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Researches on structure, dynamics and thermodynamic properties
of the liquid Ga

Student : Kun-Hsine Tsali Advisors : Professor Ten-Ming Wu
Professor Tzong-Jer Yang

Department of Electrophysics
National Chiao Tung University

Abstract

In this thesis, to. investigate the structures, dynamic
behavior, and thermodynamic properties of liquid gallium, we
use molecular dynamics (MD) method with a liquid gallium
pseudo-potential, which consists of a repulsive core and a
Friedel-oscillation tail. The discussions for the dynamic
behavior and thermodynamic properties of liquid gallium will
be separated into two chapters.

According to inelastic neutron scattering (INS) and

inelastic x-ray scattering (1XS) experiments, A shoulder

appears on the static structure factor S(qg) and a dynamic
anomaly appears on the linewidth function z(q) of dynamic

structure factor S(q,@). The causes of these two anomalous



structures are popular issues in recent decade. In order to
investigate the physical origins of these two anomalies, the
interatomic pair potential, described above will be the

simulated model. The sound velocity of our model which is

estimated from longitudinal current spectra C (q,0) and the

dynamic structure factors S(q,@) of our model agree well with

the experimental results. Therefore, it suggests that the

simulated model is good for describing realistic liquid gallium.

On the other hand, we report the shoulder of the S(q) and the

dynamic anomaly of the Zz(q) roughly locate at the some

position. The contribution ofrinteraction range of interatomic

pair potential to cause the shoulder of -s(q) should include the

first three attractive wells, but the contribution of interaction

range of interatomic pair potential to cause the dynamic

anomaly of Zz(q) should include the first two attractive wells

only.

Mansoori-Canfield / Rasaiah-Stell (MCRS) theory, which is
based on hard sphere perturbation theory, can estimate
effective diameter of particle efficiently without heavy
computing time. By adding a correction term originally proposed by
Mon to remedy the deficiency of the MCRS theory, the extended-MCRS
theory can accurately predict the effective diameter and thermodynamic
properties of simulated system. By using MD simulation with interatomic

pair potential given above, there is a discontinuous jump on the
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main-peak position of the radial distribution function g(r) at some

critical density. Moreover, an anomaly of excess entropy is found to be

associated with the anomalous packing fraction » of the hard sphere

(HS) fluid in the almost same density region.
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Chapter I

Introduction

Polyvalent metals (lead, aluminum, gallium, bismuth, etc.) have more strange physical
behaviors than alkali metals (lithium, sodium, potassium, rubidium, etc.). Among the
polyvalent metals, gallium, exhibiting peculiar striicture and electronic properties, has
the largest ion number density among-the metals belonging to IIB, IIIA, and IVA group:
namely, n; = 0.051A~3; further, tle eleetromicrdensity: of states (DOS) in liquid gallium
shows anomalies associated with some covalent residues. In addition, the liquid phase
of gallium is characterized by an electron density of states approaching that of a nearly-
free-electron system, which makes it a good candidate for exploiting the simple model of
liquid metal dynamics based on the electron-gas-screened ion-ion interaction. Therefore,
this thesis emphasizes the important investigations for many physical properties of liquid
gallium at temperature close to the melting point 7}, = 303K.

The nature of microscopic dynamics in alkali and polyvalent metals is nowadays one

of the the most lively debated topics in the condensed matter physics. Beyond the truly



hydrodynamic region, the microscopic dynamics, characterized by the occurrence of col-
lective excitations, has attracted many experimentalists in the three decades. Also, the
microscopic dynamics can exhibit a dispersion relation extending over a relatively wide
range of momentum transfers (typically, up to half the position of the first maximum of
the static structure factor). Therefore, several studies performed through inelastic neu-
tron scattering (INS) revealed the presence of a Rayleigh peak and two Brillouin peaks in
the dynamic structure factor of many monatomic liquids [1, 2, 3]. The advent of the new
radiation sources has allowed the full development of the inelastic x-ray scattering (IXS)
[4]. The IXS technique, only related to the coherent dynamics, allows to investigate the
collective excitations in the low exchanged momeéntum (¢) region, which is inaccessible by
INS. Indeed, liquid alkali metals (liguid rubiditum [1, 5},lithium [6], sodium [7], potassium
[8], and cesium [9]) and complex liquid metals (mercury [3], aluminum [10], and gallium
[11, 12, 13]) have been studied by INS and IXS experiments recently.

On the simulation side, most of liquid metals exhibit the characteristic structural
and dynamical features that can be interpreted by the Lennard-Jones potential or the
pseudopotential of simple metals [14, 15]. The pseudopotential concept, which is besides
offering a deeper comprehension of physical properties such as electrical resistivity, pro-
vides a clue for realistic numerical simulation. The numerical simulation framework is
particularly useful since the single-particle and the collective dynamics can easily be in-
vestigated within technical restrictions due to the finite box size (defining the minimum
accessible wave vector) and computation time (related to the statistical quality and to the
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energy resolution of the calculated spectra). Broadly speaking, the features of the atomic
collective motion, ie., the details of the dynamic structure factor line shape, as an outcome
of the molecular-dynamics run, turns out to be less noisy and more straightforward than
the corresponding INS results: no absolute normalization is required, no mixing between
coherent and incoherent dynamics occurs. Also, the collective dynamics of liquid alkali
and ployvalent metals exhibit several features which make these systems candidates to
test different theories for the collective dynamics in the liquid state. For example, the
generalized kinetic theory predicts that the dominant damping mechanism is provided by
a fast process which is thought to be associated with the interactions between an atom
and the ”cage”, its nearest neighbors, insthe liganid, By molecular dynamics (MD) simu-
lation, many numerical studies have been reported on alkali and polyvalent metals such
as lithium [16, 17], sodium [18, 19]5 potassiuin [18, 19], fubidium [18, 19], cesium [18, 19],
and liquid gallium [12, 13].

In the first work of this thesis, by simulating a single interatomic pair potential, which
consists of a ledge-shape repulsive core and the long-range Friedel oscillations induced by
the conduction electrons, the well-known shoulder in the static structure factor and the
recently observed anomaly in the linewidth of dynamic structure factor of liquid gallium
are reproduced. In our simulations, the two anomalies occur at the same location, which
is close to the wavenumber of Friedel oscillations. Both variations of the liquid structure
and the linewidth of dynamic structure factor with the different interaction range of the

pair potential are also examined. Our results show that the effective range of the pair



potential contributing considerably to the dynamic anomaly should include the repulsive
core and the first two attractive wells in the Friedel oscillations, but the effective range
for the shoulder structure should be extended up to the first three attractive well. We
interpret the occurrence of the dynamic anomaly by a cage-diffusion picture, in which
the rigidity of the cage around each ion is enhanced by the coherent attractions between
the density waves of ions and the conduction electrons with the wavenumber of Friedel
oscillations.

On the other hand, the present status of the theoretical approximation for liquid-
structure calculations has a prosperous development in recent three decades. In past two
decades, the hypernetted-chain and integtal-equation methods were popular for demon-
strating structures of alkali and pelyvalent: metals, which include cadmium ,zinc [20],
sodium, potassium, rubidium, cestumn [21,-22; 23], gerthanium, aluminum, lead [23, 24],
beryllium, magnesium, calcium, baritum:[25, 21, 23];"and gallium [21]. However, the cal-
culation of the free energy for dense fluids by the hypernetted-chain or integral equation
method is nontrivial and tedious.

On the other hand, the structure of some liquid alkali metals (lithium, sodium, potas-
sium, rubidium, and cesium) [26] are studied and compared by thermodynamic pertur-
bations. Besides predicting the structure of liquid metals, thermodynamic perturbation
offers a method for predicting the thermodynamic properties of fluids. Although perturba-
tive predictions are not expected to rival those of advanced integral equation or large scale
computer simulation method, they are far more numerically efficient than the computer
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simulation approaches and often produce comparably accurate results. A key advantage
of perturbative approximations is that the structure of fluid is explicitly retained and thus
thermodynamic properties can be accurately predicted.

In recent years, many perturbation theories of the thermodynamic properties for flu-
ids have been proposed. The basic principle of these perturbation theories is that the
properties of a model system of interest can be obtained in terms of a closely related ref-
erence system, for which much is known or can be easily calculated [27]. The ”closeness”
of the reference and model fluids permits the model fluid free energy to be treated as a
perturbation on the reference free energy [28]. Therefore, the hard-sphere fluid should be
the excellent candidate for a natural refetence fluid because the free energy of the hard
sphere reference system is available analytically as fits to accurate machine calculation
[29] and the analytic pair distribution funetion obtained from the Percus-Yevick equation
[30]. According to these convenient conditions of thehard-sphere fluids, the extensive ap-
plications of hard sphere perturbation theory (HSPT) are over many decades for a wide
range of liquid [31]. In the literature review of HSPT [27, 28, 31, 32, 33, 34, 35, 36, 37|,
although the HSPT is already a complete theory for thermodynamic property and has
played an important pioneering role in the study simple liquid, there are few researches
about polyvalent metals with HSPT, especially, liquid gallium.

In the second work of this thesis, we report the study of the thermodynamic prperties of
liquid gallium (T=323K) by HSPT, because there is no investigation or literature related

to this work so far. By investigating the thermodynamic properties of a liquid-gallium



model close to the triple point, we have extended the application of the hard sphere
perturbation theory (HSPT) to an interatomic pair potential, which has a ledge-shape
repulsive core and the long-range oscillations. The structure of this model is interesting
for a discontinuity in the density variation of the main-peak position of the of the radial
distribution function. The validity of a HSPT for this model fluid at high densities is
essentially determined by the discontinuity on the the effective HS diameter estimated by
the theory. A correction to remedy the inherent deficiency of the HSPT is proposed by
Mon. The new perturbation theory is found to be superior to other first-order HSPT in
predicting the thermodynamic properties of the model fluid, including a anomaly in the

excess entropy.



Chapter 11

Anomalies in structure and
dynamics of liquid Ga

II.1 Introduction

The properties of collective dynamies in liguidianetals have been studied by the inelastic
neutron scattering (INS) and inelastie X-ray scattering (IXS) technique for a long time.
Although some physical properties:can-be ‘obtained by hydrodynamic theory, most of
peculiar features in the excitation spectra of polyvalent liquid metals can not be described
by this theory [38]. Therefore, to investigate the collective properties in the hydrodynamic
regime and collective dynamics in the kinetic regime of these liquid metals is an interesting
and important subject. As the wavelengths of the collective dynamics are smaller than
the average interparticle distance in these liquids, the propagating sound mode is strongly
damped and dynamic structure factor has only a single Lorentzian-like central peak [39].

According to Waseda’s classification [40], liquid Ga is one of the polyvalent liquid

metals with anomalous structure. The anomalous structure, characterized by a shoulder



on the high-wavevector side of the first peak of the static structure factor S(¢), can not be
interpreted by a hard-sphere (HS) model. In the pseudo-potential theory, the interatomic
pair potential of a polyvalent liquid metal generally has a ledge-shape repulsive core
and the long-range Friedel oscillations induced by the conduction electrons [41]. The
appearance of the shoulder in a S(q) of the polyvalent liquid metals (gallium, silicon,
germanium, tin and bismuth) [41, 42, 43, 44] is associated with the ”ledge-shape” repulsive
core of the interatomic pair potential, which is obtained from the optimized random
phase approximation. Mon [45] shows that the shoulder of the S(g) in liquid gallium
is also reproduced by using an interatomic pair potential with a subsidary minimum
at a relative short distance, which is induced by, the dynamically screened fluctuating
dipole interactions between ion cores.  These results:[41, 42, 43, 44, 45] indicate that
the occurrence of the shoulder in iS(q) is strongly depéndent on the short-range (ledge-
shape) repulsive core of the interatomie pair potential, and these results are concluded
with two characteristic length scales: the effective diameter of the repulsive core and the
wavelength Ar of the Friedel oscillations, and the shoulder is expected to occur near 2kp,
where kr = m/Ap is the magnitude of Fermi wavevector of the conduction electrons [44].

Recently, an anomaly on the high-wavevector side of the de Gennes narrowing [46]
in the linewidth Z(q) of dynamic structure factor S(g,w) of liquid gallium close to the
melting point (303K) is observed by the measurements of IXS [47] and quasielastic neutron
scattering (QENS) [48]. The linewidth Z(q) as a function of wavevector ¢ of the collective

dynamics shows a minimum, known as de Gennes narrowing, occurring near ¢y, the first



peak of the S(q) of the liquid [46]. This anomaly, whose position is coincident with that
of the shoulder in S(q) [47, 48], is similar as the one observed by the inelastic neutron
scattering (INS) method [49] for liquid bismuth; further, another evidence of the anomaly
in linewidth Z(q) is provided by an experiment of liquid germanium by QENS [50]. Thus,
the anomaly occurring in Z(q) is expected to be a common feature to those polyvalent
liquid metals exhibiting a peculiar shoulder in the S(q) [51, 52, 53, 54, 55]. Theoretically,
in classical molecular dynamics (MD) simulation, the calculation of the static and dynamic
structure factor can be done for larger simulation systems than that of ab initio simulation
system. In the kinetic theory, the linewidth Z(q) can be described by the revised Enskog
theory for the HS fluids, generalized by_inéluding the correlated collisions among particles
[56].

It is interesting to understand the correlation between the shoulder in S(g) and the
anomaly in the Z(q) of dynamic structure factor.«We use MD simulation with an inter-
atomic pair potential, generated from the first-principles generalized energy independent
nonlocal model-pseudopotential (GEINMP) theory [57], and we successfully reproduce the
anomalies in S(q) and Z(q). These results agree well with the experimental data of liquid
gallium [58]. To study the correlation of the shoulder and the anomaly and to examine
the contribution of effective range of the interatomic pair potential for both shoulder and
anomaly are a primary theme in this chapter. Finally, we give a physical explanation for
the occurrence of the anomalies in the static structure factor S(g) and in the linewidth

Z(q) of dynamic structure factor.



I1.2 Method

I1.2.1 Simulated model and molecule dynamics simulation

Using MD simulation with interatomic pair potential generated from the GEINMP
theory [57], we have carried out the NVT ensemble with 3500 particles in the equilabrium
state of liquid Ga at T = 323K, pressure about 1 bar and number density p = 0.05A473
[59]. In the simulation, the particles are confined in a cubic box of length 41.23A4 and
the periodic boundary conditions are used. The interatomic pair potential ¢(r) is shown
in Fig. IL1, and have two parameters: o = 4.044, the shortest distance where the
potential is zero, and ¢, the depth of the first attractive well, corresponding to an effective
temperature about 47K . The purezepulsive core of ¢(r) is the range inside the minimum
of the first attractive well, which occursiat gg-=-+4:070.."The repulsive core, which is much
softer than that of the LJ potential, has alledgeshape with a curvature change around 0.8¢0
[60]. Beyond o, ¢(r) has an oscillatory part, which is the so-called Friedel oscillations
with the first, second and third maxima at o; = 1.280, 0o = 1.770 and o3 = 2.260,
respectively. As distance is farther than 3o, the oscillatory part can be well described by

the equation of the shifted Friedel oscillations [41]

cos(2kp r + «)
(2]{3}7 7‘)3

pro(r) =V , (IL.1)

where kp = 16.24nm™'. Hence, the wavelength Ar of the Friedel oscillations is 1.93A4 and
the effective valence per ion in the simulation is estimated to be 2.9.
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Figure II.1: (a) Interatomic pair potential ¢(r) obtained from the first-principles GEINMP
theory for liquid Ga at 7' = 323K [57]. ¢, corresponding to a temperature about 47K is
the depth of the first attractive well. ¢ = 4.044 is the shortest distance where the pair
potential is zero. The first minimum of ¢(r) is located at og = 1.070, the first maximum
is at 07 = 1.280, the second maximum is at oo = 1.770, and the third maximum is at
o3 = 2.260. (b) Comparison between ¢(r) (solid line) and the LJ potential (dotted-dashed
line) with the same € and o. (c) The pair potential ¢(r) at distances larger than 3c. The
dashed line is the fitting result with Eq. II1.1.
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I1.2.2 Interatomic pair potentials truncated at different distances

In order to investigate the effects of the repulsive core and the oscillatory part of ¢(r)
on the structures, physical properties, and collective dynamics of the simulated liquid, we
perform the same NV'T conditions with the pair potential ¢;(r), for i = 0,1, 2, 3, obtained
by truncating ¢(r) at o; and shifting in energy with the value ¢(o;). ¢;(r) is finite in range
with cutoff at o;, where ¢o(r) has only the ledge-shape repulsive core, ¢;(r) includes the
repulsive core and the first attractive well, ¢o(r) and ¢3(r) are extended to include the
first two and three attractive wells, with the depth of the attractive well decreasing with

distance r.

I1.3 Theory

I1.3.1 The static structure factor

The static structure factor S(q), describing the Fourier components of density fluctu-
ations in a liquid, can be measured by INS or IXS experiments. It is related to radial
distribution function through a three-dimensional Fourier transform, and can be presented

as

S(q) =1+ 4mp /000 r? qu(ifr) g(r) dr, (I1.2)

where ¢(r) is the radial distribution function of the liquid. p is the density of the liquid
and ¢ is the wavevector. As k is large, S(q) approaches to one.
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I1.3.2 The dynamic structure factor

Probed by INS, the dynamic structure factor S(g,w) of a liquid consists of the coherent
and incoherent parts, associated with the collective and single-particle dynamics in the
liquid [61], respectively. When the scattering wavevectors are larger than g, the first
peak position of S(q), only the coherent part survives and is referred as QENS [48]. In the
IXS, without kinematical restrictions, S(¢,w) has only the coherent part over the energy
range of particle dynamics, which makes this technique suitable for the investigation of
collective dynamics in liquids [11]. The advantage of MD simuation is to provide the
dynamic and structural information which_is not accessible in real experiments. The

Syp(q,w) , presented as

oo

Sun(q,w) = % / F(q,t) exp(iwtyh (11.3)

—o0
can be obtained via a time Fourier transform of the intermediate scattering function F'(q,t)
[39], which is generated directly by MD simulation with an interatomic pair potential.
As the wavevectors are smaller than ¢ = 12.5nm ™! one-half of ¢,;, dynamic structure
factor is characterized by a central peak component due to quasi-elastic scattering, and two
side components due to inelastic scattering from collective excitations, generally referred
as the Brillouin lines. As the wavevectors are larger than ¢y, the linewidth of central

peak in the S(g,w) is caused by the non-propagating heat mode. In the revised Enskog
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theory for a HS fluid with diameter o5, Z(q) can be expressed as [56, 64, 65]

_ Dg ¢
ShS(Q)

Zp(q) d(q), (I1.4)

where D and Sps(q) are the Enskog diffusion coefficient and the static structure factor
of the HS fluid, respectively. d(q), characterizing the cage diffusion in the HS system is a
dynamic factor, and can be approximated by d(q) = (1 — jo(qons) + 272(qons)) !, where

Jn(x) is the spherical Bessel function of order n [65]. In this theory, Dg is given by

1/2 ;4 \3
Dy =0 (WkBT) (L=n) (IL5)
8 m n(2—n)

where m is the mass of particle, kp is the Boltzmann constant, and n = mpoj,/6 is the

packing fraction. Thus, oy, is the onlyiparameter to be determined in Eq. IL.5.

11.3.3 The longitudinal current spectra

The longitudinal current spectrunt is.given by

1 [ )
Crlq,w) = %/ CL(q,t) exp(iwt)dt, (IL.6)

where C(q,t), the longitudinal current correlation function, can be shown as

Cula,t) = 5 i(t) - 724 (0)) (1L7)

where j¢(t) is the component of the current function jq(t) that is parallel to the direction

of the wave vector ¢. The current function jq(t) is given by
N
Ja(t) = w(t) - exp [—iq- Fi(t)], (IL8)

=1
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where [ is the index of particle, and ¢ and 7" is the velocity and coordinate of partice,
respectively. As can be seen, the C(q,w), calculated as the Fourier transforms of the
Cr(g,t) [39], are in good agreement with those obtained via the equation Cp(q,w) =
w?S(q,w)/q* The main peak position of C7(g,w) for each ¢ is used to plot the dispersion
curve, and the slop of the dispersion curve is closely related to the sound velocity of the

system.

I1.4 Results

For ¢(r), the simulated S(q) shows a maximum located at gy (25.4nm™1), and a
shoulder appear on the high-g side ofsthe first peak:. Shown in Fig. 1.2, the shoulder in

L which, is-exactly equal to 2kp. Moreover,

the simulated S(q) occurs around=32.5nm
the first peak and the shoulder of simulatedS{g)-agree with those of experimental data
above the melting temperature [40], although-the values of the simulated S(q) at low ¢
deviate from experimental ones.

In order to investigate the relationship between the shoulder in S(g) and the inter-
atomic potential including the repulsive core and Friedel oscillation parts, we examine
the variation of the radial distribution functions g(r) and S(q) with the interaction range
of the interatomic potential refered to Fig. II.1. First, Fig. II.3 shows the variation of

the radial distribution functions g¢;(r), compared with g(r) of the full-range ¢(r). The

first peak in all radial distribution functions almost locates at 0.6860, which is inside
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Figure I1.2: Comparison of the simulated static structure factor (solid line) with the
experimental data of liquid Ga at T=323K (open circles) [40].
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Figure I1.3: The radial distribution functions: g(r) (solid line), go(r) (dotted line), g1(r)
(dashed line), go(r) (dot-dashed line) and g3(r) (dot-dot-dashed line). g¢(r) is for the
full-range pair potential ¢(r), indicated by the thinner dotted line, and g;(r) is for the
truncated pair potential ¢;(r). The second and third shells of the radial distribution
functions are enlarged in the inset.
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the repulsive core, and the shapes of g;(r) are almost the same, no matter where the
interaction distance is truncated. The evident difference is only for tail of radial distribu-
tion functions that indicates the Friedel oscillations of the interatomic potential make the
second- and third-shell structures of radial distribution function an outward shift, and this
shift enhances the values of radial distribution function at distances around the minimum
of the Friedel oscillations. The outward shifts of the second and third shells have little
reduction by including the first attractive part referred to Fig. I1.3. It means that the
Friedel oscillations beyond the first attractive part have a certain effect on the structures
of the liquid. Extending the interaction range to the third attractive well of the Friedel
oscillations, g3(r) can be completely identical with g(r). The results mildly imply that
the shoulder structure may be a regult of the interplay:between the ledge-shape repulsive
core and the Friedel oscillations; however, Matsuda [66F-and Canales [67] suggest that the
structures of liquid alkal metals are ‘almost indentical by considering the repulsive core
and the short-range attractive part of interaction potential.

Secondly, the simulated static structure factors S;(q) with the truncated interatomic
potentials ¢;(r) (i = 0,1,2,3) are shown in Fig. 1.4, with S(q) as a reference one. The

L'in these static structure factors should be

first peak and the shape around 32.5nm~
examined particularly. For the Sy(¢), no shoulder appears on the high-q side of the first
peak, which shifts to 25.7nm ™! and has an increase in magnitude. The simulated S;(q)
deviates more from a HS fluid than the liquid of pure repulsive core because the first

attractive well is included in the interaction range. The first peak of S;(q) is evident
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Figure 11.4: The static structure factors: S(q) (solid line), Sp(q) (dotted line), Si(q)
(dashed line), Sy(q) (dot-dashed line) and S3(q) (dot-dot-dashed line). S(q) is for the full-
range pair potential ¢(r) and S;(¢) for the truncated pair potential ¢;(r) (i = 0, 1,2,3)
with a cutoff at o;.
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to be lower than that of Sp(q), but the position has no significant change; however, the

1 1

values of S;(q) for ¢ between 28nm =" and 35nm =" are elevated. For Sy(q), the position
of the first-peak shifts closer to that of S(g), and the magnitudes in the shoulder region
continuously increase to get closer to S(g). To extend the interaction range to including
the third attractive well of Friedel oscillations, the magnitude of the first peak is almost
close to that of S(q), and a complete shoulder appears on the high-q side of the first peak.

Quite sensitive to the behavior of the static structure factor, the appearance of the
shoulder structure can be further identified by the derivative of S;(¢) with respect to g,
dSi(q)/dq, for q around 32.5nm~!. In general, on the high-q side of the first peak of S;(q),
dS;(q)/dq is negative and increases with’¢.‘Maghematically, a monotonical increase of
dS;(q)/dq with ¢ indicates no appedarance of a shoulderiin S;(¢) in the region investigated.
However, once a shoulder appears in S;(¢), the behaviot of dS;(q)/dq is distorted to show
some extremes, instead of increasing monotonically. Shown in the inset of Fig. 11.4 are the
numerical results of dS;(q)/dq for g in the shoulder region. Both dSy(q)/dq and dSi(q)/dq
increase monotonically, indicating that no shoulder appears on the high-q side of the first
peak of Sy(q) or Si(q). dSa2(q)/dq shows very weak extremes, signaling the emergence
of a weak shoulder in S5(¢). Manifested by the clearly observed extremes in dS3(q)/dq,
the structures in the liquid simulated with ¢3(r) are developed well enough to produce a
shoulder on the high-q side of the first peak of S3(¢). Our results clearly indicate that the
liquid structures are mainly determined by the repulsive core and the long-range Friedel

oscillations induced by the conduction electrons, and the effective interaction range must
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Pair potential  Nigo1  Nioit Nisot  Nizsit Nuow Nuaoz Nugp
qb(r) 0.189 0.045 0.134 0.252 0.042 0.092 0.065
¢o(r) 0.164 0.047 0.118 0.252 0.050 0.101 0.077
o1(r) 0.177 0.046 0.124 0.254 0.047 0.096 0.071
¢o(r) 0.190 0.046 0.132 0.251 0.042 0.091 0.065
os(r) 0.189 0.045 0.135 0.251 0.042 0.092 0.064

Table II.1: The averaged fractions of atomic bonded pairs, N;j; [63], in the liquids simu-
lated with the full-range pair potential ¢(r) and the truncated ¢;(r)

include at least the first three attractive wells.

To manifest further the modulation on local structures by Friedel oscillations, we
calculate the numbers of atomic bonded pairs (ABPs) [62] in the liquids for the pair
potentials at different truncations. In.the previous studies, it has been shown numerically
that as the system simulated with the pair potential.generated by the GEINMP theory is
quenched from the liquid phase into;the amerphous solids or the $-phase crystal, the 1201-
type atomic bounded pairs (ABPs), clusters-of four atoms formed by a root pair and two
neighboring atoms, become predominated [63]. Also, some large clusters formed by more
1201-type ABPs may produce a high-¢ shoulder in S(q) [59]. In Table II.1, our calculated
results for the APBs show that by truncating the pair potential ¢(r) at oy, the numbers
of the 1201- and 1301-type ABPs decrease significantly but those of the 1421-, 1422- and
1431-type increase. With the cutoff at o, the numbers of those ABPs mentioned above
are still different from those of the full-range ¢(r), although the differences are reduced.

As the cutoff is extended up to o9, the numbers of the ABPs are almost the same as those
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of ¢(r). Thus, our present analysis on the ABPs suggests that the Friedel oscillations
within the intermediate region, up to the third attractive wells, cause a modulation on
the local structures determined by the repulsive core and such a modulation favors the
emergence of some solid-like clusters which cause a shoulder on the high-q side of the first
peak in S(q).

To investigate the anomaly in collective dynamics, we have calculated the dynamic
structure factor Sy p(q,w), a time Fourier transform of the intermediate scattering func-
tion of Ga interatomic potential. These intermediate scattering functions are obtained
by simulations for wavevectors chosen to be the reciprocal lattice points of the simulated
box. In order to fit the experimental datél Syib(q, w) has to be modified to satisfy the
detailed balance condition and conyveluted with the.instrumental resolution function R(w)

[11]):

hwt /KT
th _ _
Iy (q,w) = / T——yy Sup (@ wh) R(w — wr)dw!, (I1.9)

and the calculated dynamics structure factors (¢, w) are directly compared with the
experimental data of IXS. In hydrodynamic regime, a comparison between the best fitting
for selected ¢ and the experimental spectrum is reported in Fig. II.5. Only for ¢ =
3.25nm =1, the central peak of I{(q,w) is disappeared because of the effect of simulated
system size; however, the two Brillouin peaks can be fitted well. For several ¢ values in the
kinetic regime, from the first peak to the second minimum in S(¢), the dynamic structure

factors calculated by our simulation are also in good agreement with the experimental
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Figure I1.5: Dynamic structure factor at the indicated wavevectors. The IXS spectra at
315K are shown as open circles, and the simulated dynamic structure factors at 323K are
shown as solid lines. The width of the instrument resolution function is about 3.0meV.
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data, and the comparison is reported in Fig. II.6.

Since attention is focused on S(q,w), it is more convenient to examine the C(q,w),
which is defined in Eq. I1.6. In the same manner as the experimental inelastic x-ray data
[68, 69], we analyze the longitudinal current spectra which is fitted by the simple damped

harmonic oscillator (DHO) function

YLw
(W2 = wi)? + (yw)?’

Crlqw)=A (I1.10)

where A is a fitting; on the other hand, wy; and 7, is energy position shift and width of
spectra, respectively. For several ¢ values between ¢ = 3.25nm ™! and ¢ = 15.0nm ™!, the
longitudinal current spectra with the DHQ, fitting lines are shown in Fig. I1.7.

Shown in Fig. IL.8, the domainant ¢ dependence of the shift wy is linear below
g = 10.0nm™!, which confirms our results with those observation in the inelastic x-ray
measurements [11]. The sound velocity of our system is estimated about 2850ms~!, which
is slightly lower than the value 3000ms~! observed in the IXS experiment at 315K . How-
ever, the estimated value of sound velocity is almost the same as the value (2800ms—1)
as deduced by ultrasonic measurements [11]. Also, the interaction range has very little
effect on the sound velocity of system because the sound velocity for each simulated inter-
action potential is around 2850 4 20ms~!. Shown in Fig. I1.9, the damping factor . /q of
neutron data is compared with the data obtained by fitting our MD simulation data (Eq.
I1.10). The two sets of data are once again in good agreement with each other and both

are consistent with that ~ /¢, is approximated to be a g-independent constant between
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Figure I1.6: Comparison between the simulated dynamic structure factors at 7' = 323K
(solid lines) and the IXS experimental data of liquid Ga at T' = 315K (circles) [47].
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Figure I1.8: Dispersion relation obtaine by fitting the simulated longitudinal current spec-
tra with damped harmonic oscillator model. The IXS data at 315K from [11] are shown
as solid circles. The solid lines are the linear fit to the data of ¢ less than the available
data of the IXS experiment. The estimated value of sound velocity for each pair potential
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C3maz = 2870.0m/s, respectively.
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q=0.2nm™t and ¢ = 0.8nm ™. On the other hand, the 71, /q values of various interaction
ranges are almost the same and that means the interaction range also can not affect the
linewidth of longitudinal current spectrum. It is worth pointing out that the relaxation
time of the longitudinal current function is linear with the ¢ value in low-g region, but
the interaction range of pair potential has no effect on the relaxation time.

As wavevectors larger than 15nm ™!, Syp(q,w) can be fitted with a single Lorentzian .
We define Z(q) for each g as the half width at half maximum (HWHM) of the Lorentzian.
Shown in Fig. I1.10, the Z(q) data obtained by our simulations are compared with the
experimental data from IXS [47] and QENS [48] technique. The linewidth Z(gq) of both
experiments and simulation have a minjnuim; thé de Gennes narrowing, which occurs very
close to gy the location of the maximum of S(¢)..In experiments, an anomaly, which is
a shoulder, is observed on the high-q side of the de Gennes narrowing. In our simulation,
the linewidth Z(q) agrees well with the.general features of both the experimental data,
especially the shoulder around 32.5nm ™. Considering S(q) and Z(q) both generated by
our simulations with ¢(r), we confirm that the anomalies in these two functions occur at
the same position.

Fig. I1.11 shows that both the de Gennes narrowing and the shoulder of the linewidth
Z(q) are predicted quite well by the revised Enskog theory, in which oyg must be the
position of the first peak of g(r) (0.6860) [58] and the reduced density equals poj =
3.305. While the reduced density is equal to 3.305, the packing fraction 7 is estimated
to be 0.558, which is just beyond the fluid-solid boundary of the HS system. Hence, Dg
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Figure I1.10: The spectral linewidth (HWHM) of dynamic structure factors. The open
circles and squares are the experimental data of IXS [47] and QENS [48] at T' = 315K,

respectively. The solid circles are the simulated results with ¢(r) at T = 323K. The

dashed line is the simulated S(q), with a scale referred to the right axis.
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Figure I1.11: The linewidth HWHM of S(q,w) as a function of ¢ for the simulated liquid
of Ga at T = 323K. The circles are the results of the liquid simulated with ¢(r) at
T = 323K. The dotted line is the simulated S(q), the dashed line is the prediction
of the revised Enskog theory Eq. II.4, the dotted-dashed line is the prediction of the
revised Enskog theory Eq. I1.4 without d(q), and the dotted-dotted-dashed line is the
d(q) function only. The values of oyg are 0.6860 in the upper panel and 0.6640 in the
lower one.
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evaluated by Eq. 11.5 is 1.66 x 10~°em?s~!, which is close to the self-diffusion coefficient
D, = 1.77 x 107 5cm?s~! obtained from the velocity autocorrelation function. On the
other hand, as oy, is chosen to be 0.664¢ obtained by the E-MCRS theory [33], which
accurately predicts the Helmholtz free energy and entropy of the liquid, Dg evaluated
by Eq. IL.5 is 1.86 x 10~°ecm?s~!. The results are not as good as those fitted by 0.6860:
the de Gennes narrowing in the range between ¢ = 17.5nm~! and ¢ = 30.0nm ™! are still
described well by revised Enskog theory, but the shoulder is gradually disappeared. Also,
shown in Fig. I1.11, by comparing the predictions with and without dynamic factor d(q)
in Eq. 1.4, we find that the d(q), associated with the cage diffusion, cause a quite good
fitting between the prediction function,ahd simulated Z(q) for the wavevectors around
the shoulder. This information indicates that the.mechanism for the occurrence of the
shoulder in Z(q) should be related %o thelcage diffusion= For the single-particle dynamics,
the cage diffusion in a liquid usually”depicts that @ particle is confined in a cage which
is composed of its neighbours; therefore, this particle collides with its neighbours in a
short timescale but diffuses out of the cage in a longer timescale. Alternatively, from the
viewpoint of collective dynamics, the cage diffusion can be considered as the relaxation
of the cage structure, with the relaxtion time related to the stability of the cage.

Shown in Fig. I[.12; to investigate the role of the Friedel oscillations on anomaly in
Z(q), we calculate the linewidths Z;(¢) with the pair potentials ¢;(r) for i = 0,1,2, 3.
Both Zy(¢) and Z;(¢) have a minimum nearby ¢, but they are monotonically ascendent
beyond qy; up to 40nm~!, which is close to the first minimum of S(g). This behavior is
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Figure I1.12: The spectral linewidth Z(g) for the full-range ¢(r) and Z;(q) for ¢;(r) with
a finite range. All symbols are thezsimulated tesults.

similar as those of the LJ liquids and liquid alkali metals.

As the range of interatomic potential is extended up to the second maximum of the
Friedel oscillations, a shoulder clearly appears on the high-q side of the de Gennes narrow-
ing; furthermore, this shoulder is almost developed as well as the one in Z(q) as the range
of pair potential is extended up to the third maximum of the Friedel oscillations. In our
model, the interaction range of pair potential to produce an anomaly in Z(q) should be
farther than the second attractive well; however, this range is shorter than that causing

the shoulder in S(g). Fig. 11.13 shows that the comparison between the simulated Z;(q)
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Figure I1.13: Comparison between the simulated, résults.(the symbols) and the predictions
of the revised Enskog theory with the HS diameter o, chosen to be the first-peak position
of g(r), Dg evaluated by Eq. IL5-with thechosen g and Sys(q) replaced by S(q) or
Si(q). Each linewidth function for a pair'potential-is shifted upward 0.3 meV from the

lower one.

and the predictions of the revised Enskog theory with the same values of o, and Dg, and
the Sps(q) in Eq. I1.4 replaced by the corresponding S(q) presented in Fig. 11.4. Arising
from the dynamic factor d(q), a shoulder is indeed produced in the linewidth function
Zr(q), no matter what the range of the pair potential is. The results are consistent with
that of Fig. 11.13. The shoulder in Z5(q), Z3(q) and Z(q) is in good agreement between
the prediction of the theory and the simulation result for ¢ from 22.5nm=! to 35.0nm™1,

but the prediction of the theory for ¢ between 30nm ™! and 35nm ™! is deviated from the
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Zv(q) and Z;(q), having no shoulder. This is clearly present that the dynamic factor d(q),
the characteristic of cage factor, is the essential factor to make the revised Enskog theory
a successful prediction for the shoulder in Z(q) [47, 58]. Thus, the shoulder in Z(q) is

certainly caused by cage diffusion.

II1.5 Conclusions

In this chapter, we use MD simulation with interatomic pair potential (T = 323K)
obtained from the first-principles GEINMP theory. In the hydrodynamic region, the single
Lorentzian-like central peak and the Brillouin peaks of S(¢,w), the sound velocity of the
simulated system, and the damping factor are in good agreement with the experimental
results of liquid Ga. On the other hand, we also.have successfully produced a shoulder on
the high-q side of the first peak in7S(¢)and-an-anomaly in the linewidth Z(q) in kinetic
region. The shoulder and the anomaly are confirmed to occur at the same location, and
they are also consistent with the data of experiment. Our model consists of a legde-shape
repulsive core and the long-range Friedel oscillations induced by the conduction electrons.
The shoulder and the anomaly, which have been studied, are the interplay between the
effective diameter of the repulsive core and the wavelength of the Friedel oscillations [44].
The results of our simulations indicate that the liquid structures are mainly determined by
the ledge-shape repulsive core and the Friedel ocillations, and the shoulder at the high-q

side of the first peak in the static structure factor is associated with the appearance of
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the solid-like clusters [57]. Moreover,the effective interaction range of the interatomic pair
potential that contributes significantly to the shoulder structure should include the first
three attractive wells in the Friedel oscillations.

L of our model

It is well confirmed that sound velocity, with a value of 2850 + 20ms~
for liquid Ga are scarcelly dependent on the interaction range. Evidence for collective
modes has been found in a ¢ region extending beyond the hydrodynamic regime up to
one-half of the main peak structure factor which is about ¢ = 24.5nm 1.

The anomaly in the linewidth Z(q) of dynamic structure factor can be well described by
the revised Enskog theory, with the HS diameter chosen to be the first-peak distance of the
radial distribution function. The effectiverdistance of interatomic pair potential to produce
the anomaly should includes the firgt two attractive wells in the Friedel oscillations that is
different from the effective range t6 generaté the shoulder in the S(g). The characteristic
of d(q) implies that the anomaly in Z{g).is caused by cage diffusion [70, 71]. We conclude
that the shoulder and the anomaly occur at the same wavevector. In a liquid metal,
as the density fluctuations of the positively charged ions have the same wavelength as
that of the Friedel oscillations induced by the conduction electrons, the density waves of
electrons and ions are coherent. Thus, the overall attractions between the two systems
are expected to integrate constructively and enhance the stability of the cage structure
of each ion. At temperatures just above the melting point, an enhanced cage structures
causes the collective motions a relatively slower relaxation; thus, an anomaly is produced

in the Z(q) at the wavenumber of the Friedel oscillations. At high temperature, the
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anomaly is expected to disappear because the enhancement is weak and the cage structure
is overwhelmed by the thermal motions; this is consistent with the result of liquid Ga
measured by QNES experiment [48]. According to our study, we state that the range of
our pair potential to produce the dynamic anomaly is shorter than the range to generate
the shoulder in the static structure factor, and the dynamic anomaly is a common feature
to those polyvalent liquid metals whose static structure factors exhibit a shoulder on the

high-q side of the first peak [52].
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Chapter 111

Hard sphere perturbation theory for
liquid Ga

III.1 Introduction

Thermodynamic perturbation theory hasplayed a very important role in the devel-
opment of the fundamental understanding for dense simple fluids [39, 72]. The success
of thermodynamics perturbation theory*in'deseribing the properties of fluids is quite sen-
sitive on the choice of a reference fluid. "Therefore, the basic principle of perturbation
theory is that a model system can be related a reference system, which is much known
and its properties can be easily calculated. For example, the structure of a liquid can
be described by the reference fluid with the repulsive core only, whereas the attractions
are treated as a perturbation. In general, the hard sphere fluid has been the frequently
chosen reference fluid because it has well known equation of state, and the pair distri-
bution function can be analytically obtained from the Percus-Yevick equation [30]. The

HS reference fluids are appealing both because they are expected to accurately repre-
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sent excluded volume (packing) effects and because accurate analytical expressions are
available for their thermodynamic and structure properties. However, the HS reference
fluids become gradually inaccurate as the describing fluids have very soft repulsive core
potential. Some refinements of the theory progress recently, with an aim of applications
to soft condensed system.

The Weeks-Chandler-Andersen (WCA) theory [73, 74, 75, 76] can be viewed as a per-
turbation theory with a soft repulsive reference fluid, whose properties are approximated
by a HS fluid. The HS diameter of the WCA theory is determined by the equation of
equal compressibility between the reference fluid and the HS fluid. Although the WCA
theory has an accurate prediction for flaids; the WCA theory is inaccurate for fluids
with very soft repusive core. According to: this serious problem, Lado [77] gives some
numerical improvement of the WCA' thepry-with a different choice for the HS diameter.
The Mansoori-Canfield [78] and Rasaiah-Stell [79]/(MCRS) theory, which is based on a
HS reference system and the first-order perturbation, is developed by using the Gibbs-
Bogoliubov inequality and treating the HS diameter as a variational parameter to obtain
an upper bound of the Helmholtz free energy. This variational HS perturbation theory,
has been applied to calculate the structures and thermodynamics of liquid metals, whose
effective pair potentials have very soft repulsive cores [80, 81, 82, 44]. However, the MCRS
predicition tends to slightly overshoot the simulated Helmholtz free energies, and Mon
[27, 83, 84, 31] points out that the inaccurate prediction is a simple consequence of the
exclusion of the phase space due to the overlaps of hard spheres in the hard sphere refer-
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ence ensemble; therefore, a correction term should be added into the MCRS variational
function to improve the accuracy of the variational approach.

The extended MCRS (E-MCRS) theory, developed by Ben-Amotz and Stell [33], in-
clude Mon’s correction term, and it is found to outperform previous first-order pertur-
bation theories by providing exceptionally accurate predictions of the thermodynamic
properties of very soft repulsive fluids. Especially, the E-MCRS theory provides an eco-
nomically analytical method to predict the thermodynamics properties of the soft repulsive
fluids without heavy computations. A key advantage of the perturbative approximation is
that the structure of fluids is explicitly retained and thus the excess entropies and packing
fractions may be accurately predicted. ltris-intéresting to examine the accuracy of the E-
MCRS theory, and other the HS perturbation theories for liquid Ga. We compare the HS
perturbation theories by investigating theit-predictions-for the thermodyanmic properties
of liquid Ga, which are described in See. I1.2. The density variations of the effective HS
diameters of liquid Ga estimated by these theories are investigated and shown; they are

the key points in this chapter.

II1.2 Theory

II1.2.1 The background of E-MCRS theory

A common starting point of various thermodynamic perturbution theories is an ex-

pansion of the excess Helmholtz free energy, A® = A — A%, where A is the total free
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energy, and A’C is the free energy of an ideal gas. The excess Helmholtz free energy would

be expressed as

A Amg AA

= II1.1
NEkgT NkBT+NkBT’ ( )

and A = A= /NkgT of a fluid with N particles also can be expressed as
A= Aps + AA, (I11.2)

with Ayg = At /NkBT, the free energy of a reference HS fluid, represented by the

following Carnahan-Starling [29] expression

n(4 — 3n)

s = (1—=n)*"

(I11.3)

where 1 = mpo;¢/6 is the packing fraction and g is the diameter of particles in the
hard-sphere fluid. Finally, AA is the difference-of-freeenergy between the fluid of interest

and the reference fluid. In the MCRS theory-[78, 79, AA, derived from the first order

perturbation theory, can be approximated

AA ~ 2rp3 /OO gus(r)é(r)ridr, (I11.4)

where p is the system reducded density and 5 = 1/kgT. kg is the Boltzmann constant
and T is temperature. The Ga interactomic pair potential ¢(r), generated from the first-
principles generalized energy independent nonlocal modal-pseudopotential (GEINMP)
theory [57], is introduced in Sec. II.2.1. The radial distribution function ggg(r) of the
hard-sphere (reference) fluid can be analytically obtained by the Verlet algorithm [30].
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The MCRS perturbation theory is convenient to apply and provides a rigorous upper
bound to the excess Helmholtz free energy. By employing the hard sphere fluid and

Gibbs-Bogoliubov inequality, the Eq. I11.2 can represented as
A< Aps + AA, (I11.5)

By treating opg as a variational parameter, a measured value of A is obtained by mini-
mizing a sum of Axg and AA given in Eqgs. I11.3 and IIL4, respectively.

Mon [27, 83, 84, 31] indicates that a significant part of the residual error in the MCRS
theory: arises from the exclusion of a portion of phase space due to the overlap of the
hard-sphere. As a hard-sphere reference is used, the perturbation calculation for a fluid
model of particles interaction with goft spherespotential ¢(r) contains an intrinsic error.

The instrinsic error can be presented ‘as

fﬂ e=0¢

where ) is the total configurational phase space, and (A/N) ¢ is the free energy as

(BA/N), s — BA/N = _Wl In [ (I1L.6)

evaluated by sampling over only that part of the phase Q2yg allowed by the hard-sphere
reference ensemble, and A/N is the real Helmholtz free energy per particle. Hence,

according to Mon’s correction term, Eq. II1.4 can be rewritten as

fQHS eﬁ(b]

L (I11.7)

Recently, Amotz and Stell [33] introduce that the integral ratio of Mon’s correction

AA = 27pf /OO grs(r)d(r)ridr — % In [

term may be expressed in terms of the following one-dimensional integral over the radial
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distribution function of the soft-repulsive part of our model fluid:

_1 fQHS e_ﬂqb OHS 9

g(r) is the radial distribution function of the fluid with the pair potential ¢(r). Therefore,

Eq. III.7 can be replaced by

AA = 2mpp /OO gus(r)o(r)ridr — 2mp /UHS g(r)r*dr. (I11.9)
OHS 0

In WCA theory, ¢g(r) can be replaced by

9(r) = yus(r)exp(—Lo(r)), (I11.10)

where ygs(r) is the cavity distribution funetion and can reasonably be represented by the

following three term expansion [85]

r Ve

yus(r) = exp | A+ B(—) +.C(=—=)2}. (II1.11)

OHS OHS
The values of the three coefficients depend only on the packing fraction, n, of the hard-

sphere fluid.

A=q 53 (I11.12)
—3n(2 —n)
B=—q (I11.13)
| 2=m ] @60+ 307
C=1 [2(1 — 77)3} o (I11.14)

In the WCA theory [74], the effective HS diameter opg of the model fluid is determined
by the solution of the equal compressibility integral equation between the reference fluid
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with the repulsive core ¢o(r) only and a hard-sphere fluid with diameter opg at the same

temperature and density. The equal compressibility integral equation is given as

/TOyHS(r)exp(—ﬁ%(T))err = /TO yus(r)rdr, (IT1.15)

0 OHS

where ry is the position of main attractive well of our model, and the detail derivation
is shown as Sec. V.1. In the Lado-WCA method [77], the effective HS diameter is given
by the solution of a similar equation, but ygys(r) is replaced by dymg(r)/doys in both
integrands in Eq. I11.15. With Eq. 111.11[33, 85], the hard-sphere diameter oyg in these
equations can be efficiently solved, and the detail derivation is shown as Sec. V.2.

According to these approximation, a new variational formula of AA, refereed as the

extended-MCRS (E-MCRS) theory, is given-as

OHS

A4 = 2108 [ gus(r)o(dr S 2ag | v (rlesp(~50( ) dr. (ULLG)
oHS 0

The HS diameter for describing ypms(r) inthe seeond integral is determined by the Lado-
WCA method and may have a different value from the variational parameter g, which
implicitly determines ggg(r) in the integrand of the first integral and appears explicitly
in the lower and upper limits of the first and second integrals, respectively. The E-MCRS
theory has been shown to give better predictions in thermodynamic properties of the

inverse-power fluids than the MCRS and other HS perturbation theories [33].

111.2.2 Thermodynamic Properties

In thermodynamics, the excess Helmholtz free energy A of a fluid at density p is related
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to the pressure P(p') of the fluid at lower density p’ via the following integration

A:/p (M—Q dr’ (I11.17)

0 v v

P(p') can be obtained via the pressure equation:

w )y, | ot (IIL18)

where g(r), the radial distribution function of the fluid at density p’ is generated by
computer simulation, and ¢'(r) is the first derivative of the pair potential. Alternatively,

the compressibility factor Z(p) = SP/p also can be written as the Virial series of the

density:
Z(p) =1+ > Bip". (111.19)
=2

Here, B; is the i Virial coefficient, which is assocaited with ¢(r) via some diagrams
[39]. In the second Virial approximationy Z{p)'is approximated to be 1 + Byp and the

calculation of By is straightforward. The excess internal energy is given as

U= 27rpﬁ/zor2¢(7‘)g(7’)dr. (I11.20)

The excess entropy S, which can be evaluated by the difference between the excess internal

energy U and the excess Helmholtz free energy A, is presented as

. gex s .
TS = = U — A. 111.21
Ni (1I1.21)

On the other hand, S is also defined as the

S = —(9A“ JOT) . (I11.22)
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In the MCRS theory, the excess entropy Sicrs is shown as

. 4-3
Svicrs = —%, (I11.23)

is simply equal to —Ayg, which is the excess entropy of a HS fluid with an effective HS
diameter of the MCRS value [82]. In the E-MCRS theory, the Mon’s correction term gives
rise to an extra contribution to Sycrs. After replacing g(r) by exp(—pw(r)) into Eq.

I11.8, S in the E-MCRS theory can be expressed as

OHS

Semcrs = — Aps + 27Tp/ g(r) [1 + Bw(r)] r*dr, (I11.24)
0

where w(r), equal to —kgT'Ing(r), is the potential that gives the mean force acting on
a particle in the fluid. In concept, .the mean foree between two neighboring particles
in a dense fluid includes the direct force due to the mteratomic pair potential and an
effective force indirectly intermediated thronghrother particles. In general, the indirect
force depends on the fluid density, so the'potential of mean force at high fluid density can
be quite different from the interatomic pair potential. In the Eq. II1.24, Ayg have the
same HS diameter oyg as that of the upper limit of the integral, and the HS diameter

ongs is obtained by the minimization of variational A in the EEMCRS theory.

I11.3 Model and Method

I11.3.1 Model

Shown in Fig. III.1, the Ga interatomic pair potential at T = 323K, ¢(r), has a
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Figure III.1: Interatomic pair potential, (), (solid liie). The dot-dashed line is the LJ
potential with the same ¢ and o. The dashed line is alinear function a,(r/o) + ay with
a; = —115 and ay = 109; the dotbed line-is _the function ciexp(—cor/o)(r/c)® | where
1 =4.42x10% ¢y =16.4 and c5 =1.5

ledge-shape repulsive core and an oscillatory part, whose long-range behavior generally
follows the Friedel oscillations [58]. Two parameters of ¢(r) are ¢, the depth of the main
attractive well, and o, the shortest distance at ¢(r) = 0; the value of e corresponds to
47K and o = 4.04A. The repulsive core of ¢(r), denoted as ¢o(r), is the pure repulsive
potential for r smaller than ro, which is the position of the main attractive well, and rg
is about 1.070. The pure repulsive potential, ¢o(r), can be roughly divided into three

sections. As r less than 0.70, ¢o(r) increases almost exponentially with decreasing r so
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that the repulsive core in this region is extremely stiff. In the intermediate region between
0.90 and 0.70, the value of ¢o(r) increases roughly from 6¢ to 30e and the shape of ¢q(r),
becoming softer, has a ramp-like behavior with a reflection point around 0.8c [86]. As
r is larger than 0.90, ¢o(r) behaves like the repulsive core of the LJ potential with the

same o and ¢, and the interaction potential is less than 6e [60].

I11.3.2 Method

We have carried out a series of molecular dynamics simulations at constant NVT
ensemble. In each simulation, we fix the temperature to be 6.85¢ which corresponds to
T = 323K, and the box size is equal to,40:20n, All quantities given in this chapter are
in units of o, € and the mass of Ga atom! “The number of simulated particles starts at
N = 3500. Then, in each simulation for a, new thermodynamic state, /N is reduced by 100,
with the lowest NV being 100; therefore, we have a series of MD generated configurations at
each density. At N = 3500, the reduced system density p is equal to 3.305, which is close
to that of liquid Ga at T' = 323K and pressure of about 1 bar. At p = 3.305, the static
and dynamic structure factor of this simulated model agree well with the experimental
results at temperature close to the melting point (7,,, = 303K), and dynamic anomaly of
liquid Ga is reproduced [58]. In the following, the thermodynamic properties of the model

fluid will be investigated with simulation and various hard-sphere perturbation theories.
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Figure I11.2: Radial distribution function of the.model-fluid at several reduced densities.
In each panel, the solid is the simulation result ‘and the; dashed line is the approximation
given by Eq. II1.10 with the Lado-WC A value-of-g 4. ' The dotted line indicates the oyg
value obtained by the E-MCRS theory.

II11.4 Results

The radial distribution functions of these simulated systems at various reduced system
density are shown in Fig. II1.2. At p = 3.305, the main peak of g(r) is located at 0.6860,
well inside the repulsive core of ¢(r). By descreasing p, the main peak of g(r) gets lower
and shifts outwardly, and a shoulder near o appears and grows. Moreover, around p = 2.0,

the roles of the main peak and the shoulder exchange, because the main peak occurrs near
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o and the shoulder resides in the inner side of the repulsive core. As p keeps on decreasing,
the in-inside shoulder finally disappears at p = 1.35. The new main peak near o keeps
the same shape and moves toward the position of the first attractive well with descreasing
p. Similar results of the variation of g(r) with density are also observed for the one-scale
and two-scale ramp potentials [87], introdcued by Jagla [88]. On the other hand, the
approximation in Eq. II1.10 for our model fluid are examined by evaluating yys(r) in the
approximate Eq. III.11 with the Lado-WCA HS diameter for some reduced densities, and
the results are also shown in Fig. II1.2. For each density, Eq. II1.10 is only good for g(r)
inside the value of ogg, which is obtained by the E-MCRS theory; however, in following,
the calculations need the contributions of*'gs(#)rinside the oys.

w(r), giving the mean force a¢ting on a particletin the fluid, is the other way to
manifest the density effect on the Variation‘of g(r) in 6éur model. The definition of w(r)
have been given in Section. I11.2.2, and the variation of w(r) with reduced density p is
shown in Fig. II1.3. At p = 3.305, because of the high compactness in the fluid, w(r) has
a deep attractive well, which is at the first-peak position of g(r). Furthermore, the depth
of this attractive well gradually reduces and a shoulder near ¢ appears by decreasing p.
Around p = 1.889, the roles of this attractive well and the shoulder in w(r) switch with
each other, as the similar case in Fig. II1.2. Beginning at p = 1.889, the new attractive
well in w(r) continuously moves out and the new attractive well become deep. Finally,
the well is attenuated to e.

Fig. III.4 shows the variation with density of the HS diameter, which are estimated
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Figure II1.3: Potential of mean force w(r) of the model fluid at p = 3.305 (dashed line),
p = 2.361 (short-dashed line), p = 1.889 (dot-dashed line), p = 0.944 (dot-dot-dashed
line) and p = 0.094 (dotted line). The solid line is the interatomic pair potential ¢(r).
All potentials are scaled with ¢ and distance is scaled with o.
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Figure I11.4: The variation of effective HS diameter o455 as a function of density. opgg is
estimated by the WCA (triangles),zLado-WCA (diamonds), MCRS (circles) and E-MCRS
(squares) theories. The crosses stand for theanain-peak position of g(r).

by the E-MCRS, MCRS, WCA, and L-WCA theories. The values of the HS diameter
estimated by the four perturbation theories decrease with increasing density, and our
results are consistent with the results that the effective HS diameter of a fluid is decreased
with increasing the fluid density [33]. At high densites, both WCA and L-WCA oy
values are larger than the main-peak position of g(r), which is inside the repulsive core;
however, the HS diameters become smaller than the position of main-peak of g(r) below
p = 2.0. Not only the ogg values of the MCRS theory is limited by the peak position

of g(r) but also the E-MCRS value is almost along the track of the peak position as p

52



is larger than 2. According to Fig. III.1, as the density is below p = 2.0, because the
exponential-like behavior of average distance between particles is replaced by ramp-like
behavior, the position of the main-peak of g(r) makes a jump to a larger value around
p = 2.0. Therefore,the HS diameters of the MCRS and E-MCRS theory are apparently
released from the restriction due to the main-peak position of g(r) and ascend manifestly
as p varies from 2 to 1. The MCRS value is roughly fixed at 0.90 as density approaches
to zero, but the E-MCRS value continuously increases at very low densities and passes
over the values of the WCA and Lado-WCA theories.

According to the pressure equation, the compressibility factor Z(p) can be calculated,
and the results are shown by symbols.in Fig:sII[.5. In order to perform numerical
integration of Z(p), we fit Z(p) in Fig. IH.5 with' the series in Eq. II1.19 truncated
beyond the fouth order of p and treat the:wirial coefficients as fitting parameters. The
simulated data of Z(p) can be separated into twe parts. One is larger than p = 1 and
the other is smaller than p = 1, and we give the values of the fitting parameters in the
caption of Fig. III.5. The inset of Fig. II1.5 shows the second Virial approximation that
check the accuracy of our calculations at low densities.

In the MCRS and E-MCRS theories, the variational curves of excess Helmholtz free
energy A for some reduced densities are shown in Fig. II1.6, and each curve has a mini-
mum, which corresponds to a HS diameter. In these two theories, the approximate ggg(r),
obtained by Verlet algorithm [30], is used, and ygg(r) is approximated by Eq. II1.11 with
the Lado-WCA opyg value. In E-MCRS theory, Mon’s correction term causes the mini-
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Figure II1.5: Compressibility factor, Z = SP/p, as a function of density. The circles are
calculated by the pressure equation with the simulated g(r). The solid line is the Virial
function II1.19 with the Virial parameters: By = 0.995, B3 = 4.129, B, = —4.969, and
Bs = 4.67 for p > 1, and B, = —0.323, By = 5.228, By = —0.523, and B5 = 0.055 for
p < 1. The inset shows Z at low densities and the second virial approximation (dashed
line).
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Figure I11.6: Variation of A“*/NkgT on opg at the indicated reduced density. In each
panel, the solid and dashed lines are the curves for the E-MCRS and MCRS A" /NkgT,
respectively. The dot-dashed line is the variational A" /NkgT with Mon’s correction term
given in Eq .II1.8. At p = 0.472 and p = 0.094, the solid and dot-dashed lines are almost
the same.
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mum of the variational curve shifting to a larger effective HS diameter and a lower value
of A than those obtained by the MCRS theory. These results are expected to be true for
all kinds of fluid [33]. The accuracy of the approximation in Eq. II1.10 is examined again
by calculating excess Helmholtz free energy. In Fig. III1.6, although the corresponding
variational curve of Eq. II1.9 generally shifts upward relative to the one of Eq. III.16,
the HS diameter opgg, which is estimated by Eq. II1.9 is the same as that, which is es-
timated by Eq. II1.16, and the overall thermodynamics properties of our calcualtion are
not effected. By using the fitting function Eq. II1.19, we have done the integration in Eq.
IT1.17 and the results are indicated by the symbols in Fig. II1.7. Shown in Fig. IIL.7, the
excess Helmholtz free energies estimated By the various HS perturbation theories, includ-
ing the WCA, L-WCA, MCRS and: E-MCRS theries; and the comparison between these
results is presented. Although the MCRS prediction slightly deviates from the simulated
excess Helmholtz free energy, Mon’s*eorrection cause the E-MCRS prediction to match
the simulated data well for entire densities. Apparently, the variational approaches do a
better prediction than the WCA [73, 74, 75, 76] and Lado-WCA [77] theories, which are
only good for the region of p < 1.

Fig. II1.8 shows the behaviors of simulated and approximate excess entropies S. In
thermodynamics, S has a linear behavior at low densities because the excluded volume
effect due to the repulsive core of ¢(r). Intriguingly, the density curve of S has a small
positive slope in the intermediate range, which is roughly from p = 1.4 to 1.8. The
anomalous behavior of excess entropy is also observed in a two-scale ramp potential [89].
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Figure II1.7: The excess Helmholtz free energy A = Aer /NEkgT predicted by the E-
MCRS (solid line), MCRS (dash line), WCA (dotted line) and Lado-WCA (dot-dashed
line) theories and the result calculated by Eq .II1.17 (symbols).
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Figure II1.8: Density dependence of the excess entropy S = S /Nkpg. The solid and
dashed lines are the predictions of the E-MCRS and MCRS theories, respectively. The
dot-dashed line is the HS-fluid contribution in the E-MCRS theory. The symbols are the
results of thermodynamic calculation.
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Beyond the intermediate region, S decrease with density in a slower decreasing rate, be-
cause the density effect is more significant than the diameter reduced effect again. In
approximation, the prediction of the MCRS theory agrees well with the result of ther-
modynamic calculation at low densities, and also has smaller values of excess entropy
anomaly in the intermediate range; however, the excess entropy of MCRS’s prediction are
deviated from simulation data at higher densities. As the E-MCRS diameter is substi-
tuted into Eq. II1.23, which is the excess entropy of a HS fluid , the absolute value of the
excess entropy with a manifested anomaly is larger than that estimated by the MCRS
theory. It is amazing that the Mon’s correction in Eq. II1.24 makes the prediction of the
E-MCRS theory have a triumph over thea MCRS theory for a perfect agreement with the
simulation results in the entire density. It 'is easy to be understood: The contribution of
Mon’s correction becomes gradually larger with inceasing density; thus, Mon’s correction
is more important at higher densities and it gives-a fundamental improvement of the HS
variational prediction for the excess entropy of a fluid.

Fig. TIII.9 shows the density dependence of the packing fraction n of the HS fluid
estimated by various perturbation theories. For either the WCA or the Lado-WCA value
of ogg, the n increases monotonically with increasing density; however, their n values are
over 0.7 at reduced system density p = 3.305, which is close to the density of realistic liquid
Ga. The large packing fraction, which is in the solid phase of the HS system, indicate that
the overestimation of the effective HS diameter makes the reference HS fluid too much
deviate from realistic liquid Ga. On the other hand, due to the values of oyg in Fig. 111.4
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Figure I11.9: Density dependence of packing fraction n of the HS fluid with HS diameter
of the E-MCRS (solid line), MCRS (dashed line), WCA (dotted line) and L-WCA (dot-
dashed line) values shown in Fig .I11.4.
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estimated by the MCRS and E-MCRS theories, the packing fraction (n = mpo¥;¢/6) of
the MCRS theory is reasonably smaller than that of the E-MCRS theory. In following, we
explain that why the anomaly in S predicted by the MCRS and E-MCRS theories occurs
in our model. In Fig. I11.9, the density curves of MCRS and E-MCRS theories also have
apparently a anomaly, which shows a negative slope from p = 1.3 to 1.7. We maintain
that the negative slope corresponds to the substantial shrinkage in the size of the effective
HS with increasing density at this region as shown in Fig. I11.4; thus, the anomaly appears
in the packing fraction and the same physical picture cause the occurrence of anomaly
in excess entropy for MCRS and E-MCRS theories. Beyond this anomaly region, the 7
continuously increases and S continuously!deciease, because the contribution of density
effect more than that of particle size effect. In.the E-MCRS and MCRS theories, the n of
the HS reference systems at p = 3.305 is closé to.the physcially reasonable values: 0.473

and 0.5, which are in the fluid-solid coexistence region of the HS system.

II11.5 Conclusions

The interatomic pair potential of liquid Ga model has a ledge-shape repulsive core
and a long-range oscillatory part induced by conduction electrons. We have investigated
thermodynamic properties of this model fluid to investigate the applicability of some HS
perturbation theories which include the WCA, Lado-WCA, MCRS and E-MCRS approx-

imations. These approximate methods have been used for the Lennard-Jose, inversed-
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power fluids and liquid Na. The MD simulations of our model fluid at constant NVT
ensemble from low to high densities are performed, and the highest density corresponds
to realistic liquid Ga at T' = 323K. There is an interesting above the density variation
of the model fluid: The main peak of the radial distribution function is located in the
repulsive core region of the interatomic pair potential at high density, the position of the
main peak suddenly jumps to a larger distance at some intermediate density and the main
peak moves outwardly to the first attractive well of the interatomic pair potential as the
density is continuously decreased.

Although the WCA and Lado-WCA methods are accurate for the Lennard-Jones flu-
ids, the predicted HS diameters are too_ latge forour model at high densities. The packing
fractions in the WCA and Lado-WECA theories are over the freezing point of the HS ref-
erence system so that they are failure for realistic liguid Ga. Based on a variational
approach, the MCRS and E-MCRS theories take into 'account the effect of the anomaly of
packing fraction in a region of intermediate density, and the HS reference systems for the
model fluid are physically reasonable at entire density. According to the deficiency of the
HS perturbation theory, Mon gives a correction which is related to the configuration space
of the hard-sphere fluid. Considering this correction, the E-MCRS theory indeed improves
the predictions on the thermodynamics properties of the model fluid: the estimated Hel-
mohltz free energy and entropy by E-MCRS method are closer to the simulation results
than those by others mothods. An anomalous region, associated with the shrinkage of the
effective HS diameter by increasing system density, is found in the excess entropy of our
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model varied with density. For the predictions of the thermodynamic properties of liquid
Ga, our results suggest that the E-MCRS perturbation theory is the most accurate one

in all HS perturbation theories.
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Chapter IV

Conclusions

In this thesis, the model of simulation is a gallium interatomic pair potential, which
consists of a legde-shape repulsive core and the long-range Friedel oscillations induced
by the conduction electrons, is obtained from the first-principles GEINMP theory at the
thermodynamic conditions of liquid gallium close to the:melting point. The repulsive core
of the pair potential varies contintously fremranexponential-decay inner core, through
a ramp-like intermediate region, to a LJ-like outer core. By MD simulation, we have
successfully reproduced the static structure factor and dynamic structure factor which
agree well with the results of experimrnts; further, the structures, dynamic properties,
and thermodynamic properties of this pair potential have been investigated for studying
the realistic liquid gallium. We summarize the conclusions in the following.

In chapter II, a shoulder appears on the high-¢q side of the first peak in the static
structure factor and an anomaly appears on the linewidth of dynamic structure factor, in

good agreements with the experimental data of liquid gallium. According to our results,
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the structure anomaly is determined by the ledge-shape repulsive core and first three
attractive well. In local structure, a modulation produced by the Friedel oscillation makes
the apearance of some solid-like cluster, which are, in concept, more or less like the Peierls-
distortion mechanism proposed for liquid-Arsenic before [90, 91]. It is suggested that the
shoulder in the static structure factor is associated with the appearance of these solid-like
clusters.

Also, the anomaly in the linewidth of the dynamic structure factor is determined by the
ledge-shape repulsive core and the first two attractive wells. The dynamic anomaly, which
can be well described by the revised Enskog theory with the HS diameter determined by
the first-peak distance of the radial distribution function, is interpreted by cage diffusion.
The structure and dynamic anomaly are confirmed to occur at the same wavenumber,
which suggests that the ion-density fluctuation at this wavevector has the same wavelength
with the Friedel oscillations induced by the conduction electrons. Thus, at this wavevector,
the density waves of ions and electrons are coherent and the attractions between the two
systems would be more rigid so that the cage around each ion becomes harder.

In chaptr II1, the radial distribution function of the model has an interesting variation
with number density: At high density, the main peak of the radial distribution function
is located in the inner region of the repulsive core with an exponential decay. At some
critical density, the position of the main peak makes a discontinuous jump to the outer
core of the LJ-like region. As the density is further decreased, the main peak moves
toward the minimum of the first attractive well of the pair potential.
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To predict the thermodynamic behaviors of our model, the WCA, Lado-WCA, MCRS
and E-MCRS methods are used. For the prediction of HS diameter, the packing fractions,
which are estimated by the WCA and the Lado-WCA methods, are over the freezing
point of the HS system and this makes the WCA and Lado-WCA theories breakdown
for our model at high densities. In MCRS and E-MCRS theories, due to the estimated
HS diameter is obviously reduced in a region of intermediate density, the density curve
of the packing fraction has a negative slope in this region; further, beyond this density
region, the value of packing fraction is physically reasonable at high density. The E-
MCRS theory, which includes Mon’s correction to improve the MCRS theory, can predict
the better results of the excess Helmohltz free energy and the excess entropy than those
predictions of the WCA, Lado-WCA and MCRS theories. Furthermore, the anomalous
behavior of excess entropy in our model ican be described by the E-MCRS and EMCRS
theories, and the anomaly is associatéd with the substantial reduction of the effective HS

diameter estimated by the two variational theories.
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Chapter V

Appendix

V.1 WCA Theory

Considering a Lennard-Jones potential of the 6,12 type

¢(r) = 4e[(o/r)* = (o/r)°}, (V.1)

where o is the dimensions of length, ‘and. e the dimensions of energy. The structrue of the
Lennard-Jones system is conveniently described in terms of the two-particle correlation
function and its Fourier transform. The correlation function is h(r) = g(r) — 1, where
g(r) is the usual radial distribution function. The dimensioness Fourier transform of the

correlation function is

h(k) = p/h(r) exp(—ik - r) dr. (V.2)

The structure factor, S(k), is simply h(k) + 1, and it is measured directy by scattering

experiments performed on a fluid.
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Weeks, Chandler and Andersen state two hypotheses: (1) At intermediate and large
wavevectors (ko > 7) , the quantitative behavior of h(k) is dominated by the repulsive
forces (the attractive forces are primarily manifested in the small wavevectors portion of
the spectrum); (2) For high densities (po® > 0.65), the behavior of h(k) even at small
wavevectors (ko < 7) is at least qualitatively determined by the repulsive forces. For the
first statement, h(k)+1 represents the linear repones of the fluid structure to a disturbance
of wavelength 27 /k. While a short wavelength disturbance will probe both the repulsive
and attractive forces in a fluid, it is reasonable that the harsh repulsions, rather than the
slowly varying longer range attractions, will dominate the reponse of the fluid to such a
disturbance. The second statement is_equivalent.to asserting that the correlations in a
simple liquid are almost entirely due to excluded velume effects when the density is high.

For the first steep of WCA theory, the liennard-Joneés potential can be separated into

two parts:

o(r) = ¢o(r) + A¢(r), (V.3)

where ¢(r) is the reference system pair potential, and A¢(r) is the perturbation potential.
For the particular separation in which we are interested, ¢o(r) includes all the repulsive
forces in the Lennard-Jones potential and A¢(r) all the attractions. With the additional
condition that the reference system pair potential obey the thermodynamic requirement
¢o(r) — 0asr — oo, this separation is unique:

[ 9(r)+e forr<2Yq
do(r) = { 0, for r > 2V/64 (V4)
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265 x/o

Figure V.1: Separation of the Lenuar-Jones potential, ¢(r), into a part containing all the
repulsive forces, ¢o(r), and a part containing all the attractive forces, A¢(r). dotted-
dashed line is the position of 2'/64

—e, forr <264

Ad(r) = { o(r), forr > 2% (V.5)

These functions are shown in Fig. V.1.
The thermodynamic ramifications of postulate of the WCA theory have been discussed.

First, considering the free energy, this is done by introducing a ”test” potential
o(r;A) = ¢o(r) + Mo(r), 0<A<1 (V.6)

Then, it can relate the Helmhotz free energy of the Lennard-Jones system to the reference
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system and the perturbation:
1
A INkgT = AF"/NkpT + p/(QkBT)/ d)\/g(r; A) u(r) dr. (V.7)
0

Here g(r;\) is the radial distribution function in the "test” system, A" is the excess
free energy, AF* is the excess free energy in the reference system. With the choice of
reference and perturbation interactions, the integral over A\ in Eq. V.7 represents the
effect of turning on the attractive forces in the Lennard-Jones fluid: when A = 0, g(r; \)
is the radial distribution function for the reference system, go(r); and A = 1, g(r; ) is the
Lennard-Jonse g(r). According to the WCA hypothesis, when the density is sufficiently
high, g(r) is accurately approximated by go(r), and we introduce the function yo(r) which

is defined by the equation

90(r) = o(r) exp[=Beo(r)} (V.8)

Physically, yo(r) gives the correlations thatiexist in'the reference system beyond the range
of the reference interaction. Since this interaction is harshly repulsive, it seems probable
that yo(r) can be approximated by the similar function appropriate to a hard-sphere

system of dimater oy, ygs(r). For this reason, we consider the following approximation:

9o(r) = yus(r) exp[—Beo(r)]. (V.9)

Therefore, a reference system potential ¢o(r), which Boltzmann factor eq(r) = exp [— (oo ()],
is harshly repulsive but continuous. The Boltzmann factor of reference system is not very
different from the Boltzmann factor eygs(r) = exp [— (B¢ gs(r)] of a hard sphere potential,
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e

Aegr) 0

Figure V.2: The "blip function”.Z The quantities e(r) and eyg(r) are the Boltzmann
factors, respectively, for soft-core and hard-cere potentials.

and ¢pg is the hard sphere repulsion of diameter ¢y s. Thus, for a properly chosen value

of oyg, the function

Ae(r) = eg(r) —epns(r) (V.10)

is effectively non-zero over only a small range of r, and it is shown as Fig. V.2
Consider a function B(r), which is a difference between go(r) and gps(r), is defined

as

go(r) = gus(r)+ B(r) or B(r) = ygs(r) Ae(r). (V.11)
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where ggg(r) is the radial distribution functon of hard sphere fluid. By taking Fourier
transforms, the hypothesis of WCA theory verify that h(k) = ho(k) is for some range of

wavevector,

ho(k) = hus(k)+ p/yHS(r) lexp(—Bdo(r)) — exp(—LBdus)] exp(—ik-r) dr, (V.12)

where ho(k) is the Fourier transform of the reference system two-particle correlation func-
tion, and opgg is determined by vanishing the integral term. Since B(r) is almost zero

except near r = ogg. So, the integral term of Eq. V.12 can represented as

/O " yas(r) lexp(—Boo(r)) — cap(—Bus) rdr = 0, (V.13)
where
_ 1/6
exp [~Aoo(r)] = {exp[ i € (V.14
f
e l-pons] = {0 o IS (V.15
For 0 < opgg < 21/60,
OHS 21/64
/ yis(r) exp [~ By (r)] ridr = / yus(r) lexp (—Bo(r)) — 1]2dr,  (V.16)
0 OHS
finally,
21/64 21/64
/ yirs(r) exp [~ Bdo(r)] rdr — / yis(r)r2dr. (V.17)
0 OHS

For our potential of liquid Ga, the position of ry corresponds to the position of 21/%¢ of
6-12 Lennard-Jones potential.
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V.2 Lado-WCA Theory

The combination of Eq. V.9 and Eq. V.17 produce good results when apply to the
hard repulsive part of the Lennard-Jones potential, but is less successful with the softer
repulsive potential. A fundamental shortcoming inherent in this combination is the lack

of thermodynamic consistency; thus, the pressure P obtained from the free energy A,

pr._ O0(BA/N)
-y R (V.18)

is not the same as that found through the usual quadrature,

BP/p = 1— p/6 / 9(r)¢ (r)rdr.g (V.19)

the former being more accurate.
In this note, Load shows that the basi¢ approximation, Eq. V.13, can be obtained by
minimizing an approximate expression for the free energy. A production of this approach

is a new criterion for choosing the hard sphere diameter, namely

[texp =560 - exo —Boms (2 g — o (v.20)

80H5

which eliminates the disagreement between Eq. V.18 and Eq. V.19 and leads to improve-
ments in the computed results. Because it implies thermodynamic consistency, Eq. V.20

is the formal implementation of the Verlet-Weis [92] criterion.
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