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摘         要 

 

我們指一個差分系統的形式為G*(xt-μ,…,xt-1,xt,xt+1,…, 

xt+ν)=0，此式G*為一個(μ+1+ν)個變數映至RN的函數，並且每

個變數屬於RN。我們考慮僅和xt變數有關的差分系統稱之為靜

態系統，並且引入在某些性質相當類似於靜態系統的差分系統

稱之為半靜態系統。我們提供隱函數定理的一個變形版本。我

們呈現再加一些條件下，一個靜態系統是混沌的。我們使用這

個隱函數定理的變形去呈現對於正則靜態系統的些微C1擾動

下，混沌現象的穩定性。 
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ABSTRACT 

 

By a difference system, we mean a system of the form G∗(xt−µ, ..., xt−1, xt , 
xt+1 , ..., xt+ν ) = 0, where each side of this equation is an 1N ×  column vector 
and G∗ : Dom(G∗) ⊂(RN )µ+1+ν→RN with N, µ, ν ∈ N. We consider a static system as 
a difference system that depends only on xt and a quasi-static system as a 
difference system that is in a certain sense relatively close to a static system. 
We provide a modified version of the implicit function theorem. We show that 
under additional conditions, a static system is chaotic. We use this version of 
the implicit function theorem to show the stability of chaos for regular static 
system under small C 1 perturbations. 
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1 Introduction

Consider a di¤erence system

G(xt�1, xt, xt+1) = 0. (1)

De�ne an orbit as a sequence fxtg satisfying Eq. (1) for all t 2 Z. Suppose G reduces

to a static system G�, by which we mean that G� is a function of xt alone:

G�(xt�1, xt, xt+1) = F (xt).

In [1], we have the fact that if F (xt) = 0 has multiple solutions at which the

Jacobian matrix DF is nonsingular, then for G is in a certain sense relatively close

to G�, G displays chaotic dynamics.

The result will be based on simultaneous control of appropriate perturbation of

static di¤erence system. We provide a modi�ed version of the implicit function the-

orem which inspired by the concept of Li and Malkin in [2].

In this paper, section 2 presents a modi�ed version of the implicit function theorem

and proof. Section 3 gives the de�nition of chaos and show that under additional con-

ditions, a static system is chaotic. Section 4 de�nes quasi-static systems, establishes

their properties, and presents stability of quasi-staticness and chaos.
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2 A version of the implicit function theorem

Let x 2 Rn, x = (x1, x2,..., xn), k�k2 denotes the Euclidean norm, i.e. kxk2 =

(x21 + x22+...+x
2
n)

1
2 , k�k1 denotes the sup norm, i.e. kxk1 = max

1�i�n
jxij. In fact, for a

m� n matrix B,

kBk1 = max
�2Rn

kB�k1
k�k1

= max
1�i�m

nX
j=1

jBijj .

Let m, n 2 N, for H � Rm � Rn, and C1(H, Rn) denote the set of C1 functions

F : Dom(F ) ! Rn such that Dom(F ) � H. Let E = fF jH : F 2 C1(H, Rn)g. For

F1, F2 2 E, de�ne �(F1, F2) �

maxf sup
(y, z)2H

kF1(y, z)� F2(y, z)k2 , sup
(y, z)2H

kDF1(y, z)�DF2(y, z)k1g,

then (E, �) is a metric space. We will use the notation U(x, r) and U [x, r] for the

open and closed ball, respectively, of radius r centred at the point x 2 X, where X

is a metric space. Let

N�(F
�, H) = fF 2 E j �(F , F �) < �, Dom(F ) � Dom(F �)g.

Theorem 1 Let m, n 2 N, Y � Rm, Z � Rn, H � Rm�Rn, and F � 2 E. Suppose:

(a1) Y , Z, and H are compact, and Y � Z � H.

(a2) There is a unique function f � : Y ! Z such that for all y 2 Y , F �(y, f �(y)) = 0.

(a3) f �(Y ) � the interior of Z and for any y 2 Y , D2F
�(y, f �(y)) is nonsingular.

Then

(c1) there exists a � > 0 for any F 2 N�(F
�, H), there is a unique function

fF : Y ! Z such that for any y 2 Y , F (y, fF (y)) = 0, and the unique

function fF is C1.
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(c2) sup
F2N�(F �,H)

(maxfsup
y2Y



fF (y)� f �(y)


, sup

y2Y



DfF (y)�Df �(y)


g) ! 0 as

� # 0.

Proof of Theorem 1. Since f � is continuous and Y is compact, we have f �(Y ) is

compact. From (a3), for any y 2 Y there exists a "y > 0 such that U(f�(y), "y) � Z.

Because f �(Y ) is compact, there exist "y1, "y2,..."yn; y1, y2,...yn such that f
�(Y ) �

[ni=1U(f �(yi), "yi). Let �0 = min
1�i�n

"yi. Denote V1 = U(F �, 1), W�0 = [y2YU(f �(y),

�0). Then W�0 � Z. For any y 2 Y , we de�ne a function gy : V1�U(f �(y), �0)! Rn

by

gy(F , z) = z � (D2F
�(y, f �(y)))�1F (y, z)

then gy(F �, f �(y)) = f �(y) and D2gy(F
�, f �(y)) = 0. We denote Ty = D2F

�(y,

f �(y)). By assumption (a3) and the map T : A ! A�1 is continuous, there exists a

constant M > 0 such that for any y 2 Y ,



(D2F
�(y, f �(y)))�1



 < M .

Since D2F
� is continuous on the compact set Y � f �(Y ), there exists a �1, 0 <

�1 < minf 1
4M
, 1, �0g such that for any y 2 Y ,

kD2F (y, z)�D2F
�(y, f �(y))k

� kD2F (y, z)�D2F
�(y, z)k+ kD2F

�(y, z)�D2F
�(y, f �(y))k

< kDF (y, f �(y))�DF �(y, f �(y))k+ 1

4M

< �(F , F �) +
1

4M
<

1

2M
� 1

2


T�1y 



provided F 2 U [F �, �1], z 2 U [f �(y), �1].

And therefore

k(D2gy(F , z)k =


I � T�1y D2F (y, z)



 = 

T�1y Ty � T�1y D2F (y, z)




�


T�1y 

 kTy �D2F (y, z)k �

1

2
.
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By Mean Value Theorem applied to gy(F , �), For any F 2 U [F �, �1], y 2 Y , and

any two points z1, z2 2 U [f �(y), �1],

kgy(F , z1)� gy(F , z2)k �
1

2
kz1 � z2k .

Now, we choose a �, 0 < � < minf 1
2M
�1, �1g such that for any y 2 Y , and

F 2 U [F �, �],

kF (y, f �(y))k = kF (y, f �(y))� F �(y, f �(y))k

� �(F , F �) � � <
1

2M
�1 �

1

2


T�1y 

�1,

and therefore

kgy(F , f �(y))� f �(y)k =


T�1y � F (y, f �(y))




�



T�1y 

 kF (y, f �(y))k < 1

2
�1.

Thus for any y 2 Y , F 2 U [F �, �] and z 2 U [f �(y), �1] one has

kgy(F , z)� f �(y)k � kgy(F , z)� gy(F , f �(y))k+ kgy(F , f �(y))� f �(y)k

<
1

2
kz � f �(y)k+ 1

2
�1 � �1.

This implies that for any y 2 Y and any (�xed) F 2 U [F �, �], the map z ! gy(F ,

z) is a contraction of the complete metric space U [f �(y), �1] into itself. Hence by the

contraction mapping principle, there exists a unique �xed point, say  y(F ), and so

gy(F ,  y(F )) =  y(F ) or, equivalently, F (y,  y(F )) = 0.

Given a F 2 U [F �, �], for any y 2 Y there exists a unique  y(F ) such that F (y,

 y(F )) = 0. We de�ne the function f
F : Y ! Z by fF (y) =  y(F ). Therefore, for

any F 2 N�(F �, H), there is a unique function fF : Y ! Z such that for all y 2 Y ,

F (y, fF (y)) = 0. It remains to show that fF is C1.

For all F 2 N�(F �, H),

D2F (y, fF (y))�D2F
�(y, f �(y))



 < 1

2M
<
1

M
<


D2F

�(y, f �(y))�1


�1 .
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Hence D2F (y, fF (y)) is nonsingular for all y 2 Y . (see [3], p. 209)

Therefore for all F 2 N�(F
�, H), there is a unique function fF : Y ! Z such

that for all y 2 Y , F (y, fF (y)) = 0, and D2F (y, fF (y)) is nonsingular. By implicit

function theorem (see [4], p. 374), the function fF is unique and C1. We complete

the proof of (c1).

Next, we prove the (c2). Let y 2 Y and F 2 N�(F �, H). Then



 y(F )�  y(F
�)




=


gy(F ,  y(F ))� gy(F

�,  y(F
�))




�


gy(F ,  y(F ))� gy(F ,  y(F

�))


+ 

gy(F ,  y(F �))� gy(F

�,  y(F
�))




� 1

2



 y(F )�  y(F
�)


+ 

gy(F ,  y(F �))� gy(F

�,  y(F
�))




Thus



 y(F )�  y(F
�)


 � 2



gy(F ,  y(F �))� gy(F
�,  y(F

�))




= 2


T�1y (F (y,  y(F

�)� F �(y,  y(F
�))




� 2M


F (y,  y(F �)� F �(y,  y(F

�)




� 2M sup
(y, z)2H

kF (y, z)� F �(y, z)k

� 2M� ! 0 as � ! 0.

That is,

sup
F2N�(F �,H)

sup
y2Y



fF (y)� f �(y)


! 0 as � ! 0. (2)

Now, we remain to prove

sup
F2N�(F �,H)

sup
y2Y



DfF (y)�Df �(y)


! 0 as � ! 0.

Since D1F
� is continuous on the compact set Y � Z, there exists a N1 > 0 such

5



that kD1F
�(y, z)k � N1 for all (y, z) 2 Y �Z. Let y 2 Y and F 2 N�(F �, H). Then

kD1F (y, z)k � kD1F
�(y, z)k � kD1F (y, z)�D1F

�(y, z)k

� kDF (y, z)�DF �(y, z)k

� sup
(y, z)2H

kDF (y, z)�DF �(y, z)k � � < 1.

Thus

kD1F (y, z)k � 1 + kD1F
�(y, z)k � 1 +N1 (3)

for any y 2 Y and F 2 N�(F
�, H). Similarly, there exists a N2 > 0 such that

kD2F
�(y, z)k � N2 for all (y, z) 2 Y � Z and

kD2F (y, z)k � 1 + kD2F
�(y, z)k � 1 +N2

for any y 2 Y and F 2 N�(F �, H).

Let y 2 Y and F 2 N�(F �, H). Then



[D2F (y, fF (y))]�1


� 

[D2F

�(y, f �(y))]�1




�


[D2F (y, fF (y))]�1 � [D2F

�(y, f �(y))]�1




�


[D2F (y, fF (y))]�1





D2F (y, fF (y))�D2F
�(y, f �(y))





[D2F
�(y, f �(y))]�1




�



[D2F (y, fF (y))]�1


 � 1

2M
�M

Thus 

[D2F (y, fF (y))]�1


 � 2

[D2F

�(y, f �(y))]�1


 � 2M

for any y 2 Y and F 2 N�(F �, H).

Since D2F
� is continuous on the compact set Y � Z, for this � > 0 there exists a

6



0 < �2 < � such that for any y 2 Y



[D2F (y, fF (y))]�1 � [D2F
�(y, f �(y))]�1




�



[D2F (y, fF (y))]�1




D2F (y, fF (y))�D2F

�(y, f �(y))




[D2F

�(y, f �(y))]�1




� 2M �


D2F (y, fF (y))�D2F

�(y, f �(y))


 �M

� 2M2(


D2F (y, fF (y))�D2F

�(y, fF (y))


+ 

D2F

�(y, fF (y))�D2F
�(y, f �(y))



)
� 2M2( sup

(y, z)2H
kDF (y, z)�DF �(y, z)k+ �)

� 2M2(�2 + �)

provided F 2 N�2(F �, H), fF (y) 2 U [f �(y), �2].

That is,

sup
F2N�2 (F �,H)

sup
y2Y



[D2F (y, fF (y))]�1 � [D2F
�(y, f �(y))]�1



! 0 as � ! 0. (4)

Similarly, since D1F
� is continuous on the compact set Y � Z, for this �2 > 0

there exists a 0 < �3 < �2 such that for any y 2 Y



D1F (y, fF (y))�D1F
�(y, f �(y))




�



D1F (y, fF (y))�D1F
�(y, fF (y))



+ 

D1F
�(y, fF (y))�D1F

�(y, f �(y))




� sup
(y, z)2H

kDF (y, z)�DF �(y, z)k+ �2

� �3 + �2

provided F 2 N�3(F �, H), fF (y) 2 U [f �(y), �3].

That is,

sup
F2N�3 (F �,H)

sup
y2Y



D1F (y, fF (y))�D1F
�(y, f �(y))



! 0 as �2 ! 0. (5)

Let y 2 Y and F 2 N�3(F �, H).

D1F (y, fF (y))I +D2F (y, fF (y))DfF (y) = 0

7



By Eqs. (3), (4) and (5), we have



DfF (y)�Df �(y)




�


[D2F (y, fF (y))]�1D1F (y, fF (y))� [D2F

�(y, f �(y))]�1D1F
�(y, f �(y))




�



D1F (y, fF (y))([D2F (y, fF (y))]�1 � [D2F
�(y, f �(y))]�1)



+

[D2F
�(y, f �(y))]�1(D1F (y, fF (y))�D1F

�(y, f �(y)))




�


D1F (y, fF (y))





[D2F (y, fF (y))]�1 � [D2F
�(y, f �(y))]�1)



+

[D2F
�(y, f �(y))]�1





D1F (y, fF (y))�D1F
�(y, f �(y))




� (1 +N1)[2M

2(�2 + �)] +M(�3 + �2)

for any y 2 Y and F 2 N�3(F �, H).

That is,

sup
F2N�3 (F �,H)

sup
y2Y



DfF (y)�Df �(y)


! 0 as � ! 0. (6)

By Eqs. (2) and (6), we have

sup
F2N�3 (F �,H)

(maxfsup
y2Y



fF (y)� f �(y)


 ; sup

y2Y



DfF (y)�Df �(y)


g)! 0 as �3 # 0:

This completes the proof of (c2).
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3 Chaos

3.1. Chaos

For any function G�, we denote its domain by Dom(G�). We consider di¤erence

systems of the form

G�(xt��,:::, xt�1, xt, xt+1,:::, xt+�) = 0, (7)

where each side of Eq. (7) is an N � 1 column vector and G� : Dom(G�) �

(RN)�+1+� ! RN with N , �, � 2 N. By a di¤erence system, we always mean a

system of the form in Eq. (7), which we denote simply by G�.

We de�ne an orbit of G� as a bi-in�nite sequence fxtg1t=�1 such that for all t 2 Z,

G�(xt��,..., xt�1, xt, xt+1,..., xt+�) = 0.

Let k : k be the sup norm whenever its argument is a vector or a sequence. Let

y = fytg1t=l, l � �1, be any sequence. If there exists a n 2 N for all t � l such

that yt+n = yt, then y is called periodic. If n 2 N is the smallest such number, then

y is called n-periodic. Suppose y is a sequence in Rm, m 2 N. We say y is called

asymptotically periodic if there is a periodic sequence fy�t g such that kyt � y�t k ! 0 as

t!1. If y is not asymptotically periodic, then y is called asymptotically nonperiodic.

De�nition 2 We say that a di¤erence system G� is chaotic if (T1) and (T2) below

hold:

(T1) There exists a m 2 N, for all n � m, G� has an n-periodic orbit.

(T2) G� has an uncountable set � of asymptotically nonperiodic orbit such that

9



for all x, y 2 � (x 6= y)

lim sup
t!1

kxt � ytk > 0, (8)

for all n 2 N, lim inf
t!1

k(xt�n,..., xt+n)� (yt�n,..., yt+n)k = 0. (9)

Condition (T2) means that any two orbit in � never converge to each other but

they become arbitrarily close in�nitely often.

3.2. Static system and chaos

Let G� : Dom(G�) � (RN)�+1+� ! RN with N , �, � 2 N be a di¤erence system.

We denote

Dom(G�)0 = fx0 2 RN j (x��,..., x�1, x0, x1,..., x�) 2 Dom(G�)

where x��,..., x�1, x1,..., x� 2 RNg.

We say that G� is static or a static system if there is a function Gs : Dom(G�)0 �

RN ! RN such that Gs(x0) = G�(x��,..., x�1, x0, x1,..., x�) for all (x��,..., x�1, x0,

x1,..., x�) 2 Dom(G�). If G� is static, we de�ned a static point of G� as a point

� 2 Dom(G�)0 such that Gs(�) = 0.

Let K1,..., KM � Dom(G�)0. We de�ned a pattern as a vector of � + 1 + v

natural numbers; a sequence of natural number is called a symbolic sequence. We say

that a pattern p = (p��,..., pv) is a feasible pattern (w.r.t. G� and K1,..., KM) if

Kp���...�Kpv � Dom(G�). Let P (G�,K1,...,KM) be the set of pattern feasible w.r.t.

G� and K1,..., KM . We say that a symbolic sequence fstg1t=l, �1 � l � �� � 1, is

feasible (w.r.t. G� and K1,..., KM) if for all t = l+�,..., ��v, (st��,..., st+v) 2 P (G�,

K1,..., KM).

10



Let p, q 2 P (G, K1,..., KM). We say that q is reachable from p if one of the

following three cases holds: (i) there exists a n 2 N, there is a symbolic sequence

fstgnt=1 such that fp��,..., p� , s1,..., sn, q��,..., q��g is feasible; (ii) fp��,..., p� , q��,...,

q��g is feasible; (iii) there exists a m 2 f1,..., � + �g, fp��,..., p� , q��m+1,..., q�g is

feasible and for all i = ��+m,..., � pi = qi�m.

Theorem 3 Let G� be a static system with static points �1,..., �M 2 Dom(G�)0 and

there are p, q 2 P (G�, �1,..., �M) with p 6= q such that p�� =... = p�� and p, q are

reachable from each other. Then G� is chaotic.

Proof. Without loss of generality, assume p�� =... = p�� = 1. If q is reachable from

p with case (ii) or (iii) holding, then case (i) also holds for any n 2 N, if we let St = 1

for all t = 1,..., n. Hence in any case, there is a symbolic sequence S � fsigni=1 such

that fp��,..., p� , s1,..., sn, q��,..., q��g is feasible. De�ne T � ftigmi=1, similarly. Let

v2 = fp��,..., p� , s1,..., sn,q��,..., q�� , t1,..., tm, p��,..., p�g.

Let m = 3(� + 1 + �) + n +m and v1 = f1, 1,..., 1g with m 1�s; v1and v2 have

the same dimension. For each bi-in�nite sequence � of 1 and 2 (i.e.., � i 2 f1, 2g for

all i 2 Z), let s(�) be the symbolic sequence such that for all i 2 Z

s(�)im,..., (i+1)m�1 = v� i. (10)

Note that the mapping � ! s(�) is one-to-one and that s(�) is always feasible.

We �rst verify (T2). For r 2 R, let [r] denote the largest integer less than or equal

to r . For w 2 (0, 1), de�ne a bi-in�nite symbolic sequence �w as follows. For i � 0,

let �wi = 1. For i � 1, de�ne �wi as follows:

�w1;10 = f1,..., 1| {z }
[10w]1`s

, 2,..., 2| {z }
(10�[10w])2`s

g

11



�w11;110 = f1,..., 1| {z }
[100w]1`s

, 2,..., 2| {z }
(100�[100w])2`s

g

�w111;1110 = f 1,..., 1| {z }
[1000w]1`s

, 2,..., 2| {z }
(1000�[1000w])2`s

g

and so on. More precisely, letting Tn = 1 + 10+... +10n for n 2 N, we have for all

n 2 N

�wi = 1, for all i = Tn,..., Tn + [10nw]� 1, (11)

�wi = 2, for all i = Tn + [10
nw],..., Tn+1 � 1. (12)

Note that for any w, w
0 2 (0, 1), w 6= w

0
. [10nw] 6= [10nw0

] for n large enough. Thus

�wi 6= �w
0

i for in�nitely many i
0
s. (13)

Therefore, for any w 2 (0, 1) there is an orbit xw such that for all t 2 Z, xwt =

�s(�w)t. Let � = fxw j w 2 (0, 1)g; we show that � satis�es (T2). Clearly � is an

uncountable set. Let w 2 (0, 1). Since [10nw] " 1 as n " 1, �w is asymptotically

nonperiodic; thus xw is asymptotically nonperiodic. It remains to show Eqs. (8) and

(9). Let w, w
0 2 (0, 1) with w 6= w

0
. Let w = minfw, w0g. Let m 2 Znf0g. For

n 2 N, let �n = Tn + [
10nw
2
]. By Eqs. (11) and (12), we have


(xw�n�m,..., xw�n+m)� (xw0�n�m,..., xw0�n+m)


 = 0 as n!1.

That is

lim inf
t!1




(xw�n�m,..., xw�n+m)� (xw0�n�m,..., xw0�n+m)


 = 0:
By Eq. (13), we also have

lim sup
t!1




xwt � xw
0

t




 > 0
Since w, w

0
, and m were arbitrary, we have veri�ed Eqs. (8) and (9) and thus

(T2).

Now to verify (T1), let � = f...,1, 2, 1, 2,...g with � 0 = 2. Clearly s(�) is feasible

and (2m)-periodic. Let m = 2m. Let sm = s(�). Note from Eq. (10) that smt = 1
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for all t expect that if t = im for some i 2 Z, smt,..., t+m�1 = v2. For n > m, let sn be

the symbolic sequence such that snt = 1 for all t expect that if t = in for some i 2 Z,

smt,..., t+m�1 = v2. Clearly for all n � m, sn is feasible and n-periodic. That is for all

n � 2m, G� has an n-periodic orbit. This completes the proof of theorem 3.
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4 Stability of chaos

4.1. Quasi-static system

We introduce the concept of quasi-static system. Quasi-static systems are di¤er-

ence systems that are in a certain sense relatively close to static systems.

De�nition 4 We say that G� is quasi-static (w.r.t. K1,..., KM) if (K1) and (K2)

below hold:

(K1) K1,..., KM are disjoint, compact, and convex.

(K2) For all p 2 P (G�, K1,..., KM), (�p��,..., �p�1) 2 Kp���...�Kp�1, and (�p1,...,

�p� ) 2 Kp1�...�Kpv there is a unique � � gp(�p��,..., �p�1, �p1,..., �p� ) 2 Kp0

such that G�(�p��,..., �p�1, �, �p1,..., �p� ) = 0.

Lemma 5 G� is quasi-static w.r.t. K1,..., KM � Dom(G�)0 then

(c1) for each bi-in�nite feasible symbolic sequence fstg1t=�1, G� has an orbit fxtg1t=�1

such that for all t 2 Z, xt 2 Kst.

(c2) For each n-periodic bi-in�nite feasible symbolic sequence fstg1t=�1, G� has an

n-periodic asymptotic orbit fxtg1t=�1 such that for all t 2 Z, xt 2 Kst.

Remark 6 For all p 2 P (G�, K1,..., KM), g�p : Dp ! Kp0 is continuous, where

Dp = (Kp���... �Kp�1) �(Kp1�...�Kpv).

Remark 7 (Brouwer �xed point theorem) Suppose that M is a nonempty, con-

vex, compact subset of Rn, n � 1 and that f :M !M is a continuous mapping then

f has a �xed point.(see [5], p. 51)
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Proof of Lemma. For any sequence fytg, let

y�t = (yt��,..., yt�1), y
+
t = (yt+1,..., yt+�)

We �rst prove (c2). The proof of (c1) is similar to that of (c2), and is thus omitted.

Let fstg1t=l, �1 � l � ��, be a feasible sequence For t � l, let St = Kst.Suppose

l = �1 and fstg is n-periodic. Given x1;n � (x1, :::, xn) 2 Ks1 � Ks2 � ::: � Ksn.

Let x be the n-periodic sequence such that x1,..., xn are as given. De�ne T1,n :

Ks1 � Ks2�...�Ksn ! Ks1 � Ks2�...�Ksn by T1,n(x1,n) = gst��;t+� (x
�
t , x

+
t ). Since

T1,n is continuous and S1,n is compact and convex, T1,n has a �xed point x�1,n = (x
�
1,...,

x�n) (by the Brouwer �xed point theorem) Clearly, the associated n-periodic orbit x
�

is an orbit of G such that for all t 2 Z, x�t 2 Kst.

Note that if G� is a static system with static points �1,..., �M , then G
� is a quasi-

static w.r.t.f�1g,..., f�Mg, and the conclusions (c1)-(c2) trivially hold with xt 2 f�1,...,

�Mg for all t. The lemma says that they continue to hold for a quasi-static system

with appropriate compact convex sets replacing static points.

4.2. Stability of chaos for regular static system under small C1 pertur-

bations

Let G� is static; we say that G� is regular if G� is C1, if G� has only a �nite

number of static points �1,..., �M 2 Dom(G)0, and DGs(�i) is nonsingular for all

i = 1,..., M .

Let G� be a C1 static system with static points �1,..., �M 2 Dom(G�)0. Denote

J(G�,�1,..., �M) = f(�i��,..., �i0 ,..., �i� ) 2 Dom(G
�) j 1 � i��,..., i0,..., i� �Mg,
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and

J(G�,N"(�1),..., N �(�M)) = fN"(�i��)� ...�N �(�i� ) � Dom(G�) j

for all (i��,..., i�) 2 P (G�, N"(�1); :::; N"(�M))g.

Theorem 8 Let G� be a regular static system with static points �1,..., �M 2 K0 and

Dom(G�) is open. Let K � Dom(G�) be a compact set such that J(G�,�1,...,�M) �
�
K

(the interior of K). Then there exist " and �" > 0 such that for all G 2 N�"(G�, K)

(i) we have G is quasi-static (w.r.t. N �(�1), N �(�2),..., N �(�M)) and

(ii) for G� , if there are p, q 2 P (G�, �1,..., �M) with p 6= q such that p�� =...

= p�� and p, q are reachable from each other. Then G is chaotic.

Proof. (i) Let G� be a C1 static system with static points �1,..., �M 2 Dom(G�)0, and

DGs(�i) is nonsingular for all i = 1,..., M , and Dom(G
�) is open. Let K � Dom(G�)

be a compact set such that J(G�,�1,...,�M) �
�
K (the interior of K). Then there is

" > 0 such that J(G�,�1,...,�M) � J(G�, N"(�1),..., N"(�M)) � K � Dom(G�), and

P (G�, N"(�1),..., N"(�M)) = P (G�, �1,M) � P . For this " > 0, G� is a quasi-static

system w.r.t. N"(�1),..., N"(�M). Let Ki = N"(�i) for i = 1,..., M . For p 2 P ,

let g�p : Dp ! Kp0 be de�ned as in (K2). Note that for all p 2 P and for all

� 2 Dp, we have g�p(�) = �p0 2
�
Kp0 and



Dg�p(�)

 = 0. Hence by theorem 1, there

is �" > 0 such that for all G 2 N�"(G
�, K) for all p 2 P , there is a unique function

gGp : Dp ! Kp0 such that for all � 2 Dp, G(�
�, gGp (�), �

+) = 0, gGp is C
1, and max�2Dp

DgGp (�)

 =max�2Dp 

DgGp (�)�Dg�p(�)



 < 1. Therefore for all G 2 N�(G
�, K),

G satis�es (K1) and (K2). So, we have G is quasi-static (w.r.t. N �(�1), N �(�2),...,

N �(�M)). From Lemma 5, note that if fstg1t=�1 is the orbit of G�, then there exists a

correspond orbit of G called fxtg1t=�1, where xt 2 N "(st) for all t 2 Z. Moreover the
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correspond orbit preserve the period of fstg1t=�1. That is if fstg1t=�1 is n�periodic

then fx�t g1t=�1 is n�periodic.

(ii) For G�, if there are p, q 2 P (G�, �1,..., �M) with p 6= q such that p�� =...

= p�� and p, q are reachable from each other, then G� satis�es (T1) and (T2) and is

chaotic. (From Theorem 3). In fact, for all G 2 N�"(G�, K) G also satis�es (T1) and

there exists an uncountable set �G of asymptotically nonperiodic orbit such that for

all xG, yG 2 �G (xG 6= yG) we have

lim sup
t!1



xGt � yGt


 > 0.

We remain Eq.(3) to be check. Now we give two remarks as following, and post-

pone the proof of Remark 9 to the appendix.

Remark 9 Let G be a C0 system. Let H � Dom(G�)0 is compact. Suppose (a) there

is a unique orbit x� such that x�t 2 H for all t 2 Z. Then x� is a constant sequence

and for any " > 0 there is n 2 N such that for all t 2 Z and for any orbit x, if xi 2 H

for all i = t� n,..., t+ n, we have kxt � x�tk < ".

Remark 10 If G is quasi-static (w.r.t. N �(�1), N �(�2),..., N �(�M)) and there are p,

q 2 P (G�, N �(�1),..., N �(�M)) with p 6= q such that p�� =... = p�� and p, q are

reachable from each other and gGp as given by (K2) is C
1 and max�2Dp



DgGp (�)

 < 1.
Then there is a constant sequence f..., ��, ��, ��,...g is the unique orbit fxtg such

that xt 2 N �(�p0) for all t 2 Z.

By the proof of theorem 3 and Lemma 5 (c1), for any w 2 (0, 1) there is an orbit

xw such that for all t 2 Z, xwt 2 N "(�s(�w)t). Let � = fxw j w 2 (0, 1)g; we show that

� satis�es (T2). Clearly � is an uncountable set. Let w 2 (0, 1). Since [10nw] " 1 as
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n " 1, �w is asymptotically nonperiodic; thus xw is asymptotically nonperiodic. It

remains to show Eqs. (8) and (9). Let w, w
0 2 (0, 1) with w 6= w

0
. Let w = minfw,

w
0g. Let m 2 Znf0g. For n 2 N, let �n = Tn + [

10nw
2
]. By Eqs. (11) and (12) and

Remark 9 and 10, we have




(xw�n�m,..., xw�n+m)� (xw0�n�m,..., xw0�n+m)


 �



(xw�n�m,..., xw�n+m)� (��,..., ��)


+


(xw0�n�m,..., xw0�n+m)� (��,..., ��)


 ! 0 as n!1.

That is

lim inf
t!1




(xw�n�m,..., xw�n+m)� (xw0�n�m,..., xw0�n+m)


 = 0:
By Eq. (13), we also have

lim sup
t!1




xwt � xw
0

t




 > 0
Since w, w

0
, and m were arbitrary, we have veri�ed Eqs. (8) and (9) and thus

(T2). Therefore G satis�es (T1) and (T2) and thus chaotic.
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5 Appendix

Here we give the proof of Remark 9.

Proof of Remark 9. Let G be a C0 system. Let H � Dom(G�)0 is compact.

Assume (a) above. Since x� = fx�tg is the unique orbit in H and since fx�t+1g is

clearly an orbit, we have x�t = x�t+1 for all t 2 Z, i.e., x� is a constant sequence. Let

�� = x�t . Let " > 0. Suppose there is no n 2 N such that for all t 2 Z and for any

orbit x, if xi 2 H for all i = t� n,..., t+ n, we have kxt � ��k < ". This means that

for all n 2 N there is an orbit yn such that for some Tn 2 Z,


ynTn � ��



 � " and

yni 2 H for all i = t�n,..., t+n. For n 2 N, de�ne xn = fxnt g by xnt = ynTn. Note that

for all n 2 N, xn is an orbit and kxn0 � ��k � ". Taking a subsequence if necessary, we

may assume xnt ! xt 2 H as n " 1 for all t 2 Z. Then we have kx0 � ��k � " and

thus fxtg 6= x�. But since G is C0, it follows that fxtg is an orbit, which contradicts

(a).
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