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摘    要 

 
    本論文主要研究線性的雙曲型偏微分方程(線性雙曲 PDEs)。首先，我們舉

給幾個屬於此類型的實際例子。再來，使用幾種典型的方法來解線性雙曲 PDEs。
同時並以不同形式來表示解，並且確定解的一致性。 

    當我們對 PDEs 使用積分轉換時(對於變數是整條實數線使用 Fourier 轉換；

變數是半射線使用Laplace轉換)，再藉由逆積分轉換(inversion Fouier transform or 
inversion Laplce transform)來得到 PDEs 的解是必要的。但是執行逆積分轉換時，

經常那些被積分會出現平方根。然而，平方根在複數平面上是多值的。為了能正

確地進行逆轉換，我們利用適當的代數分析來建構多值函數的黎曼曲面，使其變

成單值函數，以致於我們能正確地在分析上和數值上完成逆積分轉換。最後由一

些例子說明整個架構。 
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Abstract 
 

    We study the linear hyperbolic partial differential equations (linear hyperbolic 
PDEs). First, we give some practical examples and show that they are governed by 
such type of the equations. Next, we apply several classical methods to solve the 
linear hyperbolic PDEs with the solutions being expressed in various forms. We then 
identify those solutions. 
 
     When we apply Fourier and Laplace transformations to the whole- and half-line 
PDEs,it is necessary to perform the inverse Fourier and Laplace transformations to 
derive the PDE solutions, and it is quite often that those integrals involve the square 
root operator which is multi-valued in the complex plane. In order to perform the 
inverse transformations correctly, we develop the Riemann surfaces from the complex 
plane with the proper algebraic structures to assure that the square root is now a 
single-valued function on the surfaces, and we are able to accomplish the inverse 
transformations analytically and numerically. Some examples are given to illustrate 
the entire scheme. 
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1 Introduction

We begin our study of linear hyperbolic equations by showing classical examples. First, we

present a simple transport for first order partial differential equations, and then we extend

our discussion to system of first order equations in electronics. Later, we will show the

wave equation for second order partial differential equations. Under several hypothesis of

physical phenomenon, a vibrating string problem is changed into one dimensional wave

equation. Conversely, we can give a proper approximation to physics by discussing the

solution of this mathematical model. Hence, we analyze the partial differential equations

to observe physical problems.

1.1 The Advection Equation

Definition 1.1. Let u(x, t),F(x, t) bem× 1 vector andA(x, t), B(x, t) bem×m matrix .The

system of first order equations

ut(x, t) + A(x, t)ux(x, t) + B(x, t)u(x, t) = F(x, t) (1.1)

is said to be hyperbolic ifA(x, t) is real diagonalized.

Obviously, a single real equation

ut(x, t) + cux(x, t) = F(x, t)

is a hyperbolic equation. Let the particles of pollutant be transported from left to right with

a constant speedc in a river. Denoteu(x, t) the density of particles at the positionx and

time t in the river. Suppose this river is so narrow that no particles get scattered.

First, we consider there no particles get lost or added. At timet, the amount of the

particles of pollutant in an interval [a,b], where 0< a < b, is

M =

∫ b

a
u(x, s)dx.

Let s,h > 0. The particles of times+ h are of times transported to right with distancech

centimeters. Hence, the amount of the particles of pollutant at times + h is equal to the
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amount at times, i.e.

M =

∫ b

a
u(x, s)dx =

∫ b+ch

a+ch
u(x, s+ h)dx. (1.2)

By the First Fundamental of Calculus, we differentiate the equation (1.2) forb, then it

becomes

u(b, s) = u(b + ch, s+ h). (1.3)

Again we differentiate the equation (1.3) forh, hence

0 = cux(b + ch, s+ h) + ut(b + ch, s+ h).

Let h=0, we derive a homogeneous transport equation.

ut(b, s) + cux(b, s) = 0,

whereb is arbitrary, hence we get the advection equation.

If the particles get lost or added in the river, then we obtain the nonhomogeneous ad-

vection equation

ut + cux = F,

whereF is the amount of particles which get loss or added per length at positionx and time

t.

1.2 The Wave Equation in One Dimension

Definition 1.2. The linear partial differential equation for second order

A(x, t)uxx + B(x, t)uxt + C(x, t)utt + D(x, t)ux + E(x, t)ut + F(x, t)u = 0

is said to be hyperbolic, parabolic, or elliptic at (x0, t0) if B2(x0, t0) − 4A(x0, t0)C(x0, t0) is

positive, zero, or negative, respectively.It is hyperbolic, parabolic, or elliptic in the domain

D if B2(x, t) − 4A(x, t)C(x, t) is positive, zero, or negative for all (x, t) ∈ D, respectively.
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For the most part in this paper, we discuss the type of linear hyperbolic equations. The

wave equation in one dimension is

utt(x, t) − c2uxx(x, t) = F(x, t),

where 0< x < l, t > 0. It is hyperbolic in its region. BecauseA(x, t) = −c2, B(x, t) =

0,C(x, t) = 1, B2(x, t)−4A(x, t)C(x, t) = 0−4× (−c)2×1 = 4c2 > 0,for all 0< x < l, t > 0.

Now, we want to show how the motion of a string as a mathematical equation under

several assumptions.

(1) The string with lengthl is flexible and elastic. It is so flexible such that it offers no

resistance to bending. Hence, the tension is in the direction of tangent to the profile of the

string. In an elastic uniformly string, the density is a constant (mass per unit length).

(2) There is no elongation of a single element of the string. By Hooke’s law the tension is

constant.

(3)The string has small transverse vibration.

(4)The weight of the string is small compared with the tension in the string.

Denoteu(x, t) the displacement from equilibrium position at timet and positionx . Let ρ

andT be a constant density and tension at timet and positionx. For any two closed points

x andx + ∆x in the string at timet as shown in Figure 1

O

t

x x+ x

x

T

T

Figure 1: Two closed points in the string.
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From Newton’s LawF = ma, we get a equation for equivalent vertical force

T sinβ − T sinα = ρ∆xutt. (1.4)

Since small transverse vibration of a string, sinα ≈ tanα and sinβ ≈ tanβ. So, the equation

(1.4) becomes

tanβ − tanα =
ρ∆x
T

utt. (1.5)

At time t, tanα = (ux)x and tanβ = (ux)x+∆x, so equation (1.5) obtains

1
∆x

[(ux)x+∆x − (ux)x] =
ρ

T
utt. (1.6)

Let ∆x be sufficiently small, then we derive the homogenous wave equation

utt(x, t) = c2uxx(x, t) = 0,

wherec2 = T
ρ
.

Let there be an external force to a string. Hence, it appears an nonhomogeneous term.

utt(x, t) − c2uxx(x, t) = f (x, t),

wherec2 = T
ρ

and f (x, t) the external force per unit length at positionx and timet.

Remark 1.3. The valuec is a wave speed. It is clear the unit of a tensionT is kg·m/s2 and

of a densityρ is kg/m. Then the unit ofc =
√

T
ρ

is m/s . Here, the unit ofc is indeed the

unit of the speed.

Finally, we successfully transform a physical phenomenon into a mathematical equation

under several properly hypotheses. By this mathematical equation, we can get a lot of

information for the motion of the string vibrating. Thus, we will discuss the wave equation

in detail in a later chapter.

1.3 The Telegraph Equation

The wave equation which we have discussed in section 1.2 can be replaced by the system

of first order equations. Now, we want to present how the wave equation changes into the
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system of first order equations in electronics. Suppose a pair of transmission lines has a

voltageV(x, t) across them and a currentI (x, t) at positionx and timet. The part of it is

an interconnection of elements: capacitance, resistance, leakage resistance and inductance.

DenoteC the capacitance per unit length,R the resistance per unit length,G the leakage

resistance per unit length andL the inductance per unit length.

ConductanceG is the ability of an element to conduct electric current per unit length,

and then conductance is the reciprocal of resistance

G =
1
R

=
I
V
.

Let µ,N,A be the permeability of core current, number of turns and cross section area

of the inductor, respectively. When the current passes through an inductor, it is found that

the voltage across the inductor is directly proportional to the time rate of change

V = L
dI
dt
,

where

L =
N2µA

l
.

By Kirchhoff’s Current Law and Kirchhoff’s Voltage Law, we have system (1.7)

V(x, t) − RI(x, t)∆x− L
∂I (x, t)
∂t

∆x = V(x + ∆x, t),

I (x, t) −GV(x, t)∆x−C
∂V(x, t)
∂t

∆x = I (x + ∆x, t).
(1.7)

Let ∆x be small enough, then system (1.7) becomes the following system (1.8)

Vx(x, t) = −RI(x, t) − LIt(x, t),

Ix(x, t) = −GV(x, t) −CVt(x, t).
(1.8)

Let

u =


I

V

 ,

then system (1.8) can be expressed the standard form of (1.1). Here,

A =


0 1

L

1
C 0

 ,
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possesses two distinct real eigenvalues,A is real diagonalizable. Clearly, this system is

hyperbolic. Differentiate the first and second of system (1.8) forx andt, respectively. Then

we obtain

Vxx(x, t) = −RIx(x, t) − LI tx(x, t),

Ixt(x, t) = −GVt(x, t) −CVtt(x, t).
(1.9)

SubtractingL times of second equation from first equation the system (1.9), hence we get

the partial order equation for second order

CLVtt(x, t) − Vxx = −(GL + CR)Vt(x, t) −GRV(x, t). (1.10)

The equation

Vtt(x, t) − c2Vxx = −aVt(x, t) − bV(x, t). (1.11)

is called the telegraph equation, wherec = 1
CL,a = GL + CR,b = GR.

Let this transmission line have no energy lost, thenR = 0,G = 0. Hence, above

equation (1.11) becomes the homogenous wave equation

Vtt(x, t) − 1
CL

Vxx = 0.

Similarly, we can derive the homogenous wave equation ofI

Itt(x, t) − 1
CL

Ixx = 0.
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2 Solutions of Linear Hyperbolic Equations

2.1 Solution of the Advection Equation

Example2.1. Using the method of characteristic to solving a I.V.P. of the advection equa-

tion.

ut(x, t) + 2tux(x, t) = 0,−∞ < x < ∞, t > 0,

u(x,0) = e−x2
,−∞ < x < ∞.

The characteristic is

dx
dt

= 2t,

x(0) = ξ.

Along this characteristic

x(t) = t2 + ξ,

the solutionu(x, t) is a constant. Because

d
dt

u(x(t), t) = ut + ux
dx
dt

= ut + 2tux

= 0

Hence, the solution

u(x(t), t) = u(x(0),0) = f (ξ) = e−(x−t)2.
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2.2 D’Alembert’s Solution to the Wave Equation

Consider a finite string problem with two fixed ends

utt(x, t) = c2uxx(x, t),0 < x < l, t > 0,

u(x,0) = f (x),0 ≤ x ≤ l,

ut(x,0) = g(x),0 ≤ x ≤ l,

u(0, t) = 0, t ≥ 0,

u(l, t) = 0, t ≥ 0.

(2.1)

Chosen a new coordinate transformation (ξ, η)

ξ = x + ct,

η = x− ct.

Hence, the wave equation (2.1) becomes

−4c2uξη = 0.

So, the solution is

u(x, t) = p(ξ) + q(η), (2.2)

wherep(ξ),q(η) are arbitrary functions ofξ, η, respectively.

First, we discuss a solution only depends onp(ξ).

Fixedx + ct = ξ, then the solution is

u(x, t) = p(ξ),

Since,
dx
dt

= −c,

Hence, along this characteristicx + ct = ξ, the wave is move to left with velocityc. Next,

we consider a solution only depends onq(η). First, we

Fixedx− ct = η, then the solution is constant of

u(x, t) = q(η),
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Since
dx
dt

= c.

Hence, along this characteristicx − ct = η, the wave is move to right with velocityc.

Finally, we combinep(ξ) andq(η) together. One wave forp(ξ) propagates to left along the

line x + ct = ξ with speedc; anotherq(η) for propagates to right along the linex− ct = η

with speedc.

Applying initial conditions of (2.1) to a general solution (2.2), hence we get

p(ξ) =
1
2

f (ξ) +
1
2c

∫ ξ

0
g(x̄)dx̄ + p(0), ξ ∈ [0, l],

q(η) =
1
2

f (η) − 1
2c

∫ η

0
g(x̄)dx̄− p(0), η ∈ [0, l],

Thus, the D’Alembert’s solution is

u(x, t) =
1
2

[ f (x + ct) + f (x− ct)] +
1
2

∫ x+ct

x−ct
g(x̄)dx̄,

where 0≤ x−ct ≤ x+ct ≤ l. The above solution of the D’Alembert’s solution form is only

valid on the region shown as Figure 2.

2

l

c

l0

x-ct=0x+ct=l

t

x

Figure 2: The region of D’Alembert’s solution.
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Consider an nonhomogeneous finite string problem with two fixed ends. After a corrdi-

nate transformation (ξ, η) as above, then the wave equation with extra force term becomes

uξη(
ξ + η

2
,
ξ − η
2c

) = − 1
4c2

F(
ξ + η

2
,
ξ − η
2c

),

Integrating two sides of above equation forξ from η to ξ, we get

uη(
ξ + η

2
,
ξ − η
2c

) − 1
2

f ′(η) − 1
2c

g(η) = − 1
4c2

∫ ξ

η

F(
ξ̄ + η

2
,
ξ̄ − η
2c

)dξ̄,

And we integrate above equation forη from η to ξ, then it yields the nonhomogeneous

D’Alembert’s solution

u(x, t) =
1
2

[ f (x + ct) + f (x− ct)] +
1
2c

∫ x+ct

x−ct
g(x̄)dx̄ +

1
2c

∫ t

0

∫ x+c(t−t̄)

x−c(t−t̄)
F(x̄, t̄)dx̄dt̄,

Applying the boundary condition, we try to extend the valid domain of the D’Alembert’s

solution toD = {(x, t) | −∞ < x < ∞, t ≥ 0} by extending functionsf ,g andF. The follow-

ing table is that extends the domain of two functionsf ,g andF corresponding to different

boundary conditions from [0, l] to (−∞,∞).

x = 0 extend functionsf ,g andF x = l

u(0, t) = 0 odd at points 0, l u(l, t) = 0

u(0, t) = 0 odd at points 0,even atl ux(l, t) = 0

ux(0, t) = 0 even at points 0,odd atl u(l, t) = 0

ux(0, t) = 0 even at points 0, l ux(l, t) = 0

Table 1: Extend functionsf ,g andF.

Example2.2. Find the D’Alembert’s solution for the following problem.

utt(x, t) = uxx(x, t),0 < x < π, t > 0,

u(x,0) = sinx,0 ≤ x ≤ π,
ut(x,0) = cosx,0 ≤ x ≤ π,
u(0, t) = 0, t ≥ 0,

u(π, t) = 0, t ≥ 0.
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Using D’Alembert’s solution formula, we get

u(x, t) =
1
2

[sin(x + ct) + sin(x− ct)] +
1
2c

∫ x+ct

x−ct
cos(x̄)dx̄, (2.3)

where 0≤ x − ct ≤ x + ct ≤ π. According to boundary conditions of this problem,f and

g are odd at the pointx = 0 and even at the pointx = π. Then f (x) = sinx, g(x) = cosx,

x ∈ R. Hence,

u(x, t) = sinxcost + cosxsint, x ∈ R, t > 0 (2.4)

2.3 The method of Separation of Variables to the Wave Equation

In this section, we introduce a common method to solve the initial boundary value problem.

The strategy of this method is separate independent variables for the function.

Example 2.3. Using the method of separation of variables to solve the forced vibration of

rectangular membrane problem.

utt(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + xysint,0 < x < π, 0 < y < π, t > 0,

u(x, y,0) = 0,0 ≤ x ≤ π, 0 ≤ y ≤ π,
ut(x, y,0) = 0,0 ≤ x ≤ π, 0 ≤ y ≤ π,
u(0, y, t) = 0,0 ≤ y ≤ π, t ≥ 0,

u(π, y, t) = 0,0 ≤ y ≤ π, t ≥ 0,

u(x,0, t) = 0,0 ≤ x ≤ π, t ≥ 0,

u(x, π, t) = 0,0 ≤ x ≤ π, t ≥ 0.

(2.5)

Let

u(x, y, t) = U(x, y)T(t). (2.6)

Substituting equation (2.6) into the wave equation of problem (2.5), then

UT” = c2∆UT.

Let
T”
c2T

=
∆U
U

= −λ.
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Then

T” + λT = 0,

∆U + λU = 0.

Let λ = α2, then we have

T = Acosαt + Bsinαt,

where A and B are constant. Again separating the variables ofU(x, t), let U(x, t) =

X(x)Y(y). Then it yield two problems

X” − µX = 0,

X(0) = 0,

X(π) = 0.

and

Y” + (λ + µ)Y = 0,

Y(0) = 0,

Y′(0) = 0.

Let µ = −β2 andγ2 = (λ + µ) = α2 − β2. Hence, the solutions of above problems are

Xm(x) = sinmx,

Yn(y) = sinny,

whereβ = m andγ = n. So,

u(x, y, t) =

∞∑

m=1

∞∑

n=1

(amncosαmnt + bmnsinαmnt) sinmxsinny,

where

amn =
4
ab

∫ π

0

∫ π

0
u(x, y,0) sinmxsinnydxdy= 0,

bmn =
4

αmnab

∫ π

0

∫ π

0
ut(x, y,0) sinmxsinnydxdy= 0.

Assume the solution

u(x, y, t) =

∞∑

m=1

∞∑

n=1

umn(t) sinαmnt sinmxsinny,
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and external forcing function

F(x, y, t) =

∞∑

m=1

∞∑

n=1

Fmn(t) sinαmnt sinmxsinny,

here

Fmn(t) =
4
ab

∫ π

0

∫ π

0
F(x, y, t) sinmxsinnydxdy

=
4(mπ cosmπ − sinmπ)(nπ cosnπ − sinnπ) sint

π2m2n2

Takingu andF into the wave equation in problem (2.5) Hence, we get the following equa-

tion

u”mn + (m2 + n2)umn = Fmn,

whereu is twice continuously differentiable with respect tot. Thus,

u(x, y, t) =

∞∑

m=1

∞∑

n=1

umn(t) sinαmnt sinmxsinny,

where

umn(t) =
1
αmn

∫ t

0
Fmnsin(αmn)(t − τ)dτ

=
4(−1)m+n+1

mnαmn
{sinαmnt[

cos(1− αmn)t − 1
2(1− αmn)

+
cos(1+ αmn)t − 1

2(1+ αmn)
]

+ cosαmnt[
sin(1− αmn)t − 1

2(1− αmn)
+

sin 1+ αmn)t − 1
2(1+ αmn)

]},

whereαmn =
√

m2 + n2

2.4 The Fourier Transforms to the Wave Equation

We often use the method of integral transform to solve the problem for initial value prob-

lems of the infinite or semi-infinite region. First, we introduce the method of Fourier Trans-

form for a variable of all full real line. In general, a variable transformed is the spatial

variable. And we will discuss the solution by Fourier Transform.

Definition 2.4. If f (x) is absolutely integrable, then the Fourier Transform is

F [ f (x)](ω) = f̂ (ω) =

∫ ∞

−∞
eiωx f (x)dx.
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Problems of partial differential equation can be reduced by problems of ordinary differ-

ential equation for the Fourier Transform ˆu(x, t) of u(x, t) by property (2.5). After solving

the problem of ˆu(x, t), there is an inversion theorem for Fourier Transform to help we trans-

form û(x, t) backu(x, t).

Property 2.5. If f (x) is absolutely integrable, approaches zero asx→ ±∞ and has a first

derivative, then

F [ f ′(x)](ω) = −iωF [ f (x)](ω)

Property 2.6. If f (x) is absolutely integrable, then

F [eicx f (x)](ω) = F [ f (x)](ω + c).

Theorem2.7. If f (x) is absolutely integrable, then the Fourier Transform is

f (x) =
1
2π

∫ ∞

−∞
F [ f (x)](ω).

Example2.8. Using the Fourier Transform to solve a long string problem.

utt(x, t) = c2uxx(x, t),−∞ < x < ∞, t > 0,

u(x,0) = e−|x|,−∞ < x < ∞,
ut(x,0) = 0,−∞ < x < ∞,

(2.7)

Let the Fourier Transform ofu for a variablex is

F [u(x, t)](ω) = û(ω, t) =

∫ ∞

−∞
eiωxu(x, t)dx.

Then problem (2.7) is reduced to the following problem (2.8) for second order ordinary

differential equation corresponding initial value conditions by property 2.5.

d
dt2

û(ω, t) = −c2ω2û(ω, t),−∞ < ω < ∞, t > 0,

û(ω, 0) =
2

1 + ω2
,−∞ < ω < ∞,

d
dω

û(ω, 0) = 0,−∞ < ω < ∞.

(2.8)

14



Then

û(ω, t) =
2

1 + ω2
cosωct

=
2

1 + ω2

eiωct − e−iωct

2

By property 2.6, it yields the solution

u(x, t) =
1
2

[e−|x+ct| + e−|x−ct|].

2.5 The Laplace Transforms to the Wave Equation

In section (2.4), we have introduced a method of Fourier Transform in order to solving

problem of infinite line region. Now, we present a method of Laplace Transform for solving

a half-line extent. In general, a variable transformed is the time variable. The property of

Laplace Transform is similar to Fourier Transform.

Definition 2.9. If f (t) is absolutely integrable, then the Laplace Transform is

L [ f (t)](s) = F(s) =

∫ ∞

0
e−st f (t)dt. (2.9)

The properties of Laplace Transform are similar to Fourier Transform.

Property 2.10. If f (t) is absolutely integrable, approaches zero ast → ∞ and has a first

derivative fort > 0, then

L [ f ′(t)](s) = sL [ f (t)](s) − f (0).

In general, if f (t) and f (m)(t) are absolutely integrable,m = 1,2,n− 1, approaches zero as

t → ∞
L [ f (n)(t)](s) = snL [ f (t)](s) − sn−1 f (0)− ... − f (n−1)(0).

Property 2.11. If L −1[F(s)] = f (t), then

L −1[e−asF(s)] =


f (t − a) if t > a,

0 otherwise.
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Theorem 2.12. If F(s) is the Laplace transform of a real functionf (t), with the complex

transformed variabless, then the inversion integral is

f (t) = lim
L→∞

∫ γ+iL

γ−iL
L [ f (t)](s)estds. (2.10)

Example2.13. Using the Laplace Transform to solve one fixed end string problem.

utt(x, t) = 4uxx(x, t),0 < x < ∞, t > 0,

u(x,0) = 0,0 < x < ∞,
ut(x,0) = 0,0 < x < ∞,
u(0, t) = 3 sint, t ≥ 0.

(2.11)

Let U(x, s) = L [u(x, t)],u(x, t) is bounded. Then problem (2.11) is reduced to the follow-

ing problem (2.12) for second order ordinary differential equation by property 2.10.

s2U(x, s) = Uxx(x, s),0 < x < ∞, t > 0,

U(x,0) = 0,0 < x < ∞,
Ut(x,0) = 0,0 < x < ∞,

U(0, s) =
3

s2 + 1
, s≥ 0.

(2.12)

Then we have

U(x, s) = aesx + be−sx, (2.13)

wherea andb are constant. Applying a boundary condition of problem (2.12) andU(x, s)

is bounded, then

U(x, s) =
3

s2 + 1
e−sx (2.14)

By property 2.11, the solution is

u(x, t) =


3 sin(t − x) if t > x,

0 otherwise.
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2.6 The method of characteristics to the Wave Equation

In this section, we will discuss how we approximate the solution for hyperbolic linear

equation of second order by two characteristics. The following linear hyperbolic equation

for second order is

A(x, t)uxxx, t + B(x, t)ux,t(x, t) + C(x, t)utt(x, t) + e(x, t,ut,ux) = 0, (2.15)

whereB2(x, t) − 4A(x, t)C(x, t) > 0 for all (x, t) in its region. Let

∂u(x, t)
∂x

= S(x, t),

∂u(x, t)
∂t

= T(x, t).
(2.16)

Then

dS = uxxdx+ uxtdt,

dT = utxdx+ uttdt.
(2.17)

Substitute equations (2.17) into equation (2.15), then we obtain

A(x, t)(
dS− uxtdt

dx
) + B(x, t)uxt(x, t) + C(x, t)(

dT − uxtdx
dt

) + e(x, t,ut,ux) = 0. (2.18)

Multiplying two sides of above equation (2.18) bydt
dx, then we obtain

[A(
dt
dx

)2 − B(
dt
dx

) + C]uxt − [A
dS
dx

(
dt
dx

) + C
dT
dx

+ e(
dt
dx

)] = 0. (2.19)

Let a tangent slope at every point on the curve C satisfy a root of

A(
dt
dx

)2 − B(
dt
dx

) + C = 0. (2.20)

Since

B2(x, t) − 4A(x, t)C(x, t) > 0,

there are two curve. These are called characteristics. On two characteristics, the equation

(2.19) is simplified to solve

A
dS
dx

(
dt
dx

) + C
dT
dx

+ e(
dt
dx

)] = 0.
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The procession for solving this problem is shown as follows.

First, we have to know what the valuesm of the tangent slope at initial pointsP and

Q on the curveC are. Letm+ andm− be the right characteristic and the left characteristic

at one point, respectively. As shown in Figure 3. This value is easy to get from equation

(2.20).

mQ

-
mP

+

+

R

Q

P

Figure 3: Two characteristics.

Second, we use lines to approximate these curves and we have to find the pointR. An

line equation of the right characteristic at the pointP is

L1 : t − tP = m+
p(xR− xP)

and a line equation of the left characteristic at the pointQ is

L2 : t − tQ = m−Q(xR− xQ)

The intersection of above two linesL1 andL2 is the pointR. Hence, we can find a pint R

from two linesL1 andL2.

Third, we want to find the value ofSR andTR. Denotemav the average of the tangent

slope of any two points in the line. FromP to R of L1, we derive the equation

AP(x, t)(SR− SP)mav + CP(TR− TP) + eP(tR− tP) = 0.

18



FromQ to R of L2, we obtain the equation

AQ(x, t)(SR− SQ)mav + CQ(TR− TQ) + eQ(tR− tQ) = 0,

where an index of variablesA,C,S,T,G andt represents the values ofA,C,S,T,G andt at

that point. Finally, we have value ofu at the pointR from following equation (2.21)

uR− uP =
1
2

(SP + SR)(xR− xP) +
1
2

(TP + TR)(tR− tP) (2.21)

Example 2.14. Using the method of characteristics to calculate displacementu at time

t = 0.3 of the point on the stringx = 0.4.

utt(x, t) = uxx,0 < x < l, t > 0,

u(x,0) =
1
2

x(1− x),0 ≤ x ≤ l,

ut(x,0) = 0,0 ≤ x ≤ l,

u(0, t) = u(l, t) = 0, t ≥ 0.

(2.22)

A(x, t) = −1, B(x, t) = 0,C(x, t) = 1 ande(x, t) = 0 in the partial differential equation of

problem (2.15). Sincem+
P = 1 andm−Q = −1, the right characteristic throughP and the left

characteristic throughQ areL1 : x− t = 0.1, L2 : x + t = 0.7, respectively. Here,S(x, t) =

andT(x, t) = 0,0 ≤ x ≤ l, t > 0. ThenSP = 0.4,SQ = −0.2,TP = 0,TQ = 0.

FromP to R in L1, we have

(−1)(SR− 0.4) + TR = 0.

FromQ to R in L2, we get

(SR + 0.2) + TR = 0.

Those equations implySR = 0.1,TR = −0.3. Finally, the value ofu at the pointR from

equation (2.21) is

0.045+
0.4 + 0.1

2
(0.4− 0.1) +

0− 0.3
2

(0.3− 0) = 0.075.

Thus, a displacementu at timet = 0.3 of the point on the stringx = 0.4 is 0.075.
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2.7 The method of Finite Difference to the Wave Equation

The methods of integral transforms (like as Fourier, Laplace transform) and separation of

variables are only valid on special problems. And we obtain an infinite integral form or a

sum of infinite series form of solutions. If we can not compute them exactly, we want to

approximate them by numerical methods. Suppose a functionu(x, t) and its derivatives are

continuous and finite. We givev(x, t) a good approximation tou(x, t).

A stretch string fixed two points problem (2.14) has done by the methods of character-

istic. Now, we try to solve it by the method of finite difference forl = 1. Denote mesh

parameterh = l
N andk = h such thatx = 0,h,2h, . . . ,Nh = 1, t = 0, k,2k, . . . ,N = 0.1. Let

a mash functionν(nh,mk) satisfies

Λh[ν] = −ν((n + 1)h,mk) − 2ν(nh,mk) + ν((n− 1)h,mk)
h2

+
ν(nh, (m+ 1)k) − 2ν(nh,mk) + ν(nh, (m− 1)k)

k2
= 0,

u(x,0) =
1
2

x(1− x),0 ≤ x ≤ 1,

ut(x,0) = 0,0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ≥ 0.

(2.23)

Then we get a recursion formula

ν(nh, (m+ 1)k) = ν((n + 1)h,mk) − ν((n− 1)h,mk) − ν(nh, (m− 1)k), (2.24)

m ≥ 1. But there does not have the valueν at time−1 of point nh in above recursion

formula (2.24). Initial conditions of problem (2.23) provides some information

ν(nh,−k) = ν(nh, k). (2.25)

Put (2.25) into a recursion formula (2.24), then it becomes

ν(nh, k) =
1
2

[ν((n + 1)h,0)− ν((n− 1)h,0)]. (2.26)

Thus, the following table and Figure 4 shown the discrete values
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t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0.045 0.08 0.105 0.12 0.125 0.12 0.105 0.08 0.045 0

0.1 0 0.04 0.075 0.1 0.115 0.1225 0.115 0.1 0.075 0.04 0

0.2 0 0.03 0.06 0.085 0.1025 0.105 0.1025 0.085 0.06 0.03 0

0.3 0 0.02 0.04 0.0625 0.075 0.0825 0.075 0.0625 0.04 0.02 0

Table 2:Discrete data to problem (2.14) withl = 1.

0 0.2 0.4 0.6 0.8 1

x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

u

t=0

t=0.1

t=0.2

t=0.3)

Figure 4: Solutions are solved by Finite Differences at t=0,0.1,0.2,0.3.
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3 The Wave equation in different domains

3.1 Solution of the finite string problem

Consider a stretch string fixed two end points problem (2.1). The D’Alembert’s solution of

a finite string problem is

u(x, t) =
1
2

[ f (x + ct) + f (x− ct)] +
1
2

∫ x+ct

x−ct
g(x̄)dx̄,

where f (x) andg(x) odd extend about pointsx = 0 andx = l. They extend the domain

D = {(x, t) | 0 ≤ x ≤ l, t > 0} to {(x, t) | x ∈ R, t > 0}.
Standing wave solutions of a finite string is

u(x, t) =

∞∑

n=1

[an cos(
nπc

l
)t + bn sin (nπcl)t] sin(

nπ
l

x),

where

an =
2
l

∫ l

0
f (x) sin(

nπ
l

)xdx,bn =
2

nπc

∫ l

0
g(x) sin(

nπ
l

)xdx.

Proposition 3.1. The integral form of D’Alembert’s solution is the same as the infinite

series form from the method of separation of variables.

u(x, t) =
1
2

[ f (x + ct) + f (x− ct)] +
1
2

∫ x+ct

x−ct
g(x̄)dx̄

=
1
2

[
∞∑

n=1

an sin(
nπ
l

)(x + ct) +

∞∑

n=1

an sin(
nπ
l

)(x− ct)]

+
1
2c

∫ x+ct

x−ct

nπc
l

∞∑

n=1

bn sin(
nπ
l

x̄dx̄)

=

∞∑

n=1

an sin(
nπ
l

x) cos(
nπc

l
t) +

nπ
2l

∞∑

n=1

∫ x+ct

x−ct
bn sin(

nπ
l

)x̄dx̄

=

∞∑

n=1

an sin(
nπ
l

x) cos(
nπc

l
t) − 1

2
[
∞∑

n=1

bn cos(
nπ
l

)(x + ct) −
∞∑

n=1

bncos(
nπ
l

)(x− ct)]

=

∞∑

n=1

an sin(
nπ
l

x) cos(
nπc

l
)t + bn sin(

nπ
l

x) sin (nπcl)t

=

∞∑

n=1

[an cos(
nπc

l
)t + bn sin (nπcl)t] sin(

nπ
l

x).
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The integral form of D’Alembert’s solution is the same as the series form of separation of

variables.

There are differences between D’Alembert’s formula and Separation of variables. The

method of separation of variables also solves the special problem of the wave equation

with nonconstantc. This method is restricted to on a finite boundary condition. Like

as rectangle,circle or cylinder,and so on. In fact, it does not work for all equations. For

instance, a partial differential equation with the variable coefficients. It is hard to separate

the equation such that one side of only involving inx and the other iny. Even if it with

constant coefficients, it may be not apply to.For example,uxx+uxy+uyy = 0 is not separable

in rectangular coordinates. But it can be in polar coordinates.

There is the comparison between an analytic solution and numerical solutions in Ex-

ample (2.14) withl = 1 in following Table.

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Analytic solution 0 0.02 0.04 0.06 0.075 0.08 0.075 0.06 0.04 0.02 0

Finite Difference 0 0.02 0.04 0.0625 0.075 0.0825 0.075 0.0625 0.04 0.02 0

Characteristic 0 0.02 0.04 0.06 0.075 0.08 0.075 0.06 0.04 0.02 0

Table 3: Discrete solutions by different methods to Example (2.14) withl = 1 att = 0.3.

From above Table 3, the solution by characteristics is an exact solution. Because charac-

teristics are just lines in this example for constant speedc, there is no error in it. Hence,

we can get a correct solution. The solution by the finite difference method is approximate

to the accurate solution. It is a stable solution with an error of second order. Comparing

to analytic solution, the numerical solution is the discrete data. We must evaluate the value

one by one. If it is not easy to find the analytic solution, then it is a good choice to evaluate

the discrete solution by the computer and give a good approximation for analytic solution.
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3.2 Solution of the infinite problem

utt(x, t) = c2uxx(x, t),−∞ < x < ∞, t > 0,

u(x,0) = f (x),−∞ < x < ∞,
ut(x,0) = g(x),−∞ < x < ∞,

lim
x→∞

u(x, t) = lim
x→∞

∂u(x, t)
∂t

= 0, t > 0.

Fourier Transform of this initial-fixed boundary value problem onx is

d2

dt2
û(ω, t) + c2ω2û(ω, t) = 0,−∞ < ω < ∞, t > 0,

û(ω, 0) = F(ω),−∞ < ω < ∞,
d
dt

ˆu(ω, 0) = G(ω),−∞ < ω < ∞.

(3.1)

Problem (3.2) becomes ordinary differential equation ofω for second order, then the

solution is

û(ω, t) = F(ω) cosωct +
G(ω)

ct
sinωct

= F(ω)
eiωct + e−iωct

2
+

G(ω)
cω

eiωct − e−iωct

2i
.

(3.2)

By Inversion of Fourier Transform Theorem, we have

u(x, t) =
1
2

[ f (x + ct) + f (x− ct)] +
1
2

∫ x+ct

x−ct
g(x̄)dx̄,
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4 Riemann surface of genus N

The procession of solving the general initial value problem of linear hyperbolic equations

by Fourier transform or Laplace transform may meet the integral of the square root func-

tion. Here, we present how to deal with this multi-valued functions such that the integral is

meaning and correct evaluated by Mathematica.

4.1 Introduction

We know the square root function is a multi-valued function in the complex plane. Because

z = reiθ = ei(θ+2π),

Then

√
z =



√
rei( θ2 )

√
rei( θ+2π

2 ) = −√rei( θ2 )

It is clear that a square root function is a two-valued function defined on the complex

planeC. So, it is not continuous onC. Moreover, it is not analytic onC. Hence, it is

meaningless for evaluate the integral of multi-valued function. The only way to change

multi-valued functions into single value function is redefined the domain. Denote two the

square root functions

f1(z) = |z| 12 e
iarg(z)

2

and

f2(z) = |z| 12 e
iarg(z)

2 .

Let D1 = {C \ (−∞,0] | arg(z) ∈ [−π, π)} andD2 = {C \ (−∞,0] | arg(z) ∈ [π, 3π)}
be the domains of square root functionsf1(z) and f2(z), respectively. Here, functionsf1(z)

and f2(z) are single valued function in each domain. Sincef1(z) and f2(z) are both dis-

continuous on the negative real line, denote branch cutsC1 = {(−∞,0] | arg(z) = π} and

C2 = {(−∞,0] | arg(z) = 3π}.
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Figure 5: The domainD1 andD2.
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-

arg z
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Figure 6: The branch cutC1 andC2.

Let functions defined on above two cuts be

f3(z) = i|z| 12 , z ∈ C1.

and

f4(z) = −i|z| 12 , z ∈ C2.

And functions f3(z) and f4(z) are single valued function on each cuts. These domains are

glued together is a Riemann surface domain. Hence, we construct a simple value function

26



on Riemann surface as following:

√
z =



f1(z), z ∈ D1

f2(z), z ∈ D2

f3(z), z ∈ C1

f4(z), z ∈ C2

Remark 4.1. The square root function is analytic in the domainD1 ∪ D2 ∪C1 ∪C2. Since

functions f1(z), f2(z), f3(z) and f4(z) are analytic in each domains. And any path pass from

D1 to D2 through the cutC1 is also continuous. Becausez ∈ D1 andargz tends toπ, then

f1(z)tends toi|z| 12 . It is equal to the functionf2(z), whereargz= π. It is similar to any path

from D2 to D1 through the cutC2 is still continuous. Hence, the function is analytic on

Riemann surface.

Remark 4.2. f1(z) = − f2(z) and f3(z) = − f4(z).

Sincez ∈ D2, arg(z) ∈ [π, 3π).

f2(z) = |z| 12 ei θ+2π
2

= |z| 12 ei θ2 eiπ

= −|z| 12 ei θ2

= − f1(z),

whereθ ∈ [−π, π).

We will develop an algorithm such that we can evaluate the integrals of a square root

function by Mathematica.

4.2 The algebraic structure on Riemann surface

Since f (z) =
√

z is a two-valued function, we need construct branch cuts to cut our plane.

For every point in complex plane, we havearg(z− 0) ∈ [−π, π). In following Figure 7,+

edge is the initial edge and− edge is terminal edge. The argument of+ edge is−π and of

− edge isπ.
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0

Figure 7: The cut plan of
√

z.

We define (z, f (z)) belong to sheetI if arg(z− 0) ∈ [−π, π); (z, f (z)) belong to sheetII

if arg(z− 0) ∈ [π,3π).

Remark 4.3. z ∈ I+:

f (z) = |z| 12 ei −π2

= −i|z| 12

z ∈ I−:

f (z) = |z| 12 ei 2π
2

= i|z| 12

Hence,f (z)|I− = − f (z)|I+ . Since - edge inI is + edge inII , it meansf (z)|II = − f (z)|I .

After presenting the algebraic structure off (z) =
√

z on Riemann surface, we have to

show the cut structure for the general horizontal and vertical cuts. Letp(z) =
√

(z− z1)(z− z2)

For

Case1.z1, z2 ∈ R(Horizontal cut)

z1, z2 are branch points ofp(z). It is discontinuous on this interval [z1, z2]. Hence, there is a

branch cut between two points.

For example,p(z) =
√

z− 1
√

z− 2, chosen a point 0∈ (−∞,1).

(i) For 0 in + edge: Thenarg(z− 1) = arg(z− 2) = −π
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z2z1 +

Figure 8: The algebraic structure ofp(z) for two branch points in horizontal.

(ii) For 0 in - edge: Thenarg(z− 1) = arg(z− 2) = π

arg(0− 1) = arg(−1) =


−π
π

arg(0− 2) = arg(−2) =


−π
π

Taken the principal argument of a negative number is−π, hence

√
−1 ·

√
−2 = |1| 12 ei( −π2 ) · |2| 12 ei( −π2 ) = |2| 12 ei(−π) = −|2| 12 (4.1)

On the other hand, taken the principal argument of a negative number isπ , then

√
−1 ·

√
−2 = |1| 12 ei( π2 ) · |2| 12 ei( π2 ) = |2| 12 ei(π) = −|2| 12 (4.2)

Here, the value in equation (4.1) is equal to equation (4.2). So,p(z) is continuous on this

interval (−∞,1). Pick up one point32 ∈ (1,2).

(i) For 3
2 in + edge: Thenarg(z− 1) = arg(z− 2) = −π

(ii) For 3
2 in − edge: Thenarg(z− 1) = arg(z− 2) = π

arg(
3
2
− 1) = arg(

1
2

) = 0

arg(
3
2
− 2) = arg(

−1
2

) =


−π
π

By the same way as above, chosen the principal argument of a negative number is−π,

hence √
1
2
·
√
−1

2
= |1

2
| 12 ei(0) · |1

2
| 12 ei( −π2 ) = |1

2
|ei( −π2 ) = −|1

2
|i (4.3)
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Chosen taken the principal argument of a negative number isπ, then

√
1
2
·
√
−1

2
= |1

2
| 12 ei(0) · |1

2
| 12 ei( π2 ) =

1
2

ei( π2 ) = |1
2
|ei( π2 ) = |1

2
|i (4.4)

Since the value in equation (4.3) is unequal to equation (4.4). Then the function is dis-

continuous on this interval (1,2) . So, there is a branch cut in it. Of course, a square root

function is continuous for positive real number. Hence, there is a branch cut between two

pointsz1, z2 ∈ N.

Case2.z1, z2 ∈ iR(vertical cut)

The branch cut for the vertical cut structure is the same as horizontal. Denote the interval

[z1, z2] be the branch cut. The algebraic structure ofp(z) for two branch points in vertical as

shown in Figure 9 We define the sheet isI = {z | arg(z− zj) ∈ [−3
2π,

1
2π)} and another sheet

z1

z2

+

Figure 9: The algebraic structure ofp(z) for two branch points in vertical.

is II = {z | Arg(z− zj) ∈ [ 1
2π,

5
2π)}, wherezj is the branch point ofp(z), for each positive

integer j = 1,2. + edge is the initial edge and− edge is terminal edge. The argument of+

edge is−3
2π and of− edge is1

2π.

Remark 4.4. As we know, a curve crosses the cut from one sheet to another sheet. Hence,

if a curve goes through 2N − 1 cuts forN ∈ N, then a curve will cross to another sheet. So,

there is a branch cut at that line segment.
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Remark 4.5. By the same way as horizontal case, thus the value in sheetII is minus of

in sheetI . If z ∈ I+(+ edge of sheetI ) and z ∈ [z1, z2], then arg(z − z1) = −3
2π and

arg(z− z1) = 1
2π. So,

p(z) =
√

(z− z1)(z− z2)

=

2∏

j=1

√
(z− zj)

= |z− z1| 12 ei(− 3π
4 ) · |z− z2| 12 ei(− π4 )

= −
2∏

j=1

|z− zj | 12

If z ∈ I−(− edge of sheetI ), thenarg(z− z1) = 1
2π andarg(z− z1) = −1

2π. So,

p(z) =
√

(z− z1)(z− z2)

=

2∏

j=1

√
(z− zj)

= |z− z1| 12 ei( π4 ) · |z− z2| 12 ei(− π4 )

=

2∏

j=1

|z− zj | 12

So, f (z)|I− = − f (z)|I+ . It meansf (z)|II = − f (z)|I .

4.3 The geometric structure on Riemann surface

After presenting the algebraic structure, we want to know how does it look like in geomet-

ric. For the horizontal branch cut case, by above definition, sheetI and sheetII is denoted

by I = {z | arg(z− zj) ∈ [−π, π)} and II = {z | arg(z− zj) ∈ [π,3π)},respectively.We glue

the+ edge of sheetI to the− edge of sheetII . When the integral path crossing the branch

cut, then it pass from one sheet to the other sheet. If we want to evaluate the value in sheet

II , then we only evaluate the negative value of the value in sheetI . Now, we discuss the

geometric structure on Riemann surface off (z) =
√

z. Using stereo projection, we have

a one-to-one correspondence between the complex plane and surface. Regard∞ in the
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complex plane is a point and is projected to a north pole of the surface. Hence, a geometric

structure off as Figure 10 shown. And the geometric structure of vertical cuts on Riemann

surface ofp(z) is the same as horizontal cuts.

0

0

0

+

+

0

0
+
+

0

+

     + 

+

Figure 10: The geometric structure on Riemann surface ofp(z) in horizontal cuts.

Consider a general functionf (z) =

√
n∏

j=1
(z− zj). Sincez1, z2, ..., zn are then branch

points, then there aredn2e − 1 holes on Riemann surface, wheredn2e =


n
2 n : even

n+1
2 n : odd
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4.4 The integrals overa, b cycles on Riemann surface

After analyzing the algebraic structure and geometric structure ofp(z) =
√

(z− z1)(z− z2)

on Riemann surface, we want to evaluate the integral of1
p(z) . Since every simple closed

curves can be written as a linear combination ofa,b cycles. Hence, we discuss the integral

of canonical cyclesa,b. Consider a general functionf (z) =

√
n∏

j=1
(z− zj). We want to

evaluate
∮

a
1

f (z) and
∮

b
1

f (z) by another equivalent paths ofa,b cycles such that the integrals

are easier computed.

For horizontal branch cut:

The following Figure 11 isa,b cycles on Riemann surface.

Forn is odd:

Forn is even:

Figure 11: Thea,b cycles.

Now, we want to evaluate the integral off (z) =
√

(z+ 2)(z+ 1)(z− 1)(z− 2)(z− 3)(z− 4)

overa,b cycles as Figure 12. The algebraic and geometric structure:

Fora1,b1 cycle:
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Figure 12:a1,b1 cycle.

Figure 13: Geometric structure.

We want to evaluate the integral by Mathematica, but there is something wrong. The

argument evaluated by Mathematica is (−π, π], and the argument in our theory is [−π, π).

In Mathematica, it regards the argument−π in our theory asπ. Hence, we have to modify

the value evaluated from Mathematica.

34



For f (z) =
√

z

In Theory:

z

Figure 14: The argument in theory.

In Mathematica:

z

Figure 15: The argument in Mathematica.

Therefore,

f (z) =
√

z =


−M arg(z) = −π
M otherwise

By the same, we only modify the value for anyf (z) =
√

z− zj whenarg(z− zj) = −π.

Fora1 cycle:

The integral overa1 cycle is same over the circle of radius 1 at center3
2 and the circle in the
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sheetI , by Cauchy integral Theorem.

Let z = 3
2 + eiθ ,thendz= ieiθdθ. Sincearg(z− zj) ∈ [−π, π) for 1 ≤ j ≤ 6. So,



a1

1
f (z)dz is

same as the value evaluated by Mathematica. Hence,

�

a1

1
f (z)

dz

=

∫ π

−π

ieiθ

√
3
2 + eiθ + 1

√
3
2

+ eiθ + 2

√
3
2

+ eiθ − 1

√
3
2

+ eiθ − 2

√
3
2

+ eiθ − 3

√
3
2

+ eiθ − 4 · dθ

= −1.13022i

For the equivalent patha∗1:

a
1

++ +
32

0
-2 -1 1

a
*

1

4

Figure 16:a1 cycle.

The argument of Mathamatica evaluated is (−π, π], then the argument of− edge is regarded

asπ. Hence we must modify the integral on− edge by multiple (−1).
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1 to 2 2 to 1

Integral path angle value angle value

z− 4 −π −M π +M

z− 3 −π −M π +M

z− 2 −π −M π +M

z− 1 0 +M 0 +M

z+ 1 0 +M 0 +M

z+ 2 0 +M 0 +M

Sheet I +M I +M

Total −M +M

Table 4: Angles and values forz− zj along integral patha∗1.

Hence,

�

a∗1

1
f (z)

dz=

∫ 2

1

1√
z+ 1

√
z+ 2

√
z− 1

√
z− 2

√
z− 3

√
z− 4

dz

= −1.13022i

Therefore, the integral overa∗1 cycle is equal to overa1 cycle

�

a∗1

1
f (z)

dz=

∮

a∗1

1
f (z)

dz= −1.13022i

Forb1 cycle:

The integral overb1 cycle is same over the circle of radius5
2 at center 1 and the circle in

the sheetI , by Cauchy integral Theorem. A dotted line is in sheetII . Let z = 1 + 5
2eiθ,then

dz = 5
2ieiθdθ.Sincearg(z− zj) ∈ [−π, π) for 1 ≤ j ≤ 6. So,

∮
b1

1
f (z) is evaluated correct by

Mathematica. Hence,
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Figure 17:b1 cycle.

�

b1

1
f (z)

dz

=

∫ π

−π

5
2ieiθ

√
5
2 + eiθ + 1

√
5
2 + eiθ + 2

√
5
2 + eiθ − 1

√
5
2 + eiθ − 2

√
5
2 + eiθ − 3

√
5
2 + eiθ − 4

dθ

= −0.0760776

For the equivalent pathb∗1:
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1 to 2 2 to 1

Integral path angle value angle value

z− 4 −π −M π +M

z− 3 −π −M π +M

z− 2 −π −M π +M

z− 1 0 +M 0 +M

z+ 1 0 +M 0 +M

z+ 2 0 +M 0 +M

Sheet I +M II −M

Total −M −M

Table 5: Angles and values forz− zj along integral pathb∗1.

�

b∗1

1
f (z)

dz

= 2[
∫ −1

3

1√
z+ 1

√
z+ 2

√
z− 1

√
z− 2

√
z− 3

√
z− 4dz

]

= −0.0760776

For vertical branch cut : The argument evaluated by Mathematica is (−π, π], but the argu-

ment in our theory is [−3
2π,−1

2π). In Mathematica, it regards the argument belong [−3
2π,−π]

in our theory as [−1
2π, π]. Hence, we have to modify the value evaluated from Mathematica.
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For f (z) =
√

z− i

In Theory:

i i 

z

Figure 18: The argument in theory.

In Mathematica:

z

i i 

Figure 19: The argument in Mathematica.

Therefore,

f (z) =
√

z =


−M arg(z− i) ∈ [−3

2π,−1
2π]

M otherwise
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By the same, we only modify the value for anyf (z) =
√

z− zj when arg(z − zj) =

[−3
2π,−1

2π].

Forn is even:

The following Figure 20 isa,b cycles on Riemann surface.

z
4

a
1

z
1

a
k

z
1n

z
n

z
3

+  - 
+  - 

+  - 

z
2

b
1

b
2

b
k

z
k2

z
12k

a
2

Figure 20:a,b cycle.

Now, we want to evaluate the integral of

f (z) =
1√

6∏
j=1

(z− zj)

wherez1 = 1 + 2i, z2 = 1, z3 = 3i, z4 = i, z5 = −1 + 3i andz6 = −1 + i overa,b cycles as in

Figure 21.

Since the argument of Mathematica is (−π, π] , we must modify the value on the argu-

ment [32π,−π] in vertical cut. We regard the branch point as the origin of the rectangular

coordinate system in the plane. Hence, we modify the second sign of every rectangular

coordinate system of center for each branch point.

Fora1 cycle:
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1

+    

1+2

3

+    

-1

O

a
1

-1+3

-1+

+    

Figure 21:a1 cycle.

The integral overa1 cycle is the same as over the enclosed rectangle in Figure 22.

Figure 22:a1 cycle.
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Integral path (1) (2) (3) (4) (5) (6) (7)

z− (1 + 2i) +M +M −M −M −M −M +M

z− 1 −M −M −M −M −M −M −M

z− 3i +M +M +M +M −M +M +M

z− i +M +M +M +M −M −M −M

z− (−1 + 3i) +M +M +M +M +M +M +M

z− (−1 + i) +M +M +M +M +M +M +M

Sheet +M +M +M +M +M +M +M

Total −M −M +M +M +M −M +M

Table 6: Angles and values forz− zj along integral patha1.

�

a1

1
f (z)

dz= −
∫ 1

3+2i

− 1
3+i

1
f (z)

dz+

∫ − 1
3+3i

1
3+2i

1
f (z)

dz−
∫ − 1

3+2i

− 1
3+3i

1
f (z)

dz+

∫ − 1
3+i

− 1
3+2i

1
f (z)

dz

= 1.38321− 2.33762i

For the equivalent patha∗1 in Figure 23.

O 1

+    

+    

1+2

3

-1+

-1+3

*

1
a

Figure 23:a∗1 cycle.
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Integral path 3i to 2i 2i to i i to 2i 2i to 3i

z− (1 + 2i) −M +M −M +M

z− 1 −M −M −M −M

z− 3i +M +M +M +M

z− i −M −M +M +M

z− (−1 + 3i) +M +M +M +M

z− (−1 + i) +M +M +M +M

Sheet I I I I

Total −M +M +M −M

Table 7: Angles and values forz− zj along integral patha∗1.

�

a∗1

1
f (z)

dz= −
∫ 2i

3i

1
f (z)

dz+

∫ i

2i

1
f (z)

dz−
∫ 2i

i

1
f (z)

dz+

∫ 3i

2i

1
f (z)

dz

= 1.38321− 2.33762i

For b1 cycle:

Figure 24:b1 cycle.

Regardb1 cycle as the following polygon.
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Figure 25:b1 cycle.

Integral path (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

z− (1 + 2i) +M +M +M +M +M +M +M +M −M −M −M +M

z− 1 −M −M −M −M −M +M +M +M −M −M −M −M

z− 3i +M +M +M +M +M +M +M +M +M −M +M +M

z− i −M +M +M +M +M +M +M +M +M +M −M −M

z− (−1 + 3i) +M +M +M +M +M +M +M +M +M −M −M −M

z− (−1 + i) −M +M +M +M +M +M +M +M +M +M +M +M

Sheet I I I I I II II II II II II II

Total −M −M −M −M −M −M −M +M −M −M +M −M

Table 8: Angles and values forz− zj along integral pathb1.

�

b1

1
f (z)

dz= −
∫ − 1

2+3i

−1+2i

1
f (z)

dz+

∫ − 1
2+2i

− 1
2+3i

1
f (z)

dz−
∫ −1+2i

− 1
2+2i

1
f (z)

dz

= 0.590344− 1.16143i

For the equivalent pathb∗1 in Figure 26
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Figure 26:a1 cycle.

−1 + i to 1 1 to−1 + i

Integral path value value

z− (1 + 2i) +M +M

z− 1 −M −M

z− 3i +M +M

z− i +M +M

z− (−1 + 3i) +M +M

z− (−1 + i) +M +M

Sheet I II

Total −M +M

Table 9: Angles and values forz− zj along integral pathb∗1.

�

b∗1

1
f (z)

dz= 2
∫ −1+i

1

1
f (z)

dz

= 0.590344− 1.16143i
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4.5 Solutions to Liner Hyperbolic Equations by Mathematica

Now, we want to solve the infinite problem (4.5) with the source term only involving time-

independent.

Example4.6. Using Laplace transform, and then Fourier transform to solve the following

I.V.P.

utt(x, t) = uxx(x, t) + sin2
√

t,−∞ < x < ∞, t > 0,

u(x,0) = 0,−∞ < x < ∞,
ut(x,0) = 0,−∞ < x < ∞.

(4.5)

First, using the method of Laplace Transform with respect tot, we have

s2U(x, s) − Uxx(x, s) =

√
π

s
√

s
e−

1
s , s> 0.

Note.L [sin 2
√

t] =
√
π

s
√

s
e−

1
s . Since

sin 2
√

t = 2
√

t − (2
√

t)3

3!
+

(2
√

t)5

5!
− (2

√
t)7

7!
+ ...

Then

L [sin 2
√

t] =
2Γ(3

2)

s
3
2

− 8Γ(5
2)

3!s
5
2

+
32Γ(7

2)

5!s
7
2

− 128Γ(9
2)

7!s
9
2

+ ...

=

√
π

s
3
2

[1 − 1
s

+
1

2s2
− 1

3s3
+ ...]

=

√
π

s
√

s
e−

1
s .

Using the method of Fourier Transform with respect tox, it becomes

s2Û(ω, s) + ω2Û(x, s) =

√
π

s
√

s
e−

1
s2πδ(ω).

This implies

Û(ω, s) =
1
s

s
s2 + ω2

√
π

s
√

s
e−

1
s2πδ(ω).
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By Convolution Theorem, we derives

U(x, t) =
1
s

√
π

s
√

s
e−

1
s {F −1[

s
s2 + ω2

]F −1[2πδ(ω)]}

=
1
s

√
π

s
√

s
e−

1
s [

∞∫

∞

1
2

e−s|x−y| · 1dy]

=

√
π

s3
√

s
e−

1
s .

By Inversion Theorem of Laplace Transform, we have

u(x, t) =
1

2πi
lim
L→∞

∫ s+iL

s−iL
U(x, τ)eτtdτ, s> 0.

Let G(x, τ) = U(x, τ)eτt and we apply Cauchy’s theorem to the integral ofG(x, s) over the

contour shown as following Figure 27. SinceG(x, s) is analytic inside this contourC,

Figure 27: The integral contourC of G(x, τ).

(1)Along the pathC1 of contourC: Let τ = s+ Leiθ, π2 ≤ θ ≤ π,dτ = iLeiθdθ
∫

C1

G(x, τ)dτ =

∫ π

π
2

e(s+Leiθ)tU(x, s+ Leiθ) · iLeiθdθ

Since

|U(x, s+ Leiθ)| = |
√
π

(s+ Leiθ)3
√

s+ Leiθ
e−

1
s+Leiθ | ≤ |

√
π

(L − s)
7
2

|
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approach zero asL → ∞. By Jordan’s lemma the integrals over this contourC1 approach

zero.

(2)Along the pathC2 of contourC: Let τ = εeiθ, where−π ≤ θ ≤ π,dτ = iεeiθ. Since

|U(x, εeiθ)| = |
√
π

(εeiθ)
| 72 |e− 1

εeiθ | ≤
√
π

ε
e−

1
ε , (4.6)

By L’Hospital Rule twice times, we evaluate the value of the right hand side for above

inequality (4.6) asε→ ∞ is

lim
ε→0

ε−
7
2

e
1
ε

= lim
ε→0

7
2ε
− 1

2

e
1
ε

= lim
ε→0

7
4ε

5
2

e
1
ε

= 0.

By Jordan’s lemma, the integral over this contourC2 approach zero asε→ 0.

(3)Along the pathC3 of contourC:

Similar as contourC1, let τ = s+ Leiθ, π ≤ θ ≤ 3π
2 ,dτ = iLeiθdθ

Then integrals over the contourC3 approach zero.Hence, we have

u(x, t) =
−1
2πi

[
∫ 0

∞
G(x, τ)dτ +

∫ −∞

0
G(x, τ)dτ]

−∞ to 0 0 to−∞

Integral path angle value angle value

s π +M −π −M

Sheet I +M I +M

Total +M −M

Table 10: Angles and values fors along the equivalent integral path.

We must modify the value on the integral path from a point 0 to−∞ by Mathematica, so

u(x, t) =
1

2πi
[−M{

∫ 0

∞
G(x, τ)dτ} + M{

∫ −∞

0
G(x, τ)dτ}]

=
1

2πi
[2M{

∫ −∞

0
G(x, τ)dτ}],

whereM{
∫

C
G(x, τ)dτ} is represented by the integral valueG evaluated by Mathematica on

a contourC. At some time, the value ofu(x, t) at every position is the same, because the
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source term only involving the time-variablet.

Fixedx = 1

At the timet = 1, the value

u(x, t) = 0.396896.

At the timet = 2, the value

u(x, t) = 1.63306.

This is the same as the value evaluated by D’Alembert’s solution fort = 1,2. Here,

D’Alembert’s solution of problem (4.5) is

u(x, t) =
1
2

∫ t

0

∫ x+(t−τ)

x−(t−τ)
sin 2

√
t̄dx̄dt̄

= −3
2

√
t cos 2

√
t +

1
4

(3− 4t) sin 2
√

t.

For fixedx = 1, the displacement in a long string as shown in the Figure 28.

20 40 60 80 100

t

-200

-150

-100

-50

50

100

150

u 1,t

Figure 28: The graph of solutions to problem (4.5) at positionx = 1.
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