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摘           要 

 
於此，我們透過矩陣測度的概念來探討同步化現象的全域穩定性。這套方法將可被

應用於相當廣泛的系統連結模式上。此外，達成全域同步化所需的耦合力量下界可以被

嚴謹的求得。不但如此，我們僅需驗證被耦合的子系統型式便能辨別全域同步化的現象

能否發生。 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 ii

Global Synchronization in Lattices of Coupled Chaotic 

Systems 
 
 
 
Student：Yu-Hao Liang                         Advisor：Jonq Juang 

 
Department of Applied Mathematics 

National Chiao Tung University 

Degree of Master 

 
 

ABSTRACT 

 
Based on the concept of matrix measures, we study global stability of synchronization in 

networks. Our results apply to quite general connectivity topology. In addition, a rigorous 
lower bound on the coupling strength for global synchronization of all oscillators is also 
obtained. Moreover, by merely checking the structure of the vector field of the single 
oscillator, we shall be able to determine if the system is globally synchronized. 
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1. Introduction

Lattices of coupled chaotic oscillators model many systems of interest in physics,

biology and engineering. In particular, complete chaotic synchronization, all oscilla-

tors acquiring identical chaotic behavior, has received much attention analytically.

There are, in general, two classes of results which give criteria for such synchro-

nization. The first class of results linearizes around the synchronous manifold, and

then computes the Lyapunov exponents or matrix measures of the variational equa-

tions to get local synchronization [29,10] or use partial contraction principle to get

global synchronization [33]. The second class of results uses Lyapunov method by

constructing a Lyapunov function to give an analytical criteria for local or global

synchronization [3-8,30,35-38]. This paper gives yet another approach by utilizing

the concept of matrix measures to get global synchronization criteria. The coupling

configuration of the networks is quite general, which includes asymmetric connec-

tions between nodes and/or some competitive (gij < 0, i 6= j) couplings between

cells xi and xj , and partial-state coupling with nonzero off-diagonal connections.

Moreover, by merely checking the structure of the vector field of the single oscillator,

we shall be able to determine if the system is globally synchronized.

During the last few decades the study of networks of dynamical systems has at-

tracted increasing attention [1-12, 14-31, 33-39]. The purpose to connect dynamical

systems in networks is to get them to solve problems cooperatively. For instance,

such networks are needed for information processing in the brain [15]. The sim-

plest mode of the coordinated motion between dynamical systems is their complete

synchronization when all cells of the network acquire identical dynamical behav-

ior. Consequently, one asks questions such as: What are the conditions for the

stability of the synchronous state, especially with respect to coupling strengths and

coupling configurations of the network? Typically, in networks of continuous time

oscillators, the synchronous solution becomes stable when the coupling strength

between oscillators exceeds a critical value. In this context, a central problem is to

find the bounds on the coupling strength so that the stability of synchronization is

guaranteed.

General approaches to local synchronization of coupled chaotic systems have

been proposed, including the master stability function (MSF)- based criteria [2,26-

29,31], originated by Pecora and Carroll [29], and matrix measures approach [10].

The former computes the Lyapunov exponent of the variational equations, while

the latter uses the concept of matrix measures to give criteria on the variation

equations. Recently, local synchronization in a complex network of asymmetrically

coupled units was also obtained [11, 19] via MSF-based criteria.
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Global synchronization of coupled chaotic systems was also intensively studied.

The methods include Lyapunov function- based criteria with symmetrical connec-

tions [3-7,30,35-38] or asymmetrical connections [8, 37], and the partial contraction

approach [33]. For Lyapunov-based criteria, the partial-state coupling matrix, de-

termining which state variables are coupled, is assumed to have the form satisfying

(2.4c). While the partial contraction approach needs to verify the contraction of

the system, depending on the state variables and time t, which is not a small task.

In developing the theory of global synchronization of coupled chaotic systems, one

needs to assume bounded dissipation of the coupled system, that is, all solutions of

the coupled system are, in some sense, eventually bounded. Such assumption plays

the role of an a priori estimate. However, in obtaining the theory of local synchro-

nization, one dose not need to know bounded dissipation of the coupled system.

Thus, not surprisingly, the criteria in getting local synchronization are composed

of a term that describes how chaotic the single system is and a term that depends

on how the configuration of the networks is formed.

The purpose of this paper is yet to give another approach to study global syn-

chronization of coupled chaotic systems. Our coupling rules are allowed to be asym-

metric and/or some competitive (gij < 0, i 6= j) couplings between cells xi and xj

as long as the coupled system is bounded dissipative. In addition, the partial-state

coupling in our approach is allowed to have the form satisfying (3.9a). Moreover, by

merely checking the structure of the vector field of the single oscillator, we shall be

able to determine if the system is globally synchronized. We also obtain a rigorous

lower bound on the coupling strength for global synchronization of all oscillators

with coupling configuration satisfying (2.4a), and (2.4b). Finally, the concept of

matrix measures is introduced to obtain such global results.

We organize the paper as follows. Section 2 is to lay down the foundation of

our paper. The main results are contained in Section 3. Coupled Lorenz systems

and coupled Duffing systems are used as illustrations. We also compare our results

with those in [7, 8].

2. Basic Framework and Preliminaries

In this paper, we will denote scalar variables in lower case, matrices in bold

type upper case, and vectors (or vector-valued functions) in bold type lower case.

We consider an array of m cells, coupled linearly together, with each cell being an

n- dimensional system. The entire array is a system of nm ordinary differential

equations. In particular, the state equations are

dxi

dt
= f(xi, t) + d ·

m
∑

j=1

gij Dxj , i = 1, 2, . . . , m, (2.1)
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where xi ∈ Rn, f : Rn × R → Rn and D is an n × n real matrix. Let

x =









x1

...

xm









,

xi =









xi,1

...

xi,n









,

and G = (gij)m×m.
(2.2)

Then (2.1) can be written as

ẋ =









f(x1, t)
...

f(xm, t)









+ d(G ⊗ D)x =: F(x, t) + d(G ⊗ D)x, (2.3a)

where ⊗ denotes the Kronecker product, and

f(xi, t) =









f1(xi, t)
...

fn(xi, t)









.

(2.3b)

We next impose conditions on coupling matrices G and D. We assume that cou-

pling matrix G satisfies the following:

(i) λ = 0 is a simple eigenvalue of G and e = [1, 1, . . . , 1]T1×m is

its corresponding eigenvector. (2.4a)

(ii) All nonzero eigenvalues of G have negative real part. (2.4b)

We further assume that coupling matrix D is, without loss of generality, of the form

D =

(

Ik 0

0 0

)

n×n.

(2.4c)

The index k, 1 ≤ k ≤ n, means that the first k components of the individual

system are coupled. If k 6= n, then the system is said to be partial-state coupled.

Otherwise, it is said to be full-state coupled.

From time to time, we will refer system (2.3) as the coupled system (D,G,F(x, t)).

To study synchronization of such system, we permute the state variables in the fol-

lowing way:

x̃i =









x1,i

...

xm,i









,

and x̃ =









x̃1

...

x̃n









.

(2.5)
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Then (2.3) can be written as

˙̃x =









f̃1(x̃, t)
...

f̃n(x̃, t)









+ d(D ⊗ G)x̃ =: F̃(x̃, t) + d(D ⊗ G)x̃, (2.6a)

where

f̃i(x̃, t) =









fi(x1, t)
...

fi(xm, t)









.

(2.6b)

The purpose of such reformulation is two fold. First, a transformation of coordinates

of x̃ is to be applied to (2.6) so as to decompose the synchronous manifold. Second,

once the synchronous manifold is decomposed, proving synchronization of (2.3), is

then equivalent to showing that the origin is asymptotically stable with respect to

reduced system (3.3). From here on, we will treat ˜ as a function that takes x into

x̃ or xi into x̃i.

We next give the definition of the bounded dissipation of a system.

Definition 2.1. (i) A system of n ordinary differential equations is called bounded

dissipative provided that for any r > 0 and for any initial conditions x0 in Bn(r),

there exists a time t∗ ≥ t0 such that ‖x(t)‖ ≤ αr for all t ≥ t∗. (ii) If, in addition,

αr is independent of r, then the system is said to be uniformly bounded dissipative

with respect to αr.

To prove global synchronization of coupled chaotic systems, one needs to assume

bounded dissipation, which plays the role of an a priori estimate. Without such

an a priori estimate, as in the case of the Rössler system, global synchronization is

much more difficult to obtain. Only local synchronization was reported numerically

in literature (see e.g., [4]). We remark that in certain cases of the Rössler system,

the trajectory of each oscillator grows unbounded yet approaches each other (see

e.g., [4]). An interesting question in this direction is how bounded dissipation of the

coupled system is related to the uncoupled dynamics and its connectivity topology.

Not much general theorems have been provided so far. In the case that G is

diffusively coupled with periodic boundary conditions or zero-flux and D satisfies

(2.4c), it was shown in [5] that bounded dissipation of the single oscillator implies

that of the coupled chaotic oscillators. Moreover, the absorbing domain of the

coupled system is a topological product of the absorbing domain of each individual

system.
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In our derivation of synchronization of system(2.3), we need the concept of matrix

measures. For completeness and ease of references, we also recall the following

definition of matrix measures and their properties (see e.g., [32]).

Definition 2.2. Let ‖ · ‖i be an induced matrix norm on Cn×n. The matrix

measure of matrix A on Cn×n is defined to be µi(A) = lim
ǫ→0+

‖I + ǫA‖i − 1

ǫ .

Lemma 2.1. Let ‖ · ‖k be an induced k-norm on Rn×n, where k = 1, 2,∞. Then

each of matrix measure µk(A) , k = 1, 2,∞, of matrix A = (aij) on R
n×n is,

respectively,

µ∞(A) = max
i

{aii +
∑

j 6=i

|aij |}, (2.7a)

µ1(A) = max
j

{ajj +
∑

i6=j

|aij |}, (2.7b)

and

µ2(A) = λmax(A
H + A)/2. (2.7c)

Here λmax(A) is the maximum eigenvalue of A.

Theorem 2.1. (see e.g., 3.5.32 of [32]) Consider the differential equation ẋ(t) =

A(t)x(t)+v(t), t ≥ 0, where x(t) ∈ Rn
, A(t) ∈ Rn×n

, and A(t),v(t) are piecewise-

continuous. Let ‖ · ‖i be a norm on R
n, and ‖ · ‖i, µi denote, respectively, the

corresponding induced norm and matrix measure on Rn×n. Then whenever t ≥
t0 ≥ 0, we have

‖x(t0)‖ exp

{∫ t

t0

−µi(−A(s))ds

}

−
∫ t

t0

exp

{∫ t

s

−µi(−A(τ))dτ

}

‖v(s)‖ds ≤ ‖x(t)‖

≤ ‖x(t0)‖ exp

{∫ t

t0

µi(A(s))ds

}

+

∫ t

t0

exp

{∫ t

s

µi(A(τ))dτ

}

‖v(s)‖ds. (2.8)

To conclude this section, we define global synchronization as in the following.

Definition 2.3. (i) System (2.3) is said to be globally synchronized if for any given

initial values x0 there exists a d = dx0 such that system (2.3) is synchronized for

the initial conditions x0. Here dx0 is a constant depending on x0. (ii) System (2.3)

is said to be uniformly, globally synchronized if there exists a d = d1 such that

system (2.3) is synchronized for all initial values x0.

3. Main Results

To study synchronization of (2.3), we first make a coordinate change to decom-

pose the synchronous subspace. Let A be an m × m matrix of the form
5



A =



















1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 −1

1 · · · · · · 1 1



















m×m

=:

(

C

eT

)

,

(3.1a)

where e is given as in (2.4a). It is then easy to see that CCT is invertible and that

A−1 =
(

CT (CCT )−1| e

m

)

.
(3.1b)

Setting

E = In ⊗ A, (3.1c)

we see that

E(D ⊗ G)E−1 = (In ⊗ A)(D ⊗ G)(In ⊗ A−1)

= D⊗ AGA−1 = D ⊗
(

CGCT (CCT )−1 0

∗ 0

)

=: D⊗
(

Ḡ 0

∗ 0

)

.

(3.1d)

We remark, via (3.1d), that σ(G) − {0} = σ(Ḡ), where σ(A) is the spectrum of

matrix A. Multiplying E to the both side of equation (2.6a), we get

˙̃y =: E ˙̃x = EF̃(x̃, t) + dE(D ⊗ G)E−1ỹ

= EF̃(E−1ỹ, t) + d(D ⊗
(

Ḡ 0

∗ 0

)

)ỹ. (3.2)

Let ỹ =









ỹ1

...

ỹn









.

Then ỹi =













x1,i − x2,i

...

xm−1,i − xm,i
∑m

j=1 xj,i













.

Setting ỹi =

(

ȳi
∑m

j=1 xj,i

)

,

and ȳ =









ȳ1

...

ȳn









,

we have that the dynamics of ȳ is satisfied by following equation

˙̄y = d(D ⊗ Ḡ)ȳ + F̄(ȳ, t). (3.3)
6



Here F̄ is obtained from EF̃(E−1ỹ, t) accordingly.

The task of obtaining global synchronization of system (2.3) is now reduced to

showing that the origin is globally and asymptotically stable with respect to system

(3.3). To this end, the space ȳ is broken into two parts ȳc, the coupled space, and

ȳu, the uncoupled space.

ȳ =

(

ȳc

ȳu

)

,

and F̄(ȳ, t) =

(

F̄c(ȳ, t)

F̄u(ȳ, t)

)

,

respectively. (3.4)

Here ȳc =









ȳ1

...

ȳk









,

and ȳu =









ȳk+1

...

ȳn









. The dynamics on the coupled space

with respect to the linear part is under the influence of Ḡ, which is asymptotically

stable. The dynamics of the nonlinear part on coupled space can then be controlled

by choosing large coupling strength. As a matter of fact, it is easier to obtain

synchronization of coupled chaotic systems with a larger coupled space. On the

other hand, the uncoupled space has no stable matrix Ḡ to play with. Thus,

its corresponding vector field F̄u(ȳ, t) must have a certain structure to make the

trajectory stay closer to the origin as time progresses. As we shall explain latter.

Now, assume that F̄c(ȳ, t) satisfies a dual-Lipschitz condition with a dual-Lipschitz

constant b1. That is,

‖F̄c(ȳ, t)‖ ≤ b1‖ȳ‖ (3.5a)

whenever ȳ in the ball B(m−1)n(α), and for all time t. Since the estimate in the

right-hand side of (3.5a) depends on the whole space ȳ, condition (3.5a) is a mild

assumption provided that the coupled system is bounded dissipative. Write F̄u(ȳ, t)

as

F̄u(ȳ, t) = U(t)ȳu + (F̄u(ȳ, t) − U(t)ȳu)

=: U(t)ȳu + R̄u(ȳ, t). (3.5b)

Assume that U(t) is a block diagonal matrix of the form U(t) = diag(U1(t), · · · ,Ul(t))

where Uj(t), j = 1, . . . , l, are matrices of size (m − 1)kj × (m − 1)kj . Here
l
∑

j=1

kj = n − k, and kj ∈ N. We assume further that the followings hold.

7



(i) The matrix measures µi(Uj(t)) are less than −γ for all t and all j,

where γ > 0. (3.5c)

(ii) Let R̄u(ȳ, t) =









Ru1(ȳ, t)
...

Rul(ȳ, t)









.

Then Ruj(ȳ, t), j = 1, . . . , l, satisfy a strong

dual-Lipschitz condition with a strong dual-Lipschitz constant b2. Specifically, let

ȳu =









ȳu1

...

ȳul









, written in accordance with the block structure of U(t). Then we

assume that

‖Ruj(ȳ, t)‖ ≤ b2 ‖













ȳc

ȳu1

...

ȳu j−1













‖ (3.5d)

whenever ȳ in the ball B(m−1)n(α), and for all j = 1, . . . , l and all time t.

Specifically, we break the vector field F̄u into (time dependent) linear part

U(t)ȳu and nonlinear part R̄u(ȳ, t). We will further break U(t) into certain block

diagonal form if necessary. Note that form (3.5b) can always be achieved since the

remainder term R̄u still depends on the whole space ȳ. To take control of the dy-

namics on the linear part, we assume that the matrix measure of each diagonal block

Uj(t) is negative. As to contain corresponding dynamics on the nonlinear part, we

assume that (3.5d) holds. Note that though the nonlinear terms Ruj(ȳ, t) could

possibly depend on the whole space, their norm estimates are required to depend

only on the coupled space and uncoupled subspaces with their indexes proceeding

j. In this set up, the nonlinear dynamics on uncoupled space can be iteratively

controlled by choosing large coupling strength. We also remark that if (3.5c) and

(3.5d) are satisfied for l, the number of diagonal blocks, being one, then we do

not need to further break U(t). Such further breaking is needed only if (3.5c) and

(3.5d) are not satisfied. The proof in the following theorem gives exactly how the

above strategy can be realized.

Theorem 3.1. Let G and D be given as in (2.4). Assume that F̄ satisfies (3.5a-

d), and system (3.3) is uniformly bounded dissipative with respect to α. Let λ1 =

max{λj |λj ∈ Re(σ(Ḡ))}. If

d >
cb1

−λ1 + ǫ

(

1 + (
b2

γ
)2
)

l
2

=: dc, (3.6)

where ǫ ≥ 0 and c is some constant depending on G and ǫ, then lim
t→∞

ȳ(t) = 0.

8



Proof. Since system (3.3) is uniformly bounded dissipative with respect to α, with-

out loss of generality, we may assume that ‖ȳ(t)‖ ≤ α for all time t ≥ t0. Using

(3.5b), we write (3.3) as

(

˙̄yc

˙̄yu

)

=

(

d(Ik ⊗ Ḡ) 0

0 U(t)

)(

ȳc

ȳu

)

+

(

F̄c(ȳ, t)

R̄u(ȳ, t)

)

.

(3.7a)

Applying the variation of constant formula to (3.7a) on ȳc, we get

ȳc(t) = e(t−t0)d(Ik⊗Ḡ)ȳc(t0) +

∫ t

t0

e(t−s)d(Ik⊗Ḡ)F̄c(ȳ(s), s)ds.

Let λ1 = max{λj |λj ∈ Re(σ(G) − {0} ) }. Then

‖etd(Ik⊗Ḡ)‖ ≤ cetdν (3.7b)

for ν = λ1 + ǫ and some constant c. Here 0 < ǫ < −λ1. Thus,

‖ȳc(t)‖ ≤ ce(t−t0)dν‖ȳc(t0)‖ + cb1

∫ t

t0

ed(t−s)ν‖ȳ(s)‖ds

≤ ce(t−t0)dνα +
α

d

cb1

|ν| =: ce(t−t0)dνα +
α

d
c0.

Let δ > 1, we see that

‖ȳc(t)‖ ≤ α

d
c0δ, (3.8a)

whenever t ≥ t0,1 for some t0,1 > 0. We then apply Theorem 2.1 on ȳu1 and the

resulting inequality is

‖ȳu1(t)‖ ≤ ‖ȳu1(t0,1)‖ exp

{

∫ t

t0,1

µi(U1(s))ds

}

+

∫ t

t0,1

exp

{
∫ t

s

µi(U1(τ))dτ

}

‖Ru1(ȳ(s), s)‖ds.

It then follows from (3.5c-d) and (3.8a) that

‖ȳu1(t)‖ ≤ αe−γ(t−t0,1) +
α

d

b2

γ
c0δ ≤ α

d

b2

γ
c0δ

2 =:
α

d
c1δ

2
, (3.8b)
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whenever t ≥ t1,1 for some t1,1 ≥ t0,1. Inductively, we get

‖ȳuj(t)‖ ≤ α

d





b2

γ

√

√

√

√

j−1
∑

i=0

c2
i



 δj+1 =:
α

d
cjδ

j+1, j = 2, . . . , l, (3.8c)

whenever t ≥ tj,1(≥ tj−1,1). Letting tl,1 = t1 and summing up (3.8a), (3.8b) and

(3.8c), we get

‖ȳ(t)‖ =

√

√

√

√

l
∑

j=1

‖ȳuj(t)‖2 + ‖ȳc(t)‖2 ≤ α

d

(

1 + (
b2

γ
)2
)

l
2 cb1

|ν| δ
l+1 =: hα,

whenever t ≥ t1. Choosing d >
(

1 + ( b2
γ

)2
)

l
2 cb1

|ν| δ
l+1, we see that the contraction

factor h is strictly less than 1, and ‖ȳ(t)‖ contracts as time progresses. To complete

the proof of the theorem, we note that δ > 1 can be made arbitrary close to 1.

Consequently, if d >
(

1 + ( b2
γ

)2
)

l
2 cb1

|ν| , then h can still be made to be less than

1. �

Remark 3.1. (i) In case that Ḡ is symmetric, then c and ǫ can be chosen to be

one and zero, respectively. (ii) b1 and b2 could possibly depend on α. (iii) If system

(3.3) is only bounded dissipative, then the estimate in (3.6) is still valid. However,

in this case, b1 and b2 depend not only on α but also on x0.

Corollary 3.1. Suppose F̄ and G are given as in Theorem 3.1. Let

D =

(

D̄k×k 0

0 0

)

n×n,

where Re(σ(D̄) ) > 0. (3.9a)

Assume, in addition, that either σ(G) or σ(D̄) has no complex eigenvalue.

Then assertions in Theorem 3.1 still hold true, except dc needs to be replaced by

dc =
c b1

|ν|min{Re(σ(D̄) )}

(

1 + (
b2

γ
)2
)

l
2

.
(3.9b)

Proof. Assumption on D is to ensure that (3.7b) is still valid. Other parts of the

proof are similar to those in Theorem 3.1 and are thus omitted. �

We next turn our attention to finding conditions on the nonlinearities fi(u, t),

i = 1, . . . , n, u ∈ Rn, so that assumptions (3.5a-d) are satisfied. To this end, we

need the following notations. Let x̃i and x̃ be given as in (2.5). Define

[x̃i]
− =









x1,i

...

xm−1,i









,

and [x̃]− =









[x̃1]
−

...

[x̃n]−









.

(3.10)
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We then break F̃ as given in (2.6a) into two parts so that the breaking is in consis-

tent with ȳ in (3.4). Specifically, we shall write

F̃(x̃, t) =

(

F̃c(x̃, t)

F̃u(x̃, t)

)

.

(3.11)

We are now in the position to state the following propositions.

Proposition 3.1. Suppose that fi(x, t), i = 1, 2, . . . , k satisfy a Lipschitz condition

in Bn(α
2 ) with a Lipschitz constant b1. That is

|fi(u, t) − fi(v, t)| ≤ b1

k
‖u− v‖, i = 1, 2, . . . , k, (3.12)

for all u, v in Bn(α
2 ) and all time t. Then (3.5a) holds true.

Proof. Note that EF̃(x̃, t) =









Af̃1(x̃, t)
...

Af̃n(x̃, t)









,

where A is given as in (3.1a), and so

[Af̃i(x̃, t)]− =









fi(x1, t) − fi(x2, t)
...

fi(xm−1, t) − fi(xm, t)









,

i = 1, 2, . . . , n. (3.13)

Since

F̄c(ȳ, t) =









[Af̃1(x̃, t)]−

...

[Af̃k(x̃, t)]−









,

we conclude that (3.5a) holds. �

From the above proposition, we see that the nonlinearities on the corresponding

coupled space are only assumed to be Lipchitz. The following proposition is very

useful in the sense that by checking how each component fi of the nonlinearity f is

formed, one would then be able to conclude whether (3.5c-d) are satisfied.

Proposition 3.2. Let u = (u1, . . . , un)T and v = (v1, . . . , vn)T be vectors in

Bn(α
2 ). Let wp =

p
∑

i=0

ki, p = 1, . . . , l, where k0 = k, the dimension of coupled space,

and k1, . . . , kl and l are given as in (3.5c). Write fwp−1+i(u, t) − fwp−1+i(v, t),
11



i = 1, . . . , kp, as

fwp−1+i(u, t) − fwp−1+i(v, t)

=

kp
∑

j=1

qwp−1+i,wp−1+j(u,v, t)(uwp−1+j − vwp−1+j) + rwp−1+i(u,v, t).

(3.14a)

We further assume that the followings are true.

(i) For p = 1, . . . , l, let Qu,v,p = (qwp−1+i,wp−1+j(u,v, t)), where 1 ≤ i, j ≤ kp.

Then µ∗(Vp) < −γ for all p, u,v in Bn(α
2 ) and all time t, where ∗ =

1, 2,∞. (3.14b)

(ii) Let rp =
(

rwp−1+1(u,v, t), . . . , rwp
(u,v, t)

)T
. We have that

‖rp‖ ≤ b2 ‖









u1 − v1

...

uwp−1 − vwp−1









‖ (3.14c)

for all p, u,v in Bn(α
2 ) and all time t.

Then (3.5c) and (3.5d) hold true for ∗ = 1, 2,∞.

Proof. Since ri(u,v, t) depend on the whole space, fi(u, t)− fi(v, t) can always be

written as the form in (3.14a). Using (3.14a) and (3.13), we have that the matrices

Up(t) in the linear part of F̄u(ȳ, t) take the form

Up(t) =
m−1
∑

w=1

Qxw,xw+1,p(t) ⊗ Dw, (3.15)

where xw are given as in (2.2), and

(Dw)ij =

{

1 i = j = w,

0 otherwise,
1 ≤ i, j ≤ m − 1.

It then follows from (2.7a,b), and (3.15) that µ∗(Up(t)) < −γ for ∗ = 1 or ∞. For

∗ = 2, we have that

m−1
⋃

w=1

σ{Qxw,xw+1,p(t) +
(

Qxw,xw+1,p(t)
)T }

= σ

{

m−1
∑

w=1

(

Qxw,xw+1,p(t) ⊗ Dw +
(

Qxw,xw+1,p(t)
)T ⊗ Dw

)

}

= σ
(

Up(t) + UT
p (t)

)

,

12



where σ(A) is the spectrum of A. We remark that the first equality above can

be verified by the definition of eigenvalues due to the structure of Up(t). It then

follows from (2.7c) that µ2(Up(t)) < −γ. The remainder of the proof is similar to

that of Proposition 3.1, and is thus omitted. �

Remark 3.2. The upshot of Proposition 3.2 is that by only checking the “struc-

ture” of the vector field f of the single oscillator, one should be able to determine

if our main result can be applied. To be precise, we begin with saving notations by

setting f as f = f(x, t) = (f1(x, t), . . . , fn(x, t))T . We then check the form of the

difference of “uncoupled” part of dynamics. That is, we write fi(u, t) − fi(v, t) in

the form of (3.14a) with i = k + 1, . . . , n. If (3.14b, c) can be satisfied, then l = 1

gets the job done. Otherwise, we further break the uncoupled states into a set of

smaller pieces to see if the resulting (3.14b, c) are satisfied.

We are now ready to state the main theorems of the paper.

Theorem 3.2. Assume that system (2.3) is (resp., uniformly) bounded dissipative.

Let coupling matrices G and D satisfy (2.4) and the nonlinearities fi(x, t), i =

1, 2, . . . , n, satisfy (3.12) and (3.14). Suppose d is greater than dc, as given in

(3.6). Then system (2.3) is (resp., uniformly,) globally synchronized.

Proof. The proof is direct consequences of Propositions 3.1 and 3.2, and Theorem

3.1. �

Remark 3.3. From here on, we will refer the assumptions in Theorem 3.2 as

synchronization hypotheses.

Theorem 3.3. Coupled system (D,G,F(x, t)), given as in Corollary 3.1, is also

(resp., uniformly,) globally synchronized provided that its coupled system is (resp.,

uniformly) bounded dissipative and that d is greater than dc. Here dc is given in

(3.9b).

4. Applications

To see the effectiveness of our main results, we consider two examples in this

section. These are coupled Lorenz equations [7, 20], and coupled Duffing oscillators

[39].

(I) We shall begin with Lorenz equations. Let x = (x1, x2, x3)
T ,

f(x, t) = f(x) = (σ(x2 − x1), rx1 − x2 − x1x3, −bx3 + x1x2)
T

=: (f1(x), f2(x), f3(x))T
.
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Here σ = 10, r = 28 and b = 8
3 . In the following cases (a), (b), (c) and (d), G

denotes the diffusive coupling with zero flux and D is, respectively,







1 0 0

0 0 0

0 0 0







,






0 0 0

0 1 0

0 0 0







,







0 0 0

0 0 0

0 0 1







,

and







0 0 0

0 1 1

0 0 1







.

For the first three cases, it was

shown in [5] that such the coupled system (D,G,F(x)) have the topological product

of an absorbing domain

B = {x2
1 + x2

2 + (x3 − r − σ)2 <
b2(r + σ)2

4(b − 1)
=: β}. (4.1)

Hence, in each case, we will concentrate on the illustration of how our main results

may or may not be applied.

(a) Let D = D1 =







1 0 0

0 0 0

0 0 0







.

For “coupled” nonlinearity f1, we get that

|f1(u) − f1(v)| = σ|(u2 − v2) − (u1 − v1)| ≤
√

2σ‖u − v‖.

Hence, condition (3.5a) is satisfied. For “uncoupled” nonlinearities f2 and f3, we

see that

f2(u) − f2(v) = (−u2 − u1u3 + ru1) − (−v2 − v1v3 + rv1)

= [−(u2 − v2) − u1(u3 − v3)] + (r − v3)(u1 − v1) (4.2a)

and

f3(u) − f3(v) = (u1u2 − bu3) − (v1v2 − bv3)

= [u1(u2 − v2) − b(u3 − v3)] + v2(u1 − v1). (4.2b)

Writing (4.2a,b) in the vector form, we get

(

f2(u) − f2(v)

f3(u) − f3(v)

)

=

(

−1 −u1(t)

u1(t) −b

)(

u2 − v2

u3 − v3

)

+

(

(r − v3)(u1 − v1)

v2(u1 − v1)

)

=: Qu,v,1(t)

(

u2 − v2

u3 − v3

)

+ r1. (4.2c)

14



Clearly, µ2(Qu,v,1(t)) = max{−1,−b} = −1 < 0, and ‖r1‖ ≤ (σ +
√

β) · |u1 − v1|,
where its estimate depends only on coupled space. Hence, conditions (3.14b,c) are

satisfied.

(b) Let D = D2 =







0 0 0

0 1 0

0 0 0







.

As in the case (a), the “coupled” nonlinearity

f2 is clearly Lipschitz on the absorbing domain. The difference of “uncoupled”

nonlinearities f1 and f3 are given as follows.

f1(u) − f1(v) = [−σ(u1 − v1)] + σ(u2 − v2),

f3(u) − f3(v) = [−b(u3 − v3)] + u1(u2 − v2) + v2(u1 − v1).

If l = 1 is chosen, then (3.14c) is violated. For in the case, the norm estimate

in the right hand side of (3.14c) can only depend on u2 − v2. Now, if we choose

l = 2 and pick the space of the first diagonal block being the one associated with

the nonlinearity f1, then Qu,v,1 = (−σ) and r1 = σ(u2 − v2). Consequently,

(3.14b) and (3.14c) are satisfied. Moreover, we have Qu,v,2 = (−b) and r2 =

u1(u2 − v2) + v2(u1 − v1), which depends only on the coupled space and the first

uncoupled space. Thus, r2 satisfies (3.14c).

(c) For illustration, we also consider D = D3 =







0 0 0

0 0 0

0 0 1







.

In this case, the

uncoupled nonlinearities of f1 and f2 both contain the terms x2 and x1. The only

feasible choice to break the uncoupled space is not to do any breaking. Conse-

quently, Qu,v,1 =

(

−σ σ

r − u3(t) −1

)

. For such Qu,v,1, its matrix measure can

not stay negative for all time. An indicated, see e.g., [20], synchronization fails for

this type of partial coupling.

(d) Let D = D4 =







0 0 0

0 1 1

0 0 1







.

To apply Theorem 3.3, we first note that for

D = D5 =







0 0 0

0 1 0

0 0 1







,

the corresponding coupled system (D5,G,F(x)) is

indeed globally synchronized, and hence, so is the system (D4,G,F(x)). Note that

bounded dissipation of the system (D4,G,F(x)) can be verified similarly as in [20].
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(e) The work that are most related to ours are those in [7,8]. While their esti-

mates for dc seems to be sharper than ours, which we shall illustrate in case (f),

their connectivity topology requires that off-diagonal entries be nonnegative. We

only assume our connectivity topology satisfies (2.4a,b). Consider for instant the

following matrix:

G =











−1 2 0 −1

−1 −1 0 2

2 −1 −3 2

0 0 3 −3











.

Such G has some negative off-diagonal entries and satisfy (2.4a,b). In fact, the

eigenvalues of G are 0, −1 ±
√

5i, and −6. Clearly, applying our results, we see

immediately that the coupled system (Di,G,F(x)), i = 1, 2, 4 are globally synchro-

nized. Numerical results (see Figure 4.1.) indeed confirm synchronization of such

connectivity topology. We remark that by constructing the Lyapunov function as

given in [20], one would be able to show bounded dissipation of the coupled system

with this particular connectivity topology.

0 10 20 30 40 50 60 70 80
−20

0

20

40

time

x−
di

ffe
re

nt

0 20 40 60 80 100
−40

−20

0

20

time

y−
di

ffe
re

nt

0 20 40 60 80 100
−50

0

50

time

z−
di

ffe
re

nt

Figure 4.1. The difference of each component of two coupled os-

cillators in case (e).

(f) In this part, we shall compute the lower bound for global synchronization for case

(a) by using our method, those obtained in [7] and MSF, respectively. To compute

dc, given in (3.6), we note that Ḡ = CGCT (CCT )−1 = C(CT C)CT (CCT )−1
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= CCT . Since Ḡ is symmetric, c and ǫ, given as in (3.7b), can be chosen to be 1,

and 0, respectively. Consequently,

dc =

√
2σ
√

1 + β + 2σ
√

β + σ2

4 sin2( π
2n

)
.

(4.3)

Here 4 sin2( π
2n

) = |λ1|. Applying Theorem 3.3, we see that the coupled sys-

tem (D,G,F(x)) is uniformly, globally synchronized provided that the coupling

strength d is greater than dc. For n = 4, dc ≈ 1189. In [7], the bound d̄c for

threshold of uniformly global synchronization is

d̄c =

{

a
8n2 if n is even
a
8 (n2 − 1) if n is odd

.

Here a = b(b+1)(r+σ)2

16(b−1) − σ. For n = 4, d̄c ≈ 1039, which is slightly better than dc.

Using the MSF-criteria, we numerically (see Figure 4.2.) compute the maximum

Lyapunov exponent of the variational equations with respect to the parameter α.

We have in this example that if

α = dλ1 < −7.778, (4.4)

then its maximum Lyapunov exponent is negative. Here λ1 = −4 sin2 π
8 is the

largest nonzero eigenvalues of G. Hence if d > −7.778
λ1

≈ 13.3, then local synchro-

nization of the coupled system (D,G,F(x)) can be realized.
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Figure 4.2. The vertical axis denotes the maximum Lyapunov

exponent of the variational equations. While the horizontal axis

represents α = dλ.
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(II) Another formulation not considered in [7,8] is the Duffing oscillators. Specif-

ically, the individual system considered is defined by

ẋ1 = −αx1 − x3
2 + a coswt (4.5a)

ẋ2 = x1, (4.5b)

where α and a are positive constants. Letting x = (x1, x2)
T , we have

f(x, t) = (f1(x, t), f2(x)) = (−αx1 − x3
2 + a coswt, x1). (4.6a)

Assume coupling matrices D and G are, respectively,

D(c) =

(

1 c

0 0

)

(4.6b)

and

G(ǫ, r) =



























−2ǫ ǫ − r 0 · · · 0 ǫ + r

ǫ + r −2ǫ ǫ − r
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . −2ǫ ǫ − r

ǫ − r 0 · · · 0 ǫ + r −2ǫ



























,

(4.6c)

where ǫ > 0 and r are scalar diffusive and gradient coupling parameters, respec-

tively. Note that

f2(u) − f2(v) = 0(u2 − v2) + (u1 − v1)

and so the matrix measure of the corresponding Qu,v,1 is zero. To apply our

theorem, we need to make the following coordinate change.

Letting y2 = x2 and y1 = qx1 + px2, we see that (4.5a,b) becomes

ẏ1 = (
p

q
− α)y1 + p(α − p

q
)y2 − qy3

2 + qa coswt =: f̄1(y) (4.7a)

ẏ2 =
−p

q
y2 +

1

q
y1 =: f̄2(y), (4.7b)

and the corresponding coupled system (3.2) becomes

˙̃y1 = (
p

q
− α)ỹ1 + p(α − p

q
)ỹ2 − qỹ3

2 + g(t)

+ d(qc − p)G(ǫ, r)ỹ2 + dG(ǫ, r)ỹ1 (4.8a)

˙̃y2 = − q

p
ỹ2 +

1

q
ỹ1, (4.8b)
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where ỹ3
2 = (y3

1,2, . . . , y
3
m,2)

T and g(t) = a cos(wt) (1, · · · , 1)T . In the following, we

choose (p, q) to be (1, c − 1
d
) as c > 0, and to be (−1,− 1

d
) as c = 0, respectively.

Then in the case of c > 0, (4.8) becomes

˙̃y1 = dG(ǫ, r)ỹ1 + (c − α − 1

d
)ỹ1 + (α − c +

1

d
)ỹ2 − ỹ3

2 + g(t) + G(ǫ, r)ỹ2

=: dG(ǫ, r)ỹ1 + F̃c(ỹ, t)

˙̃y2 = − 1

c − 1
d

ỹ2 + ỹ1.

The purpose of the coordinate transformation is two-fold. First, to make the dy-

namics of the linear part on the uncoupled space stable. In this case, the coefficient

of ỹ2 becomes negative when d > 2
c
. Second, to make sure the parameters in the

nonlinear part of coupled space contain no bad influence of d, coupling strength.

Otherwise, we may not be able to control its corresponding dynamics by choosing

d large.

It is then easy to check that assumptions for Theorem 3.1 are all satisfied, and

similar arguments can be followed for the case of c = 0. Finally, in Appendix,

we will show that if 4α
4+αm2 > c ≥ 0, ǫ > 0 and r ∈ R, then the coupled system

(D(c),G(ǫ, r),F(x, t)) is bounded dissipative. Thus, we can summarize the results

as follows

Theorem 4.1. Let f , D(c) and G(ǫ, r) be given as in (4.6a), (4.6b) and (4.6c),

respectively. Let 0 ≤ c < 4α
4+α2m

. Then the coupled system (D(c),G(ǫ, r),F(x, t))

is globally synchronized provided that d is chosen sufficiently large.

Proof. It remains only to verify that G(ǫ, r) satisfies assumptions (2.4a,b). Indeed

G(ǫ, r) is a circulant matrix (see e.g., [13]), the eigenvalues λk of G(ǫ, r) are

λk = −2ǫ(1 − cos
2kπ

n
) − i 2r sin

2kπ

n
, k = 0, . . . , m − 1.

�

Remark 4.1. (i) It was shown in [17] that there are positive constants d0 and

c0 such that, for d ≥ d0, c ≥ c0, the system (D(c),G(ǫ, 0),F) given in (4.7) is

synchronized. Our results also work for the case that c0 is zero or small or G(ǫ, r),

r 6= 0. (ii) It was shown in [1] that there are positive constants d0 and c0 such that

for d ≥ d0, c ≥ c0, the system (D(c),G,F) is synchronized. Here −G is a positive

definite matrix.

5. Conclusion

We have developed theory to prove global synchronization in lattices of coupled

chaotic systems. The results can be applied to quite general connectivity topol-

ogy. In fact, it needs only to satisfy (2.4). In addition, a rigorous lower bound on

the coupling strength to acquire global synchronization of the coupled system is
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obtained. Moreover, by merely checking the structure of the vector field of single

oscillator and verifying bounded dissipation of the coupled system, we shall be able

to determine if the coupled system is synchronized or not. We conclude this paper

by mentioning some possible future work. First, it is of great interest to extend

our method to study the real world topology. Second, it is certainly worthwhile to

study how bounded dissipation of the coupled system is related to the uncoupled

dynamics and its connectivity topology. Third, it is interesting to study (global)

synchronization of coupled system which lacks bounded dissipation such as the

Rössler system.

ACKNOWLEDGMENT

We thank referees for suggesting numerous improvements to the original draft.

Some future work from one of the referees is also greatly appreciated.

Appendix A

In this appendix, we prove bounded dissipation of the systems considered in (4-

II). Setting x̃3
2 = (x3

1,2, . . . , x
3
m,2)

T , and g(t) = a cos(wt) (1, · · · , 1)T
. We see that

(2.6) becomes

˙̃x1 = −αx̃1 − x̃3
2 + g(t) + dcG(ǫ, r)x̃2 + dG(ǫ, r)x̃1 (A.1a)

˙̃x2 = x̃1. (A.1b)

We consider the following scalar-valued function as the Lyapunov function of the

coupled system (D(c),G(ǫ, r),F(x, t))

U(x̃1, x̃2) =
1

2
< x̃1, x̃1 > +

m
∑

i=1

x4
i,2

4
+ c < x̃2, x̃1 >, (A.2)

Taking the time derivative of U along solutions of the coupled system (D(c),G(ǫ, r),F(x, t)),

we have

dU

dt
=< x̃1, ˙̃x1 > +

m
∑

i=1

x3
i,2xi,1 + c < x̃1, x̃1 > +c < x̃2, ˙̃x1 >

= (c − α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2,g(t) >

+ d < x̃1,G(ǫ, r)x̃1 > +2dc < x̃1,G(ǫ, r)x̃2 > +dc2 < x̃2,G(ǫ, r)x̃2 >

= (c − α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2,g(t) >

+ d (x̃1, x̃2)

((

1 c

c c2

)

⊗ G(ǫ, r)

)(

x̃1

x̃2

)

≤ (c − α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2,g(t) >
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Note that the last inequality holds true since

((

1 c

c c2

)

⊗ G(ǫ, r)

)

+

((

1 c

c c2

)

⊗ G(ǫ, r)

)T

=

(

1 c

c c2

)

⊗ (G(ǫ, r) + G(ǫ, r)T ),

and G(ǫ, r) + G(ǫ, r)T is a nonpositive definite matrix. On the other hand, since

< x̃2, x̃
3
2 >=

m
∑

i=1

x4
2,i ≥

1

m

(

m
∑

i=1

x2
i,2

)2

≥ 1

m
‖x̃2‖4

2,

we have

dU

dt
≤ (c − α)‖x̃1‖2

2 + cα‖x̃2‖2‖x̃1‖2 −
c

m
‖x̃2‖4

2 +
√

ma(‖x̃1‖2 + c‖x̃2‖2)

=: u(‖x̃2‖1, ‖x̃2‖2).

We are now in a position to show bounded dissipation of the coupled system

(D(c),G(ǫ, r),F(x, t)).

Proposition A.1.

(i) If c satisfies the inequality

0 < c < min{ 4α

4 + α2m
, α} =

4α

4 + α2m .

(A.3)

Then there exists a constant c0 so that dU
dt

< 0 for ‖x̃2‖2
1 + ‖x̃2‖2

2 ≥ c0.

(ii) If c = 0, then the first assertion of the proposition still holds true.

Proof. Suppose ‖x̃2‖2 ≥ 1. Then

u(‖x̃1‖2, ‖x̃2‖2) ≤ (c − α)‖x̃1‖2
2 + cα‖x̃2‖2‖x̃1‖2 −

c

m
‖x̃2‖2

2 +
√

ma(‖x̃1‖2 + c‖x̃2‖2)

=: ū(‖x̃1‖2, ‖x̃2‖2).

It then follows from (A.3) that the the level curve of ū is a bounded closed curve.

We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists a

c1 so that dU
dt

< 0 whenever ‖x̃2‖2
1 + ‖x̃2‖2

2 ≥ c1 and ‖x̃2‖2 ≥ 1. Let ‖x̃2‖2 < 1 and

‖x̃2‖2
1 + ‖x̃2‖2

2 ≥ c2. Here c2 is a constant to be determined. Then

u(‖x̃1‖2, ‖x̃2‖2) ≤ (c − α)‖x̃1‖2
2 + (cα +

√
ma)‖x̃1‖2 +

√
mac =: h(‖x̃1‖2).
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Since h(‖x̃1‖2) is a parabola-like curve which is open downward, there exists a

c3 > 1 such that h(‖x̃1‖2) < 0 whenever ‖x̃1‖2 ≥ c3. Thus, if c2 ≥ c2
3 + 1, then

u(‖x̃1‖2, ‖x̃2‖2) < 0 whenever ‖x̃2‖2 < 1 and ‖x̃1‖2
2 + ‖x̃2‖2

2 ≥ c2. Picking c0 =

max{c1, c2}, we have that the assertion of the proposition holds true. �

Proposition A.2. Assume (A.3) holds true. Then lim
r→∞

U(x̃1, x̃2) = ∞, where

r =
√

‖x̃1‖2 + ‖x̃2‖2.

Proof. From (A.2), we have that

U(x̃1, x̃2) =
1

2
‖x̃1‖2 +

m
∑

i=1

x4
i,2

4
+ c < x̃2, x̃1 >

≥ 1

2
‖x̃1‖2 +

1

4m
‖x̃2‖4 − c‖x̃2‖ · ‖x̃1‖,

Let 1
4m

b2
1 > c2. Then suppose ‖x̃2‖ > b1, we have

U(x̃1, x̃2) ≥
1

2
‖x̃1‖2 + c2‖x̃2‖2 − c‖x̃2‖‖x̃1‖ =: h1(‖x̃1‖, ‖x̃2‖).

Since the level curve of h1(‖x̃1‖, ‖x̃2‖) is elliptic-like in the plane. Thus, for

any given M > 0, there exists a d1 > 0 such that U(x̃1, x̃2) > M whenever

‖x̃1‖2 + ‖x̃2‖2 ≥ d2
1 and ‖x̃2‖ > b1.

Let ‖x̃2‖ ≤ b1. Then

U(x̃1, x̃2) ≥
1

2
‖x̃1‖2 − cb1‖x̃1‖ =: h2(‖x̃1‖, ‖x̃2‖),

since h2(‖x̃1‖, ‖x̃2‖) is a parabola-like curve which is open upward in the plane.

Thus, for any given M > 0, there exists a d2 > 0 such that U(x̃1, x̃2) > M

whenever ‖x̃1‖2+‖x̃2‖2 ≥ d2
2 and ‖x̃2‖ ≤ b1. Picking δ = max{d1, d2}, we have that

U(x̃1, x̃2) > M for all ‖x̃1‖2 + ‖x̃2‖2 ≥ δ2. Thus, the assertion of the proposition

holds true. �

Theorem A.1. The coupled system (D(c),G(ǫ, r),F(x, t)) is bounded dissipative

if condition (A.3) holds true.

Proof. The proof is direct consequences of Propositions A.1 and A.2. �
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