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its consequences for chaos of difference systems

student : Chun-Hung Hsieh Advisor : Ming-Chia Li

Department (Institute) of Applied Mathematics
National Chiao Tung University

ABSTRACT

By a difference system, we mean a system of the form G*(x¢—y, ..., x¢—1,X¢,
X415 ., Xev) = 0, Where each side of this equation is an N x1 column vector
and G*: Dom(G*) € (RN)*"1*'RN with N, u,v € N. We consider a static system as
a difference system that depends only on x, and a quasi-static system as a
difference system that is in a certain sense relatively close to a static system.
We provide a modified version of the implicit function theorem. We show that
under additional conditions, a static system is chaotic. We use this version of
the implicit function theorem to show the stability of chaos for regular static
system under small C' perturbations.
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1 Introduction

Consider a difference system

G(CCtA; T, th+1) =0. (1)

Define an orbit as a sequence {z;} satisfying Eq. (1) for all t € Z. Suppose G reduces

to a static system G*, by which we mean that G* is a function of x; alone:

G*(Ti-1, Tty Tega) = F(24).

In [1], we have the fact that if F'(z;) = 0 has multiple solutions at which the
Jacobian matrix DF' is nonsingular, then for G is in a certain sense relatively close

to G*, GG displays chaotic dynamics.

The result will be based on simultaneous control of appropriate perturbation of
static difference system. We provide a modified version of the implicit function the-

orem which inspired by the concept of Li and Malkin in [2].

In this paper, section 2 presents a modified version of the implicit function theorem
and proof. Section 3 gives the definition of chaos and show that under additional con-
ditions, a static system is chaotic. Section 4 defines quasi-static systems, establishes

their properties, and presents stability of quasi-staticness and chaos.



2 A version of the implicit function theorem

Let © € R", © = (21, %2,..., T), |||, denotes the Euclidean norm, ie. |z|, =
(22 + 22+..4+22)2, ||| denotes the sup norm, i.e. ||| = max |z;]. In fact, for a
<i<n

m X n matrix B,
B n
1B, = mascl Beloo _ max » [ Bjl.

R el S

Let m, n € N, for H C R™ x R", and C'(H, R") denote the set of C* functions
F : Dom(F) — R" such that Dom(F) D H. Let E = {F |y: F € C'(H, R")}. For

Fi, F5 € E, define p(Fy, F») =

max{ sup |[Fi(y, 2) = Fa(y, )|y, sup [[DFi(y, 2) — DFa(y, )|}
(y, z)eH (y; 2)€H

then (E, p) is a metric space. We will use the notation U(x, r) and Ulz, r| for the
open and closed ball, respectively, of radius r centred at the point x € X, where X

is a metric space. Let

Ns(F*, H)={F € E | p(F, F*) <, Dom(F) C Dom(F™)}.

Theorem 1 Letm,ne N, Y CR™, Z CR", HCR"xR", and F* € E. Suppose:

(al1) Y, Z, and H are compact, andY x Z C H.
(a2) There is a unique function f* 1Y — Z such that for ally € Y, F*(y, f*(y)) = 0.

(a3) f*(Y) C the interior of Z and for anyy € Y, DoF*(y, f*(y)) is nonsingular.
Then
(c1) there exists a & > 0 for any F € N3(F*, H), there is a unique function

f¥ .Y — Z such that for any y € Y, F(y, f¥(y)) = 0, and the unique

function f¥ is C*.



(c2)  sup (max{ilelngF(y) — )|, zlelgllDfF(y) —Df*)||}) — 0 as

FEN5(F*,H)

0 10.

Proof of Theorem 1. Since f* is continuous and Y is compact, we have f*(Y) is
compact. From (a3), for any y € Y there exists a ¢, > 0 such that U(f*(y), ¢,) C Z.
Because f*(Y') is compact, there exist ¢,,, €y,,...€4,; Y1, Y2,...yn such that f*(Y) C
U U(f*(vi), €y). Let ny = 1%21715%. Denote Vi = U(F™, 1), W, = UyeyU(f*(y),
7). Then W,, C Z. For any y € Y, we define a function g, : V} x U(f*(y), ny) — R
by
9y(F, 2) = 2 — (D2 F*(y, f* ()" F(y, 2)

then g,(F*, f*(3)) = f*(y) and Dag,(F*, f*(y)) = 0. We denote T, = D,F*(y,

* . By assumption (a3) and the map T': A — A~! is continuous, there exists a
f*(y)). By p p ,

constant M > 0 such that for any y € Y,

[(D2F*(y, F @)~ < M.

Since Do F™* is continuous on the compact set Y x f*(Y'), there exists a d;, 0 <

61 < min{47, 1, 7} such that for any y € Y,

|1D2F (y, z) — D2 F™(y, [*(y))]

I1D2F(y, 2) = Do F*(y, 2)|| + [[D2F(y, 2) — Do F™(y, ()]

IN

< |IDF(y, f*(y)) — DF*(y, f* W) + ﬁ
1 1 1

< P ED TN < o S 2

provided F' € U[F*, 61], z € U[f*(y), 1].

And therefore

[(Dagy(F, )| = ||I =T, DF(y, 2)|| = ||T,7'T, — T, D2 F (y, 2)||

IA

1T, 1T, — D2F(y, 2)]| <

N | —

3



By Mean Value Theorem applied to g, (F, -), For any F' € U[F*, 6;],y € Y, and

any two points z1, zo € U[f*(y), 61],

1
||gy(Fa 2’1) - gy<F7 22)” < 5 ||21 - 2’2|| .

Now, we choose a §, 0 < § < min{ﬁél, 91} such that for any y € Y, and

F e U[F*, 6],

IEy, )l = [1Fy, f*) = F @ W)l

. - 1 1
< P(F;F)§5<W51§m51

and therefore

lgy(F, f* W) = Wl = |7, Fly, ()|

IZ I E G, @)l < 5o

IA

Thus for any y € Y, F € U[F*, §] and z € U[f*(y), 0,] one has

lgy(E's 2) = W)l < Ngy(F, 2) = gy (F, [ DI + gy (Fs F7 () = F W)l

1 1
< 5 ||Z — f*(y)|| + 551 < 4.

This implies that for any y € Y and any (fixed) F € U[F*, 6], the map z — g,(F,
z) is a contraction of the complete metric space U[f*(y), 01] into itself. Hence by the

contraction mapping principle, there exists a unique fixed point, say ¢, (F'), and so

gy (F, Y, (F)) = ¢, (F) or, equivalently, F(y, Y, (F)) =0.

Given a F' € U[F*, 0], for any y € Y there exists a unique 1, (F) such that F(y,
¥, (F)) = 0. We define the function f* :Y — Z by f"(y) = ¥, (F). Therefore, for
any F' € N5(F*, H), there is a unique function f¥ :Y — Z such that for all y € Y,
F(y, f¥(y)) = 0. Tt remains to show that f is C.

For all F' € N5(F*, H),

1 -
F * * -1
|D2F(y, f5(y)) — DoaF*(y, f*(y))]| < m << | D2F*(y, f H
4



Hence Dy F(y, f¥(y)) is nonsingular for all y € Y. (see [3], p. 209)

Therefore for all F' € N5(F*, H), there is a unique function f* : Y — Z such
that for all y € Y, F(y, ff'(y)) = 0, and DyF(y, f¥(y)) is nonsingular. By implicit
function theorem (see [4], p. 374), the function f% is unique and C'. We complete

the proof of (cl).

Next, we prove the (c2). Let y € Y and F' € Ny(F*, H). Then

[0, (F) =, (F7)

= lgu(F. v, (F)) = g, (", 4, (F"))

< gy (Fy 0, (F) = gy (F, b, (F))|| + |9y (F, ¢, (F*)) = gy (F*, 1, (F*))]|
< S 1, (F) = 0, ()| + o (B () = 00, 4, (E))|
Thus
|60, (F) =, (F)|| < 2 ||gy(Fy 9, (F)) — g,(F*, ¢, (F))]
= 2||T, Y (E(y, ¢, (F*) = F*(y, ¢, (F*))||
< 2M ||F(y, ¢, (F*) — F*(y, ¢, (F*)
< 2M( SU)I;HHF(y, z) = F*(y, 2|
< 2M§ —0asd — 0.
That is,
sup  sup ||/ (y) — f*(y)|| = 0 as & — 0. (2)

FeNg(F*,H)yeY

Now, we remain to prove

sup  sup HDfF(y) — Df*(y)H —0asd—0.
FeNg(F* H)yeY

Since D F™* is continuous on the compact set Y x Z, there exists a N; > 0 such



that ||D1F*(y, z)|| < Ny forall (y, 2) € Y xZ. Lety € Y and F' € N5(F™*, H). Then

IDLE(y, 2)[| = [[D ™ (y; )| < [D1E(y, 2) — DiE™(y, 2)|

IN

(y, z)eH

Thus

< sup [[DF(y, 2) -

IDF(y, z) = DF*(y, )|

DF*(y, 2)|| <6 < 1.

IDLF(y, 2)[| < 1+ [ID1F"(y, )| <1+ Ny

(3)

for any y € Y and F' € N5(F*, H). Similarly, there exists a Ny > 0 such that

| Do F*(y, 2)|| < Ny for all (y, 2) € Y x Z and

[D2F(y, 2)|| <1+ || D2F*(y, 2)|| <1+ Ny

for any y € Y and F' € N5(F*, H).
Let y € Y and F € N5(F*, H). Then

[D=F(y, £ D) | = [[ID2F"(y, ()] 1]
< H[Dz (v, f7(y) 1H HDQ (v, f7(y)) — DoF*(y, f

< DFCy, O - 577

Thus

|[D2F(y, X)) < 2||[D2F (. £y

for any y € Y and F' € N5(F*, H).

D2 (y, f*

7 <2m

I

Since D, F* is continuous on the compact set Y x Z, for this § > 0 there exists a



0 <, < ¢ such that for any y € Y’

H[D2F<y7 fF<y))] [DQF* yv lH
< |[D2E(y, RN |1 D2F (y, £7 () — DoF*(y, f* )| [[[D2F* (v, f* )] 7|
< 2M - ||DyF(y, [ (y)) — DoF*(y, f*(y))|| - M

IN

IN

2M?( sup ||DF(y, z) — DF*(y, 2)|| +9)

(y, z)€eH

< 2M*(55 +0)
provided F' € Ng,(F*, H), fF(y) € U[f*(y), 02).

That is,

sup  sup [|[DaF (y, T = [DaF"(y, f*(y)] || = 0asd— 0. (4)
FEN,, (F*,H)yeY

Similarly, since D;F™* is continuous on the compact set Y x Z, for this 95 > 0

there exists a 0 < d3 < d5 such that for any y € YV

| D1F(y, f5(y)) — DiF*(y, f*(y))]]
< ||DiF(y, 5 (y)) = DiF*(y, fX )| + | P1F* (v, f5 () — D1 F*(y, f*(v))||

< sup ||DF(y7 Z) - DF*(ya Z)H +62
(y, z)€H

< O3+ 09
provided F € Ns, (F*, H), f¥(y) € U[f*(y), 03].

That is,

sup  sup || DiF(y, f(y)) — DiF*(y, f*(y))|| — 0 as 6> — 0. (5)
FeNs, (F*,H)yeY

Let y € Y and F € Ny, (F*, H).

D1 F(y, f5(y))I + DoF(y, fF(y))DfF(y) =0

7



By Egs. (3), (4) and (5), we have

IN

IN

IN

<

|Df"(y) = Df*(y)

[[D2F(y, f7 )] DiF(y. f7(y) = [D2F*(y, f* ()] DiF"(y, £* ()|
[DiE(y, FE))([D2F (y, f ()]~ = [DoF*(y, fru)] || +

[[D2F*(y, f* ()] (DriF(y, f7(y)) = DiF*(y, f*())]|

[D1F(y, F )| |[[D2F (v, f7 )]t = [D2F(y, £ )] Y| +
I[D2F*(y, f N[ D1F(y, £ (y) = DiF*(y, £*(v))]]

(14 Np)[2M?(05 + 6)] + M (63 + d2)

for any y € Y and F' € Ny, (F*, H).

That is,

sup supHDfF(y)—Df*(y)H —0asd — 0. (6)
FeNs, (F*,H)yeY

By Egs. (2) and (6), we have

sup (max{zlelg 15 (w) = )| Jeup D (y) — Df*(y)||}) — 0 as 65 | 0.

FENs, (F* H)

This completes the proof of (c2). m



3 Chaos

3.1. Chaos

For any function G*, we denote its domain by Dom(G*). We consider difference

systems of the form

G*<th_u,..., Li—1y Tty Tig1s---s mt—i—u) = 0, (7)

where each side of Eq. (7) is an N x 1 column vector and G* : Dom(G*) C
(RV)#HHv — RN with N, u, v € N. By a difference system, we always mean a

system of the form in Eq. (7), which we denote simply by G*.

We define an orbit of G* as a bi-infinite sequence {z;:}°__ such that for all t € Z,

* —
G (mt—ua"', Lt—15 Tty Tiflyeees xt—i—y) = 0.

Let || . || be the sup norm whenever its argument is a vector or a sequence. Let
y = {y}:2,, | > —o0, be any sequence. If there exists a n € N for all ¢ > [ such
that v, = v, then y is called periodic. If n € N is the smallest such number, then
y is called n-periodic. Suppose y is a sequence in R, m € N. We say y is called
asymptotically periodic if there is a periodic sequence {y; } such that ||y; — y;|| — 0 as

t — oo. If y is not asymptotically periodic, then y is called asymptotically nonperiodic.

Definition 2 We say that a difference system G* is chaotic if (T1) and (T2) below
hold:

(T1) There exists a m € N, for all n > m, G* has an n-periodic orbit.

(T2) G* has an uncountable set x of asymptotically nonperiodic orbit such that

9



forallx, y € x (x #y)

limsup ||z, — y:]| > 0, (8)
t—o0
for alln € N, ligglf I @i—nyeees Tin) — Yins--os Ytan)|| = 0. (9)

Condition (T2) means that any two orbit in x never converge to each other but

they become arbitrarily close infinitely often.

3.2. Static system and chaos

Let G* : Dom(G*) C (RV)#H1+" — RN with N, u, v € N be a difference system.

We denote
Dom(G*)g = {zo € RN | (3_45es; @1, 0, T1yeey T,) € Dom(G¥)

N
where x_,,...; £=13 T15es, T, € RV}

We say that G* is static or a static system if there is a function G* : Dom(G*), C
RY — RY such that G*(x) = G*(_py..., T_1, T, T1,..., T,) for all (z_,,..., x_1, To,
T1,ey T,) € Dom(G*). If G* is static, we defined a static point of G* as a point

¢ € Dom(G*)y such that G*(£) =0

Let Ki,..., Kyy € Dom(G*)g. We defined a pattern as a vector of p+ 1+ v
natural numbers; a sequence of natural number is called a symbolic sequence. We say
that a pattern p = (p_,,..., py) is a feasible pattern (w.r.t. G* and Ki,..., Ky) if
K, ,x..xK, C Dom(G*). Let P(G*, Ki,..., K)r) be the set of pattern feasible w.r.t.
G* and Kj,..., K. We say that a symbolic sequence {s;}3°,, —oo <[ < —p < o0, is
feasible (w.r.t. G* and K,..., Kyy) if for all ¢ = [+ pu,..., pp—v, (8¢_ 5., St40) € P(G*,

K,y Kup).

10



Let p, ¢ € P(G, Ki,..., Ky1). We say that ¢ is reachable from p if one of the
following three cases holds: (i) there exists a n € N, there is a symbolic sequence
{si}i=; such that {p_,,..., Pu; 1, Sny Gy G0 } 1s feasible; (i) {p_p,..., D, @piyeor
q-,} is feasible; (iii) there exists a m € {1,..., p + v}, {p_p,-e, Pvy Quomt1sees Q) 18

feasible and for all t = —p + M., ¥ p; = Qi

Theorem 3 Let G* be a static system with static points &,..., £, € Dom(G*)y and
there are p, ¢ € P(G*, &,,..., &) with p # q such that p_, =... = p_, and p, q are

reachable from each other. Then G* is chaotic.

Proof. Without loss of generality, assume p_, =... = p_, = 1. If ¢ is reachable from
p with case (ii) or (iii) holding, then case (i) also holds for any n € N, if we let S; =1
for all £ = 1,..., n. Hence in any case, there is a symbolic sequence S = {s;}_; such

that {p_,,..., Du, S15-0s Sny Q—piseey q—u ) 18 feasible. Define T' = {¢;}7,, similarly. Let

U2 = {pf/,n'“v DPvy S15444 Snaqfur-'v q—v, tl?“'? tm: p*,ur'-) pu}

Let m =3(u+1+v)+n+mand vt = {1, 1,..., 1} with m 1‘s; vland v? have
the same dimension. For each bi-infinite sequence 7 of 1 and 2 (i.e.., 7; € {1, 2} for

all i € Z), let s(7) be the symbolic sequence such that for all i € Z

S(T)im,... (i+1ym—1 = V"' (10)

Note that the mapping 7 — s(7) is one-to-one and that s(7) is always feasible.

We first verify (T2). For r € R, let [r] denote the largest integer less than or equal
to r . For w € (0, 1), define a bi-infinite symbolic sequence 7" as follows. For ¢ < 0,

let 7" = 1. For ¢ > 1, define 7 as follows:

A1, 2.2
1,10 { }
[10w]l's (10—[10w])2‘s

11



7'11110 {1 2,..., 2 }

[100w]1s (100—[100w])2"s

T ={1,.,1, 2,0, 2
110 = { }
[1000w]1s  (1000—[1000w])2*s
and so on. More precisely, letting 7, = 1 4+ 10+... +10" for n € N, we have for all

neN
T =1, for all i = T,,,..., T,, + [10"w] — 1, (11)
i =2 for all i =T, + [10"w],..., Tp41 — 1. (12)

Note that for any w, w" € (0, 1), w # w'. [10"w] # [10"w'] for n large enough. Thus

7" # 7/’ for infinitely many i's. (13)

Therefore, for any w € (0, 1) there is an orbit " such that for all t € Z, x}’ =
Esrwy,- Let x = {2 [ w € (0, 1)}; we show that y satisfies (T2). Clearly x is an
uncountable set. Let w € (0, 1). Since [10™w] T oo as n T oo, 7% is asymptotically
nonperiodic; thus z* is asymptotically nonperiodic. It remains to show Eqs. (8) and

(9). Let w, w' € (0, 1) with w # w'. Let W = min{w, w'}. Let m € Z\{0}. For

n €N, let p, =T, + [12%]. By Egs. (11) and (12), we have
H(xlli}'nfmr." xLU7L+nL) - (x:fn*m’ x/»lj')ner ) - 0 as n — oo.
That is
liggf H /'Ln+m) B (x/»lj')nfm’” " Au'n+m ) - 0

By Eq. (13), we also have

limsup ||z;" — 2 || > 0

t—oo

Since w, w’, and m were arbitrary, we have verified Eqgs. (8) and (9) and thus

(T2).

Now to verify (T1), let 7 = {...,1, 2, 1, 2,...} with 79 = 2. Clearly s(7) is feasible

and (2m)-periodic. Let m = 2m. Let s™ = s(7). Note from Eq. (10) that s7* =1

12



for all ¢ expect that if t = im for some i € Z, s}" = v*. For n > m, let s" be
the symbolic sequence such that s;' = 1 for all ¢ expect that if ¢ = in for some i € Z,
S yym_1 = v%. Clearly for all n > m, s" is feasible and n-periodic. That is for all

n > 2m, G* has an n-periodic orbit. This completes the proof of theorem 3. m

13



4 Stability of chaos

4.1. Quasi-static system

We introduce the concept of quasi-static system. Quasi-static systems are differ-

ence systems that are in a certain sense relatively close to static systems.

Definition 4 We say that G* is quasi-static (w.r.t. Ki,..., Ky) if (K1) and (K2)

below hold:

(K1) Ki,..., Ky are disjoint, compact, and conver.

(K2) For allp € P(G*, Ki,..., Kn), (§p 00 §p)) € Kp X XK, and (&, ...,
£p,) € Ky X XK, there is a unique & = Gp(§,_s-s §p s Epyoerr §p) € Kig

such that G*(fp_#a---z gp_17 57 €p17"'7 é-pl,) = 0.

Lemma 5 G* is quasi-static w.r.t. Ky,..., Kyy C Dom(G*)o then

(c1) for each bi-infinite feasible symbolic sequence {s:}5°_ ., G* has an orbit {x;}2 _

such that for allt € Z, x; € Ks,.

(c2) For each n-periodic bi-infinite feasible symbolic sequence {s;}° .., G* has an

n-periodic asymptotic orbit {x,};2_ such that for allt € Z, x; € K,

Remark 6 For all p € P(G*, Ky,..., Ku), g5 @ D, — Ky, is continuous, where

D, = (K

P—p

X... XKy ) X(Kp, x...xK,,).

Remark 7 (Brouwer fixed point theorem) Suppose that M is a nonempty, con-
vex, compact subset of R™, n > 1 and that f : M — M 1is a continuous mapping then

[ has a fized point.(see [5], p. 51)
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Proof of Lemma. For any sequence {y;}, let

Yy = (yt—m--«, yt*1>7 y;r = (yt+17'“7 yt+u)

We first prove (c2). The proof of (c1) is similar to that of (¢2), and is thus omitted.
Let {s;}2,, —oo <1 < —pu, be a feasible sequence For t > [, let S; = Kj,.Suppose
| = —oo and {s;} is n-periodic. Given z, = (z1, ..., T,) € K, X Ky, x ... x K.
Let = be the n-periodic sequence such that zi,..., , are as given. Define T, :
Ky, X Ky x..xK,, — K, x Ko, x..xK,, by T1n(®1) = gsi_ppn (Tr, 7). Since
T} ,, is continuous and 5 ,, is compact and convex, 17 ,, has a fixed point Ty, = (x7,...,
x}) (by the Brouwer fixed point theorem) Clearly, the associated n-periodic orbit z*

is an orbit of GG such that for all t € Z, z} € K,. »m

Note that if G* is a static system with static points &4,..., £,,, then G* is a quasi-
static w.r.t.{&; },..., {&y}, and the conclusions (c1)-(c2) trivially hold with x; € {&;,...,
&y} for all t. The lemma says that they continue to hold for a quasi-static system

with appropriate compact convex sets replacing static points.

4.2. Stability of chaos for regular static system under small C' pertur-

bations

Let G* is static; we say that G* is reqular if G* is C!, if G* has only a finite
number of static points &;,..., £, € Dom(G)o, and DG?*(&;) is nonsingular for all

i=1,.., M.

Y

Let G* be a C! static system with static points &;,..., £,; € Dom(G*),. Denote

J(G* &y E4y) = {(fiw,..., igir &) € Dom(G™) | 1 <y, dgyenny 1y < MY,

15



and
J(G*\No(€1) ey Ne(€ar)) = {N=(&;_,) X .. X N(€,,) € Dom(G¥) |

for all (i_,..., i,) € P(G*, No(&;), ., No(Ea)) }-

Theorem 8 Let G* be a regular static system with static points &,,..., £y € Ko and
Dom(G*) is open. Let K C Dom(G*) be a compact set such that J(G*,£,,....& ) C K

(the interior of K ). Then there exist € and 6. > 0 such that for all G € N5 (G*, K)

(i) we have G is quasi-static (w.r.t. N(&,), Ne(&),..., N(€y)) and

(it) for G* , if there are p, ¢ € P(G*, &,..., §y) with p # q such that p_, =...

= p_, and p, q are reachable from each other. Then G is chaotic.

Proof. (i) Let G* be a C* static system with static points &, ..., £, € Dom(G*)g, and
DG#(&;) is nonsingular for all ¢ =1,..., M, and Dom(G*) is open. Let K C Dom(G*)
be a compact set such that J(G*.£,,.... ) C K (the interior of K). Then there is
e > 0 such that J(G*,&,,....64) C J(G*, N.(&)),..., No(€y)) € K C Dom(G*), and
P(G*, N.(&)s.-, No(€ap)) = P(G*, &,5y) = P. For this € > 0, G* is a quasi-static
system w.r.t. N.(&)),..., No(€y). Let K; = N.(¢&,) for i = 1,..., M. For p € P,
let g5 : D, — Kp, be defined as in (K2). Note that for all p € P and for all
¢ € Dy, we have g;(¢) = &, € Kopo and HDg;(C)H = 0. Hence by theorem 1, there
is 6. > 0 such that for all G € N;_(G*, K) for all p € P, there is a unique function
95+ D, — K, such that for all ¢ € Dy, G(£7, g5(¢), £€7) =0, g5 is C*, and maxcep,
|DgS Q)| =maxcep, ||DgS(¢) — Dgi(¢)|| < 1. Therefore for all G € Ns(G*, K),
G satisfies (K1) and (K2). So, we have G is quasi-static (w.r.t. N.(&;), Ne(&y),eeny

N (&,)). From Lemma 5, note that if {s;}5°___ is the orbit of G*, then there exists a

—00

correspond orbit of G called {z;}3° | where z; € N_.(s;) for all t € Z. Moreover the
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correspond orbit preserve the period of {s;} That is if {s;}° ., is n—periodic

—00*

then {z{}° __ is n—periodic.

(ii) For G*, if there are p, ¢ € P(G*, &4,..., §y;) with p # ¢ such that p_, =...
= p_, and p, ¢ are reachable from each other, then G* satisfies (T1) and (T2) and is
chaotic. (From Theorem 3). In fact, for all G € Ns_(G*, K) G also satisfies (T1) and
there exists an uncountable set Y& of asymptotically nonperiodic orbit such that for

all 2%, 4% € x¢ (2% # y“) we have

lim sup thG — thH > 0.
t—0o0
We remain Eq.(3) to be check. Now we give two remarks as following, and post-

pone the proof of Remark 9 to the appendix.

Remark 9 Let G be a C° system. Let H C Dom(G*)q is compact. Suppose (a) there
s a unique orbit x* such that xj € H for allt € Z. Then x* is a constant sequence
and for any € > 0 there isn € N such that for allt € Z and for any orbit x, if v; € H

foralli=1t—mn,..., t +n, we have |z, — z}|| < €.

Remark 10 If G is quasi-static (w.r.t. N.(&,), N.(&,),..., N(&,y)) and there are p,
q € P(G*, N(&),..., Nc(&y)) with p # q such that p_, =... = p_, and p, q are
reachable from each other and g5 as given by (K2) is C* and maacep, ||Dg§(C)H < 1.

Then there is a constant sequence {..., £, £, £*,...} is the unique orbit {x;} such

that z, € N(€,,) for allt € Z.

By the proof of theorem 3 and Lemma 5 (c1), for any w € (0, 1) there is an orbit
2 such that for all t € Z, 2} € N.(&,(u,). Let x = {2 | w € (0, 1)}; we show that

x satisfies (T2). Clearly x is an uncountable set. Let w € (0, 1). Since [10"w] T oo as
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n T oo, 7% is asymptotically nonperiodic; thus =% is asymptotically nonperiodic. It
remains to show Egs. (8) and (9). Let w, w’ € (0, 1) with w # w'. Let @ = min{w,
w'}. Let m € Z\{0}. For n € N, let p, = T, + [*2™=]. By Eqgs. (11) and (12) and
Remark 9 and 10, we have

’ ’

@ e ) = (@ e i | S || @ s 2, ) = (€ €)

H(xgn,m,..., ) (€ )

+

— 0 asn— oo.

That is

! !

. . w w w w —
A B ] B

By Eq. (13), we also have

’
lim sup Hm;" —a || >0

t—o00

Since w, w’, and m were arbitrary, we have verified Eqgs. (8) and (9) and thus

(T2). Therefore G satisfies (T1) and (T2) and thus chaotic. =
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5 Appendix

Here we give the proof of Remark 9.

Proof of Remark 9. Let G be a C° system. Let H C Dom(G*)o is compact.
Assume (a) above. Since z* = {z}} is the unique orbit in H and since {zj,,} is
clearly an orbit, we have 7 = zj,, for all ¢ € Z, i.e., 2 is a constant sequence. Let
¢ = xf. Let ¢ > 0. Suppose there is no n € N such that for all t € Z and for any
orbit z, if x; € H for all i =t — n,..., t + n, we have ||z; — || < e. This means that

for all n € N there is an orbit y™ such that for some 7, € Z, Hygil —&*|| > ¢ and

yi € Hforalli =t—mn,..,t+n. Forn € N, define 2" = {27} by 2} = y}. . Note that
for all n € N, 2™ is an orbit and ||zf — || > e. Taking a subsequence if necessary, we
may assume xy — T; € H as n ' oo for all t € Z. Then we have |75 — £*|| > € and

thus {Z;} # z*. But since G is O, it follows that {Z;} is an orbit, which contradicts

(a). m
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