# 國立交通大學

# 應用數學系

# 碩士論文

隱函數定理的變形與其在差分系統的混沌結果

A version of the implicit function theorem and its consequences for chaos of difference systems

aunun

研 究 生:謝俊鴻 指導老師:李明佳 教授

中華民國九十六年七月

隱函數定理的變形與其在差分系統的混沌結果

A version of the implicit function theorem and its consequences for chaos of difference systems

> 研 究 生: 謝俊鴻 指導教授: 李明佳

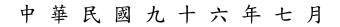
Student : Chun-Hung Hsieh Advisor : Ming-Chia Li



Submitted to Department of Applied Mathematics College of Science National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Master in

> Applied Mathematics June 2007

Hsinchu, Taiwan, Republic of China



## 隱函數定理的變形與其在差分系統的混沌結果

學生: 謝俊鴻 指導教授: 李明佳 教授

國立交通大學應用數學系(研究所)碩士班



我們指一個差分系統的形式為G<sup>\*</sup>(Xt-μ,...,Xt-1,Xt,Xt+1,..., Xt+ν)=0,此式G<sup>\*</sup>為一個(μ+1+ν)個變數映至R<sup>N</sup>的函數,並且每 個變數屬於R<sup>N</sup>。我們考慮僅和Xt變數有關的差分系統稱之為靜 態系統,並且引入在某些性質相當類似於靜態系統的差分系統 稱之為半靜態系統。我們提供隱函數定理的一個變形版本。我 們呈現再加一些條件下,一個靜態系統是混沌的。我們使用這 個隱函數定理的變形去呈現對於正則靜態系統的些微C<sup>1</sup>擾動 下,混沌現象的穩定性。

# A version of the implicit function theorem and its consequences for chaos of difference systems

student : Chun-Hung Hsieh

Advisor : Ming-Chia Li

Department (Institute) of Applied Mathematics National Chiao Tung University



By a *difference system*, we mean a system of the form  $G^*(x_{t-\mu}, ..., x_{t-1}, x_t, x_{t+1}, ..., x_{t+\nu}) = 0$ , where each side of this equation is an  $N \times 1$  column vector and  $G^*: Dom(G^*) \subset (\mathbb{R}^N)^{\mu+1+\nu} \rightarrow \mathbb{R}^N$  with  $N, \mu, \nu \in N$ . We consider a *static system* as a difference system that depends only on  $x_t$  and a *quasi-static system* as a difference system that is in a certain sense relatively close to a static system. We provide a modified version of the implicit function theorem. We show that under additional conditions, a static system is chaotic. We use this version of the implicit function theorem to show the stability of chaos for regular static system under small  $C^1$  perturbations.

這篇論文的完成,首先要感謝我的指導老師 李明佳教授。 在這兩年來,老師除了在學問上的諄諄教誨令我收穫很多之外, 其對於研究事物的態度更是讓人敬佩,謹此致上我最誠摯的敬意 與謝意。口試期間,也承蒙陳國璋老師、陳怡全老師、莊重老師 費心審閱並提供了寶貴的意見,使得本論文得以更加的完備,永 誌於心。

在這兩年求學的過程中,感謝胡忠澤學長和呂明杰學長在我 遇到問題時,總是幫了很大的忙,在此獻上我最大的感謝之意。 感謝蕭亦廷同學和我一同為了論文奮鬥、互相加油打氣。

除此之外,更要感謝我研究所的全體同學們,謝謝他們讓我 的研究所生活更多采多姿,有了他們的陪伴與支持,讓我擁有這 些美好的回憶。

最後,要感謝我的家人的支持,以及女友雅羚這些日子的用 心陪伴。願與所有關心我的人一起分享這份喜悅,再次地感謝所 有幫助過我及關心過我的人,謝謝大家!



目

| 公生 |   |  |
|----|---|--|
| 鈳  | K |  |

| 中文提要       |                                                                                                                 | i   |
|------------|-----------------------------------------------------------------------------------------------------------------|-----|
| 英文提要       | ••••••                                                                                                          | ii  |
| 誌謝         |                                                                                                                 | iii |
| 目錄         |                                                                                                                 | iv  |
| - `        | Introduction                                                                                                    | 1   |
| ニ、         | A version of the implicit function theorem                                                                      | 2   |
| 三、         | Chaos                                                                                                           | 9   |
| 3.1        | Chaos                                                                                                           | 9   |
| 3.2        | Static system and chaos                                                                                         | 10  |
| 四、         | Stability of chaos                                                                                              | 14  |
| 4.1        | Quasi-static system                                                                                             | 14  |
| 4.2        | Stability of chaos for regular static system under small                                                        | 15  |
|            | <i>C</i> <sup>1</sup> perturbations                                                                             |     |
| 五、         | Appendix                                                                                                        | 19  |
| References | 1896                                                                                                            | 20  |
|            | The second se |     |

### 1 Introduction

Consider a difference system

$$G(x_{t-1}, x_t, x_{t+1}) = 0. (1)$$

Define an *orbit* as a sequence  $\{x_t\}$  satisfying Eq. (1) for all  $t \in \mathbb{Z}$ . Suppose G reduces to a *static system*  $G^*$ , by which we mean that  $G^*$  is a function of  $x_t$  alone:

$$G^*(x_{t-1}, x_t, x_{t+1}) = F(x_t)$$

In [1], we have the fact that if  $F(x_t) = 0$  has multiple solutions at which the Jacobian matrix DF is nonsingular, then for G is in a certain sense relatively close to  $G^*$ , G displays chaotic dynamics.

The result will be based on simultaneous control of appropriate perturbation of static difference system. We provide a modified version of the implicit function theorem which inspired by the concept of Li and Malkin in [2].

In this paper, section 2 presents a modified version of the implicit function theorem and proof. Section 3 gives the definition of chaos and show that under additional conditions, a static system is chaotic. Section 4 defines quasi-static systems, establishes their properties, and presents stability of quasi-staticness and chaos.

## 2 A version of the implicit function theorem

Let  $x \in \mathbb{R}^n$ ,  $x = (x_1, x_2, ..., x_n)$ ,  $\|\cdot\|_2$  denotes the Euclidean norm, i.e.  $\|x\|_2 = (x_1^2 + x_2^2 + ... + x_n^2)^{\frac{1}{2}}$ ,  $\|\cdot\|_{\infty}$  denotes the sup norm, i.e.  $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$ . In fact, for a  $m \times n$  matrix B,

$$||B||_{\infty} = \max_{\xi \in \mathbb{R}^n} \frac{||B\xi||_{\infty}}{||\xi||_{\infty}} = \max_{1 \le i \le m} \sum_{j=1}^n |B_{ij}|.$$

Let  $m, n \in \mathbb{N}$ , for  $H \subset \mathbb{R}^m \times \mathbb{R}^n$ , and  $\mathbf{C}^1(H, \mathbb{R}^n)$  denote the set of  $C^1$  functions  $F: Dom(F) \to \mathbb{R}^n$  such that  $Dom(F) \supset H$ . Let  $E = \{F \mid_H : F \in C^1(H, \mathbb{R}^n)\}$ . For  $F_1, F_2 \in E$ , define  $\rho(F_1, F_2) \equiv$ 

$$\max\{\sup_{(y, z)\in H} \|F_1(y, z) - F_2(y, z)\|_2, \sup_{(y, z)\in H} \|DF_1(y, z) - DF_2(y, z)\|_{\infty}\},\$$

then  $(E, \rho)$  is a metric space. We will use the notation U(x, r) and U[x, r] for the open and closed ball, respectively, of radius r centred at the point  $x \in X$ , where X is a metric space. Let

$$N_{\delta}(F^*, H) = \{F \in E \mid \rho(F, F^*) < \delta, Dom(F) \subset Dom(F^*)\}.$$

**Theorem 1** Let  $m, n \in \mathbb{N}, Y \subset \mathbb{R}^m, Z \subset \mathbb{R}^n, H \subset \mathbb{R}^m \times \mathbb{R}^n, and F^* \in E$ . Suppose:

- (a1) Y, Z, and H are compact, and  $Y \times Z \subset H$ .
- (a2) There is a unique function  $f^*: Y \to Z$  such that for all  $y \in Y$ ,  $F^*(y, f^*(y)) = 0$ .
- (a3)  $f^*(Y) \subset$  the interior of Z and for any  $y \in Y$ ,  $D_2F^*(y, f^*(y))$  is nonsingular. Then
  - (c1) there exists a  $\overline{\delta} > 0$  for any  $F \in N_{\overline{\delta}}(F^*, H)$ , there is a unique function  $f^F : Y \to Z$  such that for any  $y \in Y$ ,  $F(y, f^F(y)) = 0$ , and the unique function  $f^F$  is  $C^1$ .

$$(c2) \sup_{\substack{F \in N_{\overline{\delta}}(F^*,H)\\\overline{\delta} \downarrow 0.}} (\max\{\sup_{y \in Y} \left\| f^F(y) - f^*(y) \right\|, \sup_{y \in Y} \left\| Df^F(y) - Df^*(y) \right\|\}) \to 0 \text{ as}$$

**Proof of Theorem 1.** Since  $f^*$  is continuous and Y is compact, we have  $f^*(Y)$  is compact. From (a3), for any  $y \in Y$  there exists a  $\varepsilon_y > 0$  such that  $U(f^*(y), \varepsilon_y) \subset Z$ . Because  $f^*(Y)$  is compact, there exist  $\varepsilon_{y_1}, \varepsilon_{y_2}, ..., \varepsilon_{y_n}; y_1, y_2, ..., y_n$  such that  $f^*(Y) \subset \bigcup_{i=1}^n U(f^*(y_i), \varepsilon_{y_i})$ . Let  $\eta_0 = \min_{1 \leq i \leq n} \varepsilon_{y_i}$ . Denote  $V_1 = U(F^*, 1), W_{\eta_0} = \bigcup_{y \in Y} U(f^*(y), \eta_0)$ . Then  $W_{\eta_0} \subset Z$ . For any  $y \in Y$ , we define a function  $g_y : V_1 \times U(f^*(y), \eta_0) \to \mathbb{R}^n$  by

$$g_y(F, z) = z - (D_2 F^*(y, f^*(y)))^{-1} F(y, z)$$

then  $g_y(F^*, f^*(y)) = f^*(y)$  and  $D_2g_y(F^*, f^*(y)) = 0$ . We denote  $T_y = D_2F^*(y, f^*(y))$ . By assumption (a3) and the map  $T : A \to A^{-1}$  is continuous, there exists a constant M > 0 such that for any  $y \in Y$ ,

$$\left\| (D_2 F^*(y, f^*(y)))^{-1} \right\| < M.$$

Since  $D_2F^*$  is continuous on the compact set  $Y \times f^*(Y)$ , there exists a  $\delta_1$ ,  $0 < \delta_1 < \min\{\frac{1}{4M}, 1, \eta_0\}$  such that for any  $y \in Y$ ,

$$\begin{split} \|D_2 F(y, z) - D_2 F^*(y, f^*(y))\| \\ &\leq \|D_2 F(y, z) - D_2 F^*(y, z)\| + \|D_2 F^*(y, z) - D_2 F^*(y, f^*(y))\| \\ &< \|DF(y, f^*(y)) - DF^*(y, f^*(y))\| + \frac{1}{4M} \\ &< \rho(F, F^*) + \frac{1}{4M} < \frac{1}{2M} \leq \frac{1}{2\|T_y^{-1}\|} \end{split}$$

provided  $F \in U[F^*, \delta_1], z \in U[f^*(y), \delta_1].$ 

And therefore

$$\|(D_2g_y(F, z)\| = \|I - T_y^{-1}D_2F(y, z)\| = \|T_y^{-1}T_y - T_y^{-1}D_2F(y, z)\|$$
  
$$\leq \|T_y^{-1}\| \|T_y - D_2F(y, z)\| \leq \frac{1}{2}.$$

By Mean Value Theorem applied to  $g_y(F, \cdot)$ , For any  $F \in U[F^*, \delta_1], y \in Y$ , and any two points  $z_1, z_2 \in U[f^*(y), \delta_1]$ ,

$$||g_y(F, z_1) - g_y(F, z_2)|| \le \frac{1}{2} ||z_1 - z_2||.$$

Now, we choose a  $\overline{\delta}$ ,  $0 < \overline{\delta} < \min\{\frac{1}{2M}\delta_1, \delta_1\}$  such that for any  $y \in Y$ , and  $F \in U[F^*, \overline{\delta}]$ ,

$$\begin{aligned} \|F(y, f^*(y))\| &= \|F(y, f^*(y)) - F^*(y, f^*(y))\| \\ &\leq \rho(F, F^*) \le \overline{\delta} < \frac{1}{2M} \delta_1 \le \frac{1}{2 \|T_y^{-1}\|} \delta_1, \end{aligned}$$

and therefore

$$\|g_y(F, f^*(y)) - f^*(y)\| = \|T_y^{-1} \cdot F(y, f^*(y))\|$$
  
 
$$\leq \|T_y^{-1}\| \|F(y, f^*(y))\| < \frac{1}{2}\delta_1$$

Thus for any  $y \in Y$ ,  $F \in U[F^*, \overline{\delta}]$  and  $z \in U[f^*(y), \delta_1]$  one has

$$\begin{aligned} \|g_y(F, z) - f^*(y)\| &\leq \|g_y(F, z) - g_y(F, f^*(y))\| + \|g_y(F, f^*(y)) - f^*(y)\| \\ &< \frac{1}{2} \|z - f^*(y)\| + \frac{1}{2}\delta_1 \leq \delta_1. \end{aligned}$$

This implies that for any  $y \in Y$  and any (fixed)  $F \in U[F^*, \overline{\delta}]$ , the map  $z \to g_y(F, z)$  is a contraction of the complete metric space  $U[f^*(y), \delta_1]$  into itself. Hence by the contraction mapping principle, there exists a unique fixed point, say  $\psi_y(F)$ , and so  $g_y(F, \psi_y(F)) = \psi_y(F)$  or, equivalently,  $F(y, \psi_y(F)) = 0$ .

Given a  $F \in U[F^*, \overline{\delta}]$ , for any  $y \in Y$  there exists a unique  $\psi_y(F)$  such that  $F(y, \psi_y(F)) = 0$ . We define the function  $f^F : Y \to Z$  by  $f^F(y) = \psi_y(F)$ . Therefore, for any  $F \in N_{\overline{\delta}}(F^*, H)$ , there is a unique function  $f^F : Y \to Z$  such that for all  $y \in Y$ ,  $F(y, f^F(y)) = 0$ . It remains to show that  $f^F$  is  $C^1$ .

For all  $F \in N_{\overline{\delta}}(F^*, H)$ ,

$$\left\| D_2 F(y, f^F(y)) - D_2 F^*(y, f^*(y)) \right\| < \frac{1}{2M} < \frac{1}{M} < \left\| D_2 F^*(y, f^*(y))^{-1} \right\|^{-1}$$

Hence  $D_2F(y, f^F(y))$  is nonsingular for all  $y \in Y$ . (see [3], p. 209)

Therefore for all  $F \in N_{\overline{\delta}}(F^*, H)$ , there is a unique function  $f^F : Y \to Z$  such that for all  $y \in Y$ ,  $F(y, f^F(y)) = 0$ , and  $D_2F(y, f^F(y))$  is nonsingular. By implicit function theorem (see [4], p. 374), the function  $f^F$  is unique and  $C^1$ . We complete the proof of (c1).

Next, we prove the (c2). Let  $y \in Y$  and  $F \in N_{\overline{\delta}}(F^*, H)$ . Then

$$\begin{aligned} \left\|\psi_{y}(F) - \psi_{y}(F^{*})\right\| \\ &= \left\|g_{y}(F, \psi_{y}(F)) - g_{y}(F^{*}, \psi_{y}(F^{*}))\right\| \\ &\leq \left\|g_{y}(F, \psi_{y}(F)) - g_{y}(F, \psi_{y}(F^{*}))\right\| + \left\|g_{y}(F, \psi_{y}(F^{*})) - g_{y}(F^{*}, \psi_{y}(F^{*}))\right\| \\ &\leq \frac{1}{2} \left\|\psi_{y}(F) - \psi_{y}(F^{*})\right\| + \left\|g_{y}(F, \psi_{y}(F^{*})) - g_{y}(F^{*}, \psi_{y}(F^{*}))\right\| \end{aligned}$$

Thus

$$\begin{aligned} \left\| \psi_{y}(F) - \psi_{y}(F^{*}) \right\| &\leq 2 \left\| g_{y}(F, \psi_{y}(F^{*})) - g_{y}(F^{*}, \psi_{y}(F^{*})) \right\| \\ &= 2 \left\| T_{y}^{-1}(F(y, \psi_{y}(F^{*}) - F^{*}(y, \psi_{y}(F^{*}))) \right\| \\ &\leq 2M \left\| F(y, \psi_{y}(F^{*}) - F^{*}(y, \psi_{y}(F^{*})) \right\| \\ &\leq 2M \sup_{(y, z) \in H} \left\| F(y, z) - F^{*}(y, z) \right\| \\ &\leq 2M \overline{\delta} \to 0 \text{ as } \overline{\delta} \to 0. \end{aligned}$$

That is,

$$\sup_{F \in N_{\overline{\delta}}(F^*, H)} \sup_{y \in Y} \left\| f^F(y) - f^*(y) \right\| \to 0 \text{ as } \overline{\delta} \to 0.$$
(2)

Now, we remain to prove

$$\sup_{F \in N_{\overline{\delta}}(F^*, H) y \in Y} \left\| Df^F(y) - Df^*(y) \right\| \to 0 \text{ as } \overline{\delta} \to 0.$$

Since  $D_1F^*$  is continuous on the compact set  $Y \times Z$ , there exists a  $N_1 > 0$  such

that  $||D_1F^*(y, z)|| \le N_1$  for all  $(y, z) \in Y \times Z$ . Let  $y \in Y$  and  $F \in N_{\overline{\delta}}(F^*, H)$ . Then

$$\begin{aligned} \|D_1 F(y, z)\| - \|D_1 F^*(y, z)\| &\leq \|D_1 F(y, z) - D_1 F^*(y, z)\| \\ &\leq \|DF(y, z) - DF^*(y, z)\| \\ &\leq \sup_{(y, z) \in H} \|DF(y, z) - DF^*(y, z)\| \leq \overline{\delta} < 1. \end{aligned}$$

Thus

$$||D_1 F(y, z)|| \le 1 + ||D_1 F^*(y, z)|| \le 1 + N_1$$
(3)

for any  $y \in Y$  and  $F \in N_{\overline{\delta}}(F^*, H)$ . Similarly, there exists a  $N_2 > 0$  such that  $\|D_2F^*(y, z)\| \leq N_2$  for all  $(y, z) \in Y \times Z$  and

$$||D_2F(y, z)|| \le 1 + ||D_2F^*(y, z)|| \le 1 + N_2$$

ALLINA.

for any 
$$y \in Y$$
 and  $F \in N_{\overline{\delta}}(F^*, H)$ .  
Let  $y \in Y$  and  $F \in N_{\overline{\delta}}(F^*, H)$ . Then  
 $\|[D_2F(y, f^F(y))]^{-1}\| - \|[D_2F^*(y, f^*(y))]^{-1}\|$   
 $\leq \|[D_2F(y, f^F(y))]^{-1} - [D_2F^*(y, f^*(y))]^{-1}\|$   
 $\leq \|[D_2F(y, f^F(y))]^{-1}\| \|D_2F(y, f^F(y)) - D_2F^*(y, f^*(y))\| \|[D_2F^*(y, f^*(y))]^{-1}\|$   
 $\leq \|[D_2F(y, f^F(y))]^{-1}\| \cdot \frac{1}{2M} \cdot M$ 

Thus

$$\left\| \left[ D_2 F(y, f^F(y)) \right]^{-1} \right\| \le 2 \left\| \left[ D_2 F^*(y, f^*(y)) \right]^{-1} \right\| \le 2M$$

for any  $y \in Y$  and  $F \in N_{\overline{\delta}}(F^*, H)$ .

Since  $D_2F^*$  is continuous on the compact set  $Y \times Z$ , for this  $\overline{\delta} > 0$  there exists a

 $0<\delta_2<\overline{\delta}$  such that for any  $y\in Y$ 

$$\begin{split} &\|[D_2F(y, f^F(y))]^{-1} - [D_2F^*(y, f^*(y))]^{-1}\|\\ &\leq \|[D_2F(y, f^F(y))]^{-1}\| \|D_2F(y, f^F(y)) - D_2F^*(y, f^*(y))\| \|[D_2F^*(y, f^*(y))]^{-1}\|\\ &\leq 2M \cdot \|D_2F(y, f^F(y)) - D_2F^*(y, f^*(y))\| \cdot M\\ &\leq 2M^2(\|D_2F(y, f^F(y)) - D_2F^*(y, f^F(y))\| + \|D_2F^*(y, f^F(y)) - D_2F^*(y, f^*(y))\|)\\ &\leq 2M^2(\sup_{(y, z)\in H} \|DF(y, z) - DF^*(y, z)\| + \overline{\delta})\\ &\leq 2M^2(\delta_2 + \overline{\delta}) \end{split}$$

provided  $F \in N_{\delta_2}(F^*, H), f^F(y) \in U[f^*(y), \delta_2].$ 

That is,

$$\sup_{F \in N_{\delta_2}(F^*, H)y \in Y} \sup_{y \in Y} \left\| [D_2 F(y, f^F(y))]^{-1} - [D_2 F^*(y, f^*(y))]^{-1} \right\| \to 0 \text{ as } \overline{\delta} \to 0.$$
(4)

Similarly, since  $D_1F^*$  is continuous on the compact set  $Y \times Z$ , for this  $\delta_2 > 0$ there exists a  $0 < \delta_3 < \delta_2$  such that for any  $y \in Y$ 

$$\begin{aligned} \left\| D_1 F(y, f^F(y)) - D_1 F^*(y, f^*(y)) \right\| \\ &\leq \left\| D_1 F(y, f^F(y)) - D_1 F^*(y, f^F(y)) \right\| + \left\| D_1 F^*(y, f^F(y)) - D_1 F^*(y, f^*(y)) \right\| \\ &\leq \sup_{(y, z) \in H} \left\| DF(y, z) - DF^*(y, z) \right\| + \delta_2 \\ &\leq \delta_3 + \delta_2 \end{aligned}$$

provided  $F \in N_{\delta_3}(F^*, H), f^F(y) \in U[f^*(y), \delta_3].$ 

That is,

$$\sup_{F \in N_{\delta_3}(F^*, H) y \in Y} \sup \left\| D_1 F(y, f^F(y)) - D_1 F^*(y, f^*(y)) \right\| \to 0 \text{ as } \delta_2 \to 0.$$
(5)

Let  $y \in Y$  and  $F \in N_{\delta_3}(F^*, H)$ .

$$D_1F(y, f^F(y))I + D_2F(y, f^F(y))Df^F(y) = 0$$

By Eqs. (3), (4) and (5), we have

$$\begin{split} &\|Df^{F}(y) - Df^{*}(y)\|\\ \leq &\|[D_{2}F(y, f^{F}(y))]^{-1}D_{1}F(y, f^{F}(y)) - [D_{2}F^{*}(y, f^{*}(y))]^{-1}D_{1}F^{*}(y, f^{*}(y))\|\\ \leq &\|D_{1}F(y, f^{F}(y))([D_{2}F(y, f^{F}(y))]^{-1} - [D_{2}F^{*}(y, f^{*}(y))]^{-1})\| + \\ &\|[D_{2}F^{*}(y, f^{*}(y))]^{-1}(D_{1}F(y, f^{F}(y)) - D_{1}F^{*}(y, f^{*}(y)))\|\\ \leq &\|D_{1}F(y, f^{F}(y))\| \|[D_{2}F(y, f^{F}(y))]^{-1} - [D_{2}F^{*}(y, f^{*}(y))]^{-1})\| + \\ &\|[D_{2}F^{*}(y, f^{*}(y))]^{-1}\| \|D_{1}F(y, f^{F}(y)) - D_{1}F^{*}(y, f^{*}(y))\|\\ \leq &(1 + N_{1})[2M^{2}(\delta_{2} + \overline{\delta})] + M(\delta_{3} + \delta_{2}) \end{split}$$

for any  $y \in Y$  and  $F \in N_{\delta_3}(F^*, H)$ .

That is,

That is,  

$$\sup_{F \in N_{\delta_3}(F^*, H)} \sup_{y \in Y} \left\| Df^F(y) - Df^*(y) \right\| \to 0 \text{ as } \overline{\delta} \to 0. \tag{6}$$
By Eqs. (2) and (6), we have
$$\sup_{F \in N_{\delta_3}(F^*, H)} \left( \max\{\sup_{y \in Y} \left\| f^F(y) - f^*(y) \right\|, \sup_{y \in Y} \left\| Df^F(y) - Df^*(y) \right\| \} \right) \to 0 \text{ as } \delta_3 \downarrow 0.$$

This completes the proof of (c2).  $\blacksquare$ 

#### 3 Chaos

#### 3.1. Chaos

For any function  $G^*$ , we denote its domain by  $Dom(G^*)$ . We consider difference systems of the form

$$G^*(x_{t-\mu},...,x_{t-1},x_t,x_{t+1},...,x_{t+\nu}) = 0,$$
(7)

where each side of Eq. (7) is an  $N \times 1$  column vector and  $G^* : Dom(G^*) \subset (\mathbb{R}^N)^{\mu+1+\nu} \to \mathbb{R}^N$  with  $N, \mu, \nu \in \mathbb{N}$ . By a *difference system*, we always mean a system of the form in Eq. (7), which we denote simply by  $G^*$ .

We define an *orbit* of  $G^*$  as a bi-infinite sequence  $\{x_t\}_{t=-\infty}^{\infty}$  such that for all  $t \in \mathbb{Z}$ ,  $G^*(x_{t-\mu},..., x_{t-1}, x_t, x_{t+1},..., x_{t+\nu}) = 0.$ 

Let  $\| \cdot \|$  be the sup norm whenever its argument is a vector or a sequence. Let  $y = \{y_t\}_{t=l}^{\infty}, l \ge -\infty$ , be any sequence. If there exists a  $n \in \mathbb{N}$  for all  $t \ge l$  such that  $y_{t+n} = y_t$ , then y is called *periodic*. If  $n \in \mathbb{N}$  is the smallest such number, then y is called *n*-periodic. Suppose y is a sequence in  $\mathbb{R}^m$ ,  $m \in \mathbb{N}$ . We say y is called *asymptotically periodic* if there is a periodic sequence  $\{y_t^*\}$  such that  $\|y_t - y_t^*\| \to 0$  as  $t \to \infty$ . If y is not asymptotically periodic, then y is called *asymptotically nonperiodic*.

**Definition 2** We say that a difference system  $G^*$  is chaotic if (T1) and (T2) below hold:

(T1) There exists a  $m \in \mathbb{N}$ , for all  $n \ge m$ ,  $G^*$  has an n-periodic orbit.

(T2)  $G^*$  has an uncountable set  $\chi$  of asymptotically nonperiodic orbit such that

for all  $x, y \in \chi \ (x \neq y)$ 

$$\limsup_{t \to \infty} \|x_t - y_t\| > 0, \tag{8}$$

for all 
$$n \in \mathbb{N}$$
,  $\liminf_{t \to \infty} \|(x_{t-n}, \dots, x_{t+n}) - (y_{t-n}, \dots, y_{t+n})\| = 0.$  (9)

Condition (T2) means that any two orbit in  $\chi$  never converge to each other but they become arbitrarily close infinitely often.

#### 3.2. Static system and chaos

Let  $G^* : Dom(G^*) \subset (\mathbb{R}^N)^{\mu+1+\nu} \to \mathbb{R}^N$  with  $N, \mu, \nu \in \mathbb{N}$  be a difference system. We denote

$$Dom(G^*)_0 = \{x_0 \in \mathbb{R}^N \mid (x_{-\mu}, ..., x_{-1}, x_0, x_1, ..., x_{\nu}) \in Dom(G^*)$$
  
where  $x_{-\mu}, ..., x_{-1}, x_1, ..., x_{\nu} \in \mathbb{R}^N \}.$ 

We say that  $G^*$  is *static* or a static system if there is a function  $G^s : Dom(G^*)_0 \subset \mathbb{R}^N \to \mathbb{R}^N$  such that  $G^s(x_0) = G^*(x_{-\mu}, ..., x_{-1}, x_0, x_1, ..., x_{\nu})$  for all  $(x_{-\mu}, ..., x_{-1}, x_0, x_1, ..., x_{\nu}) \in Dom(G^*)$ . If  $G^*$  is static, we defined a *static point* of  $G^*$  as a point  $\xi \in Dom(G^*)_0$  such that  $G^s(\xi) = 0$ .

Let  $K_1,..., K_M \subset Dom(G^*)_0$ . We defined a *pattern* as a vector of  $\mu + 1 + v$ natural numbers; a sequence of natural number is called a *symbolic sequence*. We say that a pattern  $p = (p_{-\mu},..., p_v)$  is a *feasible pattern* (w.r.t.  $G^*$  and  $K_1,..., K_M$ ) if  $K_{p_{-\mu}} \times ... \times K_{p_v} \subset Dom(G^*)$ . Let  $P(G^*, K_1,..., K_M)$  be the set of pattern feasible w.r.t.  $G^*$  and  $K_1,..., K_M$ . We say that a symbolic sequence  $\{s_t\}_{t=l}^{\infty}, -\infty \leq l \leq -\mu \leq \infty$ , is *feasible* (w.r.t.  $G^*$  and  $K_1,..., K_M$ ) if for all  $t = l + \mu,..., \mu - v$ ,  $(s_{t_{-\mu}},..., s_{t_{+v}}) \in P(G^*, K_1,..., K_M)$ . Let  $p, q \in P(G, K_1,..., K_M)$ . We say that q is reachable from p if one of the following three cases holds: (i) there exists a  $n \in \mathbb{N}$ , there is a symbolic sequence  $\{s_t\}_{t=1}^n$  such that  $\{p_{-\mu},..., p_{\nu}, s_1,..., s_n, q_{-\mu},..., q_{-\nu}\}$  is feasible; (ii)  $\{p_{-\mu},..., p_{\nu}, q_{-\mu},..., q_{-\nu}\}$  is feasible; (iii) there exists a  $m \in \{1,..., \mu + \nu\}, \{p_{-\mu},..., p_{\nu}, q_{\nu-m+1},..., q_{\nu}\}$  is feasible and for all  $i = -\mu + m,..., \nu p_i = q_{i-m}$ .

**Theorem 3** Let  $G^*$  be a static system with static points  $\xi_1, ..., \xi_M \in Dom(G^*)_0$  and there are  $p, q \in P(G^*, \xi_1, ..., \xi_M)$  with  $p \neq q$  such that  $p_{-\mu} = ... = p_{-\nu}$  and p, q are reachable from each other. Then  $G^*$  is chaotic.

**Proof.** Without loss of generality, assume  $p_{-\mu} = \dots = p_{-\nu} = 1$ . If q is reachable from p with case (ii) or (iii) holding, then case (i) also holds for any  $n \in \mathbb{N}$ , if we let  $S_t = 1$  for all  $t = 1, \dots, n$ . Hence in any case, there is a symbolic sequence  $S \equiv \{s_i\}_{i=1}^n$  such that  $\{p_{-\mu}, \dots, p_{\nu}, s_1, \dots, s_n, q_{-\mu}, \dots, q_{-\nu}\}$  is feasible. Define  $T \equiv \{t_i\}_{i=1}^m$ , similarly. Let

$$v^{2} = \{p_{-\mu}, \dots, p_{\nu}, s_{1}, \dots, s_{n}, q_{-\mu}, \dots, q_{-\nu}, t_{1}, \dots, t_{m}, p_{-\mu}, \dots, p_{\nu}\}.$$

Let  $\overline{m} = 3(\mu + 1 + \nu) + n + m$  and  $v^1 = \{1, 1, ..., 1\}$  with  $\overline{m}$  1's;  $v^1$  and  $v^2$  have the same dimension. For each bi-infinite sequence  $\tau$  of 1 and 2 (i.e.,  $\tau_i \in \{1, 2\}$  for all  $i \in \mathbb{Z}$ ), let  $s(\tau)$  be the symbolic sequence such that for all  $i \in \mathbb{Z}$ 

$$s(\tau)_{i\overline{m},\dots,\ (i+1)\overline{m}-1} = v^{\tau_i}.$$
(10)

Note that the mapping  $\tau \to s(\tau)$  is one-to-one and that  $s(\tau)$  is always feasible.

We first verify (T2). For  $r \in \mathbb{R}$ , let [r] denote the largest integer less than or equal to r. For  $w \in (0, 1)$ , define a bi-infinite symbolic sequence  $\tau^w$  as follows. For  $i \leq 0$ , let  $\tau^w_i = 1$ . For  $i \geq 1$ , define  $\tau^w_i$  as follows:

$$\boldsymbol{\tau}^w_{1,10} = \{\underbrace{1,...,1}_{[10w]1`s}, \underbrace{2,...,2}_{(10-[10w])2`s}\}$$

$$\tau_{11,110}^{w} = \{\underbrace{1,...,1}_{[100w]1's}, \underbrace{2,...,2}_{(100-[100w])2's}\}$$
  
$$\tau_{111,1110}^{w} = \{\underbrace{1,...,1}_{[1000w]1's}, \underbrace{2,...,2}_{(1000-[1000w])2's}\}$$

and so on. More precisely, letting  $T_n = 1 + 10 + \dots + 10^n$  for  $n \in \mathbb{N}$ , we have for all  $n \in \mathbb{N}$ 

$$\tau_i^w = 1$$
, for all  $i = T_n, ..., T_n + [10^n w] - 1$ , (11)

$$\tau_i^w = 2$$
, for all  $i = T_n + [10^n w], ..., T_{n+1} - 1.$  (12)

Note that for any  $w, w' \in (0, 1), w \neq w'$ .  $[10^n w] \neq [10^n w']$  for n large enough. Thus

$$\tau_i^w \neq \tau_i^{w'}$$
 for infinitely many  $i's$ . (13)

Therefore, for any  $w \in (0, 1)$  there is an orbit  $x^w$  such that for all  $t \in \mathbb{Z}$ ,  $x_t^w = \xi_{s(\tau^w)_t}$ . Let  $\chi = \{x^w \mid w \in (0, 1)\}$ ; we show that  $\chi$  satisfies (T2). Clearly  $\chi$  is an uncountable set. Let  $w \in (0, 1)$ . Since  $[10^n w] \uparrow \infty$  as  $n \uparrow \infty$ ,  $\tau^w$  is asymptotically nonperiodic; thus  $x^w$  is asymptotically nonperiodic. It remains to show Eqs. (8) and (9). Let  $w, w' \in (0, 1)$  with  $w \neq w'$ . Let  $\overline{w} = \min\{w, w'\}$ . Let  $m \in \mathbb{Z} \setminus \{0\}$ . For  $n \in \mathbb{N}$ , let  $\mu_n = T_n + [\frac{10^n \overline{w}}{2}]$ . By Eqs. (11) and (12), we have

$$\left\| (x_{\mu_n-m}^w, ..., x_{\mu_{n+m}}^w) - (x_{\mu_n-m}^{w'}, ..., x_{\mu_{n+m}}^{w'}) \right\| = 0 \text{ as } n \to \infty.$$

That is

$$\liminf_{t \to \infty} \left\| (x^{w}_{\mu_n - m}, \dots, x^{w}_{\mu_{n+m}}) - (x^{w'}_{\mu_n - m}, \dots, x^{w'}_{\mu_{n+m}}) \right\| = 0.$$

By Eq. (13), we also have

$$\limsup_{t\to\infty} \left\| x_t^w - x_t^{w'} \right\| > 0$$

Since w, w', and m were arbitrary, we have verified Eqs. (8) and (9) and thus (T2).

Now to verify (T1), let  $\tau = \{..., 1, 2, 1, 2, ...\}$  with  $\tau_0 = 2$ . Clearly  $s(\tau)$  is feasible and  $(2\overline{m})$ -periodic. Let  $m = 2\overline{m}$ . Let  $s^m = s(\tau)$ . Note from Eq. (10) that  $s_t^m = 1$  for all t expect that if t = im for some  $i \in \mathbb{Z}$ ,  $s_{t,\dots,t+\overline{m}-1}^m = v^2$ . For n > m, let  $s^n$  be the symbolic sequence such that  $s_t^n = 1$  for all t expect that if t = in for some  $i \in \mathbb{Z}$ ,  $s_{t,\dots,t+\overline{m}-1}^m = v^2$ . Clearly for all  $n \ge m$ ,  $s^n$  is feasible and n-periodic. That is for all  $n \ge 2\overline{m}$ ,  $G^*$  has an n-periodic orbit. This completes the proof of theorem 3.



#### 4 Stability of chaos

#### 4.1. Quasi-static system

We introduce the concept of *quasi-static system*. Quasi-static systems are difference systems that are in a certain sense relatively close to static systems.

**Definition 4** We say that  $G^*$  is quasi-static (w.r.t.  $K_1, ..., K_M$ ) if (K1) and (K2) below hold:

(K1)  $K_1, \ldots, K_M$  are disjoint, compact, and convex.

(K2) For all 
$$p \in P(G^*, K_1, ..., K_M)$$
,  $(\xi_{p_{-\mu}}, ..., \xi_{p_{-1}}) \in K_{p_{-\mu}} \times ... \times K_{p_{-1}}$ , and  $(\xi_{p_1}, ..., \xi_{p_{\nu}}) \in K_{p_1} \times ... \times K_{p_{\nu}}$  there is a unique  $\xi \equiv g_p(\xi_{p_{-\mu}}, ..., \xi_{p_{-1}}, \xi_{p_1}, ..., \xi_{p_{\nu}}) \in K_{p_0}$   
such that  $G^*(\xi_{p_{-\mu}}, ..., \xi_{p_{-1}}, \xi, \xi_{p_1}, ..., \xi_{p_{\nu}}) = 0$ .

**Lemma 5**  $G^*$  is quasi-static w.r.t.  $K_1, \ldots, K_M \subset Dom(G^*)_0$  then

- (c1) for each bi-infinite feasible symbolic sequence  $\{s_t\}_{t=-\infty}^{\infty}$ ,  $G^*$  has an orbit  $\{x_t\}_{t=-\infty}^{\infty}$ such that for all  $t \in \mathbb{Z}$ ,  $x_t \in K_{s_t}$ .
- (c2) For each n-periodic bi-infinite feasible symbolic sequence  $\{s_t\}_{t=-\infty}^{\infty}$ ,  $G^*$  has an n-periodic asymptotic orbit  $\{x_t\}_{t=-\infty}^{\infty}$  such that for all  $t \in \mathbb{Z}$ ,  $x_t \in K_{s_t}$ .

**Remark 6** For all  $p \in P(G^*, K_1, ..., K_M)$ ,  $g_p^* : D_p \to K_{p_0}$  is continuous, where  $D_p = (K_{p_{-\mu}} \times ... \times K_{p_{-1}}) \times (K_{p_1} \times ... \times K_{p_v}).$ 

**Remark 7 (Brouwer fixed point theorem)** Suppose that M is a nonempty, convex, compact subset of  $\mathbb{R}^n$ ,  $n \ge 1$  and that  $f: M \to M$  is a continuous mapping then f has a fixed point.(see [5], p. 51)

**Proof of Lemma.** For any sequence  $\{y_t\}$ , let

$$y_t^- = (y_{t-\mu}, ..., y_{t-1}), y_t^+ = (y_{t+1}, ..., y_{t+\nu})$$

We first prove (c2). The proof of (c1) is similar to that of (c2), and is thus omitted. Let  $\{s_t\}_{t=l}^{\infty}, -\infty \leq l \leq -\mu$ , be a feasible sequence For  $t \geq l$ , let  $S_t = K_{s_t}$ . Suppose  $l = -\infty$  and  $\{s_t\}$  is *n*-periodic. Given  $x_{1,n} \equiv (x_1, ..., x_n) \in K_{s_1} \times K_{s_2} \times ... \times K_{s_n}$ . Let x be the *n*-periodic sequence such that  $x_1, ..., x_n$  are as given. Define  $T_{1,n}$ :  $K_{s_1} \times K_{s_2} \times ... \times K_{s_n} \to K_{s_1} \times K_{s_2} \times ... \times K_{s_n}$  by  $T_{1,n}(x_{1,n}) = g_{s_{t-\mu,t+\nu}}(x_t^-, x_t^+)$ . Since  $T_{1,n}$  is continuous and  $S_{1,n}$  is compact and convex,  $T_{1,n}$  has a fixed point  $x_{1,n}^* = (x_1^*, ..., x_n^*)$  (by the Brouwer fixed point theorem) Clearly, the associated *n*-periodic orbit  $x^*$ is an orbit of G such that for all  $t \in \mathbb{Z}, x_t^* \in K_{s_t}$ .

Note that if  $G^*$  is a static system with static points  $\xi_1, ..., \xi_M$ , then  $G^*$  is a quasistatic w.r.t. $\{\xi_1\}, ..., \{\xi_M\}$ , and the conclusions (c1)-(c2) trivially hold with  $x_t \in \{\xi_1, ..., \xi_M\}$  for all t. The lemma says that they continue to hold for a quasi-static system with appropriate compact convex sets replacing static points.

# 4.2. Stability of chaos for regular static system under small $C^1$ perturbations

Let  $G^*$  is static; we say that  $G^*$  is regular if  $G^*$  is  $C^1$ , if  $G^*$  has only a finite number of static points  $\xi_1, ..., \xi_M \in Dom(G)_0$ , and  $DG^s(\xi_i)$  is nonsingular for all i = 1, ..., M.

Let  $G^*$  be a  $C^1$  static system with static points  $\xi_1, ..., \xi_M \in Dom(G^*)_0$ . Denote

$$J(G^*,\xi_1,...,\,\xi_M) = \{(\xi_{i_{-\mu}},...,\,\xi_{i_0},...,\,\xi_{i_{\nu}}) \in Dom(G^*) \mid 1 \le i_{-\mu},...,\,i_0,...,\,i_{\nu} \le M\},$$

and

$$J(G^*, \overline{N_{\varepsilon}}(\xi_1), ..., \overline{N_{\epsilon}}(\xi_M)) = \{\overline{N_{\varepsilon}}(\xi_{i_{-\mu}}) \times ... \times \overline{N_{\epsilon}}(\xi_{i_{\nu}}) \subset Dom(G^*)$$
  
for all  $(i_{-\mu}, ..., i_{\nu}) \in P(G^*, \overline{N_{\varepsilon}}(\xi_1), ..., \overline{N_{\varepsilon}}(\xi_M))\}.$ 

**Theorem 8** Let  $G^*$  be a regular static system with static points  $\xi_1, ..., \xi_M \in K_0$  and  $Dom(G^*)$  is open. Let  $K \subset Dom(G^*)$  be a compact set such that  $J(G^*, \xi_1, ..., \xi_M) \subset \overset{\circ}{K}$ (the interior of K). Then there exist  $\varepsilon$  and  $\delta_{\varepsilon} > 0$  such that for all  $G \in N_{\delta_{\varepsilon}}(G^*, K)$ 

- (i) we have G is quasi-static (w.r.t.  $\overline{N}_{\epsilon}(\xi_1), \overline{N}_{\epsilon}(\xi_2), ..., \overline{N}_{\epsilon}(\xi_M)$ ) and
- (ii) for  $G^*$ , if there are  $p, q \in P(G^*, \xi_1, ..., \xi_M)$  with  $p \neq q$  such that  $p_{-\mu} = ... = p_{-\nu}$  and p, q are reachable from each other. Then G is chaotic.

**Proof.** (i) Let  $G^*$  be a  $C^1$  static system with static points  $\xi_1, ..., \xi_M \in Dom(G^*)_0$ , and  $DG^*(\xi_i)$  is nonsingular for all i = 1, ..., M, and  $Dom(G^*)$  is open. Let  $K \subset Dom(G^*)$  be a compact set such that  $J(G^*, \xi_1, ..., \xi_M) \subset \mathring{K}$  (the interior of K). Then there is  $\varepsilon > 0$  such that  $J(G^*, \xi_1, ..., \xi_M) \subset J(G^*, \overline{N_{\varepsilon}}(\xi_1), ..., \overline{N_{\varepsilon}}(\xi_M)) \subset K \subset Dom(G^*)$ , and  $P(G^*, \overline{N_{\varepsilon}}(\xi_1), ..., \overline{N_{\varepsilon}}(\xi_M)) = P(G^*, \xi_{1,M}) \equiv P$ . For this  $\varepsilon > 0$ ,  $G^*$  is a quasi-static system w.r.t.  $\overline{N_{\varepsilon}}(\xi_1), ..., \overline{N_{\varepsilon}}(\xi_M)$ . Let  $K_i = \overline{N_{\varepsilon}}(\xi_i)$  for i = 1, ..., M. For  $p \in P$ , let  $g_p^*$ :  $D_p \to K_{p_0}$  be defined as in (K2). Note that for all  $p \in P$  and for all  $\zeta \in D_p$ , we have  $g_p^*(\zeta) = \xi_{p_0} \in \mathring{K_{p_0}}$  and  $\|Dg_p^*(\zeta)\| = 0$ . Hence by theorem 1, there is  $\delta_{\varepsilon} > 0$  such that for all  $G \in N_{\delta_{\varepsilon}}(G^*, K)$  for all  $p \in P$ , there is a unique function  $g_p^G : D_p \to K_{p_0}$  such that for all  $\zeta \in D_p$ ,  $G(\xi^-, g_p^G(\zeta), \xi^+) = 0$ ,  $g_p^G$  is  $C^1$ , and  $\max_{\zeta \in D_p}$ ,  $\|Dg_p^G(\zeta)\| = \max_{\zeta \in D_p} \|Dg_p^G(\zeta) - Dg_p^*(\zeta)\| < 1$ . Therefore for all  $G \in N_{\delta}(G^*, K)$ , G satisfies (K1) and (K2). So, we have G is quasi-static (w.r.t.  $\overline{N_{\varepsilon}}(\xi_1), \overline{N_{\varepsilon}}(\xi_2), ..., \overline{N_{\varepsilon}}(\xi_M)$ ). From Lemma 5, note that if  $\{s_t\}_{t=-\infty}^{\infty}$  is the orbit of  $G^*$ , then there exists a correspond orbit of G called  $\{x_t\}_{t=-\infty}^{\infty}$ , where  $x_t \in \overline{N_{\varepsilon}}(s_t)$  for all  $t \in \mathbb{Z}$ . Moreover the

correspond orbit preserve the period of  $\{s_t\}_{t=-\infty}^{\infty}$ . That is if  $\{s_t\}_{t=-\infty}^{\infty}$  is *n*-periodic then  $\{x_t^{\alpha}\}_{t=-\infty}^{\infty}$  is *n*-periodic.

(ii) For  $G^*$ , if there are  $p, q \in P(G^*, \xi_1, ..., \xi_M)$  with  $p \neq q$  such that  $p_{-\mu} = ...$ =  $p_{-\nu}$  and p, q are reachable from each other, then  $G^*$  satisfies (T1) and (T2) and is chaotic. (From Theorem 3). In fact, for all  $G \in N_{\delta_{\varepsilon}}(G^*, K)$  G also satisfies (T1) and there exists an uncountable set  $\chi^G$  of asymptotically nonperiodic orbit such that for all  $x^G, y^G \in \chi^G$  ( $x^G \neq y^G$ ) we have

$$\limsup_{t \to \infty} \left\| x_t^G - y_t^G \right\| > 0.$$

We remain Eq.(3) to be check. Now we give two remarks as following, and postpone the proof of Remark 9 to the appendix.

**Remark 9** Let G be a  $C^0$  system. Let  $H \subset Dom(G^*)_0$  is compact. Suppose (a) there is a unique orbit  $x^*$  such that  $x_t^* \in H$  for all  $t \in \mathbb{Z}$ . Then  $x^*$  is a constant sequence and for any  $\varepsilon > 0$  there is  $n \in \mathbb{N}$  such that for all  $t \in \mathbb{Z}$  and for any orbit x, if  $x_i \in H$ for all i = t - n, ..., t + n, we have  $||x_t - x_t^*|| < \varepsilon$ .

**Remark 10** If G is quasi-static (w.r.t.  $\overline{N}_{\epsilon}(\xi_1), \overline{N}_{\epsilon}(\xi_2), ..., \overline{N}_{\epsilon}(\xi_M)$ ) and there are p,  $q \in P(G^*, \overline{N}_{\epsilon}(\xi_1), ..., \overline{N}_{\epsilon}(\xi_M))$  with  $p \neq q$  such that  $p_{-\mu} = ... = p_{-\nu}$  and p, q are reachable from each other and  $g_p^G$  as given by (K2) is  $C^1$  and  $\max_{\zeta \in D_p} \|Dg_p^G(\zeta)\| < 1$ . Then there is a constant sequence  $\{..., \xi^*, \xi^*, \xi^*, ...\}$  is the unique orbit  $\{x_t\}$  such that  $x_t \in \overline{N}_{\epsilon}(\xi_{p_0})$  for all  $t \in \mathbb{Z}$ .

By the proof of theorem 3 and Lemma 5 (c1), for any  $w \in (0, 1)$  there is an orbit  $x^w$  such that for all  $t \in \mathbb{Z}$ ,  $x_t^w \in \overline{N}_{\varepsilon}(\xi_{s(\tau^w)_t})$ . Let  $\chi = \{x^w \mid w \in (0, 1)\}$ ; we show that  $\chi$  satisfies (T2). Clearly  $\chi$  is an uncountable set. Let  $w \in (0, 1)$ . Since  $[10^n w] \uparrow \infty$  as

 $n \uparrow \infty$ ,  $\tau^w$  is asymptotically nonperiodic; thus  $x^w$  is asymptotically nonperiodic. It remains to show Eqs. (8) and (9). Let  $w, w' \in (0, 1)$  with  $w \neq w'$ . Let  $\overline{w} = \min\{w, w'\}$ . Let  $m \in \mathbb{Z} \setminus \{0\}$ . For  $n \in \mathbb{N}$ , let  $\mu_n = T_n + [\frac{10^n \overline{w}}{2}]$ . By Eqs. (11) and (12) and Remark 9 and 10, we have

$$\left\| (x_{\mu_n-m}^w, ..., x_{\mu_{n+m}}^w) - (x_{\mu_n-m}^{w'}, ..., x_{\mu_{n+m}}^{w'}) \right\| \leq \left\| (x_{\mu_n-m}^w, ..., x_{\mu_{n+m}}^w) - (\xi^*, ..., \xi^*) \right\| + \left\| (x_{\mu_n-m}^{w'}, ..., x_{\mu_{n+m}}^{w'}) - (\xi^*, ..., \xi^*) \right\| \to 0 \text{ as } n \to \infty.$$

That is

$$\liminf_{t \to \infty} \left\| (x^w_{\mu_n - m}, \dots, x^w_{\mu_{n+m}}) - (x^{w'}_{\mu_n - m}, \dots, x^{w'}_{\mu_{n+m}}) \right\| = 0.$$

By Eq. (13), we also have

$$\limsup_{t \to \infty} \left\| x_t^w - x_t^{w'} \right\| > 0$$

Since w, w', and m were arbitrary, we have verified Eqs. (8) and (9) and thus (T2). Therefore G satisfies (T1) and (T2) and thus chaotic.

mmm

## 5 Appendix

Here we give the proof of Remark 9.

**Proof of Remark 9.** Let G be a  $C^0$  system. Let  $H \,\subset\, Dom(G^*)_0$  is compact. Assume (a) above. Since  $x^* = \{x_t^*\}$  is the unique orbit in H and since  $\{x_{t+1}^*\}$  is clearly an orbit, we have  $x_t^* = x_{t+1}^*$  for all  $t \in \mathbb{Z}$ , i.e.,  $x^*$  is a constant sequence. Let  $\xi^* = x_t^*$ . Let  $\varepsilon > 0$ . Suppose there is no  $n \in \mathbb{N}$  such that for all  $t \in \mathbb{Z}$  and for any orbit x, if  $x_i \in H$  for all i = t - n, ..., t + n, we have  $||x_t - \xi^*|| < \varepsilon$ . This means that for all  $n \in \mathbb{N}$  there is an orbit  $y^n$  such that for some  $T_n \in \mathbb{Z}$ ,  $||y_{T_n}^n - \xi^*|| \ge \varepsilon$  and  $y_i^n \in H$  for all i = t - n, ..., t + n. For  $n \in \mathbb{N}$ , define  $x^n = \{x_t^n\}$  by  $x_t^n = y_{T_n}^n$ . Note that for all  $n \in \mathbb{N}$ ,  $x^n$  is an orbit and  $||x_0^n - \xi^*|| \ge \varepsilon$ . Taking a subsequence if necessary, we may assume  $x_t^n \to \overline{x_t} \in H$  as  $n \uparrow \infty$  for all  $t \in \mathbb{Z}$ . Then we have  $||\overline{x_0} - \xi^*|| \ge \varepsilon$  and thus  $\{\overline{x_t}\} \neq x^*$ . But since G is  $C^0$ , it follows that  $\{\overline{x_t}\}$  is an orbit, which contradicts (a).

The second

## References

- T. Kamihigashi, "Chaotic dynamics in quasi-static systems: theory and applications", Journal of Mathematical Economics 31, pp. 183-214, 1999.
- [2] M.-C. Li and M. Malkin, "Topological horseshoes for perturbations of singular difference equations", *Nonlinearity* 19, pp. 795-811, 2006.
- [3] W. Rudin, "Principles of Mathematical Analysis", Third Edition, McGraw-Hill, 1976.
- [4] T. M. Apostol, "Mathematical Analysis", Second Edition, Addison-Wesley, 1974.
- [5] E. Zeidler, "Nonlinear functional analysis and its applications", Springer-Verlag, 1985.

