of an 

eight-band effective-mass k p⋅  model [11]. Chen has determined the Zeeman splitting of 

electrons and holes in semiconductor nanostructures using the empirical tight-binding method 

[12]. Franceschetti and Zunger have calculated the dependence of the optical transitions in 

CdSe nanocrystals based on single-electron pseudopotential wave functions [13]. 

In this thesis, we focus on the studies of the electronic structure and few-body physics in 

NC/NR systems in the framework of the effective mass approximation. We develop a 

configuration interaction (CI) theory based on a three-dimensional (3D) simple harmonic 

oscillation (SHO) model for NC/NR systems containing interacting electrons. In Table 1, we 

list some relevant parameters of the 3D SHO model used for NCs/NRs. The interplay between 

the few-body physics and the electronic structure of semiconductor nanostructures has been 

extensively explored in Coulomb blockade spectroscopy for gate-defined two-dimensional 

(2D) quantum dots (QDs) under magnetic fields [14, 15]. The applied magnetic fields are 

used as a tuning parameter for the engineering of electronic structures and Coulomb 

interaction strength and allows for studying few-body physics on the test bed of QD systems 

in a systematic manner. Rich, interesting, and significant physical phenomena such as the 

integer/fractional quantum Hall effect (QHE), magic numbers in the addition energy spectrum, 

subsequent formation of the maximum-density droplet and its reconstruction, and spin 

singlet-triplet transition have been revealed in the measurement of the magnetospectrum of 

QDs. It is remarkable that the S/T state transition of a two-electron complex in a QD is 

identified at some finite magnetic fields as the manifestation of the spin-spin exchange 

interaction between electrons. For a QD charged with many electrons and high magnetic 

fields, a rich pattern of Coulomb blockade current peaks has been observed between the 

filling-factor states 2 and 1, corresponding to a series of spin flips driven by correlation 
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interaction further enhanced by the magnetic fields [16, 17, 18]. Hence, we attempt to explore 

the few-body physics in 3D QDs, i.e., NCs and NRs, whose electronic structures can be tuned 

either by magnetic fields or by shape control. 

This thesis is organized as follows. In Chapter 2, we describe the single particle behavior in a 

nanocrystal or a nanorod with/without the application of a magnetic field within the 3D SHO 

parabolic model. In Chapter 3, we describe the configuration interaction (CI) method for 

NC/NR systems and apply the theory to a simple representative case: two interacting electrons 

in a spherically symmetric NC with magnetic fields. In Chapter 4, we describe the calculated 

results for two electrons in asymmetric nanocrystals in magnetic fields by using the developed 

CI theory within the 2-shell approximation. 

 

0

0

0 0

0

2D Dots 3D
1μm 100nm 10nm 100 nm 10nm 1nm
0.294μeV 29.37μeV 2.94 meV 29.37μeV 2.94meV 293.69meV
0.106meV 1.06meV 10.63meV 0.34meV 3.38meV 33.81meV

/ 360.54 36.05 3.62 11.56 1.15 0.12
/ 1 (T) 0.33mT 33mT 3.3T 33mT 3.3T 32c

r

V
V

B

ω

ω
ω ω = →

h

9.99T

 

Table 1. Some relevant parameters of 2D/3D SHO systems as a model of CdSe (where the 

electron effective mass * 0.13m = ) nanostructures. Here, 2
0 0 c, ,  , and r r Vω ω≡ < >  indicate the 

size, quantization energy, Coulomb interaction strength of the NC, and cyclotron frequency 

reflecting the external magnetic field strength, respectively. 0/ 1cω ω = corresponds to a 

different value of magnetic field. Throughout this thesis we focus on 3D NCs with 

1 ~ 5nmr =  in the regime where the energy is of the order of a few hundred electron volts. 
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Chapter 2: Model 

 
3D Parabolic Model 

In this chapter, we discuss the energy spectrum of a single electron subjected to an isotropic 

and/or anisotropic 3D parabolic confining potential, a model potential suitable for NC and NR 

systems in the framework of the effective mass approximation. In the CI theory developed in 

Chapter 3, the single electron states are used for the construction of many-electron 

configurations for the interacting electrons in NCs. Here, let us first review three known 

approaches for solving the single electron Schrödinger equation of a 3D SHO system: 

( )
2^

* 2 2 2 2 2 2
*

1 ,
2 2 x y zH m x y z
m

ω ω ω= + + +
p             Eq. (2.0.1) 

where p  is the momentum operator, *m  is the effective mass of the electron, ( , , )r x y z=
r is 

the coordinate position of the electron, and αω  ( , , )x y zα =  is the characteristic frequency 

of the parabolic confining potential along each direction. The physical quantities in this thesis 

are all in SI unit if there’s no exceptional note. 

The three approaches help us to gain a physical understanding of the single-electron problem 

from the perspectives of the 3D SHO, 3D central force problem, and circular oscillation. For 

transparency, we first discuss the isotropic cases. However, the theory can be extended to 

cases with an applied magnetic field and shape anisotropy. 

 

2.1 3D Isotropic Parabolic Model 

Perspective of simple harmonic oscillation 

The first method for solving Eq. (2.0.1) is to treat the 3D Schrödinger equation separable, i.e.,  
22 2^ ^ ^ ^

* 2 2 * 2 2 * 2 2
0 0 0* * *

1 1 1( ) ( ) ( ) ,
2 2 2 2 2 2

yx z
x y z

pp pH m x m y m z H H H
m m m

ω ω ω= + + + + + = + +   Eq. (2.1.1) 

and take the form of the wave function as 
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, ,| | | | .
x y z x y zn n n n n nψ ψ ψ ψ>= > ⊗ > ⊗ >                Eq. (2.1.2) 

Following the standard SHO quantum theory, we have the eigenenergy  

0
3( ) ,
2nE n ω= + h                    Eq. (2.1.3) 

and the single electron wave function  

, ,
1| ( ) ( ) ( ) | 0,0,0 ,

! ! !
yx z

x y z

nn n
n n n x y z

x y z

a a a
n n n

ψ + + +>= >          Eq.(2.1.4) 

where 0

02 2k k
m ia k p

m
ω

ω
= +

h h
, 

0

0

.
2 2

 ( ,  ,  )

k k
m ia k p

m
k x y z

ω
ω

+ = −

=

h h  

( , , 0,1, 2..)x y z x y zn n n n n n n= + + = . 

In the SHO picture, we can easily identify the amplitude and energy of electron motion, in 

terms of the quantum numbers xn , yn , and zn , oscillating in each direction (x, y, and z). 

The method is applicable even for anisotropic ( x y zω ω ω≠ ≠ ) systems. However, the 

zero-field SHO basis in Cartesian coordinates cannot describe electrons that move circularly 

in the presence of a magnetic field and it is inappropriate for the system under the influence of 

a magnetic field. Moreover, some important physical variables related to electron motion, 

such as the angular momentum, in a QD system are not explicitly expressed in the 

formulation. 

Spherical potential model  

The second method is to treat the problem as a general spherical potential problem. Following 

the standard procedure for solving the differential equation of a 3D spherical potential system, 

we separate the wave function into a radial part and an angular part that is known as the 
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spherical harmonic function. By substituting the wave function into the Schrödinger equation, 

we have 

( ) ( ) ( ), ,( ) ( , ) ( ) ( , )M M
N L L N L LH r H R r Y E R r Yψ θ φ θ φ= =

r ,      Eq. (2.1.4), 

The equation can be simplified as 

2 2 2
* 2 2

0 , ,* 2 * 2

1 1 ( 1) ( ) ( )
2 2 2 N L N L

d L Lr m r R r ER r
m r dr m r

ω
⎡ ⎤+
− + + =⎢ ⎥
⎣ ⎦

h h     Eq. (2.1.5), 

which is an ordinary differential equation and can be solved by the power series method. 

By taking the power series expansion of the undetermined radial wave function and 

substituting it into the above equation, we can obtain a recurrence relation. From the relation, 

we could determine the relationship between the principle quantum number N  and the 

angular quantum number L . In this picture, the eigenenergy can be represented as 

3( )
2

E N ω= + h                Eq. (2.1.6). 

A plot of the energy spectrum against the total angular momentum is shown in FIG. 2.1.1. In 

the lowest shell (termed s-shell), N is equal to 0, L  can only be 0, and there is no degeneracy 

in this energy level. In the p-shell, N is equal to 1 and L  can only be 1; thus, there are three 

degenerate states corresponding to different magnetic quantum numbers 1,  0,  and 1M = −  

in the same energy level. Furthermore, in the d-shell, L  could be 0 or 2 and there are 5 

degenerate states while 2L =  and so on. 

 

0 1 2 3 4 5
L

2
3
4
5
6

EêÑw0

| , , | 0,0,0N L M >= >

|1,1,0 ,  |1,1, 1> ± >

0 1 2 3 4 5
L

2
3
4
5
6

EêÑw0

| , , | 0,0,0N L M >= >

|1,1,0 ,  |1,1, 1> ± >
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FIG. 2.1.1 Energy spectrum versus total angular momentum. The degeneracy is indicated in the three 

lowest shells. 

 

In the perspective of the power series method, the relation between the energy levels and the 

angular momentum (and the degeneracy in each level) is evident. However, this method 

cannot be used for anisotropic systems. In this thesis, the two methods mentioned above are 

inappropriately used to determine the single electron states as the basis of the many-body 

theory for isotropic/anisotropic NCs in magnetic fields. The third approach introduced below 

would be suitable for this purpose. 

Perspective of a 3D SHO system in the circular basis 

Let us consider a 3D SHO system subjected to an external magnetic field ˆB=B z  along the 

z-axis. The corresponding Hamiltonian is 

^
2 * 2 2

0*

1 1( )
2 2

eH m r
m c

ω= − +p A              Eq.(2.1.7), 

where , ,0
2 2

By Bx⎛ ⎞= −⎜ ⎟
⎝ ⎠

A  is the vector potential in the symmetric gauge. Due to the external 

magnetic field, the two oscillators on the plane normal to the B-field are coupled to each other, 

while the oscillator in the z-direction is still independent of the other two. Here, we introduce 

the following operators for creating/annihilating the modes of the circular in-plane motion and 

SHO motion in the z-direction: 

1 1( 2 ( )),  ( 2 ( ))
2 22 2
1 1( 2 ( )),  ( 2 ( ))
2 22 2

,  
2 2

x y x y

x y x y

z z z z z z
z z

x iy x iya l i a l i
l l

x iy x iyb l i b l i
l l

z za l a l
l l

+

+

+

− +
= + ∂ − ∂ = − ∂ + ∂

+ −
= + ∂ + ∂ = − ∂ + ∂

= + ∂ = − ∂

      Eq. (2.1.8), 

where the confining length defined as 

/ 2 ,

/ 2 ,
h

z z

l m

l m

ω

ω

=

=

h

h
  

Using Eq. (2.1.8), the eigenstates | , ,n m q >  are expressed as 
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| , , ( ) ( ) ( ) | 000n m q
zn m q a b a+ + +>= >            Eq. (2.1.9), 

where n, m, and q = 0, 1, 2,…(instead of ,  , and x y zn n n ). 

The eigenenergy in the basis is expressed as 

0
1 1 1( ) ( ) ( )
2 2 2

E n m qω ω ω+ −= + + + + +h h h           Eq.(2.1.10), 

where 1
2h cω ω ω± = ± , 2 2

h 0
1
4 cω ω ω= + , and */c eB m cω ≡  is the cyclotron frequency of 

the applied magnetic field.  

In the following sections, we apply the model to various NCs, ranging from symmetric NCs 

with/without a magnetic field to asymmetric nanorods without a magnetic field. 

a. Absence of a magnetic field 

In the absence of a magnetic field, 0zω ω ω ω+ −= = = , and the energy is simplified to 

0 0
3( )
2BE n m q ω= = + + + h .             Eq. (2.1.11) 

This implies that the energies of all eigenstates with the same states n m q+ +  are the same. 

Each state ( )n m q+ +  corresponds to a degenerate shell. Let us describe some of these shells. 

The lowest one, termed the s-shell, consists of only one state 0n m q= = = . (Here, we 

neglect the effect due to spin.) The second one, known as the p-shell, consists of states 

| , , |1,0,0n m q >= > , |0,1,0 > , and |0,0,1> . Subsequent states can be generated similarly. 

Alternatively, this method can be described by making a linear transformation from the 

( ,  )x y  basis to the ( ,  clockwise counterclockwise ) basis just like we can mathematically 

analyze any linear polarized light beam to a linear combination of two circular polarized ones. 

Here, the coordinates are a measure of the oscillation amplitudes. Therefore, the quantum 

numbers n  and m  differ from and x yn n , while zq n= . In fact, either n or m contains 

information on x and y. 

In the figure representing of this method, we can see the energy spectrum versus the z 

component of angular momentum zL , as shown in (FIG. 2.1.2). This implies that the energy 
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eigenstates under this basis are also the eigenstates of 
^

zL . 

^
| , , ( ) | , ,zL n m q n m n m q>= − >h            Eq. (2.1.12), 

( )zL n m= − h                Eq. (2.1.13). 

(However, the energy states in the first method are not the eigenstates of 
^

zL , i.e., 

^
| , , | , ,z x y z z x y zL n n n L n n n>≠ > ). In the s-shell, there is only one state, while in the p-shell, 

there are three states corresponding to different magnetic quantum numbers 

1,  0,  and 1M = − , these results agree with those of the second method. Thus, for every state 

in the third method has a “mapping” state in the second method; for example, the state 

| , , | 0,0,0N L M >= >  in the second corresponds to | , , | 0,0,0n m q >= >  in the third, |1,0,0 >  

in the second corresponds to |1,1,1>  in the third, | 0,1,0 >  in the second corresponds 

to|1,1, 1− > in the third, and | 0,0,1>  in the second corresponds to |1,1,0 >  in the third. 

Can we conclude that all the states | , ,n m q >  in the third approach are the eigenstates of 
^
2L  

due to the mapping relations shown above? The answer is “No.” The d-shell, has six 

degenerate states; four of them have different values of zL , while the other two have 0zL = . 

 

-3 -2 -1 0 1 2 3
Lz

1

2

3

4

5
EêÑw0

| , , | 0,0,0n m q >= >

| 0,1,0 > |1,0,0 >
| 0,0,1>

-3 -2 -1 0 1 2 3
Lz

1

2

3

4

5
EêÑw0

| , , | 0,0,0n m q >= >

| 0,1,0 > |1,0,0 >
| 0,0,1>

 
FIG. 2.1.2 Energy spectrum versus angular momentum zL of a single electron subjected to a 3D isotropic 

parabolic potential with the characteristic confining frequency 0ω . Each state corresponds to a state one 

| , ,n m q > . 
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Due to the non-degeneracy of zL , the states | , ,n m q >  are no longer the eigenstates of 
^
2L . 

To obtain the eigenstates of 
^
2L  under this condition, we must make a linear combination of 

all the states | , ,n m q > , which are in the same shell, with the same zL . For example, the state 

| , , | 2, 2,0N L M >= >  corresponds to the superposition of | , , |1,1,0n m q >= >  and | 0,0,2 > , 

which can be normalized as 1 2|1,1,0 | 0,0,2
33

> − > . Similarly, the representation of state 

| , , | 2,0,0N L M >= >  under the basis of the third approach is 2 1|1,1,0 | 0,0,2
3 3

>+ > . We 

can understand why the states | , ,n m q >  with the same zL  are not the eigenstates of 
^
2L  by 

reviewing a theorem in quantum mechanics. The theorem states that if two operators 

^ ^
 and A B  are commute and the eigenstates | a >  of 

^
A  that satisfy 

^
| |A a a a>= >  are 

nondegenerate, then the states | a >  are also the eigenstates of operator 
^
B . Thus, since 

^
2L  

and 
^

zL  are always commute, the states with a non-degenerate zL  must be the eigenstates of 

^
2L ; on the other hand, the states with a degenerate zL  are not. 
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FIG. 2.1.3. Several absorption spectra of PbSe NCs corresponding to various sizes, and the peaks 

indicate the first optical transition energy. 

 

We compare the data from parabolic model with that from an optical experiment. The 

transition energy of NCs can be examined optically. FIG. 2.1.3 shows several absorption 

spectra of PbSe NCs corresponding to various sizes, and the first peak of each spectrum 

indicates the first transition energy [20]. We can compare these experimental data with the 

calculation results based on the parabolic model. In the isotropic parabolic model, the ground 

state energy of a single electron and a single hole can be expressed as 
2

* 2

3 3
2 4e e

e

E
m l

ω= =
h

h ,                                               Eq. (2.1.14a). 

2

* 2

3 3
2 4h h

h

E
m l

ω= =
h

h ,                                               Eq. (2.1.14b). 

where eω  and hω  are the characteristic frequency of electrons and holes corresponding to 

their effective masses *
em  and *

hm , respectively, and l  is the mean motion radius of the 

particle in NCs which is nearly equal to the actual radius of the system r , i.e., 

l r≈                                                             Eq. (2.1.15). 
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FIG. 2.1.4. Experimental and calculated band gap energy. The trends are similar and thus the parabolic 

model is suitable to some degree. 

 

Thus, the first transition energy tE  is 

0t e h gE E E E V= + + − .                                               Eq. (2.1.16), 

where gE  is the band-gap energy and 280gE =  meV for PbSe; 0V  is the attractive 

Coulomb energy between the electron and the hole (both of them are in the s-shell). The 
Coulomb energy is much smaller than other terms so that we ignore it here. Thus the 
transition energy Eq. (2.1.16) is simplified to 

2

2 * *

3 1 1 280(meV).
4t e h g

e h

E E E E
r m m
⎛ ⎞

≈ − + = + +⎜ ⎟
⎝ ⎠

h                            Eq. (2.1.17) 

By considering the effective masses of the electrons and holes in PbSe ( * 0.04em =  and 

* 0.034hm = ), we can calculate the transition energy. FIG. 2.1.4 shows the experimental and 

calculated results. The trends are similar and thus the parabolic model is suitable to 
some degree. 

 

b. Presence of an external magnetic field 

In this section, we consider an NC in the 3D parabolic model with external magnetic fields. 

The ratio of the characteristic frequency and the cyclotron frequency, 0/cω ω , is frequently 
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used in this thesis to characterize the field strength in comparison with the strength of the 

confinement of NCs. The typical value of the original oscillation energy 0ωh  for a 

nanocrystal system is approximately 100 meV and the corresponding frequency 0ω  is 

14 11.52 10 s−× . If the maximum magnitude of the magnetic field that can be applied is 20 T, 

then the corresponding maximum value of cω  is 132.7 10×  when the effective mass of CdSe 

is 0.13, which is the value for a typical semiconductor. Therefore, it is reasonable to set the 

maximum value of 0/cω ω  to 1.  
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FIG. 2.1.5. Energy spectrum of few lowest states of the single electron in a nanocrystal versus an 

external magnetic field. The inset shows the reasonable regime wherein the maximum magnetic field 
is quite feasible. Energy spectrum against zL  when 0/ 1 and 10cω ω =  are also shown. 

 

In FIG. 2.1.5, we show a few low-lying energies as a function of the magnetic field (bottom 

Left). The energy shift can be explained by the Hamiltonian 
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^
2 * 2 2

0*

2 2 2^
* 2 2 2 * 2 2

h 0* *

1 1( )
2 2

1 1 1    ( ) .
2 2 2 2 2
x y z

zc

eH m r
m c
p p pm x y L m z

m m

ω

ω ω ω

= − +

+
= + + − + +

p A
      Eq.(2.1.18) 

The magnetic field effects are contributed by the terms * 2 2 2
h

1 ( )
2

m x yω +  and 
^1

2
zc Lω− ; we 

could state that the former causes the diamagnetic energy shift, while the latter causes the 

paramagnetic energy shift (Zeeman orbital term). When the magnetic field is small, the linear 

term dominants and the energy shift is proportional to zL  (the minus sign indicates that the 

energy reduces and hence we refer to the latter as a “paramagnetic” term) and cω . As the 

magnetic field increases, the diamagnetic (parabolic) term becomes dominant and the energy 

shift is proportional to 2
hω  and 2 2x y+ . Irrespective of the behavior of the angular 

momentum the energy increases with the magnetic field and hence the former term is referred 

to as a “diamagnetic” term. 

Readers may find that the energy of state |1,1,0 >  is higher than that of state | 0,0,2 > , the 

difference is due to the effect of the diamagnetic term since both the states have the 

 same zL . 

FIG. 2.1.3 also shows how the system evolves as the magnetic field increases significantly 

since interesting physics has been observed in SAQD systems. As 0cω ω>> , 

0

0

1 1 1( ) ( ) ( )
2 2 2
1 1   ( ) ( )
2 2
1   ( ).
2

c

c

E n m q

n q

n

ω ω ω

ω ω

ω

+ −= + + + + +

≈ + + +

≈ +

h h h

h h

h

          Eq.(2.1.19). 

Therefore, the energy states are asymptotic to the Landau levels and are dominated by the 

quantum number n  as the magnetic field is considerably large. 

On the right hand side of FIG. 2.1.3, we can find four Landau levels corresponding to 

different values of n , and each level is split into some sublevels due to different original 
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oscillation energies in the z direction (which correspond to different values of q ). If we 

observe more carefully, we can find that there are still splitting levels due to different values 

of m . Thus, if we consider a larger number of shells, all the lowest energy states in the large 

field limit would be | 0, ,0m > , where m ranges from 0 to an arbitrary large number.  

To understand this concept further, let us consider a classical picture. When a charged particle 

is moving in a 2D system under the influence of a magnetic field, the particle rotates 

circularly due to the Lorenz force; the frequency of the particle rotation is /c qB mω = , where 

q  is the charge of the particle, m  is its mass, and B  is the applied magnetic field. Both  

r

V

 
FIG.. 2.1.6 A graphical illustration of the competing parabolic potentials due to the system and the 

magnetic field. 

 

the radius of the motion circle and the energy of the particle are continuous. In the quantum 

mechanical picture, however, the energy is not continuous but splits into an energy level 

1( )
2c cE n ω= + h , which is known as the Landau level, where h  is the Planck constant and 

n  is a definite positive integer. Since the circular motion can be considered a 2D SHO, we 

may treat the charged particle under a magnetic field as a particle in a 2D parabolic potential. 

Thus if we place a charged particle in a 2D parabolic potential and apply a magnetic field 

normal to the 2D plane, it can be equivalently considered that there are two SHOs that 

compete to the dominate the motion. FIG. 1.4 provides a graphical illustration of the 

competing parabolic potential due to the system and the magnetic field. When the magnetic 
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field is sufficiently strong (solid line), the magnetic Landau term is dominant; however, when 

the field is weak (dashed line), the original SHO is dominant. 

 

2.2  3D Anisotropic Parabolic Model 

In this section, we investigate the effect of anisotropy on the single electron spectrum of 

elongated NCs/NRs. The elongation of the geometry NRs is characterized by the ratio 0 / zω ω  

or 0/zl l , where 0ω  and zω  are the characteristic frequencies in the x-y plane and along the 

z-axis, respectively; 0l  and zl  are the confining lengths in the xy-plane and along the z-axis, 

which are defined as 0( ) 0( )/ 2z zl mω= h  in previous sections. Here we focus only on the 

system elongated in the z-direction, i.e., x y zl l l= ≠ , to address the subject of the NR system 

later. In fact, we find that the effect of the elongation on the electronic structure is analogous 

to the effect of applying a magnetic field. This allows us to consider shape control to replace 

external fields for the engineering of the electronic structure of NCs. The Hamiltonian of the 

anisotropic parabolic system is written as 

( )
2^

* 2 2 2 2 2 2
0 0*

1
2 2 zH m x y z
m

ω ω ω= + + +
p             Eq.(2.2.1) 

Since there is no applied magnetic field and the system is anisotropic in z-direction, 

0 ,ω ω ω+ −= =  

0;zω ω≠  

then the energy becomes 

0
1( 1) ( )
2zE n m qω ω= + + + +h h              Eq.(2.2.2). 

FIG. 2.2.1 shows a plot of the energy spectrum against the magnitude of anisotropy (bottom 

left), which is represented by the aspect ratio 0/zl l . The expression 0 / 4zω ω =  indicates 

that the confining length in the direction of the z-axis is twice the length on the xy-plane, i.e., 

0 / 4 2 2 .z z x yl l lω ω = ⇒ = =  
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There are two limiting conditions in this specific system. At the extreme left of the plot, the 

ratio 0 / zω ω  is 1, which implies that the system is isotropic and the energy is dominated by 

the 3D shell structure. The spectrum and the degeneracy in this condition have been discussed 

in Chapter 2.1. At the extreme right of all the plot, all the states | , ,n m q >  with fixed values 

of n  and m  fall toward an asymptotic state | , ,0n m > . However, they could never “arrive” 

there because our system is still a 3D system. Thus when the ratio 0 / zω ω  increases 

substantially, the lowest states are the states | 0,0,q > , where q  is from 0 to any arbitrary 

large number. The quantization is caused by the different oscillation amplitudes, and when  
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FIG. 2.2.1 Energy spectrum of the lowest shells of an elongated NC versus aspect ratio 0/zl l . Plots 

of the energy spectrum against zL  when 0/ 1,  1.3,  and 4.5zl l =  are also shown. Note that when 

the aspect ratio increases, the difference between the lowest energy states decreases significantly 

such that they resemble continuous states. 

 

0 / zω ω  goes to infinity, the states could be approximated as quasi-continuous states. 
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FIG. 2.2.1 (bottom right) shows the quasi-continuous states. The figure is limited to 20 shells, 

hence the states at the right limit resemble “belts.” If we consider a large number of shells, the 

right limit states will be similar to continuous states, i.e., an energy “band.” FIG. 2.2.1 (bottom 

right) clearly shows that the lowest states are | 0,0,0 > , | 0,0,1> , | 0,0,2 >……. 

In the mediate condition, all the state energies lower as the system is elongated. Let us 

observe some of the lowest states here. In the s-shell the energy of state | 0,0,0 >  is 

0
0

1/ 1
2 / z

E ω
ω ω

= +h , which decays as 0 / zω ω  increases. In the p-shell both the states 

|1,0,0 >  and | 0,1,0 >  have the energy 0
0

1/ 2
2 / z

E ω
ω ω

= +h  and are degenerate, while 

state | 0,0,1>  decays more rapidly because its energy is 0
0

3/ 1
2 / z

E ω
ω ω

= +h . 

On the other hand, when the system is compressed, all the states with 0q ≠  are raised and 

the lowest states are essentially the Fock-Darwin states in the 2D cases. In FIG. 2.2.3 we show 

the energy spectrum with 0/ 0.5zl l = . It should be noted that the states are essentially the 

Fock-Darwin states. 
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FIG. 2.2.2 Energy spectrum versus 

zL  as 
0 / zω ω  tends to infinity. The spectrum with a low value 

of anisotropy ( 0zω ω> ) approaches the Fock-Darwin spectrum of a 2D parabolic system. 
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Chapter 3: Configuration Interaction Theory for 

Nanocrystal/Nanorods 

 

In this chapter, we describe the configuration interaction (CI) theory for the few-electron 

problem of 3D confinement nanostructures. For studies of interacting electrons in NC/NR 

systems, we develop the CI theory for the calculation of the spectrum of few electrons 

subjected to an isotropic and/or anisotropic parabolic potential with or without magnetic fields. 

We derive the explicit formulation of the Coulomb matrix elements that are required in the 

theory and conducted the evaluations in a simple semi-analytical manner. 

The full Hamiltonian for many interacting electrons in an NC is expressed in terms of the 

second quantization as 

1 | |
2i i i i j k l

i ijkl
H E c c ij V kl c c c c+ + += + < >∑ ∑ ,          Eq.(3.1) 

where ,  ,  ,  and i j k l  represent the quantum number ,  ,  and n m q  of the two interacting 

electrons before and after the interaction, i.e., 

' ' '
1 1 1( ,  ,  )i n m q= ,  

' ' '
2 2 2( ,  ,  )j n m q= , 

2 2 2( ,  ,  )k n m q= , 

1 1 1( ,  ,  )l n m q= ; 

iE  is the kinetic energy mentioned in Chapter 2, 

1 1 1( ) ( ) ( )
2 2 2i i i z iE n m qω ω ω+ −= + + + + +h h h ,         Eq.(3.2) 

| |ij V kl< >  is the Coulomb interaction energy, and and i ic s c s+  are the creation and 

annihilation operators of electrons with quantum numbers , ,  and n m q . The single electron 
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kinetic energy is essentially the eigenenergy of the single electron Hamiltonian described in 

Ch. 2. The coulomb matrix element in the basis of the single electron state is formulated by 

evaluating a 6-dimensional integral (See Appendix for a detailed derivation). 

2 2 2 2 2 2

1 1 2 2

1 1 2 2 2 2 2 2

2 3 4 5 6

' ' '
, ' ' ,

1 1 1 1 1 1 2 2 2 2 2 2

m min( ', ) min( ', ) min( ', ) min( ', )

0 0 0 0 0

( 1)1| |
'! '! '! ! ! ! '! '! '! ! ! !

                     {

L R

n m q n m q
R R q q q q even

z

q q n n m m q q

p p p p p

ij V kl
l n m q n m q n m q n m q

δ δ

π

+ + + + +
+ + +

= = = = =

⋅ ⋅ −
< >= ×

× ∑ ∑ ∑ ∑
1 1 1 1

1

min( ', ) in( ', )

1 2 3 4 5 6
0

1 1 2 2 2 21 1 1 1 2 2

3 3 5 5 6 61 1 2 2 4 4

! ! ! ! ! !

' ' '' ' '
                     

       

n n m m

p
p p p p p p

q q m m q qn n m m n n
p p p p p pp p p p p p

=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
× ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑

2 1

              ( 1)
2
1 1(1 ) ( ) ( ) 1 32 2                     1 , ; ;1 }   Eq. (3.3)3 2 2( )
2

u
u v z

h

z

h

u v u v
F u u v u v

u v

ω
ω

ω
ω

+ ⎛ ⎞
× − ×⎜ ⎟

⎝ ⎠

Γ + Γ + Γ + + ⎛ ⎞
× × + + + + + −⎜ ⎟

⎝ ⎠Γ + +

 

Eq. (3.3) shows a generalized formulation of the Coulomb matrix elements (in effective 

Rydberg unit) for arbitrary SHO systems with/without a magnetic field, where 

0 0/ 2l mω= h  is the characteristic confining length of the system, 

1 2 1 2 1 2 4 5' ' ( ),u m m n n p p p p= + + + − + + +   

1 1 2 2
3 6

' ' ( ),
2

q q q qv p p+ + +
= − +  2 1F  is the hypergeometric function, and / .z hx ω ω=  The 

elements can be evaluated in a simple semi-analytical or numerical fashion. In the following 

analysis, we show the relevant matrix elements for the two lowest electronic shells of NCs in 

magnetic fields. 

To calculate the energy spectrum of a few interacting electrons in an NC, we first develop the 

few-electron configurations and classify the configurations of the conserved variables of the 

system, e.g., the total spin, z-component of the total spin, and z-component of the total 

angular momentum for the systems considered in this thesis. This classification of the 

configuration divides the Hilbert space into several decoupled subspaces and helps us to 
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reduce the dimension of the Hamiltonian matrix that requires diagonalization. Finally, we  
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FIG. 3.1 Two-shell structures examined in this chapter. Here, 0/za l l≡  is the aspect ratio and B  is 

the applied magnetic field. 

 

determine the eigenenergies and eigenstates of the system via direct diagonalization. FIG. 3.1 

shows the shell structures of the NCs under consideration, on which few-electron 

configurations will be constructed. 

For simplicity, we use the two-shell approximation in our calculation (in principle, we should 

consider an infinite number of shells to obtain accurate results). Due to spin, each orbital is 

doubly degenerate. Thus in a two-shell case, there are eight states that could be occupied. For 

convenience, the 4 orbitals are labeled s , p− , 0p , and p+  (top right of FIG. 3.0.1). 

Therefore, there are 8
2 28C =  possible configurations in total. We show the total 28 

configurations in FIG. 3. 2. The configurations are grouped by the total spin (singlet or triplet) 

and the z-component of the total angular momentum. Additionally, we denote the terms in the 

configuration as | 01 ,  | 02 ,...s s> >  and | 01 ,  | 02 ...t t> > , where and s t  denote the singlet 

and triplet states, respectively. 
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FIG. 3.2 The 28 configurations in the 2-shell approximation. The configurations are classified by the 

total spin and the z-component of the total angular momentum. The configurations that are of concern 

are labeled. 
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Chapter 4: Results 

 
In this chapter, we apply the theory described in chapter 3 to three simple representative cases, 

i.e. two mutually interacting electrons in (1) two mutually interacting electrons in an isotropic 

nanocrystal without a magnetic field, (2) two mutually interacting electrons in an isotropic 

nanocrystal under an external magnetic field, and (3) two mutually interacting electrons in an 

anisotropic NC (NR). We calculate the ground states and the energy spectrum of the two 

electron systems using the partial CI approach within the simple two-shell approximation and 

explore the possibility of the singlet/triplet (S/T) state transitions, a physical phenomenon that 

is the manifestation of particle-particle interaction in QDs, driven by magnetic fields and/or 

deformation of NCs. 

 

4.1. Two Electrons in an Isotropic Nanocrystal without Magnetic Field 

In the basis of the three lowest kinetic energy configurations listed in FIG. 3.2 | 01s > , 

| 03s >  and | 04s >  (due to the parity, | 02s >  does not couple with them.), the Hamiltonian 

of two interacting electrons in a spherical nanocrystal at 0B =  is given by 

01| | 01 01| | 03 01| | 04
03 | | 01 03 | | 03 03 | | 04
04 | | 01 04 | | 03 04 | | 04

s H s s H s s H s
H s H s s H s s H s

s H s s H s s H s

< > < > < >⎛ ⎞
⎜ ⎟= < > < > < >⎜ ⎟
⎜ ⎟< > < > < >⎝ ⎠

      Eq. (4.1.1). 

The configurations can be represented as 000, 000,| 01 |s c c vac+ +
↓ ↑>= > , 001, 001,| 03 |s c c vac+ +

↓ ↑>= > , 

and 010, 100, 010, 100,

1| 04 ( | | )
2

s c c vac c c vac+ + + +
↓ ↑ ↑ ↓>= > − > , where | vac >  is the vacuum state. 

Now we calculate the matrix elements. Considering | 01s >  and the configurations in the 

Hamiltonian Eq. (3.1), we have 
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( )

000, 000, 000, 000,01| | 01 | |

1(0,0,0) (0,0,0) 000;000 | | 000;000 000;000 | | 000;000
2

1 1 12 0 0 0 000;000 | | 000;000
2 2 2

000;000

z

z

s H s vac c c Hc c vac

E E V V

Vω ω ω

ω ω ω

+ +
↑ ↓ ↓ ↑

+ −

+ −

< >=< >

= + + < > + < >

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × + + + + + + < >⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= + + + <

h h h

h h h | | 000;000                                                           Eq.(4.1.2).V >

 

The calculation involving ic  and ic+  obeys the anti-commutation relations 

.

[ , ] 0

[ , ] 0

[ , ]

i j i j j i

i j

i j ij

c c c c c c

c c

c c δ

+ + + + + +
+

+

+
+

= + =

=

=

             Eq. (4.1.3). 

Similarly, we have 

( )

000, 000, 001, 001,01| | 03 | |

10 0 000;000 | | 001;001 000;000 | | 001;001
2

000;000 | | 001;001                                                                                      

s H s vac c c Hc c vac

V V

V

+ +
↑ ↓ ↓ ↑< >=< >

= + + < > + < >

=< >      Eq.(4.1.4),

 

 

( )000, 000, 100, 010, 000, 000, 010, 100,

01| | 04
1 | | | |
2
2 000;000 | |100;010                                                                                    Eq.(4.1

s H s

vac c c Hc c vac vac c c Hc c vac

V

+ + + +
↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑

< >

= < > − < >

= < > .5).

 

 

03 | | 03
3 001;001| | 001;001                                                           Eq.(4.1.6),z

s H s
Vω ω ω+ −

< >
= + + + < >h h h

 

 

03 | | 04

2 001;001| |100;010                                                                                    Eq.(4.1.7),

s H s

V

< >=

= < >
 

 

04 | | 04
2 2 100;010 | |100;010 100;010 | |100;010           Eq.(4.1.8)z

s H s
H Hω ω ω+ −

< >
= + + + < > − < >h h h

 

 

For the system under consideration in which two interacting electrons are in a spherical 

nanocrystal at 0B = , we have 0zω ω ω ω+ −= = = . We write 
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0 0000;000 | | 000;000 |BV V=< > ≡  and represent other Coulomb elements in the unit of 0V . 

Some values of some | |ij V kl< >  are listed in Table 3 in terms of 0V . 

 

0

0

0

0

0

0

0

000;000 | | 000;000
1000;000 | | 001;001
6
1000;000 | |100;010
6
49001;001| | 001;001
60
1001;001| |100;010
20
23100;010 | | 010;100
30
1100;010 | |100;010

10

V V

V V

V V

V V

V V

V V

H V

< >

< >

< >

< >

< >

< >

< >

 

Table 3. Some values of | |ij V kl< >  in terms of 
0V  under no external magnetic field. 

 

Thus the Hamiltonian can be simplified as 

0 0 0 0

0 0 0 0 0

0 0 0 0

1 23
6 6

1 49 25
6 60 20
2 2 135

6 20 15

V V V

H V V V

V V V

ω

ω

ω

⎛ ⎞
+⎜ ⎟

⎜ ⎟
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟⎜ ⎟
⎝ ⎠

h

h

h

       Eq.(4.1.9). 

For nanocrystals, the typical value of the ratio of 0V  to 0ω  is small and it is given by 

0 0
1

10
V ω≈ h . 

By diagonalizing the matrix, we obtain the ground state energy given by 

03.0996GSE ω= h , which is slightly lower than the value 001| | 01 3.1s H s ω< >= h  obtained 

without considering higher shells because of the very strong confinement of the NC and the 

relatively weak Coulomb interaction strength (small value of 0 0/V ωh ). FIG. 3.1.1 shows a 

plot of the state energy versus the number of configurations considered in the calculation. We  
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Consider the Coulomb interaction 
and only 1 configuration

03.1 ωh

Consider 3 configurations

03.0996 ωh

non-interacting
03 ωh

interaction

Consider the Coulomb interaction 
and only 1 configuration

03.1 ωh

Consider 3 configurations

03.0996 ωh

non-interacting
03 ωh

interaction
 

FIG. 4.1.1 Plot of the state energy versus the number of configuration we take into calculation. We 

could predict that as we take a larger number of basis, the result obtained can be more correct. 

 

could predict that the result obtained here can be more accurate if we use a larger size of 

basis,the result obtained can be more correct. 

4.2. Two Electrons in an Isotropic Nanocrystal in Magnetic Fields 

As described in chapter 1, the electronic structure of nanostructure systems can be tuned by an 

external magnetic field and we are now attempting to examine the effect of magnetic field on 

the nanocrystal systems. Let us now turn to the case of two electrons in an isotropic 

nanocrystal in an external magnetic field. In these cases both the kinetic and Coulomb 

interaction terms in the Hamiltonian matrix elements vary with the magnetic field and become 

more complicated. Here we solve the 2-electron problem numerically by using a loop to 

diagonalize the Hamiltonian matrix, as in the previous section, with a slightly varied magnetic 

field. 

The energy spectrum for the 28 configurations of 2 electrons in a spherical nanocrystal and an 

external magnetic field are shown in FIG. 4.2.1 and FIG. 4.2.2. The three branches in the 

p-shell (correspond to p+ , 0p , and p−  in FIG. 3.1) caused by the Zeeman orbital effect can 

be seen in both the figures. However, the Coulomb interaction is not considered in FIG. 4.2.1, 

while FIG. 4.2.2 includes the interaction terms.  
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FIG. 4.2.1 2-electron energy spectrum in a spherical nanocrystal versus applied magnetic field in the 

2-shell approximation when the interaction terms are ignored. The splitings in the p-shell are caused 

by the orbital Zeeman effect. 
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FIG. 4.2.2 2-electron energy spectrum in a spherical nanocrystal versus applied magnetic field in 

the 2-shell approximation when the interaction terms are included. The hyperfine splittings can be 

explained by spin exchange terms. 
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We observe that some states split when the Coulomb interaction is considered. The splitings 

can be explained by the exchanged energy because the singlet states gain an 

exchange energy term, while the triplet states lose on one. 

FIG. 4.2.3 gives a comparison of the evolution of state energies for three different amplitudes 

of the magnetic field when the interaction terms are either ignored or included. We observe 

that the interaction consistently increases the state energy because of the Coulomb repulsive 

energy. The splitings due to the exchanged energy are not very evident but still observable. It 

should be noted that the exchange terms split the states and the single-particle spectrum 

changes the order of states. From FIG. 4.2.3 we see that the electronic structure can be tuned 

by the external magnetic field due to the inclusion of the interaction energy. 

The energy of the orbital p−  (see FIG. 3.1) has been lowered due to the magnetic field and 

becomes closer to the energy of s  orbital. Thus the electrons in the s-shell could have an 

opportunity to “jump” to the p−  orbital. If an electron jumps to the p−  orbital, the 
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FIG. 4.2.3 Comparison of the evolution of state energies in three different amplitudes of the magnetic 

field in the condition that the interaction terms are ignored or included. We see that the interaction 

always make the state energy higher because of the Coulomb repulsive energy. The splitings due to 

exchange energy are not so obvious but observable. 
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spin-singlet-triplet transition occurs, just as observed in 2D systems. We can observe a 

reduction in the energy difference between the singlet and triplet states with a corresponding 

increase in the magnetic field. 

However, there was no crossover in the feasible magnitude of the magnetic field. This is 

because the size of the system is too small. In a 3D nanocrystal, the Coulomb potential 0V  is 

smaller than that in a 2D gate-defined QD, while the kinetic energy 0ωh  in a NC is larger 

than that in a gate-defined QD. Moreover the magnetic length is larger than the confining 

length of the system. If we intend to observe the crossing in an NC system, we have to 

increase the magnetic field to an impractical magnitude in the order of 010 , which 

corresponds to few hundreds of Tesla. Although there is no singlet-triplet transition in the 

ground state, we can still control the electronic structure by applied magnetic field. For 

example, the lowest 7 states at 0/ 0cω ω =  are ordered (from low to high) singlet, triplet, 

triplet, triplet, singlet, singlet and singlet; however, at 0/ 0.5cω ω = , the order is changed to 

singlet, triplet, singlet, triplet, singlet, triplet and singlet. The order is changed again if the 

system is at 0/ 1cω ω = (FIG. 4.2.3). These various orders may affect the optical properties and 

could be used. 

 

4.3. Two Electrons in an Anisotropic System (Nanorod) 

Since the shape of nanocrystals can be controlled effectively, we can tune the electronic 

structure of a nanocrystal by controlling its shape rather than applying a magnetic field. As 

shown in FIG. 3.1, the shell structure is changed due to the anisotropy, and thus the energy 

spectrum is also changed. Similar to our method in the previous section, we calculated the 

eigenenergy numerically by varying the aspect ratio. 

The energy spectra of all the configurations are shown in FIG. 4.3.1 and FIG. 4.3.2 where the 

interaction terms are ignored/included. Note that the elongation of the system (from oblate to 
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prelate) makes the state energies decay very rapidly such that the energy difference between 

singlet and triplet states in FIG. 4.3.2 is not very obvious.  
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1  
FIG. 4.3.1 Energy spectrum versus aspect ratio where all the possible configurations are considered in 

the 2-shell approximation when the interaction terms are ignored. 
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FIG. 4.3.2 Energy spectrum versus aspect ratio, where all the possible configurations are 

considered in the 2-shell approximation when the interaction terms are included. The state energies 

decay so rapidly such that the energy difference between singlet and triplet states is not obvious. 
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FIG. 4.3.3 Illustration of the energy evolution of each state versus aspect ratio. The evolution can be 

separated into 4 stages by three critical values of the aspect ratio. At these critical aspect ratios, some 

exited states cross due to the varying shell structure caused by the anisotropy. Thus the order of the 

states from low to high energy in each stage is different. 
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FIG.4.3.4 The evolution of all the states with the aspect ratio. It can be well mapped to FIG.4.3.3, 

but the energy information is absent. Each transition line is labeled by a different color. 
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However, the absolute value scale of this difference is the same as that in the 

nanocrystal when the magnetic field is applied. 

The energy evolution of each state with the aspect ratio is a slightly complex. In FIG. 4.3.3 we 

show the energy evolution of each state versus the aspect ratio. The evolution can be 

separated into 4 stages by three critical values of the aspect ratio determined by a single 

particle spectrum. The critical values are approximately 1
2

, 1, and 2 , and at these critical 

values some exited states cross because of the varying shell structure caused by the anisotropy. 

Thus the order of the states from low to high energy in each stage is different and can be 

tuned by controlling the aspect ratio. In FIG. 4.3.4 we show the evolution of all the states with 

the aspect ratio. It contains the complementary information of FIG. 4.3.3 and the transition 

lines are labeled with different colors. Let us check that does the singlet-triplet transition 

occur in the ground state. When the system is elongated, the energy of orbital 0p  lowers and 

the electrons in s  probably jump to 0p . Thus the triplet states we should consider are 

| 01t > , | 02t > , and | 03t > . The energy spectrum of the ground state and the the first excited 

state versus the aspect ratio as shown in FIG. 4.3.2 indicates that no transition occurs. We 

cannot check if the transition occurs with a high aspect ratio because the 2-shell 

approximation fails in a high anisotropy system. To verify the highly anisotropic conditions, 

we have to consider more configurations and perform additional calculations. The shell 

structure of lower states with high aspect ratio is just the 1D SHO states, and thus we should 

consider the configurations | 0,0,0 >  to | 0,0,q > . Besides, when the aspect ratio is small, 

we should take the Fock-Darwin configurations in the calculation. After all, we have 

demonstrated the 2-electron system in a simplified condition and shown that the electronic 

structure could be tuned by an external magnetic field and/or the anisotropy. 
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Chapter 5: Summary 

 
In this thesis we develop a CI theory for interacting electrons in nanostructures with 3D 

confinement, i.e., nanocrystals and nanorods, based on the 3D parabolic model. We mainly 

focus on three types of systems: (1) isotropic nanocrystals without magnetic field, (2) 

isotropic nanocrystals in a magnetic field, and (3) anisotropic nanocrystals (nanorods). 

As a first step, we demonstrated a two-electron system in the two-shell approximation. We 

show that one can tailor the electronic structure of NC/NRs and the particle-particle 

interaction by means of shape-control and applying an external magnetic field; the latter 

affects the electronic structure slightly while the former results in drastic change of electronic 

structure and many-body physics. 

To obtain numerical results with high accuracy, we should take the number of configurations 

as many as possible. In practice, we can truncate the Hilbert space spanned by the considered 

configurations with some cut off energy determined by convergence study. Since the kinetic 

and interaction terms we derived are universal, the theory we built up could also be applied to 

describe the behavior of the holes in valence band. Therefore we could study the excitonic 

problems and explore the optical properties of NC/NR systems. The theory may be applied in 

other systems such as pillar quantum dots which shapes are similar to NC/NR’s such as pillar 

quantum dots. 

In the future, the following subject can be studied as the extended work of this thesis: 

1. We may explore the possibility of observing S/T transition by both magnetic field and the 

breaking of symmetry of NC’s. 

2. The simple model in this thesis may be compared with the results by atomistic 

tight-binding theory. 

3. The two-electron study may be compared with numerical results. 
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4. We may explore more-electrons systems by exact diagonalization. The theory is extendable 

to large scale exact diagonalization calculation. 
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Appendix: Coulomb Matrix Elements 

In this section we will calculate the electron-electron Coulomb energy in the systems 

discussed in previous chapters. The Coulomb scattering matrix element is denoted by a  

volume integral 

* *
1 2 1 2 2 1

1 2

2( ) ( ) ( ) ( )
| |i j k ldr dr r r r r
r r

ψ ψ ψ ψ
⎛ ⎞
⎜ ⎟−⎝ ⎠

∫∫
r r r r r r

r r             Eq.(A.1), 

where ( )rψ r  is the wavefunction of single electron, 1r
r  ( 2r

r ) is the position of electron 1(2), 

and ,  ,   and i j k l  are the quantum numbers introduced in chapter 2, i.e., 

1 1 1

2 2 2

2 2 2

1 1 1

',  ',  '
',  ',  '
,  ,  

,  ,  ,

i n m s
j n m s
k n m s
l n m s

=
=
=
=

 

The Coulomb interaction operator is 1
1

2( ,  )
| |

V =
−2

2

r r
r r

 which is in the Rydberg unit, and 

1r , 2r  are in the effective Bohr radius. It should be noted that in the derivation we use 

quantum number s  instead of q  for convenience. In our derivation, it is more convenient 

to express the interaction terms in the Dirac notation 

* *
1 2 1 2 2 1

1 2

2| | ( ) ( ) ( ) ( )
| |i j k lij V kl drdr r r r r
r r

ψ ψ ψ ψ
⎛ ⎞

< >≡ ⎜ ⎟−⎝ ⎠
∫∫

r r r r r r
r r       Eq.(A.2). 

Further, it is more convenient to calculate the matrix elements in the reciprocal space. In 3D 

systems the Coulomb potential can be written as the Fourier series 

1 2( )i
q

q
v v e ⋅ −= ∑ q r r               Eq.(A.3), 

where 2

8
qv

q
π

=  and ( , , )x y zq q q=q . 

Then the matrix element becomes 

1 2q q
1 22 2

8 8| | | | | |i i

q q
ij V kl i e l j e k M M

q q
π π⋅ − ⋅< >= < > < >=∑ ∑r r      Eq.(A.4), 

Here we let 1 2q q
1 2| |  and | | .i iM i e l M j e k⋅ − ⋅=< > =< >r r  
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From the above definition, we have the operators 

( ),
2

( ),
2
( ).z

lx a a b b

ily a a b b

z l c c

+ +

+ +

+

= + + +

= − − +

= +

            Eq.(A.5). 

All the operators ( ) ( ) ( ),  ,  a b c+ + +  and parameters ,  zl l  are defined in chapter 2. 

Before calculating 1M , we must deal with ie ⋅ 1q r : 

1 1 1

1 1 1 1 1 1 1 1 1 1

* *
1 1 1 1 1 1

( )

[ ( ) ( ) ( )]
2 2

( )

      

      

x y z

yx
z z

p p p p z z

i q x q y q zi

ilqlqi a a b b a a b b q l c c

i a Q a Q b Q b Q c Q c Q

e e

e

e

+ + + + +

+ + +

+ +⋅

+ + + + − − + + +

+ + + + +

=

=

=

1q r

         Eq.(A.6), 

with the definition 

( ),
2

.

p x y

z z z

lQ q iq

Q l q

= +

=
 

In order to disentangle the operators in the exponent, we use the Trotter-Suzuki formula 

^ ^
^ ^ ^ ^ 1[ , ]

2
A BA B A Be e e e

−+ =               Eq.(A.7), 

which is applicable under the condition 
^ ^ ^ ^ ^ ^

[ ,  [ ,  ]] [ ,  [ ,  ]] 0.A A B B A B= =  With this formula we 

may write ie ⋅ 1q r  as 

2
2 * *

1 1 1 1 1 1

| |
| | 2

z
p p p p p z z

Q
Q iQ a iQ a iQ b iQ bi iQ c iQ ce e e e e e e e e

+ + +−−⋅ =1q r         Eq.(A.8). 

Then we can calculate 1M  as follows: 
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Similarly, we have 
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    Eq.(A.10).

 

Now we can calculate the scattering matrix elements. Replacing the summation over plane 

waves by an integral, the matrix elements become 

2

1 23 20 0

1 8| | ( )
8 q zij V kl q dq d dq M M

q
π

ρ ρ
πφ

π
∞ ∞

−∞
< >= ∫ ∫ ∫          Eq.(A.11), 

where ,  , and q zq qρ φ  are the three cylindrical coordinates in the reciprocal space. By the 
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definition ( ),
2p x y
lQ q iq= +  we have ( ).

2
qi

p
lQ q e φ

ρ=  With 1 2 and M M  obtained 

above, the integral can be arranged more systematically 
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z

q
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i q q q q p pm m n n n n m m
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q
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The most serious problem is posed by the volume integral. First we perform the integration of 

the angular part which is obviously quite simple, 

1 2 1 2 1 2 1 2
2 ' ' ( ' ' )

,0
( ) 2q

L R

i m m n n n n m m
q R Re d

π φ φ πδ+ + + − + + + =∫            Eq.(A.13), 

where 1 2 1 2 1 2 1 2( ' ') ( ' ') and ( ) ( )L RR m m n n R m m n n= + − + = + − + . The delta function reflects 

the fact that the z -component of the angular momentum is conserved since the vector 

potential corresponding to the magnetic field in the z  direction is on the x-y plane and has 

no influence in the z  direction. 

Now the last problem is the 2D integral. We first consider the simplest case where the system 

is isotropic and under no magnetic field. Under this condition, by changing the variables, we 

have 
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where 1 2 1 2 1 2 4 5' ' ( ),u m m n n p p p p= + + + − + + +  

1 1 2 2
3 6

' ' ( ).
2

s s s sv p p+ + +
= − +  

Note that | | 0ij V kl< >≠  only when v  is an integer, which means 1 1 2 2' 's s s s+ + +  must be 

even. If 1 2s s+  is even (odd), 1 2' 's s+  must also be even (odd). This selection rule 

reveals that the parity of the colliding electrons states should be conserved. 

If the system is under a magnetic field and (or) not isotropic in the z  direction, the scattering 

matrix elements become slightly more complicated: 
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                                                  Eq.(A.15),

where 2 1F  is the hypergeometric function. 2 1
1 2 3 21 , ; ;0 1

2 2
u v u vF u + + + +⎛ ⎞+ =⎜ ⎟

⎝ ⎠
 recovers 



 40

the isotropic and no magnetic field case ( Eq.(A.14) ). 
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