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Topics on Linear Parabolic Equations

Student: Chia-Hua Lin Advisor: Dr. Jong-Eao Lee

Department of Applied Mathematics
National Chiao Tung University

Abstract

We study the linear parabolic partial‘differential equations(linear parabolic PDEs). First, we
give some practical examples and show that they are governed by such type of the equations.
Next, we apply several classical methods to solve the linear parabolic PDEs with the solutions
being expressed in various forms. We then identify those solutions.

When we apply Fourier and Laplace transformations to the whole-and half-line PDEs, it is
necessary to perform the inverse Fourier and Laplace transformations to derive the PDE
solutions, and it is quite often that those integrals involve the square root operator which is
multi-valued in the complex plane. In order to perform the inverse transformations correctly,
we develop the Riemann surfaces from the complex plane with the proper algebraic structures
to assure that the square root is now a single-valued function on the surfaces, and we are able
to accomplish the inverse transformations analytically and numerically. Some examples are

given to illustrate the entire scheme.
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1. Introduction

The parabolic equations occur commonly in applied science. Examples are models of many
physical processes, financial models and Schrodinger equation. Before we introduce the linear
parabolic PDE, we must classify the partial differential equation.

1.1 Classification

All linear, second-order partial differential equations can be classified as parabolic,

hyperbolic or elliptic. Assuming u,, =u ,, the general second-order PDE in two independent

¥
variables has the form

Au, +Bu  +Cu, +E@u, u,uxy) =0,
where the coefficients A, B, C etc. may depend upon x and y, and (x, y) € domain D.

1. If B> —4AC >0, the equation is hyperbolicin D.
2. If B> —4AC =0, the equation is parabolicin D.

3. IfB* —4AC <0, the equation is elliptic in'D:
For example, wave equation u,—c’u, =0 is a hyperbolic equation; heat equation
u, —u, =0 isa parabolic equation; Laplace equation u  +u =0 isa elliptic equation.

In this chapter we introduce linear models of the parabolic PDE.

1.2 Linear models of the parabolic PDE

1.2.1 Heat and mass transfer

We consider the temperature u(x,y,z,#) in a slab of material covering a three-
dimensional domain D bounded by a closed surface S. The material at the point (x,y,z,)
has the property that the temperature u is attained by storing the energy in the form of

random molecular motion. The total heat context of the solid is given by
o) = m cupdV |
D

where dV is the volume element; for instance, dV =dxdydz in Cartesian variables; the

1



constant of proportionality c¢ is the specific heat in (C% °c) and p is density (% . ).For

an incompressible material, p is constant.
By Fourier’s law, the rate of flow is proportional to the gradient of the temperature, ie.
v=—k gradu ,
where the constant & is the thermal conductivity. The net inflow of heat through boundary S
is
R(t) = j j k gradu-iidA.
N
Therefore the integral conservation law of heat energy, the rate of change of energy in D must

be equal to the flux of energy, so
d _
ijcpudV:J;J.k gradu -ndA , (1.1)
where c¢,p and k may depend on position.
For a medium where c¢,p and k- are smooth, we apply Gauss’ theorem (Divergence

theorem) to express the right-hand side-of (1:1);then we have

R(t) = J.”div(k gradu)dV .

Since the boundaries of D are fixed in space, we may rewrite the left-hand side of (1.1) as (we

suppose that u is continuous in D)
dQ
—=|||cpou,dv.
0[]
Thus, this gives
m[cpu, —div( k gradu)ldV =0.
D
We suppose that the integrand is continuous, and it must be zero. That is,
cpu, —div( k gradu)=0.

For constant k , this reduces to

ut—KV2u=0,



where K :i is called the thermal diffusivity of material and V> =div grad is the
cp

2 2 2
Laplacian given by V* = ;—2+aa—2+aa—2 in Cartesian coordinates. This is known as the
X y Z

heat equation.

A more interesting example is that of molecular diffusion, in which two substances co-exist
at each point and their relative properties vary in space and time. In the simplest case one of
the substances, called matrix, is fixed and the other diffuses through it with a concentration
(amount per unit volume) given by c(x,f). Examples are a dye in a liquid, and smoke in the
atmosphere; further examples are any mixture of substances such as a solute dissolved in a
liquid or gas.

Then Fick’s law relates the flux is proportional to the gradient of ¢ by ¢g=-DVc,

where D is called diffusity. Conservation of mass;iimplies that

dc

—=-V+g=DV’,
ot g

for constant diffusivity. If , however, the medium is moving with velocity v there is also
mass transfer by convection. The total mass flux is
g=cv—-DVc,

so that ¢ satisfies the convection-diffusion equation

%:szc—v °(017):DV20—[\7 *Ve+ce(V - V)],

for an incompressible liquid this reduces to

i:DVZC—V - Ve.
ot

This can be rewritten as

(3+V-V)c=DV2c.
ot



Remark:

The form

g—u+\7- Vu=DVu+f
t

is also called a convection-diffusion or reaction-diffusion equations depending whether

f=0 or v=0 respectively.

1.2.2 Finance
Suppose we consider an option, which is contract giving its holder the right (but not the
obligation) to buy (or sell) some asset, such as a number of stock-market shares, at some
specified time, say T, when the exercise price, a previously agreed sum of money E, is paid
for the asset. Suppose the asset is a share which is expected to gain in value in O<t<T, but
whose price is subject to unpredictable factor. If.we hold an options, we can set up a
“portfolio” of the option to protect ourselves against unpredictability. To do this we need to
assess the value V(s,#) of the option to buy a share-at time T as a function of current time t
and the asset value S. We suppose we have a cash balance M, and we hold a number A,
which may vary in time, of the assets. Thus, the portfolio valueis P =M + SA+V . The cash
balance accrues interest at a rate r; it also changes when we buy or sell assets, in a short time
dt, we receive rMdt in interest and spend —SdA on assets. In the same time, t he asset
price changes by dS and the option value by dV , so the overall change is
dP =rMdt — SdA + SdA+ AdS +dV = rMdt + AdS +dV .

Now we suppose the instantaneous “rate-of-return” on the asset varies randomly.

cg—S:,udt+0'dx, (1.2)

where p is a deterministic “growth rate” for the asset; dx is a small normal random variable
of mean zero and variance dt, and o is a parameter which measures how “volatile” the share

price is.



By Taylor’ Expansion series for dV ,

av =20+ g+ 1 a
ot A

Let dt -0, dS is given by o°S’dx’ and then replace dx> by dt since dx has zero

mean and variance dr.

oV av 1av oV

dv =G+ 5 )dt +——oSdx.
or d§ 285 oS
Thus,
2
dP—ert+A,LL§dt+Aode+a—th+—,tL§dt+1 zsza dt+a—VoSd
ot 2 oS’ oS

By observing, we can choose A tobe — g—‘; and we have

2
dP = ert+a—th+lO'ZSZa—‘;dt.
ot 2 oS

The final step is to use the idea of no arbitrage, it means that it is impossible to earn more
than the risk-free interest rate r for a risk-free portfolio, so
dP = rPdt ,
and

2
ert+a—th+lO'ZSz d Z
ot 2 aS

=r(M +AS +V)dt
= rMdt + rVdt — ra_V Sdt.
oS

Hence, we derive the Black-Scholes equation

v
=r(V-§—).
o TR0 g VS ag)



I. Methods of solving the linear parabolic PDE
In this chapter we introduce six methods to solve the heat conduction problem.

2.1 Separation of Variables

We first consider the heat conduction problem

2
a—u—a—b;:O, O<x<zm, t>0
ot ox
u(0,t)=u(x,t)=0, t>0 2.1
u(x,0)= f(x). 0<x<rx

We look for a specific type of solution; namely, a product of a function of x only and a
function of ¢ only
u(x,t)=Xx)T().

We substitute the function u into the differential equation, and divide u . This gives

T ek

ol =0,
T X
or
e’ 2.2)
Ferires X

The left-hand side of this equation depends only upon ¢. The right-hand side is
independent of ¢. We say that heat equation (in O<x<l) is separable.
If we take the partial derivative with respect to ¢ of both sides of the separated equation,

we find that

i T
2 9=0
0 [—]
It follows that
-
———
T
where A is a constant. Then by (2.2) we have
X

Thus u(x,t) = X(x)T(¢) is a solution of heat equation if and only if X and T satisfy the two



ordinary equations

KX +1X =0,

. (2.3)
T +AT =0,

for some constant A.
We can solve the two ordinary differential equations (2.3) to obtain particular solutions of
the partial differential equation (2.1). For each value of A the equation kX +AX =0 has two

linearly independent solutions. The families of solutions of (2.1) are given by

e cos ‘ /ix, e sin, /ix, for >0
k k
1,x

, X, for A =0

e_mgx, e_m_\/%x . for <0
Now, consider the boundary conditions. Since we wish to have u =0 for x=0 and x=1, we
only consider those solutions of the first equation’(2.3) which also satisfy these conditions.

‘We must have

kKX +AX =0, O<x<rxm
X (0) = X (1)=0.

This homogeneous problem always has the trivial solution X=0, but we are interested in

cases where this is not the only solution.

X(x):asin\/zx+bcos\/zx.
k k
A
X(x)=asin,|—x,
(x) asm\/;x
asin\/zﬂ:O.
k

Then X need not be identically zero if and only if

Casel. 2> 0,

X(0)= 0 tells us that

and X(m) = 0 gives



sin\/zfrzo,

k

\/Zﬂznﬂ', n=12,3..
k

A =n’k, n=1273 ..

n

1€e.

That is,

These value A, are called the eigenvalues of the problem, and the functions
X, (x)=sinnx, n=1273,...

are the corresponding eigenfunctions.

Case2. =0,
X(x)=a+bx,
We know
X0)=a+b*0=0 ="a=0 = X(x)=bx,
and

X(m) =b*=0 = b=0.

This gives the trivial solution X= 0.

Case3. A< 0,
) ]
X(x)zae\/7~ +be\/: .
We have
X0)=a*1+b*1=0,
and

X(m)=a e\/%”+b e_\/%” =0,

but these can not find a or b.

We know



I A A,
: A et —e 't -1 e\/7 +e \/?
sinh,[—x=————, cosh,[—x=————"—,
k 2 k 2
so that a general solution
X(x)= Asinh1/_k—/1x+ B coshwf%x.

X(0)=Asinh0O+Bcosh0=A*0+B*1=0 = B=0 = X(x):Asinhw{_T/%x.

Therefore

And

-4 -A

_ P
X(z)=A sinh /%n:O:A %zo = A=0.

This also gives the trivial solution X= 0.

Having found a sequence of values of A,-we ean look at the corresponding functions T(t).

These are easily seen to be multiples of e

We have constructed the particular solutions

n*kt

u,(x,t)=sinnx e

Which satisfy all the homogeneous conditions of the problem (2.1). The same is true of any
finite linear combination. We attempt to represent the solution of (2.1) as an infinite series in

the functions u, :

u(x,n)=> a, sinnx e (2.4)

n=l1

We need to determine the coefficients a, such that u(x,r) satisfies the initial condition

u(x,0) = f(x). Thus we require

u(x,0)=f(x)= ian sinnx .

But the right side is just the Fourier sine series of the function f(x) on the interval (0,/).



Therefore the coefficients a, are the Fourier coefficients given by
2 7 .
a, == j f(x) sinnx dx, n=12,.. 2.5)
4 0

Therefore we have obtained a solution to (2.1) given by the infinite series (2.4) where the

coefficients a, are given by (2.5).

Substituting the expression for the a, into the solution formula (2.4) allows us to write the

solution as

u(x,t) = i 2 j £(&) sinnédE) e sin nx

n=1 0

= ]5 ( % i ¢ sinnésinnx) f(&)d&
0

n=1

= [ K& & [(&)dé.

Remark:
If is defined and integrable on the interval [—7z, 7], then its Fourier series of the form

ay < .
—+Zan cos nx +b, sin nx,

n=1

where

G - J.f(x)cosnxdx , n=0L2,-
ﬂ’-—/r

1 va
bn:_Jf(x)sinnxdx, n=12,-
71-—7[

10



Example 2.1 :(Using Separation of Variables)

u—-u, =0, O<x<m, t>0
u(0,0)=u(x,t)=0, t20
u(x,0) = x*(mr —x). 0<x<rxm

By equation (2.4) we can know
u(x,t) = ane'"z’ sin nx ,
n=l1

where

b, :gsz(fr—x)sin nx dx
0

2 3
=20 E 2 2 2 ey T ey O
n 1 n V4 n n
=)' - = Ak e
n n

Then the solution is

w(x, ) =—4> [1+2(=1)"In e sin nx.

n=1

2.2 Finite Fourier Transformation and nonhomogeneous problem

Recall the heat conduction problem (2.6). The solution of the problem is given by

u(x,t) = an e sin(nx),

n=1

where
27 ,
b, == [ £ (x)sin(nx)dx, n=12,..
7 0

We shall now treat the corresponding nonhomogeneous problem

11



ou du

——-—=F(), O<x<zm, t>0

ot ox

u0,0)=u(r,t)=0, t>0 2.7)
u(x,0)=f(x) . 0<x<rm

by expanding the solution in a Fourier series in terms of the same set of functions.
To solve the above nonhomogeneous problem, we expand the solution in a Fourier sine

series for each fixed ¢
u(x,t) ~ an (t) sin(nx) .
n=1

The set of sine coefficients

b (=2 [utx,n)sin(nx)dx,
T 0

which is called undetermined coefficient and is also called the finite sine transform of u(x,).

If u_ is continuous, its finite sine transform is, given by

XX

2 J u  (x,t)sin(nx)dx :E [u, (x,t)sin(nx) —u(x,t)cos(nx)]y — n’ 2 I u(x,t)sin(nx)dx
Ty b2 Ty
=—n’b,(1).
Because of u(0,1) =u(z,t)=0.
If u, iscontinuous, we can interchange integration and differentiation to show that

2 [, G,y sin(r)dx = 4p ).
V.4 dt

0

Taking the finite sine transform of both sides of (2.7) leads to the equation
b,'®)+n’b,(t)=B, (1), (2.8)

where

B, (1) = 2 j F(x,0)sin(nx)dx . 2.9)
T 0

The initial condition u(x,0) =0 means that

12



b,(0)=0. (2.10)
Taking sine transform has reduced the partial differential problem (2.7) to the ordinary

differential problem (2.8), (2.9). We now solve this problem

b,'t)+n’b, (t)=B, (1),
b,(0) = 0.

We have

b (1)= j e OB (1)dr.

0

If the problem (2.7) has a solution u# with u, and u_ continuous, it must have the Fourier

sine series

u(x,t) ~ i [J e_"z(H)Bn (7)dt]sin(nx)
0

n=1

Recall the problem (2.6), the solution u can'be written as

u(x,t)= J.K(f,X,f)f(f)dé:’

where

K(&, x,t) = %ie sin(né) sin(nx) .

n=1

For our nonhomogeneous problem, we would like a similar form as above. We use the

definition (2.9) of B, (¢), and formally interchange integration and summation. This gives

u(x,t) = i[je‘"z('_” (%]E F(¢&,7)sin (n&) d&) dt]sin (nx)
n=l 0

S SR SN

[%ie_”z “Dsin (né) sin (nx)]F (&, 7)dé dt

n=1

K(x,Et—1)F(&,1)dé dr,

Ct— N ot—y

and only need F and F, continuous.

If instead of the homogeneous initial condition u(x,0)=0, we have u(x,0)= f(x) in

13



(2.7), we must simply replace (2.10) by

b, (0) = 2 j £(x)sin nx dx.
T 0

Then

t

b, (1) = [e" "B, (2)dT+b,(0)e ",

0

and

ux,t) =Y [[e™ "B, (2)dz]sin(nx) + Y b, (0)e ™" sin nx
0

n=1 n=1

= [[K(x.&t-DF (& ndédr+ [K(E x,0) f(E)dE.

Example 2.2 : ( Using Finite Fourier transformation)
u, —u, =t sinx, O<x<m, t>0
u(0,t) =u(mr,t)=0,

u(x,0)=0.

t>0
O<x<rx

We can find that
2t F . .
—J‘sm3 X sin nx dx

27 . .
B, (1) =—J‘tsm3 xsin nx dx =
0 7 0

L‘[3005(11 —1)x—3cos(n+1)x—cos(n—3)x+cos(n+3)x dx
T 0

2, n=1
4

=4J-—t, n=3
o0, otherwise

Then the solution is

14



u(x,) =Y [ j e "B (7)dr]sin(nx)
n=l o

= Jére‘("” sin x df—f

0 4 0

-9(t-1)

Te sin3xdt

I

= Ee" sin sz' efdf—le_g’ sin 3x'[z' eTdr
4 0 4 0

:E(t—1+e")sinx—i(t—l+ée"9’

)sin3x.
36 9

2.3 Fourier transforms

First let us begin with functions of one variable. The Fourier transform of a function

f(x), xe R, is defined by the equation

FIAIw) = fw) = [ f(x)e™ dx .

If f is absolutely integrable, ie. I | f (x)|dx < oo then f can be shown to exist. Nice property

—oo

of the Fourier transform is the simple form of the inversion formula, or inverse transform. It is

- r = _L b i r —iwx
FIIW=f®=lim [ Fowe™aw.

L—oo _p

It dictates how to get back from the transform domain. Besides, we have some operational

formulas for Fourier transform:

L FLf'1(w) = =iwF[ f1(w)

2. Flixf (x)](w) = j—WF[f](W)

1 iwé ~
3, F[f(ax—b)](w)zme a f(%)

4. Fle™ f(0)I(w) = f(w+c)

5. F[coscx f(x)](w) = %[f(w+ o)+ f(w=c)

15



Flsin ex £ (x)1(w) =%[f(w+c)—f(w—c)

The convolution theorem for Fourier transform

If f(x) and g(x) are both absolutely integrable and square integrable, then
FLf % g(0lw) = fmEw).

Proof:

—o0 —oo

FLf * g()]w) = FL[ f(x=ngdyl= [1[ £x= ng(ydyle™ d

= [2e™ [ [ fx=y)e"dxldy = f(w) [ g(y)e™ dy

= fWEw). ged
Some Fourier transforms can be calculated directly; many require complex contour

integration. In the following example we try to solve the infinite-slab heat conduction

problem.
2
%_g_b;:o, -0 x<oo, >0
X
u(x,0) = f(x),

u(x,t) bounded.

ou

We suppose that f(x) is absolutely integrable. We make the hypothesis that u, a3
t

Ju 9%u ) ) ) ) ) )
8_ , and 8_2 are continuous in x and t, and absolutely integrable in x, uniformly in t. Then
X X

ou
u and M approach zero as x — oo.
t

If our hypotheses are valid, u has a Fourier transform, for fixed t,

oo

u(w,t) = Iu(x, He™ dx,

—oo

and

16



Flu, J(w,t) = Tut (x,t)e™ dx = %IZ(W,Z),

—o0

oo

Flu _Jw,t) = qux (x,0)e™ dx = —w’u(w,1).

—oo

Taking Fourier transforms with respect to x in the problem, we obtain the initial value

problem
d_"‘+w2g:0 —o<w<oo, t>0
dt
u(w,0) = f(w)

Then we solve the ordinary differential problem

du = —-wdt,

c—
= =

I

<)

Il
o —

|

<

(3]

QU

n

Inu(w,t) —Inu(w,0) =<0t

aw, ) =u(m0)e"" = f(wye™",
whose solution is
a(w,t) = f(w)e™".

Then the solution formula is

1 . T —iwx o —wt
u(x,t)—ghm jLe Fw)e™ " dw. (2.11)

L—o _

Example 2.3 : (Using Fourier transformation to solve the infinite-slab heat conduction

problem)

u,—u, =0, -o0<X<oo, t>0

u(x,0) = e ,

u(x,t) bounded.

X

In this problem f(x)=e" ", we can find

17



fon=[eemar=ze +.

—oo

Then the solution is

2
1 7 L
u(x,t)=— J\/;e 4 M dy
27

1 —x?

= (1+4r) 2l

2.4 Sine and Cosine transforms

If f(x) isgiven for 0< x <o, its sine transform is defined as

F,(f) = [ f(x)sinwx dx.
0
If weextend f(x) to —oo<x<oo asanoddfunction, ie. f(—x)=-f(x), we have

fw=lim j e dx=Hm j F1Go)(cos wx + i sin wx)dx

L—o _f L—oo

L
=1im [ if (x)sin wxdx

Lo _p

=2i]im | f (x)sinwxdsx.

L—>

Hence, the inverse theorem becomes

1 . t —iwx .
f@=——lim jLe 2iF.[fldw.

L—oo _

The sine transform is clearly an odd function of w. Hence the integral on the right becomes

L
4 J sinwx F [ f]dw . Thus the inversion theorem is
0

f(x)zgjsinwas[f]dw,
7[0

or
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f)= 21"1[Fs[f Im1x),

T

for a function f(x) defined for 0 < x <oo.

Similarly, we can define the cosine transform
F.lf]= jf(x)coswxdx,
0

for a function f(x) defined for 0 < x <oo.

If weextend f(x) to —eco<x<oo asanevenfunction, ie. f(—x)= f(x),we have

fw)=2F.[f].

The function F,[f] is even in w. Hence the inversion theorem becomes
5
F(x)==[coswx F.[f1dw,
T 0

or

FO)= 2 PIELF 109100 .

T

for a function f(x) defined for 0 < x < oo

Sine and cosine transform are often useful in treating problems with boundary conditions

only at x=0. And we can note that

Ff"1=fOw-w’F,[f],
FIf"1==f"(0)-wF,f],

provided f(x) and f'(x) >0 as x — o. Thus sine transform is particularly useful when

f(0) is given, while the cosine transform is useful when f'(0) is known.

Example 2.4 : (Using sine or cosine transformation to solve the heat conduction problem in a

half-infinite slab)
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2
a—u—a—u:O, O<x<oo, t>0
ot ox’
u(0,1) =0,
u(x,0) = f(x),

u(x,t) bounded.

We suppose that f(x) is absolutely integrable, and that u, —

continuous and absolutely integrable in x for each fixed t. we have

oo

F [u](w,t)= Ju(x,t) sin wx dx,
0

and

oo

F,[u,1w,1) = [u, (x,1)sin wx dx = 4 F.[ul(w,1),
dt

0

(2.12)

ou du 0%u
, —, and — are

t  ox ox?

Flu, (wt)= ]:um(x,t)sin wx dx = u(0,6)w—w’F_ [u](w) = —w’ F, [u](w,1).
0

Taking the sine transform with respect to X in the problem, and putting U(w,t) = F,[u], we

find
d—U+w2U:0, O<w<eoo, t>0
dt
Uw,0)=F,[f]
Thus
Uw,t)=F,[fle™",
and

u(x,t) :%hmj FS[f](w)e_Wz’ sin wx dw .

L—o

(2.13)

The problem coincides with the solution of the heat conduction in an infinite slab, provided

we extend f(x) to —oo< x<oco asan odd function. The corresponding solution u(x,7) of

the problem (2.12) is then also odd at x=0, and hence u(0,7) =0
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2.5 Laplace transforms

We consider a function f(x) which vanishes for negative values of x:

f(x)=0  for x<0.

Then if e " f(x) is absolutely integrable, so is e ' " f(x) for s>s,. It follows that the

Fourier transform f(f) is analytic in a half-plane In& > s,.

We define the Laplace transform

oo

LI fl(s)= ~l‘e”"‘f()c)dx,

0

or
LI f1(s) = F[f1Gs) .
By integration by parts we find that

Lf'] = [e (s =sLif1- £ (0),

0

LIf"1=s"LLfV=s7(0) 2.1 (0).

The convolution theorem

L f*gl=L[f] Llg]
follows from that for the Fourier transform.
By inversion theorem for the Fourier transform, we can find that the inverse formula for the

Laplace transform is

s+il

1. o
2_7zz'1L1££ls _ijL[ fl(o)e”™ do

f(x)=

where s>, sothat L[f](o) isanalytic for Reo 2 s,, and the path is vertical.
We consider the problem of heat conduction in an infinite slab, as mentioned in Section 2.3.

In Section 2.3 we use Fourier transform to solve it.
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2
g_”_g_bz‘:() —0< x<oo, t>0
t  ox

u(x,0) = f(x)
u(x,t) bounded

Taking the Laplace transform with respect to t in the problem

Let
U(x,s)= Je_tsu(x,t)dt.
0

Then

oo

j e u, (x,0)dt = sU(x, ) — f(x).

0

ou U ) )
We suppose that —, and — are bounded and continuous, so that we obtain

ox*

. 0
o ,0)dt = —=U(x,s).
;[e u (x,1) P (x,5)

Thus, this gives

2°U(x,s) :
ox’

For each fixed s this is an ordinary differential equation for U(x,s) considered as a

sU(x,8)— f(x)— 0, —o< x<oo, §>0 (2.14)

function of x. We now solve the equation (2.14) by means of the Fourier transform.

Let
U(w,s) = OJ:U(x,s)ei’”‘”dx ,
and
FIU _1w,s)= ]iUM (x,8)e™ dx = —w*U (w,s) .

—oo

Thus we have

slj(w,s)—f(w)+wzlj(w,s)=0, —co<W<oo, §>0 (2.15)
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The solution of the problem (2.15) is

ﬁ(w,s>—f ) )]
s+ (

\/E) +w

By the convolution theorem for the Fourier transform and

“1(x,5) = Ll

20s

F[

(Vs) +w?

the solution of the problem (2.14) is given by
Urs)=—= [ r(ay.
24s 2,

The inverse Laplace transform of U(x, s) is

s+il

wen=5tim | Go= [ 7 (dvetdo

Lo o i,

s+iL (2 16)
_ o] x- \\ ot
== (— do) f(y)dy.
> Jiim e
Therefore, to find u(x,?), we need the inverse Laplace transform of — eV The

s

function

1 Yoy
g(0)=—=ce Vol

Jo

is multiple-valued, and we want to choose a particular branch cut of it. We choose that branch

1 : .
cut of —— along the negative real axis: —z <argo <7z

Jo

Now we want to solve

. e*\/ﬂx )‘ 1 s+iL
L[ :— e”g(o)do, s>0
\/; 1L1_1;£1 s:[L

We apply Cauchy’s theorem to the integral of e” g(o) over the contour C, as shown in

Figure (2.1)
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/_A s+il

F\% Re z

&_
()
@»
v

Figure 2.1 Contour C

Since g(o) is analytic inside this contour,

S+ils 6
§C e g(0) = j e"’g(O')d0'+ZL % g(0)do =0
s—iL n=2 "

Welet L - o and & — 0, we can find that

Contour Cy:
o=s+Le", Hfrom%toﬂ, do =Lie'’de .
L e”g(o)do = je(”“m)'g(s +Le®)L-i-edo

2

Since

approach zero as L — co. By Jordan’s lemma the integrals over this contour C, approach

Z€10.
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Similarly to contour C¢, & =s+Le”, 6 from x to 3?7[ do = Lie'’d@, the integrals

over the contour C¢ approach zero.

Contour Cy:

o=¢&", 0 from —x to &, do =é&e”do.

L e”g(o)do = J'egem’g(eem) ei-edf

Since
| 0 1 !
g(gelﬁ) — | A — = <— )
| | | 8elg| ‘ lgeia |gei6|% \/E
and
‘egeWt — eg(cos¢9+isin¢9)t |, Ecosbr eigsinﬂ-t = ‘eg-cose <ef ,
thus

[ e g(d)dO" <omes = 2me

approach zeroas € — 0

Contour C; and Cs:

Recall

.arg o

.arg o j=£2
L P G

1
g(O-)— \/g

Then putting ¢ =—u°, we have
L -iulses
glo)=—e , for argo =71
iu

ei/t\x—y\ ’

g(o)= L for argo =—-x
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. . 0 e—ﬂzr—iﬂ\x—y\
J.Cze g(0)do + J.Cse g(0)do = i e

oo~ i) x—y|

(2udps) + | ————(2wdu
0 —u

= iJ.e‘”z’ cos i(x—y)du.
1

0

Thus we find
s+iL _ 4 oo N
lim Ie”’g(O')dO' = Tje_" "cos u(x—y)du.
Loeo sip 0

Hence by the inversion formula

~s|x—| oo
e 2

]==|e* " cos u(x—y)du.
7 ﬂj p(x=y)du

0

L'

. : R P
Recalling the Fourier transform of e s .|—e %", we see that
a

3J.e_”z’ cos U(x—y)du = Ee Ie"”zt cos U(x—y)du
Ty T

& v w2
=Lje_'uzt+i,a‘x—y‘ du _1 z, =3
" 7T\t

~(x=y)?
e — LA

it

We return to (2.16), we find the solution formula

1 % —<x—y>%
— ! dy . 2.17
N fe J(y)dy (2.17)

—oo

u(x,t) =

2.6 Finite Difference method

Suppose that u =u(x,t) is a function of two independent variables. The first partial

derivatives of u are defined as limits of difference quotients.

u,= a—u(x,t) = limu(x+ h,t) —u(x,1) ,
ox h50 h

and

u, =%(x,t) =limu(x,t+k)—u(x,t)‘

k—0 k
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We can use the respective difference quotients to approximate these partial derivatives,

u(x+h,t)—u(x,t)

= 2.18
u, (x,1) P , (2.13)
u, (x,1) = ”‘(x’”k]: —un. (2.19)

To analyze the truncation errors (TE) associated with the approximation (2.18) and (2.19), we
require Taylor’s theorem in two variables.
Assume that u is twice continuously differentiable and that h is positive. From Taylor’s

theorem, we have

2
u(x+h,t):u(x,t)+ux(x,t)h+um(§,t)% x<&<x+h,
which can be rearranged to read

u(x+ht)—u(x,t) h
h

u, (x,0) = u_ (£,1). (2.20)

In (2.20) we find the partial derivative cu (x,7) ‘expressed as a difference quotient, plus a
truncation error, —}2214 (&,1). If u is twice continuously differentiable, so that u (x,7) is

bounded on the interval [x,x+ h], then the truncation error can be made small by choosing h
small.

We also require finite-difference formulas for the higher order derivatives of u . To obtain

a difference formula for u__, we use Taylor’s theorem to write

xx ?

o’u h* d’u h 9'u h*
u(x+h,t)=u(x,t)+u_ (x, t)h+a ~(x ,t)7+¥(x,t)?+ax—4(§,t)a. (2.21)

and

o’u h* 9’u h* 9'u
P G e (rft) . (222

where x<& <x+h and x—h<¢&, <x. Adding equations (2.21) and (2.22) and then

u(x—nh,t)=u(x,t)—u (x,t)h+

solving for u _ gives a centered difference formula for u_ (x,7):

u(x—h,t)—2u(x,t)+u(x+h,t)

u_(x,t)= e +7TE,
(2.23)
h2 84 h* 9*u
TE = - 1 a 4(§1,t)+ (@,t)]:—Ey(g’:,t), x—h<&é<x+h
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where TE be simplified by the intermediate-value theorem.

Example 2.5 : (Use Finite Difference method)
u,—u_+(sinxthu=0, forO<x<1,t>0
u(0,t) =u(l,r) =0,
u(x,0)= f(x).

Let h :% for some integer N. Denote x=0,4,2h,---,Nh=1 and t=0,k,2k,---. From

(2.20) and (2.23),

u(x,t+k)—u(x,t)  ulx+ht)—2u(x1)+u(x—ht)
k h?

—Eu (xt+t9k)—£u (x+6,h,1)
2 1t ’ 1 12 XXX 27587

A, lul= + (sin xt)u(x,t)

(2.24)

where 0< 6, <1 and —1<86, <1. The right hand side is certainly small if h and k are small.
Let v(nh,mk) be a function defined only at these points x = nh, t = mk . Let it satisfy the
equation
A, Ivi=0, (2.25)
at those points where O<nh<1.

We replace the boundary conditions and the initial conditions by
v(0,mk) =v(l,mk) =0,
v(nh,0) = f(nh).

We can solve the difference equation (2.25) for v(nh,mk) in terms of the values of v at the

time mk,

v(nh,mk) = iz v((n+1Dh,mk)+v((n—1)h,mk)]
h
ok (2.26)
+[1- ? — k sin nhmkv(nh, mk).

Thus we can compute v(nh,k) by the given initial values, v at time 2k in terms of its
values at k, and so on. It gives v(nh,mk) forany n and m.
We hope that v(nh,mk) is a good approximation to u(nh,mk) . Define the error w be
w(nh,mk) = u(nh,mk) —v(nh,mk).
By (2.24) and (2.25),
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2

Ah[w]:gun (nh,mk+01k)—il—2 (nh+6,h,mk) .

M XXXX

If the constants A and B are bounds for $|um| and %|un , respectively. We see that

|A,[w] < Ah® + Bk, (2.27)

and we have
w(0,mk) = w(l,mk) =0,
w(nh,0) = 0.

The inequality (2.27) can be written
k 2k .
w(nh,(m+1)k) — {h—2 (w((n+1Dh,mk)+w((n—1)h,mk)+[1- F — k sin nhmk lw(nh,mk)}
< (Ah® + Bk)k.
or each time ¢ =mk we define

M, = maX|w(nh,mk)|.

O<n<N
We suppose that

2
k< h
2+ h*

(2.28)
so that the coefficient of v(nh,mk) in (2.26)1s nonnegative. The inequality becomes
2k 2k . 2
|w(nh, (m+1Dk)| < ?Mm +[1 e — ksin nhmklM , + (Ah* + Bk)k

=[1-ksin nhmklM , +(Ah> + Bk)k.
Therefore

M, <(+k)M, +(Ah* + Bk)k .
We multiply the inequality by (1+k) " and transpose:

(1+k)—(m+1)M _(1+k)—mMm < (Ah2 + Bk)k(1+k)—(ln+l) )

m+1

We sum both from m=0 to %—1 (we suppose % is an integer.)

4 T/
M, < (AR + Bk LHR_ A+ 7

_% _
(+k) =My, I—(1+k)"

Since w(nh,0) =0, we see that M, =0. Hence
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2 A T 2
|w(nh,T)| < (AR + B)[(1+k)* 1] < e” (Ah® + Bk).
Thus for a fixed T |u(nh,T)—V(nh,T)|—>0 uniformly in x as h—0 and k—0,

provided that the inequality (2.28) is satisfied. The inequality of the type (2.28) is called a
stability condition for the problem.

Example 2.6 : (Use Finite Difference method)

u —u, =0, O0<x<lt>0
w0, =u,1)=0, t>0
u(x,0) =100sin zx. O0<x<l

Using separation of variables as in Section 2.1, the exact solution is
u(x,t) =100""" sin 7zx .

By equation (2.20) and (2.23)

= u(x,t+k)—u(x,t) __u(x—h,t)—2u(x,t)+u(x+h,t) _

t xx k hZ 0'

u

Let h =% for some integer N. Denote " x = 0,h,2h,--<, Nh =1 and t=0,k,2k,---.
Then we have that
k 2k
u(nh,(m+1k) = h—z[u((n + 1D h,mk) +u((n—1)h,mk)]+[1- F]u(nh, mk) .
In this problem we must suppose that
2k

I—FZO.

Let r= % . In general the solution is stable if and only if » < % .

(D) r:% Choosing k£ =0.005, h=0.1, N =10 gives the numerical solution shown in

Table 2.1.

30



T=0.5 Numerical Exact
x=0.0 0.000000 0.000000
x=0.1 0.204463 0.222241
x=0.2 0.388912 0.422728
x=0.3 0.535291 0.581836
x=0.4 0.629273 0.683989
x=0.5 0.661656 0.719188
x=0.6 0.629273 0.683989
x=0.7 0.535291 0.581836
x=0.8 0.388912 0.4227528
x=0.9 0.204463 0.222241
x=1.0 0.000000 0.000000

Table 2.1 Comparison of‘the numerical solution

and exact solution k=0.005, h=0.1

31




2) r= é Choosing k£ =0.001667, h=0.1, N =10 gives the numerical solution shown in

Table 2.2.

T=0.5 Numerical Exact
x=0.0 0.000000 0.000000
x=0.1 0.222040 0.222241
x=0.2 0.422346 0.422728
x=0.3 0.581309 0.581836
x=0.4 0.683370 0.683989
x=0.5 0.718538 0.719188
x=0.6 0.682270 0.683989
x=0.7 0.581309 0.581836
x=0.8 0.422346 0.4227528
x=0.9 0.222040 0.222241
x=1.0 0.000000 0.000000

Table 2.1 Comparison of the numerical solution

and exact solution k=0.001667, h=0.1
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I1. Comparison with various solving methods

3.1 The limit of Separation of variables

In chapter 2 we introduce the Separation of variables to solve the problem. But in the
processes of solving the problem we can find the limit of Separation of variables.

1. The differential operator L must be separable.

Example:
u,+2u,+u =0, O<x<zm t>0
u(0,t) =u(x,t) =0, (3.1)
u(x,0) = f(x).

We can not use the Separation of variables to solve the problem (3.1). Because if
u(x,t)=Xx)T ().
We substitute u into the differential equation, and divide u , this gives
reoxr X"

) (3.2)
Gt x

By (3.2) we can know the equation-in (3.1) is not sepsrable.

Then if the differential equation contains. .., then the problem can not be solved by

M
Separation of variables.

2. All boundary conditions must be on lines x=constant. That is, the range of x must be
bounded.

3. The linear operators defining the boundary conditions at x=constant must involve no

partial derivatives of u with respect to ¢, and their coefficients must be independent of

t.

3.2 Sine- and cosine-transform v.s Fourier transform

In general we use sine- or cosine- transform to solve the half-infinite slab heat conduction
problem. But we can also use Fourier transform to solve this problem if we extend f(x) to

—oo < x<oo as an odd or even function. Recalling the problem (2.12), we extend f(x) to
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—oo < x <oo as an odd function, then the problem becomes

u,—u, =0, -0 <X <00
u(x,0) = f(x), (3.3)
f(x)isanodd function.

Because f(x) isodd at x=0, we have

Fw)=2iF,[f1(w).

By the solution (2.11) and (3.3)

1 54 2
u(x,t)=— w)e " e™ dw
(6=~ j Fw)
1% 2 .
=— jiFS [f1(w)e™ " (cos wx — i sin wx)dw.
T

—oo

Since F [f](w) and sinwx are an odd function of w and coswx 1is an even function of w,

then
2% b
u(x,t) =— jFS[f](w)e sin wxdw
ﬂ —oo

is the same as the solution (2.13).

3.3 Fourier Transform and Laplace Transform

In chapter 2, we use the Fourier transform and Laplace transform to solve the infinite-slab
heat conduction problem and we gain two solutions (2.11) and (2.17). We must identify that
tow solutions are the same.

With the Fourier transform

1 [ .
u(x,t) =—14 e ™ fwe™ dw,
(x.1) 2ﬁhmjL f(w)

L—oo _

where

Fony = [ fooe™dx.
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Then we have

u(x, z)——hm femev j (e dy)dw

L—o _p

=— Jf(y)[hmf eV dwldy.

L—oo _p

Recalling the Fourier transform of e~ \/:e_w/

uey=-- [ f <y)\/E e g
27 ¢ t

1 % _(x—,v)%
= 'dy,
N j Fye y

is the same as the solution (2.17)

For Fourier transform we need to integrate the function from -co to oo, then we usually take
Fourier transform into PDE with respect to x.for:fixed t because of xe R.

Similar to Laplace transform we need to integrate the function from 0 to oo, then we take

Laplace transform into PDE with respect to t forfixed x because of > 0.
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I11. Develop the function f(z)= /f[(z ~z,) to solve linear

parabolic PDE
We know that there are some differential equations whose solution space is in the Riemann

. . 1 o
surface. In this chapter, we want to compute the integrals jmdz , where ¥ 1is in the
rf(z

Riemann surface of algebraic curve f(z)= /H (z—z;) . We will develop an algorithm such
j=1

that we can compute the integrals I S S
14 n
]/H (z-z))
j=1

Before computing integrals, it is necessary to discuss the Riemann surface of

f(z)=1/fl(z—z,-)-

4.1. Fundamental introduction

dz by Mathematica®5.

For simplicity, we take f(z)= Jz to define a single-value and analytic function on the

Riemann surface.

Now we let ze C, and use polar form for z. That is,

z=re? | “4.1)
=re" 7 (4.2)
Then by (4.1)
e
Nz=rze?,

and by (4.2)

Therefore f(z)= Jz is a multi-valued function at each ze C and is not analytic on C.
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How to make f(z)= Jz tobea single-valued and analytic at every pointon C?

Consider two cuts from 0 to —oo (i.e.the negative real axis) and
Let
P ={C\(~,0] | 6, =argze[-x",77) }
and
P, ={C\(~,0] | 6, =argze [7"377) }

as Fig. 4-1 shows.

P1
P2
T 3w~
-1 T”
(a) (b)
Fig. 4-1 P1, P2 plane
Define
fl (Z) = \/Z ) Z S Pl .
=Nz, ze P,
Then
18
fi(m)= Jz= |z|56 2 is single-valued at each ze P, and analyticon P,
1 iﬁ 1 ,-M iﬁ . 1 iﬁ
fr(2) = Jz =|Z|5€ 2 =|z|56 2 =|Z|5€ 2" = —|Z|5€ 2 =—f,(z) isalso single-valued at

each ze P, and analyticon P,.
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Let
D, ={ (~=,0] | argz=7 },

as shown in Fig. 4-2.

D1

argz=7m

Fig. 4-2 D, ={ (—0,0] | argz=7 }

Jlitd
2

1 i 1
If ze A, and argz tendsto 7~ - then \/_=|z|56 z|z|%e2 =i|z|; ;

arg z T

If ze P, and argz tendsto z* > then «/z:|z|%eiT z|z|%eiE :i|z|% ,

So \/Z is continuous cross the cut (—0,0] for ze D,.

We define
fi(z)=+z > ze D,,
then
Ly 1
()= Jz =|Z|2e 2 = i|z|2 for ze D, and analyticon D,.
Let

D, ={ (=,0] | argz=37 },

as shown in Fig. 4-3.
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D2

argz =37

Fig. 4-3 D, ={ (—0,0] | argz =37 }

argz 1 37

If ze P, and argz tendsto 37, then \/_=|z|%eiT z|z|5le7 =—i|z|% ,

arg 2 i

L 1 1
If ze P, and argz tendsto —z", then \/_:|z|56 2 z|z|26 2 :—i|z|2 ,
So \/E is continuous cross the cut (—,0] for ze D,.
We define
fi( =87 ze D,,
then
1
f4(Z)=—i|z|2 =—f,(z)/for_ze D, andanalyticon D,.

According the discuss above, we can construct a single-valued function for Jz.
We have the conclusion as the following:

Let R, =P, UP, U(—,0] and afunction F:R, — C - define

fitz) , zePR
HL() ., ze P
F =
@ f(x) , zeD,
fi(2) , zeD,

then F(z) is single-valued and analytic at every point ze€ R,.
Note that f,(z)=—f,(z) and f,(2)=—-f,(2).

Moreover, F(z) is defined on a Riemann surface R, which is a generalization of the
complex plane to a surface of more than one sheet such that a multi-valued function has only
one value corresponding to each point on the surface.
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4.2. Riemann surface of the algebraic curve f(z)= /ﬁ(z ~z,)_with z;€ R

Consider f(z)= /H(z—zj) » z;€R and z,>z,>z;>...>z, with n distance
j=1

branch points.

4.2.1 The cut structure of f(z)

Since f(z) is a two-valued function, we need branch cuts to define a single-valued and

analytic function. But how can we construct branch cuts ?

In this paper we by face the left direction to do cut explained. For convenience, let n =2

and n=3 to see what is going on ?

First we check if there is any cut, for n=2 and z, =1 , z, =2, as shown in Fig. 4-4.

q
q
q
q
v

Fig. 4-4 The branch points are z, =1 and z, =2

Consider —1€ (—oo,1), then we have
-
arg(-1-1) =arg(-2) = {
V.3
-
arg(—1-2) =arg(-3) = {
T
7271')

I i 1
Taking -7 : v—2-v=3=[22[3z¢ 2 =6]2. 4.3)

11 27 1
Taking 7 : \—2-v=3=[22P2¢" 2 =d2 . (4.4)

Since (4.3) = (4.4), there is no cut in  (—oo,1)
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Consider %e (1,2), then we have
3 1
arg(——1)=arg(—) =0,
g( 2 ) = arg( 2)

3 1 -7
arg(E -2)= afg(—a) = { .

Taking —7 : \ﬁ 1|l i L 4.5)
2V 2 2 |2 4
[ 1

Taking 7 \ﬁ L1 _[lpplp i 1 (4.6)
2V 2 2 |2 4

Since (4.5) # (4.6), thereisacutin (1,2)

Hence we have the branch cut in [1,2], as shown in Fig. 4-5.

—— WA

1 2

Fig. 4-5 The cut structure for..n=2" branch points in horizontal

But we can use the simpler way to get branch cut. Recall Fig. 4-4. When crossing the cut
even times in each line section, it will not change sign. When crossing the cut odd times in
each line section will change sign, this implies the line section will form a branch cut. Hence

we have the branch cutin [z,,z,]. The cut structure is shown in Fig.4-6.

W

7 Z,

Fig.4-6 The cut structure for four branch points in horizontal

Now given n branch points, If n is even, then the branch cuts are [z,,z,,] *
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[2,5.2,35] ... and [z,,z;]. If n is odd - then the branch cuts are (—co,z, ] *

[z,,2,5].... and [z,,z,]. Show as Fig.4-7.

Zu u-1 Zu- 73 72 Z1

Zu-3 74
d\/\/\!\ W W W with n € odd
u Zu- 73 Z 71
Zu-2 74

Fig.4-7 branch cuts with n € even and n € odd

4.2.2 The algebraic and geometric structure for Riemann surface of horizontal cut

For simplicity, we use n=3 to discuss the structure for Riemann surface of

3
f(2)= /H(z —z;) in horizontal cut.
j=1

( I) Algebraic structure

N\ 7

As Fig.4-8 shows, (—o,z,] ~[z,,z,] represent the cuts in this Riemann surface and "+”,

N\ 7

are defined as following(the initial edge with +, the terminal edge with —) :

Fig.4-8 The algebraic structure for three branch points in horizontal
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Casel: If zeI"(+edgeofsheet I)

As the Fig.4-8 shows, ze€[z,,z,]

Since z-z,>0 = arg(z—z;)=0 for j=23.

7-7;<0 = arg(z—z;,)=-7x for j=1.

f(@)= /H(z—zj) =H,/z—zj

1
Lyt 2 2
5 i-0
=le=zf2e 2 []le-z ¢
J=2

Then

1
% 2 2 3 2
_ 2 _ —(—; _
=e I”Z Zj| —(l)~|||z zj| .
j:l j:1

Case2: If ze I (--edge of sheet I:)

As the Fig.4-11 shows, ze|z,,z,]

Since z-z,>0 = arg(z—z;)=0for j=23.

z-7,<0 = arg(z—z;)=7z for j=1I.

f@=[1e-2) =TIz

1

Then

| 3 5

1 2

=le-z e []le-2[ ¢
2

1 1
i&y £ 2 P 2
=e’ 'H|Z_Zj| :(l)'H|Z_Zj| :
j=1 j=1
Note that f(z) | - = —f@ | ,+ » this result is the same with what we discuss before.

= f(2) ‘ a = —f(2) | I
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(I ) Geometric structure

After knowing the algebraic structure, we will discuss about how to construct a geometric

structure for Riemann surface of f(z)= /H(z— z;) - According to algebraic structure for
j=1

Riemann surface, we know that if n is even, then the branch cuts are [z, ,z, ,] °

[z,5,2,3] ... and [z,,z,]. It implies we have " _1 holes. If n is odd, then the branch

cuts are (—o0,z, ]~ [z,,.2,,]--... and [z,,z,]. It implies we have nT—l holes. And we

obtain one sheet with two edges in each cut by taken of counterclockwise which labeled the
edge of lower- cut with + and the edge of upper- cut with —. Since there are two surface, one is,
say sheet I with arg f(z) € [-7x, ) ; another is, say sheet II with arg f(z) e [7,37).

By definition, the — edge of sheet I is joined to the + edge of sheet II, and the + edge of
sheet I is joined to the — edge of sheet IL.:“Whenever crossing the cut, we pass from one
sheet to the other sheet and the value is continuous which from our construction.

Note that f(z) | , = —f(z) | , andfor_f(z), supra-half-ball represents sheet I, and
infra-half-ball represents sheet II .

We take n=3 to discuss the geometric structure for Riemann surface of

f(2)= /H(z —z;) in horizontal cuts, as shown in Fig.4-9.
j=1



( I ’+):(H) _)

(I,)=(1,+)

il

Fig.4-9 The geometric structure for Riemann surface with n =3 in horizontal cut

45



(IIT) Algebraic structure v.s Geometric structure
We also use n=3 to discuss. Before talking about the relation between algebraic structure

and geometric structure, we need to denote something as the following :
(a) If the curve is drawn by solid line :

In algebraic structure, it means the curve is in sheet I ;

In geometric structure, it means the curve is in the overhead Riemann surface.
(b) If the curve is drawn by dash line :

In algebraic structure, it means the curve is in sheet 11 ;

In geometric structure, it means the curve is in the ventral Riemann surface.

We give some example to show that the curve in algebraic structure and its corresponding

in geometric structure in Fig.4-10 to Fig.4-12.

Fig.4-11 The rule in algebraic structure and geometric structure
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Z1

Fig.4-12 The rule in algebraic structure and geometric structure

4.3. Riemann surface of the algebraic curve f(z)= /H(z -z;) withz,eC

j=1
In this section, we discuss the vertical cut structure. We define that (z, f(z)) belong to

o 3t @ it n
sheet 1 if and only if ar 7z—z2.)€[-——,—), ie arg(z—z.)e[-—,—) for each j .
y if arg[J(z—z,)el REL gz-z)el-2) j

And f(Z) | n = _f(z) | I -

4.3.1 The vertical cut structure

up direction to do cut explained. The method of analyzing the vertical cut structure is the
same as horizontal cut structure.
Then we can use the simpler way to get branch cut. We take n=4 with z, =i > z, =2i ~

z;=3i and z, =4i,thatis, z,<z,<z;<...<Z,,as shownin Fig.4-13.

—1 ! N

ReZ

Fig.4-13 The cut appears at z < z; foreach gz;

47



When crossing the cut even times in each line section, it will not change sign. When
crossing the cut odd times in each line section will change sign - this implies the line section

will form a branch cut. Hence we have the branch cuts in [z,,z;] and [z,,z,]. The cut
structure is showed in Fig.4-14.

ImZ
74 41
73 gi
7

5
Z, % jl

ReZ

Fig.4-14 The cut structure for four branch points in vertical

4.3.2 The algebraic and geometric structure for:Riemann surface of vertical cut

For simplicity, we use n=4<to discuss the structure for Riemann surface of

4
f(2)= /H(z—zj) in vertical cut. In the cut structure, we still depend on the
j=1

countclockwise to take “+” ~ *—” sign. The definition of solid-line and dash-line are the same

as horizontal cut case.

\\+
| N
+
N
/,‘N\+ J>N

+ N

(@) (b)
Fig.4-15 The algebraic structure for four branch points in vertical
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( I) Algebraic structure
As Fig.4-15 shows, [z,,z;] and [z,,z,] represent the cuts in Riemann surface.

Case 1: If zeI'(+edgeofsheet I)

As the Fig.4-18 (a) shows, z€[z,,z]

Since arg(z—zl):—% and arg(z—zz):—% .arg(z—zj)e(—ﬂ,%) for j=34.

f(Z)=1/H(z—zj) =H -z,

1
2 are(z—
i(—3”) 2 2(z-2;)

zz—zzée 47, 7—27.| e 2
J

j=1,3,4

Then

1
1 - arg(z—z;)
=(—gi)|z—z2|2- H‘Z—erel - .

j=1.3.4

Case2: If ze I (—edgeofsheet 1)

As the Fig.4-18 (a) shows, ze|[z,,z].

Since arg(z—zl):—g and arg(z—zz):% .arg(z—zj)e(—ﬂ,g) for j=34.

Then
4 4
f@=[1c-2» =TIyz-z
j=1 j=1
~ gz
1 PR
=[e=zfre o=z e >
j=1,3,4
1
\/5 . 1 2 iarg(z—z_,v)
2(71)|z—12|2- H|z—zj| e 2 .
j=1,3,4
Note that f(z) | - = —f@ | ,+ » this result is the same with what we discuss before.

= f(2) ‘ n = - f(2) | I
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(1) Geometric structure

The construct a geometric structure for Riemann surface of f(z) = /H(z—z ;) s the

j=1
same as horizontal cuts.
By above example and illustration, we discusses the geometric structure for Riemann

surface in vertical cuts. Show as Fig.4-16 (page 52).

4.4. The integrals over a, b_cycles

We want to evaluate § dz and Ldz for n branch points where a, b

1
“f(z) v f(2)

represent the a, b cycles over the Riemann surface of f(z) = /H(z —-z;) with z;€C,
j=1

and develop an algorithm such that the:integrals can.be easily computed.

4.4.1 The a,_ 2 cycles over the Riemann surface of f(z)= /H(z -z;)
j=1

(A) In horizontal cut :

Let z,,2z,,+-+,z, bethe n branch pointsin x—axis with z;,€ C, then
f(»)= /H(Z —z;) formsa N —holes Riemann surface where Ne Z* w{0} and
j=l
n-1
N = > for n odd
-2
N=" > foe n even



(T.+H)=(1,-)
(Iv'):(H) +)

Fig.4-16 The geometric structure for Riemann surface with n =4 in vertical cuts



So there are N a, b cycles. The Fig.4-17 represents the a, b cycles in the Riemann

surface for n is even and the Fig.4-18 is the case for n is odd.

Fig.4-18 a, b cycles for horizontal cuts of odd branch points

(B) In vertical cut :

Let z,,z,,---~,z,€ C be the n branch points where n is even and z, = ZzZ2%-1 °

k :1,2,----,%. There are a, b cycles in the Riemann surface showed in Fig.4-19.

For a, cycle, it encloses the cut z,,_,z,, , b, cycle is passed through the cut z,,_,z,,

from one sheet to the other.
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Fig.4-19 a, b cycles for vertical cuts

,2,€ C be the n: branch points where n is even and z, =Zz2-1,

Let Zl s Z2 g
a, b cyclesinthe Riemann surface shown in Fig.4-20.

k=12, -‘,2 . There are

S

Fig.4-20 a, b cycles for vertical cuts
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4.4.2 About “ Mathematica ” and how to modify

All programs in this paper are run by Mathematica®5. But we can not compute directly,
before computing we need to give some adjustments. Since Mathematica®5 reads argument
of any complex number in (—7z,7] only, then it just gives right answer in sheet I in

horizontal cuts ( expect at the argument — 7 ).
Consider the branch points z;, j=12,...,n. In horizontal cut structure we define

arg(z—z;)e -z, 7), for ze C. In vertical cut structure we define arg(z—z;)e [—3—7[ ﬁ) ,

272
for ze C. But in Mathematica®5, it defines arg(z—z;)€ (-7, 7], for ze C. Then before

computing the integral we must modify the function so that we can get the correct value.

In horizontal cut structure the value of H in our Theory and in Mathematica®5 are
different at a point z with arg(z—z;).=-7, so. we must modify the function \/z—z, at
arg(z —z;) =-x . But if point z with “arg(z=2z,)=—7z is only a point on the contour r, then
it can not influence the value of L,/z —z,dz so that we need not modify the function

2-2Z; -

In vertical cut structure the value of ,/z—z; in our Theory and in Mathematica®35 are
different at some points z with arg(z—z;)€ [—377[,—7[) so that we must modify the function

z—z; at arg(z—z;)€ [—37%,—7[).

Besides, the askew cut structure is the same as horizontal cut and vertical cut structure. So

we define arg(z—z;)€ [%,977[), for ze C. It implies that we must modify the function

%3
z—z; at arg(z—z;)€ (”’T)‘
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4.4.3 Evaluation of dz _and

! Ldz
“f(z) v f(z)

In this section we give three examples about the horizontal cut, vertical cut and askew cut.

In the three examples we try to modify the function f(z).

Example 4.1 :
Let n=6,and z,=4 >~ 7,=3 > 27,=2>7z,=1> z;,=-1 and z,=-2 are six branch

points , as shown in Fig.4-21.
6 1 1
If f(z)=H(Z— Zj)2 » then ffmdz =7 where r=a,b cycles.
J=1 AR

We use Mathematica®35 to compute the integral.

Fig.4-21 a,b cycles for six branch points in horizontal cut

(i) Foracycle:

Fig.4-22 a,a” cycles for six branch points in horizontal cut
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We know that § f(2)dz = I _f(2)dz, we only compute the integral along a’ path.
For the equivalent path a" :

Since arg(z—z;)=-x is not the valid range in Mathematica®5, we must modify f(z),

as shown in Table 4.1. (M means the value of f(z) in Mathematica®5.)

Value of f(z)
Branch points (1,0) to (2,0) (2,0) to (1,0)
% -M +M
2 -M +M
23 -M +M
2, +M +M
Z5 +M +M
Zg +M +M
Sheet I or sheet IT ( Sheet [) +M ( Sheet 1) +M
Total -M +M

Table 4.1 we must modify the valve of f(z) for a  cycle in Mathematica®5.

By Mathematica®5,
Pl e s o 4 2 3.3819%107 —1.13022i
I f(2) 2 f(2) ' f(2)

Therefore the integral over a, cycleis

L *Ldz =3.3819x107* —1.13022i .
« f(2) “ f(2)
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(ii) Forb cycle :

Fig.4-23 b,b" cycles for six branch points in horizontal cut

For the equivalent path b" :
Since the interval (—1,1) and (2,3) have no cut, so solid line in sheet I implies + sign
and dash line in sheet II implies — sign ..sincearg(z —z;)=—-7 is not the valid range in

Mathematica®3, we get the Table 4.2.

Branch points Value of f(z)

(1,0) 10 (2,0) (2,0) to (1,0)

4 -M +M

2 -M +M

%3 -M +M

24 +M +M

Zs +M +M

6 +M +M
Sheet I or sheet II (Sheet I) +M (Sheet II) — M

Total -M -M

Table 4.2 we must modify the valve of f(z) for b cycle in Mathematica®5.
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By Mathematica®5,

—dz
! f (2) 3 f(2)
=-0.0760776 +3.77621x107*} .

1 2 1 2
Jlf(z) sz(z) 70"

3 ld_ll

— ——dz
b f(2) 2 f(2)

Therefore the integral over b cycle is

1

—dz =-0.0760776+3.77621x107%}.
b f(z) ¥ f(2)

Example 4.2 :
Let n=6>and z, =1+2i

2, =1>2z,=3 >~ z,=i > zg=—1+3i and z, =-1+i are
six branch points, as shown in Fig.4.24

Jj=1

If f(z)= H(Z z; )2 then Ef—dz—? where r=a,b cycles.

Fig.4.24 a,b cycles for six branch points in vertical cut

We use Mathematica®5 to compute the integral. Note that in vertical cut structure we must
modify the function

3z
-z, at arg(z—z;)€[~—,~7)

(i) Fora cycle:

For the equivalent path a” : shown in Fig. 4.25
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-1431

Fig.4.25 a* cycle for example 4.2

We can get the Table 4.4. For example, arg(z—z,)e [—37” ,—m) for z along the path (0,31)

to (0.2i) so that we must to modify /z—z, .

Value of f(z)
Branch points (0,3i) to (0.2i) (0,2i) to (0,i) (0,2i) to (0,31) (0,i) to (0,2i)
7 -M +M -M +M
2, -M -M -M -M
23 +M +M +M +M
Z, -M -M +M +M
Zs +M +M +M +M
Zg +M +M +M +M
Sheet I or
sheet I +M +M +M +M
Total -M +M +M -M

Table 4.4 we must modify the valve of f(z) for a  cycle in Mathematica®5.

By Mathematica®5,
J- o+ _J~ 2i +J~ 3.i 1 dZ
f(Z) " f(z) x f(z) f(Z) ¥ f(z)
=1.38321-2.33762i
Therefore the integral over a cycle is
1

——dz=| L g =138321-2.33762i
@ f(z2) “ f(2)
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(ii) For b cycle:

For the equivalent path b :as shown in Fig.4.26

-1431 31‘/

21

Fig.4.26 b" cycle for example 4.2

We get the Table 4.6. For example, arg(z—z,)e [—377[,—7[) for z along -1+{ to 1 so that we

must to modify ,/z—z, .

Value of f(z)
Branch points -l+itol 1to-1+i

4 +M +M

2, -M -M

25 +M +M

2, +M +M

Zs +M +M

Zg +M +M

Sheet I or sheet II +M -M
Total -M +M

Table 4.6 we must modify the valve of f(z) for " cycle in Mathematica®5.

By Mathematica®5 ,

o= I R 2f L 20590344 -1.16143i
4 f(z) ‘”’f(z) b f(2) b f(@)

Therefore the integral over b cycle is
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Ldz= *Ldz=0.590344—1.16143i.
b f(z2) ¥ f(2)

Example 3 :
Let n=4, z;,=1>z,=i>zy;=—i and gz, =—1 are four branch points form a askew cut

as shown in Fig.4.27.

4 1
5 1
If f(z)=]]|(z—2z,)® >then $——dz=7? where r=a,b cycles
I_I J ﬁf(z)

J=1

Note that in askew cut structure we must modify the function ,z—z, at

9
arg(z—z;)€ (7[,77[).

Fig.4.27 a,b cycles for four branch points in askew cut

(i) For a cycle:

For the equivalent path «  : as shown in Fig.4.28

Fig.4.28 a" cycle for example 4.3
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We get the Table 4.8. For example, arg(z—z,)¢ (ﬂ,%) for z along -1 toiand i to -1 so that

we must not modify /z—z, .

Value of f(z)

Branch points ltoi ito-1
z,=1 +M +M

2, =i -M -M

2y=-1 +M +M

z,=-1 -M +M

Sheet I or sheet II +M +M
Toatl +M -M

Table 4.8 we must modify the valve of f(z) for a  cycle in Mathematica®S5.

By Mathematica®5,
1 ie. 1 .
——dz=| ——dz- j e =2 —— 47 =2.62206-2.62206i .
“ f(z) “f(z) f(z) 1f(2)
Therefore the integral over a cycle is
! dz = Ldz—262206 2.62206i .

o i@

(ii) For b cycle:

For the equivalent path b : as shown in Fig. 4.29

Fig.4.29 b" cycle for example 4.3
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We get the Table 4.10. For example, arg(z—z,)e (72',977[) for z along the path -1 to 1 so that

we must modify /z—z, .

Value of f(2)
Branch points -ltol 1to-1
z,=1 -M +M
2= -M -M
2y=-1 +M +M
z,=-1 -M -M
Sheet I or sheet Il +M -M
Toatl -M -M

Table 4.10 we must modify the valve of f(z) for b cycle in Mathematica®5.

By Mathematica®5,

*Ldz=— s —I —z 0.
b f(2) 1f(z) (@)

Therefore the integral over b cycle is

SR SRR Y
b f(z2) " f(2)

4.5 Application for Riemann integral

Recalling the heat conduction problem in section 2.5 we use Laplace and Fourier

transformation to solve it. But we want to solve the integral

u(x,) = —j(hm I o Tlendo)f (.

oo Lo g
Since the path is from s—il to s+il, we must not modify the integrate in Mathematica®35.

Let f(y)=y’, and by Mathematica®5 we can get
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s+iL

wen == [dim | =

o Lo g

o0 46y ydy = x. @.11)

We also compute the integrate in (2.17), and we can get that

M(X,I)ZLJ’e_(X_y)%
2N T

ydy = x,

—oo

is the same as (4.11). As shown in Table. 4.11, u is the value of u which is computed by

Mathematica®5.
tho 2 3 4 5 6 7 8 9 10
u 24%° | 4+x7 | 6+x7 | 8+x" [10+x° |12+ x7 |14+ x7 [16+x° |18+ x7 |20+ x7
u 24 x| 4437 | 6+ X7 | 8427 |10+ |12+ 2 [ 14+ X7 |16+ x% | 18+ x% [20+ X7

Table 4:11 compare .« with u
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