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Topics on linear hyperbolic equations

Student: Mei-Zu Chen Advisor: Dr. Jong-Eao Lee

Department of Applied Mathematics National Chiao Tung University

Abstract

We study the linear hyperbolic partial differential equations (linear hyperbolic
PDEs). First, we give some practical examples and show that they are governed by
such type of the equations. Next, we apply:several classical methods to solve the
linear hyperbolic PDEs with the solutions.being expressed in various forms. We then
identify those solutions.

When we apply Fourier and Laplacertransformations to the whole- and half-line
PDEs,it is necessary to perform the‘inverse Fourier and Laplace transformations to
derive the PDE solutions, and it is quite often that those integrals involve the square
root operator which is multi-valued in the complex plane. In order to perform the
inverse transformations correctly, we develop the Riemann surfaces from the complex
plane with the proper algebraic structures to assure that the square root is now a
single-valued function on the surfaces, and we are able to accomplish the inverse
transformations analytically and numerically. Some examples are given to illustrate
the entire scheme.
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1 Introduction

We begin our study of linear hyperbolic equations by showing classical examples. First, we
present a simple transport for first order partidfetiential equations, and then we extend
our discussion to system of first order equations in electronics. Later, we will show the
wave equation for second order partiateiential equations. Under several hypothesis of
physical phenomenon, a vibrating string problem is changed into one dimensional wave
equation. Conversely, we can give a proper approximation to physics by discussing the
solution of this mathematical model. Hence, we analyze the parfigreintial equations

to observe physical problems.

1.1 The Advection Equation

Definition 1.1. Let u(x, t),F(x, t) bem x 1 vector andA(x, t), B(x,t) bemx m matrix .The

system of first order equations
W (X, t) + ACK, Dux(X, 1) +.B(x, u(x, t) = F(x, 1) (1.2)
is said to be hyperbolic iA(x, t);is real diagonalized.
Obviously, a single real equation
W(X, t) + cu(x,t) = F(x,t)

is a hyperbolic equation. Let the particles of pollutant be transported from left to right with
a constant speeclin a river. Denoteu(x, t) the density of particles at the positiomand
timet in the river. Suppose this river is so narrow that no particles get scattered.

First, we consider there no particles get lost or added. At tinteke amount of the

particles of pollutant in an intervahlb], where O< a < b, is

b
M:f u(x, s)dx
a

Let s,h > 0. The patrticles of time + h are of times transported to right with distanad

centimeters. Hence, the amount of the particles of pollutant at $imé is equal to the
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amount at times, i.e.

M= fb u(x, s)dx = fb+Ch u(x, s+ hydx (1.2)

a+ch

By the First Fundamental of Calculus, wefdrentiate the equation (1.2) fow then it
becomes

u(b, s) = u(b + ch, s+ h). (1.3)

Again we diferentiate the equation (1.3) foy hence
0= cu(b+ch s+h)+uw(b+chs+h).
Let h=0, we derive a homogeneous transport equation.
(b, s) + cuk(b, s) = 0,

whereb is arbitrary, hence we get the advection equation.

If the particles get lost or added insthe river,; then we obtain the nonhomogeneous ad-

vection equation

Ui+ cu = F,

whereF is the amount of particleswhich getloss or added per length at pogitad time

t.

1.2 The Wave Equation in One Dimension

Definition 1.2. The linear partial dterential equation for second order
A(X, DUyx + B(X, D)uye + C(X, t)ug + D(X, t)ux + E(X, t)ug + F(X, )u=0

is said to be hyperbolic, parabolic, or elliptic &b,(to) if B?(Xo, to) — 4A(Xo, to)C(Xo, to) is

positive, zero, or negative, respectively.lt is hyperbolic, parabolic, or elliptic in the domain

D if B2(x, t) — 4A(x, t)C(x, t) is positive, zero, or negative for ak,(t) € D, respectively.



For the most part in this paper, we discuss the type of linear hyperbolic equations. The

wave equation in one dimension is

Ui(X, t) — CCle(X, t) = F(X, 1),

where 0< x < I,t > 0. It is hyperbolic in its region. Becaus&x,t) = —c?, B(x,t) =
0,C(x,t) = 1, B2(x,t) —4A(X, t)C(x,t) = 0—4x (-c)®’x 1 =4c®> > O,forall0< x < I,t > 0.

Now, we want to show how the motion of a string as a mathematical equation under
several assumptions.
(1) The string with length is flexible and elastic. It is so flexible such that fteys no
resistance to bending. Hence, the tension is in the direction of tangent to the profile of the
string. In an elastic uniformly string, the density is a constant (mass per unit length).
(2) There is no elongation of a single element of the string. By Hooke’s law the tension is
constant.
(3)The string has small transverse vibration.
(4)The weight of the string is small compared with the tension in the string.
Denoteu(x, t) the displacement from equilibrium position at timmand positionx . Letp
andT be a constant density and tension at tinaad positionx. For any two closed points

x andx + Axin the string at time as shown in Figure 1

Figure 1. Two closed points in the string.



From Newton’s LawF = ma, we get a equation for equivalent vertical force

Tsing — T sina = pAXU. (1.4)

Since small transverse vibration of a string,®in tana and sirg ~ tang. So, the equation

(1.4) becomes

A
tang — tana = p?xuu. (1.5)
At timet, tana = (uy)x and tam = (Uy)x:ax, SO €quation (1.5) obtains
1
E([(UX)X+AX — (U] = %Utt- (1.6)

Let Ax be suficiently small, then we derive the homogenous wave equation
U (X, t) = CCUy(X, 1) = 0,

wherec? = %.

Let there be an external forceto a string. Hence, it appears an nonhomogeneous term.
Ugt(Xs t) = G2l 1) = £(X, 1),
wherec? = % and f (x, t) the external ferce perunitlength at positivand timet.

Remark 1.3. The valuecis a wave speed: Itis clear the unit of a tenslois kg- m/s? and
of a densityp is kg/m. Then the unit ot = \/g is m/s. Here, the unit ot is indeed the

unit of the speed.

Finally, we successfully transform a physical phenomenon into a mathematical equation
under several properly hypotheses. By this mathematical equation, we can get a lot of
information for the motion of the string vibrating. Thus, we will discuss the wave equation

in detail in a later chapter.

1.3 The Telegraph Equation

The wave equation which we have discussed in sectidmredn be replaced by the system

of first order equations. Now, we want to present how the wave equation changes into the

4



system of first order equations in electronics. Suppose a pair of transmission lines has a
voltageV(x,t) across them and a currek{i, t) at positionx and timet. The part of it is
an interconnection of elements: capacitance, resistance, leakage resistance and inductance.
DenoteC the capacitance per unit lengtR,the resistance per unit lengi@, the leakage
resistance per unit length ahdhe inductance per unit length.

Conductancé is the ability of an element to conduct electric current per unit length,
and then conductance is the reciprocal of resistance

1 1

G===-—.
R~V

Let u, N, A be the permeability of core current, number of turns and cross section area
of the inductor, respectively. When the current passes through an inductor, it is found that

the voltage across the inductor is directly proportional to the time rate of change

di

V=L
dt’

where

E NZuA

S

By Kirchhoff’s Current Law and Kirchhs’s \oltage Law, we have system (1.7)

L

Vaﬁ—Rmem—ngﬁAx:Vu+Axu
V(X 1) (1.7)
(X, t) - GV(x,t)Ax-C 5 AX = 1(X+ AX, 1).

Let Ax be small enough, then system (1.7) becomes the following system (1.8)

Vi(x, 1) = —=RI(x, t) — LI(x, 1),
(1.8)
(X, 1) = =GV(X, t) — CVi(x, ).

Let
I

\Y
then system (1.8) can be expressed the standard form of (1.1). Here,

|

u=

b

A=

QO rie

Ol



possesses two distinct real eigenvaluiss real diagonalizable. Clearly, this system is
hyperbolic. Ditferentiate the first and second of system (1.8xfandt, respectively. Then

we obtain

Vxx(x» t) = _Rlx(x’ t) - thx(x» t)»
(1.9)

(X, 1) = —GVi(X, 1) — CVy(X, 1).

SubtractingL times of second equation from first equation the system (1.9), hence we get

the partial order equation for second order
CLVi(X,t) — Vux = =(GL + CRV4(X, t) - GRV(X, 1). (1.10)

The equation
Vie(X, 1) — CVyy = —aVh(x, t) — bV(X, t). (1.11)

is called the telegraph equation, where CiL a=GL+CRb=GR
Let this transmission line have no energy: lost, thien= 0,G = 0. Hence, above

equation (1.11) becomes the homogenous wave:equation
Vi (X:1) = Vyx =0
tt\%s CL XX ;= Y.

Similarly, we can derive the homogenous wave equatidn of

1

Itt(X, t) - C—LIXX = 0



2 Solutions of Linear Hyperbolic Equations

2.1 Solution of the Advection Equation

Example 2.1. Using the method of characteristic to solving a I.V.P. of the advection equa-

tion.

U(X 1) + 2tuy(x,t) = 0, —0c0o < X < 0o, t > 0,
u(x,0) = e, —co < X < oo.
The characteristic is

dx
e
x(0) =¢.

2t

Along this characteristic
X(t) =24,

the solutionu(x, t) is a constant. Because

d dx
d—tu(x(t), t)=u + uxa

="Ur+ 2tuy

=0

Hence, the solution
u(x(t), ) = u(x(0),0) = f(¢) = eV



2.2 D’Alembert’'s Solution to the Wave Equation

Consider a finite string problem with two fixed ends

U(X, 1) = CCU(X, 1),0 < x < 1,1 > 0,

u(x,0) = f(x),0< x <1,

U(x,0) = g(x),0< x <1, (2.1)
u(0,H) = 0,t > 0,
u(l,t) = 0,t > 0,

Chosen a new coordinate transformatiémyj
E=X+cCt,
n=X-CcCt

Hence, the wave equation (2.1) becomes

—4¢ug,= O

So, the solution is

u(x, )="p(&) + q(n), (2.2)

wherep(£), q(n) are arbitrary functions @, , respectively.
First, we discuss a solution only dependspg#).

Fixedx + ct = &, then the solution is

u(x, t) = p(é),
Since,
ax_
dt

Hence, along this characteristict+ ct = £, the wave is move to left with velocity. Next,
we consider a solution only dependsa(n). First, we
Fixedx — ct = n, then the solution is constant of

u(x, t) = a),

8



Since
dt

Hence, along this characteristic— ct = n, the wave is move to right with velocitg.
Finally, we combingy(¢) andq(n) together. One wave fqu(¢) propagates to left along the
line x + ct = & with speedc; anotherg(n) for propagates to right along the line- ct = n
with speect.

Applying initial conditions of (2.1) to a general solution (2.2), hence we get

1 1 [ _
PO =310+ 5 [ oaxs po)£€ 0.1,
) = 51) = 5 [ 909dK-pO).n < 0.1

Thus, the D’Alembert’s solution is

u(x,t) = %[f(x+ ct) + f(x—ct)] + > f_XTt g(x)dx,

where 0< x—ct < x+ct < |. The above solution of the D’Alembert’s solution form is only

valid on the region shown as Figure 2.

x-ct=0

Figure 2: The region of D’Alembert’s solution.



Consider an nonhomogeneous finite string problem with two fixed ends. After a corrdi-

nate transformatior¢(rn) as above, then the wave equation with extra force term becomes

( n§ §-my_ _ §+n &-1n
Her T2 402 2 T2

Integrating two sides of above equation fdirom n to &, we get
§+n§n 1,001 ___f §+n§n

And we integrate above equation fgrfrom n to &, then it yields the nonhomogeneous

D’Alembert’s solution

u(x, t) = —[f(x+ ct) + f(x—ct)] + icfmt g(X)dx + —f fxm(t_t) F (X, t)dXxdt,

x—ct —c(t-t)
Applying the boundary condition, we try to extend the valid domain of the D’Alembert’s
solution toD = {(x,1) | —o0 < X < o0, t > 0} by extending function$, gandF. The follow-
ing table is that extends the domain.of:.twe.functidng andF corresponding to dierent

boundary conditions from [0] to:(—oo, ce).

x=0 extend functions, g andF X=I

u0,t)=0 odd at points 0 u(l,t)=0
u0,t)=0 oddatpoints 0,even &t  u,(l,t) =0
uy(0,t) =0  even at points 0,odd &t u(l,t) =0
Ux(0,t) =0 even at points,0 u(l,t) =0

Table 1. Extend function$, g andF.
Example 2.2. Find the D’Alembert’s solution for the following problem.

Ue(X, 1) = Uk(X, 1),0 < X< 7, t > 0,
u(x,0)=sinx,0< x<m,
W(X,0) = cosx,0 < x <,

u(0,t) = 0,t > 0,

u(r,t) =0,t > 0.

10



Using D’Alembert’s solution formula, we get

u(xt) = %[sin(x+ ct) + sin(x — ct)] + 2_10 fiﬁ cogX)dx, (2.3)

where 0< x — ¢t < x+ ct < . According to boundary conditions of this problefand
g are odd at the point = 0 and even at the point= 7. Thenf(x) = sinx, g(X) = cosx,
x € R. Hence,

u(x,t) = sinxcost + cosxsint,xe R,t > 0 (2.4)

2.3 The method of Separation of Variables to the Wave Equation

In this section, we introduce a common method to solve the initial boundary value problem.

The strategy of this method is separate independent variables for the function.

Example 2.3. Using the method of separation of variables to solve the forced vibration of
rectangular membrane problem.
U (X, Y, 1) = Ux(X, Y, 1) + Ug(Xy, 1) + Xysint, 0.< x <, 0 <y <, t> 0,
ux,y,0)=0,0< x<nm0<y<m,
(X, y,0)=0,0< x< 7, 0Ly,
u(,y,t) =0,0<y<mt>0; (2.5)
u(ry,t)=0,0<y<mrt>0,
ux,0,t) =0,0<x<mt=>0,
u(x,m,t)=0,0<x<mt>0.
Let
u(x,y,t) = U(x, y)T(1). (2.6)

Substituting equation (2.6) into the wave equation of problem (2.5), then

UT” = G2AUT.
Let

r_av_

2T U 7



Then
T" + AT =0,
AU + 2U = 0.

Let 1 = 2, then we have

T = Acosat + Bsinat,

where A and B are constant. Again separating the variabledJgk, t), let U(x,t) =

X(X)Y(y). Then it yield two problems

X" — uX =0,
X(0) = 0,
X(m) = 0.

and
Y’ +(d )Y =0,
Y(0) =0,
Y/(0)= O;
Letu = —-p2 andy? = (1 + u) = @ — B% Hence; thesolutions of above problems are
Xn(X)=sinmx
Ya(y) = sinny,

whereg = mandy = n. So,

ux,y,t) = Z Z(amnCOSa/mnt + bmnSinamt) sSinmxsinny;,

m=1 n=1

where
amn:if f u(x, y, 0) sinmxsinnydxdy= 0,
abJo Jo

4
amnab

Brn = f f W (X, Yy, 0) sinmxsinnydxdy= 0.
0 0

Assume the solution

[C ol

ux,y,t) = Z Z Umn(t) Sinamat Sinmxsinny,

m=1 n=1

12



and external forcing function

[C o)

F(xy,t) = Z Z Fmn(t) Sinamet sinmxsinny,

m=1 n=1

here

Fon(t) = aibfo fo F(X,y, t) sinmxsinnydxdy

_ 4(mw cosmr — sinmr)(nr cosnr — sinr) sint
B m2nen?
Takingu andF into the wave equation in problem (2.5) Hence, we get the following equa-

tion
U’ mn+ (mz + r]Z)Umn = Fmn

whereu is twice continuously dferentiable with respect to Thus,

[C o]

ux,y,t) = Z Z Umn(t) Sinamat Sinmxsinny,

m=1 n=1

where

Umn(t) = a/i fot FmnSin(@mp)(t—7)dz

mn

_A(-1ymnt cos(1l- omt—1  cos(l+ ammt — 1

———{sin t
e, o o ey T 2t amy
co t >

wheream, = VI + n?

2.4 The Fourier Transforms to the Wave Equation

We often use the method of integral transform to solve the problem for initial value prob-
lems of the infinite or semi-infinite region. First, we introduce the method of Fourier Trans-
form for a variable of all full real line. In general, a variable transformed is the spatial

variable. And we will discuss the solution by Fourier Transform.

Definition 2.4. If f(x) is absolutely integrable, then the Fourier Transform is

ZIF(](w) = f(w) = f " @ (0dx

13



Problems of partial dierential equation can be reduced by problems of ordindfgrei
ential equation for the Fourier Transfoun(;'t) of u(x, t) by property (2.5). After solving
the problem ofi(x, t), there is an inversion theorem for Fourier Transform to help we trans-

form G(x, t) backu(x, t).

Property 2.5. If f(X) is absolutely integrable, approaches zerxas +oo and has a first
derivative, then
F [ (0)(w) = —iwZ[f(X)](w)

Property 2.6. If f(X) is absolutely integrable, then
F[%F (X)](w) = Z[F(X)](w + ©).
Theorem 2.7. If f(x) is absolutely integrable, then the Fourier Transform is

(9 = g 20N
Example 2.8. Using the Fourier Transform to solve a long string problem.

U (X, t)o= CZUXX(X, 1), =00 </ X'< o0, t > 0,
u(x, 0) ="e ¥, —co < x< co, (2.7)
W(X, 0) =0, —00 < X < 00,

Let the Fourier Transform af for a variablex is

ZTu(x, )](w) = 0w, 1) = f " dou(x Ddx

Then problem (2.7) is reduced to the following problem (2.8) for second order ordinary

differential equation corresponding initial value conditions by property 2.5

d
@G(w, t) = —C2w?0(w, t), —00 < w < 00,1 > 0,
U(w,0) = 1 +2a)2’ —00 < W < 00, (2.8)

d
—0(w,0)=0,—-00 < w < 0.
dw

14



Then

coswct

U = 377

2 éwct _ e—iwct
T 1102 2

By property 2.6it yields the solution

u(x,t) = %[e""+Ct| + e e,

2.5 The Laplace Transforms to the Wave Equation

In section (2.4), we have introduced a method of Fourier Transform in order to solving
problem of infinite line region. Now, we present a method of Laplace Transform for solving
a half-line extent. In general, a variable transformed is the time variable. The property of

Laplace Transform is similar to Fourier Transform.
Definition 2.9. If f(t) is absolutely integrable, then the Laplace Transform is
Z[H)I(s) = F(s) = fom e 'f (t)dt. (2.9)
The properties of Laplace Transform are similar to Fourier Transform.

Property 2.10. If f(t) is absolutely integrable, approaches zerd as «~ and has a first

derivative fort > 0, then
L0109 = sZ[f®](s) - 1(0).

In general, iff (t) and f(M(t) are absolutely integrable) = 1,2, n — 1, approaches zero as

t—

ZIOO)S) = SLTHONS - $(0) - .. F0(0)
Property 2.11. If Z-Y[F(s)] = f(t), then

fit—a) ift>a,

0 otherwise.

LU (9] = {

15



Theorem 2.12. If F(9) is the Laplace transform of a real functidi(t), with the complex
transformed variables, then the inversion integral is

f(t) = fim yﬂﬁzquougéﬂs (2.10)

y—iL

Example 2.13. Using the Laplace Transform to solve one fixed end string problem.

U(X, 1) = dUyy(X,1),0 < X < 00,1 > 0,
u(x,0)=0,0 < X< oo,
(2.11)
(X, 0)=0,0< X < o0,
u(0,t) = 3sint,t > 0.
LetU(x, s) = Z[u(x t)],u(x t) is bounded. Then problem (2.11) is reduced to the follow-
ing problem (2.12) for second order ordinarytdrential equation by property 2.10

FU(X, 9) =lU0(% 9,0< X < co,t > 0,
U(x.0) =100 < X < o,

(2.12)
Ui(%0) =0,0 <X < o0,
3
U(O, S) = m,sz 0.
Then we have
U(x, s) = ae”™ + be >, (2.13)

wherea andb are constant. Applying a boundary condition of problem (2.12)@d(d s)

is bounded, then

U(x, ) =

e (2.14)

By property 2.11the solution is

umo_{sgm—@in>x

otherwise.

16



2.6 The method of characteristics to the Wave Equation

In this section, we will discuss how we approximate the solution for hyperbolic linear
eqguation of second order by two characteristics. The following linear hyperbolic equation

for second order is
A(X, Uy, T+ B(X, uy (X, t) + C(X, u(X, t) + (X, t, u, uy) = 0, (2.15)

whereB?(x, t) — 4A(x, t)C(x,t) > O for all (x, t) in its region. Let

)
au‘?)’: N (2.16)
o T(x,1).
Then
dS = u,,dX + uydt,
(2.17)
dT = UthX+ Uttdt.
Substitute equations (2.17) intoequation (2.15), then we obtain
T =
A (=% | B e RO T ek b u) = 0. (219)
Multiplying two sides of above equation(2.18) @y then we obtain
dt ds dt dT dt
2 _ _ =
(ALY ~ BT + Clua - [AS (D) + €5 + (] = 0. (2.19)
Let a tangent slope at every point on the curve C satisfy a root of
dt
2 - B(— =0. 2.2
Ay By +C=0 (2.20)

Since
B2(x, t) — 4A(X, t)C(x, t) > O,

there are two curve. These are called characteristics. On two characteristics, the equation
(2.19) is simplified to solve
dS dt dT dt
+C— —)] =0
)+ C )

17



The procession for solving this problem is shown as follows.

First, we have to know what the valuesof the tangent slope at initial poin and
Q on the curveC are. Letm™ andm™ be the right characteristic and the left characteristic
at one point, respectively. As shown in Figure 3. This value is easy to get from equation
(2.20).

Figure.3: Two characteristics.

Second, we use lines to approximatethese curves and we have to find thB.pamt

line equation of the right characteristic at the pd#is
Li:t—tp= m:;(XR— Xp)

and a line equation of the left characteristic at the pQimng
Lz . t—tQ: m(_?(XR—XQ)

The intersection of above two lings andL; is the pointR. Hence, we can find a pint R
from two linesL; andL,.
Third, we want to find the value &g andTg. Denotem,, the average of the tangent

slope of any two points in the line. Frofmto R of L, we derive the equation

AP(X, t)(SR - Sp)ma\, + CP(TR - Tp) + ep(tR - tp) =0.

18



FromQ to Rof L,, we obtain the equation
AQ(X, t)(SR - SQ)TT]aV + CQ(TR - TQ) + eQ(tR - tQ) = O,

where an index of variable& C, S, T, G andt represents the values AfC, S, T, G andt at

that point. Finally, we have value ofat the pointR from following equation (2.21)

1 1
Ur— Up = E(SP + Sr)(XR — Xp) + E(TP + Tr)(tr — tp) (2.21)

Example 2.14. Using the method of characteristics to calculate displacenueat time

t = 0.3 of the point on the string= 0.4.
Ug(X, 1) = Uk, 0 < X< |, 1 > 0,

U(X,0)=%X(1—x),03xsl, .22
2.22

(X% 0)=10,0< %< |,
u(©,t)r=wu(l,t) =0,t = 0.
A(x,t) = =1, B(x,t) = 0,C(x,t) =1 ande(x,t) = 0 in the partial diferential equation of
problem (2.15). Sincen; = 1 andmg ==L, the right characteristic throughand the left
characteristic througl® areL; : x=1t=0.1, L5 i X+t = 0.7, respectively. Her&s(x,t) =
andT(x,t) =0,0< x<I,t>0. ThenSp =0.4,Sq = -0.2,Tp =0, Tqg = 0.

FromPtoRin L, we have
(-1)(Sr — 0.4) + Tr = 0.
FromQtoRin L,, we get
(SR+02)+Tg=0.
Those equations impl$r = 0.1, Tr = —0.3. Finally, the value oli at the pointR from

equation (2.21) is

4401 )
0 ; 0% 0a-01)+ 0—203(0.3 ~0)=0075

0.045+

Thus, a displacementat timet = 0.3 of the point on the string = 0.4 is 0075.
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2.7 The method of Finite Dfference to the Wave Equation

The methods of integral transforms (like as Fourier, Laplace transform) and separation of
variables are only valid on special problems. And we obtain an infinite integral form or a
sum of infinite series form of solutions. If we can not compute them exactly, we want to
approximate them by numerical methods. Suppose a funafion) and its derivatives are
continuous and finite. We giv&x, t) a good approximation ta(x, t).

A stretch string fixed two points problem (2.14) has done by the methods of character-
istic. Now, we try to solve it by the method of finiteftirence fol = 1. Denote mesh
parameteh = - andk = hsuch thatx = 0,h,2h,...,Nh=1,t =0,k 2k,...,N = 0.1. Let
a mash functio(nh, mK) satisfies

_v((n + 1)h, mK) — 2v(nh, mK) + v((n — 1)h, mK)

An[v] =

L v(nh (m+1)k) - ZV(n:Z,h;@ +vnh (m-1k) _
u(x, 0) = %x(l —xi0< x<.1, (2.23)
U(x,0) = 0,0 < x <,
u(0,t) = u(L,t) =0,t>0.
Then we get a recursion formula
v(nh, (m+ 1)k) = v((n+ 1)h, mK) —v((n - 1)h, mK) —v(nh, (M- 1)k), (2.24)

m > 1. But there does not have the valuat time -1 of pointnh in above recursion

formula (2.24). Initial conditions of problem (2.23) provides some information
v(nh, —k) = v(nh, k). (2.25)
Put (2.25) into a recursion formula (2.24), then it becomes
v(nh k) = %[v((n + 1)h,0) — v((n — 1)h, 0)]. (2.26)

Thus, the following table and Figure 4 shown the discrete values
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t 0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

0O O 0.045 0.08 0.105 0.12 0.125 0.12 0.105 0.08 0.045 O
01 0 004 0.075 0.1 0.115 0.1225 0.115 0.1 0.075 004 O
02 0 003 0.06 0.085 0.1025 0.105 0.1025 0.085 0.06 003 O
03 0 0.02 0.04 0.0625 0.075 0.0825 0.075 0.0625 0.04 0.02 O

Table 2:Discrete data to problem (2.14) with 1.

0.14
I 1=0
012 T - =0l
- ~ 1=0.2
I / \\(————r=0.3)
0.1r /4 N
I \
0.08 |- 7 o \
= L A 0\
A z N N
0.06 - ) ¢ N \
[ i/ ’ AN \\
L A 4 \
0.04 | 7 N \
r // \\ \
002 £/, W\
/ \
Y /72 \
0 g 1 1 1 1 A
0 0.2 0.4 0.6 0.8 1
X

Figure 4: Solutions are solved by Finiteff@rences at0,0.1,0.2,0.3.
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3 The Wave equation in diferent domains

3.1 Solution of the finite string problem

Consider a stretch string fixed two end points problem (2.1). The D’Alembert’s solution of

a finite string problem is

X+Ct

u(xt) = %[f(x+ ct) + f(x—ct)] + %f g(x)dx,

x—ct
where f(X) andg(x) odd extend about points = 0 andx = |. They extend the domain
={(xt)|0<x<Lt>0to{(xt)| xeR,t> 0}

Standing wave solutions of a finite string is
u(x.t) = > [an cos{‘T’TC)t + by sin (rch)t] sin(?x),
n=1

where

| |
:Ig fo f(x)sin(”T’T)xolxbn=n—iC fo g(x)sin(”T")xdx

Proposition 3.1. The integral-form of D’Alembert’s solution is the same as the infinite

series form from the method of separation-of variables.

X+Ct

u(x,t):%[f(x+ ct)+f(x—ct)]+%f g dx

= %[2‘ an sin(?)(x +Ct) + i an sin(nl—ﬂ)(x —ct)]

1 X+Ct nre
+ R
2C Jy-ct

o0 X+ct Conm._
= nz; ansm(—x) cospit) + - Zj; bn Sln(Tﬂ)XdX

Zb sm( xd@

_ Z a, sm(—x) cos{‘—t) - —[Z by cos{‘” )X+ ct) — Z b cos(—)(x ct)]
n=1

8

= Z sin(l—x) cos(‘Tﬂ)t + bnsin(Tﬂx) sin (nrcl)t

n=1

8

[an cospTﬂc)t + by, sin (hrcl)t] sin(?x).

[

n=
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The integral form of D’Alembert’s solution is the same as the series form of separation of

variables.

There are dterences between D’Alembert’s formula and Separation of variables. The
method of separation of variables also solves the special problem of the wave equation
with nonconstant. This method is restricted to on a finite boundary condition. Like
as rectangle,circle or cylinder,and so on. In fact, it does not work for all equations. For
instance, a partial dierential equation with the variable déeients. It is hard to separate
the equation such that one side of only involvingxiand the other iry. Even if it with
constant cofiicients, it may be not apply to.For examplg, + uxy+ Uy, = O is not separable
in rectangular coordinates. But it can be in polar coordinates.

There is the comparison between an analytic solution and numerical solutions in Ex-

ample (2.14) witH = 1 in following Table.

X 0 01 0.2 03 0.4 0.5 0.6 0.7 08 09 10

Analytic solution 0 0.02 =0.04 0.06 0.075 0.08 0.075 0.06 0.04 002 O
Finite Difference 0 0.02 ©0.04°-0.0625 0.075 0.0825 0.075 0.0625 0.04 0.02 O
Characteristic 0 0.02 0.04 0.06 0.075 0.08 0.075 0.06 0.04 002 O

Table 3: Discrete solutions byfirent methods to Example (2.14) witk 1 att = 0.3.

From above Table 3, the solution by characteristics is an exact solution. Because charac-
teristics are just lines in this example for constant spgdtere is no error in it. Hence,

we can get a correct solution. The solution by the finitéedénce method is approximate

to the accurate solution. It is a stable solution with an error of second order. Comparing
to analytic solution, the numerical solution is the discrete data. We must evaluate the value
one by one. Ifitis not easy to find the analytic solution, then it is a good choice to evaluate

the discrete solution by the computer and give a good approximation for analytic solution.
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3.2 Solution of the infinite problem

Uit(X, t) = CPUxy(X, 1), —00 < X < 00,1 > 0,
u(x, 0) = f(x), —oco < X < co,

(X, 0) = g(X), —o0 < X < o0,
ou(x, t)

lim u(x,t) = lim

X—00 X—00

Fourier Transform of this initial-fixed boundary value problemxas

=0,t>0.

2
@G(w, t) + Czwzﬂ(a), t)=0,—c0 <w < o0,t>0,

0w, 0) = F(w), = < w < oo, (3.1)

%m@m:qm;m<w<m
Problem (3.2) becomes ordinaryfidirential equation ofy for second order, then the

solution is

G(w)

O(w, t) = F(w) coswct + a sinwct

eia)ct 5 e—iwct ; G((,U) eiu)ct _ e—iu)ct
2 Cw 2i '

(3.2)
= F(a)

By Inversion of Fourier Transform Theorem, we have
X+Ct

u(x,t) = %[f(x+ ct) + f(x—ct)] + Ef g(xydx,

Xx—ct
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4 Riemann surface of genus N

The procession of solving the general initial value problem of linear hyperbolic equations
by Fourier transform or Laplace transform may meet the integral of the square root func-
tion. Here, we present how to deal with this multi-valued functions such that the integral is

meaning and correct evaluated by Mathematica.

4.1 Introduction

We know the square root function is a multi-valued function in the complex plane. Because
7 = rel? = g0+

Then H
re'(?
V= { \/\frei(%) = —\re®
It is clear that a square root function iIs a.two-valued function defined on the complex
planeC. So, it is not continuous of. Moreover, it is not analytic o€. Hence, it is
meaningless for evaluate theintegral-of:multi-valued function. The only way to change
multi-valued functions into single value function is redefined the domain. Denote two the

square root functions

iarg(2

f1(2) = |2%e”?

and

1 iarg(2

f2(2) = 1722e7 2.

LetD; = {C\ (-0,0] | arg(2) € [-7,m)} andD, = {C\ (-0, 0] | arg(2) € [x, 37)}
be the domains of square root functiohéz) and f,(2), respectively. Here, functionig(2)
and f,(2) are single valued function in each domain. Sirfg) and f,(2) are both dis-
continuous on the negative real line, denote branchCuts {(—, 0] | arg(z2) = =} and
Cz = {(-0,0] | arg(2) = 3n}.
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v
=
v
=

Figure 5: The domai, andD,.

y y
arg I=7 A argZ = 377.' A
' 3n
. '} — » X
+
I -

Figure 6: The branch e@; andC,.

Let functions defined on above two cuts be
f3(2) = il4?,z€ Cy.

and

fo(2) = —ilz?,z€ C,.

And functionsfs(z) and f4(2) are single valued function on each cuts. These domains are

glued together is a Riemann surface domain. Hence, we construct a simple value function
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on Riemann surface as following:

f1(2),z€ D,
f2(2),z€ D,
f3(2),z€ C,
f4(2),z€ C,

Remark 4.1. The square root function is analytic in the domBinu D, U C; U C,. Since
functionsfy(2), f2(2), f3(2) and f4(2) are analytic in each domains. And any path pass from
D, to D, through the cuC, is also continuous. Becauges D; andargztends tor, then
f1(2tends talzz. Itis equal to the functiorf,(2), whereargz = x. It is similar to any path
from D, to D, through the cuC; is still continuous. Hence, the function is analytic on

Riemann surface.
Remark 4.2. f1(2) = —2(2) and f3(2) = —4(2).
Sincez € D, arg(2) € [x, 3n).

i 0+21

f(2) =Jze
= |Z2d %"
- —|72¢?
= -f1(2,

wheref € [-n, 7).

We will develop an algorithm such that we can evaluate the integrals of a square root

function by Mathematica.

4.2 The algebraic structure on Riemann surface

Sincef(z) = /zis a two-valued function, we need construct branch cuts to cut our plane.
For every point in complex plane, we haaggy(z - 0) € [-x, ). In following Figure 7,+
edge is the initial edge andedge is terminal edge. The argumenttoédge is—m and of

— edge isr.
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Figure 7: The cut plan of/z.

We define ¢, f(2)) belong to sheett if arg(z— 0) € [-x, 7); (z f(2)) belong to sheet
if arg(z—0) € [n, 3n).

Remark 4.3.ze |*:

f@ = 727

- —i|z2
zel™:
i@ = l7°¢?
=Sk
Hence,f(2)|,- = —f(2)|,+. Since - edge i is + edge inll, it meansf (2)|,, = —f(2)|,.

After presenting the algebraic structurefgf) = +/z on Riemann surface, we have to
show the cut structure for the general horizontal and vertical cut(Eet V(z- z)(z - )
For
Caselz, z, € R(Horizontal cut)

7,2, are branch points g(2). It is discontinuous on this intervat|, z,]. Hence, there is a
branch cut between two points.

For examplep(z) = Vz- 1vz—- 2, chosen a point @ (-co, 1).

() ForOin+ edge: Therarg(z-1) = arg(z- 2) = -«
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o)

v

Figure 8: The algebraic structure pfz) for two branch points in horizontal.

(i) ForOin-edge: Themarg(z—1)=arg(z-2)=n

T

arg(0-1) = arg(-1) = {

arg(0 - 2) = arg(-2) = { -

T

Taken the principal argument of a.negative humberidshence
V=1- V=2 2112327 = 25 = 22 (4.1)
On the other hand, taken the principal-argument of a negative numbethgn
V1. V=2 =112e® . |212d® = 122d™ = |22 (4.2)

Here, the value in equation (4.1) is equal to equation (4.2).p&) s continuous on this
interval (o0, 1). Pick up one poing €(1,2).
(1) Forg in + edge: Therarg(z- 1) = arg(z-2) = -
(i) For % in — edge: Therarg(z— 1) =arg(z-2)=n
arg(> 1) = arg(3) = 0
-7

arg(> - 2) = arg() = {

T

By the same way as above, chosen the principal argument of a negative numlaer is

\[ \/———l Ligo .2 |é('”>—| |é< E Sli (4.3)

29

hence



Chosen taken the principal argument of a negative numbgitien

1 [ 1 1., 1: .x 1 . 1 .- 1.
\/;. _E = |§|%e'(0) . |§|%e'(§) = Ee'(z) = |§|e'(§) = |§|| (4.4)

Since the value in equation (4.3) is unequal to equation (4.4). Then the function is dis-
continuous on this interval (2) . So, there is a branch cut in it. Of course, a square root
function is continuous for positive real number. Hence, there is a branch cut between two
pointsz;, z, € N.

CaseZ, z, € iR(vertical cut)

The branch cut for the vertical cut structure is the same as horizontal. Denote the interval
[z1, 2] be the branch cut. The algebraic structurg(@) for two branch points in vertical as

shown in Figure 9 We define the sheet is {z| arg(z- z) [—gn, %yr)} and another sheet

22

Z]

Figure 9: The algebraic structure pfz) for two branch points in vertical.

is 1l = {z| Arg(z - z)) € [37, 37)}, wherez; is the branch point of(z), for each positive
integerj = 1, 2. + edge is the initial edge andedge is terminal edge. The argumentrof

edge is-3r and of- edge isin.

Remark 4.4. As we know, a curve crosses the cut from one sheet to another sheet. Hence,
if a curve goes throughN— 1 cuts forN € N, then a curve will cross to another sheet. So,

there is a branch cut at that line segment.
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Remark 4.5. By the same way as horizontal case, thus the value in $hegtminus of
in sheetl. If z € 17(+ edge of sheet) andz € [z, 7], thenarg(z- z) = —gn and

arg(z—z) = 3n. So,

P2 = V(z-z)(z-2)

If ze 1-(- edge of sheel), thenarg(z— z) = 37 andarg(z- z) = —3x. So,
P2 = V(z-z)(z-2)

2

- [ | V@)
=1

= 12— 2@ |z L 2|t D
2 .
j=1

So, f(2li- = =f(D|+. It meansf (2|, = —f(2)|;.

4.3 The geometric structure on Riemann surface

After presenting the algebraic structure, we want to know how does it look like in geomet-
ric. For the horizontal branch cut case, by above definition, dhaed sheetl is denoted

byl ={z|arg(z-z) € [-n,n)} andll = {z|arg(z- z) € [r, 3m)},respectively.We glue

the + edge of shedt to the— edge of sheell . When the integral path crossing the branch

cut, then it pass from one sheet to the other sheet. If we want to evaluate the value in sheet
[, then we only evaluate the negative value of the value in sheldbw, we discuss the
geometric structure on Riemann surfacef@) = +/z. Using stereo projection, we have

a one-to-one correspondence between the complex plane and surface. &egattie
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complex plane is a point and is projected to a north pole of the surface. Hence, a geometric
structure off as Figure 10 shown. And the geometric structure of vertical cuts on Riemann

surface ofp(z) is the same as horizontal cuts.

Figure 10: The geometric structure on Riemann surfaqg)fin horizontal cuts.

=]

Consider a general functiof(2) = (z-z). Sincez, 7, ...,z, are then branch
=1

n:even

n

points, then there afg] - 1 holes on Riemann surface, wh¢gg = { 21
& n:odd

2
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4.4 The integrals overa, b cycles on Riemann surface

After analyzing the algebraic structure and geometric structuaf= (z— z)(z- )
on Riemann surface, we want to evaluate the integraﬁl(l—zgf Since every simple closed

curves can be written as a linear combinatiom,df cycles. Hence, we discuss the integral

n
of canonical cycles, b. Consider a general function(z) = /H(z— z;). We want to
j=1

evaluate, «1; and 4, +¢; by another equivalent paths afb cycles such that the integrals
are easier computed.

For horizontal branch cut:
The following Figure 11 is, b cycles on Riemann surface.

Fornis odd:

Fornis even:

Figure 11: Thea, b cycles.

Now, we want to evaluate the integralfiz) = V(z+ 2)(z+ 1)(z- 1)(z- 2)(z- 3)(z- 4)
overa, b cycles as Figure 12. The algebraic and geometric structure:

Foray, b; cycle:
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Figure 12:a,, b; cycle.

Figure 13: Geometric structure.

We want to evaluate the integral by Mathematica, but there is something wrong. The
argument evaluated by Mathematica-+st(n], and the argument in our theory is#, x).
In Mathematica, it regards the argumetin our theory asr. Hence, we have to modify

the value evaluated from Mathematica.
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Forf(2 = +z
In Theory:

Viooon

NN
_/ \J

Figure 14: The argument in theory.

: 4 J
AY2I~
NV W

Figure 15: The argument in Mathematica.

Therefore,
-M arg(z) = -
{2 = i= 92 =-n
M otherwise
By the same, we only modify the value for ahfz) = /Z—7Z whenarg(z - z;) = —n.
Fora, cycle:

The integral ovea, cycle is same over the circle of radius 1 at cedtand the circle in the
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sheetl, by Cauchy integral Theorem.

Letz =2+ & thendz= ie“dd. Sincearg(z—z)) € [-x,x) for 1 < j < 6. So,g%‘1 1pdzis

same as the value evaluated by Mathematica. Hence,

d gl \/3 . \/3 . \/3 . \/3 . \/3 .
— et 0 = 6 _ = 6 _ = 0 _ = 0_4.
Iﬂ T 2+e +2 2+e 1 2+e' 2 2+e 3 2+e 4.do
2

= -1.13022

For the equivalent pathi:

Figure 16:a; cycle.

The argument of Mathamatica evaluatedHs,(z], then the argument 6f edge is regarded

asn. Hence we must modify the integral enedge by multiple €1).
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1to2 2to1

Integral path angle value angle value

z-4 - -M m +M
z-3 -7 -M n +M
z-2 - -M m +M
z-1 0 +M 0 +M
z+1 0 +M 0 +M
z+2 0 +M 0 +M
Sheet I +M I +M
Total -M +M

Table 4: Angles and values far- z; along integral patha;.

Hence,

1 2 1
Sé;ﬁdz_fl Vz+1Vz+2Vz- 1\/2—2\/2—3\/2—4dz

= -1.13022

Therefore, the integral ovex; cycle is‘equal to oves, cycle

1 1
——dz= @ —=dz=-1.13022
AETCRIN A e

Forb; cycle:

The integral oveb; cycle is same over the circle of radiglat center 1 and the circle in
the sheet, by Cauchy integral Theorem. A dotted line is in shdetLetz= 1 + ge“’,then
dz = Zieds.Sincearg(z - z) € [-r,7) for 1 < j < 6. 80,5@1 % is evaluated correct by

Mathematica. Hence,
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Figure 17:b, cycle.

idz

o 12

n 2ie’
_j:”\/ +e‘9+1\/ +e'9+2\/ +6ef— 1\/ +ef — 2\/ +ef - 3f+€9

= -0.0760776

For the equivalent pathi:

38



1to2 2to1

Integral path angle value angle value

z-4 - -M m +M
z-3 -7 -M n +M
z-2 - -M T +M
z-1 0 +M 0 +M
z+1 0 +M 0 +M
z+2 0 +M 0 +M
Sheet I +M 0 -M
Total -M -M

Table 5: Angles and values far- z; along integral patt;.

1
——dz
. T2
=il N ; ]
3 Vz+IWVz+2Vz-1Vz-2Vz-3+Vz-4dZ
=-0.0760776

For vertical branch cut : The argument evaluated by Mathematicarist], but the argu-
ment in our theory isf3x, —17). In Mathematica, it regards the argument belongy, —n]

in our theory as{—%n, n]. Hence, we have to modify the value evaluated from Mathematica.
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Forf(2 = vz-i
In Theory:

Figure 18: The argument in theory.

In Mathematica:

Figure 19: The argument in Mathematica.

Therefore,
-M arg(z-i) € [-3n, —3n]

f(9 = vz=

otherwise
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By the same, we only modify the value for arlyz) = Z=7 whenarg(z - z) =
[—:—;ﬂ, —:—2L7T].
Fornis even:

The following Figure 20 is, b cycles on Riemann surface.

Figure20:a,b cycle.

Now, we want to evaluate the integral of

f(2) = !

J_]:[61(2— z;)
wherez; =1+2,2=1,2=3i,z2=1,z = -1+ 3iandz = -1 + i overa, b cycles as in
Figure 21.

Since the argument of Mathematica ist( ] , we must modify the value on the argu-
ment @n, —n] in vertical cut. We regard the branch point as the origin of the rectangular
coordinate system in the plane. Hence, we modify the second sign of every rectangular
coordinate system of center for each branch point.

Fora; cycle:
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-1+3i 3i

a, 1+21

-1+

Figure 21:a; cycle.

The integral ovepr; cycle is the same as over the enclosed rectangle in Figure 22.

Figure 22:a, cycle.
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Integralpath (1) (2 @) @ GB) ©6) (@)

z-(1+2) +M +M -M -M -M -M +M

z-1 -~ M M M - M -M =M
z-3i +M +M +M +M -M +M +M
Z—i +M +M +M +M -M -M —-M

z-(-1+3) +M +M +M +M +M +M +M
z-(-1+i) +M +M +M +M +M +M +M
Sheet +M +M +M +M +M +M +M
Total -M -M +tM +M +M -M +M

Table 6: Angles and values far- z; along integral patay.

1 %+2i 1 —%+3i 1 —%+2i 1 —%+i 1
—dz:—f —dz+f —dz—f —dz+f —dz
ﬁ f(2 —34i f(2 1+2i f(2) -143i f(2) -3+2i f(2)

=1.38321- 2.33762

For the equivalent pats; in Figure 23.

-1437 3i

o 142

-1+7

Figure 23:a; cycle.
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Integral path Bto2 2itoi ito2 2ito3

z—(1+2) -M +M -M +M
z-1 -M -M -M -M
z-3i +M +M +M +M
z—i -M -M +M +M

z-(-1+3i)) +M +M +M +M

z—(-1+1) +M +M +M +M
Sheet I I I I
Total -M +M +M -M

Table 7: Angles and values far- z; along integral patfa;.

1 2i 1 i 1 2i 1 3i 1
——dz=- ——dz+ ——dz- ——dz+ ——dz
9§;f(2) s (2 2 (2 i (@ s f(2

= 1.38321- 2.33762

Forb; cycle:

S 3
y b
<
& = 1421,
A = ~
/ ) = -
_ < —
Vi ™ ) <7
- Py
/ ¢ e
/ I+ T A
7 [0} z -
! i ~ -1
,./"'; by
7
', -

Figure 24:b, cycle.

Regardb; cycle as the following polygon.
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1
1
i
SIS e o A, N N 3i |
/_/"‘3 1 ~ 5
~._ 1
) = )
—+;___3:§:133 ; ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ lt:": .
) < o + - &, -cycle
v ~— — “
D > g
(@ TH i f*%%*
v (3 Jwm T
. <
B ™
1 3
2 @] T 1 3

Figure 25:b; cycle.

Integralpath (1) (20 ) 4 () 6 " B (O (10 (11) (12

z-(1+2) +M +M +M +M +M 4+M +M +M -M -M

z-1 -M -M M= =M3 =M +M: +M +M -M M
z-3i +M +M +M"+M +M +M 2 +M +M +M M
Z—i -M +M +M M=M= M S M M M +M

z-(-1+3) +M +M +M F+M_ +M_.+M +M +M +M -M
z-(-1+i)) -M +M +M +M +M +M +M +M +M +M
Sheet I I I I I I 1 1 1 I

Total -M - M - M -M -M -M -M +M -M -M

-M
-M

+M
-M

Table 8: Angles and values far- z; along integral patib;.

1 ~1+3i 1 ~1+2i 1 -2 q
—dz:—f —dz+f —dz—f ——dz
Sél f(2 —1w2 (2 13 1(2 12 T2
= 0.590344- 1.16143

For the equivalent pathi in Figure 26
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Figure 26:a; cycle.

-1+itol 1to-1+i

Integral path value value
z—(1+2) +M +M
z-1 -M -M
z-3i +M +M
z=| +M +M
z— (-T+3i) +M +M
z—(-1+7) +M +M
Sheet I 1
Total -M +M

Table 9: Angles and values far- z; along integral patib;.

1 —1+i 1
—dz= 2f —dz
e . 10

= 0.590344- 1.16143
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4.5 Solutions to Liner Hyperbolic Equations by Mathematica

Now, we want to solve the infinite problem (4.5) with the source term only involving time-

independent.

Example 4.6. Using Laplace transform, and then Fourier transform to solve the following
L.V.P.

Uit(X, 1) = Uye(X, 1) + SIR2 Vt, —c0 < X < 00,1 > 0,
u(x,0) =0, —co < X < o0, (4.5)

W(X,0) =0, —c0 < X < o0.

First, using the method of Laplace Transform with respettwee have
SPU(X, 8) — Un(X, ) = ﬁe‘%, s> 0.
sv/s
. N .
Note. Z[sin 2+1] = Sye€ °- Since

sin 2Vt = 2Vt= (2E 4 @V _ @’ + ..

3! 51 7!
Then
2r(2) 1 18r@@) " 32r(L 128°(2
Z[sin 2\/f] = (32) — (i) + (72) — 52) +
2 3ls? 5lsz 7'sz

VA, 111
= g[l — g + E — g + ]
_ VT

svs

Using the method of Fourier Transform with respecktd becomes
LU(w, 9 + w?U(x, 9 = ﬁe-%zné(w).
sv's

This implies

~ 1 S \/7_'[ 1
U(O), S) = gmﬁse 27T5(0J)

a7



By Convolution Theorem, we derives

1 v

Uxt) = gs_\/'_s, T 1[ ]J Y276(w)])
_1+m - -
SS\@ [f @ Sxyl . 1dyj
_ VT
_ngée .

By Inversion Theorem of Laplace Transform, we have

1 S+iL
u(x, t) = > lim f U(x, 7)e"dr, s> 0.
S

| Lo il

Let G(x,7) = U(x, 7)e™ and we apply Cauchy’s theorem to the integra¢k, s) over the

contour shown as following Figure 27. SinG€x, s) is analytic inside this contol,

1L

A

s+ il

1

Figure 27: The integral conto@ of G(x, 7).

(1)Along the patiC, of contourC: Lett = s+ Lée?, 5<6<mdr= iLe'’do

fG(X,T)dT:f &MY (x, s + LeY) - iLe’dg
Cy

2

Since
IU(x, s+ Le?)| = | vz e | < | VT

, . < |
(s+ Le?)3Vs+ Le? (L-9)?
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approach zero as — o. By Jordan’s lemma the integrals over this contGyrapproach
zero.
(2)Along the patiC, of contourC: Lett = ¢€?, where—n < 0 < &, dr = ic€?’. Since

N=

U x. o€ = 15

_ 1 T2
Ple | < e, (4.6)
E

By L'Hospital Rule twice times, we evaluate the value of the right hand side for above
inequality (4.6) ag — o is

_z 7
. &2 . 3€ .
lim — = lim =Ilim =
e—0 @ e=0 @F e—0 @

-1 5
2 2

7
i€

=0.

By Jordan’s lemma, the integral over this cont@4rapproach zero as— 0.
(3)Along the pathC; of contourC:
Similar as contou€,, lett = s+ Le?, 1 < 6 < 37” dr = iLe'do

Then integrals over the contoGg approach zero.Hence, we have

u(x.t) = %[ f  Goxn)dls fo " G(x.7)di]

—o0 100 0 to—oo

Integral path, .. angle value angle value

S T +M - -M
Sheet [ +M [ +M
Total +M -M

Table 10: Angles and values feialong the equivalent integral path.

We must modify the value on the integral path from a point 840 by Mathematica, so

0

uix,t) = %[—M{f G(x, 7)dt} + M{\[OV_Do G(x, 7)d7}]
1 o
= ﬁ[ZM{j; G(x, 7)dr}],

whereM({ fC G(x, 7)dt} is represented by the integral val@eevaluated by Mathematica on

a contourC. At some time, the value af(x, t) at every position is the same, because the
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source term only involving the time-variabile
Fixedx =1
At the timet = 1, the value

u(x, t) = 0.396896

At the timet = 2, the value
u(x, t) = 1.63306

This is the same as the value evaluated by D’Alembert’s solutiort fer 1,2. Here,

D’Alembert’s solution of problem (4.5) is

1 t X+(t—7) _ .
u(x, t) = ij; f sin 2Vtdxdt

~(t-7)
1 .
= —g Vtcos 2Vt + Z(3 — 4t) sin 2+h.

For fixedx = 1, the displacement.in-along string as shown in the Figure 28.

u(L,t)

t
/20 (X 0 80 100
50
100

Figure 28: The graph of solutions to problem (4.5) at posikienl.
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