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ABSTRACT

Based on the concept of matrix measures, we study global stability of synchronization in
networks. Our results apply to quite, general connectivity topology. In addition, a rigorous
lower bound on the coupling strength~for global synchronization of all oscillators is also
obtained. Moreover, by merely checking the structure of the vector field of the single
oscillator, we shall be able to determine if the system is globally synchronized.
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1. INTRODUCTION

Lattices of coupled chaotic oscillators model many systems of interest in physics,
biology and engineering. In particular, complete chaotic synchronization, all oscilla-
tors acquiring identical chaotic behavior, has received much attention analytically.
There are, in general, two classes of results which give criteria for such synchro-
nization. The first class of results linearizes around the synchronous manifold, and
then computes the Lyapunov exponents or matrix measures of the variational equa-
tions to get local synchronization [29,10] or use partial contraction principle to get
global synchronization [33]. The second class of results uses Lyapunov method by
constructing a Lyapunov function to give an analytical criteria for local or global
synchronization [3-8,30,35-38]. This paper gives yet another approach by utilizing
the concept of matrix measures to get global synchronization criteria. The coupling
configuration of the networks is quite general, which includes asymmetric connec-
tions between nodes and/or some competitive (g;; < 0, i # j) couplings between
cells x; and x;, and partial-state coupling with nonzero off-diagonal connections.
Moreover, by merely checking the structure of the vector field of the single oscillator,

we shall be able to determine if the system is globally synchronized.
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During the last few decade's" the study of, hétWorks of dynamical systems has at-
tracted increasing attention [1 12, 14- Bjr,,33 39] The purpose to connect dynamical
systems in networks is to get them to solve proble‘ms cooperatively. For instance,

such networks are needed Jor qurmatlon processmg in the brain [15]. The sim-

plest mode of the coordlnated motmn | Detween dynamlcal systems is their complete
synchronization when all cell§: of the network acquire identical dynamical behav-
ior. Consequently, one asks quest-lons such as: What are the conditions for the
stability of the synchronous state, especially with respect to coupling strengths and
coupling configurations of the network? Typically, in networks of continuous time
oscillators, the synchronous solution becomes stable when the coupling strength
between oscillators exceeds a critical value. In this context, a central problem is to
find the bounds on the coupling strength so that the stability of synchronization is
guaranteed.

General approaches to local synchronization of coupled chaotic systems have
been proposed, including the master stability function (MSF)- based criteria [2,26-
29,31], originated by Pecora and Carroll [29], and matrix measures approach [10].
The former computes the Lyapunov exponent of the variational equations, while
the latter uses the concept of matrix measures to give criteria on the variation
equations. Recently, local synchronization in a complex network of asymmetrically

coupled units was also obtained [11, 19] via MSF-based criteria.



Global synchronization of coupled chaotic systems was also intensively studied.
The methods include Lyapunov function- based criteria with symmetrical connec-
tions [3-7,30,35-38] or asymmetrical connections [8, 37], and the partial contraction
approach [33]. For Lyapunov-based criteria, the partial-state coupling matrix, de-
termining which state variables are coupled, is assumed to have the form satisfying
(2.4c). While the partial contraction approach needs to verify the contraction of
the system, depending on the state variables and time ¢, which is not a small task.
In developing the theory of global synchronization of coupled chaotic systems, one
needs to assume bounded dissipation of the coupled system, that is, all solutions of
the coupled system are, in some sense, eventually bounded. Such assumption plays
the role of an a priori estimate. However, in obtaining the theory of local synchro-
nization, one dose not need to know bounded dissipation of the coupled system.
Thus, not surprisingly, the criteria in getting local synchronization are composed
of a term that describes how chaotic the single system is and a term that depends
on how the configuration of the networks is formed.

The purpose of this paper is yet to give another approach to study global syn-
chronization of coupled chaotic systems. Our coupling rules are allowed to be asym-
metric and/or some competitive (g,m <4054 75 Jj) couplings between cells x; and x;
as long as the coupled system. 1s Bounded d1$Slpatlve In addition, the partial-state
coupling in our approach is allowed QOanye _‘qhg form satisfying (3.9a). Moreover, by
merely checking the structure of the '\'fét:t'cl)l;'ﬁeld of the single oscillator, we shall be
able to determine if the system is globally synchromzed We also obtain a rigorous
lower bound on the couphng strengﬂ‘l—farg}obal synchromzatlon of all oscillators
with coupling configuration satasfymg (2 4a) and (2.4b). Finally, the concept of
matrix measures is introduced to o_btam §Hch global results.

We organize the paper as follows. Section 2 is to lay down the foundation of
our paper. The main results are contained in Section 3. Coupled Lorenz systems
and coupled Duffing systems are used as illustrations. We also compare our results
with those in [7, 8].

2. BAsic FRAMEWORK AND PRELIMINARIES

In this paper, we will denote scalar variables in lower case, matrices in bold
type upper case, and vectors (or vector-valued functions) in bold type lower case.
We consider an array of m cells, coupled linearly together, with each cell being an
n~- dimensional system. The entire array is a system of nm ordinary differential

equations. In particular, the state equations are

dXi
dt

=f(x;,t) +d- Y gi;Dx;, i=1,2,...,m, (2.1)
j=1
2



where x; € R™, f : R” x R — R™ and D is an n X n real matrix. Let

X1 Zi,1

«— : x; = : and G = (9ij) ) scm. (2.2)

) )

Then (2.1) can be written as

f(Xl7 t)
X = +d(G®D)x =: F(x,t) + d(G® D)x, (2.3a)
f(xm,t)

where ® denotes the Kronecker product, and

fl (Xia t)

f:n(,xz ’ t)

We next impose conditions on couphnﬁ matrlces G and D. We assume that cou-
pling matrix G satisfies the followmg‘ .
: =

(i)A=0isa simplle_n:'ejger‘.l\ura.:.}.&cj—.oif—_gﬂnc:l g%l: 1,1,...,1)5,,, is
its corresponding’ eigenvector (2.4a)
(i) All nonzero eigenvalues of G have negative real part. (2.4b)

We further assume that coupling matrix D is, without loss of generality, of the form

I
p- 0 (2.4c)
0 O nXxXn

The index k, 1 < k < n, means that the first £ components of the individual
system are coupled. If k # n, then the system is said to be partial-state coupled.
Otherwise, it is said to be full-state coupled.

From time to time, we will refer system (2.3) as the coupled system (D, G, F(x, t)).
To study synchronization of such system, we permute the state variables in the fol-

lowing way:

X1,i X1

Tm,i Xn



Then (2.3) can be written as

f1 (5(7 t)
X = : +d(D ® G)x =: F(x,t) + d(D ® G)x, (2.6a)
f,(x,1)
where
fi(xla t)
fi(x,t) = : (2.6b)
fi(xma t)

The purpose of such reformulation is two fold. First, a transformation of coordinates
of x is to be applied to (2.6) so as to decompose the synchronous manifold. Second,
once the synchronous manifold is decomposed, proving synchronization of (2.3), is
then equivalent to showing that the origin is asymptotically stable with respect to
reduced system (3.3). From here-oﬁ,. we x;\'/i"ll'-treat "~ as a function that takes x into
X or x; into X;. . A Ey ". .
We next give the deﬁnitfo‘li“of the !B%nind.ed' ;dis-si_‘pation of a system.

Definition 2.1. (i) A sysﬁgfr_l of 7y o_nl:gl-i.hé,ry glifferenjtial equations is called bounded
dissipative provided that far any ¢ Si0randfor any initial conditions xo in By(r),
there exists a time t* > tg stiéh-th'ét IIx(?)|| e for all ¢ > t*. (ii) If, in addition,
o, is independent of 7, then the Systemris said to be uniformly bounded dissipative

with respect to a..

To prove global synchronization of coupled chaotic systems, one needs to assume
bounded dissipation, which plays the role of an a priori estimate. Without such
an a priori estimate, as in the case of the Rossler system, global synchronization is
much more difficult to obtain. Only local synchronization was reported numerically
in literature (see e.g., [4]). We remark that in certain cases of the Rdssler system,
the trajectory of each oscillator grows unbounded yet approaches each other (see
e.g., [4]). An interesting question in this direction is how bounded dissipation of the
coupled system is related to the uncoupled dynamics and its connectivity topology.
Not much general theorems have been provided so far. In the case that G is
diffusively coupled with periodic boundary conditions or zero-flux and D satisfies
(2.4c¢), it was shown in [5] that bounded dissipation of the single oscillator implies
that of the coupled chaotic oscillators. Moreover, the absorbing domain of the
coupled system is a topological product of the absorbing domain of each individual

system.



In our derivation of synchronization of system(2.3), we need the concept of matrix
measures. For completeness and ease of references, we also recall the following
definition of matrix measures and their properties (see e.g., [32]).

Definition 2.2. Let || - ||; be an induced matrix norm on C"*™. The matrix
I+eAl; —1
measure of matrix A on C™*" is defined to be u;(A) = lim I+ Al =1
0 €
Lemma 2.1. Let || - ||x be an induced k-norm on R™ ™ where k = 1,2,00. Then
each of matriz measure pup(A) k = 1,2,00, of matric A = (a;;) on R™ ™ is,
respectively,
fioo(A) = max {as + ) _ laij|}, (2.7a)
JFi
p1(A) = max{aj; + > lagl}, (2.7b)
i#]
and
p2(A) = Anax (AT + A) /2. (2.7¢)

Here Amax(A) is the maximum..eig'éﬁvdlu.é "o'f A.

Theorem 2.1. (see e.g., 3:5:32 of [32])} Consider the differential equation X(t) =
A(t)x(t)+v(t), t > 0, whefe x(t) € R”E A(t) e R™" and A(t),v(t) are piecewise-
continuous. Let || - ||; be 4 norm on R, “and ', pi denote, respectively, the
corresponding induced norm and m(i%rw easure: on R"*".  Then whenever t >

to > 0, we have I sl

It exp { / —ui(—A(S))dS}-; / o [ -ncamar vl < it

< st { [ itaas ) + / e { [ i vl @)

to

To conclude this section, we define global synchronization as in the following.

Definition 2.3. (i) System (2.3) is said to be globally synchronized if for any given
initial values x( there exists a d = dy, such that system (2.3) is synchronized for
the initial conditions xg. Here dx, is a constant depending on xq. (ii) System (2.3)
is said to be uniformly, globally synchronized if there exists a d = d; such that

system (2.3) is synchronized for all initial values xg.

3. MAIN RESULTS

To study synchronization of (2.3), we first make a coordinate change to decom-

pose the synchronous subspace. Let A be an m x m matrix of the form
5



0
A = 0 ::(ST> (3.1a)

mxXm

jen)}
jen}
—
|
—

where e is given as in (2.4a). It is then easy to see that CC” is invertible and that

Al= (CT(CCT)—1| %) (3.1b)

Setting
E=1I,®A, (3.1c)

we see that

ED®GE™ = (I, 9 A)DEG)KI, ® A™)
. '(_.CGCT(CCT)—1 0 )
£ & * 0

(3.1d)

We remark, via (3.1d), that Ul("G)‘V_— {0} = O‘(é), where o(A) is the spectrum of
matrix A. Multiplying E to the both side of equation (2.6a), we get

y = Ex = EF(%,t) + dE(D ® G)E~ 'y

- ~ G 0 _
=EF(E 'y, t) +d(D® < 0 ) )y- (3.2)
*
-~ L1, — X2,
yl . —
Lety = [ Then y; = : Setting §; = e
~ Tm—1,i — Tm,i Zj:l Lji
Yn o :
: D1 T
yi
andy = : we have that the dynamics of y is satisfied by following equation
Yn

y =dD ® G)y + F(y,1). (3.3)



Here F is obtained from EF(E~'y,t) accordingly.

The task of obtaining global synchronization of system (2.3) is now reduced to
showing that the origin is globally and asymptotically stable with respect to system
(3.3). To this end, the space y is broken into two parts y., the coupled space, and

¥Yu, the uncoupled space.

y = {f and F(y,t) = - (}j ) respectively. (3.4)
Yu Fu(y,t)

)

y1 Yi+1

Here y. = : and y,, = : . The dynamics on the coupled space

Yk Yn

with respect to the lzlnear part is under the influence of G, which is asymptotically
stable. The dynamics of the nonlinear part on coupled space can then be controlled
by choosing large coupling strength. As a matter of fact, it is easier to obtain
synchronization of coupled chaoti.c,‘systemls_. with a larger coupled space. On the
other hand, the uncoupled spéiéé has no éfeib]g matrix G to play with. Thus,
its corresponding vector ﬁeldf‘u(y,tl).;musthave a certain structure to make the
trajectory stay closer to the origin as tﬁrﬁg_,:pfdgr'éssles. As we shall explain latter.

Now, assume that F.(y,#) satisfies a dual-Lipschitz condition with a dual-Lipschitz

constant b;. That is, C Y

PNy (3.52)

whenever y in the ball B,,_i),(a), and for all time ¢. Since the estimate in the
right-hand side of (3.5a) depends on the whole space y, condition (3.5a) is a mild
assumption provided that the coupled system is bounded dissipative. Write F,, (y,1)
as

U(t)yu + (Fu(ya t) - U(t)yu)
:U)y. + Ru(y, ). (3.5b)

&
S
<
K.
[

Assume that U(t) is a block diagonal matrix of the form U(t) = diag(Uy(¢t),--- , U;(t))

where Uj(t), j = 1,...,[, are matrices of size (m — 1)k; x (m — 1)k; . Here
1

Z k; =n —k, and k; € N. We assume further that the followings hold.
j=1



(1) The matrix measures p;(U,(t)) are less than —v for all ¢ and all j,
where v > 0. (3.5¢)

I{U1(y9t)
(i) Let Ry (y,t) = Then R,;(y,t), j = 1,...,1, satisfy a strong
I{ul(y3t) .
dual-Lipschitz condition with a strong dual-Lipschitz constant bs. Specifically, let
yul
Yu = , written in accordance with the block structure of U(¢). Then we
yul
assume that

Ye
_ yul
[Ru; (¥, 8)] < b2 || : [ (3.5d)
yujfl

whenever y in the ball B, _ 1n (a and: for, all 7 =1,...,l and all time t.
Specifically, we break the; vector ﬁeld F into (tlme dependent) linear part
U(t)y., and nonlinear part Ry, (¥, %)} |’We Wlll further break U(t) into certain block
diagonal form if necessary.*Note that form (3 5b) can always be achieved since the
remainder term R, still depends on the Whole spaﬂe y. To take control of the dy-
namics on the linear part, we: assume meatrlx measure of each diagonal block
U, (t) is negative. As to conthil correspondlng dynamlcs on the nonlinear part, we
assume that (3.5d) holds. Note ‘that thongh' the nonlinear terms R.,;(¥,t) could
possibly depend on the whole space, their norm estimates are required to depend
only on the coupled space and uncoupled subspaces with their indexes proceeding
7. In this set up, the nonlinear dynamics on uncoupled space can be iteratively
controlled by choosing large coupling strength. We also remark that if (3.5¢) and
(3.5d) are satisfied for I, the number of diagonal blocks, being one, then we do
not need to further break U(¢). Such further breaking is needed only if (3.5¢) and
(3.5d) are not satisfied. The proof in the following theorem gives exactly how the

above strategy can be realized.

Theorem 3.1. Let G and D be given as in (2.4). Assume that F satisfies (3.5a-
d), and system (5. 3) is uniformly bounded dissipative with respect to . Let \y =
max{A;|\; € Re(c(G))}. If

l
Cbl b2 2 z
d>——11 —= =:d, 3.6
(1 2p) =a (3.6)

where € > 0 and ¢ is some constant depending on G and €, then lim y(t) = 0.

t—o0o

8



Proof. Since system (3.3) is uniformly bounded dissipative with respect
out loss of generality, we may assume that ||y (¢)|| < « for all time ¢

(3.5b), we write (3.3) as

) )

ye \ (¥,1)
()= (9 o) () (R0

u(¥5t)

j=v I,

Yu
Applying the variation of constant formula to (3.7a) on y., we get

to

to a, with-
> to. Using

(3.7a)

t
e(t) = 0BG (1) 4 / et LBD R (3 (s), 5)ds.

Let Ay = max{ \;|\; € Re(o(G) — {0} ) }. Then

”etd(Ik@G)” < celd

for v = A\ 4+ € and some constant ¢. Here 0 < ¢ < —A;. Thus,

(3.7b)

e &, .
1501 < el S STAERDR, < I55)l s
= - == l Wl e

< Ce.(-t-—‘fo)dua d. 9@ =:cela
- | d |v|. =

1E

Let 6 > 1, we see that o
e

_ !
50l < Seos,

‘ (t'f—to)duaJr Q.
70

(3.8a)

whenever ¢ > tg; for some t5; > 0. We then apply Theorem 2.1 on y,; and the

resulting inequality is

[Vur (@) < ||5’u1(t0,1)||exp{/t Mz‘(Ul(S))dS}

+ /tt exp{ / t M(Ulm)dT} Rt (

It then follows from (3.5¢-d) and (3.8a) that

o by
— = < —=
d CO(S_d’)/CO

[¥ur ()] < aeY(t=to1)
9

¥(5), 5)llds.



whenever ¢ > ¢ ; for some t1,; > tp,1. Inductively, we get

§It = %cj(sj“, J=2,.1 (3.8¢)

j—1
2

2.

i=0

whenever ¢ > ¢;1(> tj_1,1). Letting ;1 = ¢; and summing up (3.8a), (3.8b) and
(3.8¢), we get

L
_ b 2 ch
Ig Il = Znyw ||2+|y(>||2<_(1+<j>) 1§41 g,

v
3
whenever ¢t > t1. Choosing d > (1 + (%2)2) %(5”1, we see that the contraction
factor h is strictly less than 1, and ||y(t)|| contracts as time progresses. To complete

the proof of the theorem, we note that § > 1 can be made arbitrary close to 1.

€
Consequently, if d > (1 + (%)2> ’ %, then h can still be made to be less than
O

Remark 3.1. (i) In case that G is symmetrlc, then ¢ and ¢ can be chosen to be
one and zero, respectively. (i) b{ andrbg could p0851bly depend on «. (iii) If system
(3.3) is only bounded d1s51pat1ve then the estimate in (3.6) is still valid. However,

in this case, by and by depend no‘ci only on o but allso on Xg.

Corollary 3.1. Suppose Fand G are given ag'in Theorem 3.1. Let

D= < f)]:)Xk. g-) ” .w;;ere Re(o(D)) > 0. (3.9a)

nxn,

Assume, in addition, that either o(G) or (D) has no complex eigenvalue.

Then assertions in Theorem 3.1 still hold true, except d. needs to be replaced by
l
Cb1 ( b2 2) z
d. = - — 14+ (—= 3.9b
|v| min{ Re(o(D) )} ( 0 ) ‘ ( )
Proof. Assumption on D is to ensure that (3.7b) is still valid. Other parts of the

proof are similar to those in Theorem 3.1 and are thus omitted. O

We next turn our attention to finding conditions on the nonlinearities f;(u,t),
i=1,...,n, u € R" so that assumptions (3.5a-d) are satisfied. To this end, we

need the following notations. Let X; and % be given as in (2.5). Define

[x;]” = and [x]” = (3.10)

xmfl,i [Xn]



We then break F as given in (2.6a) into two parts so that the breaking is in consis-
tent with y in (3.4). Specifically, we shall write

F(%,1) = ( :;((’;?) ) (3.11)

We are now in the position to state the following propositions.

Proposition 3.1. Suppose that fi(x,t), i = 1,2,..., k salisfy a Lipschitz condition
in By, (§) with a Lipschitz constant by. That is

b
|fi(uat) - fi(vat)| < El ||117 VHyi = 172a . wk, (312)

for allu, v in B,(5) and all time t. Then (3.5a) holds true.

Af) (%, 1)

Proof. Note that EF (%, t) = where A is given as in (3.1a), and so

2

T, §

Afi(x,0)]" = = | & i : C T (3.13)
f;(Xm-lyt-)—_f i-(;xma t).‘_-‘.‘ ;
Since T
[Af (%, 1))
Fc(}_’, t)=
[Afy (%, )]~
we conclude that (3.5a) holds. O

From the above proposition, we see that the nonlinearities on the corresponding
coupled space are only assumed to be Lipchitz. The following proposition is very
useful in the sense that by checking how each component f; of the nonlinearity f is

formed, one would then be able to conclude whether (3.5¢-d) are satisfied.

T

Proposition 3.2. Let u = (u1,...,u,)?” and v = (vi,...,v,)7 be vectors in

P
B, (5). Letw, = Z ki, p=1,...,1, where kg = k, the dimension of coupled space,
i=0
and kyi,....k and 1 are given as in (8.5¢c). Write fu,  1i(u,t) — fu,_ 4+i(V,1),
11



1=1,...,kp, as

pr,1+i(u7 t) - pr71+i(va t)
kp

= Z Gwp_1+i,wp_1+] (11, v, t) (uwpfl“rj - va—l“l’j) + T, 141 (11, Vv, t)'
j=1
(3.14a)

We further assume that the followings are true.

(i) Forp=1,...,1, let Quv,p = (qu, 1 +iw, 1+ (0, Vv, 1)), where 1 <i,j < k.
Then p.(Vp) < —v for all p, u,v in B,(5) and all time t, where x =
1,2, . (3.14b)
(i) Let rp = (rw,_,+1(0, v, 1), ..., 7w, (u,v,t))T. We have that

Uy — U1
[[epll < 02 | : [ (3.14¢)

U”wp 1 ,Uwp— 1
]

for all p, u,v in B, (5 ) and all tzme b
Then (3.5¢) and (3.5d) hold frug f0r|%|—~ . 2“00
Proof. Since r;(u,v,t) depend on the Whole space, fz(u t) — fi(v,t) can always be

written as the form in (3. 14&) Using (3 T4a) and (3 13), we have that the matrices
U, (¢) in the linear part of F (y, t)take the form

Z wa ;Cl;+1,p D’LU7 (3.15)

where x,, are given as in (2.2), and

1 i=j53=w
D). — C1<ij<m—1.
(D) {O otherwise, =0

It then follows from (2.7a,b), and (3.15) that p.(U,(t)) < —y for * =1 or co. For
x = 2, we have that

m—1

U o4 Quuxuis () + Q) }

w=1

m—1
- { > (Qevsesrot) © Do+ (Qurr (1) 2 D) }

=0 (U,(t) + U (1)),

12



where o(A) is the spectrum of A. We remark that the first equality above can
be verified by the definition of eigenvalues due to the structure of Up(t). It then
follows from (2.7¢) that p2(Up(t)) < —v. The remainder of the proof is similar to
that of Proposition 3.1, and is thus omitted. O

Remark 3.2. The upshot of Proposition 3.2 is that by only checking the “struc-
ture” of the vector field f of the single oscillator, one should be able to determine
if our main result can be applied. To be precise, we begin with saving notations by
setting f as f = f(x,t) = (fi(x,1),..., fu(x,2))T. We then check the form of the
difference of “uncoupled” part of dynamics. That is, we write f;(u,t) — fi(v,t) in
the form of (3.14a) with ¢ = k+1,...,n. If (3.14b, c) can be satisfied, then [ = 1
gets the job done. Otherwise, we further break the uncoupled states into a set of

smaller pieces to see if the resulting (3.14b, c) are satisfied.
We are now ready to state the main theorems of the paper.

Theorem 3.2. Assume that system (2.3) is (resp., uniformly) bounded dissipative
Let coupling matrices G and D satisfy [2 4) and the nonlinearities f;(x,t), i
1,2,...,n, satisfy (3.12) and (3: 14) Suppose d is greater than d., as given in
(5. 6) Then system (2.3) zs (’r‘esp urlzi?‘ormly,) globally synchronized.

Proof. The proof is direct cdnsequences of. Proposmons 3.1 and 3.2, and Theorem
3.1. { | | = O

Remark 3.3. From here on we' w111 refer the assumptlons in Theorem 3.2 as

synchronization hypotheses.

L& e

Theorem 3.3. Coupled system (D, G,F(x,t)), given as in Corollary 3.1, is also
(resp., uniformly,) globally synchronized provided that its coupled system is (resp.,
uniformly) bounded dissipative and that d is greater than d.. Here d. is given in

(3.9b).

4. APPLICATIONS

To see the effectiveness of our main results, we consider two examples in this
section. These are coupled Lorenz equations [7, 20], and coupled Duffing oscillators
[39].

(I) We shall begin with Lorenz equations. Let x = (x1,z2,23)7,

f(x,t) =f(x) = (o(xg2 — x1), rx1 — x2 — w123, —ba3 + :clmg)T

(), fo(x), f3(x))T

13



Here o = 10, r = 28 and b = £. In the following cases (a), (b), (c) and (d), G
100

denotes the diffusive coupling with zero flux and D is, respectively, 0 0 0
0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 and [ 0 1 1 For the first three cases, it was
0 0 0 0 0 1 0 0 1

shown in [5] that such the Coup71ed system (D, G, F(x)) have the topological product
of an absorbing domain

b2 (r + o)?

22 2
B={ai+a5+ (@3 —r—o0)< 161

=: 0} (4.1)

Hence, in each case, we will concentrate on the illustration of how our main results

may or may not be applied.

1
(a)Let D=D; =] 0
0

o O O

0
0 For “coupled” nonlinearity fi, we get that

100) = £1(3)| S0 o BRI )| < Vo - v].
Hence, condition (3.5a) is ;.satisﬁ‘ed.‘._ For “uncouplléa” nonlinearities fo and f3, we
see that & 18 e

LR

Fo(0) = fo(v) = (—us — wyus + ruy) — (—va — v1v3 + V1)

= [—(ug — va) —u1(ug —v3)] + (r —v3)(uy — v1) (4.2a)

and

fa(u) — f3(v) = (urue — bus) — (viva — bus)
= [ul(ug — ’Ug) — b(U3 — ’U3)] + ’Ug(’ul — ’Ul)_ (42b)

Writing (4.2a,b) in the vector form, we get

fa@)=fo(v) \ _ [ -1 —w(t) uz—v2 (r —wvs)(ur —v1)
fa(u) — f3(v) uq (t) —b U3 — U3 va(u1 — v1)

= Quva(t) ( 42 ) tro. (4.2¢)



Clearly, p12(Quv,1(t)) = max{—1,—b} = =1 < 0, and [|r1|| < (¢ + VB) - |u1 — v1],
where its estimate depends only on coupled space. Hence, conditions (3.14b,c) are
satisfied.

0 0
(b) Let D = Dy = 10 As in the case (a), the “coupled” nonlinearity
0

0 0
fo is clearly Lipschitz on the absorbing domain. The difference of “uncoupled”

nonlinearities f; and f3 are given as follows.

fi(a) = fi(v) = [o(ur —v1)] + o(uz — v2),
f3(u) = f3(v) = [=b(us — v3)] + u1(uz2 — va) + va(ur — v1).

If | = 1 is chosen, then (3.14c) is violated. For in the case, the norm estimate
in the right hand side of (3.14c) can only depend on us — va. Now, if we choose
I = 2 and pick the space of the first diagonal block being the one associated with
the nonlinearity fi, then Qu a3 (=a)and 7, = o(uz — v2). Consequently,
(3.14b) and (3.14c) are sat.is'f'ied'. Mqreoyér, w")vke. have Quv,2 = (—b) and 7, =
ug(ug — ve) + va(ur — v1), \;&{}iich de:ﬂébds 01:11-y Qh‘_the coupled space and the first

N " ]

uncoupled space. Thus, rg_'?séitisﬁes (3._14_6)':"' a4 "]

= Sl 4=/ 0 0 0

(¢) For illustration, we also 'éqnsidér D=Ds=110 0 0 In this case, the
00 1

uncoupled nonlinearities of f; and fo both contain the terms x5 and x1. The only

feasible choice to break the uncoupled space is not to do any breaking. Conse-
- o

uentl =
q Ys Qu,v,l ( T—u?,(t) ]

not stay negative for all time. An indicated, see e.g., [20], synchronization fails for

). For such Qu,v,1, its matrix measure can

this type of partial coupling.

0 0 O
(dLet D=Dy=1] 0 1 1 To apply Theorem 3.3, we first note that for
0 0 1
0 0 0
D =D; = 01 0 the corresponding coupled system (Ds, G,F(x)) is
0 0 1

indeed globally synchronize(i, and hence, so is the system (D4, G, F(x)). Note that
bounded dissipation of the system (D4, G, F(x)) can be verified similarly as in [20].

15



(e) The work that are most related to ours are those in [7,8]. While their esti-
mates for d. seems to be sharper than ours, which we shall illustrate in case (f),
their connectivity topology requires that off-diagonal entries be nonnegative. We
only assume our connectivity topology satisfies (2.4a,b). Consider for instant the
following matrix:

-1 2 0 -1

-1 -1 0 2

2 -1 -3 2

o 0 3 -3
Such G has some negative off-diagonal entries and satisfy (2.4a,b). In fact, the

G =

eigenvalues of G are 0, —1 + v/5i, and —6. Clearly, applying our results, we see
immediately that the coupled system (D;, G, F(x)), ¢ = 1,2, 4 are globally synchro-
nized. Numerical results (see Figure 4.1.) indeed confirm synchronization of such
connectivity topology. We remark that by constructing the Lyapunov function as
given in [20], one would be able to show bounded dissipation of the coupled system

with this particular connectivity topology.

x—different

10 20 30 40 50 60 70 80
time

y—different

20 40 60 80 100
time

z—different
o

0 20 40 60 80 100
time

FIGURE 4.1. The difference of each component of two coupled os-

cillators in case (e).

(f) In this part, we shall compute the lower bound for global synchronization for case

(a) by using our method, those obtained in [7] and MSF, respectively. To compute

de, given in (3.6), we note that G = CGCT(CCT)~! = c(cTc)ct(ccT)-!
16



= CCT. Since G is symmetric, ¢ and ¢, given as in (3.7b), can be chosen to be 1,

and 0, respectively. Consequently,

V20+\/1+ B+ 203 + 02
4sin2(%)

d. = (4.3)
Here 4sin? (3m) = |A1]l. Applying Theorem 3.3, we see that the coupled sys-
tem (D, G,F(x)) is uniformly, globally synchronized provided that the coupling
strength d is greater than d.. For n = 4, d. ~ 1189. In [7], the bound d. for

threshold of uniformly global synchronization is

n? if n is even

—1) ifnisodd

U

a

Il
ol ol

2 —
Here a = % — 0. For n =4, d. ~ 1039, which is slightly better than d..

Using the MSF-criteria, we numerically (see Figure 4.2.) compute the maximum
Lyapunov exponent of the variational equations with respect to the parameter a.

We have in this example that if
4 LD %"‘;-“7*‘778, (4.4)

then its maximum Lyapunév exponmt is. negatlve Here \y = —4 sin2§ is the

-7‘.778
Xy

largest nonzero eigenvalues-of.G: Henée Jf d> ~ 13.3, then local synchro-

nization of the coupled system (D G F( )) can beJ) realized.

= L, L

FIGURE 4.2. The vertical axis denotes the maximum Lyapunov
exponent of the variational equations. While the horizontal axis
represents a = dA.
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(II) Another formulation not considered in [7,8] is the Duffing oscillators. Specif-
ically, the individual system considered is defined by

i = —ax; — 25 + acoswt (4.5a)
iy = a1, (4.5b)

where a and a are positive constants. Letting x = (1, 22)”, we have
f(x,t) = (fi(x,1), f2(x)) = (—axy — 23 4+ acoswt, 7). (4.6a)

Assume coupling matrices D and G are, respectively,

D(c) = < (1) S ) (4.6b)

and
—2 €e—r 0 e 0 e+r
€+7  F2€pa€- T 0
S
Ger)=| «& = % A (4.6¢)
E == I.I " | w . 0
o) R R 2 e
o'l ' _“Q;I e+r —2¢

s

where € > 0 and r are scalar 'dliﬂ?usive and g'r-éﬂdlient coupling parameters, respec-
tively. Note that ablLLLA
f2(a) = fa(v) = 0(uz — v2) + (u1 —v1)
and so the matrix measure of the corresponding Qu.,1 is zero. To apply our
theorem, we need to make the following coordinate change.
Letting yo = x2 and y1 = g1 + pxa, we see that (4.5a,b) becomes

= (g —a)y1 + pla— g)yz — qy3 + qacoswt =: fi(y) (4.72)
. - 1 -
U2 = 7py2 + 52/1 =:fr(y), (4.7b)

and the corresponding coupled system (3.2) becomes

p ~ P\~ ~
y1= (5 —a)y1 +pla— E)YQ —qy5 +g(t)

+ d(qc - p)G(ev T)S’Q + dG(ea 7’)5’1 (483)
- . 1.
y2 = —QYQ + -1, (4.8b)
p q

18



where ¥3 = (y7 5, ..., yp, »)" and g(t) = acos(wt) (1,---,1)". In the following, we
choose (p, q) to be (1,¢ — é) as ¢ > 0, and to be (-1, —é) as ¢ = 0, respectively.

Then in the case of ¢ > 0, (4.8) becomes
- - 1. .. . -
yi=dG(enn +(c—a— )y + (@ —c+ 2)y2 —¥3 +8(t) + G(e,7)32

d
=:dG(e,r)y1 + FC(S’, t)

1 -
Y2:*c_l}’2+}’1‘

d
The purpose of the coordinate transformation is two-fold. First, to make the dy-

namics of the linear part on the uncoupled space stable. In this case, the coefficient
of yo becomes negative when d > % Second, to make sure the parameters in the
nonlinear part of coupled space contain no bad influence of d, coupling strength.
Otherwise, we may not be able to control its corresponding dynamics by choosing
d large.

It is then easy to check that assumptions for Theorem 3.1 are all satisfied, and
similar arguments can be followed for the case of ¢ = 0. Finally, in Appendix,
we will show that if 4_:;% >c>0,e>0and r € R, then the coupled system
(D(c), G(e,r), F(x,1)) is bounded,dissipative. Thus, we can summarize the results

as follows .

Theorem 4.1. Let f, D(_c){&nd Gu('é';*lr):"b'(;"g'z’wen '_qs in (4.6a), (4.6b) and (4.6c),
respectively. Let 0 < ¢ < 4+4a°§m. The@'-t'h.e codple'(:.‘l system (D(c), G(e,r), F(x,1))

is globally synchronized pravided Jhat-dis chosenl sufficiently large.

Proof. It remains only to Ve.r'i"fy- that Gle, ) satiéﬁes assumptions (2.4a,b). Indeed

G(e,7) is a circulant matrix (see e g 18], the eigenvalues A, of G(e,r) are

2k 2k
)\k:—26(1—(:05—71-)—i2rsir1—7T7 k=0,....,m—1.
n n
U

Remark 4.1. (i) It was shown in [17] that there are positive constants dy and
¢p such that, for d > do, ¢ > ¢g, the system (D(c), G(e,0),F) given in (4.7) is
synchronized. Our results also work for the case that c¢g is zero or small or G(e, r),
r # 0. (ii) It was shown in [1] that there are positive constants dy and ¢y such that
for d > doy, ¢ > ¢, the system (D(c), G, F) is synchronized. Here —G is a positive

definite matrix.

5. CONCLUSION

We have developed theory to prove global synchronization in lattices of coupled
chaotic systems. The results can be applied to quite general connectivity topol-
ogy. In fact, it needs only to satisfy (2.4). In addition, a rigorous lower bound on

the coupling strength to acquire global synchronization of the coupled system is
19



obtained. Moreover, by merely checking the structure of the vector field of single
oscillator and verifying bounded dissipation of the coupled system, we shall be able
to determine if the coupled system is synchronized or not. We conclude this paper
by mentioning some possible future work. First, it is of great interest to extend
our method to study the real world topology. Second, it is certainly worthwhile to
study how bounded dissipation of the coupled system is related to the uncoupled
dynamics and its connectivity topology. Third, it is interesting to study (global)
synchronization of coupled system which lacks bounded dissipation such as the

Rossler system.
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APPENDIX A

In this appendix, we prove bounded dissipation of the systems considered in (4-
IT). Setting x5 = (27 ,,...,23,,)7, and g(t) = acos(wt) (1,---,1)" We see that
(2.6) becomes o b RARTY 2

X1 = —aXi X5+ g(l) HdeGe, pxo + dG(e, )% (A.1a)
S e I (A.1b)

We consider the following é’egilaf—.\{z‘i'l-aed' 'fi-inctioﬁ_'as the Lyapunov function of the
coupled system (D(c), G(e, r)Blx,t))
o 4

m
x:
<% >4 o<k > (A.2)

U(x1,%X2) = 2 1

N |

Taking the time derivative of U along solutions of the coupled system (D(c), G(e, r), F(x,t)),

we have

au

m
.= 3 -~ - 2
E—<X1,X1>+E $i72$i71+C<X1,X1>+C<X2,X1>

i=1
=(c—a) <X, X > —ca < Xg, X > —¢< X9, %X >+ < Xp + cXo,g(t) >
+d < x1,G(e, )Xy > +2de < X1, G(e, )X > +dc? < %o, G(e,r)Xo >

=(c—a) <Xp,X > —ca < Xg, X > —¢< X9, %X >+ < Xy + cXo,g(t) >

+d (%1,%s2) (( 1 cCQ ) ®G(e,7~)> ( zl )

<(c—a) <X, X > —ca < Xg, Xy > —¢ < KXo, X5 > + < Xy + Xy, g(t) >

20



Note that the last inequality holds true since

T
1 ¢ 1 ¢
c ¢ c ¢
=[5 )e@en+aenn
S\ & © © ’
and G(e,r) + G(e,7)T is a nonpositive definite matrix. On the other hand, since
< Ko, X5 >= ZIQ — Zx 9 >l\xQ||‘21
) 7 = i, = m 5

we have

v
dt

IN

~ ~ ~ C i~ ~ ~
(e = a)ll%a[l3 + callZela[I%a ]l = —[I%a]l2 + vma([[%allz + el %2(l2)

u([|%2]l1, [[%2|2).

We are now in a position tlo.':s"}:iow bounded dissipation of the coupled system
(D(C)a G(G, T)a F(Xa t)) ‘.'.‘ |','i

Proposition A.1.

(i) If ¢ satisfies the meqfualzty
4o

_ A.
44 ao?m. (A-3)

4o
0<c<m1n{—2n— }

Then there exists a constant co so that 42 < 0 for ||%2|? + [|%2[|3 > co.

(ii) If ¢ =0, then the first assertion of the proposition still holds true.

Proof. Suppose ||Xz2]|2 > 1. Then

IN

- - - ~ ~ C | . ~ -
u(||[x1]l2, [[%z2]l2) < (¢ — @) [|%1 |3 + callxall2]|% |2 — E||X2H3 + vma([[x1 ]2 + cl|%z]]2)

=:4(||x1]|2, |X2][2).

It then follows from (A.3) that the the level curve of @ is a bounded closed curve.
We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists a
1 SO that U < 0 whenever ||%2||? + ||X2||3 > ¢1 and ||%a||2 > 1. Let ||Xa]]2 < 1 and
|I%2]|2 + ||XQH§ > ¢o. Here co is a constant to be determined. Then

u(l[%]l2, [%2l2) < (¢ = )| 3 + (ca + Vma)|%i]|2 + vmac =: h([[%]2).
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Since h(||x1||2) is a parabola-like curve which is open downward, there exists a
c3 > 1 such that h(||%X1]|2) < 0 whenever ||X1]|2 > c3. Thus, if ¢z > ¢2 + 1, then
u(||X1|l2, [X2]l2) < 0 whenever ||Xa|l2 < 1 and [|%X1]|3 + ||X2|3 > c2. Picking ¢o =
max{cy, ca}, we have that the assertion of the proposition holds true. O

Proposition A.2. Assume (A.3) holds true. Then lim U(Xy,X3) = oo, where

T—00

r=Vxa? + (%2>

Proof. From (A.2), we have that

N o~ T o
U(x1,%X2) = §||x1||2 —|—Z:%2 +c < Xo,X1 >
i=1

Y

1
SIR? + = Rell = el - %al.

Let 3 b2 > ¢2. Then suppose ||Xz2| > b1, we have
U(xi,%2) 2 —||X1||2+02||xQII2 -GllX2||||X1|| =t ha([[xall, %),

Since the level curve of h1 (flx11l, Hﬂg |)‘,‘ isy elhptlc like in the plane. Thus, for
any given M > 0, there eXlsts a d1 > 0 such vhat U(x1,%X2) > M whenever
5l + [l > @ and |5 > P
Let ||%2]| < by. Then A e ‘ :

U(x1,%2) 2 —IIX1H2—CbTIIX1II =t ha([I%a]; [[%2]l),

since ha(||%1]), |X2||) is a parabola-like curve which is open upward in the plane.
Thus, for any given M > 0, there exists a do > 0 such that U(x;,%2) > M
whenever ||%; ||2+||%2[|? > d% and ||X2|| < b;. Picking § = max{d;, ds}, we have that
U(x1,%2) > M for all ||x1]|? + [|%2]|? > 6%. Thus, the assertion of the proposition
holds true. (]

Theorem A.1. The coupled system (D(c), G(e,r), F(x,t)) is bounded dissipative
if condition (A.3) holds true.

Proof. The proof is direct consequences of Propositions A.1 and A.2. O
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