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Finite Order Diagonal Automorphisms

on Complex Simple Lie Algebras

Student: Hsiao-Fan Liu Advisor: Meng-Kiat Chuah
Department of Applied Mathematics
National Chiao Tung University

Abstract

An automorphism on & complex simple Lie algebra is said to be diagonal if
it preserves a Cartan subalgebra and-acts as scalar multiples on the correspond-
ing root spaces. In this thesis, we'study finite order diagonal automorphisms on
complex simple Lie algebras. In*particular, we represent these automorphisms
by some diagrams, and study the combinatorial properties of equivalent dia-
grams.
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1 Introduction

Let g be a finite dimensional complex simple Lie algebra. Given a Cartan subalgebra

h C g, we have the root space decomposition

ng]—i-zgi,
A

where A C h* are the root. We say that an automorphism o : g — g is a diagonal
automorphism if there exists a o-stable Cartan subalgebra h such as o preserves all
the root spaces g;. The purpose of this thesis is to study the diagrammatic expression
of finite order diagonal automorphisms, and to classify the equivalent diagrams when
g is a complex simple Lie algebra of type A.

Let o be a diagonal automorphism with respect to fj. So ¢ acts as scalar multiples
on the root spaces g;. If in addition o is of finite order m, then the eigenvalues are
some complex numbers ¢; such that’ef® =11, In Section 2, we introduce the Vogan
diagram of o. It is a diagram which represents @ by indicating its eigenvalues on the
vertices of the extended Dynkin'diagram D* of g.-This is the natural generalization
of the Vogan diagrams of involutions on g-{7:

A Vogan diagram represents: a:finite order diagonal automorphism o under a
choice of simple roots. However, different diagrams may represent the same o due to
different simple roots. In this case we say that the diagrams are equivalent. In Section
3, we introduce an algorithm which combinatorially describes how two diagrams are
equivalent. As an application, in Section 4, we give a precise method to determine

equivalent diagrams for type A Lie algebras.



2 Vogan Diagrams

In this section, we introduce the Vogan diagrams of finite order diagonal automor-
phisms. Let g be a complex simple Lie algebra, with Cartan subalgebra h. Let II
denote a simple system, so I C A C h*. The vertices of the extended Dynkin dia-
gram are ITU {¢}, where ¢ is the lowest root. The vertices i of D! are equipped with
canonical coefficients a;, where a; are positive integers without nontrivial common
factor and >y r,y @it = 0.

Let o be a diagonal automorphism on g of order m which preserves b, and let Z,,
denote the abelian group of Z modulo mZ. Let € = exp(27y/—1/m) € C be the m-th
primitive root of unity. The eigenvalues ¢; of o are exactly €%, where s; € Z,,. It
follows that if we assign s; to vertex ¢ of the Dynkin diagram D, then 0 X = €% X for

all X € g;. Moreover, Lie algebra homomorphism provides
o[ X, Y] = [0X,a¥ ] =¥ X, Y] = %% X, Y],

where Y € g;. This implies that the assignment to vertex ¢ is forced by Lie algebra
homomorphism while the other vertices are assigned. In other words, we can assign
such s; to each simple root and-hericé thereis an assignment {s; }, on the vertices
of D%

Given s; € Z,,, we may write s; = [b;] for some b; € Z. We say that the assignment
{s;} is nontrivial if the set {b; }riu, has no nontrivial common factor. To ensure that
the order of o is m, {s;} is required to be nontrivial. In this respect, we associate the

following diagram on g.

Definition 2.1. A Vogan diagram of order m on g is a nontrivial assignment of
s; € Z,, to each vertex 7 of D', such that > (o} @S is a positive multiple of m. In

particular, if Y () @iSi = M, We call it a standard Vogan diagram .

Obviously, these s; indicate the behavior of o on g;. Here, we may soon conclude
that every Vogan diagram represents an automorphism on the corresponding complex

simple Lie algebra of order m.



Recall that a Vogan diagram defined in [7] is a Dynkin diagram with an involution
0, such that the vertices fixed by 6 are painted or not. For m = 2, ¢ is an involution
on g and the eigenvalues are +1. By ignoring ¢, we obtain a Dynkin diagram with
o. We can let o act on the roots i such that (g;) = g,)- Then o(i) =i if and only
if ¢ is imaginary, and hence we obtain an automorphism ¢ on D. So the imaginary
simple roots are the vertices of D which are fixed by o. Namely, the vertices which are
painted represent the eigenvalue —1 of o. It is easy to see that —1 = €'. Therefore,
we can assign 1 to the painted vertices and 0 to the others. This leads an assignment
to be a Vogan diagram of order 2 on g and provides a natural way to define those
Vogan diagrams of higher order m on g.

Throughout this paper, we shall always let V' be the set of Vogan diagrams of

order m on g and V; be the set of standard Vogan diagrams.

Theorem 2.2 (Kac[4][6]). A Vogan diagram with {s;} represents an order m au-
tomorphism o on g by 0X; = %X, on the roat vector X; of i. Conwversely, every
diagonal automorphism is represented=by a Vogan diagram. FEach Vogan diagram
1s equivalent to a standard Vegan diagram. Up te conjugation, the automorphisms

obtained this way exhaust all m-th order-diagonal automorphisms on g.

This theorem follows from [4, Chap.X-5, Theorem 5.15]. Due to the choice of sim-
ple systems, two different Vogan diagrams may represent conjugate automorphisms.
In such case, we say that these Vogan diagrams are equivalent. We summarize it as

follows.

Definition 2.3. Two Vogan diagrams v and w are equivalent if and only if they

represent two conjugate automorphisms.

We denote it by v ~ w. By Theorem 2.2, it allows us to use the diagrams to study
finite order automorphisms on g. Since each automorphism of order m must give one
assignment {s;} with ) (4} @iSi = m, we derive that every Vogan diagram v € V' is
equivalent to a standard Vogan diagram v’ € V.

In fact, Theorem 2.2 is generalized from the following theorem.



Theorem 2.4 (Borel-de Siebenthal [3]). Every real form of a complex simple Lie

algebra can be represented by a Vogan diagram with at most one painted vertez.

For the case of m = 2, Theorem 2.2 says that each involution ¢ determines an
assignment {s;} on D* where Y () iSi IS even and s; is either 1 or 0. Suppose
there is only one black vertex of D. By Theorem 2.4, the vertex ¢ must be black.

Namely, every Vogan diagram is equivalent to a diagram with ) ;| (o} iSi = 2.



3 Equivalent Diagrams

In the previous section, we have constructed the Vogan diagram v of the automor-
phism o with respect to a simple system. If we change the simple system, we obtain
a different diagram w which also represents o, and in this case we say that v and
w are equivalent. In this section, we give a combinatorial description for equivalent
diagrams.

Let aut(A) denote the automorphism group of the root system A. It acts on the
simple system, and so it also acts of the Vogan diagrams V. Since it acts transitively
on all the ordered simple system, the orbits of its action on V are precisely the
equivalent classes of Vogan diagrams. Namely, v ~ w if and only if there exists some
f € aut(A) such that f(v) = w. We shall give a combinatorial description for such
[ € aut(A).

Consider two possible ways to change the choice of simple system. Let # be the
Weyl group generated by simpleaeflectionssand aut(D) be the set of all automorphisms
on the Dynkin diagram D. Eviadently, aut(I) is-a subgroup of aut(A). Moreover, #
is a normal subgroup [5, Lemma 9.2].“Exactly, a possible change of simple system is

provided as follows.

Theorem 3.1. There is a semi-direct product
aut(A) = # x aut(D).

This theorem follows from [4, Chap.X-3, Theorem 3.29] or [5, Chap.12.2].

Due to aut(A) = # x aut(D), we shall consider an operation which acts on A by
reflection corresponding to the simple root i. As a result, it leads to an equivalent
Vogan diagram. In what follows, we introduce and generalize F; developed in [1] and
2]. Let v be a Vogan diagram of an order m automorphism, with assignment of {s;}
to the vertices j. Given a vertex i, we define F;(v) to be another Vogan diagram with

assignment of {¢;} as follows.



tj =s;+s; if jis an adjacent root of equal or shorter length,
(3.1) Fi(v) : t; = s; +2s; if j is a longer root joint to 7 by a double edge,

t; =s;+3s; if j is a longer root joint to 7 by a triple edge,

\ tj = s; if 7 and 7 are not adjacent.

Indeed, F; corresponds to the reflection defined by the simple root 7. Consider
the effect of the reflection defined by ¢. There is no effect to vertices j which are not
adjacent to 7, since it means that the simple roots j and ¢ are mutually orthogonal.
So, we obtain t; = s;. For adjacent vertices, we consider just locally on the plane,
namely A,, By and GG5. There are five conditions for adjacent vertices. In each case,
one can draw the roots of 7 and j on the plane and justify the condition of F; visually.

Such F; provides a way to judge whether two Vogan diagrams are equivalent, and

they generate the Weyl group % . Definition. 2.3 therefore can be restated as follows.

Proposition 3.2. Two Vogan diagrams v and w are equivalent if and only if there

exists a sequence of Vogan diagrams Ve with
(3.2) V=100 U L U = W,
such that each v, — v,y 18 given by some F; of (3.1) or a diagram automorphism.

Let int(g) be the subgroup of aut(g) generated by {exp(adx) ; X € g}, where
exp : end(g) — aut(g) is the exponential map. The members of int(g) are called
inner automorphisms. The theorem of Kac [4, Chap.X-5, Theorem 5.16] says that
each diagonal automorphism of finite order on g is an inner automorphism. The inner
automorphism corresponds only to Fj;, without diagram automorphisms. Thus, we
may impose a stricter notion on the Vogan diagrams. Namely, two equivalent Vogan
diagrams v and w are said to be inner equivalent if and only if each v, — v,41 in

(3.2) is given by some F; and not a diagram automorphism.



4 Equivalence Classes of Type A Diagrams

Recall that Kac’s theorem says that a Vogan diagram is equivalent to a standard
diagram, but it does not say which standard diagram. In this section, we provide a
method to find the standard diagram explicitly. We also show the method to judge
whether two Vogan diagrams are equivalent.

Let V(A!) denote the set of all Vogan diagrams of order m on A}. Label the
vertices of Al naturally by 0, 1,...,n, where 0 is the extra vertex and express a Vogan

diagram on Al by
(4.1) (11,49, ..., 1) € V(A}), 0<4; < ... <4 <nand k is a multiple of m.

Recall that each vertex i of a Vogan diagram is assigned by s; € Z,,, and thus we allow
an index to appear s (or s +mZ) times in (i1, ..., 1) if and only if the corresponding
vertex is assigned by s. We also allow! 0 te.appear, and we may ignore it since the
assignment to 0 is forced. So forrexamplen(2s2,3).and (1,1, 1,2,2,3) both refer to the

following Vogan diagram of otder:3 on A2.

0
0 2 1

Define the standard Vogan diagrams by setting k = m in (4.1), namely

(i1, . im) € V(AL), 0=1i; <iy < ... <y, < 0.

From now on, we shall let V,(AL) denote the set of all standard Vogan diagrams of
order m on AL. It is easily seen that V,(AL) C V(AL).

Recall that we want to find a standard Vogan diagram which is equivalent to a
given diagram v € V(A}). This will be done in Proposition 4.4, where we construct
amap 7 : V(AL) — Vi(A}) which satisfies v ~ 7(v). The next few lemmas study a

function ¢ : V(Al) — C which will be used to construct 7.



Let C be the set of all complex numbers. Define

¢: V(A — C,

4.2 1
( ) ¢(i17 ) Zk) = Z Epik*}ﬂ

p=0

where € is the m-th primitive root of unity as before.

By this definition of ¢, we can check that
(4.3) ity oesipy oonyip) = Plipg1, o i) + € D0, .0y i)

For example,

$(2,2,3,3,6,6,6)
=(1+e+e)6+69(2,2,3,3)
=(1+e+e?)6+e((14€)3 4 €9(2,2))
=(1+e+e?)6Hhe((1+€)3+e2(1+¢)2)
= (1 + € +€%)6 +p( e )8+ (€° + €°)2.

Two important properties-of € are
(4.4) " =1 mltednl £ =0.

The second equation is proved by (e —1)(T+ €+ ... + €™7!) = 0, and hence we know
that 1,¢, €2, ...,e™ 2 are linearly independent. Observe that ¢ is well-defined because
of the second equation in (4.4). Namely, if the indices 7, appear several times for a
same diagram as allowed in (4.1), then the value of ¢ remains the same. Further, the

second equation in (4.4) yields
(4.5) l+tetr.. +e&t=—1+tet..+mh, forse{0,1,...,m—1}.

For the following proposition and lemma, it is convenient for us to rewrite (4.1)

to be

(4.6) (0%, 1°1,...,n*") € V(A),



to denote the Vogan diagram with value s; at vertex i. For example, if m = 4,
(2,3,3,6,6,6) = (2',3%,6%) = (2°,32%,6%) = (1°,2°,32,6%).
Here vertex 2 is assigned s, = 1 or s5 = 5, and so on.

The function ¢ is useful, because it is invariant under Fi, ..., F,,_1, as shown by
the following lemma. Let R. denote counter clockwise rotation of assignment {s;}
by ¢ steps. For example, in the following diagram, the right diagram is obtained by
applying R, to the left diagram.

0 2
1 0 2 0 0 010

Two Vogan diagrams on A} with m = 3.

Lemma 4.1. Let v € V(AL) be a Voganidiagram. Then
(a) oF.(v) = ¢(v) for all r=51,2,.. =1,

(b)  @F.(v) = ¢Ra(v).

(c) @Fo(v) = ¢R1(v).

Proof. To prove this lemma, we use-the notation in (4.6) to express v. For part (a),
the identity (4.3) says that
OF. (0% ..., n")
= @(0%, ..., (r — 1)sr=2tsr pm=sr (p 4 ])sre1tsepsn)
(4.7) = ¢((r+2)°+2 + ... +n’)
pesrrattongy((p — 1)sr-1sr pm=se (1 4 1)sriiter)
+esr-1ttsng (050 L (r — 2)5r-2).

A direct computation shows that
(4.8) G((r — 1)1 ™o (4 1)) = g(r — 1,y + 1),

Therefore, when we substitute (4.8) into the middle term of the last expression of

(4.7), we get



OF,.(0%,...,n°")

=o((r+2)°+2 + ...+ n)
+esrt2teting(r — 1 r + 1)
+€87‘71+---+5n¢(0507 . (7, _ 2)sr72)

= ¢(0%,...,n").

This proves part (a) of the lemma.

To show part (b), the definition (4.2) yields

¢R, (v)
= ¢(0°, 1%, ..., n’r1
ey )
=(1+e+-Fem ) ntesn1(I+et--+em2H(n—1)

+o STt (] e et

Subtracting (1 + € + - - - + €527 11 befoe adding it in (4.9) gives

PRy ()
= o(1%, 222 (=1 1)
F(1 4 e oo eonmretsitso—ly
Note that

ASS

F(v)

(00T 151 (n — 1)sn-1Fsn pm=sne)
(
(

P((n — 1), nm=sn) 4 elm=sn)Fsng(151(n — 1)%-1)
=¢(1°1,2%2 . (n—1)"1 )+ (1+e+ - Fem 1)

The last expression is proved by using (4.5).

Since )", s; is a multiple of m, it follows that

1+ € + . _|_ Esn71+...+81+8071 — 1 + € + . + Em*Sn*I'

10



This verifies part (b) of the lemma and (c) follows from the same argument in (b),

completing the proof.

Lemma 4.2. FnFn—l s F1 = R_1 and F1F2 tee Fn = Rl.
Proof. Given a Vogan diagram v, let v; be its value at vertex ¢. We first claim that

(4a) (FiFiq - Fi(v)); = —v; — vy — ... —v; and

(4b) (BFiq - Fi(v)is1=v1 +ve+ ...+ foralli =1,2, ..., n.

We prove (4a) and (4b) by induction on 4. It is clear that (Fj(v)); = —v; and
(F1(v))2 = v1 + v, so (4a) and (4b) hold for ¢ = 1.

Now suppose that (4a) and (4b) hold for i, and we want to show that they therefore
hold for 7 4 1 as well. It is obvious that

(4.10) (BF, g T (0));19°= V4o
Then
(4.11) (Fig1--- Fi(v)idvs —(Fi- - d5(v))in
= “v{—vy—..—v;1 by (4b).
Also,

(Fi1 - F1(v))ire
(4.12) = (Fi - F1(0)iy2 + (Fi - F1(v))ina
= (v1 + U2+ ... F V1) F Vigo by (4b) and (4.10).

By (4.11) and (4.12), we have shown that (4a) and (4b) are also true for ¢ 4+ 1. This
completes the induction, and so (4a) and (4b) hold for all : = 1,2, ..., n.

To prove the lemma, we want to show that

(4c) (Fo - F1(v))i = Vi1

11



By (4a) and (4b),

(B F1(v)i = (Fi - F1(v))i + (Fi - F1(v))ina

= (—Ul — V2 — ... — Ui> -+ (’Ul + vy + ... + Uz'—l—l)
= Vit1-
Since Fjyo, Fii3,--+ , F, has no effect on vertex i, it leads to (4¢). This proves the

lemma.
By similar arguments, we obtain F} Fs--- F,, = R;.

]

Lemma 4.3. Let v € V(AL). Then there exists v' € Vi(AL) such that v' ~ v and
P(v') = ¢(v).

Proof. Let v € V(AL). We claim that there exists iy, ...,ix € {1,...,n} such that
(4.13) Pl BV €V (AL).

By Theorem 2.2, there exists w € Vs(AL)such that v ~ w. Since the simple reflections

F; € # and aut(D) generate aut(A), thereexists a sequence {v,} such that
(4.14) V=1Ug k> V1 . b U U = W,

where each v, +— v441 is given by some F; (where i € {1,...,n}) or the diagram
reflection v € aut(D). Since # is a normal subgroup of aut(A), for each F;, there
exists some F; such that F;y = «vF};. Therefore, using another sequence in (4.14) if
necessary, we may move the 7’s so that they appear only at the end of the sequence.
Further, since v2 = 1, we may assume that v appears at most once in (4.14). We then
v_i -+ Fi,(v) in (4.13). This proves (4.13) as claimed.

We now prove the lemma for v € V(A}) by induction on N of (4.13). When N = 1,

let either v,_; or v, be F; F;

it obviously follows from Lemma 4.1. Indeed, if iy < n, then we choose v' = Fj, (v)

12



and hence ¢(v') = ¢(v). If otherwise, let w = F,(v) and choose v' = R;(w) since

¢(v) = ¢Fy(w)
(4.15) = ¢Ry(w) by Lemma 4.1(b).
= o(v).
Suppose that the assertion is true for N — 1. For the case of N, let w =

F, F; -+ F; (v). The case of iy < n is obvious by Lemma 4.1 and the assumption.

-+ F;, (v) only.

N-1
Now, we shall consider the case w = F, F;

. F

i1

N—1"

Ifin_y =n, then w = F;,_,- (v) and hence there is nothing to prove. Con-
versely, if iy_1 is not adjacent to n, namely 0 < iy_1 < n—1, then we can interchange

F;, . and F, to obtain w = F;,, ,F, --- F;,(v). Then

¢(w) = Fiy_ FnFiy_, -+ Fiy (v)

N—2 '

= QSFHEN—z o Fil(v)'

Using the assumption again, the result/ds-followed:

Consequently, it suffices to deal with
(4.16) W= FyFy 1 g Fo_s()orj € {1,....,n— 1}.
Note that F,(w) = F,,_1F,—2--- F,,_;(v) and hence
¢F,(w) = ¢(v) by Lemma 4.1(a).

Therefore, the similar arguments in (4.15) imply that there is v’ = Ry (w) € Vi (AL)
such that ¢(v') = ¢(v). By induction, this proof is completed .
[

We are now ready to construct the map 7 : V(AL) — V;(A}) which satisfies

v ~ 7(v). Define P C C by

P = {bo +bie+ ...+ bm_zem_2 ; bj€Zandn>by>b>..>by_o> 0}

13



Note that the image of ¢ is contained in P and we therefore define the useful 7 as

follows. Let v € V(AL) and write ¢(v) = by + bye + ... + by_0e™ 2 € P. Define
7: V(A — Vi (AL,

(4.17) (4n) (A7)
7(v) = (0, b2, ..., b1, bo) € Vi(A}).

Since 7 is defined from ¢, 7 is well-defined clearly.
For arbitrary v € V(A}), the following proposition gives us the method to express

one form of standard Vogan diagrams which are equivalent to v.
Proposition 4.4. Let v € V(AL). Then v and 7(v) are equivalent.

Proof. By Lemma 4.3, we can choose a standard Vogan diagram v" € V,(Al) such

that ¢(v) = ¢(v'). Write v’ = (iy, g, ..., i), and we obtain
B(V) = (i — i1) + (et — i1)€ + oo 4 (12 — i1 )€™ 2.
By (4.17), we have that
T(v) =405dg — G15 womsn—iy =01, I, — 11)-
It is clear that v' ~ 7(v), which impliesio=r7(v).-This completes the proof. ]

By the above proposition, we are able ‘to find a standard Vogan diagram 7(v)
which is equivalent to a given diagram v. Together with the following proposition of

Kac, we are also able to judge whether two given diagrams are equivalent.

Proposition 4.5 (Kac). Two standard Vogan diagrams v,w € V,(AL) are equivalent

if and only if there exists a diagram automorphism which maps v to w.

Proof. Recall that a standard Vogan diagram which represents an automorphism is
an assignment {s;} with > s; = m. Therefore, v and w € V,(Al) are equivalent if
and only if their corresponding automorphisms, o and ¢, are conjugate. The theorem
of Kac [4, Chap.X-5, Theorem 5.16] says that two automorphisms on g are conjugate
if and only if {s;} can be transformed to {s;} by a diagram automorphism. The

proposition follows. [

14



For example, consider the standard Vogan diagram (0, 1,1) of A}. We obtain
(4.18) (0,1,1) — (1,2,2) — (2,2,3).

Obviously, the first step is achieved by rotation, while the second step by reflection.
By Proposition 4.5, it implies immediately that (0,1,1) and (2,2, 3) are equivalent.

We summarize our results in the following theorem.

Theorem 4.6. Let v andw € V(AL) be Vogan diagrams. Then v and w are equivalent

if and only if T(v) and 7(w) are related by a diagram automorphism.
Proof. By Proposition 4.4 and Proposition 4.5, we derive this theorem. [
Example 4.7. Consider the following three Vogan diagrams v, v9, v3 with m = 4.
2 2 2
30 30 0 3 2 3 0 2 1

V1 (03 U3

Write
v =(0,0,1,1,1,3,3,3), vo=(0,0,1,3;3,3,4,4), and v3 = (0,0,1,1,1,3,3,4).

By Theorem 4.6, we obtain standard diagrams 7(v1 ), 7(ve) and 7(v3) equivalent to
v1, V9 and vs, respectively. That is, 7(v1) = (0,2, 3,3), 7(v2) = (0,0,2,4), and 7(v3) =
(0,2,3,4) are as follows.

1 2 1
01 20 01 01 01 1 1

7(v1) 7(v2) 7(v3)

Note that by diagram automorphism, 7(vy) ~ 7(vy), but 7(ve) » 7(v3). Therefore,

v1 is equivalent to vy, while v3 is not equivalent to both v; and w,.

15
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