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摘  要 

    這篇論文中我們研究線性拋物偏微分方程。首先，我們舉出關於此種方程一些實際

的例子。接下來，我們運用一般的方法去解決此方程，雖然同一例題用不同的解法，會

得到不同的表示方式，但可以證明都是一樣的。 

    當我們應用 Fourier 和 Laplace 轉換去解決全線和半線的偏微分方程時，我們必須

使用 inverse Fourier 和 Laplace 轉換去求出解析解，而這些被積分函數中有時會牽扯

到平方根，但是在複數平面中，平方根是多值的。為了使我們的運算正確，所以我們從

複數平面上的代數結構去發展黎曼空間，讓平方根是一個單值函數，我們可以利用數學

軟體去完成 inverse 轉換。在此篇論文中，我們提出一些例題去說明及驗證此方法是可

行的。 
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Abstract 

  We study the linear parabolic partial differential equations(linear parabolic PDEs). First, we 

give some practical examples and show that they are governed by such type of the equations. 

Next, we apply several classical methods to solve the linear parabolic PDEs with the solutions 

being expressed in various forms. We then identify those solutions. 

When we apply Fourier and Laplace transformations to the whole-and half-line PDEs, it is 

necessary to perform the inverse Fourier and Laplace transformations to derive the PDE 

solutions, and it is quite often that those integrals involve the square root operator which is 

multi-valued in the complex plane. In order to perform the inverse transformations correctly, 

we develop the Riemann surfaces from the complex plane with the proper algebraic structures 

to assure that the square root is now a single-valued function on the surfaces, and we are able 

to accomplish the inverse transformations analytically and numerically. Some examples are 

given to illustrate the entire scheme. 
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1. Introduction 

  The parabolic equations occur commonly in applied science. Examples are models of many 

physical processes, financial models and Schrodinger equation. Before we introduce the linear 

parabolic PDE, we must classify the partial differential equation. 

1.1  Classification 

All linear, second-order partial differential equations can be classified as parabolic, 

hyperbolic or elliptic. Assuming yxxy uu = , the general second-order PDE in two independent 

variables has the form  

0),,,,( =+++ yxuuuECuBuAu yxyyxyxx , 

where the coefficients A, B, C etc. may depend upon x and y, and ),( yx ∈domain D. 

1. If 042 >− ACB , the equation is hyperbolic in D.  

2. If 042 =− ACB , the equation is parabolic in D. 

3. If 042 <− ACB , the equation is elliptic in D. 

For example, wave equation 02 =− xxtt ucu  is a hyperbolic equation; heat equation 

0=− xxt uu  is a parabolic equation; Laplace equation 0=+ yyxx uu  is a elliptic equation. 

In this chapter we introduce linear models of the parabolic PDE. 

1.2  Linear models of the parabolic PDE 

1.2.1 Heat and mass transfer 

We consider the temperature ),,,( tzyxu  in a slab of material covering a three- 

dimensional domain D bounded by a closed surface S. The material at the point ),,,( zyx  

has the property that the temperature u  is attained by storing the energy in the form of 

random molecular motion. The total heat context of the solid is given by 

∫∫∫=
D

dVcutQ ρ)( , 

where dV  is the volume element; for instance, dxdydzdV =  in Cartesian variables; the 
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constant of proportionality c  is the specific heat in (
cg

cal
°

) and ρ is density ( 3
cm

g
).For 

an incompressible material, ρ is constant. 

  By Fourier’s law, the rate of flow is proportional to the gradient of the temperature, ie. 

 v k gradu= −
�

, 

where the constant k  is the thermal conductivity. The net inflow of heat through boundary S 

is 

( )  
S

R t k gradu ndA= ⋅∫∫
�

. 

Therefore the integral conservation law of heat energy, the rate of change of energy in D must 

be equal to the flux of energy, so 

  
D S

d
c udV k gradu ndA

dt
ρ = ⋅∫∫∫ ∫∫

�
,                (1.1) 

where ρ,c  and k  may depend on position. 

  For a medium where ρ,c  and k  are smooth, we apply Gauss’ theorem (Divergence 

theorem) to express the right-hand side of (1.1), then we have 

∫∫∫=
D

dVgradukdivtR ) ()( . 

Since the boundaries of D are fixed in space, we may rewrite the left-hand side of (1.1) as (we 

suppose that u  is continuous in D) 

∫∫∫=
D

t dVuc
dt

dQ
ρ . 

Thus, this gives 

0])u  gradk    div([ =−∫∫∫ dVuc
D

tρ . 

  We suppose that the integrand is continuous, and it must be zero. That is, 

)u  gradk    div(−tucρ =0. 

For constant k  , this reduces to 

0 
2

=− ∇ uKut , 
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where 
ρc

k
K =  is called the thermal diffusivity of material and graddiv 2 =∇  is the 

Laplacian given by 
2

2

2

2

2

2
2

zyx ∂

∂
+

∂

∂
+

∂

∂
=∇  in Cartesian coordinates. This is known as the 

heat equation. 

 

  A more interesting example is that of molecular diffusion, in which two substances co-exist 

at each point and their relative properties vary in space and time. In the simplest case one of 

the substances, called matrix, is fixed and the other diffuses through it with a concentration 

(amount per unit volume) given by ),( txc . Examples are a dye in a liquid, and smoke in the 

atmosphere; further examples are any mixture of substances such as a solute dissolved in a 

liquid or gas. 

 Then Fick’s law relates the flux is proportional to the gradient of c  by cDq ∇−=  
�

, 

where D is called diffusity. Conservation of mass implies that 

cDq
t

c 2 ∇=−∇=
∂

∂ �
‧ , 

for constant diffusivity. If , however, the medium is moving with velocity v  there is also 

mass transfer by convection. The total mass flux is  

cDvcq ∇−=  
��

, 

so that c  satisfies the convection-diffusion equation 

)]([ )( 22
vccvcDvccD

t

c ���
‧‧‧ ∇+∇−∇=∇−∇=

∂

∂
, 

for an incompressible liquid this reduces to  

cvcD
t

c
∇−∇=

∂

∂
‧
�2 . 

This can be rewritten as 

cDcv
t

2 )( ∇=∇+
∂

∂
‧
�

. 
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Remark:  

  The form 

fuDuv
t

u
+∇=∇+

∂

∂ 2 ‧
�

 

is also called a convection-diffusion or reaction-diffusion equations depending whether 

0=f  or 0=v
�

 respectively. 

 

1.2.2 Finance 

  Suppose we consider an option, which is contract giving its holder the right (but not the 

obligation) to buy (or sell) some asset, such as a number of stock-market shares, at some 

specified time, say T, when the exercise price, a previously agreed sum of money E, is paid 

for the asset. Suppose the asset is a share which is expected to gain in value in 0<t<T, but 

whose price is subject to unpredictable factor. If we hold an options, we can set up a 

“portfolio” of the option to protect ourselves against unpredictability. To do this we need to 

assess the value ),( tsV  of the option to buy a share at time T as a function of current time t 

and the asset value S. We suppose we have a cash balance M, and we hold a number ∆ , 

which may vary in time, of the assets. Thus, the portfolio value is VSMP +∆+= . The cash 

balance accrues interest at a rate r ; it also changes when we buy or sell assets, in a short time 

dt , we receive rMdt  in interest and spend ∆− Sd  on assets. In the same time, t he asset 

price changes by dS  and the option value by dV , so the overall change is 

dVdSrMdtdVdSSdSdrMdtdP +∆+=+∆+∆+∆−= . 

  Now we suppose the instantaneous “rate-of-return” on the asset varies randomly. 

dxdt
S

dS
σµ += ,                        (1.2) 

where µ is a deterministic “growth rate” for the asset; dx  is a small normal random variable 

of mean zero and variance dt , and σ is a parameter which measures how “volatile” the share 

price is. 
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  By Taylor’ Expansion series for dV , 

...)(
2

1 2

2

2

+
∂

∂
+

∂

∂
+

∂

∂
= dS

S

V
dS

S

V
dt

t

V
dV . 

Let 0→dt , dS  is given by 222
dxSσ  and then replace 2

dx  by dt  since dx  has zero 

mean and variance dt . 

Sdx
S

V
dt

S

V

S

V

t

V
dV σ

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
= )

2

1
(

2

2

. 

Thus, 

Sdx
S

V
dt

S

V
SSdt

S

V
dt

t

V
SdxSdtrMdtdP σσµσµ

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+∆+∆+=

2

2
22

2

1
. 

 

  By observing,  we can choose ∆  to be 
S

V

∂

∂
−  and we have 

dt
S

V
Sdt

t

V
rMdtdP

2

2
22

2

1

∂

∂
+

∂

∂
+= σ . 

 

  The final step is to use the idea of no arbitrage, it means that it is impossible to earn more 

than the risk-free interest rate r  for a risk-free portfolio, so  

rPdtdP = , 

and 

.                                                  

)(
2

1
2

2
22

Sdt
S

V
rrVdtrMdt

dtVSMrdt
S

V
Sdt

t

V
rMdt

∂

∂
−+=

+∆+=
∂

∂
+

∂

∂
+ σ

 

  Hence, we derive the Black-Scholes equation 

)(
2

1
2

2
22

S

V
SVr

S

V
S

t

V

∂

∂
−=

∂

∂
+

∂

∂
σ . 
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I. Methods of solving the linear parabolic PDE 

In this chapter we introduce six methods to solve the heat conduction problem. 

2.1 Separation of Variables 

We first consider the heat conduction problem 

2

2
0,                     0 ,   0

(0, ) ( , ) 0,             0

( ,0) ( ).                  0

u u
x t

t x

u t u t t

u x f x x

π

π

π

∂ ∂
− = < < >

∂ ∂

= = ≥

= ≤ ≤

                    (2.1) 

We look for a specific type of solution; namely, a product of a function of x  only and a 

function of t  only 

)()(),( tTxXtxu = . 

  We substitute the function u  into the differential equation, and divide u . This gives 

0
'''

=−
X

X
k

T

T
, 

or 

X

X
k

T

T '''

= .                           (2.2) 

  The left-hand side of this equation depends only upon t . The right-hand side is 

independent of t . We say that heat equation (in 0<x<l) is separable. 

  If we take the partial derivative with respect to t  of both sides of the separated equation, 

we find that 

0][
'

=
T

T

dt

d
. 

It follows that  

λ−=
T

T '

, 

where λ is a constant. Then by (2.2) we have 

λ−=
X

X
k

''

. 

Thus )()(),( tTxXtxu =  is a solution of heat equation if and only if X and T satisfy the two 
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ordinary equations 

,0      

,0

'

''

=+

=+

TT

XkX

λ

λ
                          (2.3) 

for some constant λ. 

  We can solve the two ordinary differential equations (2.3) to obtain particular solutions of 

the partial differential equation (2.1). For each value of λ the equation 0'' =+ XkX λ  has two 

linearly independent solutions. The families of solutions of (2.1) are given by 

cos ,   sin ,                  0

                                      1, ,                   0                

              ,    .               0

t t

t x t x
k k

e x e x for
k k

x for

e e for

λ λ

λ λ
λ λ

λ λ
λ

λ

λ

− −

− −
− + − −

>

=

<

 

Now, consider the boundary conditions. Since we wish to have  0=u  for x=0 and x=1, we 

only consider those solutions of the first equation (2.3) which also satisfy these conditions. 

We must have 

'' 0,               0

(0) ( ) 0.

kX X x

X X

λ π

π

+ = < <

= =
 

  This homogeneous problem always has the trivial solution X=0, but we are interested in 

cases where this is not the only solution. 

Case1. λ> 0, 

x
k

bx
k

axX
λλ

cos sin )( += . 

X(0)= 0 tells us that  

x
k

axX
λ

sin )( = , 

and X(π) = 0 gives  

 sin 0a
k

λ
π = . 

Then X need not be identically zero if and only if  
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sin 0
k

λ
π = , 

ie. 

 ,                 n 1,2,3 ...n
k

λ
π π= =  

That is, 

2 ,              n 1,2,3 ...n n kλ = =  

These value 
nλ  are called the eigenvalues of the problem, and the functions  

( ) sin ,           n 1,2,3,nX x nx= = …  

are the corresponding eigenfunctions. 

Case2. λ= 0, 

X(x) = a + b x, 

We know 

X(0) = a + b*0 = 0 ⇒  a = 0 ⇒  X(x) = bx, 

and 

X(π) = b*π= 0 ⇒  b= 0. 

This gives the trivial solution X= 0. 

Case3. λ< 0, 

xx
k beaxX k

-
-

e  )(

λλ

+=
−

. 

We have 

01*1*)0( =+= baX , 

and 

( )   0k kX a e b e

λ λ
π π

π
− −

−

= + = , 

but these can not find a or b. 

  We know 
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sinh ,         cosh
2 2

x x x x
k k k ke e e e

x x
k k

λ λ λ λ

λ λ
− − − −

− −

− − − +
= = , 

so that a general solution  

x
k

Bx
k

AxX
λλ −

+
−

= cosh sinh )( . 

Therefore  

x
k

AxXBBABAX
λ−

=⇒=⇒=+=+= sinh)(    0    01*0*0cosh 0sinh )0( . 

And 

( )  sinh 0  0    0
2

k ke e
X A A A

k

λ λ
π π

λ
π π

− −
−

− −
= = = = ⇒ = . 

This also gives the trivial solution X= 0. 

 

  Having found a sequence of values of λ, we can look at the corresponding functions T(t). 

These are easily seen to be multiples of 
2n kt

e
−  

We have constructed the particular solutions 

2- ( , ) sin  e n kt

nu x t nx= . 

Which satisfy all the homogeneous conditions of the problem (2.1). The same is true of any 

finite linear combination. We attempt to represent the solution of (2.1) as an infinite series in 

the functions nu  : 

2

1

( , )  sin  
n kt

n

n

u x t a nx e
∞

−

=

=∑ .                     (2.4) 

  We need to determine the coefficients na  such that ),( txu  satisfies the initial condition 

)()0,( xfxu = . Thus we require 

1

( ,0) ( )  sinn

n

u x f x a nx
∞

=

= =∑ . 

But the right side is just the Fourier sine series of the function )(xf  on the interval ).,0( l  
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Therefore the coefficients 
na  are the Fourier coefficients given by  

0

2
 ( ) sin  ,              1, 2,...na f x nx dx n

π

π
= =∫               (2.5) 

Therefore we have obtained a solution to (2.1) given by the infinite series (2.4) where the 

coefficients 
na  are given by (2.5). 

  Substituting the expression for the na  into the solution formula (2.4) allows us to write the 

solution as  

2

2

1 0

10

0

2
( , ) ( ( ) sin ) sin

2
          (  sin sin ) ( )  

          ( , , ) ( ) .

n kt

n

n kt

n

u x t f n d e nx

e n nx f d

K x t f d

π

π

π

ξ ξ ξ
π

ξ ξ ξ
π

ξ ξ ξ

∞
−

=

∞
−

=

=

=

=

∑ ∫

∑∫

∫

 

 

Remark:  

If  is defined and integrable on the interval ],[ ππ− , then its Fourier series of the form 

∑
∞

=

++
1

0  sin cos
2 n

nn nxbnxa
a

, 

where  

�

�

,2,1      ,   sin)(
1

,2,1,0      ,   cos)(
1

==

==

∫

∫

−

−

ndxnxxfb

ndxnxxfa

n

n

π

π

π

π

π

π
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Example 2.1 :(Using Separation of Variables) 

2

0 ,                        0 ,   0

(0, ) ( , ) 0,             0

( ,0) ( ).             0

t xxu u x t

u t u t t

u x x x x

π

π

π π

− = < < >

= = ≥

= − ≤ ≤

 

  By equation (2.4) we can know 

∑
∞

=

−=
1

 sin),(
2

n

tn

n nxebtxu , 

where 

3

33

3

3
1

33

2
1

0

2

])1(21[4
48

)1(     

]
6

)1()1[( 
2

]
22

)1()1[( 2     

  sin)(
2

−

++

−+−=−
−

−=

−+−−−−+−=

−= ∫

n
nn

nnnnn

dxnxxxb

nn

nnnn

n

ππ

π

π

π
π

π

 

Then the solution is 

∑
∞

=

−−−+−=
1

3
 sin])1(21[4),(

2

n

tnn
nxentxu . 

 

2.2 Finite Fourier Transformation and nonhomogeneous problem 

  Recall the heat conduction problem (2.6). The solution of the problem is given by  

∑
∞

=

−=
1

),sin( ),(
2

n

tn

n nxebtxu  

where  

,...2,1n            ,)sin()(
2

0

== ∫
π

π
dxnxxfbn  

We shall now treat the corresponding nonhomogeneous problem 
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2

2
( ),                0 ,   0

(0, ) ( , ) 0 ,            0

( ,0) ( )  .                  0

u u
F x x t

t x

u t u t t

u x f x x

π

π

π

∂ ∂
− = < < >

∂ ∂

= = ≥

= ≤ ≤

                  (2.7) 

by expanding the solution in a Fourier series in terms of the same set of functions. 

  To solve the above nonhomogeneous problem, we expand the solution in a Fourier sine 

series for each fixed t  

∑
∞

=1

)sin( )(~),(
n

n nxtbtxu . 

The set of sine coefficients 

∫=
π

π
0

)sin(),(
2

)( dxnxtxutbn , 

which is called undetermined coefficient and is also called the finite sine transform of ),( txu . 

  If xxu  is continuous, its finite sine transform is given by  

).(                                    

)sin(),(
2

)]cos(),()sin(),([
2

)sin(),(
2

2

0

2

0

0

tbn

dxnxtxunnxtxunxtxudxnxtxu

n

xxx

−=

−−= ∫∫
π

π
π

πππ  

Because of 0),(),0( == tutu π . 

  If tu  is continuous, we can interchange integration and differentiation to show that  

∫ =
π

π
0

)()sin(),(
2

tb
dt

d
dxnxtxu nt . 

  Taking the finite sine transform of both sides of (2.7) leads to the equation 

)()()(' 2
tBtbntb nnn =+ ,                      (2.8) 

where  

∫=
π

π
0

)sin(),(
2

)( dxnxtxFtBn  .                  (2.9) 

 

The initial condition 0)0,( =xu  means that  
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0)0( =nb .                            (2.10) 

  Taking sine transform has reduced the partial differential problem (2.7) to the ordinary 

differential problem (2.8), (2.9). We now solve this problem 

.0)0(

),()()(' 2

=

=+

n

nnn

b

tBtbntb
 

We have  

∫
−−=

t

n

tn

n dBetb
0

)(
)()(

2

τττ
. 

If the problem (2.7) has a solution u  with 
tu  and 

xxu  continuous, it must have the Fourier 

sine series 

∑ ∫
∞

=

−−

1 0

)(
)sin(])([~),(

2

n

t

n

tn
nxdBetxu τττ

 

  Recall the problem (2.6), the solution u  can be written as  

∫=
π

ξξξ
0

)(),,(),( dftxKtxu , 

where  

∑
∞

=

−=
1

)sin( )sin(
2

),,(
2

n

tn
nxnetxK ξ

π
ξ . 

For our nonhomogeneous problem, we would like a similar form as above. We use the 

definition (2.9) of )(tBn , and formally interchange integration and summation. This gives 

, ),(),,(          

 ),()](sin  )(sin
2

[  

)(sin ] ) )(sin),(
2

([),(

0 0

1

)(

0 0

1 0 0

)(

2

2

　

　　　　　

　　

∫ ∫

∑∫ ∫

∑ ∫ ∫

−=

=

=

∞

=

−−

∞

=

−−

t

n

tn

t

n

t

tn

ddFtxK

ddFnxne

nxddnFetxu

π

τ
π

π
τ

τξτξτξ

τξτξξ
π

τξξτξ
π

 

and only need F  and XF  continuous. 

  If instead of the homogeneous initial condition 0)0,( =xu , we have )()0,( xfxu =  in 
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(2.7), we must simply replace (2.10) by 

∫=
π

π
0

  sin )(
2

)0( dxnxxfbn . 

Then  

tn

n

t

n

tn

n ebdBetb
22

)0()()(
0

)( −−− += ∫ τττ
, 

and 

.)(),,(),(),,(          

 sin)0()sin(])([),(

0 00

11 0

)( 22

∫ ∫∫

∑∑ ∫

+−=

+=
∞

=

−
∞

=

−−

t

n

tn

n

n

t

n

tn

dftxKddFtxK

nxebnxdBetxu

ππ

τ

ξξξτξτξτξ

ττ

 

 

 

Example 2.2 : ( Using Finite Fourier transformation) 

3 sin  ,                  0 ,   0

(0, ) ( , ) 0,                 0

( ,0) 0.                              0

t xxu u t x x t

u t u t t

u x x

π

π

π

− = < < >

= = >

= < <

 

  We can find that 

      

                

otherwise        ,   0

3             , 
4

1
-

1n               ,  
4

3

            

 )3cos()3cos()1cos(3)1cos(3
4

          

 sin sin
2

 sin sin
2

)(

0

0

3

0

3














=

=

=

++−−+−−=

==

∫

∫∫

nt

dxxnxnxnxn
t

dxnxx
t

dxnxxtBn

π

ππ

π

ππ
τ

 

Then the solution is 
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.3sin)
9

1

9

1
(

36

1
sin)1(

4

3
          

 3sin
4

1
 sin

4

3
          

 3sin 
4

1
 sin 

4

3
          

)sin(])([),(

9

0

99

0

0

)(9

0

)(

1 0

)(
2

xetxet

dexedexe

dxedxe

nxdBetxu

tt

t

t

t

t

t

t

t

t

n

t

n

tn

−−

−−

−−−−

∞

=

−−

+−−+−=

−=

−=

=

∫∫

∫∫

∑ ∫

ττττ

ττττ

ττ

ττ

ττ

τ

 

 

2.3 Fourier transforms  

  First let us begin with functions of one variable. The Fourier transform of a function 

,  ),( Rxxf ∈  is defined by the equation 

∫
∞

∞−

== dxexfwfwfF
iwx)()()]([

�
. 

If f is absolutely integrable, ie. ∫
∞

∞−

∞<dxxf )( , then f
�

 can be shown to exist. Nice property 

of the Fourier transform is the simple form of the inversion formula, or inverse transform. It is 

∫
−

−

∞→

− =≡
L

L

iwx

L

dwewfxfxfF )(
2

1
)()]([ lim

1
��

π
. 

It dictates how to get back from the transform domain. Besides, we have some operational 

formulas for Fourier transform: 

1. )]([)]('[ wfiwFwfF −=  

2. )]([))](([ wfF
dw

d
wxixfF =  

3. )(  
1

))](([
a

w
fe

a
wbaxfF a

b
iw �

=−  

4. )())](([ cwfwxfeF
icx +=

�
 

5. )()([
2

1
))]((  [cos cwfcwfwxfcxF −++=

��
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  )()([
2

1
))]((  [sin cwfcwf

i
wxfcxF −−+=

��
 

The convolution theorem for Fourier transform 

  If )(xf  and )(xg  are both absolutely integrable and square integrable, then 

)(ˆ)(ˆ))](([ wgwfwxgfF =∗ . 

Proof: 

deqwgwf

dyeygwfdydxeyxfeyg

dxedyygyxfdyygyxfFwxgfF

iwyyxiwiwy

iwx

..                                                                           ).(ˆ)(ˆ                         

)()(ˆ])([)(                         

 ])()([])()([))](([

)(

=

=−=

−=−=∗

∫∫ ∫

∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

−

∞

∞−

∞

∞−

∞

∞−

 

  Some Fourier transforms can be calculated directly; many require complex contour 

integration. In the following example we try to solve the infinite-slab heat conduction 

problem. 

.   ),(

),()0,(

0  ,-                  , 0
2

2

boundedtxu

xfxu

tx
x

u

t

u

=

>∞<<∞=
∂

∂
−

∂

∂

         

  We suppose that )(xf  is absolutely integrable. We make the hypothesis that u , 
t

u

∂

∂
, 

x

u

∂

∂
, and 

2

2

x

u

∂

∂
 are continuous in x and t, and absolutely integrable in x, uniformly in t. Then 

u  and 
t

u

∂

∂
 approach zero as ∞→x . 

  If our hypotheses are valid, u  has a Fourier transform, for fixed t, 

∫
∞

∞−

= dxetxutwu
iwx),(),(

�
, 

and 
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.),(),(),]([

,),(),(),]([

2

∫

∫
∞

∞−

∞

∞−

−==

==

twuwdxetxutwuF

twu
dt

d
dxetxutwuF

iwx

xxxx

iwx

tt

�

�

 

  Taking Fourier transforms with respect to x in the problem, we obtain the initial value 

problem 

)()0,(

0  ,               02

wfwu

twuw
dt

ud

��

�
�

=

>∞<<∞−=+
 

Then we solve the ordinary differential problem 

,)()0,(),(                      

,)0,(ln),(ln

,
1

                      

,
1

                        

22

2

0 0

2

2

twtw

t t

ewfewutwu

twwutwu

dwud
u

dtwud
u

−− ==

−=−

−=

−=

∫ ∫

���

��

�
�

�
�

τ  

whose solution is 

twewftwu
2

)(),( −=
��

. 

Then the solution formula is 

∫
−

−−

∞→

=
L

L

twiwx

L

dwewfetxu
2

)(
2

1
),( lim

�

π
.              (2.11) 

 

Example 2.3 : (Using Fourier transformation to solve the infinite-slab heat conduction 

problem) 

.  ),(

,)0,(

0  t,x-             , 0
2

boundedtxu

exu

uu

x

xxt

−=

>∞<<∞=−

 

  In this problem 
2

)( xexf −= , we can find  
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4

2

2

)(ˆ
w

iwxx
edxeewf

−
∞

∞−

− == ∫ π . 

Then the solution is 

.)41(          

2

1
),(

412

1

4

2

2

2

t

x

iwxtw

w

et

dweeetxu

+

−
−

∞

∞−

−
−

+=

= ∫ π
π

 

 

2.4 Sine and Cosine transforms 

  If )(xf  is given for ∞<< x0 , its sine transform is defined as 

∫
∞

≡
0

  sin)()( dxwxxffFs . 

If we extend )(xf  to ∞<<∞− x  as an odd function,  ie. )()( xfxf −=− , we have  

.sin)(2         

sin)(         

)sin)(cos()()(

0

lim

lim

limlim

∫

∫

∫∫

∞→

−∞→

−∞→−∞→

=

=

+==

L

L

L

LL

L

LL

L

L

iwx

L

wxdxxfi

wxdxxif

dxwxiwxxfdxexfwf
�

 

Hence, the inverse theorem becomes  

∫
−

−

∞→

=
L

L

s

iwx

L

dwfiFexf  ][2 
2

1
)( limπ

. 

  The sine transform is clearly an odd function of w. Hence the integral on the right becomes 

∫
L

s dwfFwx
0

 ][ sin4 . Thus the inversion theorem is 

∫
∞

=
0

][ sin
2

)( dwfFwxxf s
π

, 

or 
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2
( ) [ [ ]( )]( )s sf x F F f w x

π
= , 

for a function )(xf  defined for ∞<< x0 . 

  Similarly, we can define the cosine transform 

∫
∞

≡
0

 cos)(][ dxwxxffFc , 

for a function )(xf  defined for ∞<< x0 . 

  If we extend )(xf  to ∞<<∞− x  as an even function,  ie. )()( xfxf =− , we have  

][2)( fFwf c=
�

. 

The function ][ fFc
 is even in w. Hence the inversion theorem becomes 

∫
∞

=
0

 ][ cos
2

)( dwfFwxxf c
π

, 

or 

2
( ) [ [ ]( )]( )c cf x F F f w x

π
= , 

for a function )(xf  defined for ∞<< x0 . 

  Sine and cosine transform are often useful in treating problems with boundary conditions 

only at x=0. And we can note that  

],[)0(']''[

],[)0(]''[

2

2

fFwffF

fFwwffF

cc

ss

−−=

−=
 

provided )(xf  and 0)(' →xf  as ∞→x . Thus sine transform is particularly useful when 

)0(f  is given, while the cosine transform is useful when )0('f  is known. 

 

Example 2.4 : (Using sine or cosine transformation to solve the heat conduction problem in a 

half-infinite slab) 
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.  ),(

),()0,(

,0),0(

0  ,0              ,  0
2

2

boundedtxu

xfxu

tu

tx
x

u

t

u

=

=

>∞<<=
∂

∂
−

∂

∂

                 (2.12) 

  We suppose that )(xf  is absolutely integrable, and that u , 
t

u

∂

∂
, 

x

u

∂

∂
, and 

2

2

x

u

∂

∂
 are 

continuous and absolutely integrable in x for each fixed t. we have  

∫
∞

=
0

  sin),(),]([ dxwxtxutwuFs , 

and 

.),]([)]([),0(  sin),(),]([

,),]([  sin),(  ),]([

0

22

0

∫

∫
∞

∞

−=−==

==

twuFwwuFwwtudxwxtxutwuF

twuF
dt

d
dxwxtxutwuF

ssxxxxs

stts

 

Taking the sine transform with respect to x in the problem, and putting ][),( uFtwU s= , we 

find  

].[)0,(

0  t,0              ,02

fFwU

wUw
dt

dU

s=

>∞<<=+
 

Thus 

tw

s efFtwU
2

][),( −= , 

and 

2

0

2
( , ) [ ]( )  sin   lim

L

w t

s

L

u x t F f w e wx dw
π

−

→∞

= ∫ .                (2.13) 

The problem coincides with the solution of the heat conduction in an infinite slab, provided 

we extend )(xf  to ∞<<∞− x  as an odd function. The corresponding solution ),( txu  of 

the problem (2.12) is then also odd at x=0, and hence 0),0( =tu  
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2.5 Laplace transforms 

  We consider a function )(xf  which vanishes for negative values of x: 

0         0)( <= xforxf . 

Then if )(1 xfe
xs−  is absolutely integrable, so is )(xfe

xs−
 for 1ss ≥ . It follows that the 

Fourier transform )(ξf
�

 is analytic in a half-plane 1ln s>ξ . 

  We define the Laplace transform  

∫
∞

−≡
0

)()]([ dxxfesfL
sx

, 

or 

)]([)]([ isfFsfL ≡ . 

By integration by parts we find that  

).0(')0(][]''[

),0(][)('  ]'[

2

0

fsffLsfL

ffsLdxxfefL
sx

−−=

−== ∫
∞

−

 

The convolution theorem  

][][][ gLfLgfL ⋅=∗  

follows from that for the Fourier transform. 

By inversion theorem for the Fourier transform, we can find that the inverse formula for the 

Laplace transform is  

∫
+

−∞→

=
iLs

iLs

x

L

defL
i

xf σσ
π

σ
 )]([

2

1
)( lim  

where 1ss >  so that )]([ σfL  is analytic for 1Re s≥σ , and the path is vertical. 

We consider the problem of heat conduction in an infinite slab, as mentioned in Section 2.3. 

In Section 2.3 we use Fourier transform to solve it. 
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boundedtxu

xfxu

tx
x

u

t

u

  ),(

)()0,(

0  ,                0
2

2

=

>∞<<∞−=
∂

∂
−

∂

∂

 

  Taking the Laplace transform with respect to t in the problem  

Let  

∫
∞

−=
0

),(),( dttxuesxU
ts

. 

Then 

∫
∞

− −=
0

)(),(),( xfsxsUdttxue t

ts
. 

We suppose that 
x

u

∂

∂
, and 

2

2

x

u

∂

∂
 are bounded and continuous, so that we obtain  

),(),(
2

0

sxU
x

dttxue xx

ts

∂

∂
=∫

∞
−

. 

Thus, this gives 

0  ,          , 0
),(

)(),(
2

2

>∞<<∞−=
∂

∂
−− sx

x

sxU
xfsxsU            (2.14) 

  For each fixed s this is an ordinary differential equation for ),( sxU  considered as a 

function of x. We now solve the equation (2.14) by means of the Fourier transform. 

Let  

∫
∞

∞−

= dxesxUswU
iwx),(),(

�
, 

and 

∫
∞

∞−

−== ),(),(),]([ 2
swUwdxesxUswUF

iwx

xxxx

�
. 

Thus we have  

0  ,         , 0),()(),( 2 >∞<<∞−=+− swswUwwfswUs
���

           (2.15) 
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The solution of the problem (2.15) is  

( ) 2
22

1
)(

)(
),(

ws
wf

ws

wf
swU

+
⋅=

+
=

�
�

�
. 

By the convolution theorem for the Fourier transform and 

( )
xs

e
s

sx
ws

F
−− =

+ 2

1
),](

1
[

2
2

1 , 

the solution of the problem (2.14) is given by  

∫
∞

∞−

−−
= dyyfe

s
sxU

yxs
)(

2

1
),( . 

  The inverse Laplace transform of U(x, s) is  

.)()
1

2

1
(

2

1
          

))(
2

1
(

2

1
),(

-

lim

lim

dyyfdee
i

dedyyfe
i

txu

tyx
iLs

iLsL

iLs

iLs

tyx

L

σ
σπ

σ
σπ

σσ

σσ

−−
+

−

∞

∞ ∞→

+

−

∞

∞−

−−

∞→

∫∫

∫ ∫

=

=

         (2.16) 

Therefore, to find ),( txu , we need the inverse Laplace transform of 
yxs

e
s

−−1
. The 

function  

yx
eg

−−
=

σ

σ
σ

1
)( , 

is multiple-valued, and we want to choose a particular branch cut of it. We choose that branch 

cut of 
σ

1
 along the negative real axis: πσπ <≤−  arg  

  Now we want to solve 

0             ,)(
2

1
][ lim

1 >= ∫
+

−∞→

−−
−

sdge
is

e
L

iLs

iLs

t

L

yxs

σσ
π

σ
 

We apply Cauchy’s theorem to the integral of )(σσ
ge

t  over the contour C, as shown in 

Figure (2.1) 
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Figure 2.1  Contour C 

 

Since )(σg  is analytic inside this contour, 

∫ ∑∫∫ =+=
=

+

−
C

n
C

t

iLs

iLs

tt

n

dgedgege 0)()()(  
6

2

σσσσσ σσσ
. 

We let ∞→L  and 0→ε , we can find that 

 

Contour C2:  

θσπ
π

θσ θθ
dLiedtofromLes

ii =+=    ,  
2

    , . 

∫∫ ⋅⋅+= +
π

π

θθσ θσσ
θ

2

)( )()(
2

deiLLesgedge
iitLes

C

t i

. 

Since  

LsLesLesLes
Lesg

iii

i

−
≤

+
=

+
=

+
=+

1111
)(

2
1

θθθ

θ
 

approach zero as ∞→L . By Jordan’s lemma the integrals over this contour C2 approach 

zero.  

C2 

C1 

C3 C4 

C5 

C6 

s 

s+il 

s-il 

ε 
0 

Re z 

Im z 
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Similarly to contour C6 , θσ
π

πθσ θθ
dLiedtofromLes

ii =+=    ,
2

3
         , , the integrals 

over the contour C6 approach zero. 

 

Contour C4:  

θεσππθεσ θθ
diedtofrome

ii =−=    ,         , . 

∫∫
−

⋅⋅=
π

π

θθεσ θεεσσ
θ

deiegedge
iite

C

t i

 )()(
4

. 

Since  

εεεε
ε

θθθ

θ 1111
)(

2
1

≤===
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i

eee
eg , 

and 

tttittite eeeeee
i εθεθεθεθθεε θ

≤=⋅== ⋅⋅⋅+ cossincos)sin(cos
, 

thus 

2
1

2
1

22)(
4

επεπεσσ σσσ tt

C

t eedge =≤
−

∫  

approach zero as 0→ε  

 

Contour C3 and C5: 

  Recall  

2

 arg

2
1

2

 arg

2
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σ
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σ

σ σ
σ

σ
i

eyx
i

yx
eeeg
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⋅== . 

Then putting 2µσ −= , we have 

πσ
µ

σ
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−

=

==

−

−−
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. )( cos
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2
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∫

∫∫∫∫
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  Thus we find  

∫∫
∞

−
+

−∞→

−
−

=
0

)( cos 
4

)(
2

lim µµσσ µσ
dyxe

i
dge

t

iLs

iLs

t

L

. 

Hence by the inversion formula 

∫
∞

−
−−

− −=
0

1  )( cos 
2

][
2

µµ
π

µ
dyxe

s

e
L

t
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. 

Recalling the Fourier transform of 
2ax

e
−  is a

w

e
a

4

2
−π

, we see that  
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4
)(
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  We return to (2.16), we find the solution formula 

∫
∞

∞−

−−

= dyyfe
t

txu t
yx

)(
2

1
),( 4

)( 2

π
.              (2.17) 

 

2.6 Finite Difference method 

  Suppose that ),( txuu =  is a function of two independent variables. The first partial 

derivatives of u  are defined as limits of difference quotients. 

h

txuthxu
tx

x

u
u

h

x

),(),(
),( lim

0

−+
=

∂

∂
=

→

, 

and  

k

txuktxu
tx

t

u
u

k

t

),(),(
),( lim

0

−+
=

∂

∂
=

→

. 



 

27 27 

  We can use the respective difference quotients to approximate these partial derivatives, 

h

txuthxu
txu x

),(),(
),(

−+
≅ ,                   (2.18) 

k

txuktxu
txut

),(),(
),(

−+
≅ .                   (2.19) 

To analyze the truncation errors (TE) associated with the approximation (2.18) and (2.19), we 

require Taylor’s theorem in two variables.  

  Assume that u  is twice continuously differentiable and that h is positive. From Taylor’s 

theorem, we have 

hxx
h

tuhtxutxuthxu xxx +<<++=+ ξξ                 
2

),(),(),(),(
2

, 

which can be rearranged to read  

),(
2

),(),(
),( tu

h

h

txuthxu
txu xxx ξ−

−+
= .            (2.20) 

In (2.20) we find the partial derivative ),( txu x
 expressed as a difference quotient, plus a 

truncation error, ),(
2

tu
h

xx ξ− . If u  is twice continuously differentiable, so that ),( txu xx
 is 

bounded on the interval ],[ hxx + , then the truncation error can be made small by choosing h 

small. 

  We also require finite-difference formulas for the higher order derivatives of u . To obtain 

a difference formula for xxu , we use Taylor’s theorem to write 

24
),(

6
),(

2
),(),(),(),(

4

4

43
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tx

x
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htxutxuthxu x ξ

∂

∂
+

∂

∂
+

∂

∂
++=+ .   (2.21) 

and 
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4

4

43

3

32

2

2
h

t
x

uh
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x
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x

u
htxutxuthxu x ξ

∂

∂
+

∂

∂
−

∂

∂
+−=− .   (2.22) 

where hxx +<< 1ξ  and xhx <<− 2ξ . Adding equations (2.21) and (2.22) and then 

solving for xxu  gives a centered difference formula for ),( txu xx : 

.       ),,(
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)],(),([
24

       

,
),(),(2),(

),(

4
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24
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2

hxhxt
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x
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h

thxutxuthxu
txu xx

+<<−
∂

∂
−=

∂

∂
+

∂

∂
−=

+
++−−
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ξξξξ

  (2.23) 
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where TE be simplified by the intermediate-value theorem. 

Example 2.5 : (Use Finite Difference method) 

).()0,(

,0),1(),0(

0 ,10      , 0) (sin

xfxu

tutu

txforuxtuu xxt

=

==

><<=+−

 

Let 
N

h
1

=  for some integer N. Denote 1,,2,,0 == Nhhhx �  and �,2,,0 kkt = . From 

(2.20) and (2.23),  

),,(
12

),(
2

          

),() (sin
),(),(2),(),(),(

][

2

2

1

2

thxu
h

ktxu
k

txuxt
h

thxutxuthxu

k

txuktxu
u

xxxxtt

h

θθ +−+=

+
−+−+

−
−+

≡Λ

   (2.24) 

where 10 1 << θ  and 11 2 <<− θ . The right hand side is certainly small if h and k are small. 

  Let ),( mknhv  be a function defined only at these points mktnhx ==   , . Let it satisfy the 

equation  

0][ =Λ vh
,                          (2.25) 

at those points where 10 << nh . 

  We replace the boundary conditions and the initial conditions by  

).()0,(

,0),1(),0(

nhfnhv

mkvmkv

=

==
 

We can solve the difference equation (2.25) for ),( mknhv  in terms of the values of v  at the 

time mk , 

).,(] sin
2

1[                   

)],)1((),)1(([),(

2

2

mknhvnhmkk
h

k

mkhnvmkhnv
h

k
mknhv

−−+

−++=

          (2.26) 

  Thus we can compute ),( knhv  by the given initial values, v  at time k2  in terms of its 

values at k , and so on. It gives ),( mknhv  for any n  and m . 

  We hope that ),( mknhv  is a good approximation to ),( mknhu . Define the error w  be 

),(),(),( mknhvmknhumknhw −= . 

By (2.24) and (2.25), 
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),(
12

),(
2

][ 2

2

1 mkhnhu
h

kmknhu
k

w xxxxtth θθ +−+=Λ . 

If the constants A and B are bounds for xxxxu
12

1
 and ttu

2

1
, respectively. We see that  

BkAhwh +≤Λ 2][ ,                      (2.27) 

and we have 

.0)0,(

,0),1(),0(

=

==

nhw

mkwmkw
 

The inequality (2.27) can be written 

.)(                                                                                                                          

)},(] sin
2

1[),)1((),)1(([{))1(,(

2

22

kBkAh

mknhwnhmkk
h

k
mkhnwmkhnw
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k
kmnhw

+≤

−−+−++−+
F

or each time mkt =  we define 

),(max
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mknhwM
Nn

m

<<

= . 

We suppose that  

2

2

2 h

h
k

+
≤  ,                        (2.28) 

so that the coefficient of ),( mknhv  in (2.26) is nonnegative. The inequality becomes 

.)(] sin1[                          
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))1(,(
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2
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kBkAhMnhmkk
h

k
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k
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m
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Therefore 

kBkAhMkM mm )()1( 2

1 +++≤+ . 

We multiply the inequality by )1()1( +−+ m
k  and transpose: 

)1(2

1

)1( )1()()1()1( +−−
+

+− ++≤+−+ m

m

m

m

m
kkBkAhMkMk . 

We sum both from 0=m  to 1−
k

T
 (we suppose 

k

T
 is an integer.) 

1

11
2

0
)1(1

)1()1(
)()1(

−

−−−
−

+−

+−+
+≤−+

k

kk
kBkAhMMk

k
T

k
T

k
T

. 

Since 0)0,( =nhw , we see that 00 =M . Hence  
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)(]1)1)[((),( 22
BkAhekBkAhTnhw

Tk
T

+≤−++≤ . 

  Thus for a fixed T 0),(),( →− TnhVTnhu  uniformly in x as 0→h  and 0→k , 

provided that the inequality (2.28) is satisfied. The inequality of the type (2.28) is called a 

stability condition for the problem. 

Example 2.6 : (Use Finite Difference method) 

10        .sin100)0,(

0        , 0),1(),0(

0,10                  , 0

<<=

>==

><<=−

xxxu

ttutu

txuu xxt

π

 

  Using separation of variables as in Section 2.1, the exact solution is 

xtxu t ππ sin100),(
2−= . 

By equation (2.20) and (2.23) 

0
),(),(2),(),(),(

2
=

++−−
−

−+
≅−

h

thxutxuthxu

k

txuktxu
uu xxt . 

Let 
N

h
1

=  for some integer N. Denote 1,,2,,0 == Nhhhx �  and �,2,,0 kkt = . 

Then we have that 

),(]
2

1[)],)1((),)1(([))1(,(
22

mknhu
h

k
mkhnumkhnu

h

k
kmnhu −+−++=+ . 

In this problem we must suppose that 

0
2

1
2

≥−
h

k
. 

  Let 
2

h

k
r = . In general the solution is stable if and only if 

2

1
≤r . 

(1) 
2

1
=r  Choosing 10  ,1.0  ,005.0 === Nhk  gives the numerical solution shown in 

Table 2.1. 
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T=0.5 Numerical Exact 

x=0.0 0.000000 0.000000 

x=0.1 0.204463 0.222241 

x=0.2 0.388912 0.422728 

x=0.3 0.535291 0.581836 

x=0.4 0.629273 0.683989 

x=0.5 0.661656 0.719188 

x=0.6 0.629273 0.683989 

x=0.7 0.535291 0.581836 

x=0.8 0.388912 0.4227528 

x=0.9 0.204463 0.222241 

x=1.0 0.000000 0.000000 

Table 2.1  Comparison of the numerical solution 

and exact solution k=0.005, h=0.1 
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(2) 
6

1
=r  Choosing 10  ,1.0  ,001667.0 === Nhk  gives the numerical solution shown in 

Table 2.2. 

 

T=0.5 Numerical Exact 

x=0.0 0.000000 0.000000 

x=0.1 0.222040 0.222241 

x=0.2 0.422346 0.422728 

x=0.3 0.581309 0.581836 

x=0.4 0.683370 0.683989 

x=0.5 0.718538 0.719188 

x=0.6 0.682270 0.683989 

x=0.7 0.581309 0.581836 

x=0.8 0.422346 0.4227528 

x=0.9 0.222040 0.222241 

x=1.0 0.000000 0.000000 

 

Table 2.1  Comparison of the numerical solution 

and exact solution k=0.001667, h=0.1 
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II. Comparison with various solving methods 

3.1 The limit of Separation of variables 

  In chapter 2 we introduce the Separation of variables to solve the problem. But in the 

processes of solving the problem we can find the limit of Separation of variables. 

1. The differential operator L must be separable. 

Example: 

).()0,(

,0),(),0(

0  ,0              , 02

xfxu

tutu

txuuu xxxttt

=

==

><<=++

π

π

                 (3.1) 

  We can not use the Separation of variables to solve the problem (3.1). Because if  

)()(),( tTxXtxu = . 

We substitute u  into the differential equation, and divide u , this gives  

0
"''

2
"

=++
X

X

XT

TX

T

T
.                    (3.2) 

By (3.2) we can know the equation in (3.1) is not sepsrable. 

  Then if the differential equation contains xtu , then the problem can not be solved by 

Separation of variables. 

2. All boundary conditions must be on lines x=constant. That is, the range of x must be 

bounded. 

3. The linear operators defining the boundary conditions at x=constant must involve no 

partial derivatives of u  with respect to t , and their coefficients must be independent of 

t . 

 

3.2 Sine- and cosine-transform v.s Fourier transform 

  In general we use sine- or cosine- transform to solve the half-infinite slab heat conduction 

problem. But we can also use Fourier transform to solve this problem if we extend )(xf  to 

∞<<∞− x  as an odd or even function. Recalling the problem (2.12), we extend )(xf  to 
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∞<<∞− x  as an odd function, then the problem becomes 

.    )(

),()0,(

x-             ,0

functionoddanisxf

xfxu

uu xxt

=

∞<<∞=−

                         (3.3) 

  Because )(xf  is odd at x=0, we have  

)]([2)(ˆ wfiFwf s= . 

By the solution (2.11) and (3.3) 

.)sin(cos)]([
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)(ˆ
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1
),(

2

2

∫

∫
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−

∞
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−=

=

dwwxiwxewfiF

dweewftxu
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s

iwxtw

π

π
 

Since )]([ wfFs  and wxsin  are an odd function of w and wxcos  is an even function of w, 

then 

∫
∞

∞−

−= wxdwewfFtxu
tw

s sin)]([
2

),(
2

π
 

is the same as the solution (2.13). 

 

3.3 Fourier Transform and Laplace Transform 

  In chapter 2, we use the Fourier transform and Laplace transform to solve the infinite-slab 

heat conduction problem and we gain two solutions (2.11) and (2.17). We must identify that 

tow solutions are the same. 

With the Fourier transform 

∫
−

−−

∞→

=
L

L

twiwx

L

dwewfetxu
2

)(
2

1
),( lim

�

π
, 

where 

∫
∞

∞−

= dxexfwf
iwx)()(ˆ . 
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Then we have  
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Recalling the Fourier transform of 
2ax

e
−  is a

w

e
a

4

2−π
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t
yx
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π

π

π
 

is the same as the solution (2.17) 

For Fourier transform we need to integrate the function from -∞ to ∞, then we usually take 

Fourier transform into PDE with respect to x for fixed t because of Rx ∈ . 

Similar to Laplace transform we need to integrate the function from 0 to ∞, then we take 

Laplace transform into PDE with respect to t for fixed x because of 0>t . 
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III.  Develop the function ∏
=

−=
n

j

jzzzf
1

)()(  to solve linear 

parabolic PDE 

We know that there are some differential equations whose solution space is in the Riemann 

surface. In this chapter, we want to compute the integrals ∫γ dz
zf )(

1
, where γ  is in the 

Riemann surface of algebraic curve ∏
=

−=
n

j

jzzzf
1

)()( . We will develop an algorithm such 

that we can compute the integrals ∫
∏

=

−
γ

dz

zz
n

j

j

1

)(

1
 by Mathematica®5. 

  Before computing integrals, it is necessary to discuss the Riemann surface of 

∏
=

−=
n

j

jzzzf
1

)()( . 

4.1. Fundamental introduction 

  For simplicity, we take zzf =)(  to define a single-value and analytic function on the 

Riemann surface. 

Now we let Cz ∈ , and use polar form for z. That is,  

(4.2)                                               .     

(4.1)                                                    ,   

)2( πθ

θ

+=

=
i

i

re

rez
 

Then by (4.1) 

22

1 θ
i

erz = , 

and by (4.2) 

22

1
)

2
(

2

1
)

2

2
(

2

1 θ
π

θπθ
iii

erererz −===
+

+

. 

Therefore zzf =)(  is a multi-valued function at each Cz ∈  and is not analytic on C . 
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How to make zzf =)(  to be a single-valued and analytic at every point on C ? 

Consider two cuts from 0 to ∞−  ( ..ei the negative real axis) and  

Let 

           {CP =1 ＼ ]0,(−∞ ｜ }),[arg1

−+−∈= ππθ z  

and 

{CP =2 ＼ ]0,(−∞ ｜ })3,[arg2

−+∈= ππθ z  

as Fig. 4-1 shows. 

 

 

 

 

 

 

 

 

 

 

Fig. 4-1  P1, P2 plane 

 

Define  

zzf =)(1 , 1Pz ∈ . 

zzf =)(2 , 2Pz ∈ . 

Then 

22

1

1

1

)(

θ
i

ezzzf ==  is single-valued at each 1Pz ∈  and analytic on 1P , 

)()( 1
22

1

22

1

2

2

2

1

22

1

2

1112

zfezeezezezzzf
i

i
iii

−=−=====
+ θ

π
θπθθ

 is also single-valued at 

each 2Pz ∈  and analytic on 2P . 

 

-π +  π +  

π −  3π −  

P1 
P2 

(b) (a) 
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Let   

{=1D ]0,(−∞ ｜ }π=zarg , 

as shown in Fig. 4-2.  

 

 

 

 

 

 

 

 

 

 Fig. 4-2 {=1D ]0,(−∞ ｜ }π=zarg  

 

If 1Pz ∈  and zarg  tends to −π ，then 2

1

22

1

2

arg

2

1

ziezezz
i

z
i

=≈=
π

 , 

If 2Pz ∈  and zarg  tends to +π ，then 2

1

22

1

2

arg

2

1

ziezezz
i

z
i

=≈=
π

 , 

So z  is continuous cross the cut ]0,(−∞  for 1Dz ∈ . 

We define  

zzf =)(3 ， 1Dz ∈ , 

then 

2

1

22

1

3 )( ziezzzf
i

===
π

 for 1Dz ∈  and analytic on 1D . 

 

Let 

{=2D ]0,(−∞ ｜ }π3arg =z , 

as shown in Fig. 4-3. 

 

 

D1 
π −  

π +  

π=zarg
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   Fig. 4-3 {=2D ]0,(−∞ ｜ }π3arg =z  

 

If 2Pz ∈  and zarg  tends to −π3 , then 2

1

2

3

2

1

2

arg

2

1

ziezezz
i

z
i

−=≈=
π

 , 

If 1Pz ∈  and zarg  tends to +− π , then 2

1)
2

(
2

1

2

arg

2

1

ziezezz
i

z
i

−=≈=
−

π

 , 

So z  is continuous cross the cut ]0,(−∞  for 2Dz ∈ . 

We define  

zzf =)(4 ,  2Dz ∈ , 

then 

)()( 3
2

1

4 zfzizf −=−=  for 2Dz ∈  and analytic on 2D . 

According the discuss above, we can construct a single-valued function for z . 

We have the conclusion as the following: 

Let ]0,(212 −∞∪∪= PPR  and a function CRF →2: ，define 













∈

∈

∈

∈

=

24

13

22

11

,)(

,)(

,)(

,)(

)(

Dzzf

Dzzf

Pzzf

Pzzf

zF  

then )(zF  is single-valued and analytic at every point 2Rz ∈ .  

Note that )()( 21 zfzf −=  and )()( 43 zfzf −= . 

  Moreover, )(zF  is defined on a Riemann surface 2R  which is a generalization of the 

complex plane to a surface of more than one sheet such that a multi-valued function has only 

one value corresponding to each point on the surface. 

D2 
3π −  

-π +  

π3arg =z  
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4.2. Riemann surface of the algebraic curve ∏
=

−=
n

j

jzzzf
1

)()(  with Rz j ∈  

Consider ∏
=

−=
n

j

jzzzf
1

)()(  ， Rz j ∈  and 1z ＞ 2z ＞ 3z ＞…＞ nz  with n  distance 

branch points. 

4.2.1 The cut structure of )(zf  

Since )(zf  is a two-valued function, we need branch cuts to define a single-valued and 

analytic function. But how can we construct branch cuts？ 

In this paper we by face the left direction to do cut explained. For convenience, let 2=n  

and 3=n  to see what is going on？ 

First we check if there is any cut, for 2=n  and 12 =z  , 21 =z , as shown in Fig. 4-4.  

 

 

 

 

 

Fig. 4-4  The branch points are 12 =z  and 21 =z  

 

Consider )1,(1 −∞∈− , then we have 



−

=−=−−
π

π
)2arg()11arg( . 



−

=−=−−
π

π
)3arg()21arg( . 

Taking π−  : 2

1)
2

2
(

2

1

2

1

63232 −==−⋅−
− π

i

e .                         (4.3) 

Taking π  : 2

1)
2

2
(

2

1

2

1

63232 −==−⋅−
π

i

e  .                          (4.4) 

Since (4.3) = (4.4), there is no cut in )1,(−∞  

 

1 2 + 

- 

+ 

- 



 

41 41 

Consider )2,1(
2

3
∈ , then we have 

0)
2

1
arg()1

2

3
arg( ==− , 



−

=−=−
π

π
)

2

1
arg()2

2

3
arg( . 

Taking π−  : 
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1

)
2

(2

1

2

1

4

1

2

1

2

1

2

1

2

1
ie

i

==−⋅
−π

 .                         (4.5) 

Taking π  : 
2

1

)
2

(2

1

2

1

4

1

2

1

2

1

2

1

2

1
ie

i

−==−⋅
π

 .                          (4.6) 

Since (4.5) ≠  (4.6), there is a cut in )2,1(  

Hence we have the branch cut in [1,2], as shown in Fig. 4-5. 

 

 

 

 

 

Fig. 4-5 The cut structure for 2=n  branch points in horizontal  

 

  But we can use the simpler way to get branch cut. Recall Fig. 4-4. When crossing the cut 

even times in each line section, it will not change sign. When crossing the cut odd times in 

each line section will change sign, this implies the line section will form a branch cut. Hence 

we have the branch cut in ],[ 12 zz . The cut structure is shown in Fig.4-6. 

 

 

 

 

Fig.4-6 The cut structure for four branch points in horizontal 

 

Now given n  branch points, If n  is even, then the branch cuts are ],[ 1−nn zz 、

1 2 

Z2 Z1 
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],[ 32 −− nn zz …… and ],[ 12 zz . If n  is odd ， then the branch cuts are ],( nz−∞ 、

],[ 21 −− nn zz …… and ],[ 12 zz . Show as Fig.4-7. 

 

 

with evenn ∈  

 

 

 

with oddn ∈  

 

 

 

Fig.4-7 branch cuts with evenn ∈  and oddn ∈  

 

4.2.2 The algebraic and geometric structure for Riemann surface of horizontal cut 

  For simplicity, we use 3=n  to discuss the structure for Riemann surface of 

∏
=

−=
3

1

)()(
j

jzzzf  in horizontal cut. 

( ) Algebraic structureⅠ  

  As Fig.4-8 shows, ],( 3z−∞ 、 ],[ 12 zz  represent the cuts in this Riemann surface and 〝+〞,

〝–〞are defined as following(the initial edge with +, the terminal edge with –) :  

 

 

 

 

 

 

Fig.4-8 The algebraic structure for three branch points in horizontal 
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Case 1 :  If +∈ Iz ( + edge of sheet )Ⅰ  

        As the Fig.4-8 shows, ],[ 12 zzz ∈  

        Since jzz − > 0 ⇒  0)arg( =− jzz  for 3,2=j . 

jzz − < 0 ⇒  π−=− )arg( jzz  for 1=j . 

Then  

∏
=

−=
3

1

)()(
j

jzzzf ∏
=

−=
3

1j

jzz  

         0
2

1
3

2

)
2

(
2

1

1

⋅

=

−

∏ −⋅−= i
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(

∏
=

−

−⋅=
j

j

i

zze

π
2

1
3

1

)( ∏
=

−⋅−=
j

jzzi . 

Case 2 :  If −∈ Iz ( – edge of sheet )Ⅰ  

         As the Fig.4-11 shows, ],[ 12 zzz ∈  

         Since jzz − > 0 ⇒  0)arg( =− jzz  for 3,2=j . 

jzz − < 0 ⇒  π=− )arg( jzz  for 1=j . 

Then   

∏
=

−=
3

1

)()(
j

jzzzf ∏
=

−=
3

1j

jzz  

         0
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1
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)
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⋅

=
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ezzezz
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=

−⋅=
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zze

π
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1

)( ∏
=

−⋅=
j

jzzi . 

Note that )(zf ∣ −I
 = )(zf− ∣ +I

 , this result is the same with what we discuss before. 

⇒  )(zf ∣ II  = )(zf− ∣ I  
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( ) Geometric structureⅡ  

  After knowing the algebraic structure, we will discuss about how to construct a geometric 

structure for Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()( . According to algebraic structure for 

Riemann surface, we know that if n  is even, then the branch cuts are ],[ 1−nn zz 、

],[ 32 −− nn zz …… and ],[ 12 zz . It implies we have 1
2

−
n

 holes. If n  is odd, then the branch 

cuts are ],( nz−∞ 、 ],[ 21 −− nn zz …… and ],[ 12 zz . It implies we have 
2

1−n
 holes. And we 

obtain one sheet with two edges in each cut by taken of counterclockwise which labeled the 

edge of lower- cut with + and the edge of upper- cut with –. Since there are two surface, one is, 

say sheet with Ⅰ ),[)(arg ππ−∈zf ; another is, say sheet  with Ⅱ )3,[)(arg ππ∈zf . 

  By definition, the – edge of sheet is joined to the + edge of sheet Ⅰ Ⅱ, and the + edge of 

sheet  is joined to the Ⅰ – edge of sheet . Whenever crossing the cutⅡ , we pass from one 

sheet to the other sheet and the value is continuous which from our construction. 

Note that )(zf ∣ II  = )(zf− ∣ I  and for )(zf , supra-half-ball represents sheet Ⅰ, and 

infra-half-ball represents sheet .Ⅱ  

We take 3=n  to discuss the geometric structure for Riemann surface of 

∏
=

−=
n

j

jzzzf
1

)()(  in horizontal cuts, as shown in Fig.4-9. 
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Fig.4-9 The geometric structure for Riemann surface with 3=n  in horizontal cut 
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( ) Algebraic structure Ⅲ sv.  Geometric structure 

  We also use 3=n  to discuss. Before talking about the relation between algebraic structure 

and geometric structure, we need to denote something as the following : 

(a) If the curve is drawn by solid line : 

   In algebraic structure, it means the curve is in sheet ;Ⅰ  

   In geometric structure, it means the curve is in the overhead Riemann surface. 

(b) If the curve is drawn by dash line : 

In algebraic structure, it means the curve is in sheet ;Ⅱ  

   In geometric structure, it means the curve is in the ventral Riemann surface. 

We give some example to show that the curve in algebraic structure and its corresponding 

in geometric structure in Fig.4-10 to Fig.4-12. 

 

 

 

 

 

 

 

 

 

 

Fig.4-10  The rule in algebraic structure and geometric structure 

 

 

 

 

 

 

 

 

Fig.4-11  The rule in algebraic structure and geometric structure 
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Fig.4-12  The rule in algebraic structure and geometric structure 

 

4.3. Riemann surface of the algebraic curve ∏
=

−=
n

j

jzzzf
1

)()(  with Cz j ∈  

In this section, we discuss the vertical cut structure. We define that ))(,( zfz  belong to 

sheet  if and only if Ⅰ ∏
=

−∈−
n

j

jzz
1

)
2

,
2

3
[)(arg

ππ
, ..ei )

2
,

2

3
[)arg(

ππ
−∈− jzz  for each j . 

And )(zf ∣ II  = )(zf− ∣ I  . 

4.3.1 The vertical cut structure 

  We consider ∏
=

−=
n

j

jzzzf
1

)()(   with Cz j ∈  for nj ,,3,2,1 ⋅⋅⋅⋅⋅=  and we by face the 

up direction to do cut explained. The method of analyzing the vertical cut structure is the 

same as horizontal cut structure. 

Then we can use the simpler way to get branch cut. We take 4=n  with iz =1 、 iz 22 = 、

iz 33 =  and iz 44 = , that is, 1z < 2z < 3z <…< nz , as shown in Fig.4-13.  

 

 

 

 

 

 

 

Fig.4-13 The cut appears at z ＜ jz  for each jz  

 

 Z1 

Z3 Z2 

Ⅱ 

Ⅰ 

- 

 

+ 

Z1 Z2 Z3 

- 

 

+ 

-∞ 

 Z 1  

Z 2  

Z 3  

Z 4  4i 

3i 

2i 

ReZ 

ImZ 

 i 

+ 

+ 

+ 

+ 

- 

- 

- 

- 



 

48 48 

When crossing the cut even times in each line section, it will not change sign. When 

crossing the cut odd times in each line section will change sign，this implies the line section 

will form a branch cut. Hence we have the branch cuts in ],[ 34 zz  and ],[ 12 zz . The cut 

structure is showed in Fig.4-14. 

 

 

 

 

 

 

 

 

Fig.4-14 The cut structure for four branch points in vertical 

 

4.3.2 The algebraic and geometric structure for Riemann surface of vertical cut 

    For simplicity, we use 4=n  to discuss the structure for Riemann surface of 

∏
=

−=
4

1

)()(
j

jzzzf  in vertical cut. In the cut structure, we still depend on the 

countclockwise to take〝+〞、〝–〞 sign. The definition of solid-line and dash-line are the same 

as horizontal cut case. 

 

 

 

 

 

 

 

(a)                                  (b) 

Fig.4-15 The algebraic structure for four branch points in vertical 
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( ) Algebraic structureⅠ  

  As Fig.4-15 shows, ],[ 34 zz  and ],[ 12 zz  represent the cuts in Riemann surface. 

Case 1 :  If +∈ Iz ( + edge of sheet )Ⅰ  

As the Fig.4-18 (a) shows, ],[ 12 zzz ∈  

Since 
2

)arg( 1

π
−=− zz  and 

2

3
)arg( 2

π
−=− zz  . )

2
,()arg(
π

π−∈− jzz  for 4,3=j . 
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Case 2 :  If −∈ Iz ( – edge of sheet )Ⅰ  

As the Fig.4-18 (a) shows, ],[ 12 zzz ∈ . 

Since 
2

)arg( 1

π
−=− zz  and 

2
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π
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Note that )(zf ∣ −I
 = )(zf− ∣ +I

 , this result is the same with what we discuss before.  

⇒  )(zf ∣ II  = )(zf− ∣ I . 
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( ) Geometric structureⅡ  

  The construct a geometric structure for Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()(  is the 

same as horizontal cuts. 

  By above example and illustration, we discusses the geometric structure for Riemann 

surface in vertical cuts. Show as Fig.4-16 (page 52). 

 

 

4.4. The integrals over a , b  cycles 

We want to evaluate ∫a dz
zf )(

1
 and ∫b dz

zf )(

1
 for n  branch points where a , b  

represent the a , b  cycles over the Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()(  with Cz j ∈ , 

and develop an algorithm such that the integrals can be easily computed. 

4.4.1 The a , b  cycles over the Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()(  

(A) In horizontal cut : 

Let nzzz ,,, 21 ⋅⋅⋅⋅⋅  be the n  branch points in axisx −  with Cz j ∈ , then  

∏
=

−=
n

j
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)()(  forms a holesN −  Riemann surface where { }0∪∈ +
ZN  and 
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Fig.4-16 The geometric structure for Riemann surface with 4=n  in vertical cuts 
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So there are N  a , b  cycles. The Fig.4-17 represents the a , b  cycles in the Riemann 

surface for n  is even and the Fig.4-18 is the case for n  is odd. 

 

 

 

 

 

 

 

 

 

Fig.4-17 a , b  cycles for horizontal cuts of even branch points 

 

 

 

 

 

 

 

 

 

 

 

Fig.4-18 a , b  cycles for horizontal cuts of odd branch points 

 

(B) In vertical cut : 

  Let Czzz n ∈⋅⋅⋅⋅⋅ ,,, 21  be the n  branch points where n  is even and 122 −= kk zz ，

2
,,2,1
n

k ⋅⋅⋅⋅= . There are 
2

2−n
 a , b  cycles in the Riemann surface showed in Fig.4-19. 

For ka  cycle, it encloses the cut kk zz 212 − , kb  cycle is passed through the cut kk zz 212 −  

from one sheet to the other. 
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Fig.4-19 a , b  cycles for vertical cuts 

 

Let Czzz n ∈⋅⋅⋅⋅⋅ ,,, 21  be the n  branch points where n  is even and 122 −= kk zz , 

2
,,2,1
n

k ⋅⋅⋅⋅= . There are 
2

2−n
 a , b  cycles in the Riemann surface shown in Fig.4-20. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4-20 a , b  cycles for vertical cuts 
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4.4.2  About 〝〝〝〝 Mathematica 〞〞〞〞 and how to modify 

  All programs in this paper are run by Mathematica®5. But we can not compute directly, 

before computing we need to give some adjustments. Since Mathematica®5 reads argument 

of any complex number in ],( ππ−  only, then it just gives right answer in sheet  in Ⅰ

horizontal cuts ( expect at the argument π−  ). 

Consider the branch points njz j ,,2,1  , …= . In horizontal cut structure we define 

),[)arg( ππ−∈− jzz , for Cz ∈ . In vertical cut structure we define )
2

,
2

3
[)arg(

ππ
−∈− jzz , 

for Cz ∈ . But in Mathematica®5, it defines ],()arg( ππ−∈− jzz , for Cz ∈ . Then before 

computing the integral we must modify the function so that we can get the correct value. 

  In horizontal cut structure the value of jzz −  in our Theory and in Mathematica®5 are 

different at a point z with π−=− )arg( jzz , so we must modify the function jzz −  at 

π−=− )arg( jzz . But if point z with π−=− )arg( jzz  is only a point on the contour r, then 

it can not influence the value of ∫ −
r

j dzzz  so that we need not modify the function 

jzz − . 

  In vertical cut structure the value of jzz −  in our Theory and in Mathematica®5 are 

different at some points z with ),
2

3
[)arg( π

π
−−∈− jzz  so that we must modify the function 

jzz −  at ),
2

3
[)arg( π

π
−−∈− jzz . 

  Besides, the askew cut structure is the same as horizontal cut and vertical cut structure. So 

we define )
4

9
,

4
[)arg(

ππ
∈− jzz , for Cz ∈ . It implies that we must modify the function 

jzz −  at )
4

9
,()arg(

π
π∈− jzz . 
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4.4.3  Evaluation of ∫a dz
zf )(

1
 and ∫b dz

zf )(

1
 

  In this section we give three examples about the horizontal cut, vertical cut and askew cut. 

In the three examples we try to modify the function )(zf . 

 

Example 4.1 : 

  Let 6=n , and 41 =z 、 32 =z 、 23 =z 、 14 =z 、 15 −=z  and 26 −=z  are six branch 

points , as shown in Fig.4-21. 

  If ∏
=

−=
6

1

2

1

)()(
j

jzzzf ，then ?
)(

1
=∫r dz

zf
 where bar ,=  cycles. 

  We use Mathematica®5 to compute the integral. 

 

 

 

 

 

 

 

 

 

Fig.4-21 ba,  cycles for six branch points in horizontal cut 
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  We know that ∫ ∫=
a a

dzzfdzzf
 * 

)()( , we only compute the integral along *a  path. 

For the equivalent path *a  :  

Since π−=− )arg( jzz  is not the valid range in Mathematica®5, we must modify )(zf , 

as shown in Table 4.1. ( M  means the value of )(zf  in Mathematica®5.) 

 

Value of )(zf   

Branch points (1,0) to (2,0) (2,0) to (1,0) 

1z  M−  M+  

2z  M−  M+  

3z  M−  M+  

4z  M+  M+  

5z  M+  M+  

6z  M+  M+  

Sheet  or sheet Ⅰ Ⅱ ( Sheet ) Ⅰ M+  ( Sheet ) Ⅰ M+  

Total M−  M+  

Table 4.1 we must modify the valve of )(zf  for *a  cycle in Mathematica®5. 

 

By Mathematica®5,  

 2  1  2
49

 1  2  1

1 1 1
2 3.3819 10 1.13022

( ) ( ) ( )
dz dz dz i

f z f z f z

−− + = − = × −∫ ∫ ∫ . 

Therefore the integral over 1a  cycle is 

49

  

1 1
3.3819 10 1.13022

( ) ( )a a
dz dz i

f z f z
∗

−= = × −∫ ∫� . 
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(ii) For b cycle :  

 

 

 

 

 

 

 

Fig.4-23 ,b b
∗  cycles for six branch points in horizontal cut 

 

For the equivalent path *b  :  

Since the interval )1,1(−  and )3,2(  have no cut, so solid line in sheet implies + sign Ⅰ

and dash line in sheet Ⅱ implies – sign . since π−=− )arg( jzz  is not the valid range in 

Mathematica®5, we get the Table 4.2. 

 

Value of )(zf  Branch points 

(1,0) to (2,0) (2,0) to (1,0) 

1z  M−  M+  

2z  M−  M+  

3z  M−  M+  

4z  M+  M+  

5z  M+  M+  

6z  M+  M+  

Sheet  or sheet Ⅰ Ⅱ (Sheet ) Ⅰ M+  (Sheet ) Ⅱ M−  

Total M−  M−  

Table 4.2 we must modify the valve of )(zf  for 
*b  cycle in Mathematica®5. 
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By Mathematica®5,  

 1  3  1  2  2  1

 1  2  1  3  1  2

1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
dz dz dz dz dz dz

f z f z f z f z f z f z

−

−
+ − − − −∫ ∫ ∫ ∫ ∫ ∫  

i
491077621.30760776.0 −×+−= . 

Therefore the integral over b cycle is 

49

  

1 1
0.0760776 3.77621 10

( ) ( )b b
dz dz i

f z f z
∗

−= = − + ×∫ ∫� . 

 

Example 4.2 : 

  Let 6=n ，and iz 211 += 、 12 =z 、 iz 33 = 、 iz =4 、 iz 315 +−=  and iz +−= 16
 are 

six branch points, as shown in Fig.4.24 

  If ∏
=

−=
6

1

2

1

)()(
j

jzzzf , then ?
)(

1
=∫r dz

zf
 where bar ,=  cycles. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.24 ba,  cycles for six branch points in vertical cut 

 

We use Mathematica®5 to compute the integral. Note that in vertical cut structure we must 

modify the function jzz −  at ),
2

3
[)arg( π

π
−−∈− jzz .   

(i) For a cycle: 

For the equivalent path 
*a  : shown in Fig. 4.25 
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Fig.4.25  a* cycle for example 4.2 

 

We can get the Table 4.4. For example, ),
2

3
[)arg( 1 π

π
−−∈− zz  for z along the path (0,3i) 

to (0.2i) so that we must to modify 1zz − . 

Value of )(zf   

Branch points (0,3i) to (0.2i) (0,2i) to (0,i) (0,2i) to (0,3i) (0,i) to (0,2i) 

1z  M−  M+  M−  M+  

2z  M−  M−  M−  M−  

3z  M+  M+  M+  M+  

4z  M−  M−  M+  M+  

5z  M+  M+  M+  M+  

6z  M+  M+  M+  M+  

Sheet  or Ⅰ

sheet Ⅱ 
M+  M+  M+  M+  

Total M−  M+  M+  M−  

Table 4.4 we must modify the valve of )(zf  for *a  cycle in Mathematica®5. 

 

By Mathematica®5,  

 2   2  3

  3  2   2

1 1 1 1 1

( ) ( ) ( ) ( ) ( )

i i i i

a i i i i
dz dz dz dz dz

f z f z f z f z f z
∗

= − + − +∫ ∫ ∫ ∫ ∫  

                  i33762.238321.1 −=  

Therefore the integral over a cycle is 

  

1 1
1.38321 2.33762

( ) ( )a a
dz dz i

f z f z
∗

= = −∫ ∫� . 
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(ii) For b cycle: 

For the equivalent path 
*b  :as shown in Fig.4.26 

 

 

 

 

 

 

 

Fig.4.26 
*b  cycle for example 4.2 

We get the Table 4.6. For example, ),
2

3
[)arg( 1 π

π
−−∈− zz  for z along -1+ί to 1 so that we 

must to modify 1zz − . 

Value of )(zf   

Branch points -1+i to 1 1 to -1+i 

1z  M+  M+  

2z  M−  M−  

3z  M+  M+  

4z  M+  M+  

5z  M+  M+  

6z  M+  M+  

Sheet  or sheet Ⅰ Ⅱ M+  M−  

Total M−  M+  

Table 4.6 we must modify the valve of )(zf  for 
*b  cycle in Mathematica®5. 

 

By Mathematica®5 , 

 1  1  1

  1  1  1

1 1 1 1
2 0.590344 1.16143

( ) ( ) ( ) ( )

i i

b i
dz dz dz dz i

f z f z f z f z
∗

− + − +

− +
= − + = = −∫ ∫ ∫ ∫ . 

 

Therefore the integral over b  cycle is 
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-1+3ί 

1 
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1 1
0.590344 1.16143

( ) ( )b b
dz dz i

f z f z
∗

= = −∫ ∫� . 

 

Example 3 : 

  Let 4=n , 11 =z 、 iz =2 、 iz −=3  and 14 −=z  are four branch points form a askew cut 

as shown in Fig.4.27. 

  If ∏
=

−=
4

1

2

1

)()(
j

jzzzf ，then ?
)(

1
=∫r dz

zf
 where bar ,=  cycles  

  Note that in askew cut structure we must modify the function jzz −  at 

)
4

9
,()arg(

π
π∈− jzz . 

 

 

 

 

 

 

 

 

 

 

Fig.4.27 ba,  cycles for four branch points in askew cut 

 

(i) For a  cycle :  

For the equivalent path *
a  : as shown in Fig.4.28  

 

 

 

 

 

 

 

Fig.4.28 *
a  cycle for example 4.3 
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We get the Table 4.8. For example, )
4

9
,()arg( 1

π
π∉− zz  for z along -1 to i and i to -1 so that 

we must not modify 1zz − . 

Value of )(zf   

Branch points -1 to i i to -1 

1z =1 M+  M+  

2z =i M−  M−  

3z =-i M+  M+  

4z =-1 M−  M+  

Sheet  or sheet Ⅰ Ⅱ M+  M+  

Toatl M+  M−  

Table 4.8 we must modify the valve of )(zf  for *
a  cycle in Mathematica®5. 

 

By Mathematica®5,  

*

  1  

  1   1

1 1 1 1
2 2.62206 2.62206

( ) ( ) ( ) ( )

i i

a i
dz dz dz dz i

f z f z f z f z

−

− −
= − = = −∫ ∫ ∫ ∫� . 

Therefore the integral over a  cycle is 

  

1 1
2.62206 2.62206

( ) ( )a a
dz dz i

f z f z
∗

= = −∫ ∫� . 

 

(ii) For b  cycle :  

For the equivalent path *
b  : as shown in Fig. 4.29  

 

 

 

 

 

 

 

 

 

Fig.4.29 *
b  cycle for example 4.3 
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We get the Table 4.10. For example, )
4

9
,()arg( 1

π
π∈− zz  for z along the path -1 to 1 so that 

we must modify 1zz − . 

Value of )(zf   

Branch points -1 to 1 1 to -1 

1z =1 M−  M+  

2z =i M−  M−  

3z =-i M+  M+  

4z =-1 M−  M−  

Sheet  or sheet Ⅰ Ⅱ M+  M−  

Toatl M−  M−  

Table 4.10 we must modify the valve of )(zf  for *
b  cycle in Mathematica®5. 

 

By Mathematica®5, 

*

 1  1

  1  1

1 1 1
0

( ) ( ) ( )b
dz dz dz

f z f z f z

−

−
= − − =∫ ∫ ∫� . 

Therefore the integral over b  cycle is 

*
  

1 1
0

( ) ( )b b
dz dz

f z f z
= =∫ ∫� � . 

 

 

4.5 Application for Riemann integral 

  Recalling the heat conduction problem in section 2.5 we use Laplace and Fourier 

transformation to solve it. But we want to solve the integral 

.)()
1

(
4

1
),(

-

lim dyyfdee
i

txu
tyx

iLs

iLsL

σ
σπ

σσ −−
+

−

∞

∞ ∞→
∫∫=  

Since the path is from ils −  to ils + , we must not modify the integrate in Mathematica®5. 

Let 2( )f y y= , and by Mathematica®5 we can get 
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.)
1

(
4

1
)1,(

-

lim xydydee
i

xu
yx

iLs

iLsL

==
−−

+

−

∞

∞ ∞→
∫∫ σ

σπ
σσ

         (4.11) 

We also compute the integrate in (2.17), and we can get that 

xydyexu
yx

== ∫
∞

∞−

−−

 
2

1
)1,( 4

)( 2

π
, 

is the same as (4.11). As shown in Table. 4.11, u
∼

 is the value of u  which is computed by 

Mathematica®5. 

 

t  1 2 3 4 5 6 7 8 9 10 

u
∼

 
22 x+  24 x+  26 x+  28 x+  210 x+  212 x+  214 x+  216 x+  218 x+  220 x+  

u  22 x+  24 x+  26 x+  28 x+  210 x+  212 x+  214 x+  216 x+  218 x+  220 x+  

Table 4.11 compare u  with u
∼
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