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Electronic transport properties in RuO, and IrO, nanowires

&4 ! Jhih-Jie Bao 4n ¥ #0421 Yu-Chang Chen
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National Chiao Tung University

Abstract

RuO, and IrO, are thejinviting eléctrical contact materials which exhibit the

metallic conductivity properties at room temperatures. They crystallize in the rutile

structures and display good thermal stability at;high temperatures. We study the size

effects of the transport. properties” of ."RUO, and 1IrO, nanowires using

first-principles approaches. The relaxed structures of RuO,and IrO, bulk and

nanowires are obtained based on the density functional theory. By using the force
tensor we calculate the phonon dispersion relation of the RuO, and IrQ,

nanowires with different diameters. We observe that the sound velocities and the
Debye temperatures display size effects. According to the Bloch-Gruneisen model
within Matthiessen’s rule, the resistivity varies as T’at low temperatures due to
electron-phonon interactions. At the same temperatures, the size effects of the sound
velocity and the Debye temperatures lead to the increase of the resistivity as the
diameters of the nanowires increase.
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Chapter1l Introduction

The rutile-structure transition-metal dioxides exhibit a variety of interesting
physical properties that RuO, and IrO, have good conductivity properties and

stability at high temperature. Their electrical transport properties are investigated for a

long time, both experimentally and theoretically.

The electronic structures of RuO, and IrO, have been studied using the
self-consistent semirelativistic linear muffin-tin-orbital (LMTO) method associated with
the atomic sphere approximation in 1989 by J. H. Xu, T. Jarlborg and A. J. Freeman™.
Their results are in good agreement with experiments. In 1993, Keith M. Glassford and
James R. Chelikowsky2 have calculated the structures and electronic properties of
RuO, using ab initio density functional theory with a fast iterative diagonalization

technique with local-density-approximation (LDA) in a plane-wave basis and the

pseudopotential.

In experiments, the heat capacities of RuO, and IrO, have been measured in
1969 by B. C. Passenheim and'D. C. McCollum?®.-The heat-capacity measurements have

been made by discontinuous heating method“in a He cryostat. Their results show

that C=0.059T *+0.0225T*+5.77T _(.+mJ/mole-K ) for RuO, , and

C =0.308T 2 +0.0565T % +5.51T (mJ /mole-K ) for IrO,. The experiment data is

shown in figure 1.1.
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Fig. 1.1 The heat capacity of IrO, and Ru023.

W. D. Ryden and A. W. Lawson" have ndeasured the resistivity of RuO, and IrO,
in the temperature range 4:2-1000K| .in.1970:-They have found the relation based on
electron-electron and electron-phonon intérband scatterings and fitted the
temperature dependence-of the rtesistivity.’ The figure 1.2 is the result of their

experiment.
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Fig. 1.2 Resistivity versus temperature of 1rO, and Ru024.



In 2004, J. J. Lin, S M Huang, Y H Lin, H Liu, X X Zhang, RS Chenand Y S Huang‘c”6 firstly
report their measurements of the resistivities and magnetoresistivities of RuO, and

IrO, nanowires over a wide temperature range from 300 K down to 0.3K..

Prof. Juhn-Jong Lin’s group employs a thermal evaporation method to synthesize
RuO, nanowires with controlled sizes. They control the sizes of the RuO, nanowires
by adjusting the growth time and the average width of nanowires is about ~90nm.
When they measure the transport properties of different diameters of nanowires, they
find that the conductivities of the thick nanowires are better than the thin ones’. The
results agree well with our ideal conjecture and we get the same relation in the
theoretical calculation. In the figure 1.3, the resistivity varies with the temperature and

they shift a constant in different diameters. The argument is similar for our results.
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Fig. 1.3 The resistance as a function of temperature for different diameter in RuQ,
and 1r0,”.

Motivated by the above experiments, we theoretically investigate the
dependence of the resistivity on the diameters of RuO, and IrO, nanowires in this
work. We have calculated the Debye temperature of different diameters and compared
the theoretical results with the experiments performed by Prof. Juhn-Jong Lin’s group.
We use Vienna Ab-initio Simulation Package (VASP)8 to relax the structures and the
force constants of RuO,and IrO, bulk and nanowires. We also investigate the



phonon dispersion relation for RuO, and 1rO, nanowires with different diameters,
and the size effects on the electron transport according to the Bloch-Gruneisen
equation.

The outline of the thesis is described as followings: first, we introduce the theories
which we have applied to calculate the Debye temperature and resistivity in chapter 2.
In section 2-1, we introduce the Hartree approximation; in section 2-2, we introduce
the Hartree-Fork approximation; in section 2-3, we introduce the density functional
theory (DFT); in section 2-4, we introduce the band theory; and in section 2-5, we
introduce the phonon dispersion relation.

In chapter 3, we introduce the structures of RuO, and IrO, nanowires and
the bulk crystals. We explained the parameters of VASP that is used to relax the
structures of our systems. We also explain how to use “PHON"® to obtain the phonon
dispersion relations and the sound velocities. We also present the results of our
calculations and discussion in the later part of the third chapter. According to the
Matthiessen’s rule with electron-phonon scatterings, we find the relation between the
resistivity in the Bloch-Gruneisen modeliand the temperatures. We also study the
relation of the Debye temperature versus.diameters nanowires. Our objective is to
theoretically investigate the trend of the'conductivities and Debye temperatures as the
function of the diameters of nanowires.



Chapter2 Theories

In this chapter we briefly introduce the theories of density functional theory and
the theories of phonons. We introduce the Hartree and Hartree-Fock approximations in
sections 2-1 and 2-2. In section 2-3, we introduce the density functional theory (DFT),
which the ground state properties of a many electron system are uniquely determined
by the electron density n(r). In section 2-3-1, we introduce the Hohenberg and Kohn
theorem. In section 2-3-2, we introduce the local density functional approximation
(LDA) and the scheme of self-consistent calculations. In section 2-4, we briefly
introduce the Bloch theorem and the band theory. In the section 2-5, we introduce the
phonon dispersion relation and the phonon frequency from calculation the force
constant matrices.

In many-electron system, the potential energies of electrons are complicated and
the wave functions of many-electron system are difficult to solve. Density functional
theory can simplify the calculations by mapping the complicated many-body wave
functions into effective single-particle.wave'.functions, where the effects of weak
electron-electron interactions.are included in . the exchange-correlation energy.

2-1 Hartree approximationt®

Consider the Hamiltonian of many-particle system with N electrons can be written
as

H N pi V 1 N N e
_Z%-I- ext+EZZ|_ _J.|, (2.1)

In the absence of the interaction between electrons, the many-body system wiill
decouple into one-body problems. The ground-state wave function of the many-body
system is expressed as the simple product of orthonormalized one-electron wave
functions.

W, r, ) = (r)y, () vy (y)- (2.2)

The total energy of the system is given by E =(¥|H|¥). By using the variational

principle  S[E—¢ (w;|y;)]=0, where & is the Lagrange multiplier with the



constraint <l//i|l//j>=5ij , the effective single-particle Schrodinger equation can be

expressed as

p2
|:%+Vext +VH:|‘//I =&Y, (2.3)
Ze’ , : — .
where V,,, = —ZW It describes an electron | at location I, of the ions in the
R G —

potential field V,, in the Coulomb potential of an average distribution of all other

2
. € =\ . . .
electrons. V, =Id3r ‘_—_,nj(r) is the Hartree potential corresponding to the
r—r‘

- - 12
electron-electron interactions. n,(r) = Z|g//j (r)| is the density of electrons.
]

The Eq.(2.3) is also called Hartreeequation, and one can use the pseudopotential

method to approximate the potential V,; and the potential V.

ext

2-2 Hartree-Fock approximation

Because the electrons are fermions, the total wave function is antisymmetric. To
satisfy the Pauli Exclusion principle, one can extend the expression Eq.(2.2) as the
Slater determinant of single particle wave functions:

wi(n,8)  wi(n,s) - wi(r,sy)
1 |v,(r,s) w,(1,,s,) :

T,

Y= , (2.4)

vy (1,8) (g, sy)
where s denotes the electron spin.

By using the variational principle with the constraint <wi |l//j> = 5". , Eq.(2.3) can be

mapped into single particle pictures as followings:



p2
|:%+Vext +V, +VX}1//| =&gy,. (2.5)
We see that Eq.(2.5) has one more term than Eq.(2.3) on left-hand side of the

L2 R
equal sign which is called exchange potential V, = —str'y/i*(r )‘e—‘y/j(r) .

r—r

j#

The exchange potential V, has the relations with Pauli Exclusion Principle and is

a nonlocal potential. It can be calculated by using the local density functional

approximation.

2-3 Density Functional Theory

The fundamental physical quantities in the ground state can be uniquely described

from the electron density n(F) in many-particle system. All ground state properties of

the many electron system are functional of n(F). In 1964 Hohenberg and Kohn prove

that the ground state electron density uniquely determines the external potential.
Kohn and Sham extended the theorem-by separating the total energy into the kinetic
energy of electron, the potential-energy of attraction between electrons and nuclei,
the coulomb potential energy of repulsion, and the exchange-correlation energy
between electrons.

2-3-1 Hohenberg and Kohn theorem?!

The external potential is uniquely determined by the ground state electron density.
The above theorem can be proved as follows :

We assume that two different potential V, and V, have the same n(r).

Suppose V, #V, +constant and ¥, =¥, where ¥, is the ground state wave

function. The Schrodinger equation can be expressed as

Hl\Pl = El‘Pl



H,'W, =E,Y,,
where E, and E, areeigen-energiesof H, and H,, respectively.

With different external potentials, the Hamiltonian can be expressed as

H,=H,+V, -V,

Because E,=(¥,|H,|'¥,) isthe ground energy, we can obtain

(o [Hy| P < (¥, [HL]'Y,)

B, < (W, [H o)+ (P, [V, V| ¥, ) = E,+[ d°r(v, =V, )n(r), (2.6)
and
E, < (W, [H ;) + (W, M, W[ ¥)= B # [ dr(v, -V, )n(r). (2.7)

Combine with Eq.(2.6) and"Eq.(2.7);weobtain
E,—E, <[d(V,-V,)n(r) < E, - E,, (2.8)

which leads to a contradiction and means that the assumptions are wrong. Thus, two
different external potentials cannot correspond to the same non-degenerate ground

state density. The total energy can be expressed as a functional of ground state charge

density n(r) in many-electron system.
Ew = Er[N].

If the charge density n(?) is determined, all the ground state properties of the

many-electron system will be determined.



2-3-2 Kohn-Sham equation?2

From the Hohenberg and Kohn theorem, it is known that the ground state
properties of many-particle system can be determined by the electron density n(?).

The charge density in the ground state can be solved iteratively until the self-consistent
is achieved.

The ground state energy of a homogeneous interacting electron gas can be
written as

E,[n]=T[n]+ [V, (Nn(r)d°r +%”% rd*r +E,[n]. (2.9)
r—r ‘
In the right-hand side, the first term is the kinetic energy as a functional of
non-interacting electrons with density n(r); the second term is external potential

energy relative to electrons; the third term is Coulomb energy between electrons; and
the fourth term is the exchange-correlation energy functional of an interacting system

with density n(r). By the variational principle with the total electron N :In(F)d3r

for the ground state, one has

T @+ ] 2D v, 0= (210

O[N] and V, =Iﬁd3r M is Lagrange parameter.

where  V,_[r]=
-]

In the absence of the exchange-correlation potential, it goes back to Hartree
approximation. Comparing Eq.(2.10) with Eq.(2.5), it is regarded as an effective
potential of the single-electron wave equation which is called Kohn-Sham Equation.

[ Zh V2 4V, (1) +V,, (1) +V,, (F)}wi () = e, (1), (2.11)



E,.[n] is the exchange and correlation energy of an interacting system with

density n(r).

(A) Pseudopotential Method

The early calculations of first-principles pseudopotential are made within the
scheme of orthogonalized-plane-wave (OPW) atomic calculation. The wave functions in
this way exhibit the correct shape outside the core region; however, they differ from
the real wave functions by a normalization factor'®. Hamann, Schluter and Chiang™
(HSC) propose a model pseudopotential to solve the problems that have four
properties : (1) real and pseudo valence eigenvalues agree for a chosen atomic
configuration; (2) real and pseudo wave functions agree beyond a chosen core radius
I; (3) the integrals from O to r of the real and pseudo charge densities agree for r >,
for each valence state, this is norm conservation condition; (4) The logarithmic
derivatives of the real and pseudo wave function and their first energy derivates agree
for r>r,.

Because the lattice has the periodic’ characteristic, the wave functions must satisfy
the Bloch theorem. It can be written-as expansion of the following form:

_ 1 om-
Y ()= al—e' o, (2.12)
k ; G \/5

In the pseudopotential method, the pseudopotential Vps is constructed on the

valence electrons and the core electrons have been transformed away. The

pseudo-Hamiltonian of the valence electrons can be expressed as

2

H :2'0—m+vps TV, 4V, (2.13)
where

Vps = Zvion (F - r—j - ﬁ)
R

V..(r) is non-local potential and it is relation to the angular momentum 1. The

10



angular momentums of the electron in the s, p and d orbitals are 0, 1 and 2,
respectively. The potential can be expressed as

Vi, (1) = iv, (r)P. (2.14)

A~

P, is the projection operator of the angular momentum . The Hartree potential

satisfies the Poisson equation and it can be written as

VA, (r) = -8zn(r). (2.15)

n(?) is the density of the pseudo valence electrons and the V,  can be regarded

as functional of n(F) from LDA. We define the elements of the matrix S that

st =(k+G |k+G)=¢ (2.16)
G .G

G&

The pseudopotentials_of the«ion V.. can'be separated into local and non-local

potential (V,, =V, +V."). The.V, and V,_ are functional of n(r) that are also

ion ion ion

local potential. The Hamiltonian can be rewritten as

2

=T+ v T=2, (2.17)
(k+G[T|k+G)=[k+5[ 5. (2.18)
(k+G V[k+G)-v™©E-G), (2.19)
(k+6 V" [k+8)=V"(k+G k+0). (2.20)

11



(B) Pseudopotential’>

Pseudopotentials are introduced to simplify electronic structure calculations by
eliminating the need to atomic core states and the strong potentials responsible for
binding them.

To construct atomic pseudopotential ¢,, at a given energy which are identical to

atomic eigenfunctions. The ¢,, are continued inside r, with the condition that

@, —> 1 for r—0 and with the norm-conserving condition, one has

o243 (% 2.3
[ ohdr =] "wider, (2.21)

The pseudopotentials are obtained by inverting the Schrodinger equation

I(1+1
Vi =[Vipllp +E- (r2 ). (2.22)
The complete pseudopotentialis then written as
Vas =Vige + Vo =Viee (1) + X [Nis(00)| )0, (Yies (Op) |, (2.23)
Im

where 6u, =0 for r>r, and V,, is the local potential and is an arbitrary function

oc

for r<r,. The semilocal form™® (i.e. nonlocal in angular coordinates but local in radial

coordinate) of the Hamman-Schluter-Chiang (HSC) pseudopotential which used in an

expansion of N plane waves requires the evaluation of M integral for each
ov, . The nonlocal form can be introduced,

Vi =V + %}|¢Im(r)5u, (N)B (@ (1)Suy (1) ], (2.24)
where

B, = (¢ |00 @1 )-

Vanderbilt generalized Eq.(2.24) with ¢.(r) and oSv.(r) wherethe i subsumes

12



the I,m and also includes two or more energies at which the ¢, (r) are evaluated.
This resultin B, becoming a matrix

Bij =<¢i |5Uj|(ﬂj>,

which is not Hermitian and the generalized norm-conservation requirement,

I

Q= [, Qu(Nd’ = [ [w; (w0 - (Ne, (N Jd°r =0, (2.25)
and Vanderbilt'” defines

|4) :Zj:(Bl)ji |5Uj<”j>' (2.26)
which is substituted into the Eq.(2.24) and one can obtain the pseudopotential

Vi, =V, +;| BBy (B (2.27)

In general, it is difficult to apply Eq.(2.25), results in ¢, whose plane-wave

expansions are extremely-slowly converging. To avoid applying Eq.(2.25), Chou'®
constructed norm-conserving“.@,.. at two energies E, and inverted the Schrodinger

equation to obtain their 6v,, which she averaged to obtain 5;“ yielding

Voo =Viao (1) + X010 (NS0 (1) A (9,0 (D30I (T) (2.28)
where
Ay :<5n|m 55” 5nlm>-

The A, is Hermitian and the g;nlm(r) are solutions of the pseudo Schrodinger

equationat E, with du, replaced by sur.

13



(C) Local Density Functional Approximation

The exchange-correlation energy is relation to the electronic distribution in the
system. It is difficult to give an exact expression for E,  because of its complexity. In

order to simplify this complexity, Kohn and Sham suggested using the homogeneous
electron gas system to approximate the energy contribution from E,[n] in 1965. If

the electronic density varies slowly, the exchange-correlation functional can be written
as

E[n]= [ &, [nIn(r)d°r, (2.29)

where the exchange-correlation potential can be expressed as

v, (F)=%;[”]=:—n{nexc<n)}, (2.30)

where ¢ [n] is the exchange-correlation®.energy density of the homogeneous
electron gas. V,.(n) is the exchange!and. correlation contribution to the chemical

potential of a homogeneous gas of density n .

The exchange-correlation’ energy. density” can be separated into gx[(ﬁ)] and

gc[(ﬁ)]. gx[(ﬁ)] is the exchange energy of a homogeneous electron gas and gc[(ﬁ)]

is the correlation energy of a homogenous electron gas.

Within Hartree-Fock approximation the exchange energy density can be obtained

by solving the Schrodinger equation of the non-interacting homogenous electron gas.

-, —0.458 N . .
g (r)= r, is Wigner-Seitz radius,

S

1
where n(r) = (%mj)l — o (1) = —0.458(§7m(F))3. (2.31)

From the Eq.(2.31), we can know that the exchange energy density gX(F) is

proportion to the electron density n(r) to the power of one third.

14



An approximation of the correlation energy is based on Quantum Monte Carlo
calculations by Ceperley and Alder®®. The wave function for electrons in a finite volume

subject to periodic boundary conditions and extrapolated the energy per electron to
infinite volume. The Ceperley’s parameterization of the correlation energy for r, =1 is

B r B -0.1423
1+ BJr, + Bor, 1+1.0529,fr, +0.3334r,

g,(r) (2.32)

the high-density form of &, (r, <1)is
£,(r)=0.0311Inr, —0.048+0.002r, Inr, —0.0116r,

Substituting Eq.(2.31) into Eqg.(2.30), the relation between exchange-correlation

potential and electronic density can be expressed as

r. d
V, =[l-=—
o =1 3dr e

S

(2.33)

xc'

In many-electron system, we give the initial data of the electronic density to

calculate the potential each term, andiget the effective potential V to solve the

solution of the Kohn-Sham equation. The wave function is obtained by Kohn-Sham
equation and the new electronic density is calculated from the wave function. If the
difference in value between the new electronic density and the initial electronic
density is too big, they will be mixed to generate another electronic density, and repeat
the above procedures until the difference in value between the new density and last

density is very small. The above procedures are called self-consistent procedure.

The convergence of the flow chart :

Pin| Veff — |solve KS equation|— &:¥j| = |Pout| —>[CONverngence

T o« (_pir}]+1:(1_a)pir|]1+apgut — <« J
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2-4 Band Theory

The solutions of the Schrodinger equation for a periodic potential by Bloch

theorem can be expressed as

Wy (F) = eiiFuk (F),

where u, (r) has the period of the crystal lattice with U, (r) = uk(F +R).

We substitute Eq.(2.34) into the Kohn-Sham equation

—%62 Voo (N 4V, (N +V, (1) [ (1) = £, (1),

here

Gy () =~ LT, (O ST G, + T, ()]
om - x 2m : Zm -

2 I . . =
I R iR PP,
2m
The Kohn-Sham equation is rewritten as

Hkuk(F) =& U, (F)’

2

where H, = —;l—m[iR +VP+V

ext

(1) +V,, (1) +V,. (7).

(2.34)

(2.35)

This is a partial differential equation with complicate boundary condition. One can

reduce this complicate boundary value problem to a simple matrix diagonalization

problem using Rayleigh-Ritz variational principle.

We choose a basis function . (r),

where y, (r+R) =7, (),
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and U (r)=>Y.C,z,(r). (2.36)

According to the variational principle, we know that the expectation value of the
Hamiltonian by the arbitrary wave function must be greater than ground-state energy
of the system.

(u |H|u )= Egs,
or
{u |H|u, )= Egs (U, Ju, ) = 0. (2.37)

If one can find out the minimum eigenvalue of the system, one will get the energy
close to the ground-state energy. We substitute Eq.(2.36) into Eq.(2.37) with the equal
sign the variational principle tell us that,in the ground state

0 d
H =

Zszm>=O,

then
0 S 3 CCHy ()22 Y 3 CIC, S, =0,
aCI* - ~ n—m nm aCI* - ~ n=m=nm

More compactly one may write in this way.

Z H Im (k)cm _;LZ SImCm =0

=HC-4SC=0, (2.38)

where Hnm(k)=<Zn|Hk|Zm> and Snm=<ﬂ(n|ﬂ(m>-

If the matrices H_  and S are given, the wave functions can be obtained by

diagonalizing. The different bases lead to different approximations, for example, APW,
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LPAW, LCAOQ, etc.

2-5 Phonon dispersion relation

A phonon is a quantized mode of vibration occurring in a rigid crystal lattice.

2-5-1 Two atoms per primitive basis?!

Consider the elastic vibrations of a crystal which is correlated to displacements of
other atoms nearby. Most simple situation is obtained in the [100], [110] and [111]
propagation directions of cubic crystals. If a wave is propagating along one of these

directions entire planes of atoms move in phase with displacements either parallel

(longitudinal) or perpendicular (transverse) to the direction of the wave vector K.

Here we think about two different atoms per primitive basis. Atom 1 with mass

M, is displaced by u,,u,U.,, and atom 2 with mass M, is displaced by

Us 10Uy Ug

where M, > M, _.The fofce constant is C and force between two

different neighboring atoms is F=C(v, —~Uu,) from Hooke’s law. The equation of

motion is
d2
M, S5 = C (o, +0, , —2U,)
! (2.39)
d v,
M, e =C(u,,, +u, —2v,).

The solution in the form of a traveling wave with different amplitude uU,v can be

written as

u :uei(sKa—wt)
S

U :Uei(sKa—wt) (2'40)
S 1)

where the lattice constant a is defined as between nearest identical planes, not
nearest-neighbor planes. Substitute Eq.(2.40) into Eq.(2.39) and we can get

~’M,u =Co(l+e ™) -2Cu

_ (2.41)
—-w’M,v = Cu(e"® +1) - 2Cu,

18



Transform the above equation to another type

(2C-o*M)u—-C(l+e ™) =0

. (2.42)
-C(e"* +u+(2C - w’M,)v =0,

The solution of the phonon dispersion relation can be found by the determinant
of the coefficients of above equation:

2C-’M; -C(l+e™®)
et " o 1=0, (2.43)
—C(e"*+1) 2C-o’M,

here

M,M,®* —2C(M, + M,)w* + 2C*(1-cos Ka) =0,

2 4 2
and it is known cos Ka=1—@+m+--- zl—@

T 5 when Ka<xl1

2 2CM,+ M,) +J4CHM, % M3)F=4M,M,C?(Ka)’

2M;M,
M.M E (2.44)
ZC(Ml + Mz) i{ZC(Ml + Mz)[l_liz(Ka) ]2}
— Ml+ MZ
2M,M, '
then (1+Xx)"? zl+%x when Xx <1 and the above equation is similar
MM, )
C(M, +My) +C(M, + Mp)[L— BT (Ka)'T}
o = 1 2 (2.45)
MlMZ
We can get the two solutions of the Eq.(2.45).
1 1
o* =2C(—+—), (2.46)
Ml MZ
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, C

_ 2
@ = W) (Ka)?, (2.47)

where Eq.(2.46) is called optical branch and Eq.(2.47) is called acoustical branch. For

, . e T 1 P4
first Brillouin zone the boundary condition is — <K <—. At K =+— we can get
a a a
the solution
2C
o’ =— for optical mode
MZ
2C
@’ === for acoustical mode
I\/Il

2-5-2 Acoustic and optical phonon

It is mentioned before that theré’are two types of phonons: acoustic phonon and
optical phonon in solid with more than.one atem in the smallest unit cell.

The acoustic phonons “which .are the phonons described above and have
frequencies that become smalliat-the-leng ;wavelengths, and correspond to sound
waves in the lattice.

The optical phonons, which also arise in crystals with more than one atom in the
smallest unit cell, always have some minimum frequency of vibration, even when their
wavelength is large. They are called optical because in ionic crystals (like sodium
chloride) they can be excited by light (in fact, infrared radiation). Optical phonons that
interact in this way with light are called infrared active. Optical modes correspond to a
vibration where the positive and negative ions at adjacent lattice sites swing against
each other, creating a time-varying electrical dipole moment.

If there are p atoms in the primitive cell, there are 3p branches to the
dispersion relation : 3 acoustical branches and 3p—3 optical branches. For example,
germanium have two atoms in the primitive cell, have six branches : one LA
(longitudinal acoustical) , one LO (longitudinal optical) , two TA (transverse acoustical)
and two LA (longitudinal acoustic).

There are N primitive cells with p atoms in the primitive cell so there are
pN atoms. Thus the LA and two TA branches have total of 3N modes, thereby
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accounting for 3N of the total degrees of freedom. The remaining (3p—3)N

degrees of freedom are accommodated by the optical branches.

2-5-3 Debye model for density of states

We apply periodic boundary conditions over N?® primitive cells and consider a
cube with length L. The total number of states in K space with the volume of a
sphere of radius K :

L 5, 47K°
N = (—)°
(277)( 3

) (2.48)

The density of state for each polarization is

VK?
27°

D(w) =j—2’)=( )(3—2) (2.49)

In the Debye approximation the dispersion relation is written as
o=vK (2.50)

where v is the velocity of‘the 'sound:“Substitution Eq.(2.50) into Eq.(2.49), the density
of states becomes
%

A cutoff frequency @, is determined by Eq.(2.49) as

o =v°K?
_ 6770°N (2.52)
V

The Debye temperature ©, intermsof @, is definedas

2y 1
0, =% v ST N,; (2.53)
ke Ky =V
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2-5-4 Phonon dispersion relation?2-24

We apply the code “PHON” to calculate the force constant matrices and phonon
frequency in crystals. “PHON” is an open source code, developed by Dario Alfe. The
phonon dispersion relations have been calculated using ab-initio force constant
method using the VASP program.

The central quantity in the calculations of the phonon frequencies is the

force-constant matrix @, ,,. The force constant matrices are calculated in terms of

Hellmann-Feynman forces by the displacement of a single atom in the frame work of
self-consistent density functional theory calculations in the local density
approximation.

The frequencies at wave vector k are the eigenvalues of the dynamical matrix

D defined as

satp’

ik-(Rje=Ris)

1
Dy, .5 (K) = Wizq)isa,jtﬂe :

(2.54)

where the atoms s,t are“in.the primitive cell i, j, « and S are Cartesian

components, R, isthe position of atom s in the primitive i, and the M, and M,

are the masses of the atom s and t respectively. If the force constant matrix is
known, the frequencies @,, can be obtained at any wave vector K. In principle, the

elements of @,

ia.jtp are nonzero for arbitrarily large separations |R

i« —Ri|, but they

decay rapidly with separation, so that a key issue in achieving a fixed target precision is
the cut-off distance beyond which the elements can be neglected.

2-5-5 Calculation of the force constant matrix

We calculate the force constant matrix using the small-displacement method
which atom s is displaced by a vector u,,, andthe force F isgiven

Fiow = _Z(DiSa,jtﬂujtﬂ’ (2.55)
itB
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and the force constant matrix can be written as

I:i o
CDisa,jt/i’ == U =, (2.56)
itp

The elements of @.

s« iy are obtained from given jtf by introducing a small

displacement Uy, and all other displacements are zero.

The entire force constant matrix is obtained by making three independent
displacements for each atom in the primitive cell. As a result, it has to move 3N

times per primitive cell. Usually, the number of movements is reduced by atom

symmetry. Because the ® in the formula for D, (k) is the force constant

isa, jtg
matrix in the infinite lattice with no restriction on the wave vector Kk, it is impossible

to extract the infinite-lattice @,

isaojtp o [ROM supercell calculations. In order to solve this

question, it must need an®assumption:.The.assumption is that the infinite-lattice

D vanishes when the separation R, — R is such that the positions R and R;

isa, jtp
lie in different Wigner-Seitz{(WS) cells-of-the chosen superlattice. If it take the WS cells

then the infinite-lattice value of O,

centered onR isar, it

it vanishes if R, is in a

different WS cell; it is equal to the supercell value if Ris in the same WS cell. With

this assumption, the ® elements will converge to the correct infinite-lattice

isa, jtg

values as the dimensions of the supercell are systematically increased.

We displace the atom one in the primitive cell and calculate the force induced by
the displacement of the other atoms. Then we displace the atom two to calculate the
induced force and repeat above procedure until the set of displacement vectors is
complete. Not all atoms should be displaced to calculate their induced forces. The
calculations can be reduced if there is a symmetry operation S in the system For
example, we will not displace the atom two if the crystal is unchanged according to

symmetry operator S which transforms atom two into atom one.

The part of force constant matrix associated with its displacement vectors can be
calculated using
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Digr = B(S)(Dais(S)mB(Sil)’ (2.57)

where B(S) is the 3x3 matrix representing the point group part of S in Cartesian
coordinates and A (S) indicates the atom of the crystal. If the application of all

symmetry operations does not create a set of three linear independent displacement

vectors on all atoms of the basis, it will create another displacement vector u'jtﬁ

which is linear dependent with the first one and perform a new total energy calculation

and execute again the same operations.

It is worth noting how to choose the displacement vectors of atoms for the force
constant matrices. If the displacements are too small, then the forces induced may be
smaller than the limit of the accuracy in the calculations. Thus, one needs to choose
appropriate displacement vectors of atoms. Conventionally, it can be chosen according
to the certain percentage of the nearest-neighbor distant in normal case.
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Chapter3 Calculation Method and Result

The electronic structures and electrical transport properties of the dioxides RuO,

and IrO, have been extensively studied recently.

In experiment, the heat capacities of RuO, and IrO, have been measured in

1969 by B. C. Passenheim and D. C. McCollum. W. D. Ryden and A. W. Lawson have
measured the resistivity of RuO, and IrO, in the temperature range from 4.2 to

1000K in 1970.

In 2004, J. J. Lin, S M Huang, Y H Lin, H Liu, X X Zhang, R S Chen and Y S Huang
have reported their measurements of the resistivities and magnetoresistivities of
several RuO, and IrO, nanowires over a wide temperature range from 300 K

down to 0.3 K. Motivated by this experiment, we theoretically investigate the
transport properties of RuO, and IrO, nanowires. The theoretical calculation of
RuO, and IrO, nanowires are based .on the density functional theory within local

density approximation.

3-1 Crystal structures
Ruthenium dioxide crystallizes in the rutile structure with space-group symmetry
P4,/mnm (D;;), as is common in the iridium dioxide. The tetragonal Bravais lattice

contains two RuO, and IrO, molecules per primitive cell. The metal atoms, placed
at the cell corner and body center, are nearly octahedrally coordinated by oxygen

atoms.

For the RuQO, bulk, the lattice parameters are a=b=4.56 A, c=3.16 A in theoretical
calculation which are in good agreement with the experimental values,
a=b=4.500£0.005 A, c=3.101%0.006 A. Similarly in the case of the 1rO, bulk material,
the lattice parameters for theoretical value are a=b=4.49 A, c=3.15 A which is in good
agreement with the experimental values: a=b=4.518 A, c=3.165 A. The two Ru and

Ir atoms occupy the sites, (0,0,0;

1

E E'E)' and the four O atoms occupy the sites,
11 1 . . .

i(u,u,O;u+E,E—u,E), where uis an internal parameter and along with a and c/a

describe the oxygen octahedral surrounding each Ru and Ir atom. We summarize

the lattice parameters a, ¢, c/aand u forthe RuO, and IrO, inthe Table 1.
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Property (RuO,) Theory Experiment (IrQ,) Theory Experiment
a(A) 456 4.49) 4.49 4518
c(A) 3.16 3.106 3.15 3.165
c/a 0.694 0.692 0.702 0.698
u 0.3068 0.3058 0.25 0.25

-

TABLE 1. Comparison of structural parameters for the RuO, and IrO, in the rutile

structure obtained from the experimental measurements and the theoretical

calculations?.

We show the structures of RuO, and IrQO,in Fig. 3.1.
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Fig. 3.1 The primitive cells for_.t'Ri'JOZi(uppéi" b-a_nel) and IrO, (lower panel)in the rutile

structures. = CE[S Y

For the bulk the prlmltlve cell is perlodlc permutatlon in the x, y and z direction.
We then build up the 1x1 and. 2x2_nanow1res along the (001) direction from the
structure of the bulk crystar It has the same per|0d|C|ty along the z direction for 1x1
nanowires. The periodic permuta:tlon for 1x1 nanowires is one primitive cell and two
empty primitive cells along the x and y direction. Thus, the lattice parameters become
a=b=13.68 A, c=3.16 A for the RuO, and a=b=13.47 A, c=3.15 A for the IrO,. The

structure of 1x1 nanowires is shown in Fig. 3.2.
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Fig. 3.2 The structure of 1x1 nanowire for RuO, (upper panel)and IrQ, (lower panel).

The picture of the top-left corner is its bulk structure.

The 2x2 nanowires have the same periodicity along the z direction as the bulk

crystal. The periodicity of 2x2 nanowires is two repeated primitive cells and two empty

primitive cells along the x and y direction. Thus, the lattice parameters become

o

3.15 A for the 1rO,. We

o

17.96 A, c=

=b=

A for the RuO, and a

18.24 A, c=3.16 A
show the structure of 2x2 nanowires in Fig. 3.3.

a=b=
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Fig. 3.3 The structure of 2x2 nanowire for RuO, (upper panel)and IrQO, (lower

panel).
The reason for the repetition of two empty primitive cells in the x and y direction
nanowires is to avoid the interactions between wires. It must be greater than 9 A

which is about the size of the two primitive cells.
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3-2 VASP Calculation

In the previous section, we have introduced the structures of the RuO, and
IrO,. We relax the structures of the RuO, and IrO, by applying the VASP code.
VASP is an ab-initio package for performing quantum mechanical molecular dynamics
simulations using the pseudopotential or the projector-augmented wave method and a
plane wave basis set. The approach implemented in VASP is based on the local density
approximation with the free energy variational quantity. Forces can be calculated with

VASP and used to relax atoms into their ground state.

VASP have four input files, INCAR, KPOINTS, POSCAR, and POTCAR. The POSCAR
file contains the lattice geometry and the atom positions. We apply the software
“Material Studio” to construct the positions of atoms in the crystal material and
nanowires. The results of the coordinates obtained from the “Material Studio” have
entered into the POSCAR file in VASP. The example is shown in Fig.3.4.

4.4983000 0.0000000 - 0000000
0.0000000 4.4983000 - 0000000
) 4D.DDGHDHH 0.0000000 3.1547000

: . 000000 . 000000
.200000 .200000 .200000
. 308200 . 308200 . 000000
. 308200 . 308200 . 000000
. 191800 . 808200 .200000
. 808200 . 191800 .200000

Fig. 3.4 The contents of the POSCAR file.
The first line is treated as a comment line. The data from the third to fifth lines
are the lattice constants for a, b and c respectively. The data from the eighth to final

lines are the positions of atoms in Cartesian coordinates.

The POTCAR file contains the pseudopotential for each atomic species used in the

calculations. The file is large, so we only show the partial contents of the POTCAR file.
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US Ru
8.00000000000000000
parameters from PSCTR are:
VRHFIN =Ru: sl d7
LEXCH CA
EATOM 690. 4189 eV, 50.7444 Ry
GGA -7.0512 -6.7388 1.2442 -6.1224 eV

[INg

TITEL
LULTRA
IUNSCR

T use ultrasoft PP ?

1 unscreen: 0-1lin l1-nonlin 2-no
.050 partial core radius
.070; ZVAL = 8.000 mass and valenz
-620 outmost cutoff radius ‘
.650; RWIGS 1.402 wigner-seitz radius (au A)
.ggg; ENMIN 152.674 eV

RPACOR
POMASS
RCORE
RVIGS
ENMAX
EAUG

RCLOC
LCOR
RMAX
QCUT

ek [—RJLY LN WL R

.830 cutoff for local pot
T correct aug charges
.232 core radius for proj-oper
.868; QGAM = 7.736 optimization parameters

[JLYJIL]

Fig. 3.5 The partial contents of POTCAR file for local-density approximation.

The KPOINTS file contains the coordinates and weights of the k-point mesh. We
choose the default settings.to generate k#point, and we only need to specify the
subdivisions in the first Brillouin zone in each direction. The content of the KPOINTS file

is shown in Fig.3.6.

Automatic generation
0

Fig. 3.6 The contents of the KPOINTS file.

The first line is treated as a comment line. In the second line, the number 0 is
specified to generate the k-point automatically. The third line starting with “M” selects
the Monkhorst-Pack scheme for k-points. The fourth line shows (10 10 10) which

means to generate 10x10x10 k-point in the first Brillouin zone.

The INCAR file is the most important input file in VASP. It contains a lot of useful
parameters. We only show in Fig.3.7 the parameters other than the default values in
the INCAR file.
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[r02
0
110000

Accurate
1E-5

Fig. 3.7 The contents of the INCAR file.

On the first line it contains the job title which can be arbitrarily named. When we
run a new job, ISTART must be set to 0. One can set the “PREC=High or Accurate” to
increase the precision in the calculations at cost of more computer time. ISMEAR in the
INCAR file determines how the partial occupancies f.x are set for each wave function.
We choose the ISMEAR equal to 1 according to the recommendation by the VASP
manual, which recommends that the /metals use ISMEAR=1 in the relaxation processes.
The conductivities of RuQ, ‘and IrQO,  are close to the properties of metal. The tag
NSW defines the number of ionic steps..We do not display other parameters which are
set to the default values.

With the four input files in VASP, the jobs can be submitted to PC Clusters for
calculations. The output files are shown in Fig.3.8.

[bou@spark bulk]$ 1s
band  CONTCAR [BZKPT move PCDAT  qscript.vasp.mpi-dell vasprun. xnl

CiG  DOSCAR ~ INCAR ~ OSZICAR POSCAR vasp.mpi.err VAVECAR
CHGCAR  EIGENVAL KPOINTS OUTCAR  POTCAR vasp. mpi. log XDATCAR

Fig. 3.8 All output files of the VASP.

To calculate the force constants we need to move the positions of atoms, which
are stored in the file CONTCAR containing the information of atom positions after
relaxation. The OUTCAR file contains other useful information such as forces,

potentials, free energy, etc.

3-3 Phonon dispersion relation

In this section we introduce the program “PHON” which is applied to calculate the
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phonon dispersion relation of the crystal. The program “PHON” is able to calculate the
phonon dispersion relations incorporated with any other program which is capable of

calculating the force matrices of the system.

The program “PHON” has three input files, INPHON, FORCES and POSCAR. The
POSCAR file of the program “PHON” needs the relaxed atom positions which are given
by the CONTCAR file, one of the output files in the VASP program.

The INPHON file is the central input file of “PHON”. The parameters in the
INPHON file are shown in Fig.3.9.

symmetryze force constant matrix
LSYMM=. FALSE.
NTI = 20

# generate superlattice
LSUPER = _T.;
NDIM =111

number of ions types and massesq
NTYPES = 2; MASS = 192_217 16.000
USETHIS = . T. _F.

free energy calculation
LFREE = _F.; TEMPERATURE = 0

q points section

LRECIP = _T.

ND = 1; NPOINTS = 50

QI 000

QF 001
density of states

LGAMMA = _FALSE.

QA = 12; QB = 12; QC = 12

DOSIN = 0; DOSEND = 25; DOSSTEP = 0.1; DOSSMEAR = 0.2

write force constant matrix
LFORCEOUT = .T.

verbosity
IPRINT = 0

Fig. 3.9 The contents of the INPHON file.

Most of the parameters are set to the default values. It should pay attention to
the LSUPER tag which must be set to LSUPER=.T. in the INPHON file. In the trial run of
“PHON” program, we only need two files POSCAR and INPHON where the tag LSUPER
is set to “True”. The trial run will generate the DISP file, where the displacement
vectors of the atoms are given. These displacement vectors tell us how to move the

positions of atoms and are applied to calculate the force matrices by using the VASP
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program. The example of the DISP file is shown in Fig.3.10.

0.00889225 0.00000000 0.00000000
0.00000000 0.00000000 0.01267949
0. 00889225 0.00000000 0.00000000

0.00000000 0.00000000 0.01267949

Fig. 3.10 The contents of the DISP file.

The first line contains the information of how the atoms must be displaced. The 1
and 3 in the first column represent the first atom and the third atom, respectively. The
three numerals in the second to fourth columns represent the relative displacement
vectors of atoms. When we have these data, we reconstruct the POSCAR in the VASP
program using the relaxed coordinates of atoms from the CONTCAR file in the VASP
program and displacement vectors in the DISP file from the PHON program. We fix the
atoms positions after moving the atoms and run the VASP program again to obtain the

force matrices.

The FORCES file contains the displacements and the force information of each
atom. We obtain the force matrices after the system relaxed by VASP. The example is
shown in Fig. 3.11.
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.00889225 0.00000000 0.00000000

-0.001773
-0.002927
0.003858
0.003957
-0.001682
-0.001433
- 00000000
0.000000
0.000000
0.000015
-0.000015
0.000202
-0.000202
.00889225
-0.001014
-0.000589
-0.003813
0.007279
0.003140
-0.005003
. 00000000
-0.002829
-0.003893
.004419
.001791
.000438
.000074

-0.003024
-0.005103
-0.000375
0.000299
0.004604
0.003599

0.00000000 O

0.000000
0.000000
0.000015
-0.000015
-0.000202
0.000202

0.00000000 O

0.001387
0.001031
0.004174
-0.005570
0.003554
-0.004575

0.00000000 O

.002829
.003893
.004419
.001791
.000074
.000438

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

.01267949

0.001116
0.002504
-0.000186
-0.000186
-0.001624
-0.001624

. 00000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

.01267949

0.000278
-0.000653
-0.000912
-0.000879

0.001083

0.001083

Fig. 3.11 The contents of the FORCES file.

The number of the first line is specified the number of displacements. The second
line contains the information of how the atoms must be displaced. The data from the
third to eighth line are the forces on all the atoms in the supercell. According to the

information of the DISP file, there are four force matrices in the FORCES file.

Before we run the PHON, the tag LSUPER in the INPHON file must be set “F”. With
the three input files, the jobs can be submitted to PC Clusters for calculations. The
results are shown in Fig. 3.12.
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Fig. 3.12 Phonon dispersion relation for the RuO, (upper panel) and IrO, (lower

panel).
For the bulk and 1x1 nanowires, there are three acoustic branches and fifteen



optical branches. There are twelve acoustic branches and sixty optical branches in the
2x2 nanowires. The value of sound velocity plays an important part in our study. The
sound velocity is obtained from the phonon dispersion relation. The group velocity of

do
the phonon is defined as V| :W' so we are able to calculate the sound velocity from

the phonon dispersion relation of the the acoustic phonon. These quantities will be
used late to calculate the resistivity of the bulk materials and nanowires.

3-4 Matthiessen’s rule?>

Theoretically, the resistivity is defined as

p= , (3.1)

1 .
where — is the electron scatter rate and Q, is the plasma frequency. The plasma
T

frequency tensor can be calculated from‘knowledge of the electronic structure and is

given by

—8re? of
Q2 = v —mk 3.2
Y, Zk " Be., 3.2

o0&,

1
where V is the volume, the group velocity of phonon is v, =% and f, isthe

particle distribution function. The scattering rate for electron transport resulting from
electron-phonon scattering is given by

hol 2k, T

2
sinh(ha;/ZkBT)] ! 3.3)

P kT[22 R (ol
T 0

where @ isthe phonon frequency and a’F(®) is the spectral function.

Typically, the scattering rate for many metals follows a Bloch-Gruneisen type
behavior. For acoustic mode phonons, aZF(a)) will be replaced with its Debye
approximation :

036 F () = 25 () (05 - ), (3.4)
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where 6 is the Heaviside step function, @, is the Debye frequency and A, is the
transport electron-phonon coupling constant in the Bloch-Gruneisen model*®. One can
plug Eqg. (3.4) into Eq.(3.3) and obtain the scattering rate

~do, ® hawl 2k, T
87k, T [ 22 (220 s’y
T [, 5 ) 0o =l G kT

—87k,T A Dﬁ( L5 (3.5)

X 0y 4sinh2(§)

5
= 87K, T Agg j " (e —dx,
D 4sinh?(= )

and O, = k' —=

Here, ®, is the Depye temperature. corresponding to the maximum phonon
energy in the Debye approximation. Substituting Eq.(3.5) and Eq.(3.2) into Eq.(3.1), the
resistivity can be written as

05 55

Poc(T) = szﬂB( —)*| T ———dx (3.6)
R ! 4sinh’(2)

If the temperature is smaller than Debye temperature, the result of the integral
equation approaches to a constant, and thus the resistivity in the Bloch-Gruneisen

model is proportional to T°. The above equation is applied to calculate the resistivity
of the RuO, and IrO, nanowires.

An additional contribution due to the coupling between electrons and optical
mode phonons can be considered as well. The electron-phonon contribution can be

obtained by substituting a?F (@) in the Einstein approximation.

alF(w) = L a)El o(w—ag). (3.7)
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Substituting Eq.(3.7) into Eq.(3.3) , the equation is shown as

iE:ZﬁkBTiijdw&§(w—wE)[ _hol2KT
T 0 0] sinh(hew / 2k,T)
= 2k T A [0 2T oo (3.8)
sinh(hog 1 2k, T)
=27k T A Oc 2T I

sinh(®. /2T)

h
where O, = 2%

B
From Eq.(3.8) and Eq.(3.2) the resistivity is given by

O, /2T

2
sinh(©, /2T)] ' (3.9)

872
pE(T): h0 kBTﬂ’E[

p

The optical mode coupling term is treated using Einstein approximation with a
single phonon frequency corresponding to the energy Kk 0.

Besides the electron‘phonon“scattering, there is another term to influence the

resistivity which is electron-electron scattering. The resistivity depends on T2 and
can be written as

Pe(T)=ATZ (3.10)

According to the Matthiessen’s rule these three contributions [Eq.(3.6), Eq.(3.9),
Eq.(3.10)] are additive and independent of each other. The total resistivity o(T) is
the sum of the residual resistivity p,, Eq.(3.6), Eq.(3.9) and Eq.(3.10), it can be

expressed as follow.
P(T) =Py + Pec (T) + P (T) + pee (T). (3.11)

At low temperature, the resistivity is dominated by impurities, vacancies, and
various other defects. For low defect concentrations, these contributions are
frequently assumed to be independent of the temperature; the T=0 limit being defined
as the residual resistivity p,. The resistivity due to the electron-electron scattering

can be neglected at low temperature because in practice in transition metal the
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parameter A, isonly of the order of 107°(uQ-cm/K?).

3-5 Results and Discussion

3-5-1 Debye temperature calculation??. 28

The Debye temperature is defined as

NE
&Ry, (3.12)
k, =V

O, =

where v is the velocity of sound, N is the number of primitive cells in the sample
and V is the volume of the sample. From the phonon dispersion relation together
with the parameters known from the structures of nanowires, we can calculate the

sound velocity v and the Debye temperature from our theoretical calculations.

The temperature dependence ,of the resistivity at T <®, is determined by the

electron-phonon contribution only. When the ratio of ?D is large, the resistivity is

®
proportional to T°. Oppositely, the ratio of ?D is small, the resistivity gives a T

dependence. Our research is focus on the resistivity varies as T°> in Bloch- Gruneisen
equation. Thus, the low temperature system is mainly investigated for us. The results
are shown in Fig.3.13 and we can see that the Debye temperature increases as the

sizes of the system increase.
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Fig. 3.13 The dependence of the Debye temperature in RuO, (upper panel)and IrO,

(lower panel) on the diameters of the nanowires.
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3-5-2 Bloch-Gruneisen Model calculation

We investigate the resistivity of the nanowires due to the electron-phonon

scattering. It givesa T° dependence at low temperature. The results of the resistivity
versus the temperature in RuO, and IrO, are shown in Fig.3.14.
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Fig. 3.14 The resistivity of RuUO, (upperpanel}and IrO, (lower panel) nanowires
due to the interactions between electrons and the acoustic phonons.

From the frequency dispersions,-we-observe that the velocity of phonon in the
1x1 nanowire is the slowest. The sound véldcities increase as the diameters of the

wires increase. From the approximately expression @ =,[— for a harmonic oscillator
m

from the Hooke’s law, we realize that the sound velocity decreases as the force
constants decrease. We conjecture that the nanowires with smaller diameters have

smaller binding force and smaller sound velocity, and thus are less stable.

At low temperatures, we observe that the resistivity increases as the temperature
rises. The lattice vibrations are more violent as the temperatures rise, which generate
more phonons. Consequently, the probability of electron-phonon collision increases
and it causes the conductivity to decrease. The resistivity varies with T°> according to
the Bloch-Gruneisen equation. At a given temperature, the resistivity decreases as the
diameter of the nanowire. The decrease of the sound velocity is due to the decrease of

the effective strength of the force which binds the nanowire.
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Chapter4 Conclusion

We have investigated the Debye temperature and the conductivity for RuO,
and IrO, nanowires due to the electron-phonon interactions described by the
Bloch-Gruneisen theorem.

Firstly, we employ the projected augmented wave method as implemented in
Vienna Ab initio Simulation Package (VASP) to investigate systems of RuO, and
IrO, bulk crystal using density-functional theory calculations with exchange
correlation energy in the local density approximation. All atoms are relaxed until the
forces are smaller than 0.001 eV/A. The optimized the RuO, bulk crystal has lattice
parameters: a=b=4.56 A, c=3.16 A, which are in good agreement with the experimental
values, a=b=4.500+0.005A, c=3.101+0.006 A. In the same way we relax the geometry
for the IrO, bulk crystal, and obtain the lattice parameters: a=b=4.49 A, c=3.15 A,
which are also in good agreement with the experimental values.

Secondly, we build up the super cell structures of nanowires along (001) direction
based on the geometry of thesrelaxed bulk:systems as the initial input. We have built
up two different diameters of RuQ, and: IrO, nanowires: (1) one unit cell (1x1) and
(2) four unit cells (2x2) in- the directions parallel to the direction of charge current.
Nanowires are infinite along the (001) direction and are also separated by a vacuum
region in the x and y directions. We also relax the geometry of nanowires following the
same method using VASP as describedsin the above, where have used (1x1x10) k-point
Monkhorst-Pack meshes in our calculations.

The VASP is applied to calculate the force matrix and the PHON is applied to
calculate the phonon dispersion relations of the bulk and nanowires. For the IrO,
system, the Fermi energies of the bulk crystal, 1x1 wire, and 2x2 wire are 6.19 eV, 5.84
eV, and 3.39 eV, respectively. Since the diameters of the nanowires (4.49 A for bulk
crystal and 13.47 A and 17.96 A for 1x1 and 2x2 wires, respectively) are comparable
with the Fermi wave lengths, the systems may display strong quantum mechanical
effects. We observe that the sound velocities and the Debye temperatures are strongly
suppressed when the decreasing diameters of the nanowires are comparable to the
Fermi wave lengths.

Using the phonon dispersion obtained from the PHON and VASP, we calculate the
conductivities of nanowires due to the interactions between electrons and the
vibrations of lattice. The resistivity varies as T° at low temperatures according to the
Bloch-Gruneisen equation. At a given temperature, we observe that the conductivity
due to electron-phonon interactions decreases as the diameters of nanowires

decrease. The reason for the decrease of resistivity with the diameters of nanowires is
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that the sound velocities also decrease due to the decrease of the force constants as
the diameters of nanowires decrease. Since the size effects observed in our
calculations are much enhanced when the diameters of the nanowires are comparable
with the Fermi wave length, we conjecture that the size effects stem from the
guantum mechanical effects.
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