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銲接製程穩健設計最佳化之研究 

  

研究生：林玄良 指導教授：周長彬

  

國立交通大學機械工程學系 

 

摘  要 

 

在自動化銲接的製程領域中，影響銲接品質的參數頗多。在銲接實務上，製程

參數一般根據過去的經驗，或是參考文獻資料及設備供應商建議的數據來決定。對

於特定的銲接系統或環境條件，此方式難以確保可得到最佳化的銲接品質。一般業

界使用田口方法解決上述問題，然而田口方法在實務應用上存在一些缺失。由於應

用田口方法於類神經網路設計，可得到許多網路設計的效益，因此，本論文提出一

結合田口方法與類神經網路的方法，以改善參數設計最佳化的銲接問題。此方法包

括二階段， 階段一利用田口方法針對銲接製程執行初始最佳化的實驗，以建立後

續訓練類神經網路的資料庫。階段二應用類神經網路來搜尋最佳的參數組合，並採

用 Levenberg-Marquardt 倒傳遞演算法。本論文利用三個銲接的實務案例，包括氣

體鎢極電弧銲、脈衝式 Nd:YAG 雷射微接合及汽車電阻點銲等製程，來說明所提方

法的有效性。實驗結果顯示本論文所提的方法優於傳統應用田口方法；氣體鎢極電

弧銲接平均可提昇 11.96%的銲道深寬比，脈衝式 Nd:YAG 雷射微接合可降低 3.37%

的不良品率，電阻點銲平均可提昇 7.26%的拉剪強度值；由此實務操作及結果，可

說明所提方法具備高度的可行性。 
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ABSTRACT 

 

Many parameters affect the automatic welding quality. In practice, the desired 

welding parameters are usually determined based on experience or handbook values. It 

does not insure that the selected welding parameters result in optimal or near optimal 

welding quality characteristics for that particular welding system and environmental 

conditions. To solve such problems, engineers conventionally apply the Taguchi method. 

However, the Taguchi method has some limitations in practice. Many benefits can arise 

from using the Taguchi method for neural network design. A proposed approach that 

combine the Taguchi method and a neural network to determine optimal welding 

conditions for improving the effectiveness of the optimization of parameter design is 

presented. The proposed approach includes two phases. Phase 1 executes initial 

optimization via Taguchi method to construct a database for the neural network. Phase 2 

applies a neural network with the Levenberg-Marquardt back-propagation (LMBP) 

algorithm to search for the optimal parameter combination. Three examples involving 

the gas tungsten arc (GTA) welding, the pulsed Nd:YAG laser micro-weld process, and 

the resistance spot welding (RSW) process in automotive industry demonstrate the 

effectiveness of the proposed approach. The experimental results show that the proposed 

procedures excel the Taguchi method in this dissertation. It has demonstrated the 

practicability of the proposed procedures.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Backgrounds 

Welding is the most efficient way to join metals. It involves more 

sciences and variables (parameters) than other industrial process. Welding is 

widely used to manufacture or repair all products made of metal. Look 

around, almost everything made of metals is welded; such as automobiles, 

ships, airplanes, bridges, buildings, home appliances, microelectronic 

appliances and so on. 

Welding is an economical manufacturing method. In the high-volume 

production industries it is common to see welding operations intermixed 

with bending, machining, forming and assembly. Welding is an important 

manufacturing process taking its place with other metalworking operations 

to produce high quality metal products at economical prices. 

The recent trends in the welding and manufacturing it becomes evident 

that the following must be considered with regard to the future welding [1]: 

 

1. There will be a continuing need to reduce manufacturing cost since: 

a. Wage rates will continue to increase. 

b. The cost of metals and filler metals will continue to be more 

expensive. 

c. Energy and fuel costs will increase. 

2. There will be a continuing trend toward the use of higher strength 
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materials. 

3. There will be more use of welding by industry, decreasing the use of 

casting. 

4. There will be a continuing trend toward higher levels of reliability and 

higher-quality requirements. 

5. The trend toward automatic welding and automation in welding will 

accelerate. 

 

1.2 Motivation 

There are many parameters that affect the automatic welding quality 

such as the gas tungsten arc (GTA) welding, the laser welding, and the 

resistance spot welding (RSW) in automotive industry. In practice, the 

desired welding parameters are usually determined based on experience or 

handbook values. It does not insure that the selected welding parameters 

result in optimal or near optimal welding quality characteristics for that 

particular welding system and environmental conditions. 

The Taguchi method, a popular experimental design method applied in 

industry, can alleviate on the disadvantages of full factorial design when 

doing fractional factorial design. It approaches the optimization of 

parameter design, although the number of experiments is reduced [2]. 

However, the Taguchi method has certain limitations when used in practice. 

The optimal solutions were only obtained within the specified level of 

control factors. Once the parameter setting is determined, the range of 

optimal solutions is constrained concurrently. The Taguchi method is unable 

to find the real optimal values when the specified parameters are continuous 

in nature, because it only addresses the discrete control factors. 
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Neural network is a non-linear function, capable of accurately representing 

a complex relationship between inputs and outputs [3-5]. The trained neural 

model was also used to accurately predict the response at given parameter 

settings. In addition, Khaw et al. [6] proved that benefits could be obtained by 

using the Taguchi concept for neural network design. First, this methodology is 

the only known method for neural network design that considers robustness. It 

enhances the quality of the neural network designed. Second, the Taguchi 

method uses orthogonal arrays (OAs) to systematically design a neural network. 

Subsequently, the design and development time for neural networks can be 

reduced tremendously. 

 

1.3 Objectives 

This dissertation employs an approach, which combine the Taguchi method 

and a neural network to determine optimal conditions for improving the welding 

process quality. Three welding processes are focus in this dissertation: 

 

1. Optimization of the gas tungsten arc (GTA) welding process for type 304 

stainless steels. 

2. Modeling and optimization of the Nd:YAG laser micro-weld for the 

lithium-ion secondary batteries. 

3. Modeling and optimization of the resistant spot welding (RSW) process for 

high strength steel sheets in automotive industry.  

 

1.4 Dissertation outlines 

Chapter 2 reviews that the Taguchi method, neural networks, combined 

Taguchi method with a neural network, the GTA welding for type 304 
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stainless steels, the pulsed Nd:YAG laser micro-weld for the lithium-ion 

secondary batteries, and RSW process for high strength steel sheets in 

automotive industry. Chapter 3 presents that the proposed approach was 

used to determine optimal conditions for improving process quality of the 

GTA welding, the pulsed Nd:YAG laser micro-weld and RSW process. In 

addition, this chapter presents the initial optimization via Taguchi method, 

and a neural network with the Levenberg-Marquardt back-propagation 

(LMBP) algorithm to search for the optimal parameter combination for 

these welding processes. Chapter 4 provides the discussion comparison with 

previous works and the proposed procedures. Finally, Chapter 5 concludes 

the main results of the presented work.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Taguchi method 

The philosophy of Taguchi is broadly applicable. It considers tree stages in 

process development: system design, parameter design and tolerance design 

[2,7]. In system design, the engineer uses scientific and engineering principles to 

determine the basic configuration. The main objective of system design is to 

determine the manufacturing process that can produce the product within the 

specified limits and tolerance at the lowest cost. In the parameter design stage, 

specific values for the system parameters are determined. Parameter design in 

production process design determines the operating levels of the manufacturing 

processes so that variation in product parameters is minimized. Tolerance design 

is used to specify the best tolerances for the parameters. The objective of 

tolerance design is to find optimal ranges of the operating conditions that 

minimize the sum of variation cost and cost of the product. 

In addition, traditional experimental design is primarily used to improve the 

average level of a process (e.g., arithmetic mean of a sample). In modern quality 

engineering, experimental design work is used to develop robust designs to 

improve the quality of the product. Taguchi’s parameter design is to achieve 

robust quality by reducing effects of environmental conditions and variations 

caused by deterioration of certain components [7,8]. This is achieved by the 

selection of various design alternatives or by varying the levels of the design 

parameters for component parts or system elements. It can optimize the 

performance characteristics through the settings of design parameters and reduce 

the sensitivity of the system performance to sources of variation. 
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The tools for executing the parameter design oh Taguchi method are shown 

as below [7-10]: 

 

Orthogonal array 

Orthogonal array (OA) based matrix experiments are used for a variety of 

purposes in Robust Design. They are used to study the effects of control factors 

and noise factors, and determine the best quality characteristic for particular 

applications. Taguchi has tabulated 18 basic orthogonal arrays that are called 

standard OAs. Note that the orthogonality was preserved even when the dummy 

level technique was applied to one or more factors. In addition, the noise factor 

could be assigned to the outer array to find some level of a control factor that 

does not have much variation in the results, even though a noise factor is 

definitely present. 

 

Evaluation by S/N ratios 

Taguchi has created a transformation of the repetition data to another value, 

which is to say a measure of the variation present. The transformation is the 

signal-to-noise ratio (S/N ratio, SNR). There are several S/N ratios available 

depending on the type characteristic being present, such as lower-is-better (LB), 

nominal-is-best (NB), or higher-is-better (HB). 

For a static problem, Taguchi classified them into three different S/N ratio 

types, as shown in equation 2-1, 2-2 and 2-3. 
2

10log10 ⎟
⎠
⎞

⎜
⎝
⎛−=

s
ySN NB                       2-1 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

n

i i
LB yn

SN
1

210
11log10                    2-2 
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⎜
⎝

⎛
−= ∑

=

n

i
iSB y

n
SN

1

2
10

1log10                    2-3 

were n  denote the number of repetition, y  represents the response mean, and 

s  is the standard deviation of response. 

 

Analysis of variance 

The Analysis of Variance (ANOVA) was developed by Sir Ronald Fisher in 

the 1930’s as a way to interpret the results from agricultural experiments. 

ANOVA is not a complicated method and has a large amount of mathematical 

uniqueness associated with it. The purpose of the ANOVA is to investigate 

welding process parameters, which can significantly affect the quality 

characteristics. The percent contribution in the total sum of the squared 

deviations can be used to evaluate the importance of the welding process 

parameter change on these quality characteristics. In addition, the F-Test named 

after Fisher can also be used to determine which welding process parameters 

have a significant effect on the quality characteristics. Usually, when the value 

of F-Test is greater than 4, it means that a change in the process parameter has a 

significant effect on the quality characteristics. When the contribution of a factor 

is small, the sum of squares for that factor is combined with the error. This 

process of disregarding the contribution of a selected factor and subsequently 

adjusting the contributions of the other factors is known as “Pooling”. 

 

Confirmation tests 

Using the Taguchi method for parameter design, the predicted optimum 

setting need not correspond to one of the rows of the matrix experiment. 

Therefore, the final step is to compare the estimated value with the confirmative 

experimental value using the optimal level of the control factors to confirm with 
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the experimental reproducibility. The estimated S/N ratio optη  using the optimal 

level of the control factors can be calculated as: 

( )∑
=

−+=
q

j
jopt

1

ˆˆ ηηηη                       2-4 

where η̂  is the total average of S/N ratio of all the experimental values, jη  is 

the mean S/N ratio at the optimal level, and q  is the number of the control 

factors that significantly affect the quality characteristic. 

The confidence interval is a maximum and minimum value between which 

the true average should fall at some stated percentage of confidence. The 

confidence limits of the above estimation can be calculated taking into account 

the following equation: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

rn
VFCI

eff
epve

11
;1;α                      2-5 

where 
evF ;1;α  is the F-ratio required for α=risk, confidence=1－risk, ev  is the 

degrees of freedom for pooled error, epV  is the pooled error variance, r  the 

sample size for the confirmation experiment, and effn  is the effective sample 

size: 

opt
eff DOF

Nn
+

=
1

                        2-6 

where N  is the total number of trials, optDOF  is the total degrees of freedom 

associated with items used in the optη  estimate. 
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Apply Taguchi method to welding processes 

Juang et al. [11] presented a study that application of Taguchi method to 

select parameters for obtaining an optimal weld pool geometry in the GTA 

welding of stainless steel. In this study, a weighting method is used to integrate 

the loss functions into the overall loss function (the higher-is-better of S/N ratio); 

the weighting factors for the front height and back height of the weld pool were 

selected as 0.4, the weighting factors for the front width and back width of the 

weld pool were selected as 0.1.  

Li et al. [12] using the RSW process as an example, this paper presents a 

new robust design and analysis framework for products and processes with 

parameter interdependency. The experiment was designed using a two-stage, 

sliding-level factor approach. Welding current was chosen as a “slide factor” 

whose settings are determined based on those of others including both control 

and noise factors. By proper coding, a stepwise regression procedure was used 

to develop a response model, with which the response modeling approach for 

robust design is applied. 

Tarng et al. [13] used grey-based Taguchi method for the optimization of 

the submerged arc welding (SAW) process parameters in hardfacing with 

considerations of multiple weld qualities. In this approach, the grey relational 

analysis was used as the performance characteristic in the Taguchi method. Then, 

optimal process parameters were determined by using the parameter design 

proposed by the Taguchi method. 

 

2.2 Neural networks 

Neural networks are used for modeling of complex manufacturing 

processes, usually with regard to process and quality control [14,15]. Several 
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well known supervised learning networks use a back propagation (BP) neural 

network. Funahashi [16] proved that the BP neural network may approximately 

realize any continuous mapping. Back propagation learning employs a gradient 

descent algorithm to minimize the mean square error between the target data and 

the predictions of a neural network. However, one of the major problems with 

basic BP algorithm (gradient descent algorithm) has been the extended training 

time required. The techniques for accelerating convergence have fallen into two 

main categories: heuristic methods and standard numerical optimization 

methods such as the Levenberg-Marquardt back-propagation (LMBP) algorithm 

[17]. 

 

Levenberg-Marquardt back-propagation algorithm 

The LMBP algorithm is similar to the quasi-Newton method, in which a 

simplified form of the Hessian matrix (second derivatives) is used. Starting from 

the Taylor series approach of second order, for a generic function )(xF , the 

following can be written [17-19]. 
 

kkkkkkk xkxHxxkxGxFxxFxF ΔΔ+Δ+≅Δ+=+ ),(
2
1),()()()( 1         2-7 

Where ),( kxG  is the gradient of )(xF , kxΔ  is kk xx −+1  and ),( kxH  is 

the Hessian matrix of )(xF . 

If the derivative of equation 2-4 in respect to kxΔ  is taken, equation 2-8 

will be obtained. 

0),(),( =Δ+ kxkxHkxG                      2-8 



 11

This equation can be re-written in the following form. 

),(),( 1 kxGkxHxk
−−=Δ                      2-9 

The updating rule for the Newton algorithm is then obtained. 

),(),( 1
1 kxGkxHxx kk

−
+ −=                   2-10 

Considering a generic quadratic function as the objective function, as 

represented in equation 2-11 for a multi-input multi-output system (here the 

iteration index is omitted and i  is the index of the outputs) 

∑
=

=
N

i
i xexF

1

2 )()(                        2-11 

Then it can be shown that 

)()()( xexJxG T=                       2-12 

)()()()( xSxJxJxH T +=                   2-13 

Where )(xJ  is the Jacobian matrix and )(xS  is 

∑
=

∇=
N

i
ii xexexS

1

2 )()()(                     2-14 

It can be assumed that )(xS  is small when compared to the product of the 

Jacobian, the Hessian matrix can be approximated by the following. 

)()()( xJxJxH T≈                       2-15 
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This approach can update equation 2-10 and gives the Gauss-Newton 

algorithm. 

[ ] )()()()( 1 xexJxJxJx TT
k

−
=Δ                  2-16 

One limitation that can happen with this algorithm is that the simplified 

Hessian matrix might not be invertible. To overcome this problem, a modified 

Hessian matrix can be used. 

IxHxHm μ+= )()(                      2-17 

Here I  is the identity matrix and μ  is a value such that makes )(xHm  

positive definite, and therefore can be invertible. This last change in the Hessian 

matrix corresponds to the Levenberg-Marquardt algorithm. 

[ ] )()()()( 1 xexJIxJxJx TT
k

−
+=Δ μ                2-18 

When the scalar μ  is zero, this is just Gauss-Newton, using the 

approximate Hessian matrix. When μ  is large, this becomes gradient descent 

with a small step size. The algorithm begins with μ  set to some small value 

(e.g. μ =0.01). If a step does not yield a smaller value for e , then the step is 

repeated with μ  multiplied by some factor θ ＞1 (e.g. θ =10). Eventually e  

should be decreased, since we would be taking a small step in the direction of 

steepest descent. If a step does produce a smaller value for e , then μ  is 

divided by θ  for the next step, ensuring that the algorithm will approach 

Gauss-Newton, which should provide faster convergence [17].  

The LMBP algorithm is the fastest algorithm that has been tested for 
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training multiplayer networks of moderate size, even though it requires a matrix 

inversion at each iteration. It requires two parameters, but the algorithm does not 

appear to be sensitive to this selection. In addition, Kumar et al. proved [20] that 

the LMBP algorithm and Gauss-Newton were found to perform best for least 

square problems. In particular, the LMBP algorithm performs better with a poor 

initial estimate compared to the Gauss-Newton method. Summary, the LMBP 

algorithm provides a nice compromise between the speed of Newton’s method 

and the guaranteed convergence of steepest descent.  

 

Training of back propagation Network 

A neural network, which can capture and represent the relationship between 

the process variables and process outputs, was developed in this stage. 

Multi-layer perceptions are feed-forward neural networks are commonly used 

for solving difficult predictive modeling problems [21]. They usually consist of 

an input layer, one or more hidden layers, and one output layer. The neurons in 

the hidden layers are computational units that perform non-linear mapping 

between inputs and outputs. A feed-forward neural network was used in this 

study. The transfer functions for all hidden neurons are a tangent sigmoid 

function as shown in equation 2-19. The transfer functions for the output 

neurons are a linear function as shown in equation 2-20 [22]. 

)exp()exp(
)exp()exp()(

xx
xxxf

−+
−−

=                     2-19 

xxf =)(                                2-20 

Determining the number of hidden neurons is critical in the design of 

neural network. An over abundance of hidden neurons give too much flexibility 
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that usually leads to over-fitting. On the other hand, too few hidden neurons 

restrict the learning capability of a network and degrade its approximation 

performance [21]. 

 

Apply neural networks to welding processes 

Kim et al. [23] develop an intelligent system in gas metal arc (GMA) 

welding process using MATLAB/SIMULINK software. Based on multiple 

regressions and a neural network, the mathematical models were derived from 

extensive experiments with different welding and complex geometrical features. 

In this study, using a generalized least mean square (LMS) algorithm, the BP 

algorithm minimizes the mean square difference between the real and the 

desired output. The developed neural network model can proposed for real-time 

quality control based on observation of bead geometry and for on-line welding 

process control. However, it was trained for 200,000 iterations. 

Wu et al. [24] present a study that introduces a Kohonen network 

(self-organising feature map) system for process monitoring and quality 

evaluation in GMA welding. The Kohonen network is an unsupervised learning 

neural network. It can be used to solve classification tasks and to find structures 

in data. In the present study the evaluation gives a rather high recognition rate. 

Nagesh et al. [25] used a neural network with basic BP algorithm (gradient 

descent algorithm) to model the shielded metal-arc welding process. The trained 

neural network model had achieved good achieved good agreement with the 

training data and had yielded satisfactory generalization. It was trained for 

11,000 iterations. 

Ridings et al. [26] present a study that describes the application of neural 

network techniques to the prediction of the outer diameter weld bead shape for 
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three wire, single pass per side, submerged arc, linepipe seam welds, using the 

weld process parameters as inputs. This study show that the use of neural 

network models for the prediction of weld bead geometry has the potential for a 

detailed shape to be input into through process models, rather than having to 

assume a shape from a limited number of defining parameters. 

Jeng et al. [27] adopted two back-propagation (BP) and one learning vector 

quantization (LVQ) neural network models to predict the laser welding 

parameters and the associated welding quality individually, because some of the 

parameters are strongly interconnected and must be determined by sequence. 

LVQ is a supervised learning technique that uses class information to move the 

classification set slightly, so as to improve the quality of the classifier decision 

region. 

Lee et al. [28] employed multiple regression analysis and neural network to 

predict the back-bead of geometry in the GMA welding process. The neural 

network showed superior results to the multiple regression analysis in terms of 

field of prediction error rate. 

Vitek et al. [29] present a welding process that combined plasma arc 

welding with laser welding was used to make autogenous bead on plate welds 

on a sheet stock of a carbon steel. The predictions of the neural network model 

showed excellent agreement with experiment results, indicating that a neural 

network model is a viable means for predicting weld pool shape. Thirty-three 

different experimental welds were made. These welds provide a total data set of 

33 weld conditions and the corresponding weld pool shape. It was subdivided 

into 11 train/test pairs consisting of 30 and 3 data points respectively. 

Tarng et al. [30] used a neural network to construct the relationships 

between welding process parameters and weld pool geometry in GTA welding. 
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An optimization algorithm called simulated annealing was then applied to the 

network for searching the process parameters with an optimal weld pool 

geometry. The quality aluminum welds based on the weld pool geometry was 

classified and verified by a fuzzy clustering technique. In this study, cleanliness 

of specimens was selected as the input of BP network model. 

Han [31] used a neural network to obtain the knowledge about the fatigue 

lives of weldments with welding defects under fatigue load. A total data set of 

15 conditions and the corresponding fatigue life. It was divided into train and 

test pairs consisting of 10 and 5 data points respectively. 

 

2.3 Integrated the Taguchi method and a neural network 

Rowlands et al. [32] present a study that illustrate how optimal parameter 

design can be achieved by using design of experiments in conjunction with 

neural network. Applying the method, the neural network was trained by the 

results of a fractional factorial design, and was then used to estimate the 

response values for the full factorial design. 

Chiu et al. [33] used the neural network model and the Taguchi method to 

determine the optimal parameter setting in a gas-assisted injection molding. The 

results showed that the integrated method is capable of treating continuous 

parameter values. 

Khaw et al. [6] proved that benefits could be obtained by using the Taguchi 

concept for neural network design. First, this methodology is the only known 

method for neural network design that considers robustness. It enhances the 

quality of the neural network designed. Second, the Taguchi method uses 

orthogonal arrays (OAs) to systematically design a neural network. With the 

effective use of the Taguchi method, several important design factors of a neural 
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network can be considered simultaneously. The design and development time for 

neural networks can be reduced tremendously. The Taguchi method is not 

strictly confined to the design of BP neural networks. It can be used to evaluate 

neural networks of different types such as counter-propagation, Boltzmann 

machine, and self-organizing map. 

 
2.4 The gas tungsten arc (GTA) welding 

The GTA welding is an arc welding process that uses an arc between a 

tungsten electrode (non-consumable) and the weld pool. The process is used 

with shielding gas and without the application of pressure for pieces to be 

welded. GTA welding was originally developed for aluminum and stainless steel 

that are difficult to be welded. The GTA welding process is now widely used 

with other alloys. The aircraft industry is one principal users of GTA welding [1]. 

There are many parameters that affect the GTA welding quality, such as 

electrode type, shielding gas type, welding current, travel speed of the welding 

torch and so forth. 

GTA welding and related processes are capable of producing very 

high-quality welds but for consistent results the influence of the welding 

parameters on weld geometry and quality must be identified and controlled [34]. 

In conventional DC GTA welding, the main control parameters are shown in 

Table 2-1. The desired welding parameters are usually determined based on 

experience or handbook values. However, it does not insure that the selected 

welding parameters result in optimal or near optimal welding quality 

characteristics for that particular welding system and environmental conditions.  
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Table 2-1 Parameters for GTA welding 

Primary Secondary 

Current 

Travel speed 

Arc length 

Polarity 

Shielding gas 

Electrode vertex angle 

Filler addition 

 

 

 

Quality characteristic of the GTA welding process 

Basically, the GTA welding quality is strongly characterized by the weld 

pool geometry. The weld pool geometry plays an important role in determining 

the mechanical properties of the weld [25,35-36]. The measurements of the weld 

pool geometry were performed for evaluating the quality of GTA welds. The 

width of weld bead and the depth of penetration are used to describe the weld 

pool geometry, as shown in Fig.2-1. 
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Fig.2-1 Schematic of measurement for weld pool geometry 

 

 

 

Parameters of the GTA welding process 

Several methods are useful in determining which factors to include in the 

initial experiments such as brainstorming, flowcharting, and cause-effect 

diagram [7].  Fig.2-2 is the cause-effect diagram of this process. 
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Fig.2-2 Cause and effect diagram of the GTA welding process 

 

 

 

2.5 Nd:YAG laser micro-weld 

In the mass production process of lithium-ion secondary batteries, the 

lap-weld process of safety vent and cathode lead is the major factor to affect 

product quality and production efficiency. The laser spot welding is the 

micro-joining technique most frequently used in the electron related industry. 

Spot welding was the first welding operation to be carried out with lasers. The 

higher-pulse repetition rates and pulse-tailoring capabilities attainable with 

Nd:YAG and CO2 lasers have meant that spot welding is a standard application 

for these devices [37,38]. However, one of the prime advantages of the Nd:YAG 



 21

laser over the CO2 laser is the ability to deliver laser radiation through optical 

fibers. This is attractive in robotic or multi-axis laser welding applications. The 

pulsed Nd:YAG laser welder has been utilized for this study. The pulsed 

Nd:YAG laser beam has a reputation for rapid, precise and easy operation in 

welding. However, the use of the technique in inappropriate settings can reduce 

its effectiveness in welding applications [39]. Many parameters affect the pulsed 

Nd:YAG laser welding quality, such as pulse peak value, pulse width, pulse 

frequency, focus position, flow rate of shielding gas and so forth.  

The parameters which control laser welding may be classified as primary 

and secondary variables as shown in Table 2-2. The desired welding parameters 

are usually determined based on experience or handbook values. However, this 

does not insure that the selected welding parameters result in optimal or near 

optimal welding quality characteristics for the particular welding system and 

environmental conditions. The lithium-ion secondary battery and its micro-weld 

position are shown in Fig.2-3. 

 

 

Table 2-2 Parameters for laser welding 

Primary Secondary 

Beam power 

Travel speed 

Focus point 

Pulse parameters 

Plasma control 

Shielding gases 

Beam mode 
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Fig.2-3 Lithium-ion secondary battery and its micro-weld position 

 



 23

Quality characteristic of Nd:YAG laser micro-weld 

Amongst the evaluation frequently used to assess the spot weld 

characteristic of welding products, the outcome of tensile-shear test on 

weldment shows more objective for the evaluation of their quality. This study 

has used the Max. Load of tensile-shear test specimens as the quality 

characteristic in the process. Tensile force testing instrument (IMADA 

MV-200BA type) has been used to measure the Max. Load of the laser spot 

welding specimens. The speed has been set at 6 in min–1 in the testing process. 

The measuring way is shown as Fig.2-4. 

 
 

 

(IMADA MV-200BA type)

 
 

 

Fig.2-4 Testing instrument and the schematic of measurement 
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The parameters of the Nd:YAG laser welding 

Fig.2-5 is the cause-effect diagram of the Nd:YAG laser welding process in 

the mass production process of lithium-ion secondary batteries.  

 

 

 

 

Fig.2-5 Cause and effect diagram of the Nd:YAG laser welding 

 

 

 

2.6 Resistance spot welding (RSW) in automotive industry 

Resistance welding is wildly used by mass production, where production 

runs and consistent conditions are maintained. RSW is a resistance welding 

process that produces a weld at the faying surfaces of a joint by the heat 

obtained from resistance to the flow of welding current through the work pieces 
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from electrodes that serve to concentrate the welding current and pressure at the 

weld area [1]. The RSW process is especially used in automobile industry. There 

has been a significant increase in the use of high strength steel sheet in 

automobile industry to permit reductions in thickness and thus in vehicle weight 

[40]. The substitution of high strength steel sheet for thicker plain carbon steels 

helps to lower weight and meet federally mandated improvements in fuel 

economy. Resistance welding is widely used in mass production, in which 

production runs with a consistent condition. The resistance spot welding (RSW) 

process is especially used in the automobile industry [1]. However, high strength 

steel sheet has narrow welding current ranges in the RSW process. Sometimes, 

this limited weldability is a consequence of the interfacial failure of the weld 

nugget, producing an apparently smaller fusion zone [41]. The physical variables 

of the metal may include not only the composition of the steels, but also the 

surface condition. Surface effects have been studied and found to have 

noticeable effects on spot weldability [42]. In summary, it is not easy to obtain 

optimal parameters of the RSW process on high strength steel sheet. Many 

parameters affect the RSW quality for high strength steel sheet, such as welding 

current, electrode force, welding time and so forth. The desired welding 

parameters are usually determined based on experience (Try & error) or 

handbook values (e.g., RWMA). However, it does not insure that the selected 

welding parameters result in optimal or near optimal welding quality 

characteristics for the particular welding system and environmental conditions. 

 

Quality characteristic and parameters of RSW process 

The study used Max. Load of tensile-shear test specimens as the quality 

characteristic in the process. A universal testing machine as shown in Fig.2-6 
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had been used for this study to measure the Max. Load of the RSW specimens. 

The speed was set at 0.1 mm sec-1 in the testing.  

 

 

 

Fig. 2-6 Universal testing machine used 

 

 

As learned from handbook and the practical experience in the production of 

auto-body, the major welding parameters for the processing quality of weldment 

include welding current, welding time, electrode force, the size of electrode tip, 

and surface condition of specimens in the RSW process. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURES 

 

3.1 Proposed procedure 
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In this dissertation, the proposed approach consists of two phases. Phase 1 

executes initial optimization via Taguchi method to construct a database for the 

neural network. Phase 2 applies a neural network with the Levenberg-Marquardt 

back-propagation (LMBP) algorithm to search for the optimal parameter 

combination. Three examples involving the gas tungsten arc (GTA) welding, the 

pulsed Nd:YAG laser micro-weld process, and the resistance spot welding 

(RSW) process in automotive industry demonstrate the effectiveness of the 

proposed approach. 

 

3.2 Optimization for GTA welding 

3.2.1 Initial optimization for GTA welding 

JIS SUS 304 stainless steel was used in this study with its chemical 

composition being listed in Table 3-1. The test specimens had the dimensions 50

×100×2.8 ㎜. Autogenous (no filler metal was added) and GTA welding was 

conducted using an EWTh-2 electrode to produce a bead-on-plate weld. A 

servomechanism controlled the traveling speed of the electrode. The GTA 

welder (HORBART TIGWAVETM 350AC/DC type ) has been utilized for the 

experiment, as shown in Fig.3-1. 

 

 

Table 3-1 Material used in GTA welding (wt-%) 

Material C Si Mn P S Cr Ni Fe 

JIS SUS 304 

Stainless Steel
0.07 0.44 0.95 0.026 0.013 18.7 8.16 Balance 
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Fig. 3-1 The equipment of Autogenous GTA welder 

 

 

 

As shown in Fig.2-1, the W and D value of the specimens of type A were 

measured by a Nonus (Pierre Vernier) with 0.02 ㎜ precision. An optical 

microscope was used to measure the specimens of Type B. All metallographic 

specimens were prepared by mechanical lapping, grinding, and polishing to 0.3 

μm finish, followed by etching in a solution of 10g.CuSO4＋50ml.HCl＋

50ml.H2O. 
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Control and noise factor of the GTA welding 

Taguchi separates factors into two main groups, the control factor and noise 

factor. Control factors are those that allow a manufacturer to control during 

processing and the noise factors are expensive and difficult to control [10]. 

Welding current, travel speed of the welding torch, arc length, flow rate of the 

shielding gas, electrode size and its angle were selected as the controlling factors. 

The value of each welding process parameter at the different levels is listed in 

Table 3-2. 

 

 

 

Table 3-2 Control factors of GTA welding 

Factor Process parameter Level 1 Level 2 Level 3 

A Electrode size φ 2.4 mm φ 3.2 mm __ 

B Electrode angle 70° 75° 80° 

C Arc length 1.0 mm 1.5 mm 2.0 mm 

D Welding current 80 A 85 A 90 A 

E Travel speed 85 mm min-1 90 mm min-1 95 mm min-1

F Flow rate 8 L min-1 10 L min-1 12 L min-1 
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The fundamental principle of Robust Design is to improve the quality by 

minimizing the effect of the causes of variation. It is important in every Robust 

Design project to identify important noise factors [10]. Engineering experience 

and judgment are needed in identifying the noise factor. Cleanliness of the weld 

joint areas was selected as the noise factor in this study. The surface impurities 

were removed and cleaned with acetone at level one (N1). The specimens at 

level two (N2) without any cleaning treatment may have been tarnished with dirt 

and / or grease. 

 

Orthogonal array experiment 

One two-level and five three-level control factors in addition to one noise 

factor were considered in this investigation. The interaction effect between the 

welding parameters was not considered. Therefore, there are 11 degrees of 

freedom owing to the 6 control factors. The degrees of freedom for the OA 

should be greater than or at least equal to those for the process parameters. The 

standard arrays available are L18 and L27. L18 has 8 columns, but provides low 

resolution. The L27 has 13 columns with greater resolution than L18. L27 (313) OA 

was employed in this study.  

The “dummy level technique ” was then used for modifying L27 (313) OA 

into L27 (21×35) OA. The control factor A was assigned to the column 1 of L27 

OA by using dummy levels A3=A2′. Other control factors (B~F) were assigned 

to the column 2 ~ 6. An experimental layout with an inner array for control 

factors and an outer array for a two-level noise factor (N1 and N2) is shown in 

Table 3-3. 

There are 27×2=54 separate test conditions, four repetitions for each trial 
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are planned in this experimental arrangement. In the Taguchi method, repetitions 

are used to assess the noise effect on some quality characteristic(s) of interest. 

Fig.3-2 shows the measuring procedure of weld pool geometry. 

 

 

 

 

Table 3-3 Experimental layout using an L27 orthogonal array 

Control factor Noise factor 

N1 N2  Trial no. 
A B C D E F 

y1 y2 y3 y4 

1 1 1 1 1 1 1 

2 1 1 1 1 2 2 

3 1 1 1 1 3 3 

. . . . . . . 

. . . . . . . 

26 2 3 2 1 2 1 

27 2 3 2 1 3 2 

Measure data 
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Fig. 3-2 Measurement of weld pool geometry 

Specimens 

Mounting 

Selection of specimen 

Grinding 

Polishing Etching and picture 
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Evaluation of initial optimal condition 

The depth-to-width ratios (DWR) of the weld pool geometry as discussed 

earlier belong to the higher-is-better quality characteristic. The S/N ratios, which 

condense the multiple data points within a trial, depend on the type of 

characteristic being evaluated. The equation for calculating S/N ratio for HB 

characteristic is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

n

i iyn
NS

1
210

11log10/                     3-1 

where n  is the number of tests in a trial (number of repetitions regardless of 

noise levels). The value of n  is 4 in this study. The S/N ratio corresponding to 

the D/W ratio of each trial is shown in Table 3-4. The effect of each welding 

process parameter on the S/N ratio at different levels can be separated out 

because the experimental design is orthogonal. The description of the S/N ratio 

for each level of the welding process parameters is summarized and shown in 

Table 3-5. 



 35

 

Table 3-4 Summary of experiment data of GTA welding 

Control factors Depth-to-width ratio 
Trial no. 

A B C D E F Average S/N ratio, dB

1 1 1 1 1 1 1 0.624 -4.10 

2 1 1 1 1 2 2 0.482 -6.34 

3 1 1 1 1 3 3 0.392 -8.15 

4 1 2 2 2 1 1 0.697 -3.14 

5 1 2 2 2 2 2 0.694 -3.17 

6 1 2 2 2 3 3 0.604 -4.38 

7 1 3 3 3 1 1 0.608 -4.33 

8 1 3 3 3 2 2 0.605 -4.37 

9 1 3 3 3 3 3 0.407 -7.81 

10 2 1 2 3 1 2 0.685 -3.29 

11 2 1 2 3 2 3 0.667 -3.52 

12 2 1 2 3 3 1 0.661 -3.59 

13 2 2 3 1 1 2 0.670 -3.48 

14 2 2 3 1 2 3 0.638 -3.91 

15 2 2 3 1 3 1 0.641 -3.86 

16 2 3 1 2 1 2 0.664 -3.56 

17 2 3 1 2 2 3 0.675 -3.41 

18 2 3 1 2 3 1 0.569 -4.91 

19 2 1 3 2 1 3 0.672 -3.45 

20 2 1 3 2 2 1 0.696 -3.14 

21 2 1 3 2 3 2 0.564 -4.98 

22 2 2 1 3 1 3 0.702 -3.08 

23 2 2 1 3 2 1 0.696 -3.15 

24 2 2 1 3 3 2 0.688 -3.51 

25 2 3 2 1 1 3 0.488 -6.23 

26 2 3 2 1 2 1 0.511 -5.83 

27 2 3 2 1 3 2 0.343 -9.31 
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Table 3-5 S/N response table for the weld pool geometry 

Factor Process parameter Level 1 Level 2 Level 3 

A Electrode size – 5.088 – 4.234 __ 

B Electrode angle – 4.508 – 3.520 – 5.529 

C Arc length – 4.467 – 4.719 – 4.370 

D Welding current – 5.691 – 3.794 – 4.072 

E Travel speed – 3.851 – 4.095 – 5.611 

F Flow rate – 4.006 – 4.669 – 4.882 

 

 

 

Fig.3-3 shows the S/N ratio graph that the data obtained from Table 3-5. 

Basically, the larger is the S/N ratio, the better the quality characteristic 

(depth-to-width ratio) is for the weld pool geometry. The initial optimal 

combinations of the GTA welding process parameter levels, A2B2C3D2E1F1, can 

be determined by means of Fig. 3-3. 
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Fig. 3-3 S/N graph for the weld pool geometry 

 

 

 

Analysis of variance 

The electrode angle, welding current, travel speed, and arc length were the 

significant welding parameters in affecting the quality characteristic, with the 

welding current and electrode angle being the most significant, as indicated from 

Table 3-6. 
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Table 3-6 Results of ANOVA for the weld pool geometry 

Factor 
Process 

parameter 

Degree 
of 

freedom

Sum of 
square

Mean 
square

F- Test
Pure sum 
of square 

Percent 
contribution

A 
Electrode 

size 
1 4.369 4.369 5.66 3.60 4.82% 

B 
Electrode 

angle 
2 18.165 9.082 11.77 16.62 22.26% 

C Arc length 2 0.584 *     

D 
Welding 
current 

2 18.892 9.4463 12.24 17.35 23.23% 

E Travel speed 2 16.355 8.178 10.59 14.81 19.84% 

F Flow rate 2 3.760 1.880 2.44 2.22 2.97% 

Error  15 12.540     

Error (pooled)  (17) (13.123) (0.772)  20.07 26.88% 

Total  26 74.66   74.66 100% 

Mark *means the factors are treated as pooled error 

 

 

Confirmation tests 

An interval confidence of 95% for the depth-to-width ratio, the 17;1;05.0F  

=4.45, epV =0.772, the sample size for the confirmation experiment r  is 2, 

N =27, optDOF =6, and the effective sample size is effn =3.857. Thus, the 
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confidence interval is computed as CI =1.62(dB). The experimental results 

(Table 3-7) confirm that the initial optimizations of the GTA welding process 

parameters were achieved. 

 

 

 

Table 3-7 Confirmation experiment of GTA welding 

Depth-to-width ratio 

Trial no. 
N1 

specimens 
N2 

specimens
SN ratio 

(dB) Average 

Confidence 
interval 

(95%) 

28 0.696 0.712 0.676 0.683 – 3.302

29 0.683 0.701 0.682 0.696 – 3.219

0.691 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

mmW
mmD

843.4
346.3

 

– 2.12 ± 

1.62 

(dB) 

 

 

 

3.2.2 Real optimization for GTA welding 

Training of BP network 

A feed-forward neural network is proposed for this study. It takes a set of 

six input values (control factors A, B, C, D, E, and F) and predicts the value of 

two outputs (D and W value of the weld pool geometry). A total of 108 

input-output data patterns were partitioned into a training set and a testing set. 

Functionally, 80% (approximately 87 patterns) were randomly selected for 

training the neural network while the remaining 20% (approximately 21 patterns) 

were used for testing. An efficient algorithm, the Levenberg-Marquardt 
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algorithm, was used to improve classical back-propagation learning in the 

training process. Table 3-8 presents eight options of the neural network 

architecture. Under the less simulating error that compared with average value 

of W and D in Table 7 and best convergence criterion of the mean square error 

(MSE) of the testing subset, the structure 6-7-2 was selected to obtain a better 

performance. The topology of the network 6-7-2 with a 0.001 μ  value and a θ  

value of 10 is depicted in Fig.3-4. 

 

 

Table 3-8 Options for different networks in GTA welding 

Simulating error, % 
(Compare with average value 

in Table 3-7) 
Architecture 

(Input-hidden unit-output) 
MSE for training 

W value D value 

6-2-2 0.057447 –4.65 0.29 

6-3-2 0.043527 2.01 5.82 

6-4-2 0.043214 – 5.28 1.36 

6-5-2 0.073604 0.53 8.54 

6-6-2 0.023242 – 59.32 – 21.84 

6-7-2 0.041730 – 1.44 5.28 

6-8-2 0.044620 – 8.34 0.36 

6-9-2 0.011117 36.05 13.15 
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Fig. 3-4 The BP network topology of the GTA welding process 

 

 

Optimization with trained network 

    The control factor B (electrode angle) and D (welding current) are the 

significant welding parameters in affecting the quality characteristic 

(depth-to-width ratio of each weldment) as shown in Table 3-6. The trained 

network 6-7-2 was employed as the simulating function of the primary 

parameters in this welding process. Fig.3-5 shows the comparison of simulating 

results using the significant welding parameters (factor B and D) obtained by the 

Taguchi method, from which it can be seen that the depth-to-width ratio of weld 

pool geometry is best for adjusting welding current to 81 A and electrode to 73 

degree of angle. 
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Fig. 3-5 Simulation different electrode angle and welding current 

 

 

3.3 Optimization for Nd:YAG laser micro-weld 

3.3.1 Initial optimization for Nd:YAG laser micro-weld 

The materials of safety vent and cathode lead used for lithium-ion 

secondary batteries are AA3003 aluminum alloy (Please refer to Table 3-9 for its 

chemical composition). The safety vent had the dimensions φ18×1.0 mm; 

cathode lead had the dimensions 3×70×0.1 mm. The pulsed Nd:YAG laser spot 

welder (Toshiba Lay-822H type) has been utilized for the experiment. The 

wavelength of laser is 1.06 μm and through the fiber conduction, the laser beam 

is to joint the product, as shown in Fig.3-6. Fig.3-7 shows the illustration of 

automatic mass production for the lithium-ion secondary battery parts (safety 

vent and cathode lead). 
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Table 3-9 Material used in Nd:YAG laser spot welding (wt-%) 

Material Si Cu Mn Zn Others Al 

AA3003 
Aluminum Alloy 

0.7 0.05~0.2 1.0~1.5 0.1 0.15 Balance

 

 

 

 

Fig.3-6 Pulsed Nd:YAG laser spot welder 
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Fig.3-7 Illustration of automatic production 
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The Max. Load of weldment lower than 0.5 kg were determined to 

defective products, as suggested by the engineers of a manufacturing 

lithium-ion secondary batteries company in Taiwan. To prevent leakage from 

“safety vent”, Max. Load was restricted under 1.2 kg. In practice, the higher 

energy of pulsed Nd:YAG laser welding (e.g., higher pulse peak value), the 

deeper penetration of weldment being obtained. The deeper penetration of 

weldment (between “safety vent” and “cathode lead”) would be increasing the 

Max. Load. However, it may be pierce through the “safety vent” and result in 

leakage of lithium-ion secondary batteries in the future. Summary, increasing 

Max. Load of weldment to 1.0 kg and decreasing the defective rate under 5% is 

attempted in this study. 

 

Control and noise factor of Nd:YAG laser micro-weld 

As learned from the literature [43] and the experience in the production 

process of lithium-ion secondary batteries, the major welding parameters for the 

pulsed Nd:YAG laser spot welding quality of weldment include pulse peak value, 

pulse width, pulse frequency and focus position. The parameters as mentioned 

above may be respectively adjusted within the range as below: pulse peak value 

0 ~ 500 Volt, pulse width 0.2 ~ 20.0 msec, pulse frequency 0.5 ~ 20 pps and 

focus position –1.0 ~ +1.0 mm. The values of the welding process parameters at 

the different levels are listed in Table 3-10.  

Aluminum and its alloys have high reflectivity together with large thermal 

conductivity; it is a poor absorber of laser light. Laser welding of aluminum and 

its alloys is difficult and the weld quality is often very poor [37,38]. Another 

problem that adversely affects welding of aluminum and its alloys is the natural 

oxide and other contamination on the material surface. So, the cleaning 
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treatment on “safety vent” and “cathode lead” of lithium-ion secondary batteries 

(AA3003 aluminum alloy) surface is very important. Unfortunately, it is very 

hard to control the surface cleanliness of the weldment in the automatic mass 

production. Thus, cleanliness of the weld joint areas was selected as the noise 

factor of Taguchi method in this study. The surface impurities were removed and 

the surface was cleaned with acetone at level one (N1, 100% cleanliness). The 

specimens at level two (N2, 0% cleanliness), without any cleaning treatment, 

may have been tarnished with dirt and / or grease. 

 

 

 

Table 3-10 Control factors of Nd:YAG laser spot welding 

Factor 
Process 

parameter Level 1 Level 2 Level 3 Level 4 Level 5

A 
Focus position 

(㎜) 
– 0.5 0 + 0.5 __ __ 

B 
Pulse peak value 

(Volt.) 
300 315 330 345 360 

C 
Pulse width 

(msec) 
4 5 6 7 8 

D 
Pulse frequency 

(pps) 
1 1.5 2 2.5 3 
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Orthogonal array experiment 

One tree-level and tree five-level control factors, in addition to one noise 

factor, were considered in this investigation. The interaction effect between the 

welding parameters was not considered. Therefore, there are 14 degrees of 

freedom, owing to the four control factors. The degrees of freedom for the OA 

should be greater than or at least equal to those for the process parameters. The 

L25 (56) OA was employed in this study. The ‘dummy level technique’ was then 

used for changing the L25 (56) OA into the L25 (31×53) OA. Control factor A was 

assigned to the column 1 of L25 OA by using dummy levels A2=A1′, A3=A2′, 

A4=A3′ and A5=A3′. Other control factors (B~D) were assigned to the column 2 

~ 4. Note that the orthogonality was preserved even when the dummy level 

technique was applied to one or more factors. 

In addition, the noise factor could be assigned to the outer array to 

determine some level of a control factor that does not give much variation in the 

results, even though a noise factor is definitely present. An experimental layout 

with an inner array for control factors and an outer array for a two-level noise 

factor (N1 and N2) is shown in Table 3-11. There are 25×2=50 separate test 

conditions; four repetitions for each trial (y1, y2, y3 and y4) were planned in this 

experimental arrangement; y1 and y2 are N1 specimens (cleaned with acetone), y3 

and y4 are N2 specimens (without cleaning). In the Taguchi method, repetitions 

are used to assess the noise effect on some quality characteristic(s) of interest. 
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Table 3-11 Experimental layout using L25 orthogonal array 

Control factor Noise factor 
N1 specimens N2 specimens 

Trial 
no. A B C D 

y1 y2 y3 y4 
1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 1 4 4 4 
5 1 5 5 5 
6 1 1 2 3 
7 1 2 3 4 
8 1 3 4 5 
9 1 4 5 1 
10 1 5 1 2 
11 2 1 3 5 
12 2 2 4 1 
13 2 3 5 2 
14 2 4 1 3 
15 2 5 2 4 
16 3 1 4 2 
17 3 2 5 3 
18 3 3 1 4 
19 3 4 2 5 
20 3 5 3 1 
21 3 1 5 4 
22 3 2 1 5 
23 3 3 2 1 
24 3 4 3 2 
25 3 5 4 3 

Measure data 
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Evaluation of initial optimal condition 

The tensile-shear strength of the specimens, as discussed earlier, belongs to 

the HB quality characteristic. The SNRs, which condense the multiple data 

points within a trial, depend on the type of characteristic being evaluated. The 

equation for calculating the SNR ratio for HB characteristic is 

2
1

1 110log
n

i i

SNR
n y=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑                      3-2 

where n  is the number of tests in a trial (number of repetitions regardless of 

noise levels) and iy  is the Max. Load of each specimens. The value of n  is 4 

in this study. The SNR corresponding to Max. Load of each trial is shown in 

Table 3-12. The effect of each welding process parameter on the SNR at 

different levels can be separated out because the experimental design is 

orthogonal. The description of the SNR for each level of the welding process is 

summarized in Table 3-13. Fig.3-8 shows the SNR graph obtained from Table 

3-13. Basically, the larger the SNR, the better the quality characteristic 

(tensile-shear strength) is for the specimens. The initial optimal combinations of 

the pulsed Nd:YAG laser micro-weld process parameter levels, A3B5C3D5, can 

be determined from Fig.3-9. 
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Table 3-12 Experiment data of Nd:YAG laser micro-weld 

Max. Load, kg 
Trial no. 

y1 y2 y3 y4 Average SNR, dB
1 0.05 0.10 0.01 0.01 0.04 –37.10 
2 0.20 0.25 0.10 0.15 0.18 –16.66 
3 0.70 0.64 0.50 0.40 0.56 –5.66 
4 0.75 0.80 0.65 0.70 0.73 –2.87 
5 0.85 1.00 0.80 0.75 0.85 –1.56 
6 0.20 0.20 0.15 0.10 0.16 –16.87 
7 0.35 0.55 0.30 0.45 0.41 –8.38 
8 0.70 0.80 0.50 0.65 0.66 –3.97 
9 0.40 0.25 0.35 0.20 0.30 –11.42 
10 0.35 0.40 0.45 0.30 0.38 –8.82 
11 0.25 0.20 0.20 0.15 0.20 –14.41 
12 0.20 0.35 0.20 0.30 0.26 –12.39 
13 0.15 0.20 0.15 0.10 0.15 –17.28 
14 0.65 0.50 0.35 0.50 0.50 –6.66 
15 0.50 0.65 0.40 0.60 0.54 –5.85 
16 0.25 0.05 0.15 0.10 0.14 –21.46 
17 0.30 0.35 0.40 0.20 0.31 –11.01 
18 1.00 0.90 0.60 0.40 0.73 –4.50 
19 0.60 0.70 0.50 0.65 0.61 –4.47 
20 0.85 0.90 0.70 0.90 0.84 –1.68 
21 0.35 0.30 0.10 0.20 0.24 –15.57 
22 0.45 0.40 0.30 0.50 0.41 –8.18 
23 0.55 0.50 0.35 0.50 0.48 –6.87 
24 0.80 0.70 0.60 0.75 0.71 –3.10 
25 0.80 0.95 0.70 0.85 0.83 –1.83 

Total average of SNR for all trial is –9.942 (dB) 
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Table 3-13 SNR response table for the quality characteristic 

Factor Process 
parameter Level 1 Level 2 Level 3 Level 4 Level 5 

A Focus 
position –11.329 –11.318 –7.867 – – 

B Pulse peak 
value –21.082 –11.323 –7.656 –5.701 –3.948 

C Pulse width –13.049 –10.144 –6.646 –8.503 –11.368

D Pulse 
frequency –13.891 –13.464 –8.406 –7.433 –6.516 

 

 

Fig.3-8 SNR graph for the quality characteristic 
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Analysis of variance 

The pulse peak value, pulse frequency and focus position were the 

significant welding parameters affecting the quality characteristic (tensile-shear 

strength of each specimen), with the pulse peak value being the most significant, 

as indicated by Table 3-14. 

 

 

 

Table 3-14 Results of ANOVA for the quality characteristic 

Factor 
Process 

parameter 

Degree 
of 

freedom

Sum of 
square 

Mean 
square 

F- test 
Pure sum 
of square 

Percent 
contribution

A Focus 
position 2 196.049 98.025 19.75 186.12 12.11% 

B Pulse peak 
value 4 925.757 231.439 46.63 905.90 58.95% 

C Pulse width 4 123.328 30.832 6.21 103.47 6.73% 

D Pulse 
frequency 4 241.943 60.486 12.19 222.09 14.45% 

Error  10 49.636 4.964  119.13 7.75% 

Total  24 1536.71   1536.71 100% 
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Confirmation tests for initial optimization 

Refer to Table 3-13 and 3-14, the factor C shows the least effect for quality 

characteristic. In order to prevent over-estimate [8], factor C is not considered, 

the estimated SNR optη  is computed as 

optη = –9.942+(–7.867+9.942) +(–3.948+9.942) +(–6.516+9.942) =1.553 (dB) 

With CI of 95% for the tensile-shear strength, the 10,1,05.0F =4.96 and 

epV =4.964, the sample size for the confirmation experiment r  is 3, N =25, 

optDOF =10, and the effective sample size effn  is 2.273. Thus, the CI is 

computed to be CI =4.364 (dB). The experimental results (Table 3-15) confirm 

that the initial optimizations of the Nd:YAG laser micro-weld process 

parameters were achieved. 

 

 

 

Table 3-15 Confirmation experiment of Nd:YAG laser micro-weld 

Max. Load 
Trial no. 

N1 specimens N2 specimens SNR, 
dB 

Average, 
kg 

Confidence 
interval, 

95% 

26 0.96 1.05 0.83 0.92 – 0.63

27 1.05 1.00 0.90 0.83 – 0.60

28 1.02 0.97 0.82 0.85 – 0.88

0.933 
N1=1.008 
N2=0.858 

1.553 ± 
4.364 (dB)
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3.3.2 Real optimization for Nd:YAG micro-weld 

Training of BP network 

A feed-forward neural network is proposed for this study. It takes a set of 

five input values (control factors A, B, C, D and noise factor) and predicts the 

value of one output (Max. Load of the specimens). A total of 100 input-output 

data patterns were partitioned into a training set, a testing set and a validating 

set. Functionally, 60% (60 patterns) were randomly selected for training the 

neural network the remaining 20% (20 patterns) were randomly used for testing 

and 20% (20 patterns) were randomly used for validating. An efficient 

algorithm, the Levenberg-Marquardt algorithm, was used to improve classical 

BP learning in the training process [17,21]. The neural network package 

software MATLAB Neural Network ToolBox was used to develop the required 

network. 

Table 3-16 presents fifteen options for the neural network architecture. 

After comparing all the data for the mean square error (MSE), the structure 

5-3-1, 5-15-1, 5-25-1, 5-35-1 and 5-40-1 are the five best convergence criteria. 

The structure 5-15-1 showed the least error and was therefore selected to obtain 

a better performance. The topology of the network 5-15-1 with a μ  value 0.001 

and a θ  value of 10 is shown in Fig. 3-9. 
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Table 3-16 Options for different networks in Nd:YAG laser welding 

Simulating error, % 
(Compare with average value in 

Table 3-15) 
Architecture 

(input-hidden unit-output) 

Mean square 
error for 
training 

N1 value N2 value 

5-2-1 0.0077 –20.6 –16.6 

5-3-1* 0.0046 –26.2 –19.1 

5-4-1 0.0121 –14.1 –8.2 

5-5-1 0.0052 –21.3 –21.4 

5-6-1 0.0078 –21.9 –10.5 

5-7-1 0.0304 –25.0 –37.9 

5-8-1 0.0119 –31.6 –29.7 

5-9-1 0.0064 –24.5 –24.3 

5-10-1 0.0083 –16.0 –22.6 

5-15-1* 0.0027 5.1 –13.1 

5-20-1 0.0099 –33.2 –19.0 

5-25-1* 0.0027 –33.7 –62.2 

5-30-1 0.0243 –50.9 83.2 

5-35-1* 0.0034 –22.9 –33.4 

5-40-1* 0.0020 –20.8 –50.6 

*The structures are the five best convergence criteria 

 



 56

 

Fig. 3-9 The BP network topology of the Nd:YAG laser welding 

 

 

 

Optimization with a well-trained network 

    The control factor C (pulse width) is the insignificant welding parameters 

that affect the quality characteristic (Max. load of each specimen) as shown in 

Table 3-14. First, the trained network 5-15-1 was employed as the simulating 

function of the control factor C.  
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Fig.3-10 shows the comparison of simulated results using the pulse width, 

other conditions A+0.5mmB360VoltD3pps, from which it can be seen that the 

tensile-shear strength of specimens is the best ones for setting pulse width to 6 

msec.  

 

 

 

 
Fig. 3-10 Results of simulating different pulse width 
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Second, Fig.3-11 shows the comparison of simulated results using the 

factor A, other conditions B360VoltC6msecD3pps, from which it can be seen that the 

tensile-shear strength of specimens is the best ones for adjusting focus position 

from +0.5 to +0.25 mm. 

 

 

 

 
Fig. 3-11 Results of simulating different focus position 
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Third, Fig.3-12 shows the comparison of simulated results using the factor 

D, other conditions A+0.25mmB360VoltC6msec, from which it can be seen that the 

pulse frequency and Max. Load are in direct ratio. When the pulse frequency is 

over 2.0 pps, the Max. Load will decrease progressively for N1 specimens (with 

100% cleanliness). On the other hand, the Max. Load increased progressively 

for N2 specimens (with 0% cleanliness). In this study, the pulse frequency was 

selected on 3.4 pps. 

 

 

 

 

Fig.3-12 Results of simulating different pulse frequency 
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Finally, Fig.3-13 shows the comparison of simulating results using the 

factor B, other conditions A+0.25mmC6msecD3.4pps, from which it can be seen that the 

pulse peak value and Max. Load are in direct ratio. When the pulse peak value is 

adjusted over 355 Volt, the tensile-shear strength of specimens will derive to 1.0 

kg. In addition, Fig.3-20 shows that the specimens with 50% cleanliness are 

better than N1 (with 100% cleanliness) and N2 (with 0% cleanliness) specimens. 

 

 

 

 
Fig.3-13 Results of simulating different pulse peak value 
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3.4 Optimization for RSW process 

3.4.1 Initial optimization for RSW process 

The high strength steel sheet was used in this study; its chemical 

composition is listed in Table 3-17. Plates 0.7 mm in thickness were cut into 

strips of size 30 100 mm. The schematic diagram of high strength steel sheet 

specimen for resistant spot welding was shown in Fig.3-14. The resistance spot 

welder (FANUC α8/4000is type) had been utilized for the experiment is shown 

in Fig.3-15.  

 

 

Table 3-17 Material used in RSW process (wt-%) 

Material C Si Mn P S Fe 

MJSC340D 0.062 0.48 0.95 0.013 0.004 Balance 

 

Fig. 3-14 Schematic diagram of the specimens 
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Fig. 3-15 Resistance spot welder and prepared specimens 

 

 

 

Control and noise factor of RSW process 

By making reference to the existing parameter conditions in the production 

line, the range of experimental parameter value has been initially framed as 

below: welding current 6200 ~ 11000 A, welding time 8 ~ 26 cycles, electrode 

force 1.8 ~ 3.3 kN and the size of electrode tip φ3 ~ φ6 mm. The value of each 

welding process parameter at the different levels is listed in Table 3-18.  

Surface condition of the welding area was selected as the noise factor in 

this study. The specimens at level one (N1), without any cleaning treatment, may 

have been tarnished with dirt and / or grease. The surface impurities were 
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removed and the surface cleaned with acetone at level two (N2). The initial 

conditions of production operation currently were welding current at 7800A, 

welding time at 8 cycles, electrode force at 1.8 kN and the size of electrode tip at 

φ4 mm. 

 

 

 

Table 3-18 Control factors of RSW process 

Factor Process parameter Level 1 Level 2 Level 3 Level 4 

A The size of 
electrode tip φ3 mm φ4 mm φ5 mm φ6 mm 

B Welding current 6200 A 7800 A 9400 A 11000 A 

C Electrode force 1.8 kN 2.3 kN 2.8 kN 3.3 kN 

D Welding time 8 cycles 14 cycles 20 cycles 26 cycles

 

 

Orthogonal array experiment 

Four four-level control factors, in addition to one noise factor, were 

considered in this investigation. The interaction effect between the welding 

parameters was not considered. Therefore, there are 12 degrees of freedom 

owing to the 4 control factors. The degrees of freedom for the OA should be 

greater than or at least equal to those for the process parameters. L16 (45) OA that 

has 15 degrees of freedom was employed in this study. An experimental layout 
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with an inner array for control factors and an outer array for a two-level noise 

factor (N1 and N2) is shown in Table 3-19. Four repetitions (y1, y2, y3 and y4) for 

each trial are used with this experimental arrangement; y1 and y2 are N1 

specimens (without cleaning); y3 and y4 are N2 specimens (cleaned with 

acetone). The Max. Load for tensile-shear test specimens are shown in Table 

3-20. 

 

 

 
Table 3-19 Experimental layout using an L16 orthogonal array 

Control factor Noise factor 

N1 specimens N2 specimens Trial no. 

A B C D 

y1 y2 y3 y4 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

. . . . . 

15 4 3 2 4 

16 4 4 1 3 

Measure data 
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Table 3-20 Experiment data in RSW process 

Control factors Max. Load 

Trial no. 
A B C D Average 

(kN) SNR (dB)

1 1 1 1 1 3.317 10.41 

2 1 2 2 2 4.098 12.25 

3 1 3 3 3 4.105 12.26 

4 1 4 4 4 4.392 12.85 

5 2 1 2 3 3.299 10.35 

6 2 2 1 4 3.758 11.49 

7 2 3 4 1 3.950 11.91 

8 2 4 3 2 3.855 11.70 

9 3 1 3 4 2.622 8.36 

10 3 2 4 3 3.735 11.44 

11 3 3 1 2 4.168 12.39 

12 3 4 2 1 4.083 12.22 

13 4 1 4 2 2.318 7.29 

14 4 2 3 1 3.572 11.05 

15 4 3 2 4 3.637 11.21 

16 4 4 1 3 4.139 12.24 

Total average of SNR for all trial η̂  is 11.213 (dB) 
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Evaluation of initial optimal condition 

The Max. Load of the specimens as discussed earlier belongs to the 

higher-is-better quality characteristic. The SNRs, which condense the multiple 

data points within a trial, depend on the three characteristics LB, NB and HB. 

The equation for calculating the SNR for HB characteristic is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

n

i iyn
SNR

1
210

11log10                     3-3 

where n  is the number of tests in a trial (number of repetitions regardless of 

noise levels). The value of n  is 4 in this study. The SNRs corresponding to 

Max. Load value of each trial is shown in Table 3-21. The effect of each welding 

process parameter on the SNR at different levels can be separated out because 

the experimental design is orthogonal. The description of the SNR for each level 

of the welding process parameters is summarized in Table 3-21. Fig.3-16 shows 

the SNR graph obtained from Table 3-21. Basically, the larger is the SNR, the 

better the quality characteristic (tensile-shear strength) for the specimens. The 

initial optimal conditions of the RSW process parameter levels, A1B4C1D3, can 

be determined from Fig. 3-16. 
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Table 3-21 SNR response table for the Max. Load 

Factor Process parameter Level 1 Level 2 Level 3 Level 4 

A The size of 
electrode tip 11.941 11.363 11.101 10.449 

B Welding current 9.102 11.558 11.942 12.252 

C Electrode force 11.634 11.507 10.842 10.871 

D Welding time 11.399 10.905 11.571 10.979 

 

 

Fig. 3-16 SNR graph for the Max. Load 
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Analysis of variance 

When the contribution of a factor is small, as with factor D (welding time) 

in Table 3-22, the sum of squares for that factor is combined with the error. This 

process of disregarding the contribution of a selected factor and subsequently 

adjusting the contributions of the other factors is known as ‘Pooling’ [9]. The 

welding current and the size of electrode tip were the significant welding 

parameters in affecting the quality characteristic, with the welding current being 

the most significant, as indicated by Table 3-22. 

 

 

Table 3-22 Results of ANOVA for the Max. Load 

Factor 
Degree of 
freedom 

Sum of 
square 

Mean 
square 

F- Test 
Pure sum of 

square 
Percent 

contribution

A 3 4.599 1.533 3.42 3.25 9.54% 

B 3 24.748 8.249 18.40 23.40 68.61% 

C 3 2.071 0.690 1.54 0.73 2.13% 

D 3 1.248 *     

Error 3 1.442     

Error 
(pooled) 

(6) (2.691) (0.448)  6.15 19.72% 

Total 15 34.109   34.229 100% 

Mark * means the factors are treated as pooled error 
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Confirmation test and proper regulation 

Refer to Table 3-21 and 3-22, estimated SNR optη  is computed as 

optη =11.213 + (11.941-11.213) + (12.252-11.213) =12.98 (dB) 

With a CI of 95% for the tensile-shear strength, the 6;1;05.0F  =5.99, and 

epV =0.448, the sample size for the confirmation experiment r  is 2, N =16, 

optDOF =9, and the effective sample size effn  is 1.6. Thus, the CI is computed to 

be 1.738 (dB). The experimental results (Table 3-23) confirm that the initial 

optimizations of the RSW process parameters (Aφ3mmB11000AC1.8kND20cycles) were 

achieved. 

 

 

Table 3-23 Confirmation experiment of RSW process 

Max. Load 
Trial 
no. 

N1 specimens N2 specimens SNR  
(dB) 

Average 
(kN) 

Confidence 
interval 
(95%) 

17 4.562 4.505 4.335 4.209 12.861

18 4.426 4.343 4.626 4.243 12.875
4.406 

12.98 ± 
1.74 
(dB) 

 

 

Although the conformity of reproducibility for the experimental results has 

been confirmed with an average Max. Load of specimens as high as up to 4.406 

kN obtained; however, a phenomenon of spark taken place between the 

specimens and the electrode during the spot welding process that leads to a 

severely shortened life cycle of electrode and an collaterally affected joint 
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quality of weldment for its subsequent welding. With the ANOVA outcomes 

(Table 3-22) referenced, a proper regulation of welding current is necessary to 

cope with the foregoing defects. As learned from Fig. 3-16 (SNR graph), SNR 

thereof was slightly increased when welding current regulated from 7800A to 

11000A, that is, the Max. Load of specimens was not heightened in big 

magnitude. Therefore, the optimal conditions of parameters obtained from the 

application of Taguchi Method remained unchanged except the welding current 

was regulated from 11000A to 7800A. Table 3-24 lists the results of experiment 

after adjusting the parameters (Aφ3mmB7800AC1.8kND20cycles). 

 

 

Table 3-28 Results of the Taguchi method with proper regulation 

Tensile-shear strength 
Trial no. 

N1 specimens N2 specimens 

Average 
(kN) 

19 4.089 3.945 3.926 3.731 

20 3.878 4.041 3.585 3.611 

3.851 
1 3.988
2 3.713

N
N

=⎛ ⎞
⎜ ⎟=⎝ ⎠

 

 

3.4.2 Real optimization for RSW process 

Training of BP network 

A total of 64 input-output data patterns were partitioned into a training set, 

a testing set and a validating set. Functionally, 60% (38 patterns) were randomly 

selected for training the neural network while the remaining 20% (13 patterns) 

were randomly selected for testing and 20% (13 patterns) were randomly 
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selected for validating. Table 3-25 presents nine options for the NN architecture. 

After comparing all the data for the MSE value, the structures 5-4-1, 5-5-1, 

5-7-1, 5-8-1 and 5-9-1 are the five best convergence criteria. The structure 5-7-1 

showed the least simulating error and was therefore selected to obtain a better 

performance. The topology of the network 5-7-1 with a μ  value of 0.001 and a 

θ  value of 10 is shown in Fig. 3-17. 

 

 

Table 3-25 Options for different networks in RSW process 

Simulating error, % 
(Compare with average value in 

Table 3-24) Architecture
Mean square 

error for 
training 

Rank of 
MSE 

N1 Specimens N2 Specimens

5-2-1 0.1123    

5-3-1 0.1083    

5-4-1 0.0337 5 –3.81 1.85 

5-5-1 0.0282 4 – 0.98 6.19 

5-6-1 0.2383    

5-7-1 0.0147 2 3.50 – 0.54 

5-8-1 0.0096 1 – 7.92 – 6.28 

5-9-1 0.0194 3 – 4.93 2.36 

5-10-1 0.0490    
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Fig. 3-17 The BP network topology of the RSW process 

 

 

 

Simulation with a well-trained network 

The control factor D (welding time) is the insignificant welding parameters 

in affecting the quality characteristic as shown in Table 3-26. First, the trained 

network 5-7-1 with 1.47% MSE was employed as the simulating function of the 

insignificant parameters in this welding process. In Fig. 3-15 ~ 3-18, the N1 

specimens (without any cleaning treatment) had simulated with 0 % cleanliness 

and the N2 specimens (cleaned with acetone) had simulated with 100 % 

cleanliness. 
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Fig. 3-18 shows the comparison of simulating results using the factor D 

(other conditions Aφ3mmB7800AC1.8kN), from which it can be seen that the Max. 

Load of specimens is best for adjusting welding time to 15 cycles.  

 

 

 

Fig. 3-18 Results of simulating different welding time 
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Second, Fig.3-19 shows the comparison of simulating results using the 

factor C (other conditions Aφ3mmB7800AD15cycles), from which it can be seen that 

the Max. Load of specimens is best for setting electrode force at 3.0 kN.  

 

 

 

Fig. 3-19 Results of simulating different electrode force 
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Third, Fig. 3-20 shows the comparison of simulating results using the 

factor A (other conditions B7800AC3.0kND15cycles), from which it can be seen that 

the Max. Load of specimens is best for setting the size of the electrode tip at φ3 

mm. 

 

 

 

Fig. 3-20 Results of simulating different size of the electrode tip 
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Finally, Fig. 3-21 shows the comparison of simulating results using the 

factor B (other conditions Aφ3mmC3.0kND15cycles), from which it can be seen that 

welding current and average Max. Load are in direct ratio until about 8200A. 

The welding current of RSW process for the initial condition is 7800 A. 

Therefore, the welding current at 7800A has been selected in this study. 

 

 

 

Fig. 3-21 Results of simulating different welding current 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Experimental results of the GTA welding 

    By proposed approach, the optimal welding condition of the GTA welding 

were the electrode size at level 2 (φ3.2 ㎜), the speed of welding torch at level 1 

(85 ㎜ min-1), the arc length at level 3 (2.0 ㎜), the flow rate of shielding gas at 

level 1 (8 L min-1), electrode on 73 degree of angle and welding current on 81 A. 

Table 4-1 is the experimental results with above optimal welding parameters. In 

comparing Table 4-1 with 3-7, it is shown that the increase of the average 

depth-to-width ratio from initial optimal parameters (apply Taguchi method only) 

to the real optimal parameters (apply Taguchi method and neural network) is 

0.12. 

 

 

 

Table 4-1 Results of the proposed approach in GTA welding 

Depth-to-width ratio 
Trial no. 

N1 specimens N2 specimens Average 

30 0.780 0.795 0.782 0.792 

31 0.806 0.782 0.773 0.770 
0.785 
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Fig. 4-1 Weld pool geometry for validation  

(a) Apply Taguchi method only, DWR = 0.712  

(b) Apply proposed approach, DWR = 0.806 
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The largest weld pool geometry of the initial optimal welding parameters 

by Taguchi method is 0.712. The largest weld pool geometry of the optimal 

welding parameters by proposed approach is 0.806. The weld pool geometry of 

the optimal welding parameters by proposed approach is slenderer than that was 

applied by the Taguchi method only, as shown in Fig.4-1. In summary, the 

quality of GTA welding process can be efficiently improved through the 

proposed approach. 

 

4.2 Experimental results of Nd:YAG laser micro-weld 

By combining the Taguchi method and neural networks, the optimal 

welding condition for Max. Load of the Nd:YAG laser weldment were the focus 

position on +0.25mm, the pulse peak value on 355 Volt., the pulse frequency on 

3.4 pps and the pulse width on 6 msec. Table 4-2 is the experimental results with 

above optimal welding parameters. 

 

 

Table 4-2 Results of the proposed approach in laser welding 

Max. Load 
Trial no. 

N1 specimens N2 specimens Average, kg 

29 1.05 1.14 0.94 0.90 

30 1.00 1.07 1.00 0.96 

31 1.10 1.02 0.92 1.05 

1.013 
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In comparing Table 4-2 with 3-15, it is shown that the improvement of the 

average Max. Load for N2 specimens (without cleaned) from initial optimal 

parameters to the real optimal parameters is 0.104 kg. The defective rate of the 

optimal welding parameters with the proposed approach is lower than that with 

the Taguchi method only, as shown in Table 4-3. In summary, the quality of 

Nd:YAG laser micro-weld process can be efficiently improved with the 

proposed approach. 

 

 

 

Table 4-3 A comparison of each condition 

 
Focus 

position, 
mm 

Pulse 
peak 

value, 
Volt 

Pulse 
width, 
msec 

Pulse 
frequency, 

pps 

Defective 
rate, % 

Average, 
kg 

Initial 
condition 0 330 6 2 8.67 0.886 

Taguchi 
method +0.5 360 6 3 5.37 0.979 

Proposed 
approach +0.25 355 6 3.4 2.00 1.023 

Sample size of comparison: 150 
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The simulating results obtained with a well-trained neural network model 

indicate that, the specimens (AA3003 aluminum alloy) with 50% cleanliness 

contributed most to the Nd:YAG laser micro-weld process. In order to improve 

the welding quality efficiently, the cleaning treatment to the safety vent and 

cathode lead of lithium-ion secondary batteries must be corrected. 

 

4.3 Experimental results of RSW process 

With combination of this Taguchi method and a neural network, the optimal 

welding conditions for Max. Load with RSW process were electrode tip size at 

φ3 mm, welding current at 7800 A, electrode force at 3.0 kN and welding time at 

15 cycles. Table 4-4 shows the experimental results obtained with above optimal 

welding parameters. Table 4-5 shows the experimental results with the 

conditions of production operation currently (Aφ4mmB7800AC1.8kND8cycles). 

Comparison of Table 3-24 with Table 4-5 shows that the increase in average 

Max. Load from the initial conditions to the initial optimal parameters (apply 

Taguchi method only) is 0.309 kN. Comparison of Table 4-4 with Table 4-5 

shows that the increase in average Max. Load from the initial conditions to the 

real optimal parameters (apply Taguchi method and neural network) is 0.566 kN. 

The surface condition of specimens for different parameters is shown in Fig.4-2. 

In summary, the quality of RSW process for high strength steel sheet can be 

efficiently improved with the proposed approach. 
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Table 4-4 Results of the proposed approach in RSW process 

Max. Load 
Trial no. 

N1 specimens N2 specimens 

Average 
(kN) 

21 4.310 4.169 4.112 3.746 

22 4.153 3.973 4.522 3.876 
4.108 

 

 

 

Table 4-5 Results of the initial conditions in RSW process 

Max. Load 
Trial no. 

N1 specimens N2 specimens 

Average 
(kN) 

23 3.329 3.518 3.605 3.344 

24 3.673 3.575 3.626 3.669 
3.542 
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Fig.4-2 Surface conditions of specimens for validation 
(a) Initial conditions 
(b) Apply Taguchi method only 
(c) Apply Taguchi method with proper regulation 
(d) Apply proposed approach 
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CHAPTER 5 

CONCLUSION 

 

This dissertation presents an integrated approach of the combination of 

Taguchi method and neural networks to optimize the process conditions of GTA 

welding, laser-micro weld and RSW process. Based on the results obtained from 

this research, the following conclusions can be drawn from this dissertation. 

 

1. In GTA welding process, the improvement of average depth-to-width ratio 

from initial optimal parameters (apply Taguchi method) to the optimal 

parameters (apply proposed approach) is about 11.96%. The largest 

depth-to-width ratio of the initial optimal parameters by Taguchi method is 

0.712. The largest depth-to-width ratio of the optimal parameters by proposed 

approach is 0.806. 

2. The ANOVA result indicates that, the electrode angle, welding current, and 

travel speed are the significant parameters in affecting the depth-to-width 

ratio of weld pool geometry in GTA welding process. 

3. In Nd:YAG laser micro-weld process, The improvement of the defective rate 

from initial conditions to the initial optimal parameters (apply Taguchi 

method) is 3.30%; from initial conditions to the  optimal parameters (apply 

proposed approach) is 6.67 %.  

4. The simulating results indicate that, the specimens (AA3003 aluminum alloy) 

with 50% cleanliness contributed most to the Nd:YAG laser micro-weld 

process. In order to improve the welding quality efficiently, the cleaning 

treatment to the safety vent and cathode lead of lithium-ion secondary 

batteries must be corrected. 
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5. In RSW process, the improvement of the average tensile-shear strength from 

initial conditions to the initial optimal parameters (apply Taguchi method) is 

about 8.72%. The improvement from initial conditions to the optimal 

parameters (apply proposed approach) is about 15.98%. 

6. The ANOVA result indicates that, the size of electrode tip and welding current 

were the significant parameters in affecting the tensile-shear strength in RSW 

process for high strength steel sheet. 

7. Compare with the results of ANOVA, there are 26.88% of error contribution 

in GTA welding, 7.75% of error contribution in Nd:YAG laser micro-weld 

process, and 19.72% of error contribution in RSW process. It shows that the 

experimental error of Nd:YAG laser micro-weld process is least and GTA 

welding is largest. 

8. From the results of confirmation test in these welding processes, the 

conformity of reproducibility for the experimental results has been confirmed 

9. The proposed approach is relatively effective and ease for engineers to apply 

to a range of other processes. The LMBP algorithm neural network is 

easy-and-quick to explore a nonlinear multivariate relationship between 

parameters and responses. It was proved successfully and effectively in this 

study.  

10. In addition, applying the proposed approach allows engineers to directly use 

neural network software to optimize the parameters without any theoretical 

knowledge of neural computing. 
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