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RuO2和 IrO2的電子傳輸性質 

 

學生：包智傑          指導教授：陳煜璋 

 

國立交通大學電子物理學系﹙研究所﹚碩士班 
 

摘要 

二氧化釕( 2RuO )和二氧化銥( 2IrO )在高溫下具有良好的導電性和穩定性。我

們用第一原理去研究不同口徑下 2RuO 和 2IrO 的電子傳輸性質，在計算的方法裡，

我們運用密度泛函理論(Density Functional theory)去最佳化 2RuO 和 2IrO 的結

構和用局部密度近似法(Local Density approximation)去近似。經過計算結果我

們可以得到不同口徑下 2RuO 和 2IrO 奈米線的聲子色散關係而且發現聲速和 Debye

溫度隨著材料的尺寸增加而增加。藉著 Bloch-Gruneisen方程式可以知道在低溫

下，來自於電子聲子交互作用的電阻率隨著溫度五次方成正比而且在同樣溫度下，

聲速和 Debye溫度導致電阻率隨著奈米線的半徑增加而增加。 
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Electronic transport properties in RuO2 and IrO2 nanowires 

 

學生：Jhih-Jie Bao      指導教授：Yu-Chang Chen 

 

Department﹙Institute﹚of Electrophysics 
National Chiao Tung University 

 

Abstract 

2RuO  and 2IrO  are the inviting electrical contact materials which exhibit the 

metallic conductivity properties at room temperatures. They crystallize in the rutile 
structures and display good thermal stability at high temperatures. We study the size 

effects of the transport properties of 2RuO  and 2IrO  nanowires using 

first-principles approaches. The relaxed structures of 2RuO and 2IrO  bulk and 

nanowires are obtained based on the density functional theory. By using the force 

tensor we calculate the phonon dispersion relation of the 2RuO  and 2IrO  

nanowires with different diameters. We observe that the sound velocities and the 
Debye temperatures display size effects. According to the Bloch-Gruneisen model 
within Matthiessen’s rule, the resistivity varies as 5T at low temperatures due to 
electron-phonon interactions. At the same temperatures, the size effects of the sound 
velocity and the Debye temperatures lead to the increase of the resistivity as the 
diameters of the nanowires increase.  

 

 



iii 
 

致謝 

 

 感謝陳煜璋老師這兩年的細心教導，讓我在這期間學會了很多的事情，在寫

這篇論文的時候，能夠很有耐心的與我討論以及修改，使得這篇論文更完善。 

 在這學習的期間，還要感謝研究室裡與學弟們的討論，他們在這之間幫忙了

很多的事情，使得我在研究和生活的事務上可以順利的進行。 

 另外要謝謝和我住在一起的大學同學們，沒有他們陪我玩樂和吃雞塊，我想

在這碩士的生活裡會變的很枯橾乏味，以及天天陪我游水的那位同學，可以和我

一起分享寫論文的心得，使我在寫論文的時候能夠更面面具到。 

 最後要感謝我的父母，默默的支持我和適時的給我鼓勵，再次，謝謝所有幫

助過我的人。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Contents 

Abstract(Chinese)   ............................................................................................................... i
Abstract(English)   ............................................................................................................... ii
Acknowledgement............................................................................................................ iii 
Contents   ........................................................................................................................... iv
List of Figures   .................................................................................................................... v
Chapter1 Introduction   .............................................................................................. 1
Chapter2 Theories   .................................................................................................... 5

2-1 Hartree approximation10   .................................................................................. 5
2-2 Hartree-Fock approximation   ........................................................................... 6
2-3 Density Functional Theory   ............................................................................... 7

2-3-1 Hohenberg and Kohn theorem11   ............................................................. 7
2-3-2 Kohn-Sham equation12  ............................................................................. 9

(A) Pseudopotential Method   ........................................................................................... 10
(B) Pseudopotential15   ...................................................................................................... 12
(C) Local Density Functional Approximation   ................................................................... 14

2-4 Band Theory   .................................................................................................... 16
2-5 Phonon dispersion relation   ............................................................................ 18

2-5-1 Two atoms per primitive basis21   ............................................................ 18
2-5-2 Acoustic and optical phonon   ................................................................. 20
2-5-3 Debye model for density of states   ......................................................... 21
2-5-4 Phonon dispersion relation22-24   ............................................................. 22
2-5-5 Calculation of the force constant matrix   ............................................... 22

Chapter3 Calculation Method and Result   ................................................................ 25
3-1 Crystal structures   ............................................................................................ 25
3-2 VASP Calculation   ............................................................................................. 30
3-3 Phonon dispersion relation   ............................................................................ 32
3-4 Matthiessen’s rule25   ........................................................................................ 37
3-5 Results and Discussion   ................................................................................... 40

3-5-1 Debye temperature calculation27, 28   ...................................................... 40
3-5-2 Bloch-Gruneisen Model calculation   ...................................................... 42

Chapter4 Conclusion   ............................................................................................... 44
Chapter5 Reference   ................................................................................................ 46
 
 
 
 



v 
 

List of Figures 

Fig. 1.1 The heat capacity of 2IrO  and 2RuO 3.   ............................................................ 2
Fig. 1.2 Resistivity versus temperature of 2IrO  and 2RuO 4.   ........................................ 2

Fig. 1.3 The resistance as a function of temperature for different diameter in 

2RuO  and 2IrO 5.   ................................................................................................... 3
Fig. 3.1 The primitive cells for 2RuO (upper panel) and 2IrO  (lower panel) in the 

rutile structures.   .................................................................................................. 27
Fig. 3.2 The structure of 1x1 nanowire for 2RuO  (upper panel) and 2IrO (lower 

panel). The picture of the top-left corner is its bulk structure.   .......................... 28
Fig. 3.3 The structure of 2x2 nanowire for 2RuO  (upper panel) and 2IrO (lower 

panel).   ................................................................................................................. 29
Fig. 3.4 The contents of the POSCAR file.   ................................................................... 30
Fig. 3.5 The partial contents of POTCAR file for local-density approximation.   .......... 31
Fig. 3.6 The contents of the KPOINTS file.   .................................................................. 31
Fig. 3.7 The contents of the INCAR file.   ...................................................................... 32
Fig. 3.8 All output files of the VASP.   ............................................................................ 32
Fig. 3.9 The contents of the INPHON file.   ................................................................... 33
Fig. 3.10 The contents of the DISP file.   ....................................................................... 34
Fig. 3.11 The contents of the FORCES file.   .................................................................. 35
Fig. 3.12 Phonon dispersion relation for the 2RuO (upper panel) and 2IrO (lower 

panel).   ................................................................................................................. 36
Fig. 3.13 The dependence of the Debye temperature in 2RuO  (upper panel) and 

2IrO  (lower panel) on the diameters of the nanowires.   .................................... 41
Fig. 3.14 The resistivity of 2RuO  (upper panel) and 2IrO  (lower panel) nanowires 

due to the interactions between electrons and the acoustic phonons.   ............. 43

 



1 

Chapter1  Introduction 

 The rutile-structure transition-metal dioxides exhibit a variety of interesting 
physical properties that 2RuO  and 2IrO  have good conductivity properties and 

stability at high temperature. Their electrical transport properties are investigated for a 
long time, both experimentally and theoretically. 

 The electronic structures of 2RuO  and 2IrO  have been studied using the 

self-consistent semirelativistic linear muffin-tin-orbital (LMTO) method associated with 
the atomic sphere approximation in 1989 by J. H. Xu, T. Jarlborg and A. J. Freeman1. 
Their results are in good agreement with experiments. In 1993, Keith M. Glassford and 
James R. Chelikowsky2 have calculated the structures and electronic properties of 

2RuO  using ab initio density functional theory with a fast iterative diagonalization 

technique with local-density-approximation (LDA) in a plane-wave basis and the 
pseudopotential. 

 In experiments, the heat capacities of 2RuO  and 2IrO  have been measured in 

1969 by B. C. Passenheim and D. C. McCollum3. The heat-capacity measurements have 
been made by discontinuous heating method in a He  cryostat. Their results show 

that 2 30.059 0.0225 5.77C T T T−= + +  ( /mJ mole K⋅ ) for 2RuO , and 

2 30.308 0.0565 5.51C T T T−= + +  ( /mJ mole K⋅ ) for 2IrO . The experiment data is 

shown in figure 1.1. 
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Fig. 1.1 The heat capacity of 2IrO  and 2RuO 3. 
W. D. Ryden and A. W. Lawson4 have measured the resistivity of 2RuO  and 2IrO  

in the temperature range 4.2-1000 K  in 1970. They have found the relation based on 
electron-electron and electron-phonon interband scatterings and fitted the 
temperature dependence of the resistivity. The figure 1.2 is the result of their 
experiment.  

 

Fig. 1.2 Resistivity versus temperature of 2IrO  and 2RuO 4. 
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In 2004, J. J. Lin, S M Huang, Y H Lin, H Liu, X X Zhang, R S Chen and Y S Huang5, 6 firstly 
report their measurements of the resistivities and magnetoresistivities of 2RuO  and 

2IrO nanowires over a wide temperature range from 300 K  down to 0.3 K . 

Prof. Juhn-Jong Lin’s group employs a thermal evaporation method to synthesize 

2RuO  nanowires with controlled sizes. They control the sizes of the 2RuO  nanowires 

by adjusting the growth time and the average width of nanowires is about ~ 90nm . 
When they measure the transport properties of different diameters of nanowires, they 
find that the conductivities of the thick nanowires are better than the thin ones7. The 
results agree well with our ideal conjecture and we get the same relation in the 
theoretical calculation. In the figure 1.3, the resistivity varies with the temperature and 
they shift a constant in different diameters. The argument is similar for our results. 

 

Fig. 1.3 The resistance as a function of temperature for different diameter in 2RuO  
and 2IrO 5. 

Motivated by the above experiments, we theoretically investigate the 
dependence of the resistivity on the diameters of 2RuO  and 2IrO  nanowires in this 

work. We have calculated the Debye temperature of different diameters and compared 
the theoretical results with the experiments performed by Prof. Juhn-Jong Lin’s group. 
We use Vienna Ab-initio Simulation Package (VASP)8 to relax the structures and the 
force constants of 2RuO and 2IrO  bulk and nanowires. We also investigate the 
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phonon dispersion relation for 2RuO  and 2IrO  nanowires with different diameters, 

and the size effects on the electron transport according to the Bloch-Gruneisen 
equation. 

 The outline of the thesis is described as followings: first, we introduce the theories 
which we have applied to calculate the Debye temperature and resistivity in chapter 2. 
In section 2-1, we introduce the Hartree approximation; in section 2-2, we introduce 
the Hartree-Fork approximation; in section 2-3, we introduce the density functional 
theory (DFT); in section 2-4, we introduce the band theory; and in section 2-5, we 
introduce the phonon dispersion relation.  

In chapter 3, we introduce the structures of 2RuO  and 2IrO  nanowires and 

the bulk crystals. We explained the parameters of VASP that is used to relax the 
structures of our systems. We also explain how to use “PHON”9 to obtain the phonon 
dispersion relations and the sound velocities. We also present the results of our 
calculations and discussion in the later part of the third chapter. According to the 
Matthiessen’s rule with electron-phonon scatterings, we find the relation between the 
resistivity in the Bloch-Gruneisen model and the temperatures. We also study the 
relation of the Debye temperature versus diameters nanowires.  Our objective is to 
theoretically investigate the trend of the conductivities and Debye temperatures as the 
function of the diameters of nanowires.  
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Chapter2  Theories 

In this chapter we briefly introduce the theories of density functional theory and 
the theories of phonons. We introduce the Hartree and Hartree-Fock approximations in 
sections 2-1 and 2-2. In section 2-3, we introduce the density functional theory (DFT), 
which the ground state properties of a many electron system are uniquely determined 
by the electron density ( )n r . In section 2-3-1, we introduce the Hohenberg and Kohn 
theorem. In section 2-3-2, we introduce the local density functional approximation 
(LDA) and the scheme of self-consistent calculations. In section 2-4, we briefly 
introduce the Bloch theorem and the band theory. In the section 2-5, we introduce the 
phonon dispersion relation and the phonon frequency from calculation the force 
constant matrices. 

In many-electron system, the potential energies of electrons are complicated and 
the wave functions of many-electron system are difficult to solve. Density functional 
theory can simplify the calculations by mapping the complicated many-body wave 
functions into effective single-particle wave functions, where the effects of weak 
electron-electron interactions are included in the exchange-correlation energy.  

2-1 Hartree approximation10 
 Consider the Hamiltonian of many-particle system with N electrons can be written 
as 

2 21 ,
2 2

N N N
i

ext
i i j i j

p eH V
m r r

= + +
−

∑ ∑∑  

          

(2.1) 

In the absence of the interaction between electrons, the many-body system will 
decouple into one-body problems. The ground-state wave function of the many-body 
system is expressed as the simple product of orthonormalized one-electron wave 
functions. 

1 2 1 1 2 2( , , , ) ( ) ( ) ( ).N N Nr r r r r rψ ψ ψΨ ⋅⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅                        (2.2) 

The total energy of the system is given by E H= Ψ Ψ . By using the variational 

principle [ ] 0,i i iEδ ε ψ ψ− =  where iε  is the Lagrange multiplier with the 
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constraint i j ijψ ψ δ=  , the effective single-particle Schrodinger equation can be 

expressed as 

2

,
2 ext H l l l
p V V
m

ψ εψ
 

+ + = 
             

(2.3) 

where 
2

.ext
R i

ZeV
r R

= −
−

∑    It describes an electron j  at location ir


 of the ions in the 

potential field extV  in the Coulomb potential of an average distribution of all other 

electrons. 
2

'3 '
' ( )H j

eV d r n r
r r

=
−

∫


 

 is the Hartree potential corresponding to the 

electron-electron interactions. 
2

( ) ( )j j
j

n r rψ=∑
 

 is the density of electrons. 

 The Eq.(2.3) is also called Hartree equation, and one can use the pseudopotential 
method to approximate the potential extV  and the potential HV . 

2-2 Hartree-Fock approximation 
 Because the electrons are fermions, the total wave function is antisymmetric. To 
satisfy the Pauli Exclusion principle, one can extend the expression Eq.(2.2) as the 
Slater determinant of single particle wave functions: 

1 1 1 1 2 2 1

2 1 1 2 2 2

1 1

( , ) ( , ) ( , )
( , ) ( , )1 ,

!
( , ) ( , )

N N

N N N N

r s r s r s
r s r s

N
r s r s

ψ ψ ψ
ψ ψ

ψ ψ

Ψ =



 

   

 

      (2.4) 

where s  denotes the electron spin. 

 By using the variational principle with the constraint i j ijψ ψ δ= , Eq.(2.3) can be 

mapped into single particle pictures as followings: 
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2

.
2 ext H x l l l
p V V V
m

ψ εψ
 

+ + + = 
            

(2.5) 

We see that Eq.(2.5) has one more term than Eq.(2.3) on left-hand side of the 

equal sign which is called exchange potential 
2

'3 ' *
'( ) ( )x i j

j i

eV d r r r
r r

ψ ψ
≠

= −
−

∑
 

 

. 

 The exchange potential xV  has the relations with Pauli Exclusion Principle and is 

a nonlocal potential. It can be calculated by using the local density functional 
approximation. 

2-3 Density Functional Theory 
 The fundamental physical quantities in the ground state can be uniquely described 

from the electron density ( )n r


 in many-particle system. All ground state properties of 

the many electron system are functional of ( )n r


. In 1964 Hohenberg and Kohn prove 

that the ground state electron density uniquely determines the external potential. 
Kohn and Sham extended the theorem by separating the total energy into the kinetic 
energy of electron, the potential energy of attraction between electrons and nuclei, 
the coulomb potential energy of repulsion, and the exchange-correlation energy 
between electrons. 

2-3-1 Hohenberg and Kohn theorem11 

The external potential is uniquely determined by the ground state electron density. 
The above theorem can be proved as follows： 

We assume that two different potential 1V  and 2V  have the same ( )n r


. 

Suppose 1 2 constantV V≠ +  and 1 2Ψ ≠ Ψ  where 1Ψ  is the ground state wave 

function. The Schrodinger equation can be expressed as 

1 1 1 1H EΨ = Ψ  
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2 2 2 2 ,H EΨ = Ψ  

where 1E  and 2E  are eigen-energies of 1H  and 2H , respectively. 

With different external potentials, the Hamiltonian can be expressed as 

1 2 1 2.H H V V= + −  

Because 1 1 1 1E H= Ψ Ψ  is the ground energy, we can obtain 

1 1 1 2 1 2H HΨ Ψ < Ψ Ψ  

3
1 2 2 2 2 1 2 2 2 1 2( ) ( ),E H V V E d r V V n r< Ψ Ψ + Ψ − Ψ = + −∫     (2.6) 

and 

3
2 1 1 1 1 2 1 1 1 2 1( ) ( ).E H V V E d r V V n r< Ψ Ψ + Ψ − Ψ = + −∫     (2.7) 

Combine with Eq.(2.6) and Eq.(2.7), we obtain 

3
1 2 1 2 1 2( ) ( ) ,E E d r V V n r E E− < − < −∫          

(2.8) 

which leads to a contradiction and means that the assumptions are wrong. Thus, two 
different external potentials cannot correspond to the same non-degenerate ground 
state density. The total energy can be expressed as a functional of ground state charge 

density ( )n r


 in many-electron system. 

[ ].tot TE E n=  

 If the charge density ( )n r


 is determined, all the ground state properties of the 

many-electron system will be determined. 
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2-3-2 Kohn-Sham equation12 

From the Hohenberg and Kohn theorem, it is known that the ground state 

properties of many-particle system can be determined by the electron density ( )n r


. 

The charge density in the ground state can be solved iteratively until the self-consistent 
is achieved.  

The ground state energy of a homogeneous interacting electron gas can be 
written as 

'
3 3 3 '

'

1 ( ) ( )[ ] [ ] ( ) ( ) [ ].
2T ext xc

n r n rE n T n V r n r d r d rd r E n
r r

= + + +
−

∫ ∫∫
 

 

 

    (2.9) 

 In the right-hand side, the first term is the kinetic energy as a functional of 

non-interacting electrons with density ( )n r


; the second term is external potential 

energy relative to electrons; the third term is Coulomb energy between electrons; and 
the fourth term is the exchange-correlation energy functional of an interacting system 

with density ( )n r


. By the variational principle with the total electron 3( )N n r d r= ∫


 

for the ground state, one has 

3
'

[ ] ( )( ) ( ) ,ext xc
T n n rV r d r V r

n r r

δ µ
δ

+ + + =
−

∫


 

 

        (2.10) 

where 
[ ][ ] xc

xc
E nV r

n
δ
δ

=


 and 3
'

( )
H

n rV d r
r r

=
−

∫


 

 µ  is Lagrange parameter. 

 In the absence of the exchange-correlation potential, it goes back to Hartree 
approximation. Comparing Eq.(2.10) with Eq.(2.5), it is regarded as an effective 
potential of the single-electron wave equation which is called Kohn-Sham Equation. 

2
2 ( ) ( ) ( ) ( ) ( ),

2 ext H xc i i iV r V r V r r r
m

ψ εψ
 
− ∇ + + + = 
 

    



     (2.11) 
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[ ]xcE n  is the exchange and correlation energy of an interacting system with 

density ( )n r


. 

(A) Pseudopotential Method 

 The early calculations of first-principles pseudopotential are made within the 
scheme of orthogonalized-plane-wave (OPW) atomic calculation. The wave functions in 
this way exhibit the correct shape outside the core region; however, they differ from 
the real wave functions by a normalization factor13. Hamann, Schluter and Chiang14 
(HSC) propose a model pseudopotential to solve the problems that have four 
properties：(1) real and pseudo valence eigenvalues agree for a chosen atomic 
configuration; (2) real and pseudo wave functions agree beyond a chosen core radius 

cr ; (3) the integrals from 0 to r of the real and pseudo charge densities agree for cr r>  

for each valence state, this is norm conservation condition; (4) The logarithmic 
derivatives of the real and pseudo wave function and their first energy derivates agree 
for cr r> . 

 Because the lattice has the periodic characteristic, the wave functions must satisfy 
the Bloch theorem. It can be written as expansion of the following form: 

( )1( ) .nk i k G r
nk G

G
r eα + ⋅Ψ =

Ω
∑

  



           (2.12) 

 In the pseudopotential method, the pseudopotential psV  is constructed on the 

valence electrons and the core electrons have been transformed away. The 
pseudo-Hamiltonian of the valence electrons can be expressed as 

2

,
2 ps H xc
pH V V V
m

= + + +            (2.13) 

where 

( ).ps ion j
R

V V r r R= − −∑


  

 

 ( )ionV r


 is non-local potential and it is relation to the angular momentum l . The 
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angular momentums of the electron in the s, p and d orbitals are 0, 1 and 2, 
respectively. The potential can be expressed as 



2

0
( ) ( ) .ion l l

i
V r V r P

=

=∑
 

             
(2.14) 

 

lP  is the projection operator of the angular momentum . The Hartree potential 

satisfies the Poisson equation and it can be written as 

2 ( ) 8 ( ).HV r n rπ∇ = −
 

            (2.15) 

 ( )n r


 is the density of the pseudo valence electrons and the xcV  can be regarded 

as functional of ( )n r


 from LDA. We define the elements of the matrix S that 

' '

'

, ,
.k

G G G G
S k G k G δ= + + =
   

   

           
(2.16) 

 The pseudopotentials of the ion ionV  can be separated into local and non-local 

potential ( loc nl
ion ion ionV V V= + ). The HV  and xcV  are functional of ( )n r



 that are also 

local potential. The Hamiltonian can be rewritten as 

loc nlH T V V= + +   
2

,
2
pT
m

=           (2.17) 

'

2'

,
,

G G
k G T k G k G δ+ + = +

 

     

          (2.18) 

' '
( ),loc lock G V k G V G G+ + = −

     

          (2.19) 

' '
( , ).nl nlk G V k G V k G k G+ + = + +

       

         (2.20) 
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(B) Pseudopotential15 

 Pseudopotentials are introduced to simplify electronic structure calculations by 
eliminating the need to atomic core states and the strong potentials responsible for 
binding them. 

 To construct atomic pseudopotential lmϕ  at a given energy which are identical to 
atomic eigenfunctions. The lmϕ  are continued inside cr  with the condition that 

l
lm rϕ →  for 0r →  and with the norm-conserving condition, one has 

2 3 2 3

0 0
,c cr r

lm lmd r d rϕ ψ=∫ ∫             (2.21) 

 The pseudopotentials are obtained by inverting the Schrodinger equation 

2
2

( 1)( ) [ ] / .l r l l
l lV r E

r
ϕ ϕ +

= ∇ + −
          

(2.22) 

The complete pseudopotential is then written as 

( ) ( ) ( ) ,PS loc non loc lm l lm
lm

V V V V r Y Yθϕ δυ θϕ= + = +∑       (2.23) 

where 0lδυ =  for cr r>  and locV  is the local potential and is an arbitrary function 
for cr r< . The semilocal form16 (i.e. nonlocal in angular coordinates but local in radial 

coordinate) of the Hamman-Schluter-Chiang (HSC) pseudopotential which used in an 

expansion of N plane waves requires the evaluation of 
( 1)

2
N N +

 integral for each 

lδυ . The nonlocal form can be introduced, 

1( ) ( ) ( ) ( ) ,ps loc lm l l lm l
lm

V V r r B r rϕ δυ ϕ δυ−= +∑        (2.24) 

where 

.l lm l lmB ϕ δυ ϕ=  

 Vanderbilt generalized Eq.(2.24) with ( )i rϕ  and ( )i rδυ  where the i  subsumes 
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the ,l m  and also includes two or more energies at which the ( )lm rϕ  are evaluated. 
This result in lB  becoming a matrix 

,ij i j jB ϕ δυ ϕ=  

which is not Hermitian and the generalized norm-conservation requirement, 

3 * * 3

0 0
( ) ( ) ( ) ( ) ( ) 0,c cr r

ij ij i j i jQ Q r d r r r r r d rψ ψ ϕ ϕ = = − = ∫ ∫      (2.25) 

and Vanderbilt17 defines 

1( ) ,i ji j j
j

Bβ δυ ϕ−=∑
            

(2.26) 

which is substituted into the Eq.(2.24) and one can obtain the pseudopotential 

,
.ps loc i ij j

i j
V V Bβ β= +∑

           
(2.27) 

In general, it is difficult to apply Eq.(2.25), results in lmϕ  whose plane-wave 

expansions are extremely slowly converging. To avoid applying Eq.(2.25), Chou18 
constructed norm-conserving nlmϕ  at two energies nE  and inverted the Schrodinger 

equation to obtain their nlδυ  which she averaged to obtain lδυ , yielding 

1( ) ( ) ( ) ( ) ( ) ,l lrlm rlmps loc nl
nlm

V V r r r A r rϕ δυ ϕ δυ−= +∑       (2.28) 

where 

.nnlm nlmnlA ϕ δυ ϕ=  

 The nlA  is Hermitian and the ( )nlm rϕ  are solutions of the pseudo Schrodinger 

equation at nE  with nlδυ  replaced by lδυ . 
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(C) Local Density Functional Approximation 

 The exchange-correlation energy is relation to the electronic distribution in the 
system. It is difficult to give an exact expression for xcE  because of its complexity. In 

order to simplify this complexity, Kohn and Sham suggested using the homogeneous 
electron gas system to approximate the energy contribution from [ ]xcE n  in 1965. If 

the electronic density varies slowly, the exchange-correlation functional can be written 
as 

3[ ] [ ] ( ) ,xc xcE n n n r d rε= ∫


            
(2.29) 

where the exchange-correlation potential can be expressed as 

[ ]( ) { ( )},xc
xc xc

E n dV r n n
n dn

δ ε
δ

= =


          
(2.30) 

where [ ]xc nε  is the exchange-correlation energy density of the homogeneous 
electron gas. ( )xcV n  is the exchange and correlation contribution to the chemical 
potential of a homogeneous gas of density n . 

 The exchange-correlation energy density19 can be separated into [( )]x nε


 and 

[( )]c nε


. [( )]x nε


 is the exchange energy of a homogeneous electron gas and [( )]c nε


 

is the correlation energy of a homogenous electron gas. 

 Within Hartree-Fock approximation the exchange energy density can be obtained 
by solving the Schrodinger equation of the non-interacting homogenous electron gas. 

0.458( )x
s

r
r

ε −
=



 sr  is Wigner-Seitz radius, 

where 
1

3 1 34 4( ) ( ) ( ) 0.458( ( )) .
3 3s xn r r r n rπ ε π−= ⇒ = −

  

      (2.31) 

From the Eq.(2.31), we can know that the exchange energy density ( )x rε


 is 

proportion to the electron density ( )n r


 to the power of one third. 
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 An approximation of the correlation energy is based on Quantum Monte Carlo 
calculations by Ceperley and Alder20. The wave function for electrons in a finite volume 
subject to periodic boundary conditions and extrapolated the energy per electron to 
infinite volume. The Ceperley’s parameterization of the correlation energy for 1sr ≥  is  

1 2

0.1423( ) ,
1 1 1.0529 0.3334

s
c

s s s s

rr
r r r r

ε
β β

−
= =

+ + + +



      (2.32) 

the high-density form of cε  ( 1sr < ) is 

( ) 0.0311ln 0.048 0.002 ln 0.0116c s s s sr r r r rε = − + −


 

 Substituting Eq.(2.31) into Eq.(2.30), the relation between exchange-correlation 
potential and electronic density can be expressed as 

[1 ] .
3
s

xc xc
s

r dV
dr

ε= −              (2.33) 

 In many-electron system, we give the initial data of the electronic density to 

calculate the potential each term, and get the effective potential effV  to solve the 

solution of the Kohn-Sham equation. The wave function is obtained by Kohn-Sham 
equation and the new electronic density is calculated from the wave function. If the 
difference in value between the new electronic density and the initial electronic 
density is too big, they will be mixed to generate another electronic density, and repeat 
the above procedures until the difference in value between the new density and last 
density is very small. The above procedures are called self-consistent procedure. 

The convergence of the flow chart： 

 KS equation ;

1    (1 )        

V solve converngenceoutin i ieff

n n n
outin in

ρ ε ψ ρ

ρ α ρ αρ

→ → → → →

+↑ ← ← = − + ← ← ↵
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2-4 Band Theory 
 The solutions of the Schrodinger equation for a periodic potential by Bloch 
theorem can be expressed as 

( ) ( ),ik r
k kr e u rψ ⋅=

 

 

             (2.34) 

where ( )ku r


 has the period of the crystal lattice with ( ) ( )k ku r u r R= +
  

. 

We substitute Eq.(2.34) into the Kohn-Sham equation 

2
2

( ) ( ) ( ) ( ) ( ),
2 ext H xc k k kV r V r V r r r

m
ψ ε ψ

 
− ∇ + + + = 
 

     



      (2.35) 

here 

2 2 2
2

2
2

( ) [ ( )] [ ( ( ))]
2 2 2

                      [ ] ( ),
2

ik r ik r
k k k k

ik r
k

r e u r e iku u r
m m m

e ik u r
m

ψ ⋅ ⋅

⋅

− ∇ = − ∇ ∇ = − ∇ +∇

= − +∇

   

 

        

  

  



 

The Kohn-Sham equation is rewritten as 

 ( ) ( ),k k k kH u r u rε=
 

 

where 
2

2[ ] ( ) ( ) ( ).
2k ext H xcH ik V r V r V r

m
= − +∇ + + +

    



 

 This is a partial differential equation with complicate boundary condition. One can 
reduce this complicate boundary value problem to a simple matrix diagonalization 
problem using Rayleigh-Ritz variational principle. 

We choose a basis function ( ),n rχ


 

where ( ) ( ),n nr R rχ χ+ =
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and ( ) ( ).k n n
n

u r C rχ=∑
 

            (2.36) 

 According to the variational principle, we know that the expectation value of the 
Hamiltonian by the arbitrary wave function must be greater than ground-state energy 
of the system. 

,k k GSu H u E≥  

or 

0.k k GS k ku H u E u u− ≥            (2.37) 

 If one can find out the minimum eigenvalue of the system, one will get the energy 
close to the ground-state energy. We substitute Eq.(2.36) into Eq.(2.37) with the equal 
sign the variational principle tell us that in the ground state 

* * 0,n n k m m n n m m
n m n ml l

C H C C C
C C

χ χ λ χ χ∂ ∂
− =

∂ ∂∑ ∑ ∑ ∑  

then 

* *
* *( ) 0.n m nm n m nm

n m n ml l

C C H k C C S
C C

λ∂ ∂
− =

∂ ∂∑∑ ∑∑  

More compactly one may write in this way. 

( ) 0lm m lm m
m m

H k C S Cλ− =∑ ∑  

~ ~ ~ ~
0,H C S Cλ⇒ − =              (2.38) 

where ( )nm n k mH k Hχ χ=  and .nm n mS χ χ=  

 If the matrices nmH and nmS  are given, the wave functions can be obtained by 

diagonalizing. The different bases lead to different approximations, for example, APW, 
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LPAW, LCAO, etc. 

2-5 Phonon dispersion relation 
 A phonon is a quantized mode of vibration occurring in a rigid crystal lattice. 

2-5-1 Two atoms per primitive basis21 

 Consider the elastic vibrations of a crystal which is correlated to displacements of 
other atoms nearby. Most simple situation is obtained in the [100], [110] and [111] 
propagation directions of cubic crystals. If a wave is propagating along one of these 
directions entire planes of atoms move in phase with displacements either parallel 

(longitudinal) or perpendicular (transverse) to the direction of the wave vector K


. 

Here we think about two different atoms per primitive basis. Atom 1 with mass 

1M  is displaced by 1 1, ,s s su u u− +  and atom 2 with mass 2M  is displaced by 

1 1, ,s s sυ υ υ− + , where 1 2M M> . The force constant is C  and force between two 
different neighboring atoms is ( )s sF C uυ= −  from Hooke’s law. The equation of 
motion is 

2

1 12

2

2 12

( 2 )

( 2 ).

s
s s s

s
s s s

d uM C u
dt
dM C u u
dt

υ υ

υ υ

−

+

= + −

= + −

           (2.39) 

The solution in the form of a traveling wave with different amplitude ,u υ  can be 
written as 

( )

( ) ,

i sKa t
s

i sKa t
s

u ue
e

ω

ωυ υ

−

−

=

=
             (2.40) 

where the lattice constant a  is defined as between nearest identical planes, not 
nearest-neighbor planes. Substitute Eq.(2.40) into Eq.(2.39) and we can get 

2
1

2
2

(1 ) 2

( 1) 2 ,

iKa

iKa

M u C e Cu
M Cu e C

ω υ

ω υ υ

−− = + −

− = + −
          (2.41) 
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Transform the above equation to another type 

2
1

2
2

(2 ) (1 ) 0

( 1) (2 ) 0,

iKa

iKa

C M u C e
C e u C M

ω υ

ω υ

−− − + =

− + + − =
          (2.42) 

 The solution of the phonon dispersion relation can be found by the determinant 
of the coefficients of above equation: 

2
1

2
2

2 (1 )
det 0,

( 1) 2

iKa

iKa

C M C e
C e C M

ω
ω

−− − +
=

− + −
         (2.43) 

here 

4 2 2
1 2 1 22 ( ) 2 (1 cos ) 0,M M C M M C Kaω ω− + + − =  

and it is known 
2 4 2( ) ( ) ( )cos 1 1

2! 4! 2!
Ka Ka KaKa = − + + ≈ −  when 1Ka   

2 2 2 2
1 2 1 2 1 22

1 2
1

21 2 2
1 2 1 2

1 2

1 2

2 ( ) 4 ( ) 4 ( )
2

2 ( ) {2 ( )[1 ( ) ] }
,

2

C M M C M M M M C Ka
M M

M MC M M C M M Ka
M M

M M

ω
+ ± + −

=

+ ± + −
+

=

     (2.44) 

then 1/2 1(1 ) 1
2

x x+ ≈ +  when 1x  and the above equation is similar 

21 2
1 2 1 2 2

2 1 2

1 2

( ) { ( )[1 ( ) ]}
2( ) .

M MC M M C M M Ka
M M

M M
ω

+ ± + −
+

=      (2.45) 

We can get the two solutions of the Eq.(2.45). 

2

1 2

1 12 ( ),C
M M

ω = +             (2.46) 
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2 2

1 2

( ) ,
2( )

C Ka
M M

ω =
+

           (2.47) 

where Eq.(2.46) is called optical branch and Eq.(2.47) is called acoustical branch. For 

first Brillouin zone the boundary condition is K
a a
π π−
< < . At maxK

a
π

= ±  we can get 

the solution 

2

2

2C
M

ω =   for optical mode 

2

1

2C
M

ω =   for acoustical mode 

2-5-2 Acoustic and optical phonon 

 It is mentioned before that there are two types of phonons: acoustic phonon and 
optical phonon in solid with more than one atom in the smallest unit cell. 

 The acoustic phonons which are the phonons described above and have 
frequencies that become small at the long wavelengths, and correspond to sound 
waves in the lattice. 

 The optical phonons, which also arise in crystals with more than one atom in the 
smallest unit cell, always have some minimum frequency of vibration, even when their 
wavelength is large. They are called optical because in ionic crystals (like sodium 
chloride) they can be excited by light (in fact, infrared radiation). Optical phonons that 
interact in this way with light are called infrared active. Optical modes correspond to a 
vibration where the positive and negative ions at adjacent lattice sites swing against 
each other, creating a time-varying electrical dipole moment.  

 If there are p  atoms in the primitive cell, there are 3p  branches to the 
dispersion relation：3  acoustical branches and 3 3p −  optical branches. For example, 
germanium have two atoms in the primitive cell, have six branches：one LA 
(longitudinal acoustical) , one LO (longitudinal optical) , two TA (transverse acoustical) 
and two LA (longitudinal acoustic). 

 There are N  primitive cells with p  atoms in the primitive cell so there are 
pN atoms. Thus the LA and two TA branches have total of 3N  modes, thereby 
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accounting for 3N  of the total degrees of freedom. The remaining (3 3)p N−  
degrees of freedom are accommodated by the optical branches. 

2-5-3 Debye model for density of states 

 We apply periodic boundary conditions over 3N  primitive cells and consider a 
cube with length L . The total number of states in K space with the volume of a 
sphere of radius K ： 

3
3 4( ) ( )

2 3
L KN π
π

=              (2.48) 

The density of state for each polarization is  

2

2( ) ( )( )
2

dN VK dKD
d d

ω
ω π ω

= =            (2.49) 

 In the Debye approximation the dispersion relation is written as 

Kω υ=                (2.50) 

where υ  is the velocity of the sound. Substitution Eq.(2.50) into Eq.(2.49), the density 
of states becomes 

2

2 3( )
2
VD ωω
π υ

=              (2.51) 

A cutoff frequency Dω  is determined by Eq.(2.49) as 

3 3 3

2 36
D DK

N
V

ω υ

π υ

=

=
              (2.52) 

 The Debye temperature DΘ  in terms of Dω  is defined as 

12
36( )D

D
B B

N
k k V
ω υ π

Θ ≡ = ⋅
             (2.53) 
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2-5-4 Phonon dispersion relation22-24 

 We apply the code “PHON” to calculate the force constant matrices and phonon 
frequency in crystals. “PHON” is an open source code, developed by Dario Alfe. The 
phonon dispersion relations have been calculated using ab-initio force constant 
method using the VASP program.  

The central quantity in the calculations of the phonon frequencies is the 

force-constant matrix ,is jtα βΦ . The force constant matrices are calculated in terms of 

Hellmann-Feynman forces by the displacement of a single atom in the frame work of 
self-consistent density functional theory calculations in the local density 
approximation. 

The frequencies at wave vector k  are the eigenvalues of the dynamical matrix 

,s tD α β , defined as 

( )
, ,

1( ) ,jt isik R R
s t is jt

is t

D k e
M Mα β α β

⋅ −= Φ∑          (2.54) 

where the atoms s , t  are in the primitive cell i , j , α  and β  are Cartesian 
components, isR  is the position of atom s  in the primitive i , and the sM  and tM  

are the masses of the atom s  and t  respectively. If the force constant matrix is 
known, the frequencies ksω  can be obtained at any wave vector k . In principle, the 

elements of ,is jtα βΦ  are nonzero for arbitrarily large separations jt isR R− , but they 

decay rapidly with separation, so that a key issue in achieving a fixed target precision is 
the cut-off distance beyond which the elements can be neglected. 

2-5-5 Calculation of the force constant matrix 

 We calculate the force constant matrix using the small-displacement method 
which atom s is displaced by a vector isu α  and the force F  is given 

, ,is is jt jt
jt

F uα α β β
β

= − Φ∑             (2.55) 
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and the force constant matrix can be written as 

, .is
is jt

jt

F
u

α
α β

β

Φ = −              (2.56) 

 The elements of ,is jtα βΦ  are obtained from given jtβ  by introducing a small 

displacement jtu β  and all other displacements are zero. 

 The entire force constant matrix is obtained by making three independent 
displacements for each atom in the primitive cell. As a result, it has to move 3N  
times per primitive cell. Usually, the number of movements is reduced by atom 

symmetry. Because the ,is jtα βΦ  in the formula for , ( )s tD kα β  is the force constant 

matrix in the infinite lattice with no restriction on the wave vector k , it is impossible 

to extract the infinite-lattice ,is jtα βΦ  from supercell calculations. In order to solve this 

question, it must need an assumption. The assumption is that the infinite-lattice 

,is jtα βΦ  vanishes when the separation jt isR R− is such that the positions isR  and jtR  

lie in different Wigner-Seitz (WS) cells of the chosen superlattice. If it take the WS cells 

centered on jtR , then the infinite-lattice value of ,is jtα βΦ  vanishes if isR  is in a 

different WS cell; it is equal to the supercell value if isR is in the same WS cell. With 

this assumption, the ,is jtα βΦ  elements will converge to the correct infinite-lattice 

values as the dimensions of the supercell are systematically increased. 

 We displace the atom one in the primitive cell and calculate the force induced by 
the displacement of the other atoms. Then we displace the atom two to calculate the 
induced force and repeat above procedure until the set of displacement vectors is 
complete. Not all atoms should be displaced to calculate their induced forces. The 
calculations can be reduced if there is a symmetry operation S  in the system. For 

example, we will not displace the atom two if the crystal is unchanged according to 
symmetry operator S  which transforms atom two into atom one. 

 The part of force constant matrix associated with its displacement vectors can be 
calculated using 
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1
,02 ( ),01( ) ( ),

isis SB S B Sλ
−Φ = Φ            (2.57) 

where ( )B S  is the 3x3 matrix representing the point group part of S  in Cartesian 
coordinates and ( )is Sλ  indicates the atom of the crystal. If the application of all 

symmetry operations does not create a set of three linear independent displacement 

vectors on all atoms of the basis, it will create another displacement vector '
jtu β   

which is linear dependent with the first one and perform a new total energy calculation 
and execute again the same operations. 

 It is worth noting how to choose the displacement vectors of atoms for the force 
constant matrices. If the displacements are too small, then the forces induced may be 
smaller than the limit of the accuracy in the calculations. Thus, one needs to choose 
appropriate displacement vectors of atoms. Conventionally, it can be chosen according 
to the certain percentage of the nearest-neighbor distant in normal case. 
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Chapter3  Calculation Method and Result 

 The electronic structures and electrical transport properties of the dioxides 2RuO
and 2IrO  have been extensively studied recently. 

 In experiment, the heat capacities of 2RuO  and 2IrO  have been measured in 

1969 by B. C. Passenheim and D. C. McCollum. W. D. Ryden and A. W. Lawson have 
measured the resistivity of 2RuO  and 2IrO  in the temperature range from 4.2 to 

1000 K  in 1970. 

 In 2004, J. J. Lin, S M Huang, Y H Lin, H Liu, X X Zhang, R S Chen and Y S Huang 
have reported their measurements of the resistivities and magnetoresistivities of 
several 2RuO  and 2IrO  nanowires over a wide temperature range from 300 K  

down to 0.3 K . Motivated by this experiment, we theoretically investigate the 
transport properties of 2RuO  and 2IrO  nanowires. The theoretical calculation of 

2RuO  and 2IrO  nanowires are based on the density functional theory within local 
density approximation.  

3-1 Crystal structures 
 Ruthenium dioxide crystallizes in the rutile structure with space-group symmetry 

24 /P mnm  ( 14
4hD ), as is common in the iridium dioxide. The tetragonal Bravais lattice 

contains two 2RuO  and 2IrO  molecules per primitive cell. The metal atoms, placed 

at the cell corner and body center, are nearly octahedrally coordinated by oxygen 
atoms. 

For the 2RuO  bulk, the lattice parameters are a=b=4.56 Å, c=3.16 Å in theoretical 

calculation which are in good agreement with the experimental values, 
a=b=4.500±0.005 Å, c=3.101±0.006 Å. Similarly in the case of the 2IrO  bulk material, 

the lattice parameters for theoretical value are a=b=4.49 Å, c=3.15 Å which is in good 
agreement with the experimental values: a=b=4.518 Å, c=3.165 Å. The two Ru  and 

Ir  atoms occupy the sites, 1 1 1(0,0,0; , , )
2 2 2

, and the four O  atoms occupy the sites, 

1 1 1( , ,0; , , )
2 2 2

u u u u± + − , where u is an internal parameter and along with a and c/a 

describe the oxygen octahedral surrounding each Ru  and Ir  atom. We summarize 
the lattice parameters a, c, c/a and u  for the 2RuO  and 2IrO  in the Table 1. 
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TABLE 1. Comparison of structural parameters for the 2RuO  and 2IrO  in the rutile 

structure obtained from the experimental measurements and the theoretical 
calculations2. 

We show the structures of 2RuO  and 2IrO in Fig. 3.1. 
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Fig. 3.1 The primitive cells for 2RuO (upper panel) and 2IrO  (lower panel) in the rutile 

structures. 
 For the bulk the primitive cell is periodic permutation in the x, y and z direction. 
We then build up the 1x1 and 2x2 nanowires along the (001) direction from the 
structure of the bulk crystal. It has the same periodicity along the z direction for 1x1 
nanowires. The periodic permutation for 1x1 nanowires is one primitive cell and two 
empty primitive cells along the x and y direction. Thus, the lattice parameters become 
a=b=13.68 Å, c=3.16 Å for the 2RuO  and a=b=13.47 Å, c=3.15 Å for the 2IrO . The 
structure of 1x1 nanowires is shown in Fig. 3.2. 



28 

 

 

Fig. 3.2 The structure of 1x1 nanowire for 2RuO  (upper panel) and 2IrO (lower panel). 

The picture of the top-left corner is its bulk structure. 
 The 2x2 nanowires have the same periodicity along the z direction as the bulk 
crystal. The periodicity of 2x2 nanowires is two repeated primitive cells and two empty 
primitive cells along the x and y direction. Thus, the lattice parameters become 
a=b=18.24 Å, c=3.16 Å for the 2RuO  and a=b=17.96 Å, c=3.15 Å for the 2IrO . We 
show the structure of 2x2 nanowires in Fig. 3.3. 
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Fig. 3.3 The structure of 2x2 nanowire for 2RuO  (upper panel) and 2IrO (lower 

panel). 
 The reason for the repetition of two empty primitive cells in the x and y direction 
nanowires is to avoid the interactions between wires. It must be greater than 9 Å 
which is about the size of the two primitive cells. 
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3-2 VASP Calculation 
 In the previous section, we have introduced the structures of the 2RuO  and 

2IrO . We relax the structures of the 2RuO  and 2IrO  by applying the VASP code. 

VASP is an ab-initio package for performing quantum mechanical molecular dynamics 
simulations using the pseudopotential or the projector-augmented wave method and a 
plane wave basis set. The approach implemented in VASP is based on the local density 
approximation with the free energy variational quantity. Forces can be calculated with 
VASP and used to relax atoms into their ground state. 

 VASP have four input files, INCAR, KPOINTS, POSCAR, and POTCAR. The POSCAR 
file contains the lattice geometry and the atom positions. We apply the software 
“Material Studio” to construct the positions of atoms in the crystal material and 
nanowires. The results of the coordinates obtained from the “Material Studio” have 
entered into the POSCAR file in VASP. The example is shown in Fig.3.4. 

 

Fig. 3.4 The contents of the POSCAR file. 
 The first line is treated as a comment line. The data from the third to fifth lines 
are the lattice constants for a, b and c respectively. The data from the eighth to final 
lines are the positions of atoms in Cartesian coordinates. 

 The POTCAR file contains the pseudopotential for each atomic species used in the 
calculations. The file is large, so we only show the partial contents of the POTCAR file. 
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Fig. 3.5 The partial contents of POTCAR file for local-density approximation. 
 The KPOINTS file contains the coordinates and weights of the k-point mesh. We 
choose the default settings to generate k-point, and we only need to specify the 
subdivisions in the first Brillouin zone in each direction. The content of the KPOINTS file 
is shown in Fig.3.6. 

 

Fig. 3.6 The contents of the KPOINTS file. 
 The first line is treated as a comment line. In the second line, the number 0 is 
specified to generate the k-point automatically. The third line starting with “M” selects 
the Monkhorst-Pack scheme for k-points. The fourth line shows (10 10 10) which 
means to generate 10x10x10 k-point in the first Brillouin zone. 

 The INCAR file is the most important input file in VASP. It contains a lot of useful 
parameters. We only show in Fig.3.7 the parameters other than the default values in 
the INCAR file.  
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Fig. 3.7 The contents of the INCAR file. 
 On the first line it contains the job title which can be arbitrarily named. When we 
run a new job, ISTART must be set to 0. One can set the “PREC=High or Accurate” to 
increase the precision in the calculations at cost of more computer time. ISMEAR in the 
INCAR file determines how the partial occupancies fnk are set for each wave function. 
We choose the ISMEAR equal to 1 according to the recommendation by the VASP 
manual, which recommends that the metals use ISMEAR=1 in the relaxation processes. 
The conductivities of 2RuO  and 2IrO  are close to the properties of metal. The tag 

NSW defines the number of ionic steps. We do not display other parameters which are 
set to the default values. 

 With the four input files in VASP, the jobs can be submitted to PC Clusters for 
calculations. The output files are shown in Fig.3.8. 

 

Fig. 3.8 All output files of the VASP. 
 To calculate the force constants we need to move the positions of atoms, which 
are stored in the file CONTCAR containing the information of atom positions after 
relaxation. The OUTCAR file contains other useful information such as forces, 
potentials, free energy, etc. 

3-3 Phonon dispersion relation 
 In this section we introduce the program “PHON” which is applied to calculate the 
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phonon dispersion relation of the crystal. The program “PHON” is able to calculate the 
phonon dispersion relations incorporated with any other program which is capable of 
calculating the force matrices of the system. 

 The program “PHON” has three input files, INPHON, FORCES and POSCAR. The 
POSCAR file of the program “PHON” needs the relaxed atom positions which are given 
by the CONTCAR file, one of the output files in the VASP program. 

 The INPHON file is the central input file of “PHON”. The parameters in the 
INPHON file are shown in Fig.3.9. 

 

Fig. 3.9 The contents of the INPHON file. 
 Most of the parameters are set to the default values. It should pay attention to 
the LSUPER tag which must be set to LSUPER=.T. in the INPHON file. In the trial run of 
“PHON” program, we only need two files POSCAR and INPHON where the tag LSUPER 
is set to “True”. The trial run will generate the DISP file, where the displacement 
vectors of the atoms are given. These displacement vectors tell us how to move the 
positions of atoms and are applied to calculate the force matrices by using the VASP 
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program. The example of the DISP file is shown in Fig.3.10. 

 

Fig. 3.10 The contents of the DISP file. 
 The first line contains the information of how the atoms must be displaced. The 1 
and 3 in the first column represent the first atom and the third atom, respectively. The 
three numerals in the second to fourth columns represent the relative displacement 
vectors of atoms. When we have these data, we reconstruct the POSCAR in the VASP 
program using the relaxed coordinates of atoms from the CONTCAR file in the VASP 
program and displacement vectors in the DISP file from the PHON program. We fix the 
atoms positions after moving the atoms and run the VASP program again to obtain the 
force matrices. 

 The FORCES file contains the displacements and the force information of each 
atom. We obtain the force matrices after the system relaxed by VASP. The example is 
shown in Fig. 3.11. 
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Fig. 3.11 The contents of the FORCES file. 
 The number of the first line is specified the number of displacements. The second 
line contains the information of how the atoms must be displaced. The data from the 
third to eighth line are the forces on all the atoms in the supercell. According to the 
information of the DISP file, there are four force matrices in the FORCES file. 

 Before we run the PHON, the tag LSUPER in the INPHON file must be set “F”. With 
the three input files, the jobs can be submitted to PC Clusters for calculations. The 
results are shown in Fig. 3.12. 
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Fig. 3.12 Phonon dispersion relation for the 2RuO (upper panel) and 2IrO (lower 

panel). 
 For the bulk and 1x1 nanowires, there are three acoustic branches and fifteen 
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optical branches. There are twelve acoustic branches and sixty optical branches in the 
2x2 nanowires. The value of sound velocity plays an important part in our study. The 
sound velocity is obtained from the phonon dispersion relation. The group velocity of 

the phonon is defined as g
dV
dk
ω

= , so we are able to calculate the sound velocity from 

the phonon dispersion relation of the the acoustic phonon. These quantities will be 
used late to calculate the resistivity of the bulk materials and nanowires.  

3-4 Matthiessen’s rule25 
 Theoretically, the resistivity is defined as 

2

4 ,
p

πρ
τ

=
Ω

              (3.1) 

where 
1
τ

 is the electron scatter rate and pΩ  is the plasma frequency. The plasma 

frequency tensor can be calculated from knowledge of the electronic structure and is 
given by 

2
2 28 ,nk
p nk

nk nk

fe
V
π υ

ε
∂−

Ω =
∂∑            (3.2) 

where V is the volume, the group velocity of phonon is 
1 nk

nk k
ευ ∂

=
∂

 and nkf  is the 

particle distribution function. The scattering rate for electron transport resulting from 
electron-phonon scattering is given by 

2 2
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B
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k Tdk T F
k T

ωωπ α ω
τ ω ω

∞
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       (3.3) 

where ω  is the phonon frequency and 2 ( )Fα ω  is the spectral function. 

 Typically, the scattering rate for many metals follows a Bloch-Gruneisen type 
behavior. For acoustic mode phonons, 2 ( )Fα ω  will be replaced with its Debye 
approximation： 

2 4( ) 2 ( ) ( ),BG BG D
D

F ωα ω λ θ ω ω
ω

= −           (3.4) 
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where θ  is the Heaviside step function, Dω  is the Debye frequency and BGλ  is the 

transport electron-phonon coupling constant in the Bloch-Gruneisen model26. One can 
plug Eq. (3.4) into Eq.(3.3) and obtain the scattering rate 
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where 
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x
ω
ω

=   

and D
D

Bk
ω

Θ =


, 
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Θ Θ





 

 Here, DΘ  is the Debye temperature corresponding to the maximum phonon 

energy in the Debye approximation. Substituting Eq.(3.5) and Eq.(3.2) into Eq.(3.1), the 
resistivity can be written as 

2 5
4

2 0 2

32( ) ( ) .
4sinh ( )

2

D
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p D

T xT k T dxx
πρ λ

Θ

=
Ω Θ ∫


       (3.6) 

 If the temperature is smaller than Debye temperature, the result of the integral 
equation approaches to a constant, and thus the resistivity in the Bloch-Gruneisen 
model is proportional to 5T . The above equation is applied to calculate the resistivity 
of the 2RuO  and 2IrO nanowires. 

 An additional contribution due to the coupling between electrons and optical 
mode phonons can be considered as well. The electron-phonon contribution can be 

obtained by substituting 2 ( )E Fα ω  in the Einstein approximation. 

2 1( ) ( ).
2E E E EFα ω ω λ δ ω ω= −            (3.7) 
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 Substituting Eq.(3.7) into Eq.(3.3) , the equation is shown as 
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where .E
E

Bk
ω

Θ =


 

 From Eq.(3.8) and Eq.(3.2) the resistivity is given by 

2
2/ 28( ) [ ] .

sinh( / 2 )
E

E B E
p E

TT k T
T

πρ λ Θ
=

Ω Θ

         (3.9) 

 The optical mode coupling term is treated using Einstein approximation with a 
single phonon frequency corresponding to the energy B Ek Θ . 

 Besides the electron-phonon scattering, there is another term to influence the 
resistivity which is electron-electron scattering. The resistivity depends on 2T  and 
can be written as 

2( ) .ee eeT A Tρ =              (3.10) 

 According to the Matthiessen’s rule these three contributions [Eq.(3.6), Eq.(3.9), 
Eq.(3.10)] are additive and independent of each other. The total resistivity ( )Tρ  is 
the sum of the residual resistivity 0ρ , Eq.(3.6), Eq.(3.9) and Eq.(3.10), it can be 
expressed as follow. 

0( ) ( ) ( ) ( ).BG E eeT T T Tρ ρ ρ ρ ρ= + + +          (3.11) 

 At low temperature, the resistivity is dominated by impurities, vacancies, and 
various other defects. For low defect concentrations, these contributions are 
frequently assumed to be independent of the temperature; the T=0 limit being defined 
as the residual resistivity 0ρ . The resistivity due to the electron-electron scattering 

can be neglected at low temperature because in practice in transition metal the 
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parameter eeA  is only of the order of 5 210 ( / )cm Kµ− Ω⋅ . 

3-5 Results and Discussion 

3-5-1 Debye temperature calculation27, 28 

 The Debye temperature is defined as 

12
36( ) ,D

B

N
k V
υ π

Θ =
              (3.12) 

where υ  is the velocity of sound, N  is the number of primitive cells in the sample 
and V  is the volume of the sample. From the phonon dispersion relation together 
with the parameters known from the structures of nanowires, we can calculate the 
sound velocity υ  and the Debye temperature from our theoretical calculations. 

 The temperature dependence of the resistivity at DT < Θ  is determined by the 

electron-phonon contribution only. When the ratio of  D

T
Θ

 is large, the resistivity is 

proportional to 5T . Oppositely, the ratio of D

T
Θ

 is small, the resistivity gives a T  

dependence. Our research is focus on the resistivity varies as 5T  in Bloch- Gruneisen 
equation. Thus, the low temperature system is mainly investigated for us. The results 
are shown in Fig.3.13 and we can see that the Debye temperature increases as the 
sizes of the system increase. 
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Fig. 3.13 The dependence of the Debye temperature in 2RuO  (upper panel) and 2IrO  

(lower panel) on the diameters of the nanowires. 
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3-5-2 Bloch-Gruneisen Model calculation 

 We investigate the resistivity of the nanowires due to the electron-phonon 
scattering. It gives a 5T  dependence at low temperature. The results of the resistivity 
versus the temperature in 2RuO  and 2IrO  are shown in Fig.3.14. 
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Fig. 3.14 The resistivity of 2RuO  (upper panel) and 2IrO  (lower panel) nanowires 

due to the interactions between electrons and the acoustic phonons. 
 From the frequency dispersions, we observe that the velocity of phonon in the 
1x1 nanowire is the slowest. The sound velocities increase as the diameters of the 

wires increase. From the approximately expression k
m

ω =  for a harmonic oscillator 

from the Hooke’s law, we realize that the sound velocity decreases as the force 
constants decrease. We conjecture that the nanowires with smaller diameters have 
smaller binding force and smaller sound velocity, and thus are less stable. 

 At low temperatures, we observe that the resistivity increases as the temperature 
rises. The lattice vibrations are more violent as the temperatures rise, which generate 
more phonons. Consequently, the probability of electron-phonon collision increases 
and it causes the conductivity to decrease. The resistivity varies with 5T  according to 
the Bloch-Gruneisen equation. At a given temperature, the resistivity decreases as the 
diameter of the nanowire. The decrease of the sound velocity is due to the decrease of 
the effective strength of the force which binds the nanowire.   
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Chapter4  Conclusion 

We have investigated the Debye temperature and the conductivity for 2RuO  
and 2IrO  nanowires due to the electron-phonon interactions described by the 

Bloch-Gruneisen theorem. 
Firstly, we employ the projected augmented wave method as implemented in 

Vienna Ab initio Simulation Package (VASP) to investigate systems of 2RuO  and 

2IrO  bulk crystal using density-functional theory calculations with exchange 

correlation energy in the local density approximation. All atoms are relaxed until the 
forces are smaller than 0.001 eV/Å. The optimized the 2RuO  bulk crystal has lattice 

parameters: a=b=4.56 Å, c=3.16 Å, which are in good agreement with the experimental 
values, a=b=4.500±0.005Å, c=3.101±0.006 Å. In the same way we relax the geometry 
for the 2IrO  bulk crystal, and obtain the lattice parameters: a=b=4.49 Å, c=3.15 Å, 

which are also in good agreement with the experimental values. 
Secondly, we build up the super cell structures of nanowires along (001) direction 

based on the geometry of the relaxed bulk systems as the initial input. We have built 
up two different diameters of 2RuO  and 2IrO  nanowires: (1) one unit cell (1×1) and 

(2) four unit cells (2×2) in the directions parallel to the direction of charge current. 
Nanowires are infinite along the (001) direction and are also separated by a vacuum 
region in the x and y directions. We also relax the geometry of nanowires following the 
same method using VASP as described in the above, where have used (1×1×10) k-point 
Monkhorst-Pack meshes in our calculations.  

The VASP is applied to calculate the force matrix and the PHON is applied to 
calculate the phonon dispersion relations of the bulk and nanowires. For the 2IrO
system, the Fermi energies of the bulk crystal, 1x1 wire, and 2x2 wire are 6.19 eV, 5.84 
eV, and 3.39 eV, respectively. Since the diameters of the nanowires (4.49 Å for bulk 
crystal and 13.47 Å and 17.96 Å for 1x1 and 2x2 wires, respectively) are comparable 
with the Fermi wave lengths, the systems may display strong quantum mechanical 
effects. We observe that the sound velocities and the Debye temperatures are strongly 
suppressed when the decreasing diameters of the nanowires are comparable to the 
Fermi wave lengths.  

Using the phonon dispersion obtained from the PHON and VASP, we calculate the 
conductivities of nanowires due to the interactions between electrons and the 
vibrations of lattice. The resistivity varies as 5T  at low temperatures according to the 
Bloch-Gruneisen equation. At a given temperature, we observe that the conductivity 
due to electron-phonon interactions decreases as the diameters of nanowires 
decrease. The reason for the decrease of resistivity with the diameters of nanowires is 
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that the sound velocities also decrease due to the decrease of the force constants as 
the diameters of nanowires decrease. Since the size effects observed in our 
calculations are much enhanced when the diameters of the nanowires are comparable 
with the Fermi wave length, we conjecture that the size effects stem from the 
quantum mechanical effects.  
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