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摘要 

在本論文中，我們將以 molecular dynamics (MD) 作為模擬的方

法，以一具有排斥核 (repulsive core) 和 Friedel 震盪 (oscillation) 項

所組成的液態鎵 pseudo-potential 作為模擬系統的作用位能，來探討

真實液態鎵微觀尺度下的結構、動力學行為及其熱力學特性。於此，

我們將這些動力學行為和熱力學特性分成兩部分各自討論。 

一、 經由非彈性 X-ray 散射 (IXS) 和非彈性中子散射 (INS) 實

驗，發現液態鎵的靜態結構因子 (static structure factor)  有一

突起結構，動態結構因子 (dynamic structure factor) 

( )qS

( )ω,qS  的頻

譜寬 (line-width) 函數 ( )qZ  有一平台結構。這兩異常結構的成

因及其物理原理是近年來熱門的話題。故為了解其物理原理，我

們以上述所提的液態鎵模型作為系統之作用位能，由粒子流動之
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縱向分量相干函數頻譜 (longitudinal current spectra) ( )ω,qCL  所

估計出的系統聲速，和經由計算所得到的動態結構因子幾乎和實

驗值吻合。這證明我們所使用的液態鎵模型足以取代真實液態

鎵。同時，在我們的模擬系統發現，靜態結構因子  中的凸

起結構與頻譜寬函數 

( )qS

( )qZ  中的平台結構都約略發生在相同處，

但在  中凸起結構的產生，需有效位能範圍含蓋到第三個震

盪位能井，  中平台結構的產生，需有效位能範圍卻只需要

含蓋到第二個震盪位能井。 

( )qS

( )qZ

二、 Mansoori-Canfield / Rasaiah-Stell 提出以硬球為基本要件的

MCRS 微擾理論，不但無需沉重的計算且能經濟地幫模型系統找

到ㄧ有效粒子尺度。再加入 Mon 的修正項，推廣為 Extend-MCRS

微擾理論。此理論更能精確地估計模擬系統的有效粒子尺度和其

熱力學性質。利用具有和真實液態鎵相似物理特性的液態鎵模型

作為模擬系統的作用位能，除了前章節在此液態鎵模型發現的奇

異結構外，其徑向分布函數 (radial distribution function) 的峰值隨

密度變化曲線有一不連續跳躍。此外，額外的熵值 (excess entropy) 

隨著密度增加而減少，但在某段密度區間內額外的熵值卻不正常

增加。此奇異行為可以由系統的粒子最密堆積 (packing fraction) 

在此區間內隨密度增加而減少獲得解釋。 
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Abstract 
 
 
 

In this thesis, to investigate the structures, dynamic 

behavior, and thermodynamic properties of liquid gallium, we 

use molecular dynamics (MD) method with a liquid gallium 

pseudo-potential, which consists of a repulsive core and a 

Friedel-oscillation tail. The discussions for the dynamic 

behavior and thermodynamic properties of liquid gallium will 

be separated into two chapters. 

According to inelastic neutron scattering (INS) and 

inelastic x-ray scattering (IXS) experiments, A shoulder 

appears on the static structure factor ( )qS  and a dynamic 

anomaly appears on the linewidth function ( )qZ  of dynamic 

structure factor ( )ω,qS . The causes of these two anomalous 

 iii



structures are popular issues in recent decade. In order to 

investigate the physical origins of these two anomalies, the 

interatomic pair potential, described above will be the 

simulated model. The sound velocity of our model which is 

estimated from longitudinal current spectra ( )ω,qCL  and the 

dynamic structure factors ( )ω,qS  of our model agree well with 

the experimental results. Therefore, it suggests that the 

simulated model is good for describing realistic liquid gallium. 

On the other hand, we report the shoulder of the  and the 

dynamic anomaly of the 

( )qS

( )qZ  roughly locate at the some 

position. The contribution of interaction range of interatomic 

pair potential to cause the shoulder of ( )qS  should include the  

first three attractive wells, but the contribution of interaction 

range of interatomic pair potential to cause the dynamic 

anomaly of ( )qZ  should include the first two attractive wells 

only. 

Mansoori-Canfield / Rasaiah-Stell (MCRS) theory, which is 

based on hard sphere perturbation theory, can estimate 

effective diameter of particle efficiently without heavy 

computing time. By adding a correction term originally proposed by 

Mon to remedy the deficiency of the MCRS theory, the extended-MCRS 

theory can accurately predict the effective diameter and thermodynamic 

properties of simulated system. By using MD simulation with interatomic 

pair potential given above, there is a discontinuous jump on the 
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main-peak position of the radial distribution function  at some 

critical density. Moreover, an anomaly of excess entropy is found to be 

associated with the anomalous packing fraction 

( )rg

η  of the hard sphere 

(HS) fluid in the almost same density region. 
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Chapter I

Introduction

Polyvalent metals (lead, aluminum, gallium, bismuth, etc.) have more strange physical

behaviors than alkali metals (lithium, sodium, potassium, rubidium, etc.). Among the

polyvalent metals, gallium, exhibiting peculiar structure and electronic properties, has

the largest ion number density among the metals belonging to IIB, IIIA, and IVA group:

namely, ni = 0.051Å−3; further, the electronic density of states (DOS) in liquid gallium

shows anomalies associated with some covalent residues. In addition, the liquid phase

of gallium is characterized by an electron density of states approaching that of a nearly-

free-electron system, which makes it a good candidate for exploiting the simple model of

liquid metal dynamics based on the electron-gas-screened ion-ion interaction. Therefore,

this thesis emphasizes the important investigations for many physical properties of liquid

gallium at temperature close to the melting point Tm = 303K.

The nature of microscopic dynamics in alkali and polyvalent metals is nowadays one

of the the most lively debated topics in the condensed matter physics. Beyond the truly
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hydrodynamic region, the microscopic dynamics, characterized by the occurrence of col-

lective excitations, has attracted many experimentalists in the three decades. Also, the

microscopic dynamics can exhibit a dispersion relation extending over a relatively wide

range of momentum transfers (typically, up to half the position of the first maximum of

the static structure factor). Therefore, several studies performed through inelastic neu-

tron scattering (INS) revealed the presence of a Rayleigh peak and two Brillouin peaks in

the dynamic structure factor of many monatomic liquids [1, 2, 3]. The advent of the new

radiation sources has allowed the full development of the inelastic x-ray scattering (IXS)

[4]. The IXS technique, only related to the coherent dynamics, allows to investigate the

collective excitations in the low exchanged momentum (q) region, which is inaccessible by

INS. Indeed, liquid alkali metals (liquid rubidium [1, 5],lithium [6], sodium [7], potassium

[8], and cesium [9]) and complex liquid metals (mercury [3], aluminum [10], and gallium

[11, 12, 13]) have been studied by INS and IXS experiments recently.

On the simulation side, most of liquid metals exhibit the characteristic structural

and dynamical features that can be interpreted by the Lennard-Jones potential or the

pseudopotential of simple metals [14, 15]. The pseudopotential concept, which is besides

offering a deeper comprehension of physical properties such as electrical resistivity, pro-

vides a clue for realistic numerical simulation. The numerical simulation framework is

particularly useful since the single-particle and the collective dynamics can easily be in-

vestigated within technical restrictions due to the finite box size (defining the minimum

accessible wave vector) and computation time (related to the statistical quality and to the
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energy resolution of the calculated spectra). Broadly speaking, the features of the atomic

collective motion, ie., the details of the dynamic structure factor line shape, as an outcome

of the molecular-dynamics run, turns out to be less noisy and more straightforward than

the corresponding INS results: no absolute normalization is required, no mixing between

coherent and incoherent dynamics occurs. Also, the collective dynamics of liquid alkali

and ployvalent metals exhibit several features which make these systems candidates to

test different theories for the collective dynamics in the liquid state. For example, the

generalized kinetic theory predicts that the dominant damping mechanism is provided by

a fast process which is thought to be associated with the interactions between an atom

and the ”cage”, its nearest neighbors, in the liquid. By molecular dynamics (MD) simu-

lation, many numerical studies have been reported on alkali and polyvalent metals such

as lithium [16, 17], sodium [18, 19], potassium [18, 19], rubidium [18, 19], cesium [18, 19],

and liquid gallium [12, 13].

In the first work of this thesis, by simulating a single interatomic pair potential, which

consists of a ledge-shape repulsive core and the long-range Friedel oscillations induced by

the conduction electrons, the well-known shoulder in the static structure factor and the

recently observed anomaly in the linewidth of dynamic structure factor of liquid gallium

are reproduced. In our simulations, the two anomalies occur at the same location, which

is close to the wavenumber of Friedel oscillations. Both variations of the liquid structure

and the linewidth of dynamic structure factor with the different interaction range of the

pair potential are also examined. Our results show that the effective range of the pair
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potential contributing considerably to the dynamic anomaly should include the repulsive

core and the first two attractive wells in the Friedel oscillations, but the effective range

for the shoulder structure should be extended up to the first three attractive well. We

interpret the occurrence of the dynamic anomaly by a cage-diffusion picture, in which

the rigidity of the cage around each ion is enhanced by the coherent attractions between

the density waves of ions and the conduction electrons with the wavenumber of Friedel

oscillations.

On the other hand, the present status of the theoretical approximation for liquid-

structure calculations has a prosperous development in recent three decades. In past two

decades, the hypernetted-chain and integral-equation methods were popular for demon-

strating structures of alkali and polyvalent metals, which include cadmium ,zinc [20],

sodium, potassium, rubidium, cesium [21, 22, 23], germanium, aluminum, lead [23, 24],

beryllium, magnesium, calcium, barium [25, 21, 23], and gallium [21]. However, the cal-

culation of the free energy for dense fluids by the hypernetted-chain or integral equation

method is nontrivial and tedious.

On the other hand, the structure of some liquid alkali metals (lithium, sodium, potas-

sium, rubidium, and cesium) [26] are studied and compared by thermodynamic pertur-

bations. Besides predicting the structure of liquid metals, thermodynamic perturbation

offers a method for predicting the thermodynamic properties of fluids. Although perturba-

tive predictions are not expected to rival those of advanced integral equation or large scale

computer simulation method, they are far more numerically efficient than the computer

4



simulation approaches and often produce comparably accurate results. A key advantage

of perturbative approximations is that the structure of fluid is explicitly retained and thus

thermodynamic properties can be accurately predicted.

In recent years, many perturbation theories of the thermodynamic properties for flu-

ids have been proposed. The basic principle of these perturbation theories is that the

properties of a model system of interest can be obtained in terms of a closely related ref-

erence system, for which much is known or can be easily calculated [27]. The ”closeness”

of the reference and model fluids permits the model fluid free energy to be treated as a

perturbation on the reference free energy [28]. Therefore, the hard-sphere fluid should be

the excellent candidate for a natural reference fluid because the free energy of the hard

sphere reference system is available analytically as fits to accurate machine calculation

[29] and the analytic pair distribution function obtained from the Percus-Yevick equation

[30]. According to these convenient conditions of the hard-sphere fluids, the extensive ap-

plications of hard sphere perturbation theory (HSPT) are over many decades for a wide

range of liquid [31]. In the literature review of HSPT [27, 28, 31, 32, 33, 34, 35, 36, 37],

although the HSPT is already a complete theory for thermodynamic property and has

played an important pioneering role in the study simple liquid, there are few researches

about polyvalent metals with HSPT, especially, liquid gallium.

In the second work of this thesis, we report the study of the thermodynamic prperties of

liquid gallium (T=323K) by HSPT, because there is no investigation or literature related

to this work so far. By investigating the thermodynamic properties of a liquid-gallium
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model close to the triple point, we have extended the application of the hard sphere

perturbation theory (HSPT) to an interatomic pair potential, which has a ledge-shape

repulsive core and the long-range oscillations. The structure of this model is interesting

for a discontinuity in the density variation of the main-peak position of the of the radial

distribution function. The validity of a HSPT for this model fluid at high densities is

essentially determined by the discontinuity on the the effective HS diameter estimated by

the theory. A correction to remedy the inherent deficiency of the HSPT is proposed by

Mon. The new perturbation theory is found to be superior to other first-order HSPT in

predicting the thermodynamic properties of the model fluid, including a anomaly in the

excess entropy.
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Chapter II

Anomalies in structure and

dynamics of liquid Ga

II.1 Introduction

The properties of collective dynamics in liquid metals have been studied by the inelastic

neutron scattering (INS) and inelastic X-ray scattering (IXS) technique for a long time.

Although some physical properties can be obtained by hydrodynamic theory, most of

peculiar features in the excitation spectra of polyvalent liquid metals can not be described

by this theory [38]. Therefore, to investigate the collective properties in the hydrodynamic

regime and collective dynamics in the kinetic regime of these liquid metals is an interesting

and important subject. As the wavelengths of the collective dynamics are smaller than

the average interparticle distance in these liquids, the propagating sound mode is strongly

damped and dynamic structure factor has only a single Lorentzian-like central peak [39].

According to Waseda’s classification [40], liquid Ga is one of the polyvalent liquid

metals with anomalous structure. The anomalous structure, characterized by a shoulder
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on the high-wavevector side of the first peak of the static structure factor S(q), can not be

interpreted by a hard-sphere (HS) model. In the pseudo-potential theory, the interatomic

pair potential of a polyvalent liquid metal generally has a ledge-shape repulsive core

and the long-range Friedel oscillations induced by the conduction electrons [41]. The

appearance of the shoulder in a S(q) of the polyvalent liquid metals (gallium, silicon,

germanium, tin and bismuth) [41, 42, 43, 44] is associated with the ”ledge-shape” repulsive

core of the interatomic pair potential, which is obtained from the optimized random

phase approximation. Mon [45] shows that the shoulder of the S(q) in liquid gallium

is also reproduced by using an interatomic pair potential with a subsidary minimum

at a relative short distance, which is induced by the dynamically screened fluctuating

dipole interactions between ion cores. These results [41, 42, 43, 44, 45] indicate that

the occurrence of the shoulder in S(q) is strongly dependent on the short-range (ledge-

shape) repulsive core of the interatomic pair potential, and these results are concluded

with two characteristic length scales: the effective diameter of the repulsive core and the

wavelength λF of the Friedel oscillations, and the shoulder is expected to occur near 2kF ,

where kF = π/λF is the magnitude of Fermi wavevector of the conduction electrons [44].

Recently, an anomaly on the high-wavevector side of the de Gennes narrowing [46]

in the linewidth Z(q) of dynamic structure factor S(q, ω) of liquid gallium close to the

melting point (303K) is observed by the measurements of IXS [47] and quasielastic neutron

scattering (QENS) [48]. The linewidth Z(q) as a function of wavevector q of the collective

dynamics shows a minimum, known as de Gennes narrowing, occurring near qM , the first
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peak of the S(q) of the liquid [46]. This anomaly, whose position is coincident with that

of the shoulder in S(q) [47, 48], is similar as the one observed by the inelastic neutron

scattering (INS) method [49] for liquid bismuth; further, another evidence of the anomaly

in linewidth Z(q) is provided by an experiment of liquid germanium by QENS [50]. Thus,

the anomaly occurring in Z(q) is expected to be a common feature to those polyvalent

liquid metals exhibiting a peculiar shoulder in the S(q) [51, 52, 53, 54, 55]. Theoretically,

in classical molecular dynamics (MD) simulation, the calculation of the static and dynamic

structure factor can be done for larger simulation systems than that of ab initio simulation

system. In the kinetic theory, the linewidth Z(q) can be described by the revised Enskog

theory for the HS fluids, generalized by including the correlated collisions among particles

[56].

It is interesting to understand the correlation between the shoulder in S(q) and the

anomaly in the Z(q) of dynamic structure factor. We use MD simulation with an inter-

atomic pair potential, generated from the first-principles generalized energy independent

nonlocal model-pseudopotential (GEINMP) theory [57], and we successfully reproduce the

anomalies in S(q) and Z(q). These results agree well with the experimental data of liquid

gallium [58]. To study the correlation of the shoulder and the anomaly and to examine

the contribution of effective range of the interatomic pair potential for both shoulder and

anomaly are a primary theme in this chapter. Finally, we give a physical explanation for

the occurrence of the anomalies in the static structure factor S(q) and in the linewidth

Z(q) of dynamic structure factor.
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II.2 Method

II.2.1 Simulated model and molecule dynamics simulation

Using MD simulation with interatomic pair potential generated from the GEINMP

theory [57], we have carried out the NV T ensemble with 3500 particles in the equilabrium

state of liquid Ga at T = 323K, pressure about 1 bar and number density ρ = 0.05Å−3

[59]. In the simulation, the particles are confined in a cubic box of length 41.23Å and

the periodic boundary conditions are used. The interatomic pair potential φ(r) is shown

in Fig. II.1, and have two parameters: σ = 4.04Å, the shortest distance where the

potential is zero, and ε, the depth of the first attractive well, corresponding to an effective

temperature about 47K. The pure repulsive core of φ(r) is the range inside the minimum

of the first attractive well, which occurs at σ0 = 1.07σ. The repulsive core, which is much

softer than that of the LJ potential, has a ledge shape with a curvature change around 0.8σ

[60]. Beyond σ0, φ(r) has an oscillatory part, which is the so-called Friedel oscillations

with the first, second and third maxima at σ1 = 1.28σ, σ2 = 1.77σ and σ3 = 2.26σ,

respectively. As distance is farther than 3σ, the oscillatory part can be well described by

the equation of the shifted Friedel oscillations [41]

φFO(r) = V
cos(2kF r + α)

(2kF r)3
, (II.1)

where kF = 16.24nm−1. Hence, the wavelength λF of the Friedel oscillations is 1.93Å and

the effective valence per ion in the simulation is estimated to be 2.9.
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Figure II.1: (a) Interatomic pair potential φ(r) obtained from the first-principles GEINMP
theory for liquid Ga at T = 323K [57]. ε, corresponding to a temperature about 47K, is
the depth of the first attractive well. σ = 4.04Å is the shortest distance where the pair
potential is zero. The first minimum of φ(r) is located at σ0 = 1.07σ, the first maximum
is at σ1 = 1.28σ, the second maximum is at σ2 = 1.77σ, and the third maximum is at
σ3 = 2.26σ. (b) Comparison between φ(r) (solid line) and the LJ potential (dotted-dashed
line) with the same ε and σ. (c) The pair potential φ(r) at distances larger than 3σ. The
dashed line is the fitting result with Eq. II.1.

11



II.2.2 Interatomic pair potentials truncated at different distances

In order to investigate the effects of the repulsive core and the oscillatory part of φ(r)

on the structures, physical properties, and collective dynamics of the simulated liquid, we

perform the same NV T conditions with the pair potential φi(r), for i = 0, 1, 2, 3, obtained

by truncating φ(r) at σi and shifting in energy with the value φ(σi). φi(r) is finite in range

with cutoff at σi, where φ0(r) has only the ledge-shape repulsive core, φ1(r) includes the

repulsive core and the first attractive well, φ2(r) and φ3(r) are extended to include the

first two and three attractive wells, with the depth of the attractive well decreasing with

distance r.

II.3 Theory

II.3.1 The static structure factor

The static structure factor S(q), describing the Fourier components of density fluctu-

ations in a liquid, can be measured by INS or IXS experiments. It is related to radial

distribution function through a three-dimensional Fourier transform, and can be presented

as

S(q) = 1 + 4πρ

∫

∞

0

r2
sin(qr)

qr
g(r) dr, (II.2)

where g(r) is the radial distribution function of the liquid. ρ is the density of the liquid

and q is the wavevector. As k is large, S(q) approaches to one.
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II.3.2 The dynamic structure factor

Probed by INS, the dynamic structure factor S(q, ω) of a liquid consists of the coherent

and incoherent parts, associated with the collective and single-particle dynamics in the

liquid [61], respectively. When the scattering wavevectors are larger than qM , the first

peak position of S(q), only the coherent part survives and is referred as QENS [48]. In the

IXS, without kinematical restrictions, S(q, ω) has only the coherent part over the energy

range of particle dynamics, which makes this technique suitable for the investigation of

collective dynamics in liquids [11]. The advantage of MD simuation is to provide the

dynamic and structural information which is not accessible in real experiments. The

SMD(q, ω) , presented as

SMD(q, ω) =
1

2π

∫

∞

−∞

F (q, t) exp(iωt)dt, (II.3)

can be obtained via a time Fourier transform of the intermediate scattering function F (q, t)

[39], which is generated directly by MD simulation with an interatomic pair potential.

As the wavevectors are smaller than q = 12.5nm−1 one-half of qM , dynamic structure

factor is characterized by a central peak component due to quasi-elastic scattering, and two

side components due to inelastic scattering from collective excitations, generally referred

as the Brillouin lines. As the wavevectors are larger than qM , the linewidth of central

peak in the S(q, ω) is caused by the non-propagating heat mode. In the revised Enskog

13



theory for a HS fluid with diameter σhs, Z(q) can be expressed as [56, 64, 65]

ZE(q) =
DE q2

Shs(q)
d(q), (II.4)

where DE and Shs(q) are the Enskog diffusion coefficient and the static structure factor

of the HS fluid, respectively. d(q), characterizing the cage diffusion in the HS system is a

dynamic factor, and can be approximated by d(q) = (1− j0(qσhs) + 2j2(qσhs))
−1, where

jn(x) is the spherical Bessel function of order n [65]. In this theory, DE is given by

DE =
σhs

8

(

πkBT

m

)1/2
(1− η)3

η(2− η)
, (II.5)

where m is the mass of particle, kB is the Boltzmann constant, and η = πρσ3

hs/6 is the

packing fraction. Thus, σhs is the only parameter to be determined in Eq. II.5.

II.3.3 The longitudinal current spectra

The longitudinal current spectrum is given by

CL(q, ω) =
1

2π

∫

∞

−∞

CL(q, t) exp(iωt)dt, (II.6)

where CL(q, t), the longitudinal current correlation function, can be shown as

CL(q, t) =
1

N
〈jz

q
(t) · jz

−q
(0)〉, (II.7)

where jz
q
(t) is the component of the current function ~jq(t) that is parallel to the direction

of the wave vector ~q. The current function ~jq(t) is given by

~jq(t) =
N

∑

l=1

~vl(t) · exp [−i~q · ~rl(t)] , (II.8)
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where l is the index of particle, and ~v and ~r is the velocity and coordinate of partice,

respectively. As can be seen, the CL(q, ω), calculated as the Fourier transforms of the

CL(q, t) [39], are in good agreement with those obtained via the equation CL(q, ω) =

ω2S(q, ω)/q2. The main peak position of CL(q, ω) for each q is used to plot the dispersion

curve, and the slop of the dispersion curve is closely related to the sound velocity of the

system.

II.4 Results

For φ(r), the simulated S(q) shows a maximum located at qM (25.4nm−1), and a

shoulder appear on the high-q side of the first peak. Shown in Fig. II.2, the shoulder in

the simulated S(q) occurs around 32.5nm−1, which is exactly equal to 2kF . Moreover,

the first peak and the shoulder of simulated S(q) agree with those of experimental data

above the melting temperature [40], although the values of the simulated S(q) at low q

deviate from experimental ones.

In order to investigate the relationship between the shoulder in S(q) and the inter-

atomic potential including the repulsive core and Friedel oscillation parts, we examine

the variation of the radial distribution functions g(r) and S(q) with the interaction range

of the interatomic potential refered to Fig. II.1. First, Fig. II.3 shows the variation of

the radial distribution functions gi(r), compared with g(r) of the full-range φ(r). The

first peak in all radial distribution functions almost locates at 0.686σ, which is inside

15



20 40 60

q [nm
-1

]

0

0.5

1

1.5

2

2.5

S(
q)

Exp. data
Liquid of Ga

Figure II.2: Comparison of the simulated static structure factor (solid line) with the
experimental data of liquid Ga at T=323K (open circles) [40].
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Figure II.3: The radial distribution functions: g(r) (solid line), g0(r) (dotted line), g1(r)
(dashed line), g2(r) (dot-dashed line) and g3(r) (dot-dot-dashed line). g(r) is for the
full-range pair potential φ(r), indicated by the thinner dotted line, and gi(r) is for the
truncated pair potential φi(r). The second and third shells of the radial distribution
functions are enlarged in the inset.
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the repulsive core, and the shapes of gi(r) are almost the same, no matter where the

interaction distance is truncated. The evident difference is only for tail of radial distribu-

tion functions that indicates the Friedel oscillations of the interatomic potential make the

second- and third-shell structures of radial distribution function an outward shift, and this

shift enhances the values of radial distribution function at distances around the minimum

of the Friedel oscillations. The outward shifts of the second and third shells have little

reduction by including the first attractive part referred to Fig. II.3. It means that the

Friedel oscillations beyond the first attractive part have a certain effect on the structures

of the liquid. Extending the interaction range to the third attractive well of the Friedel

oscillations, g3(r) can be completely identical with g(r). The results mildly imply that

the shoulder structure may be a result of the interplay between the ledge-shape repulsive

core and the Friedel oscillations; however, Matsuda [66] and Canales [67] suggest that the

structures of liquid alkal metals are almost indentical by considering the repulsive core

and the short-range attractive part of interaction potential.

Secondly, the simulated static structure factors Si(q) with the truncated interatomic

potentials φi(r) (i = 0, 1, 2, 3) are shown in Fig. II.4, with S(q) as a reference one. The

first peak and the shape around 32.5nm−1 in these static structure factors should be

examined particularly. For the S0(q), no shoulder appears on the high-q side of the first

peak, which shifts to 25.7nm−1 and has an increase in magnitude. The simulated S1(q)

deviates more from a HS fluid than the liquid of pure repulsive core because the first

attractive well is included in the interaction range. The first peak of S1(q) is evident
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Figure II.4: The static structure factors: S(q) (solid line), S0(q) (dotted line), S1(q)
(dashed line), S2(q) (dot-dashed line) and S3(q) (dot-dot-dashed line). S(q) is for the full-
range pair potential φ(r) and Si(q) for the truncated pair potential φi(r) (i = 0, 1, 2, 3)
with a cutoff at σi.
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to be lower than that of S0(q), but the position has no significant change; however, the

values of S1(q) for q between 28nm−1 and 35nm−1 are elevated. For S2(q), the position

of the first-peak shifts closer to that of S(q), and the magnitudes in the shoulder region

continuously increase to get closer to S(q). To extend the interaction range to including

the third attractive well of Friedel oscillations, the magnitude of the first peak is almost

close to that of S(q), and a complete shoulder appears on the high-q side of the first peak.

Quite sensitive to the behavior of the static structure factor, the appearance of the

shoulder structure can be further identified by the derivative of Si(q) with respect to q,

dSi(q)/dq, for q around 32.5nm−1. In general, on the high-q side of the first peak of Si(q),

dSi(q)/dq is negative and increases with q. Mathematically, a monotonical increase of

dSi(q)/dq with q indicates no appearance of a shoulder in Si(q) in the region investigated.

However, once a shoulder appears in Si(q), the behavior of dSi(q)/dq is distorted to show

some extremes, instead of increasing monotonically. Shown in the inset of Fig. II.4 are the

numerical results of dSi(q)/dq for q in the shoulder region. Both dS0(q)/dq and dS1(q)/dq

increase monotonically, indicating that no shoulder appears on the high-q side of the first

peak of S0(q) or S1(q). dS2(q)/dq shows very weak extremes, signaling the emergence

of a weak shoulder in S2(q). Manifested by the clearly observed extremes in dS3(q)/dq,

the structures in the liquid simulated with φ3(r) are developed well enough to produce a

shoulder on the high-q side of the first peak of S3(q). Our results clearly indicate that the

liquid structures are mainly determined by the repulsive core and the long-range Friedel

oscillations induced by the conduction electrons, and the effective interaction range must
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Pair potential N1201 N1211 N1301 N1311 N1421 N1422 N1431

φ(r) 0.189 0.045 0.134 0.252 0.042 0.092 0.065
φ0(r) 0.164 0.047 0.118 0.252 0.050 0.101 0.077
φ1(r) 0.177 0.046 0.124 0.254 0.047 0.096 0.071
φ2(r) 0.190 0.046 0.132 0.251 0.042 0.091 0.065
φ3(r) 0.189 0.045 0.135 0.251 0.042 0.092 0.064

Table II.1: The averaged fractions of atomic bonded pairs, Nijkl [63], in the liquids simu-
lated with the full-range pair potential φ(r) and the truncated φi(r)

include at least the first three attractive wells.

To manifest further the modulation on local structures by Friedel oscillations, we

calculate the numbers of atomic bonded pairs (ABPs) [62] in the liquids for the pair

potentials at different truncations. In the previous studies, it has been shown numerically

that as the system simulated with the pair potential generated by the GEINMP theory is

quenched from the liquid phase into the amorphous solids or the β-phase crystal, the 1201-

type atomic bounded pairs (ABPs), clusters of four atoms formed by a root pair and two

neighboring atoms, become predominated [63]. Also, some large clusters formed by more

1201-type ABPs may produce a high-q shoulder in S(q) [59]. In Table II.1, our calculated

results for the APBs show that by truncating the pair potential φ(r) at σ0, the numbers

of the 1201- and 1301-type ABPs decrease significantly but those of the 1421-, 1422- and

1431-type increase. With the cutoff at σ1, the numbers of those ABPs mentioned above

are still different from those of the full-range φ(r), although the differences are reduced.

As the cutoff is extended up to σ2, the numbers of the ABPs are almost the same as those
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of φ(r). Thus, our present analysis on the ABPs suggests that the Friedel oscillations

within the intermediate region, up to the third attractive wells, cause a modulation on

the local structures determined by the repulsive core and such a modulation favors the

emergence of some solid-like clusters which cause a shoulder on the high-q side of the first

peak in S(q).

To investigate the anomaly in collective dynamics, we have calculated the dynamic

structure factor SMD(q, ω), a time Fourier transform of the intermediate scattering func-

tion of Ga interatomic potential. These intermediate scattering functions are obtained

by simulations for wavevectors chosen to be the reciprocal lattice points of the simulated

box. In order to fit the experimental data, SMD(q, ω) has to be modified to satisfy the

detailed balance condition and convoluted with the instrumental resolution function R(ω)

[11]:

I th
N (q, ω) =

∫

h̄ω′/KT

1− exp(−h̄ω′/KT )
SMD(q, ω′)R(ω − ω′)dω′, (II.9)

and the calculated dynamics structure factors I th
N (q, ω) are directly compared with the

experimental data of IXS. In hydrodynamic regime, a comparison between the best fitting

for selected q and the experimental spectrum is reported in Fig. II.5. Only for q =

3.25nm−1, the central peak of I th
N (q, ω) is disappeared because of the effect of simulated

system size; however, the two Brillouin peaks can be fitted well. For several q values in the

kinetic regime, from the first peak to the second minimum in S(q), the dynamic structure

factors calculated by our simulation are also in good agreement with the experimental

22



-20 0 20
0

0.2

0.4

S(
q,

ω
) (

10
−3

ps
)

-20 0 20
0

0.1

0.2

-40 0 40

ω (ps
-1

)

0

0.2

0.4

S(
q,

ω
) (

10
−3

ps
)

-40 0 40

ω (ps
-1

)

0

1

2

q = 3.25 nm
-1

q = 5.75nm
-1

q = 9.5 nm
-1

q = 12.5 nm
-1

Figure II.5: Dynamic structure factor at the indicated wavevectors. The IXS spectra at
315K are shown as open circles, and the simulated dynamic structure factors at 323K are
shown as solid lines. The width of the instrument resolution function is about 3.0meV .

23



data, and the comparison is reported in Fig. II.6.

Since attention is focused on S(q, ω), it is more convenient to examine the CL(q, ω),

which is defined in Eq. II.6. In the same manner as the experimental inelastic x-ray data

[68, 69], we analyze the longitudinal current spectra which is fitted by the simple damped

harmonic oscillator (DHO) function

CL(q, ω) = A
γLω

(ω2 − ω2

L)2 + (γLω)2
, (II.10)

where A is a fitting; on the other hand, ωL and γL is energy position shift and width of

spectra, respectively. For several q values between q = 3.25nm−1 and q = 15.0nm−1, the

longitudinal current spectra with the DHO fitting lines are shown in Fig. II.7.

Shown in Fig. II.8, the domainant q dependence of the shift ωL is linear below

q = 10.0nm−1, which confirms our results with those observation in the inelastic x-ray

measurements [11]. The sound velocity of our system is estimated about 2850ms−1, which

is slightly lower than the value 3000ms−1 observed in the IXS experiment at 315K. How-

ever, the estimated value of sound velocity is almost the same as the value (2800ms−1)

as deduced by ultrasonic measurements [11]. Also, the interaction range has very little

effect on the sound velocity of system because the sound velocity for each simulated inter-

action potential is around 2850±20ms−1. Shown in Fig. II.9, the damping factor γL/q of

neutron data is compared with the data obtained by fitting our MD simulation data (Eq.

II.10). The two sets of data are once again in good agreement with each other and both

are consistent with that γL/q, is approximated to be a q-independent constant between
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q = 0.2nm−1 and q = 0.8nm−1. On the other hand, the γL/q values of various interaction

ranges are almost the same and that means the interaction range also can not affect the

linewidth of longitudinal current spectrum. It is worth pointing out that the relaxation

time of the longitudinal current function is linear with the q value in low-q region, but

the interaction range of pair potential has no effect on the relaxation time.

As wavevectors larger than 15nm−1, SMD(q, ω) can be fitted with a single Lorentzian .

We define Z(q) for each q as the half width at half maximum (HWHM) of the Lorentzian.

Shown in Fig. II.10, the Z(q) data obtained by our simulations are compared with the

experimental data from IXS [47] and QENS [48] technique. The linewidth Z(q) of both

experiments and simulation have a minimum, the de Gennes narrowing, which occurs very

close to qM the location of the maximum of S(q). In experiments, an anomaly, which is

a shoulder, is observed on the high-q side of the de Gennes narrowing. In our simulation,

the linewidth Z(q) agrees well with the general features of both the experimental data,

especially the shoulder around 32.5nm−1. Considering S(q) and Z(q) both generated by

our simulations with φ(r), we confirm that the anomalies in these two functions occur at

the same position.

Fig. II.11 shows that both the de Gennes narrowing and the shoulder of the linewidth

Z(q) are predicted quite well by the revised Enskog theory, in which σHS must be the

position of the first peak of g(r) (0.686σ) [58] and the reduced density equals ρσ3

0 =

3.305. While the reduced density is equal to 3.305, the packing fraction η is estimated

to be 0.558, which is just beyond the fluid-solid boundary of the HS system. Hence, DE
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evaluated by Eq. II.5 is 1.66× 10−5cm2s−1, which is close to the self-diffusion coefficient

Ds = 1.77 × 10−5cm2s−1 obtained from the velocity autocorrelation function. On the

other hand, as σhs is chosen to be 0.664σ obtained by the E-MCRS theory [33], which

accurately predicts the Helmholtz free energy and entropy of the liquid, DE evaluated

by Eq. II.5 is 1.86× 10−5cm2s−1. The results are not as good as those fitted by 0.686σ:

the de Gennes narrowing in the range between q = 17.5nm−1 and q = 30.0nm−1 are still

described well by revised Enskog theory, but the shoulder is gradually disappeared. Also,

shown in Fig. II.11, by comparing the predictions with and without dynamic factor d(q)

in Eq. II.4, we find that the d(q), associated with the cage diffusion, cause a quite good

fitting between the prediction function and simulated Z(q) for the wavevectors around

the shoulder. This information indicates that the mechanism for the occurrence of the

shoulder in Z(q) should be related to the cage diffusion. For the single-particle dynamics,

the cage diffusion in a liquid usually depicts that a particle is confined in a cage which

is composed of its neighbours; therefore, this particle collides with its neighbours in a

short timescale but diffuses out of the cage in a longer timescale. Alternatively, from the

viewpoint of collective dynamics, the cage diffusion can be considered as the relaxation

of the cage structure, with the relaxtion time related to the stability of the cage.

Shown in Fig. II.12, to investigate the role of the Friedel oscillations on anomaly in

Z(q), we calculate the linewidths Zi(q) with the pair potentials φi(r) for i = 0, 1, 2, 3.

Both Z0(q) and Z1(q) have a minimum nearby qM , but they are monotonically ascendent

beyond qM up to 40nm−1, which is close to the first minimum of S(q). This behavior is
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similar as those of the LJ liquids and liquid alkali metals.

As the range of interatomic potential is extended up to the second maximum of the

Friedel oscillations, a shoulder clearly appears on the high-q side of the de Gennes narrow-

ing; furthermore, this shoulder is almost developed as well as the one in Z(q) as the range

of pair potential is extended up to the third maximum of the Friedel oscillations. In our

model, the interaction range of pair potential to produce an anomaly in Z(q) should be

farther than the second attractive well; however, this range is shorter than that causing

the shoulder in S(q). Fig. II.13 shows that the comparison between the simulated Zi(q)
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and the predictions of the revised Enskog theory with the same values of σhs and DE, and

the Shs(q) in Eq. II.4 replaced by the corresponding S(q) presented in Fig. II.4. Arising

from the dynamic factor d(q), a shoulder is indeed produced in the linewidth function

ZE(q), no matter what the range of the pair potential is. The results are consistent with

that of Fig. II.13. The shoulder in Z2(q), Z3(q) and Z(q) is in good agreement between

the prediction of the theory and the simulation result for q from 22.5nm−1 to 35.0nm−1,

but the prediction of the theory for q between 30nm−1 and 35nm−1 is deviated from the
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Z0(q) and Z1(q), having no shoulder. This is clearly present that the dynamic factor d(q),

the characteristic of cage factor, is the essential factor to make the revised Enskog theory

a successful prediction for the shoulder in Z(q) [47, 58]. Thus, the shoulder in Z(q) is

certainly caused by cage diffusion.

II.5 Conclusions

In this chapter, we use MD simulation with interatomic pair potential (T = 323K)

obtained from the first-principles GEINMP theory. In the hydrodynamic region, the single

Lorentzian-like central peak and the Brillouin peaks of S(q, ω), the sound velocity of the

simulated system, and the damping factor are in good agreement with the experimental

results of liquid Ga. On the other hand, we also have successfully produced a shoulder on

the high-q side of the first peak in S(q) and an anomaly in the linewidth Z(q) in kinetic

region. The shoulder and the anomaly are confirmed to occur at the same location, and

they are also consistent with the data of experiment. Our model consists of a legde-shape

repulsive core and the long-range Friedel oscillations induced by the conduction electrons.

The shoulder and the anomaly, which have been studied, are the interplay between the

effective diameter of the repulsive core and the wavelength of the Friedel oscillations [44].

The results of our simulations indicate that the liquid structures are mainly determined by

the ledge-shape repulsive core and the Friedel ocillations, and the shoulder at the high-q

side of the first peak in the static structure factor is associated with the appearance of
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the solid-like clusters [57]. Moreover,the effective interaction range of the interatomic pair

potential that contributes significantly to the shoulder structure should include the first

three attractive wells in the Friedel oscillations.

It is well confirmed that sound velocity, with a value of 2850± 20ms−1, of our model

for liquid Ga are scarcelly dependent on the interaction range. Evidence for collective

modes has been found in a q region extending beyond the hydrodynamic regime up to

one-half of the main peak structure factor which is about q = 24.5nm−1.

The anomaly in the linewidth Z(q) of dynamic structure factor can be well described by

the revised Enskog theory, with the HS diameter chosen to be the first-peak distance of the

radial distribution function. The effective distance of interatomic pair potential to produce

the anomaly should includes the first two attractive wells in the Friedel oscillations that is

different from the effective range to generate the shoulder in the S(q). The characteristic

of d(q) implies that the anomaly in Z(q) is caused by cage diffusion [70, 71]. We conclude

that the shoulder and the anomaly occur at the same wavevector. In a liquid metal,

as the density fluctuations of the positively charged ions have the same wavelength as

that of the Friedel oscillations induced by the conduction electrons, the density waves of

electrons and ions are coherent. Thus, the overall attractions between the two systems

are expected to integrate constructively and enhance the stability of the cage structure

of each ion. At temperatures just above the melting point, an enhanced cage structures

causes the collective motions a relatively slower relaxation; thus, an anomaly is produced

in the Z(q) at the wavenumber of the Friedel oscillations. At high temperature, the
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anomaly is expected to disappear because the enhancement is weak and the cage structure

is overwhelmed by the thermal motions; this is consistent with the result of liquid Ga

measured by QNES experiment [48]. According to our study, we state that the range of

our pair potential to produce the dynamic anomaly is shorter than the range to generate

the shoulder in the static structure factor, and the dynamic anomaly is a common feature

to those polyvalent liquid metals whose static structure factors exhibit a shoulder on the

high-q side of the first peak [52].
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Chapter III

Hard sphere perturbation theory for

liquid Ga

III.1 Introduction

Thermodynamic perturbation theory has played a very important role in the devel-

opment of the fundamental understanding for dense simple fluids [39, 72]. The success

of thermodynamics perturbation theory in describing the properties of fluids is quite sen-

sitive on the choice of a reference fluid. Therefore, the basic principle of perturbation

theory is that a model system can be related a reference system, which is much known

and its properties can be easily calculated. For example, the structure of a liquid can

be described by the reference fluid with the repulsive core only, whereas the attractions

are treated as a perturbation. In general, the hard sphere fluid has been the frequently

chosen reference fluid because it has well known equation of state, and the pair distri-

bution function can be analytically obtained from the Percus-Yevick equation [30]. The

HS reference fluids are appealing both because they are expected to accurately repre-
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sent excluded volume (packing) effects and because accurate analytical expressions are

available for their thermodynamic and structure properties. However, the HS reference

fluids become gradually inaccurate as the describing fluids have very soft repulsive core

potential. Some refinements of the theory progress recently, with an aim of applications

to soft condensed system.

The Weeks-Chandler-Andersen (WCA) theory [73, 74, 75, 76] can be viewed as a per-

turbation theory with a soft repulsive reference fluid, whose properties are approximated

by a HS fluid. The HS diameter of the WCA theory is determined by the equation of

equal compressibility between the reference fluid and the HS fluid. Although the WCA

theory has an accurate prediction for fluids, the WCA theory is inaccurate for fluids

with very soft repusive core. According to this serious problem, Lado [77] gives some

numerical improvement of the WCA theory with a different choice for the HS diameter.

The Mansoori-Canfield [78] and Rasaiah-Stell [79] (MCRS) theory, which is based on a

HS reference system and the first-order perturbation, is developed by using the Gibbs-

Bogoliubov inequality and treating the HS diameter as a variational parameter to obtain

an upper bound of the Helmholtz free energy. This variational HS perturbation theory,

has been applied to calculate the structures and thermodynamics of liquid metals, whose

effective pair potentials have very soft repulsive cores [80, 81, 82, 44]. However, the MCRS

predicition tends to slightly overshoot the simulated Helmholtz free energies, and Mon

[27, 83, 84, 31] points out that the inaccurate prediction is a simple consequence of the

exclusion of the phase space due to the overlaps of hard spheres in the hard sphere refer-
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ence ensemble; therefore, a correction term should be added into the MCRS variational

function to improve the accuracy of the variational approach.

The extended MCRS (E-MCRS) theory, developed by Ben-Amotz and Stell [33], in-

clude Mon’s correction term, and it is found to outperform previous first-order pertur-

bation theories by providing exceptionally accurate predictions of the thermodynamic

properties of very soft repulsive fluids. Especially, the E-MCRS theory provides an eco-

nomically analytical method to predict the thermodynamics properties of the soft repulsive

fluids without heavy computations. A key advantage of the perturbative approximation is

that the structure of fluids is explicitly retained and thus the excess entropies and packing

fractions may be accurately predicted. It is interesting to examine the accuracy of the E-

MCRS theory, and other the HS perturbation theories for liquid Ga. We compare the HS

perturbation theories by investigating their predictions for the thermodyanmic properties

of liquid Ga, which are described in Sec. II.2. The density variations of the effective HS

diameters of liquid Ga estimated by these theories are investigated and shown; they are

the key points in this chapter.

III.2 Theory

III.2.1 The background of E-MCRS theory

A common starting point of various thermodynamic perturbution theories is an ex-

pansion of the excess Helmholtz free energy, Aex = A − AIG, where A is the total free
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energy, and AIG is the free energy of an ideal gas. The excess Helmholtz free energy would

be expressed as

Aex

NkBT
=

Aex
HS

NkBT
+

∆A

NkBT
, (III.1)

and Ã = Aex/NkBT of a fluid with N particles also can be expressed as

Ã = ÃHS + ∆Ã, (III.2)

with ÃHS = Aex
HS/NkBT , the free energy of a reference HS fluid, represented by the

following Carnahan-Starling [29] expression

ÃHS =
η(4− 3η)

(1− η)2
, (III.3)

where η = πρσ3

HS/6 is the packing fraction and σHS is the diameter of particles in the

hard-sphere fluid. Finally, ∆Ã is the difference of free energy between the fluid of interest

and the reference fluid. In the MCRS theory [78, 79], ∆Ã, derived from the first order

perturbation theory, can be approximated

∆Ã ≈ 2πρβ

∫

∞

σHS

gHS(r)φ(r)r2dr, (III.4)

where ρ is the system reducded density and β = 1/kBT . kB is the Boltzmann constant

and T is temperature. The Ga interactomic pair potential φ(r), generated from the first-

principles generalized energy independent nonlocal modal-pseudopotential (GEINMP)

theory [57], is introduced in Sec. II.2.1. The radial distribution function gHS(r) of the

hard-sphere (reference) fluid can be analytically obtained by the Verlet algorithm [30].
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The MCRS perturbation theory is convenient to apply and provides a rigorous upper

bound to the excess Helmholtz free energy. By employing the hard sphere fluid and

Gibbs-Bogoliubov inequality, the Eq. III.2 can represented as

Ã ≤ ÃHS + ∆Ã, (III.5)

By treating σHS as a variational parameter, a measured value of Ã is obtained by mini-

mizing a sum of ÃHS and ∆Ã given in Eqs. III.3 and III.4, respectively.

Mon [27, 83, 84, 31] indicates that a significant part of the residual error in the MCRS

theory: arises from the exclusion of a portion of phase space due to the overlap of the

hard-sphere. As a hard-sphere reference is used, the perturbation calculation for a fluid

model of particles interaction with soft sphere potential φ(r) contains an intrinsic error.

The instrinsic error can be presented as

〈βA/N〉HS − βA/N =
−1

N
ln

[
∫

ΩHS
e−βφ

∫

Ω
e−βφ

]

, (III.6)

where Ω is the total configurational phase space, and 〈A/N〉HS is the free energy as

evaluated by sampling over only that part of the phase ΩHS allowed by the hard-sphere

reference ensemble, and A/N is the real Helmholtz free energy per particle. Hence,

according to Mon’s correction term, Eq. III.4 can be rewritten as

∆Ã = 2πρβ

∫

∞

σHS

gHS(r)φ(r)r2dr −
1

N
ln

[
∫

ΩHS
e−βφ

∫

Ω
e−βφ

]

. (III.7)

Recently, Amotz and Stell [33] introduce that the integral ratio of Mon’s correction

term may be expressed in terms of the following one-dimensional integral over the radial
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distribution function of the soft-repulsive part of our model fluid:

−1

N
ln

[
∫

ΩHS
e−βφ

∫

Ω
e−βφ

]

= −2πρ

∫ σHS

0

g(r)r2dr. (III.8)

g(r) is the radial distribution function of the fluid with the pair potential φ(r). Therefore,

Eq. III.7 can be replaced by

∆Ã = 2πρβ

∫

∞

σHS

gHS(r)φ(r)r2dr − 2πρ

∫ σHS

0

g(r)r2dr. (III.9)

In WCA theory, g(r) can be replaced by

g(r) = yHS(r)exp(−βφ(r)), (III.10)

where yHS(r) is the cavity distribution function and can reasonably be represented by the

following three term expansion [85]

yHS(r) = exp

[

A + B(
r

σHS
) + C(

r

σHS
)3

]

. (III.11)

The values of the three coefficients depend only on the packing fraction, η, of the hard-

sphere fluid.

A =
3− η

(1− η)3
− 3, (III.12)

B =
−3η(2− η)

(1− η)3
, (III.13)

C = ln

[

2− η

2(1− η)3

]

−
η(2− 6η + 3η2)

(1− η)3
. (III.14)

In the WCA theory [74], the effective HS diameter σHS of the model fluid is determined

by the solution of the equal compressibility integral equation between the reference fluid
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with the repulsive core φ0(r) only and a hard-sphere fluid with diameter σHS at the same

temperature and density. The equal compressibility integral equation is given as

∫ r0

0

yHS(r)exp(−βφ0(r))r
2dr =

∫ r0

σHS

yHS(r)r2dr, (III.15)

where r0 is the position of main attractive well of our model, and the detail derivation

is shown as Sec. V.1. In the Lado-WCA method [77], the effective HS diameter is given

by the solution of a similar equation, but yHS(r) is replaced by ∂yHS(r)/∂σHS in both

integrands in Eq. III.15. With Eq. III.11[33, 85], the hard-sphere diameter σHS in these

equations can be efficiently solved, and the detail derivation is shown as Sec. V.2.

According to these approximation, a new variational formula of ∆Ã, refereed as the

extended-MCRS (E-MCRS) theory, is given as

∆Ã = 2πρβ

∫

∞

σHS

gHS(r)φ(r)r2dr − 2πρ

∫ σHS

0

yHS(r)exp(−βφ(r))r2dr. (III.16)

The HS diameter for describing yHS(r) in the second integral is determined by the Lado-

WCA method and may have a different value from the variational parameter σHS , which

implicitly determines gHS(r) in the integrand of the first integral and appears explicitly

in the lower and upper limits of the first and second integrals, respectively. The E-MCRS

theory has been shown to give better predictions in thermodynamic properties of the

inverse-power fluids than the MCRS and other HS perturbation theories [33].

III.2.2 Thermodynamic Properties

In thermodynamics, the excess Helmholtz free energy Ã of a fluid at density ρ is related
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to the pressure P (ρ′) of the fluid at lower density ρ′ via the following integration

Ã =

∫ ρ

0

(

βP (ρ′)

ρ′
− 1

)

dρ′

ρ′
. (III.17)

P (ρ′) can be obtained via the pressure equation:

βP (ρ′)

ρ′
= 1−

4π

6
βρ′

∫

∞

0

rφ′(r)g(r)dr. (III.18)

where g(r), the radial distribution function of the fluid at density ρ′ is generated by

computer simulation, and φ′(r) is the first derivative of the pair potential. Alternatively,

the compressibility factor Z(ρ) ≡ βP/ρ also can be written as the Virial series of the

density:

Z(ρ) = 1 +
∞

∑

i=2

Bi ρi−1. (III.19)

Here, Bi is the ith Virial coefficient, which is assocaited with φ(r) via some diagrams

[39]. In the second Virial approximation, Z(ρ) is approximated to be 1 + B2ρ and the

calculation of B2 is straightforward. The excess internal energy is given as

Ũ = 2πρβ

∫

∞

0

r2φ(r)g(r)dr. (III.20)

The excess entropy S̃, which can be evaluated by the difference between the excess internal

energy Ũ and the excess Helmholtz free energy Ã, is presented as

T̃ S ≡
Sex

NkB

= Ũ − Ã. (III.21)

On the other hand, Sex is also defined as the

Sex = −(∂Aex/∂T )N,V . (III.22)
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In the MCRS theory, the excess entropy S̃MCRS is shown as

S̃MCRS = −
η(4− 3η)

(1− η)2
, (III.23)

is simply equal to −ÃHS, which is the excess entropy of a HS fluid with an effective HS

diameter of the MCRS value [82]. In the E-MCRS theory, the Mon’s correction term gives

rise to an extra contribution to S̃MCRS . After replacing g(r) by exp(−βw(r)) into Eq.

III.8, S̃ in the E-MCRS theory can be expressed as

S̃EMCRS = − ÃHS + 2πρ

∫ σHS

0

g(r) [1 + βw(r)] r2dr, (III.24)

where w(r), equal to −kBT lng(r), is the potential that gives the mean force acting on

a particle in the fluid. In concept, the mean force between two neighboring particles

in a dense fluid includes the direct force due to the interatomic pair potential and an

effective force indirectly intermediated through other particles. In general, the indirect

force depends on the fluid density, so the potential of mean force at high fluid density can

be quite different from the interatomic pair potential. In the Eq. III.24, ÃHS have the

same HS diameter σHS as that of the upper limit of the integral, and the HS diameter

σHS is obtained by the minimization of variational Ã in the E-MCRS theory.

III.3 Model and Method

III.3.1 Model

Shown in Fig. III.1, the Ga interatomic pair potential at T = 323K, φ(r), has a
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Figure III.1: Interatomic pair potential, φ(r), (solid line). The dot-dashed line is the LJ
potential with the same ε and σ. The dashed line is a linear function a1(r/σ) + a2 with
a1 = −115 and a2 = 109; the dotted line is the function c1exp(−c2r/σ)(r/σ)c3 , where
c1 = 4.42× 106, c2 = 16.4 and c3 = 1.5

ledge-shape repulsive core and an oscillatory part, whose long-range behavior generally

follows the Friedel oscillations [58]. Two parameters of φ(r) are ε, the depth of the main

attractive well, and σ, the shortest distance at φ(r) = 0; the value of ε corresponds to

47K and σ = 4.04Å. The repulsive core of φ(r), denoted as φ0(r), is the pure repulsive

potential for r smaller than r0, which is the position of the main attractive well, and r0

is about 1.07σ. The pure repulsive potential, φ0(r), can be roughly divided into three

sections. As r less than 0.7σ, φ0(r) increases almost exponentially with decreasing r so
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that the repulsive core in this region is extremely stiff. In the intermediate region between

0.9σ and 0.7σ, the value of φ0(r) increases roughly from 6ε to 30ε and the shape of φ0(r),

becoming softer, has a ramp-like behavior with a reflection point around 0.8σ [86]. As

r is larger than 0.9σ, φ0(r) behaves like the repulsive core of the LJ potential with the

same σ and ε, and the interaction potential is less than 6ε [60].

III.3.2 Method

We have carried out a series of molecular dynamics simulations at constant NVT

ensemble. In each simulation, we fix the temperature to be 6.85ε which corresponds to

T = 323K, and the box size is equal to 10.2σ. All quantities given in this chapter are

in units of σ, ε and the mass of Ga atom. The number of simulated particles starts at

N = 3500. Then, in each simulation for a new thermodynamic state, N is reduced by 100,

with the lowest N being 100; therefore, we have a series of MD generated configurations at

each density. At N = 3500, the reduced system density ρ is equal to 3.305, which is close

to that of liquid Ga at T = 323K and pressure of about 1 bar. At ρ = 3.305, the static

and dynamic structure factor of this simulated model agree well with the experimental

results at temperature close to the melting point (Tm = 303K), and dynamic anomaly of

liquid Ga is reproduced [58]. In the following, the thermodynamic properties of the model

fluid will be investigated with simulation and various hard-sphere perturbation theories.
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Figure III.2: Radial distribution function of the model fluid at several reduced densities.
In each panel, the solid is the simulation result and the dashed line is the approximation
given by Eq. III.10 with the Lado-WCA value of σHS. The dotted line indicates the σHS

value obtained by the E-MCRS theory.

III.4 Results

The radial distribution functions of these simulated systems at various reduced system

density are shown in Fig. III.2. At ρ = 3.305, the main peak of g(r) is located at 0.686σ,

well inside the repulsive core of φ(r). By descreasing ρ, the main peak of g(r) gets lower

and shifts outwardly, and a shoulder near σ appears and grows. Moreover, around ρ = 2.0,

the roles of the main peak and the shoulder exchange, because the main peak occurrs near
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σ and the shoulder resides in the inner side of the repulsive core. As ρ keeps on decreasing,

the in-inside shoulder finally disappears at ρ = 1.35. The new main peak near σ keeps

the same shape and moves toward the position of the first attractive well with descreasing

ρ. Similar results of the variation of g(r) with density are also observed for the one-scale

and two-scale ramp potentials [87], introdcued by Jagla [88]. On the other hand, the

approximation in Eq. III.10 for our model fluid are examined by evaluating yHS(r) in the

approximate Eq. III.11 with the Lado-WCA HS diameter for some reduced densities, and

the results are also shown in Fig. III.2. For each density, Eq. III.10 is only good for g(r)

inside the value of σHS, which is obtained by the E-MCRS theory; however, in following,

the calculations need the contributions of gHS(r) inside the σHS.

w(r), giving the mean force acting on a particle in the fluid, is the other way to

manifest the density effect on the variation of g(r) in our model. The definition of w(r)

have been given in Section. III.2.2, and the variation of w(r) with reduced density ρ is

shown in Fig. III.3. At ρ = 3.305, because of the high compactness in the fluid, w(r) has

a deep attractive well, which is at the first-peak position of g(r). Furthermore, the depth

of this attractive well gradually reduces and a shoulder near σ appears by decreasing ρ.

Around ρ = 1.889, the roles of this attractive well and the shoulder in w(r) switch with

each other, as the similar case in Fig. III.2. Beginning at ρ = 1.889, the new attractive

well in w(r) continuously moves out and the new attractive well become deep. Finally,

the well is attenuated to ε.

Fig. III.4 shows the variation with density of the HS diameter, which are estimated
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Figure III.3: Potential of mean force w(r) of the model fluid at ρ = 3.305 (dashed line),
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Figure III.4: The variation of effective HS diameter σHS as a function of density. σHS is
estimated by the WCA (triangles), Lado-WCA (diamonds), MCRS (circles) and E-MCRS
(squares) theories. The crosses stand for the main-peak position of g(r).

by the E-MCRS, MCRS, WCA, and L-WCA theories. The values of the HS diameter

estimated by the four perturbation theories decrease with increasing density, and our

results are consistent with the results that the effective HS diameter of a fluid is decreased

with increasing the fluid density [33]. At high densites, both WCA and L-WCA σHS

values are larger than the main-peak position of g(r), which is inside the repulsive core;

however, the HS diameters become smaller than the position of main-peak of g(r) below

ρ = 2.0. Not only the σHS values of the MCRS theory is limited by the peak position

of g(r) but also the E-MCRS value is almost along the track of the peak position as ρ
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is larger than 2. According to Fig. III.1, as the density is below ρ = 2.0, because the

exponential-like behavior of average distance between particles is replaced by ramp-like

behavior, the position of the main-peak of g(r) makes a jump to a larger value around

ρ = 2.0. Therefore,the HS diameters of the MCRS and E-MCRS theory are apparently

released from the restriction due to the main-peak position of g(r) and ascend manifestly

as ρ varies from 2 to 1. The MCRS value is roughly fixed at 0.9σ as density approaches

to zero, but the E-MCRS value continuously increases at very low densities and passes

over the values of the WCA and Lado-WCA theories.

According to the pressure equation, the compressibility factor Z(ρ) can be calculated,

and the results are shown by symbols in Fig. III.5. In order to perform numerical

integration of Z(ρ), we fit Z(ρ) in Fig. III.5 with the series in Eq. III.19 truncated

beyond the fouth order of ρ and treat the virial coefficients as fitting parameters. The

simulated data of Z(ρ) can be separated into two parts. One is larger than ρ = 1 and

the other is smaller than ρ = 1, and we give the values of the fitting parameters in the

caption of Fig. III.5. The inset of Fig. III.5 shows the second Virial approximation that

check the accuracy of our calculations at low densities.

In the MCRS and E-MCRS theories, the variational curves of excess Helmholtz free

energy Ã for some reduced densities are shown in Fig. III.6, and each curve has a mini-

mum, which corresponds to a HS diameter. In these two theories, the approximate gHS(r),

obtained by Verlet algorithm [30], is used, and yHS(r) is approximated by Eq. III.11 with

the Lado-WCA σHS value. In E-MCRS theory, Mon’s correction term causes the mini-

53



0 1 2 3
ρ

0

10

20

30

40

50

Z

simulation data
fitting function

0 0.25 0.5 0.75 1

2

4

6

Second Virial Approx.

Figure III.5: Compressibility factor, Z = βP/ρ, as a function of density. The circles are
calculated by the pressure equation with the simulated g(r). The solid line is the Virial
function III.19 with the Virial parameters: B2 = 0.995, B3 = 4.129, B4 = −4.969, and
B5 = 4.67 for ρ > 1, and B2 = −0.323, B3 = 5.228, B4 = −0.523, and B5 = 0.055 for
ρ < 1. The inset shows Z at low densities and the second virial approximation (dashed
line).

54



0.64 0.66 0.68

24

25

0.75 0.8 0.85

5.6

6

6.4

0.68 0.7

13.5

14

14.5

0.85 0.9
0.9

1

1.1

0.72 0.74
σ

HS 
/ σ

9.3

9.6

9.9

0.9 0.95 1
σ

HS 
/ σ

0.15

0.2

ρ = 3.305

ρ = 2.361

ρ = 1.889

ρ = 1.416

ρ = 0.472

ρ = 0.094

A
ex

 / 
N

k B
T

Figure III.6: Variation of Aex/NkBT on σHS at the indicated reduced density. In each
panel, the solid and dashed lines are the curves for the E-MCRS and MCRS Aex/NkBT ,
respectively. The dot-dashed line is the variational Aex/NkBT with Mon’s correction term
given in Eq .III.8. At ρ = 0.472 and ρ = 0.094, the solid and dot-dashed lines are almost
the same.
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mum of the variational curve shifting to a larger effective HS diameter and a lower value

of Ã than those obtained by the MCRS theory. These results are expected to be true for

all kinds of fluid [33]. The accuracy of the approximation in Eq. III.10 is examined again

by calculating excess Helmholtz free energy. In Fig. III.6, although the corresponding

variational curve of Eq. III.9 generally shifts upward relative to the one of Eq. III.16,

the HS diameter σHS , which is estimated by Eq. III.9 is the same as that, which is es-

timated by Eq. III.16, and the overall thermodynamics properties of our calcualtion are

not effected. By using the fitting function Eq. III.19, we have done the integration in Eq.

III.17 and the results are indicated by the symbols in Fig. III.7. Shown in Fig. III.7, the

excess Helmholtz free energies estimated by the various HS perturbation theories, includ-

ing the WCA, L-WCA, MCRS and E-MCRS theries, and the comparison between these

results is presented. Although the MCRS prediction slightly deviates from the simulated

excess Helmholtz free energy, Mon’s correction cause the E-MCRS prediction to match

the simulated data well for entire densities. Apparently, the variational approaches do a

better prediction than the WCA [73, 74, 75, 76] and Lado-WCA [77] theories, which are

only good for the region of ρ < 1.

Fig. III.8 shows the behaviors of simulated and approximate excess entropies S̃. In

thermodynamics, S̃ has a linear behavior at low densities because the excluded volume

effect due to the repulsive core of φ(r). Intriguingly, the density curve of S̃ has a small

positive slope in the intermediate range, which is roughly from ρ = 1.4 to 1.8. The

anomalous behavior of excess entropy is also observed in a two-scale ramp potential [89].
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Beyond the intermediate region, S̃ decrease with density in a slower decreasing rate, be-

cause the density effect is more significant than the diameter reduced effect again. In

approximation, the prediction of the MCRS theory agrees well with the result of ther-

modynamic calculation at low densities, and also has smaller values of excess entropy

anomaly in the intermediate range; however, the excess entropy of MCRS’s prediction are

deviated from simulation data at higher densities. As the E-MCRS diameter is substi-

tuted into Eq. III.23, which is the excess entropy of a HS fluid , the absolute value of the

excess entropy with a manifested anomaly is larger than that estimated by the MCRS

theory. It is amazing that the Mon’s correction in Eq. III.24 makes the prediction of the

E-MCRS theory have a triumph over the MCRS theory for a perfect agreement with the

simulation results in the entire density. It is easy to be understood: The contribution of

Mon’s correction becomes gradually larger with inceasing density; thus, Mon’s correction

is more important at higher densities and it gives a fundamental improvement of the HS

variational prediction for the excess entropy of a fluid.

Fig. III.9 shows the density dependence of the packing fraction η of the HS fluid

estimated by various perturbation theories. For either the WCA or the Lado-WCA value

of σHS, the η increases monotonically with increasing density; however, their η values are

over 0.7 at reduced system density ρ = 3.305, which is close to the density of realistic liquid

Ga. The large packing fraction, which is in the solid phase of the HS system, indicate that

the overestimation of the effective HS diameter makes the reference HS fluid too much

deviate from realistic liquid Ga. On the other hand, due to the values of σHS in Fig. III.4
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estimated by the MCRS and E-MCRS theories, the packing fraction (η = πρσ3

HS/6) of

the MCRS theory is reasonably smaller than that of the E-MCRS theory. In following, we

explain that why the anomaly in S̃ predicted by the MCRS and E-MCRS theories occurs

in our model. In Fig. III.9, the density curves of MCRS and E-MCRS theories also have

apparently a anomaly, which shows a negative slope from ρ = 1.3 to 1.7. We maintain

that the negative slope corresponds to the substantial shrinkage in the size of the effective

HS with increasing density at this region as shown in Fig. III.4; thus, the anomaly appears

in the packing fraction and the same physical picture cause the occurrence of anomaly

in excess entropy for MCRS and E-MCRS theories. Beyond this anomaly region, the η

continuously increases and S̃ continuously decrease, because the contribution of density

effect more than that of particle size effect. In the E-MCRS and MCRS theories, the η of

the HS reference systems at ρ = 3.305 is close to the physcially reasonable values: 0.473

and 0.5, which are in the fluid-solid coexistence region of the HS system.

III.5 Conclusions

The interatomic pair potential of liquid Ga model has a ledge-shape repulsive core

and a long-range oscillatory part induced by conduction electrons. We have investigated

thermodynamic properties of this model fluid to investigate the applicability of some HS

perturbation theories which include the WCA, Lado-WCA, MCRS and E-MCRS approx-

imations. These approximate methods have been used for the Lennard-Jose, inversed-
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power fluids and liquid Na. The MD simulations of our model fluid at constant NVT

ensemble from low to high densities are performed, and the highest density corresponds

to realistic liquid Ga at T = 323K. There is an interesting above the density variation

of the model fluid: The main peak of the radial distribution function is located in the

repulsive core region of the interatomic pair potential at high density, the position of the

main peak suddenly jumps to a larger distance at some intermediate density and the main

peak moves outwardly to the first attractive well of the interatomic pair potential as the

density is continuously decreased.

Although the WCA and Lado-WCA methods are accurate for the Lennard-Jones flu-

ids, the predicted HS diameters are too large for our model at high densities. The packing

fractions in the WCA and Lado-WCA theories are over the freezing point of the HS ref-

erence system so that they are failure for realistic liquid Ga. Based on a variational

approach, the MCRS and E-MCRS theories take into account the effect of the anomaly of

packing fraction in a region of intermediate density, and the HS reference systems for the

model fluid are physically reasonable at entire density. According to the deficiency of the

HS perturbation theory, Mon gives a correction which is related to the configuration space

of the hard-sphere fluid. Considering this correction, the E-MCRS theory indeed improves

the predictions on the thermodynamics properties of the model fluid: the estimated Hel-

mohltz free energy and entropy by E-MCRS method are closer to the simulation results

than those by others mothods. An anomalous region, associated with the shrinkage of the

effective HS diameter by increasing system density, is found in the excess entropy of our
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model varied with density. For the predictions of the thermodynamic properties of liquid

Ga, our results suggest that the E-MCRS perturbation theory is the most accurate one

in all HS perturbation theories.
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Chapter IV

Conclusions

In this thesis, the model of simulation is a gallium interatomic pair potential, which

consists of a legde-shape repulsive core and the long-range Friedel oscillations induced

by the conduction electrons, is obtained from the first-principles GEINMP theory at the

thermodynamic conditions of liquid gallium close to the melting point. The repulsive core

of the pair potential varies continuously from an exponential-decay inner core, through

a ramp-like intermediate region, to a LJ-like outer core. By MD simulation, we have

successfully reproduced the static structure factor and dynamic structure factor which

agree well with the results of experimrnts; further, the structures, dynamic properties,

and thermodynamic properties of this pair potential have been investigated for studying

the realistic liquid gallium. We summarize the conclusions in the following.

In chapter II, a shoulder appears on the high-q side of the first peak in the static

structure factor and an anomaly appears on the linewidth of dynamic structure factor, in

good agreements with the experimental data of liquid gallium. According to our results,
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the structure anomaly is determined by the ledge-shape repulsive core and first three

attractive well. In local structure, a modulation produced by the Friedel oscillation makes

the apearance of some solid-like cluster, which are, in concept, more or less like the Peierls-

distortion mechanism proposed for liquid-Arsenic before [90, 91]. It is suggested that the

shoulder in the static structure factor is associated with the appearance of these solid-like

clusters.

Also, the anomaly in the linewidth of the dynamic structure factor is determined by the

ledge-shape repulsive core and the first two attractive wells. The dynamic anomaly, which

can be well described by the revised Enskog theory with the HS diameter determined by

the first-peak distance of the radial distribution function, is interpreted by cage diffusion.

The structure and dynamic anomaly are confirmed to occur at the same wavenumber,

which suggests that the ion-density fluctuation at this wavevector has the same wavelength

with the Friedel oscillations induced by the conduction electrons. Thus, at this wavevector,

the density waves of ions and electrons are coherent and the attractions between the two

systems would be more rigid so that the cage around each ion becomes harder.

In chaptr III, the radial distribution function of the model has an interesting variation

with number density: At high density, the main peak of the radial distribution function

is located in the inner region of the repulsive core with an exponential decay. At some

critical density, the position of the main peak makes a discontinuous jump to the outer

core of the LJ-like region. As the density is further decreased, the main peak moves

toward the minimum of the first attractive well of the pair potential.
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To predict the thermodynamic behaviors of our model, the WCA, Lado-WCA, MCRS

and E-MCRS methods are used. For the prediction of HS diameter, the packing fractions,

which are estimated by the WCA and the Lado-WCA methods, are over the freezing

point of the HS system and this makes the WCA and Lado-WCA theories breakdown

for our model at high densities. In MCRS and E-MCRS theories, due to the estimated

HS diameter is obviously reduced in a region of intermediate density, the density curve

of the packing fraction has a negative slope in this region; further, beyond this density

region, the value of packing fraction is physically reasonable at high density. The E-

MCRS theory, which includes Mon’s correction to improve the MCRS theory, can predict

the better results of the excess Helmohltz free energy and the excess entropy than those

predictions of the WCA, Lado-WCA and MCRS theories. Furthermore, the anomalous

behavior of excess entropy in our model can be described by the E-MCRS and EMCRS

theories, and the anomaly is associated with the substantial reduction of the effective HS

diameter estimated by the two variational theories.
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Chapter V

Appendix

V.1 WCA Theory

Considering a Lennard-Jones potential of the 6-12 type

φ(r) = 4ε
[

(σ/r)12 − (σ/r)6
]

, (V.1)

where σ is the dimensions of length, and ε the dimensions of energy. The structrue of the

Lennard-Jones system is conveniently described in terms of the two-particle correlation

function and its Fourier transform. The correlation function is h(r) = g(r) − 1, where

g(r) is the usual radial distribution function. The dimensioness Fourier transform of the

correlation function is

h(k) = ρ

∫

h(r) exp(−ik · r) dr. (V.2)

The structure factor, S(k), is simply h(k) + 1, and it is measured directy by scattering

experiments performed on a fluid.
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Weeks, Chandler and Andersen state two hypotheses: (1) At intermediate and large

wavevectors (kσ ≥ π) , the quantitative behavior of h(k) is dominated by the repulsive

forces (the attractive forces are primarily manifested in the small wavevectors portion of

the spectrum); (2) For high densities (ρσ3 ≥ 0.65), the behavior of h(k) even at small

wavevectors (kσ ≤ π) is at least qualitatively determined by the repulsive forces. For the

first statement, h(k)+1 represents the linear repones of the fluid structure to a disturbance

of wavelength 2π/k. While a short wavelength disturbance will probe both the repulsive

and attractive forces in a fluid, it is reasonable that the harsh repulsions, rather than the

slowly varying longer range attractions, will dominate the reponse of the fluid to such a

disturbance. The second statement is equivalent to asserting that the correlations in a

simple liquid are almost entirely due to excluded volume effects when the density is high.

For the first steep of WCA theory, the Lennard-Jones potential can be separated into

two parts:

φ(r) = φ0(r) + ∆φ(r), (V.3)

where φ0(r) is the reference system pair potential, and ∆φ(r) is the perturbation potential.

For the particular separation in which we are interested, φ0(r) includes all the repulsive

forces in the Lennard-Jones potential and ∆φ(r) all the attractions. With the additional

condition that the reference system pair potential obey the thermodynamic requirement

φ0(r) → 0 as r → ∞, this separation is unique:

φ0(r) =

{

φ(r) + ε, for r < 21/6σ
0, for r ≥ 21/6σ

(V.4)
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Figure V.1: Separation of the Lennar-Jones potential, φ(r), into a part containing all the
repulsive forces, φ0(r), and a part containing all the attractive forces, ∆φ(r). dotted-
dashed line is the position of 21/6σ

∆φ(r) =

{

−ε, for r < 21/6σ
φ(r), for r ≥ 21/6σ.

(V.5)

These functions are shown in Fig. V.1.

The thermodynamic ramifications of postulate of the WCA theory have been discussed.

First, considering the free energy, this is done by introducing a ”test” potential

φ(r; λ) = φ0(r) + λ∆φ(r), 0 ≤ λ ≤ 1 (V.6)

Then, it can relate the Helmhotz free energy of the Lennard-Jones system to the reference
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system and the perturbation:

Aex/NkBT = Aex
0 /NkBT + ρ/(2kBT )

∫

1

0

dλ

∫

g(r; λ) u(r) dr. (V.7)

Here g(r; λ) is the radial distribution function in the ”test” system, Aex is the excess

free energy, Aex
0 is the excess free energy in the reference system. With the choice of

reference and perturbation interactions, the integral over λ in Eq. V.7 represents the

effect of turning on the attractive forces in the Lennard-Jones fluid: when λ = 0, g(r; λ)

is the radial distribution function for the reference system, g0(r); and λ = 1, g(r; λ) is the

Lennard-Jonse g(r). According to the WCA hypothesis, when the density is sufficiently

high, g(r) is accurately approximated by g0(r), and we introduce the function y0(r) which

is defined by the equation

g0(r) = y0(r) exp [−βφ0(r)]. (V.8)

Physically, y0(r) gives the correlations that exist in the reference system beyond the range

of the reference interaction. Since this interaction is harshly repulsive, it seems probable

that y0(r) can be approximated by the similar function appropriate to a hard-sphere

system of dimater σHS , yHS(r). For this reason, we consider the following approximation:

g0(r) ∼= yHS(r) exp [−βφ0(r)]. (V.9)

Therefore, a reference system potential φ0(r), which Boltzmann factor e0(r) = exp [−βφ0(r)],

is harshly repulsive but continuous. The Boltzmann factor of reference system is not very

different from the Boltzmann factor eHS(r) = exp [−βφHS(r)] of a hard sphere potential,
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Figure V.2: The ”blip function”. The quantities e(r) and eHS(r) are the Boltzmann
factors, respectively, for soft-core and hard-core potentials.

and φHS is the hard sphere repulsion of diameter σHS . Thus, for a properly chosen value

of σHS , the function

∆e(r) = e0(r)− eHS(r) (V.10)

is effectively non-zero over only a small range of r, and it is shown as Fig. V.2

Consider a function B(r), which is a difference between g0(r) and gHS(r), is defined

as

g0(r) = gHS(r) + B(r) or B(r) = yHS(r) ∆e(r). (V.11)
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where gHS(r) is the radial distribution functon of hard sphere fluid. By taking Fourier

transforms, the hypothesis of WCA theory verify that h(k) ∼= h0(k) is for some range of

wavevector,

h0(k) = hHS(k)+ ρ

∫

yHS(r) [exp(−βφ0(r))− exp(−βφHS)] exp(−ik · r) dr, (V.12)

where h0(k) is the Fourier transform of the reference system two-particle correlation func-

tion, and σHS is determined by vanishing the integral term. Since B(r) is almost zero

except near r = σHS. So, the integral term of Eq. V.12 can represented as

∫

∞

0

yHS(r) [exp(−βφ0(r))− exp(−βφHS)] r2dr = 0, (V.13)

where

exp [−βφ0(r)] =

{

exp [−βφ0(r)], for r < 21/6σ
1, for r > 21/6σ

(V.14)

exp [−βφHS(r)] =

{

0, for r < σHS

1, for r > σHS.
(V.15)

For 0 < σHS < 21/6σ,

∫ σHS

0

yHS(r) exp [−βφ0(r)] r
2dr =

∫

21/6σ

σHS

yHS(r) [exp (−βφ0(r))− 1] r2dr, (V.16)

finally,

∫

21/6σ

0

yHS(r) exp [−βφ0(r)] r
2dr =

∫

21/6σ

σHS

yHS(r)r2dr. (V.17)

For our potential of liquid Ga, the position of r0 corresponds to the position of 21/6σ of

6-12 Lennard-Jones potential.
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V.2 Lado-WCA Theory

The combination of Eq. V.9 and Eq. V.17 produce good results when apply to the

hard repulsive part of the Lennard-Jones potential, but is less successful with the softer

repulsive potential. A fundamental shortcoming inherent in this combination is the lack

of thermodynamic consistency; thus, the pressure P obtained from the free energy A,

βP

ρ
= ρ

∂(βA/N)

∂ρ
, (V.18)

is not the same as that found through the usual quadrature,

βP/ρ = 1− ρ/6

∫

g(r)φ′(r)rdr , (V.19)

the former being more accurate.

In this note, Load shows that the basic approximation, Eq. V.13, can be obtained by

minimizing an approximate expression for the free energy. A production of this approach

is a new criterion for choosing the hard sphere diameter, namely

∫

{exp [−βφ(r)]− exp [−βφHS(r)]}
∂yHS(r)

∂σHS

dr = 0, (V.20)

which eliminates the disagreement between Eq. V.18 and Eq. V.19 and leads to improve-

ments in the computed results. Because it implies thermodynamic consistency, Eq. V.20

is the formal implementation of the Verlet-Weis [92] criterion.
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