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ABSTRACT

Many parameters affect the automatic. welding quality. In practice, the desired
welding parameters are usually determined based on experience or handbook values. It
does not insure that the selected welding parameters result in optimal or near optimal
welding quality characteristics+fot. that particular welding system and environmental
conditions. To solve such problems, engineers conventionally apply the Taguchi method.
However, the Taguchi method has some limitations in practice. Many benefits can arise
from using the Taguchi method for neural network design. A proposed approach that
combine the Taguchi method and a neural network to determine optimal welding
conditions for improving the effectiveness of the optimization of parameter design is
presented. The proposed approach includes two phases. Phase 1 executes initial
optimization via Taguchi method to construct a database for the neural network. Phase 2
applies a neural network with the Levenberg-Marquardt back-propagation (LMBP)
algorithm to search for the optimal parameter combination. Three examples involving
the gas tungsten arc (GTA) welding, the pulsed Nd:YAG laser micro-weld process, and
the resistance spot welding (RSW) process in automotive industry demonstrate the
effectiveness of the proposed approach. The experimental results show that the proposed
procedures excel the Taguchi method in this dissertation. It has demonstrated the

practicability of the proposed procedures.

il



ACKNOWLEDGEMENT

FRARE S SRR AR L s kFEe RpLE R AL S
MECRER R UEA RN LR 30 3= i S R E68 A

U R R R S KIE  IRERY KR R AR IR A K
BEZEMELILZA HARG > OFIERE > T HP T wer §
RFL o Rmy P FARYRA O HHHEP -FLIF > xRk
FRASRREE G ARPRE AH SRRE ST S R
SRLEARENERR O EF 2RI BRI APRIHL R
SRR L L T KA 4 R A e R 0 AF L B IR 2 % g
FeT MR e XA 2T 2 B TILEER R - ¥t AL s
FEFEEL pnov B F ey 3L AR S AN TE
BLEE bbb B 2L RFR TP -

A ot Lo b f %A e FRE YR

foz Goe Bk o T EARE £ FRE S HRRT CHE S 50
KFE R HhEk  ERgR R TR S A REE L1 F 6o
AT RS IR FATR o ¥ b o B R W R - A s
P RE S AL TRHRALHTRE YA B G N R HRE RS
ﬂ}:&ﬁiﬂﬁ‘I ﬁiﬁi

2z

Bd 15 A% sty e @ a0 @PEM 2o >R st

IR

F.

‘3\

2R S BEITR E R A R E - P

HHE PR T o
RHAMET 222 s 1y Rk Pt FEiE 2 42 3
R RRAES BAA DTGP ESEEAH D € AR AL B

PR AR e BRSNS £ kT > G R N2 Y

i

BA LR SR AT A np o REE AT R o B
A fE Pl S L F L s o4 o G o B o 0 J‘zﬁbg{—:,é%)%
B SRR EA B A A BERE o

iii



TABLE OF CONTENTS

ABSTRACT (IN CHINESE) -+« ++esesseessrnsuuarurtntianiniieiininn.. i
ABSTRACT cvcecerereeeaeueueneunmemiuiuierenitetiieiieieiiiseneieieneaeanns i
ACKNOWLEDGEMENT -+ v v ceeeeetttetutututniimnmttieeiaeeen. i
TABLE OF CONTENTS :ceeceeeeeeusutueututetenmnmemiiceeimnmeeen iv
LIST OF TABLES -cccccceeceeetetettiitiitteietiiatetetttacccntccctsnaccsccens vi
LIST OF FIGURES cecccceecceeettttetittiieteietenntcsntecctsnacessscnaccnnss Viii
CHAPTER 1 INTRODUGCTION «ceeeeeeeeseraeaesmiarueeeeceianacaenes 1
1.1 BaCKGrounds:««««+++seresssssseeeeereneertetiiiiiiieee 1
1.2 MOtIVALION - +++++vevererrasBlddhiiin e ierernerernienereeieeteeenenanas o)
1.3 Objectives: --++++smrnebeedimtemnie it e 3
1.4 Dissertation OULIES -« s+ssrsassnsesnsttorrerererereeererieeeieenennns 3
CHAPTER 2 LITERATURE REVIEW teeeeseeetecccctnnctteccrnnanes 5
2.1 Taguchi Method «««-+seeserreserrmemminmmiiieiiii 5
2 2 NeUral NEtWOTKS «+++rrereerererserereriereraeierererieiesereeneneenns 9
2.3 Integrated the Taguchi method and a neural network «-«+-«------ 16
2.4 The gas tungsten arc (GTA) welding ««««-eeeeeresrseeeeeeeeeneen. 17
2 5 Nd:YAG 1aser MiCro-weld «+-eeeeeeeeerrereeerirnerneneneeneieieans 20
2.6 Resistance spot welding (RSW) in automotive industry---«---- 24
CHAPTER 3 EXPERIMENTAL PROCEDURES -:-sececeeeeeeeeee.e 27
3.1 Proposed procedure ««++++«sssereseerrneermiinntiii 27

v



3.2 Optimization for GTA welding:«««-+-+sereeeereceseriienenene. 78

3.2.1 Initial optimization for GTA welding:----«+-ceeeeeeeeeeee.. 28

3.2.2 Real optimization for GTA welding «««+--eeeeeeeeereneenes 39

3.3 Optimization for Nd:YAG laser micro-weld «««ceeeeeeeeeeeeeee. 42
3.3.1 Initial optimization for Nd:YAG laser micro-weld ------ 42

3.3.2 Real optimization for Nd:YAG laser micro-weld-««+---- 54

3.4 Optimization for RSW process:««+«+«=sseseesearesenseaceaennnnnn 61
3.4.1 Initial optimization for RSW process:««««++eeeeeeeeeeeaenne. 61

3.4.2 Real optimization for RSW process ««+-oeeeeeeeeeeeeeeeeens 70
CHAPTER 4 RESULTS AND,DISCUSSION-+eeceeeeeeceneecnrannenes 77
4.1 Experimental results of GTA weldifg:«««--«ccooveerereeeaeneenns 77

4.2 Experimental results of Nd:YAG laser micro-weld----««++---+--- 79

4.3 Experimental results of RSW progess ««««««++-erreeeeeeerrneeenee 81
CHAPTER 5 CONCLUSION ceceeereceeceaceerserierneeneecansencnnsnens {4
Y =] mf =f = ¥ =4 N [ =R 36
AUTHOR’S PUBLICATION LIST +ceeeeterescrccacsceasnesacaceesncnaes 91



Fig.2-1
Fig.2-2
Fig.2-3
Fig.2-4
Fig.2-5
Fig.2-6
Fig.3-1
Fig.3-2
Fig.3-3
Fig.3-4
Fig.3-5
Fig.3-6
Fig.3-7
Fig.3-8
Fig.3-9
Fig.3-10
Fig.3-11
Fig.3-12
Fig.3-13
Fig.3-14
Fig.3-15
Fig.3-16

LIST OF FIGURES

Schematic of measurement for weld pool geometry --««-----
Cause and effect diagram of the GTA welding process:-----
Lithium-ion secondary battery and its micro-weld position
Testing instrument and the schematic of measurement ------
Cause and effect diagram of the Nd:YAG laser welding ---
Universal testing machine used ««+-+«=+eseeseeeesemenacneennes
The equipment of Autogenous GTA welder «----eeeeeeeeeeees
Measurement of weld pool geometry - +-xceeesrecerereeenn
S/N graph for the weld Podligeometry««««-+-csereremrecenen.
The BP network topology: of the GTA welding process:-----
Simulation different electrode angle and welding current ---
Pulsed Nd:YAGTaser spot welder «-«-+eecoeeeereeecereeenee.
Illustration of automatic production «««+-«eeeeeeeeeeeeeaen..
SNR graph for the quality characteristice=«««+sseeeeeeeeeeeene.
The BP network topology of the Nd:YAG laser welding ---
Results of simulating different pulse width-««+--eeeeeeeeeenn..
Results of simulating different focus position:--«««+--seee--.
Results of simulating different pulse frequency«---««++------
Results of simulating different pulse peak value-««+-«+++-----
Schematic diagram of the specimens:«««««+sceeeeeeeeeeenneanns
Resistance spot welder and prepared specimens:«««=«««++-----

SNR graph for the MaX. Load ....................................

Vi



Fig.3-17
Fig.3-18
Fig.3-19
Fig.3-20
Fig.3-21
Fig.4-1

Fig.4-2

The BP network topology of the RSW process «---eeeeeeeeee- 72

Results of simulating different welding time «-«+--=seeeeeeeee 73
Results of simulating different electrode force --««+-eeeve--- 74
Results of simulating different size of the electrode tip------ 75
Results of simulating different welding current-«««-««++----- 76
Weld pool geometry for validation:««««««««ssssresesseeeeeeeees 78
Surface conditions of specimens for validation «««+-eeeeeeee- 83

vii



Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 3-20

LIST OF TABLES

Parameters for GTA welding
Parameters for laser Weldlng ....................................
Material used in GTA welding (Wt-%)--«+eceeeeerreneeeeees

Control factors of GTA welding
Experimental layout using an L,; orthogonal array ---------
Summary of experiment data of GTA welding:---««++-----

S/N response table for the weld pool geometry

Results of ANOVA for the weld pool geometry

Confirmation experimentiof GTA welding

Options for different networks in GTA welding
Material used'in Nd:Y'AG laser spot welding (wt-%) «-----
Control factors 0f Nd: YAG laser spot welding:----+--++------
Experimental layout using L,s orthogonal array ««««-««-----
Experiment data of Nd:YAG laser micro-weld-««--«+++-----
SNR response table for the quality characteristice«++-«+-----
Results of ANOVA for the quality characteristice+++-«+-----
Confirmation experiment of Nd:YAG laser micro-weld:--
Options for different networks in Nd:YAG laser welding
Material used in RSW process««+««++«sseeseessenseenseasennn.

Control factors of RSW process

Experimental layout using an L,¢ orthogonal array

Experiment data Of RSW PrOCESS s s rrrerrresseeennennnceecees.

viii



Table 3-21
Table 3-22
Table 3-23
Table 3-24
Table 3-25
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5

SNR response table for the Max. Load:-««+-++eeeeeeeeeeeeses 67
Results of ANOVA for the Max. Load:«++-«ceoeeeeeeeeneeeee. 68
Confirmation experiment of RSW process «-ecreeeeeeeeeeee 69
Results of the Taguchi method with proper regulation------ 70
Options for different networks in RSW process «+-e+--:-- 71
Results of the proposed approach in GTA welding-+------- 77
Results of the proposed approach in laser welding «+--«+--- 79
A comparison of each CONdition «+-+-++errrsesseeeereemununns 0
Results of the proposed approach in RSW process +---«---- 82
Results of the initial conditions in RSW process:«««---««--- 82

X



CHAPTER 1

INTRODUCTION

1.1 Backgrounds

Welding is the most efficient way to join metals. It involves more
sciences and variables (parameters) than other industrial process. Welding is
widely used to manufacture or repair all products made of metal. Look
around, almost everything made of metals is welded; such as automobiles,
ships, airplanes, bridges, buildings, home appliances, microelectronic

appliances and so on.

Welding is an economical manufaeturing method. In the high-volume
production industries it: is-common to- see welding operations intermixed
with bending, machining, forming-and assembly. Welding is an important
manufacturing process taking its place with other metalworking operations

to produce high quality metal products at economical prices.

The recent trends in the welding and manufacturing it becomes evident

that the following must be considered with regard to the future welding [1]:

1. There will be a continuing need to reduce manufacturing cost since:
a. Wage rates will continue to increase.
b. The cost of metals and filler metals will continue to be more
expensive.
c. Energy and fuel costs will increase.

2. There will be a continuing trend toward the use of higher strength



materials.

3. There will be more use of welding by industry, decreasing the use of
casting.

4. There will be a continuing trend toward higher levels of reliability and
higher-quality requirements.

5. The trend toward automatic welding and automation in welding will

accelerate.

1.2 Motivation

There are many parameters that affect the automatic welding quality
such as the gas tungsten arc (GTA) welding, the laser welding, and the
resistance spot welding (RSW) in_automotive industry. In practice, the
desired welding parameters are usually determined based on experience or
handbook values. It does not insure-that the selected welding parameters
result in optimal or near ‘optimal welding quality characteristics for that

particular welding system and environmental conditions.

The Taguchi method, a popular experimental design method applied in
industry, can alleviate on the disadvantages of full factorial design when
doing fractional factorial design. It approaches the optimization of
parameter design, although the number of experiments is reduced [2].
However, the Taguchi method has certain limitations when used in practice.
The optimal solutions were only obtained within the specified level of
control factors. Once the parameter setting is determined, the range of
optimal solutions is constrained concurrently. The Taguchi method is unable
to find the real optimal values when the specified parameters are continuous

in nature, because it only addresses the discrete control factors.
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Neural network is a non-linear function, capable of accurately representing
a complex relationship between inputs and outputs [3-5]. The trained neural
model was also used to accurately predict the response at given parameter
settings. In addition, Khaw et al. [6] proved that benefits could be obtained by
using the Taguchi concept for neural network design. First, this methodology is
the only known method for neural network design that considers robustness. It
enhances the quality of the neural network designed. Second, the Taguchi
method uses orthogonal arrays (OAs) to systematically design a neural network.
Subsequently, the design and development time for neural networks can be

reduced tremendously.

1.3 Objectives
This dissertation employs an approach, which combine the Taguchi method
and a neural network to determine optimal conditions for improving the welding

process quality. Three welding processes are focus in this dissertation:

1. Optimization of the gas tungsten arc (GTA) welding process for type 304
stainless steels.

2. Modeling and optimization of the Nd:YAG laser micro-weld for the
lithium-ion secondary batteries.

3. Modeling and optimization of the resistant spot welding (RSW) process for

high strength steel sheets in automotive industry.

1.4 Dissertation outlines
Chapter 2 reviews that the Taguchi method, neural networks, combined

Taguchi method with a neural network, the GTA welding for type 304



stainless steels, the pulsed Nd:YAG laser micro-weld for the lithium-ion
secondary batteries, and RSW process for high strength steel sheets in
automotive industry. Chapter 3 presents that the proposed approach was
used to determine optimal conditions for improving process quality of the
GTA welding, the pulsed Nd:YAG laser micro-weld and RSW process. In
addition, this chapter presents the initial optimization via Taguchi method,
and a neural network with the Levenberg-Marquardt back-propagation
(LMBP) algorithm to search for the optimal parameter combination for
these welding processes. Chapter 4 provides the discussion comparison with
previous works and the proposed procedures. Finally, Chapter 5 concludes

the main results of the presented work.



CHAPTER 2

LITERATURE REVIEW

2.1 Taguchi method

The philosophy of Taguchi is broadly applicable. It considers tree stages in
process development: system design, parameter design and tolerance design
[2,7]. In system design, the engineer uses scientific and engineering principles to
determine the basic configuration. The main objective of system design is to
determine the manufacturing process that can produce the product within the
specified limits and tolerance at the lowest cost. In the parameter design stage,
specific values for the system parameters are determined. Parameter design in
production process design determines the operating levels of the manufacturing
processes so that variation in product parameters is minimized. Tolerance design
i1s used to specify the best: tolerances for the parameters. The objective of
tolerance design is to find optimal ranges of the operating conditions that
minimize the sum of variation cost and cost of the product.

In addition, traditional experimental design is primarily used to improve the
average level of a process (e.g., arithmetic mean of a sample). In modern quality
engineering, experimental design work is used to develop robust designs to
improve the quality of the product. Taguchi’s parameter design is to achieve
robust quality by reducing effects of environmental conditions and variations
caused by deterioration of certain components [7,8]. This is achieved by the
selection of various design alternatives or by varying the levels of the design
parameters for component parts or system elements. It can optimize the
performance characteristics through the settings of design parameters and reduce

the sensitivity of the system performance to sources of variation.

5



The tools for executing the parameter design oh Taguchi method are shown

as below [7-10]:

Orthogonal array

Orthogonal array (OA) based matrix experiments are used for a variety of
purposes in Robust Design. They are used to study the effects of control factors
and noise factors, and determine the best quality characteristic for particular
applications. Taguchi has tabulated 18 basic orthogonal arrays that are called
standard OAs. Note that the orthogonality was preserved even when the dummy
level technique was applied to one or more factors. In addition, the noise factor
could be assigned to the outer array to find some level of a control factor that
does not have much variation «in the results, even though a noise factor is

definitely present.

Evaluation by S/N ratios

Taguchi has created a transformation of the repetition data to another value,
which is to say a measure of the variation present. The transformation is the
signal-to-noise ratio (S/N ratio, SNR). There are several S/N ratios available
depending on the type characteristic being present, such as lower-is-better (LB),
nominal-is-best (NB), or higher-is-better (HB).

For a static problem, Taguchi classified them into three different S/N ratio

2
j 2-1

” _zj 22
i-1 Y

types, as shown in equation 2-1, 2-2 and 2-3.
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SN =—1010g10(1 nyj 2-3

N

were n denote the number of repetition, y represents the response mean, and

s 1s the standard deviation of response.

Analysis of variance

The Analysis of Variance (ANOVA) was developed by Sir Ronald Fisher in
the 1930’s as a way to interpret the results from agricultural experiments.
ANOVA is not a complicated method and has a large amount of mathematical
uniqueness associated with it. The purpose of the ANOVA is to investigate
welding process parameters, which can significantly affect the quality
characteristics. The percent contribution in the total sum of the squared
deviations can be used to evaluate the importance of the welding process
parameter change on these quality characteristics. In addition, the F-Test named
after Fisher can also be used to_determine which welding process parameters
have a significant effect on the quality characteristics. Usually, when the value
of F-Test is greater than 4, it means that a change in the process parameter has a
significant effect on the quality characteristics. When the contribution of a factor
is small, the sum of squares for that factor is combined with the error. This
process of disregarding the contribution of a selected factor and subsequently

adjusting the contributions of the other factors is known as “Pooling”.

Confirmation tests

Using the Taguchi method for parameter design, the predicted optimum
setting need not correspond to one of the rows of the matrix experiment.
Therefore, the final step is to compare the estimated value with the confirmative

experimental value using the optimal level of the control factors to confirm with



the experimental reproducibility. The estimated S/N ratio 7., using the optimal

level of the control factors can be calculated as:
A q A
Now =7+ 21, =1) 2-4
j=1
where 7 1s the total average of S/N ratio of all the experimental values, 7, is
the mean S/N ratio at the optimal level, and q 1s the number of the control
factors that significantly affect the quality characteristic.
The confidence interval is a maximum and minimum value between which

the true average should fall at some stated percentage of confidence. The

confidence limits of the above estimation can be calculated taking into account

£ JF Ve{ng 25
e neff r

where F,,, is the F-ratio required for a=risk, confidence=1—risk, v, is the

the following equation:

degrees of freedom for pooled error, V,, is the pooled error variance, r the
sample size for the confirmation experiment, and n, is the effective sample
size:

N

Ny = 2-6
1+ DOF,,

where N is the total number of trials, DOF,, is the total degrees of freedom

opt

associated with items used in the 7, estimate.



Apply Taguchi method to welding processes

Juang et al. [11] presented a study that application of Taguchi method to
select parameters for obtaining an optimal weld pool geometry in the GTA
welding of stainless steel. In this study, a weighting method is used to integrate
the loss functions into the overall loss function (the higher-is-better of S/N ratio);
the weighting factors for the front height and back height of the weld pool were
selected as 0.4, the weighting factors for the front width and back width of the
weld pool were selected as 0.1.

Li et al. [12] using the RSW process as an example, this paper presents a
new robust design and analysis framework for products and processes with
parameter interdependency. The experiment was designed using a two-stage,
sliding-level factor approach. Welding ‘current was chosen as a “slide factor”
whose settings are determined based on those of others including both control
and noise factors. By proper coding, a stepwise regression procedure was used
to develop a response model; with which the response modeling approach for
robust design is applied.

Tarng et al. [13] used grey-based Taguchi method for the optimization of
the submerged arc welding (SAW) process parameters in hardfacing with
considerations of multiple weld qualities. In this approach, the grey relational
analysis was used as the performance characteristic in the Taguchi method. Then,
optimal process parameters were determined by using the parameter design

proposed by the Taguchi method.

2.2 Neural networks
Neural networks are used for modeling of complex manufacturing

processes, usually with regard to process and quality control [14,15]. Several



well known supervised learning networks use a back propagation (BP) neural
network. Funahashi [16] proved that the BP neural network may approximately
realize any continuous mapping. Back propagation learning employs a gradient
descent algorithm to minimize the mean square error between the target data and
the predictions of a neural network. However, one of the major problems with
basic BP algorithm (gradient descent algorithm) has been the extended training
time required. The techniques for accelerating convergence have fallen into two
main categories: heuristic methods and standard numerical optimization
methods such as the Levenberg-Marquardt back-propagation (LMBP) algorithm
[17].

Levenberg-Marquardt back-propagation.algorithm

The LMBP algorithm js similar to the quasi-Newton method, in which a
simplified form of the Hessian matrix (second derivatives) is used. Starting from
the Taylor series approach of second order, for a generic function F(x), the

following can be written [17-19].

F(X..,) = F(X, +Ax,) = F(x,)+G(x,k)Ax, +%Aka(x,k)Axk 2-7

Where G(x,k) is the gradient of F(x), Ax, 1s X, —X and H(xk) is
the Hessian matrix of F(x).
If the derivative of equation 2-4 in respect to Ax, is taken, equation 2-8

will be obtained.

G(x,k)+H(x,k)Ax, =0 2-8

10



This equation can be re-written in the following form.

AX, =—-H(x,k)"'G(x,k) 2-9

The updating rule for the Newton algorithm is then obtained.

X =X —HXK)'G(x,k) 2-10

Considering a generic quadratic function as the objective function, as
represented in equation 2-11 for a multi-input multi-output system (here the

iteration index is omitted and i is the index of the outputs)

F(x)=ge5(x) 211

Then it can be shown that
G(x)=JT (x)e(x) 2-12
H(x) =" (x)J(X)+S(x) 2-13

Where J(x) is the Jacobian matrix and S(x) is

S(X) = iei (X)V2e, (X) 2-14

It can be assumed that S(x) is small when compared to the product of the

Jacobian, the Hessian matrix can be approximated by the following.

H(x) ~ 37 (x)J(X) 2-15

11



This approach can update equation 2-10 and gives the Gauss-Newton

algorithm.

Ax, =[3T0I(0] 3T ()e(x) 2-16

One limitation that can happen with this algorithm is that the simplified
Hessian matrix might not be invertible. To overcome this problem, a modified

Hessian matrix can be used.

Hm(x) = H(x) + zl 2-17

Here 1 is the identity matrix and u is a value such that makes Hm(x)
positive definite, and therefore can be.invertible. This last change in the Hessian

matrix corresponds to the Levenberg-Marquardt algorithm.

Ax, 2 [T 03004 [ 3T (e(x) 2-18

When the scalar x is zero, this is just Gauss-Newton, using the
approximate Hessian matrix. When g is large, this becomes gradient descent
with a small step size. The algorithm begins with x set to some small value
(e.g. #=0.01). If a step does not yield a smaller value for e, then the step is
repeated with x multiplied by some factor 8 >1 (e.g. 4=10). Eventually e
should be decreased, since we would be taking a small step in the direction of
steepest descent. If a step does produce a smaller value for e, then u is
divided by ¢ for the next step, ensuring that the algorithm will approach
Gauss-Newton, which should provide faster convergence [17].

The LMBP algorithm is the fastest algorithm that has been tested for

12



training multiplayer networks of moderate size, even though it requires a matrix
inversion at each iteration. It requires two parameters, but the algorithm does not
appear to be sensitive to this selection. In addition, Kumar et al. proved [20] that
the LMBP algorithm and Gauss-Newton were found to perform best for least
square problems. In particular, the LMBP algorithm performs better with a poor
initial estimate compared to the Gauss-Newton method. Summary, the LMBP
algorithm provides a nice compromise between the speed of Newton’s method

and the guaranteed convergence of steepest descent.

Training of back propagation Network

A neural network, which can capture and represent the relationship between
the process variables and process outputs, was developed in this stage.
Multi-layer perceptions are feed-forward:neural networks are commonly used
for solving difficult predictive modeling problems [21]. They usually consist of
an input layer, one or more hidden layers, and one output layer. The neurons in
the hidden layers are computational units that perform non-linear mapping
between inputs and outputs. A feed-forward neural network was used in this
study. The transfer functions for all hidden neurons are a tangent sigmoid
function as shown in equation 2-19. The transfer functions for the output

neurons are a linear function as shown in equation 2-20 [22].

F(x) = exp(X) —exp(—X) 2.19
exp(X) + exp(—X)

f(X)=x 2-20

Determining the number of hidden neurons is critical in the design of
neural network. An over abundance of hidden neurons give too much flexibility

13



that usually leads to over-fitting. On the other hand, too few hidden neurons
restrict the learning capability of a network and degrade its approximation

performance [21].

Apply neural networks to welding processes

Kim et al. [23] develop an intelligent system in gas metal arc (GMA)
welding process using MATLAB/SIMULINK software. Based on multiple
regressions and a neural network, the mathematical models were derived from
extensive experiments with different welding and complex geometrical features.
In this study, using a generalized least mean square (LMS) algorithm, the BP
algorithm minimizes the mean square difference between the real and the
desired output. The developed neural network model can proposed for real-time
quality control based on observation of bead geometry and for on-line welding
process control. However, it was trained for 200,000 iterations.

Wu et al. [24] present a “study that introduces a Kohonen network
(self-organising feature map) system for process monitoring and quality
evaluation in GMA welding. The Kohonen network is an unsupervised learning
neural network. It can be used to solve classification tasks and to find structures
in data. In the present study the evaluation gives a rather high recognition rate.

Nagesh et al. [25] used a neural network with basic BP algorithm (gradient
descent algorithm) to model the shielded metal-arc welding process. The trained
neural network model had achieved good achieved good agreement with the
training data and had yielded satisfactory generalization. It was trained for
11,000 iterations.

Ridings et al. [26] present a study that describes the application of neural

network techniques to the prediction of the outer diameter weld bead shape for
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three wire, single pass per side, submerged arc, linepipe seam welds, using the
weld process parameters as inputs. This study show that the use of neural
network models for the prediction of weld bead geometry has the potential for a
detailed shape to be input into through process models, rather than having to
assume a shape from a limited number of defining parameters.

Jeng et al. [27] adopted two back-propagation (BP) and one learning vector
quantization (LVQ) neural network models to predict the laser welding
parameters and the associated welding quality individually, because some of the
parameters are strongly interconnected and must be determined by sequence.
LVQ is a supervised learning technique that uses class information to move the
classification set slightly, so as to improve the quality of the classifier decision
region.

Lee et al. [28] employed multiple regression analysis and neural network to
predict the back-bead of geometry in the GMA welding process. The neural
network showed superior results to the multiple regression analysis in terms of
field of prediction error rate.

Vitek et al. [29] present a welding process that combined plasma arc
welding with laser welding was used to make autogenous bead on plate welds
on a sheet stock of a carbon steel. The predictions of the neural network model
showed excellent agreement with experiment results, indicating that a neural
network model is a viable means for predicting weld pool shape. Thirty-three
different experimental welds were made. These welds provide a total data set of
33 weld conditions and the corresponding weld pool shape. It was subdivided
into 11 train/test pairs consisting of 30 and 3 data points respectively.

Tarng et al. [30] used a neural network to construct the relationships

between welding process parameters and weld pool geometry in GTA welding.
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An optimization algorithm called simulated annealing was then applied to the
network for searching the process parameters with an optimal weld pool
geometry. The quality aluminum welds based on the weld pool geometry was
classified and verified by a fuzzy clustering technique. In this study, cleanliness
of specimens was selected as the input of BP network model.

Han [31] used a neural network to obtain the knowledge about the fatigue
lives of weldments with welding defects under fatigue load. A total data set of
15 conditions and the corresponding fatigue life. It was divided into train and

test pairs consisting of 10 and 5 data points respectively.

2.3 Integrated the Taguchi method and a neural network

Rowlands et al. [32] present’a study: that illustrate how optimal parameter
design can be achieved by=using!design. of: experiments in conjunction with
neural network. Applying the method, the neural network was trained by the
results of a fractional factorial ‘design, and was then used to estimate the
response values for the full factorial design.

Chiu et al. [33] used the neural network model and the Taguchi method to
determine the optimal parameter setting in a gas-assisted injection molding. The
results showed that the integrated method is capable of treating continuous
parameter values.

Khaw et al. [6] proved that benefits could be obtained by using the Taguchi
concept for neural network design. First, this methodology is the only known
method for neural network design that considers robustness. It enhances the
quality of the neural network designed. Second, the Taguchi method uses
orthogonal arrays (OAs) to systematically design a neural network. With the

effective use of the Taguchi method, several important design factors of a neural
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network can be considered simultaneously. The design and development time for
neural networks can be reduced tremendously. The Taguchi method is not
strictly confined to the design of BP neural networks. It can be used to evaluate
neural networks of different types such as counter-propagation, Boltzmann

machine, and self-organizing map.

2.4 The gas tungsten arc (GTA) welding

The GTA welding is an arc welding process that uses an arc between a
tungsten electrode (non-consumable) and the weld pool. The process is used
with shielding gas and without the application of pressure for pieces to be
welded. GTA welding was originally developed for aluminum and stainless steel
that are difficult to be welded.,The GTA:,welding process is now widely used
with other alloys. The aircraft industry:1s.one principal users of GTA welding [1].
There are many parameters that affect the: GTA welding quality, such as
electrode type, shielding gas type, welding current, travel speed of the welding
torch and so forth.

GTA welding and related processes are capable of producing very
high-quality welds but for consistent results the influence of the welding
parameters on weld geometry and quality must be identified and controlled [34].
In conventional DC GTA welding, the main control parameters are shown in
Table 2-1. The desired welding parameters are usually determined based on
experience or handbook values. However, it does not insure that the selected
welding parameters result in optimal or near optimal welding quality

characteristics for that particular welding system and environmental conditions.
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Table 2-1 Parameters for GTA welding

Primary Secondary

Current Arc length

Travel speed Polarity
Shielding gas

Electrode vertex angle

Filler addition

Quality characteristic of the GTA welding process

Basically, the GTA welding quality is strongly characterized by the weld
pool geometry. The weld pool geometry plays an important role in determining
the mechanical properties of the weld [25,35-36]. The measurements of the weld
pool geometry were performed for evaluating the quality of GTA welds. The
width of weld bead and the depth of penetration are used to describe the weld

pool geometry, as shown in Fig.2-1.
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Type A

W indicates the width of
weld bead

Type B | D indicates the depth of
| penetration

Fig.2-1 Schematic of measurement for weld pool geometry

Parameters of the GTA welding process
Several methods are useful in determining which factors to include in the
initial experiments such as brainstorming, flowcharting, and cause-effect

diagram [7]. Fig.2-2 is the cause-effect diagram of this process.

19



Welding torch Shielding gas

Electrode t
Electrode size Bt Gas type

Electrode angle

Travel speed Flow rate
Arc length Welding
pool
N _ Root opening ga Emeny
Specimen size I 2 Welding current
Cleanliness of , ;
Metal weld joint areas Welding polarity
type :
Base metal Power source

Fig.2-2 Cause and effect diagram of the GTA welding process

2.5 Nd:YAG laser micro-weld

In the mass production process of lithium-ion secondary batteries, the
lap-weld process of safety vent and cathode lead is the major factor to affect
product quality and production efficiency. The laser spot welding is the
micro-joining technique most frequently used in the electron related industry.
Spot welding was the first welding operation to be carried out with lasers. The
higher-pulse repetition rates and pulse-tailoring capabilities attainable with
Nd:YAG and CO, lasers have meant that spot welding is a standard application

for these devices [37,38]. However, one of the prime advantages of the Nd:YAG
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laser over the CO, laser is the ability to deliver laser radiation through optical
fibers. This is attractive in robotic or multi-axis laser welding applications. The
pulsed Nd:YAG laser welder has been utilized for this study. The pulsed
Nd:YAG laser beam has a reputation for rapid, precise and easy operation in
welding. However, the use of the technique in inappropriate settings can reduce
its effectiveness in welding applications [39]. Many parameters affect the pulsed
Nd:YAG laser welding quality, such as pulse peak value, pulse width, pulse
frequency, focus position, flow rate of shielding gas and so forth.

The parameters which control laser welding may be classified as primary
and secondary variables as shown in Table 2-2. The desired welding parameters
are usually determined based on experience or handbook values. However, this
does not insure that the selected:welding, parameters result in optimal or near
optimal welding quality characteristics  for the particular welding system and
environmental conditions. The lithium-ion secondary battery and its micro-weld

position are shown in Fig.2-3:

Table 2-2 Parameters for laser welding

Primary Secondary
Beam power Pulse parameters
Travel speed Plasma control
Focus point Shielding gases

Beam mode
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Safety Vent

Weld Point

Cathode Lead

Fig.2-3 Lithium-ion secondary battery and its micro-weld position
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Quality characteristic of Nd:YAG laser micro-weld

Amongst the evaluation frequently used to assess the spot weld
characteristic of welding products, the outcome of tensile-shear test on
weldment shows more objective for the evaluation of their quality. This study
has used the Max. Load of tensile-shear test specimens as the quality
characteristic in the process. Tensile force testing instrument (IMADA
MV-200BA type) has been used to measure the Max. Load of the laser spot
welding specimens. The speed has been set at 6 in min™' in the testing process.

The measuring way is shown as Fig.2-4.

Safety
Vent

Cathode
Lead

(IMADA MV-200BA type)

Fig.2-4 Testing instrument and the schematic of measurement
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The parameters of the Nd:YAG laser welding
Fig.2-5 is the cause-effect diagram of the Nd:YAG laser welding process in

the mass production process of lithium-ion secondary batteries.

Laser beam Shielding gas

Pulse shape
[ntensity P Type of
distribution gas
Pulse repetition
Pulse duration rate Flow rate
Pulse
Prctey Quality

of welds

Thermal physical

Surface ropert Focus length
reflectivity ek
e o Cleanliness of =
T'hickness weld joint areas Focus position
Material Focus lens

Fig.2-5 Cause and effect diagram of the Nd:YAG laser welding

2.6 Resistance spot welding (RSW) in automotive industry

Resistance welding is wildly used by mass production, where production
runs and consistent conditions are maintained. RSW is a resistance welding
process that produces a weld at the faying surfaces of a joint by the heat

obtained from resistance to the flow of welding current through the work pieces
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from electrodes that serve to concentrate the welding current and pressure at the
weld area[1]. The RSW process is especially used in automobile industry. There
has been a significant increase in the use of high strength steel sheet in
automobile industry to permit reductions in thickness and thus in vehicle weight
[40]. The substitution of high strength steel sheet for thicker plain carbon steels
helps to lower weight and meet federally mandated improvements in fuel
economy. Resistance welding is widely used in mass production, in which
production runs with a consistent condition. The resistance spot welding (RSW)
process is especially used in the automobile industry [1]. However, high strength
steel sheet has narrow welding current ranges in the RSW process. Sometimes,
this limited weldability is a consequence of the interfacial failure of the weld
nugget, producing an apparentlysmaller fusion zone [41]. The physical variables
of the metal may include not only the composition of the steels, but also the
surface condition. Surface effects ‘have been studied and found to have
noticeable effects on spot weldability [42]. In summary, it is not easy to obtain
optimal parameters of the RSW process on high strength steel sheet. Many
parameters affect the RSW quality for high strength steel sheet, such as welding
current, electrode force, welding time and so forth. The desired welding
parameters are usually determined based on experience (Try & error) or
handbook values (e.g., RWMA). However, it does not insure that the selected
welding parameters result in optimal or near optimal welding quality

characteristics for the particular welding system and environmental conditions.

Quality characteristic and parameters of RSW process
The study used Max. Load of tensile-shear test specimens as the quality

characteristic in the process. A universal testing machine as shown in Fig.2-6
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had been used for this study to measure the Max. Load of the RSW specimens.

The speed was set at 0.1 mm sec” in the testing.

lo .l

Fig. 2-6 Universal testing machine used

As learned from handbook and the practical experience in the production of
auto-body, the major welding parameters for the processing quality of weldment
include welding current, welding time, electrode force, the size of electrode tip,

and surface condition of specimens in the RSW process.
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EXPERIMENTAL PROCEDURES
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In this dissertation, the proposed approach consists of two phases. Phase 1
executes initial optimization via Taguchi method to construct a database for the
neural network. Phase 2 applies a neural network with the Levenberg-Marquardt
back-propagation (LMBP) algorithm to search for the optimal parameter
combination. Three examples involving the gas tungsten arc (GTA) welding, the
pulsed Nd:YAG laser micro-weld process, and the resistance spot welding
(RSW) process in automotive industry demonstrate the effectiveness of the

proposed approach.

3.2 Optimization for GTA welding
3.2.1 Initial optimization for GTA welding

JIS SUS 304 stainless steel was'mused in this study with its chemical
composition being listed in Fable 3-1., The.test specimens had the dimensions 50
x100x2.8 mm. Autogenous (no filler ' metal was added) and GTA welding was
conducted using an EWTh-2 electrode to produce a bead-on-plate weld. A
servomechanism controlled the traveling speed of the electrode. The GTA
welder (HORBART TIGWAVETM 350AC/DC type ) has been utilized for the

experiment, as shown in Fig.3-1.

Table 3-1 Material used in GTA welding (wt-%)

Material C Si Mn P S Cr Ni Fe

JIS SUS 304
0.07 0.44 0.95 0.026 0.013 18.7 &.16 Balance

Stainless Steel
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Fig. 3-1 The equipment of Autogenous GTA welder

As shown in Fig.2-1, the W and D value of the specimens of type A were
measured by a Nonus (Pierre Vernier) with 0.02 mm precision. An optical
microscope was used to measure the specimens of Type B. All metallographic
specimens were prepared by mechanical lapping, grinding, and polishing to 0.3
«m finish, followed by etching in a solution of 10g.CuSO,+ 50ml.HCI+
50ml.H,O0.
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Control and noise factor of the GTA welding

Taguchi separates factors into two main groups, the control factor and noise
factor. Control factors are those that allow a manufacturer to control during
processing and the noise factors are expensive and difficult to control [10].
Welding current, travel speed of the welding torch, arc length, flow rate of the
shielding gas, electrode size and its angle were selected as the controlling factors.

The value of each welding process parameter at the different levels is listed in

Table 3-2.
Table 3-2 Control factors of GTA welding

Factor Process parameter Level 1 Level 2 Level 3
A Electrode size ¢2.4 mm ¢ 3.2 mm -
B Electrode angle 70° 75° 80°
C Arc length 1.0 mm 1.5 mm 2.0 mm
D Welding current 80 A 85 A 90 A
E Travel speed 85 mm min"' 90 mm min”" 95 mm min”'
F Flow rate 8 L min 10 L min™ 12 L min™
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The fundamental principle of Robust Design is to improve the quality by
minimizing the effect of the causes of variation. It is important in every Robust
Design project to identify important noise factors [10]. Engineering experience
and judgment are needed in identifying the noise factor. Cleanliness of the weld
joint areas was selected as the noise factor in this study. The surface impurities
were removed and cleaned with acetone at level one (N1). The specimens at
level two (N2) without any cleaning treatment may have been tarnished with dirt

and / or grease.

Orthogonal array experiment

One two-level and five three=level'control factors in addition to one noise
factor were considered in this investigation. The interaction effect between the
welding parameters was not considered. Therefore, there are 11 degrees of
freedom owing to the 6 control factors. The degrees of freedom for the OA
should be greater than or at least equal to those for the process parameters. The
standard arrays available are L3 and L,;. Lg has 8 columns, but provides low
resolution. The L,; has 13 columns with greater resolution than Lg. L,; (313) OA
was employed in this study.

The “dummy level technique ” was then used for modifying Ly; (3"}) OA
into L,; (2'x3”) OA. The control factor A was assigned to the column 1 of L,;
OA by using dummy levels A;=A,". Other control factors (B~F) were assigned
to the column 2 ~ 6. An experimental layout with an inner array for control
factors and an outer array for a two-level noise factor (N1 and N2) is shown in
Table 3-3.

There are 27x2=54 separate test conditions, four repetitions for each trial
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are planned in this experimental arrangement. In the Taguchi method, repetitions
are used to assess the noise effect on some quality characteristic(s) of interest.

Fig.3-2 shows the measuring procedure of weld pool geometry.

Table 3-3 Experimental layout using an L,; orthogonal array

Control factor Noise factor

Trial no. N1 N2
A B C D._E F

Y1 Y2 Y3 Y4

1 1 1 1 | 1 1

2 1 1 | iz 2

3 1 1 1 1 3 3
Measure data

26 2 3 2 1 2 1

27 2 3 2 1 3 2
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Fig. 3-2 Measurement of weld pool geometry
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Evaluation of initial optimal condition

The depth-to-width ratios (DWR) of the weld pool geometry as discussed
carlier belong to the higher-is-better quality characteristic. The S/N ratios, which
condense the multiple data points within a trial, depend on the type of
characteristic being evaluated. The equation for calculating S/N ratio for HB

characteristic is

1 n
S/N :_IOIOgIO[H ~ FJ 3'1

where n is the number of tests in a trial (number of repetitions regardless of
noise levels). The value of n is 4 in this study. The S/N ratio corresponding to
the D/W ratio of each trial issshown in_Table 3-4. The effect of each welding
process parameter on the S/N.'ratio at- different levels can be separated out
because the experimental design.is-orthogonal. The description of the S/N ratio
for each level of the welding process. parameters is summarized and shown in

Table 3-5.

34



Table 3-4 Summary of experiment data of GTA welding

Control factors Depth-to-width ratio
Trial no.
A B C D E F  Average S/N ratio, dB
1 1 1 1 1 1 1 0.624 -4.10
2 1 1 1 1 2 2 0.482 -6.34
3 1 1 1 1 3 3 0.392 -8.15
4 1 2 2 2 1 1 0.697 -3.14
5 1 2 2 2 2 2 0.694 -3.17
6 1 2 2 2 3 3 0.604 -4.38
7 1 3 3 3 1 1 0.608 -4.33
8 1 3 3 3 2 2 0.605 -4.37
9 1 3 3 3 3 3 0.407 -7.81
10 2 1 2 3 1 2 0.685 -3.29
11 2 1 2 3 > 3 0.667 -3.52
12 2 1 2 3 3 1 0.661 -3.59
13 2 2 3 1 1 2 0.670 -3.48
14 2 2 3 1 2 3 0.638 -3.91
15 2 2 3 1 3 1 0.641 -3.86
16 2 3 1 2 1 2 0.664 -3.56
17 2 3 1 2 2 3 0.675 -3.41
18 2 3 1 2 3 1 0.569 -4.91
19 2 1 3 2 1 3 0.672 -3.45
20 2 1 3 2 2 1 0.696 -3.14
21 2 1 3 2 3 2 0.564 -4.98
22 2 2 1 3 1 3 0.702 -3.08
23 2 2 1 3 2 1 0.696 -3.15
24 2 2 1 3 3 2 0.688 -3.51
25 2 3 2 1 1 3 0.488 -6.23
26 2 3 2 1 2 1 0.511 -5.83
27 2 3 2 1 3 2 0.343 -9.31
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Table 3-5 S/N response table for the weld pool geometry

Factor Process parameter Level 1 Level 2 Level 3
A Electrode size —5.088 —4.234 L
B Electrode angle —4.508 —3.520 —5.529
C Arc length —4.467 —-4.719 —-4.370
D Welding currefit =5.691 —3.794 —-4.072
E Travel speed —3.851 —4.095 —5.611
F Flow rate —4.006 —4.669 —4.882

Fig.3-3 shows the S/N ratio graph that the data obtained from Table 3-5.
Basically, the larger is the S/N ratio, the better the quality characteristic
(depth-to-width ratio) is for the weld pool geometry. The initial optimal
combinations of the GTA welding process parameter levels, A,B,C;D,E F,, can

be determined by means of Fig. 3-3.

36



S/N ratio(dB)

A
(8]}

l L

®
®
/.

o\.
./

Parameter levels

Fig. 3-3 S/N graph for the weld pool geometry

Analysis of variance
The electrode angle, welding current, travel speed, and arc length were the
significant welding parameters in affecting the quality characteristic, with the

welding current and electrode angle being the most significant, as indicated from

Table 3-6.
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Table 3-6 Results of ANOVA for the weld pool geometry

Degree
Process Sum of Mean Pure sum  Percent
Factor of F- Test o
parameter square square of square contribution
freedom
Electrode
A . 1 4369 4369 5.66 3.60 4.82%
size
Electrode
B 2 18.165 9.082 11.77 16.62 22.26%
angle
C Arc length 2 0.584 "
Welding
D 2 18.892 9.4463 12.24 17.35 23.23%
current
E Travel speed 2 16.355:.,8.178  10.59 14.81 19.84%
F Flow rate 2 3.760°« 1:880 2.44 222 2.97%
Error 15 12.540
Error (pooled) (17)  (13.123) (0.772) 20.07 26.88%
Total 26 74.66 74.66 100%

Mark *means the factors are treated as pooled error

Confirmation tests
An interval confidence of 95% for the depth-to-width ratio, the F, .,
=4.45, V,,=0.772, the sample size for the confirmation experiment r is 2,

N =27, DOF,, =6, and the effective sample size is n, =3.857. Thus, the
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confidence interval is computed as Cl =1.62(dB). The experimental results
(Table 3-7) confirm that the initial optimizations of the GTA welding process

parameters were achieved.

Table 3-7 Confirmation experiment of GTA welding

Depth-to-width ratio Confidence
Trial no. ) interval
N1 N2 SN ratio Average .
specimens specimens (dB) & (95%)
28 0696 0712 0.67620.683 <3302 0.691 ~2.12 +

D= 3.346mm] 1.62

29 —3.219 (W=4.843mm
0.683 0.701 0.682 0.696 (dB)

3.2.2 Real optimization for GTA welding
Training of BP network

A feed-forward neural network is proposed for this study. It takes a set of
six input values (control factors A, B, C, D, E, and F) and predicts the value of
two outputs (D and W value of the weld pool geometry). A total of 108
input-output data patterns were partitioned into a training set and a testing set.
Functionally, 80% (approximately 87 patterns) were randomly selected for
training the neural network while the remaining 20% (approximately 21 patterns)

were used for testing. An efficient algorithm, the Levenberg-Marquardt

39



algorithm, was used to improve classical back-propagation learning in the
training process. Table 3-8 presents eight options of the neural network
architecture. Under the less simulating error that compared with average value
of W and D in Table 7 and best convergence criterion of the mean square error
(MSE) of the testing subset, the structure 6-7-2 was selected to obtain a better
performance. The topology of the network 6-7-2 with a 0.001 x value anda &

value of 10 is depicted in Fig.3-4.

Table 3-8 Options for different networks in GTA welding

Simulating error, %
(Compare with average value

(Inputillirzzlei;eililtfutput) MSE for training in Table 3-7)

W value D value
6.9 0.057447 ~4.65 0.29
6-3-2 0.043527 2.01 5.82
6-4-2 0.043214 —5.28 1.36
6-5-2 0.073604 0.53 8.54
6-6-2 0.023242 -59.32 —21.84
6-7-2 0.041730 —1.44 5.28
6-8-2 0.044620 —8.34 0.36
6-9-2 0.011117 36.05 13.15
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Fig. 3-4 The BP network topology of the GTA welding process

Optimization with trained network

The control factor B (electrode angle) and D (welding current) are the
significant welding parameters in affecting the quality characteristic
(depth-to-width ratio of each weldment) as shown in Table 3-6. The trained
network 6-7-2 was employed as the simulating function of the primary
parameters in this welding process. Fig.3-5 shows the comparison of simulating
results using the significant welding parameters (factor B and D) obtained by the
Taguchi method, from which it can be seen that the depth-to-width ratio of weld
pool geometry is best for adjusting welding current to 81 A and electrode to 73

degree of angle.

41



0.82
- o—=9®
0.80 1
0.78 1
i A
o
= 0.761 —=— 70 degree of angle
; 0.74 - . —e— 73 degree of angle
g 0_72; —Aa— 75 degree of angle
£ 0.70-
2 ]
0O 0.68
066 * o
0.64 1 __
80 82 84 86 88 90

Welding current (A)

Fig. 3-5 Simulation differentelectrode angle and welding current

3.3 Optimization for Nd:YAG laser-micro-weld
3.3.1 Initial optimization for Nd:YAG laser micro-weld

The materials of safety vent and cathode lead used for lithium-ion
secondary batteries are AA3003 aluminum alloy (Please refer to Table 3-9 for its
chemical composition). The safety vent had the dimensions ¢18x%1.0 mm;
cathode lead had the dimensions 3x70x%0.1 mm. The pulsed Nd:YAG laser spot
welder (Toshiba Lay-822H type) has been utilized for the experiment. The
wavelength of laser is 1.06 um and through the fiber conduction, the laser beam
is to joint the product, as shown in Fig.3-6. Fig.3-7 shows the illustration of
automatic mass production for the lithium-ion secondary battery parts (safety

vent and cathode lead).
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Table 3-9 Material used in Nd:YAG laser spot welding (wt-%)

Material Si Cu Mn /n Others Al

AA3003
Aluminum Alloy

0.7 0.05~0.2 1.0~1.5 0.1 0.15 Balance

Fig.3-6 Pulsed Nd:YAG laser spot welder

43



N
Fiber [ e L
L Laser Beam

Fig.3-7 Illustration of automatic production
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The Max. Load of weldment lower than 0.5 kg were determined to
defective products, as suggested by the engineers of a manufacturing
lithium-ion secondary batteries company in Taiwan. To prevent leakage from
“safety vent”, Max. Load was restricted under 1.2 kg. In practice, the higher
energy of pulsed Nd:YAG laser welding (e.g., higher pulse peak value), the
deeper penetration of weldment being obtained. The deeper penetration of
weldment (between “safety vent” and “cathode lead”) would be increasing the
Max. Load. However, it may be pierce through the “safety vent” and result in
leakage of lithium-ion secondary batteries in the future. Summary, increasing
Max. Load of weldment to 1.0 kg and decreasing the defective rate under 5% is

attempted in this study.

Control and noise factor of Nd:YAG laser. micro-weld

As learned from the literature [43] and the experience in the production
process of lithium-ion secondary batteries, the major welding parameters for the
pulsed Nd:YAG laser spot welding quality of weldment include pulse peak value,
pulse width, pulse frequency and focus position. The parameters as mentioned
above may be respectively adjusted within the range as below: pulse peak value
0 ~ 500 Volt, pulse width 0.2 ~ 20.0 msec, pulse frequency 0.5 ~ 20 pps and
focus position —1.0 ~ +1.0 mm. The values of the welding process parameters at
the different levels are listed in Table 3-10.

Aluminum and its alloys have high reflectivity together with large thermal
conductivity; it is a poor absorber of laser light. Laser welding of aluminum and
its alloys is difficult and the weld quality is often very poor [37,38]. Another
problem that adversely affects welding of aluminum and its alloys is the natural

oxide and other contamination on the material surface. So, the cleaning
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treatment on “‘safety vent” and “cathode lead” of lithium-ion secondary batteries
(AA3003 aluminum alloy) surface is very important. Unfortunately, it is very
hard to control the surface cleanliness of the weldment in the automatic mass
production. Thus, cleanliness of the weld joint areas was selected as the noise
factor of Taguchi method in this study. The surface impurities were removed and
the surface was cleaned with acetone at level one (N1, 100% cleanliness). The
specimens at level two (N2, 0% cleanliness), without any cleaning treatment,

may have been tarnished with dirt and / or grease.

Table 3-10 Control factors of Nd:YAG laser spot welding

Process

Factor Eevel'l ““Level2 Level3 Level4 Level5
parameter

Focus position
-0.5 0 +0.5
(mm) — —

Pulse peak value

300 315 330 345 360
(Volt.)

Pulse width
(msec)

Pulse frequency
(pps)
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Orthogonal array experiment

One tree-level and tree five-level control factors, in addition to one noise
factor, were considered in this investigation. The interaction effect between the
welding parameters was not considered. Therefore, there are 14 degrees of
freedom, owing to the four control factors. The degrees of freedom for the OA
should be greater than or at least equal to those for the process parameters. The
Lys (5°) OA was employed in this study. The ‘dummy level technique’ was then
used for changing the L,s (5°) OA into the Lys (3'x5°) OA. Control factor A was
assigned to the column 1 of L,5 OA by using dummy levels A,=A ', A=A,
A4=Aj3" and As=Aj'. Other control factors (B~D) were assigned to the column 2
~ 4. Note that the orthogonality:'was preserved even when the dummy level
technique was applied to one or more factors.

In addition, the noise factor could be- assigned to the outer array to
determine some level of a controlfactor that does not give much variation in the
results, even though a noise factor i1s definitely present. An experimental layout
with an inner array for control factors and an outer array for a two-level noise
factor (N1 and N2) is shown in Table 3-11. There are 25x2=50 separate test
conditions; four repetitions for each trial (y;, y,, y3 and y4) were planned in this
experimental arrangement; y; and y, are N1 specimens (cleaned with acetone), y;
and y,are N2 specimens (without cleaning). In the Taguchi method, repetitions

are used to assess the noise effect on some quality characteristic(s) of interest.
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Table 3-11 Experimental layout using L,s orthogonal array

Noise factor

Control factor

Trial

N2 specimens

N1 specimens

no.

Y4

Y3

y2

Y1

10

11

12
13
14
15
16
17
18
19
20
21

Measure data

22
23

24
25
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Evaluation of initial optimal condition

The tensile-shear strength of the specimens, as discussed earlier, belongs to
the HB quality characteristic. The SNRs, which condense the multiple data
points within a trial, depend on the type of characteristic being evaluated. The

equation for calculating the SNR ratio for HB characteristic is

SNR=—101og[lzi2J 3-2
Ny

where n is the number of tests in a trial (number of repetitions regardless of

noise levels) and y, is the Max. Load of each specimens. The value of n is 4

in this study. The SNR corresponding to Max. Load of each trial is shown in
Table 3-12. The effect of each welding process parameter on the SNR at
different levels can be separated out because the experimental design is
orthogonal. The description-of the 'SNR for each level of the welding process is
summarized in Table 3-13. Fig.3-8 shows the SNR graph obtained from Table
3-13. Basically, the larger the SNR, the better the quality characteristic
(tensile-shear strength) is for the specimens. The initial optimal combinations of
the pulsed Nd:YAG laser micro-weld process parameter levels, A;BsCs;Ds, can

be determined from Fig.3-9.
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Table 3-12 Experiment data of Nd:YAG laser micro-weld

Trial no. Max. Load, kg
Vi \p) Y3 V4 Average SNR, dB
1 0.05 0.10 0.01 0.01 0.04 -37.10
2 0.20 0.25 0.10 0.15 0.18 —16.66
3 0.70 0.64 0.50 0.40 0.56 —5.66
4 0.75 0.80 0.65 0.70 0.73 —2.87
5 0.85 1.00 0.80 0.75 0.85 —-1.56
6 0.20 0.20 0.15 0.10 0.16 —16.87
7 0.35 0.55 0.30 0.45 0.41 —8.38
8 0.70 0.80 0.50 0.65 0.66 -3.97
9 0.40 0.25 0.35 0.20 0.30 —11.42
10 0.35 0.40 0:45 0.30 0.38 —8.82
11 0.25 0.20 0.20 0.15 0.20 —-14.41
12 0.20 0.35 0:20 0.30 0.26 —-12.39
13 0.15 0.20 0.15 0.10 0.15 —17.28
14 0.65 0.50 0.35 0.50 0.50 —6.66
15 0.50 0.65 0.40 0.60 0.54 —5.85
16 0.25 0.05 0.15 0.10 0.14 —21.46
17 0.30 0.35 0.40 0.20 0.31 —11.01
18 1.00 0.90 0.60 0.40 0.73 —4.50
19 0.60 0.70 0.50 0.65 0.61 —4.47
20 0.85 0.90 0.70 0.90 0.84 —1.68
21 0.35 0.30 0.10 0.20 0.24 —15.57
22 0.45 0.40 0.30 0.50 0.41 —8.18
23 0.55 0.50 0.35 0.50 0.48 —6.87
24 0.80 0.70 0.60 0.75 0.71 —-3.10
25 0.80 0.95 0.70 0.85 0.83 —1.83

Total average of SNR for all trial is —9.942 (dB)
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Table 3-13 SNR response table for the quality characteristic

Process
parameter

Factor

Levell Level2 Level3 Level4d

Level 5

Focus
position

A

B

Pulse peak
value

-11.329 -11.318 -7.867 -

-21.082 -11.323 -7.656 —5.701

C  Pulse width -13.049 -10.144 —6.646 —8.503

Pulse

-13.891 -13.464 -8.406 —7.433

frequency

-3.948

—11.368

—6.516

24
4 -

8]
-10
12
14 4
16
18
20 4
22

SNR (dB)

T | L) | T
A1 A2 A3 B1B2B3B4B5 C1C2C3C

|
4c5 D

Parameter levels

L) I L)
1D2 D3 D4 D5

Fig.3-8 SNR graph for the quality characteristic
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Analysis of variance

The pulse peak value, pulse frequency and focus position were the
significant welding parameters affecting the quality characteristic (tensile-shear
strength of each specimen), with the pulse peak value being the most significant,

as indicated by Table 3-14.

Table 3-14 Results of ANOVA for the quality characteristic

Degree
Process Sumof Mean Pure sum  Percent
Factor of F- test o
parameter square  square of square contribution
freedom
F
s 2 196,049.98:025 1975 186.12 12.11%
position
Pulse peak
B value 4 925.757 231.439 46.63 90590 58.95%

C Pulsewidth 4 123328 30.832 6.21 103.47 6.73%

Pulse 4 241943 60486 12.19 222.09 14.45%
frequency

Error 10 49.636 4.964 119.13  7.75%

Total 24 1536.71 1536.71  100%
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Confirmation tests for initial optimization
Refer to Table 3-13 and 3-14, the factor C shows the least effect for quality

characteristic. In order to prevent over-estimate [8], factor C is not considered,

the estimated SNR 7, is computed as

Mo = —9.942+(—7.867+9.942) +(~3.948+9.942) +(~6.516+9.942) =1.553 (dB)

With CI of 95% for the tensile-shear strength, the F, ,=4.96 and
V,,=4.964, the sample size for the confirmation experiment r is 3, N =25,
DOF,, =10, and the effective sample size n, 1is 2.273. Thus, the CI is
computed to be Cl=4.364 (dB). The experimental results (Table 3-15) confirm

that the initial optimizations of the Nd:YAG laser micro-weld process

parameters were achieved.

Table 3-15 Confirmation experiment of Nd:YAG laser micro-weld

Max. Load

Confidence

Trial no. interval,

: : SNR, Average, 95%
N1 specimens N2 specimens B ke
26 096 105 083 092 -0.63

27 1.05 1.00 090 0.83 —0.60 N(l).=9130308 1.553 =

' ' ' ' ' ‘ 4.364 (dB)
N2=0.858

28 1.02 097 082 085 -0.88
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3.3.2 Real optimization for Nd:YAG micro-weld
Training of BP network

A feed-forward neural network is proposed for this study. It takes a set of
five input values (control factors A, B, C, D and noise factor) and predicts the
value of one output (Max. Load of the specimens). A total of 100 input-output
data patterns were partitioned into a training set, a testing set and a validating
set. Functionally, 60% (60 patterns) were randomly selected for training the
neural network the remaining 20% (20 patterns) were randomly used for testing
and 20% (20 patterns) were randomly used for validating. An efficient
algorithm, the Levenberg-Marquardt algorithm, was used to improve classical
BP learning in the training process [17,21]. The neural network package
software MATLAB Neural Network ToolBox was used to develop the required
network.

Table 3-16 presents fiftecn options for-the neural network architecture.
After comparing all the data for“the mean-square error (MSE), the structure
5-3-1, 5-15-1, 5-25-1, 5-35-1 and 5-40-1 are the five best convergence criteria.
The structure 5-15-1 showed the least error and was therefore selected to obtain
a better performance. The topology of the network 5-15-1 witha x wvalue 0.001

and a 6 value of 10 is shown in Fig. 3-9.
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Table 3-16 Options for different networks in Nd:YAG laser welding

Simulating error, %
Mean square

Architecture (Compare with average value in
(input-hidden unit-output) ii?;lfl"; Table 3-15)
N1 value N2 value
5.2-1 0.0077 -20.6 ~-16.6
5.3.1% 0.0046 -26.2 ~19.1
5-4-1 0.0121 —-14.1 _82
5-5-1 0.0052 -21.3 214
5-6-1 0.0078 -21.9 10.5
5-7-1 0.0304 -25.0 ~37.9
5-8-1 0.0119 -31.6 297
5-9-1 0.0064 -24.5 ~24.3
5-10-1 0.0083 -16.0 -22.6
5-15-1%* 0.0027 5.1 ~13.1
5-20-1 0.0099 -33.2 ~19.0
5-25-1* 0.0027 -33.7 —62.2
5-30-1 0.0243 -50.9 83.2
5-35-1% 0.0034 -22.9 334
5-40-1%* 0.0020 -20.8 -50.6

*The structures are the five best convergence criteria
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Input Hidden laver Output

Focus position —>

Pulse peak value —>
Tensile-shear

strength of

Pulse width > :
specnmens

Pulse frequency

Cleanliness of —>
specimens

Fig. 3-9 The BP network topology of the Nd: YAG laser welding

Optimization with a well-trained network

The control factor C (pulse width) is the insignificant welding parameters
that affect the quality characteristic (Max. load of each specimen) as shown in
Table 3-14. First, the trained network 5-15-1 was employed as the simulating

function of the control factor C.
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Fig.3-10 shows the comparison of simulated results using the pulse width,
other conditions Ay smmBssovorD3pps; from which i1t can be seen that the
tensile-shear strength of specimens is the best ones for setting pulse width to 6

mseEcC.

1.4 -
e / —
1.0 V—v
o)
X
“‘_6’ 0.8 4 é.
8 . A/ - . n
j 0.6 1
‘E" i —un— The specimens with 0% Cleanliness
0.4 —e— The specimens with 50% Cleanliness
. —a— The specimens with 100% Cleanliness
0.2 4 —v— Average strength of three conditions
0-0 | l T l L} l T I

4 5 6 7 8
Pulse width (msec)

Fig. 3-10 Results of simulating different pulse width
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Second, Fig.3-11 shows the comparison of simulated results using the
factor A, other conditions B3eovoiCemsecD3pps, from which it can be seen that the
tensile-shear strength of specimens is the best ones for adjusting focus position

from +0.5 to +0.25 mm.

14 — T
19 /
—_ 1.0 5 — ——v
g ><£‘/‘
'g 0.8 = — g
|
S .
~ 06- —
® - /
= 0.4 - L —n—The specimens with 0% cleanliness
| —e—The specimens with 50% cleanliness
0.2 - —A— The specimens with 100% cleanliness
’ —v— Average strength of three conditions
0-0 L] l L] L] L] L] | L] ' 1

I | |
-06 -04 -02 0.0 0.2 0.4 0.6

Focus position (mm)

Fig. 3-11 Results of simulating different focus position
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Third, Fig.3-12 shows the comparison of simulated results using the factor
D, other conditions A.g25mmB36ovoiiCemsee, from which it can be seen that the
pulse frequency and Max. Load are in direct ratio. When the pulse frequency is
over 2.0 pps, the Max. Load will decrease progressively for N1 specimens (with
100% cleanliness). On the other hand, the Max. Load increased progressively
for N2 specimens (with 0% cleanliness). In this study, the pulse frequency was

selected on 3.4 pps.

_..__.___—.-—__.
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o
e
/“___‘_—‘ A v __y—Y M
/// Vﬂ,ﬁg\}{/rf
S A\‘

—mu— The specimens with 0% cleanliness
—e— The specimens with 50% cleanliness
—A— The specimens with 100% cleanliness
—v— Average strength of three conditions

Max. Load (kg)

000000000022 saax
| I I I P |
I\
l
l
l
L
\

O NWRAROIONDOOANWAOO®

I I I
1.0 1.5 2.0 25 3.0 3.5 4.0
Pulse frequency (pps)

Fig.3-12 Results of simulating different pulse frequency
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Finally, Fig.3-13 shows the comparison of simulating results using the
factor B, other conditions A 25mmCemsecD3.4pps, from which it can be seen that the
pulse peak value and Max. Load are in direct ratio. When the pulse peak value is
adjusted over 355 Volt, the tensile-shear strength of specimens will derive to 1.0
kg. In addition, Fig.3-20 shows that the specimens with 50% cleanliness are

better than N1 (with 100% cleanliness) and N2 (with 0% cleanliness) specimens.

\

\\
\
\

Max. Load (kg)

X
\\\\
h\

—n— The specimens with 0% cleanliness
—e— The specimens with 50% cleanliness
—a— The specimens with 100% cleanliness
—v— Average strength of three conditions

3\

O NWRARIIONODOOANWAGOIO

I ' I ' I ! | ! I ' I
320 330 340 350 360 370
Pulse peak value (Volt)

Fig.3-13 Results of simulating different pulse peak value
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3.4 Optimization for RSW process
3.4.1 Initial optimization for RSW process

The high strength steel sheet was used in this study; its chemical
composition is listed in Table 3-17. Plates 0.7 mm in thickness were cut into
strips of size 30X 100 mm. The schematic diagram of high strength steel sheet
specimen for resistant spot welding was shown in Fig.3-14. The resistance spot
welder (FANUC a8/4000is type) had been utilized for the experiment is shown
in Fig.3-15.

Table 3-17 Material used in RSW process (wt-%)

Material C Si Mn P S Fe

MISC340D 0.062- . 04877095 0.013 0.004 Balance

Spot weld

15

100 |

— ) 0.7
( -

=

Unit : mm

Fig. 3-14 Schematic diagram of the specimens
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Fig. 3-15 Resistance spdt welder and prepared specimens

Control and noise factor of RSW process

By making reference to the existing parameter conditions in the production
line, the range of experimental parameter value has been initially framed as
below: welding current 6200 ~ 11000 A, welding time 8 ~ 26 cycles, electrode
force 1.8 ~ 3.3 kN and the size of electrode tip ¢3 ~ ¢6 mm. The value of each
welding process parameter at the different levels is listed in Table 3-18.

Surface condition of the welding area was selected as the noise factor in
this study. The specimens at level one (N1), without any cleaning treatment, may

have been tarnished with dirt and / or grease. The surface impurities were
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removed and the surface cleaned with acetone at level two (N2). The initial
conditions of production operation currently were welding current at 7800A,
welding time at 8 cycles, electrode force at 1.8 kN and the size of electrode tip at

d4 mm.

Table 3-18 Control factors of RSW process

Factor Process parameter Level 1 Level2  Level 3 Level 4

The size of
A .
electrode tip ¢3mm  ¢p4mm  ¢5mm  $6 mm

B Welding current 6200°A 7800 A 9400 A 11000 A

C Electrode force E8 kN 2.3 kN 2.8 kN 3.3kN

D Welding time 8 cycles 14 cycles 20 cycles 26 cycles

Orthogonal array experiment

Four four-level control factors, in addition to one noise factor, were
considered in this investigation. The interaction effect between the welding
parameters was not considered. Therefore, there are 12 degrees of freedom
owing to the 4 control factors. The degrees of freedom for the OA should be
greater than or at least equal to those for the process parameters. L;¢(4°) OA that

has 15 degrees of freedom was employed in this study. An experimental layout
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with an inner array for control factors and an outer array for a two-level noise
factor (N1 and N2) is shown in Table 3-19. Four repetitions (y;, y2, y3and y,) for
each trial are used with this experimental arrangement; y, and y, are NIl
specimens (without cleaning); y; and y,; are N2 specimens (cleaned with
acetone). The Max. Load for tensile-shear test specimens are shown in Table

3-20.

Table 3-19 Experimental layout using an L5 orthogonal array

Control factor Noise factor

Trial no. Nlspecimens N2 specimens

Y1 y2 Y3 Ya
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
Measure data
15 4 3 2 4
16 4 4 1 3
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Table 3-20 Experiment data in RSW process

Control factors Max. Load
Trial no. Average
A B C D (kN) SNR (dB)
1 1 1 1 1 3.317 10.41
2 1 2 2 2 4.098 12.25
3 1 3 3 3 4.105 12.26
4 1 4 4 4 4.392 12.85
5 2 1 2 3 3.299 10.35
6 2 2 1 4 3.758 11.49
7 2 3 4 1 3.950 11.91
8 2 4 3 2 3.855 11.70
9 3 1 3 4 2.622 8.36
10 3 2 4 3 3.735 11.44
11 3 3 1 2 4.168 12.39
12 3 4 2 1 4.083 12.22
13 4 1 4 2 2.318 7.29
14 4 2 3 1 3.572 11.05
15 4 3 2 4 3.637 11.21
16 4 4 1 3 4.139 12.24

Total average of SNR for all trial 7 1s 11.213 (dB)
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Evaluation of initial optimal condition

The Max. Load of the specimens as discussed earlier belongs to the
higher-is-better quality characteristic. The SNRs, which condense the multiple
data points within a trial, depend on the three characteristics LB, NB and HB.

The equation for calculating the SNR for HB characteristic is

SNR = —101og10[%zi2J 3-3

i-1 Yi

where n is the number of tests in a trial (number of repetitions regardless of
noise levels). The value of n is 4 in this study. The SNRs corresponding to
Max. Load value of each trial is shown in Table 3-21. The effect of each welding
process parameter on the SNR at different levels can be separated out because
the experimental design is orthogonal. The.description of the SNR for each level
of the welding process parameters i1s summartzed in Table 3-21. Fig.3-16 shows
the SNR graph obtained from Table 3-21. Basically, the larger is the SNR, the
better the quality characteristic. (tensile-shear strength) for the specimens. The
initial optimal conditions of the RSW process parameter levels, A;B,C,D;, can

be determined from Fig. 3-16.
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Table 3-21 SNR response table for the Max. Load

Factor Process parameter Level 1 Level 2  Level 3 Level 4

A The size of 11.941 11363  11.101  10.449
electrode tip

B Welding current 9.102 11.558 11.942 12.252

C Electrode force 11.634 11.507 10.842 10.871

D Welding time 11.399 10.905 11.571 10.979

12.5

120] /
1154 \ / * A
& 11.0- . \ \/\

10.5

SN ratio (d

10.0

9.5 1

9.0

T L — T T T
C1Cc2C3Cc4 D1D2 D3D4

—T —T—
A1A2A3 A4 B1B2B3B4

Parameter levels

Fig. 3-16 SNR graph for the Max. Load
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Analysis of variance

When the contribution of a factor is small, as with factor D (welding time)
in Table 3-22, the sum of squares for that factor is combined with the error. This
process of disregarding the contribution of a selected factor and subsequently
adjusting the contributions of the other factors is known as ‘Pooling’ [9]. The
welding current and the size of electrode tip were the significant welding
parameters in affecting the quality characteristic, with the welding current being

the most significant, as indicated by Table 3-22.

Table 3-22 Results of ANOVA for the Max. Load

Degree of  Sumof Mean Pure sum of  Percent
Factor F- Test o
freedom square square square contribution
A 3 4599 1.533 3.42 3.25 9.54%
B 3 24.748 8.249 18.40 23.40 68.61%
C 3 2.071 0.690 1.54 0.73 2.13%
D 3 1.248
Error 3 1.442
E
frot 6)  (2.691) (0.448) 6.15  19.72%
(pooled)
Total 15 34.109 34.229 100%

Mark * means the factors are treated as pooled error
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Confirmation test and proper regulation

Refer to Table 3-21 and 3-22, estimated SNR 7, is computed as
Moy =11.213 + (11.941-11.213) + (12.252-11.213) =12.98 (dB)

With a CI of 95% for the tensile-shear strength, theF ., =5.99, and
V,,=0.448, the sample size for the confirmation experiment r is 2, N =16,
DOF,, =9, and the effective sample size n, is 1.6. Thus, the CI is computed to
be 1.738 (dB). The experimental results (Table 3-23) confirm that the initial

optimizations of the RSW process parameters (AymmB11000aC1.skinD2ocycles) Were

achieved.
Table 3-23 Confirmatiensexpetiment of RSW process
. Max. Load Confidence
Trial .
o SNR Aver interval
N1 specimens N2 'specimens (dB) z’lfl\?)ge (95%)
17 4562 4505 4335 4209 12.861 12.98 +
4.406 1.74
18 4426 4343 4.626 4.243 12875 (dB)

Although the conformity of reproducibility for the experimental results has
been confirmed with an average Max. Load of specimens as high as up to 4.406
kN obtained; however, a phenomenon of spark taken place between the
specimens and the electrode during the spot welding process that leads to a

severely shortened life cycle of electrode and an collaterally affected joint
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quality of weldment for its subsequent welding. With the ANOVA outcomes
(Table 3-22) referenced, a proper regulation of welding current is necessary to
cope with the foregoing defects. As learned from Fig. 3-16 (SNR graph), SNR
thereof was slightly increased when welding current regulated from 7800A to
11000A, that is, the Max. Load of specimens was not heightened in big
magnitude. Therefore, the optimal conditions of parameters obtained from the
application of Taguchi Method remained unchanged except the welding current
was regulated from 11000A to 7800A. Table 3-24 lists the results of experiment

after adjusting the parameters (A 3mmB73004C1 sinD20cycles)-

Table 3-28 Results of the [Fagtichi method with proper regulation

Tensile-shear strength

Trial no. ‘ ' A\(flzr\?)ge
N1 specimens N2 specimens
19 4.089 3.945 3.926 3.731 3.851
(Nl = 3.988}
20 3.878 4.041 3.585 3.611 N2=3.713

3.4.2 Real optimization for RSW process
Training of BP network

A total of 64 input-output data patterns were partitioned into a training set,
a testing set and a validating set. Functionally, 60% (38 patterns) were randomly
selected for training the neural network while the remaining 20% (13 patterns)

were randomly selected for testing and 20% (13 patterns) were randomly

70



selected for validating. Table 3-25 presents nine options for the NN architecture.
After comparing all the data for the MSE value, the structures 5-4-1, 5-5-1,
5-7-1, 5-8-1 and 5-9-1 are the five best convergence criteria. The structure 5-7-1
showed the least simulating error and was therefore selected to obtain a better
performance. The topology of the network 5-7-1 with a x value of 0.001 and a

¢ value of 10 is shown in Fig. 3-17.

Table 3-25 Options for different networks in RSW process

Simulating error, %

Mean square (Compare with average value in

Architecture :gci);ii(g R;/I;;(E()f Table 3-24)
N1 Specimens N2 Specimens

5-2-1 0.1123

5-3-1 0.1083

5-4-1 0.0337 5 —3.81 1.85
5-5-1 0.0282 4 -0.98 6.19
5-6-1 0.2383

5-7-1 0.0147 2 3.50 —0.54
5-8-1 0.0096 1 —7.92 —6.28
5-9-1 0.0194 3 -4.93 2.36

5-10-1 0.0490
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Fig. 3-17 The BP network topology of the RSW process

Simulation with a well-trained network

The control factor D (welding time) is the insignificant welding parameters
in affecting the quality characteristic as shown in Table 3-26. First, the trained
network 5-7-1 with 1.47% MSE was employed as the simulating function of the
insignificant parameters in this welding process. In Fig. 3-15 ~ 3-18, the NI
specimens (without any cleaning treatment) had simulated with 0 % cleanliness

and the N2 specimens (cleaned with acetone) had simulated with 100 %

cleanliness.
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Fig. 3-18 shows the comparison of simulating results using the factor D
(other conditions AymmB7300aCiskn), from which it can be seen that the Max.

Load of specimens is best for adjusting welding time to 15 cycles.
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Fig. 3-18 Results of simulating different welding time
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Second, Fig.3-19 shows the comparison of simulating results using the
factor C (other conditions AyzmmB7s00aD15cycles), from which it can be seen that

the Max. Load of specimens is best for setting electrode force at 3.0 kN.
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3.5 — 1 1 r—+~ 1 * 1 * 1+ T r T r 1
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Electrode force (kN)

Fig. 3-19 Results of simulating different electrode force
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Third, Fig. 3-20 shows the comparison of simulating results using the
factor A (other conditions B7g00aCs oknDiseycles), from which it can be seen that
the Max. Load of specimens is best for setting the size of the electrode tip at ¢p3

mim.
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3-2j —=— N1 specimens
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The size of electrode tip (mm)

0')_

Fig. 3-20 Results of simulating different size of the electrode tip
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Finally, Fig. 3-21 shows the comparison of simulating results using the
factor B (other conditions AymmCs.oxnDiscycles), from which it can be seen that
welding current and average Max. Load are in direct ratio until about 8200A.
The welding current of RSW process for the initial condition is 7800 A.

Therefore, the welding current at 7800A has been selected in this study.
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Fig. 3-21 Results of simulating different welding current
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experimental results of the GTA welding

By proposed approach, the optimal welding condition of the GTA welding

were the electrode size at level 2 (¢3.2 mm), the speed of welding torch at level 1

(85 mm min™), the arc length at level 3 (2.0 mm), the flow rate of shielding gas at

level 1 (8 L min™), electrode on 73 degree of angle and welding current on 81 A.

Table 4-1 is the experimental results with above optimal welding parameters. In

comparing Table 4-1 with 3-7, it is shown that the increase of the average

depth-to-width ratio from initial optimal parameters (apply Taguchi method only)

to the real optimal parameters (apply Taguchi method and neural network) is

0.12.
Table 4-1 Results of the proposed approach in GTA welding
Depth-to-width ratio
Trial no.
N1 specimens N2 specimens Average
30 0.780 0.795 0.782 0.792
0.785

31 0.806 0.782 0.773 0.770
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1 mm

Fig. 4-1 Weld pool geometry for validation
(a) Apply Taguchi method only, DWR = 0.712
(b) Apply proposed approach, DWR = 0.806
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The largest weld pool geometry of the initial optimal welding parameters
by Taguchi method is 0.712. The largest weld pool geometry of the optimal
welding parameters by proposed approach is 0.806. The weld pool geometry of
the optimal welding parameters by proposed approach is slenderer than that was
applied by the Taguchi method only, as shown in Fig.4-1. In summary, the
quality of GTA welding process can be efficiently improved through the
proposed approach.

4.2 Experimental results of Nd:YAG laser micro-weld

By combining the Taguchi method and neural networks, the optimal
welding condition for Max. Load of the Nd:YAG laser weldment were the focus
position on +0.25mm, the pulse péak value on 355 Volt., the pulse frequency on
3.4 pps and the pulse width on 6/msec. Table 4-2 is the experimental results with

above optimal welding parameters.

Table 4-2 Results of the proposed approach in laser welding

Max. Load
Trial no.
N1 specimens N2 specimens Average, kg
29 1.05 1.14 0.94 0.90
30 1.00 1.07 1.00 0.96 1.013
31 1.10 1.02 0.92 1.05
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In comparing Table 4-2 with 3-15, it is shown that the improvement of the
average Max. Load for N2 specimens (without cleaned) from initial optimal
parameters to the real optimal parameters is 0.104 kg. The defective rate of the
optimal welding parameters with the proposed approach is lower than that with
the Taguchi method only, as shown in Table 4-3. In summary, the quality of
Nd:YAG laser micro-weld process can be efficiently improved with the

proposed approach.

Table 4-3:A comparison of each condition

Focus Bt Pulse Pulse )
osition, 3 width, ~'frequenc Defective Average,
P m " value, msec’ 1 < ¥ rate, % kg
Volt PP
Initial 330 6 2 .67  0.886
condition
Taguchi 360 6 3 537 0979
method
Proposed s 355 6 3.4 200  1.023
approach

Sample size of comparison: 150
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The simulating results obtained with a well-trained neural network model
indicate that, the specimens (AA3003 aluminum alloy) with 50% cleanliness
contributed most to the Nd:YAG laser micro-weld process. In order to improve
the welding quality efficiently, the cleaning treatment to the safety vent and

cathode lead of lithium-ion secondary batteries must be corrected.

4.3 Experimental results of RSW process

With combination of this Taguchi method and a neural network, the optimal
welding conditions for Max. Load with RSW process were electrode tip size at
3 mm, welding current at 7800 A, electrode force at 3.0 kN and welding time at
15 cycles. Table 4-4 shows the experimental results obtained with above optimal
welding parameters. Table 4-57shows; the experimental results with the
conditions of production= operation currently  (AgsmmB7800aC1 8knDscycies)-
Comparison of Table 3-24-with Table 4-5 shows that the increase in average
Max. Load from the initial conditions to the initial optimal parameters (apply
Taguchi method only) is 0.309 kN."Comparison of Table 4-4 with Table 4-5
shows that the increase in average Max. Load from the initial conditions to the
real optimal parameters (apply Taguchi method and neural network) is 0.566 kN.
The surface condition of specimens for different parameters is shown in Fig.4-2.
In summary, the quality of RSW process for high strength steel sheet can be

efficiently improved with the proposed approach.

81



Table 4-4 Results of the proposed approach in RSW process

Max. Load
: Average
Trial no.
rial no (kN)
N1 specimens N2 specimens
21 4.310 4.169 4.112 3.746
4.108
22 4.153 3.973 4.522 3.876

Table 4-5 Results of the'mitial conditions in RSW process

Max. Load
: Average
Trial no.
rial no (kN)
N1 specimens N2 specimens
23 3.329 3.518 3.605 3.344
3.542

24 3.673 3.575 3.626 3.669
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1 mm

1 mm

Fig.4-2 Surface conditions of specimens for validation
(a) Initial conditions
(b) Apply Taguchi method only
(c) Apply Taguchi method with proper regulation
(d) Apply proposed approach
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CHAPTER 5

CONCLUSION

This dissertation presents an integrated approach of the combination of
Taguchi method and neural networks to optimize the process conditions of GTA
welding, laser-micro weld and RSW process. Based on the results obtained from

this research, the following conclusions can be drawn from this dissertation.

1. In GTA welding process, the improvement of average depth-to-width ratio
from initial optimal parameters (apply Taguchi method) to the optimal
parameters (apply proposed,.approach) is about 11.96%. The largest
depth-to-width ratio of th¢ initidl|optimal: parameters by Taguchi method is
0.712. The largest depth-to-width ratio of the optimal parameters by proposed
approach is 0.806.

2. The ANOVA result indicates that, the electrode angle, welding current, and
travel speed are the significant parameters in affecting the depth-to-width
ratio of weld pool geometry in GTA welding process.

3. In Nd:YAG laser micro-weld process, The improvement of the defective rate
from i1nitial conditions to the initial optimal parameters (apply Taguchi
method) is 3.30%; from initial conditions to the optimal parameters (apply
proposed approach) is 6.67 %.

4. The simulating results indicate that, the specimens (AA3003 aluminum alloy)
with 50% cleanliness contributed most to the Nd:YAG laser micro-weld
process. In order to improve the welding quality efficiently, the cleaning
treatment to the safety vent and cathode lead of lithium-ion secondary

batteries must be corrected.
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5. In RSW process, the improvement of the average tensile-shear strength from
initial conditions to the initial optimal parameters (apply Taguchi method) is
about 8.72%. The improvement from initial conditions to the optimal
parameters (apply proposed approach) is about 15.98%.

6. The ANOVA result indicates that, the size of electrode tip and welding current
were the significant parameters in affecting the tensile-shear strength in RSW
process for high strength steel sheet.

7. Compare with the results of ANOVA, there are 26.88% of error contribution
in GTA welding, 7.75% of error contribution in Nd:YAG laser micro-weld
process, and 19.72% of error contribution in RSW process. It shows that the
experimental error of Nd:YAG laser micro-weld process is least and GTA
welding is largest.

8. From the results of confirmation ‘test' in these welding processes, the
conformity of reproducibility for the experimental results has been confirmed

9. The proposed approach is relatively effective and ease for engineers to apply
to a range of other processes. The LMBP algorithm neural network is
easy-and-quick to explore a nonlinear multivariate relationship between
parameters and responses. It was proved successfully and effectively in this
study.

10. In addition, applying the proposed approach allows engineers to directly use
neural network software to optimize the parameters without any theoretical

knowledge of neural computing.
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