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關於漢那函數混沌區域的估計量 

 

學生:蕭亦廷      指導老師:李明佳 教授 

 

國立交通大學應用數學系(研究所)碩士班 

 

摘       要 

 

我們研究二次微分同胚 2
,

1( , ) (1 , )b tH x y y x bxα α
= + − 的總體

行為。在固定 b之後，我們可以把 Henon 映射轉化成

差分方程式Hα，此時α為參數。當 0α = ，差分方程式Hα

可以簡化成雙符號的全轉移，我們研究從這種狀態延

續的軌跡。首先，我們證明 0H 是混沌的並且在微小的

擾動之後，此系統仍會滿足混沌的充分條件，亦即當α

足夠靠近0，Hα 會是混沌。在這篇論文中，我們估計α

使得Hα 為混沌，並由此去得到 Henon 映射的混沌區

域。 

 



 

ii 
 

 

 

 

 

 

 

An estimate of chaotic region for the Henon map 

Student: yi-ting hsiao           Advisor: Ming-Chia Li 

Department (Institute) of Applied Mathematics 

National Chiao Tung University  

Abstract  

We investigate the global behavior of the quadratic diffeomorphism of the 

plane given by 2
,

1( , ) (1 , )b tH x y y x bxα α
= + − . If we fix b, the Henon map can 

be considered as Hα , a difference equation, where α is the parameter. 

For α =0, the difference equation, Hα , reduces to the full shift on two symbols, 

and we study orbits that continues from these states. We first show that the 

system H0 is chaotic and under a small perturbation, the system satisfies the su

fficient condition of chaos, that is for α close enough to zero, Hα display chaotic 

dynamics. In this paper, we estimate for which α, Hα display chaotic to get the 

chaotic region for the Henon map.  
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1 Introduction

Let H�;b : R2 ! R2 be given by

H�;b(x,y) = (1 + y �
1

�
x2,bx),

where �,b are the parameters. This map is called the Henon map. It was written

down by Henon[1] to realize the Smale horseshoe for a speci�c function which could

be iterated on the computer. Instead of being a model of any particular physical

situation, the Henon map is a map with a simple algebraic form which could easily

be studied by means of computer simulation.

In 1979, Devaney and Nitecki used a geometrical argument to get the bound

on the existence of the horseshoe [2]. In 1999, Kamihigashi provided easy-to-verify

su¢ cient conditions for chaos [3]. If we �x b, the Henon map can be considered as

G�, a di¤erence equation, where � is the parameter. We �rst show that for � = 0 the

system is chaotic and under a small perturbation, the system satis�es the su¢ cient

condition of chaotic; that is, for � close enough to zero, it also displays chaotic

dynamics. More precisely, we have the estimate of chaotic region below:

Theorem 1 (Main) Fixing b and considering the di¤erence equation G�, If 
 <

(2
p
2� 2)[ 1

(2�
r
1�
 
+

p

2+4
2

)

], where 
 �
p
�(1 + jbj), then G� is chaotic.

We conclude this introductory section by mentioning the structure of the thesis

as follows. In Section 2, we give some de�ntions and show that for � = 0, the Henon

map is chaotic. In Section 3, we estimate � such that G� has some propositions.

Finally, in Section 4, we prove these propositions to be the su¢ cient conditions of

chaos.
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2 Preliminary

Let�s start from giving some de�nitions. For any function f , we denote its domain

by Dom(f). We consider di¤erence equation of the form

G(xn�1; xn; xn+1) = 0; (1)

where G :Dom(G)� R3 ! R. A bi-in�nite sequence fxtg1t=�1 is called the orbit of

G provided for all t 2 Z, G(xt�1,xt,xt+1) = 0. The orbit is n-periodic orbit provided

there exists n 2 N such that yt+n = yt for all t 2 Z and yt+j 6= yt for 0 < j < n.

The orbit fytg1t=�1 is called asymptotically periodic if there is a periodic sequence

fy�t g such that kyt � y�t k ! 0 as t ! 1. If y is not asymptotically periodic, then y

is called asymptotically nonperiodic. For any sequence fytg, let k�k denote the sup

norm whenever its argument is a vector or a sequence.

De�nition 2 We say that a di¤erence equation G is chaotic if (T1) and (T2) are

held below:

(T1) There exists m 2 N such that for all n � m, G has an n-periodic orbit.

(T2) G has an uncountable set � of asymptotically nonperiodic orbit such that for all

x,y 2 � : (x 6= y)

lim sup
t!1

kxt � ytk > 0; (2)

lim inf
t!1

k(xt�n; :::; xt+n)� (yt�n; ::::; yt+n)k = 0; for all n 2 N [ f0g: (3)

For Dom(G) � R3, we de�ne Dom(G)0 = fx0 2 R j (x�1,x0,x1) 2 Dom(G)g. We

de�ne a static system as a di¤erence equation that depends only on xt. More precisely,

we say that G is static or a static system if there is a function Gs : Dom(G)0 ! R,
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such that for all (x�1,x0,x1) 2 Dom(G), Gs(x0) = G(x�1,x0,x1). If G is static, we

de�n a static point of G as a point � 2 Dom(G)0 such that Gs(�) = 0.

Now return to the theme. Investigating the behavior of the quadratic di¤eomor-

phism of Henon map, the Henon map is a two dimensional quadratic map (xt,yt)!

(xt+1,yt+1) de�ned by 8><>:xt+1 = 1 + yt �
1
�
x2t ,

yt+1 = bxt.
(4)

Substituting the second equation into the �rst yields xt+1 � 1� bxt�1 + 1
�
x2t = 0.

Let zt = xtp
�
, we have

p
�zt+1 � 1� b

p
�zt�1 + z

2
t = 0. We can reduce the Henon map

to a di¤erence equation G� : R3 ! R

G�(xn�1; xn; xn+1) =
p
�xn+1 � 1� b

p
�xn�1 + x

2
n; (5)

where � is the parameter. For � = 0, this equation reduces to a static system:

G0(xn�1; xn; xn+1) = �1 + x2n. (6)

We know that G0 is a static system with static point �1 = f1g, �2 = f�1g. Next, we

will show that for � = 0; G0 is chaotic.

Proposition 3 The di¤erence equation G0(xn�1,xn,xn+1) = �1 + x2n is chaotic.

Proof. First of all, we verify (T1). G0(xn�1,xn,xn+1) = 0 has two solutions �1 = 1,

�2 = �1. Since G0 is a function of xn alone, the orbit fxtg1t=�1 must be xt 2 f�1,�2g,

for all t. Given any n 2 N, let x0 = x1 =...= xn�2 = �1, xn�1 = �2 and xn+k = xk;

for all k 2 Z. This sequence fxng1n=�1 is the orbit of G0 and n 2 N is the smallest

number that satis�es xk+n = xk, which means that for all n � 1, G0 has an n-periodic

orbit. The above illustrates (T1).

3



Secondly we verify (T2). For r 2 R, let [r] denote the largest integer less than

or equal to r. For w 2 (0,1), de�ne a bi-in�nite sequence of natural number �w as

follows. For i � 0, let xwi = �1. For i � 1, we de�ned xwi as follows:

xw1;10 = f
[10w]�

0
1sz }| {

�1; :::; �i;

(10�[10w])�02sz }| {
�2; :::; �2 g;

xw11;110 = f
[100w]�

0
1sz }| {

�1; :::; �i;

(100�[100w])�02sz }| {
�2; :::; �2 g;

xw111;1110 = f
[1000w]�

0
1sz }| {

�1; :::; �i;

(1000�[1000w])�02sz }| {
�2; :::; �2 g;

and so on. More precisely, let Tn = 1+ 10+...+10n; for n 2 N, we have for all n 2 N,

xwi = �1 for all i = Tn; :::; Tn + [10
nw]� 1;

xwi = �2 for all i = Tn + [10
nw]; :::; Tn � 1:

Let � = fxw j w 2 (0,1)g.We show that � satis�es (T2). Clearly, � is an uncount-

able set. Let w 2 (0,1). Since [10nw]!1 as n!1, xw is asymptotically nonperi-

odic. Note that for all w, w
0 2 (0,1) where w 6= w0

. We have [10nw] 6= [10nw0
]; for n

is large enough. Thus, for all w, w
0 2 (0,1) (w 6= w0

) xwi 6= xw
0

i for in�nitely many i
0
s.

So lim sup
t!1




xwt � xw0t 


 > 0. Let w, w0 2 (0,1) with w 6= w0
. Let w = minfw,w0g and

m 2 N [ f0g. For n 2 N, let un = [10
nw
2
]. We have



(xwun�m;un+m)� (�1; :::; �1)

 = 0,
for n is large enough. So

lim inf
t!1




(xwt�m; :::; xwt+m)� (xw0t�m; ::; xw0t+m)



� lim inf

t!1



(xwt�m; :::; xwt+m)� (�1; :::; �1)

+ lim inf
t!1




(�1; :::; �1)� (xw0t�m; :::; xw0t+m)



= 0:

The above proves (T2). So G0 is chaotic.
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3 The estimate of �

We �rst show that we can choose � such that the orbit of G� contains inW = I�I�I,

where I = [�1��,�1+�][ [1��,1+�]. The method was mentioned by D. Sterling

and J.D Meiss[4]. We will write an orbit z(") of the Henon map as a �xed point of

an operator T whose t-th component is

Tt(z) � �
q
1�

p
�(xn+1 � bxn�1):

De�ne the l1 norm, let kxk1 = sup
t
jxtj and de�ne BM to be the closed ball of radius

M around the point s,

BM(s) = fz : kz � sk1 �Mg:

Proposition 4 For any G�,we de�ne 
 � j
p
�j (1 + jbj): If 
 < 1p

2
;

and � > M1(
) = 1�

s
1� 
 
 +

p

2 + 4

2
; (7)

then the orbit of G� is contained in the ball B�(s)

Proof. Let T be de�ned by (10). For any z 2 B�(s); it is easy to see that

cn � kT n(z)k1 � dn; (8)

where the sequences cn and dn are given by the iterations

dn+1 = f(dn) �
p
1 + 
dn;

cn+1 =
p
1� 
dn;

with the initial conditions c0 = 1 + � and d0 = 1 � �. The map f(d) has a single

attracting �xed point

d1 =

 +

p

2 + 4

2
:
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Each of the cn must be real, so we must have 1� 
dn � 0. This requirement gives a

right boundary to the region in the (
, �) plane where T n exists. As n ! 1 these

boundaries approach the vertical line de�ned by

1� 
d1 = 0) 
 =
1p
2
;

which gives one of the bounds in the lemma.

Finally, (8) implies that

kT n � sk1 � max(jcn � 1j ; jdn � 1j) = 1� cn:

Thus the requirement Mn for which 1� cn�Mn = 0 converges monotonically to M1

from above; therefore for any � > M1(
), there is an N such that T n:B�(s)! B�(s),

for all n > N . The orbit is �xed point of T n: So it is contained in the ball B�(s):

Let K1 = [�1��, �1+�], K2 = [1��, 1+�], where M1(
) < � < 1. Such that

K1and K2 are disjoint, compact, and convex. Let P = f(p�1,p0,p1) 2 R3 j pi 2 f1,2g;

for all i = 1,2,3g:

De�nition 5 We say that G� is quasi-static if for all p = (p�1,p0,p1) 2 P , for all

x�1 2 Kp�1, and for all x1 2 Kp1, there is a unique x0 � gp(x�1,x1) 2 Kp0 such that

G�(x�1,x0,x1) = 0.

Remark 6 G0 is quasi-static since we can de�ne gp(x�1,x1) = �p0.

Proposition 7 For all p = (p�1,p0,p1) 2 P , de�ne Yp = Kp�1 � Kp0, Zp = Kp0,

Wp = Kp�1 � Kp0 � Kp1. If sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k < 1, then G� is quasi-

static.

Proof. We have sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k

6



= sup
(x�1;x0;x1)2K�p�1

�K�p0
�K�p1

k
p
�xn+1 � b

p
�xn�1k < 1. Then we can de�ne gp :

Yp ! Zp by

gp(x�1; x1) =

8><>:
p
1 + b

p
�xn�1 �

p
�xn+1; if p0 = 1

�
p
1 + b

p
�xn�1 �

p
�xn+1; if p0 = �1

;

then G�(x�1,gp(x�1,x1),x1) = 0.

For any m� n matrix B = (Bij), let kBkdenote the operator norm of B :

kBk1 = max
�2Rn

kB�k1
k�k1

= max
1�i�m

nX
j=1

jBijj :

Proposition 8 For sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k < 2
p
2�2, we have max

(x�1;x1)2(Kp0�Kp0 )
kDgp(x�1; x1)k <

1.

Before the proof of Proposition8, we �rst prove the lemma.

Lemma 9 If we can choose � such that sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k < �, then for

the same � sup
(y; z)2Wp

kDG�(y; z)�DG0(y; z)k < �.

Proof. The inequality sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k

= sup
(x�1;x0;x1)2K�p�1

�K�p0
�K�p1

k
p
�xn+1 � b

p
�xn�1k

=
p
�(1 + jbj)(1 + �) < � implies

p
� <

1

(1 + �)(1 + jbj)�: (9)

On the other hand, sup
(y; z)2Wp

kDG�(y; z)�DG0(y; z)k = maxf
p
�,jbj

p
�g < �

implies
p
� < minf�, 1jbj�g. It is clear that

1
(1+�)(1+jbj)� < minf�,

1
jbj�g.

7



Proof of Propositon 8. Suppose sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k < �, where 0 <

� < 1

max
(x�1;x1)2(Kp0�Kp0 )

kDgp(x�1; x1)k

=









� b

p
�

2
p
1+b

p
�xn�1�

p
�xn+1

�
p
�

2
p
1+b

p
�xn�1�

p
�xn+1

�







= max

(x�1;x1)2(Kp0�Kp0 )
f
����� b

p
�

2
p
1 + b

p
�xn�1 �

p
�xn+1

����� ;
����� �

p
�

2
p
1 + b

p
�xn�1 �

p
�xn+1

�����g
<

sup
(y; z)2Wp

kDG�(y; z)�DG0(y; z)k

2
r
1� sup

(x�1;x0;x1)2K�p�1
�K�p0

�K�p1

k
p
�xn+1 � b

p
�xn�1k

<
�

2
p
1� �

< 1;

this implies 0 < � < 2
p
2� 2:

From Proposition7, 8, we can conclude that if sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k <

2
p
2� 2, then G� is quasi-static and max

(x�1;x1)2(Kp0�Kp0 )
kDgp(x�1; x1)k < 1.

4 Main Result

In this section, we solve sup
(y; z)2Wp

kG�(y; z)�G0(y; z)k < 2
p
2� 2 to get the restrict of

�: By (7) and (9), the conclusion is as follows.

Corollary 10 De�ne 
 �
p
�(1 + jbj). If 
 < (2

p
2 � 2)[ 1

(2�
r
1�
 
+

p

2+4
2

)

], we can

solve this inequality by numerical method to get that. If 0 < 
 < A � 0.56, i.e.,

p
� < A

1

1 + jbj � 0:56
1

1 + jbj ; (10)

then we have that G� is quasi-static w.r.tK1, K2 and max
(x�1;x1)2(Kp0�Kp0 )

kDgp(x�1; x1)k <

1.

8



Now we want to show that if � satis�es (10), thenG� is chaotic, i.e., (1)G� is quasi-

static and (2) max
(x�1;x1)2(Kp0�Kp0 )

kDgp(x�1; x1)k < 1 which are the su¢ cient conditons

for chaos. Recall that we de�ne K1 = [�1 � �, �1 + �], K2 = [1 � �, 1 + �], where

M1(
) < � < 1. P = f(p�1,p0,p1) 2 R3 j pi 2 f1,2g for all i = 1,2,3g: We �rst prove

the theorem below.

Theorem 11 Suppose fstg1t=�1 is the orbit of G0. If � satis�es (10), then there

exists a corresponding orbit of G� called fx�tg1t=�1, where x�t 2 Kst for all t 2 Z.

Moreover, the corresponding orbit preserves period of fstg1t=�1; that is, if fstg1t=�1

is n�periodic, then fx�tg1t=�1 is n�periodic.

Lemma 12 For all p 2 P , g�p : Kp�1 �Kp1 ! Kp0 is continuous.

Lemma 13 (Brouwer �xed point theorem) Suppose thatM is a nonempty , con-

vex, and compact subset of Rn, and that f :M !M is a continuous mapping then f

has a �xed point.

Proof. Let fstg1t=�1 be the orbit of G0. Suppose fstg is n-periodic. Given x1;n �

(x1,...,xn) 2 Ks1 �Ks2�...�Ksn. Let x be the n-periodic sequence such that x1,...,xn

are as given. De�ne T1;n : Ks1 �Ks2�...Ksn ! Ks1 �Ks2�...Ksn by

T1;n(x1;n) = (g(s0;s1;s2)(x0; x2); g(s1;s2;s3)(x1; x3); :::; g(sn�2;sn�1;sn)(xn�2; xn)):

Since T1;n is continuous and Ks1 � Ks2�...Ksn is compact and convex, T1;n has

a �xed point x�1;n = (x�1 ,....,x
�
n) (by the Brouwer �xed point theorem). Clearly, the

associated n-periodic orbit x� is an orbit of G� such that x�t 2 Kst, for all t 2 Z:

Since G0 satis�es (T1), by theorem11, G� also satis�es (T1). It remains to show

that G� satis�es (T2). From the proof of Proposition3, G0 has an uncountable set

9



� = fxw j w 2 (0,1)g of asymptotically nonperiodic orbit that satis�es (T2). If

� satis�es (3), by theorem11, there exists the corresponding orbit of G� called �0.

Then �0 is also uncountable and asymptotically nonperiodic. For all x,y 2 �, we have

lim sup
t!1

kxt � ytk > 0. For the corresponding x0, y0, we also have lim sup
t!1



x0t � y0t

 > 0:
Next, we will show that �0 satis�es (3).

Theorem 14 If � satis�es (10), let �� be the corresponding orbit of � = fxw j w 2

(0,1)g: For all x�,y� 2 �� : (x� 6= y�)

lim inf
t!1



(x�t�n; :::; x�t+n)� (y�t�n; ::::; y�t+n)

 = 0; for all n 2 N [ f0g: (11)

Lemma 15 Given p = (p�1; p0; p1). Suppose there is a unique orbit x� such that

x�t 2 Kp0, for all t 2 Z. Then for all " > 0, there is n 2 N such that for any t 2 Z

and for any asymptotic obit x with xi 2 Kp0, for all i = t � n,...,t + n: We have

kxt � x�tk < ":

Proof. Let " > 0 and suppose there is no n 2 N such that for all t 2 Z, for any orbit

x with xi 2 Kp0, for all i = t�n,:::,t+n, we have kxt � ��k < ". This means that for

n 2 N; there is an orbit yn such that for some Tn 2 Z,


ynTn � ��

 � " and yni 2 Kp0,

for i = Tn � n,:::,Tn + n: For n 2 N, de�ne xn by xnt = ynt+Tn ; for t 2 Z: Note that

for n 2 N, xn is an orbit and kxn0 � ��k � ": Taking a subsequence if necessary, we

may assume that for t 2 Z; xnt ! xt 2 Kp0 as n ! 1: Then we have kx0 � ��k � "

and thus fxtg 6= f��g. But this is a contraction since x� is the unique orbit such that

x�t 2 Kp0, for all t 2 Z.

Lemma 16 The constant sequencef:::,�p0,�p0,:::g is the orbit of G0, by theorem 11

there exists a corresponding constant sequence f:::,��,��,:::g is the orbit of G�, where

�p0 2 Kp0 : Then the constant sequence f...,��,��,...g which is the unique orbit fxtg of

G� such that xt 2 Kp0, for all t 2 Z.
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Proof. Suppose there is another orbit x with kx� ��k = sup
i
jxi � ��j > 0: Then by

mean value theorem, for all t 2 Z;

xt � �� = gp(xt�1; xt+1)� gp(��; ��)

=

Z 1

0

Dg(
(xt�1; xt+1))(xt�1 � ��; xt�1 � ��)d
: (12)

Claim 17 Let t 2 Z :(xt�1���,xt�1���) 6= 0, kxt � ��k � � k(xt�1 � ��; xt�1 � ��)k,

where � = sup
�2(Kp0 )�(Kp0 )nf�

�g




Dgp(�) ����
k����k




 < 1:

Proof. Let t 2 Z and suppose (xt�1���,xt�1���) 6= 0: Since max
(x�1;x1)2(Kp0�Kp0 )

kDgp(x�1; x1)k <

1(and Zeidler[3] )

kx� ��k �
Z 1

0

Dg(
(xt�1; xt+1))(xt�1 � ��; xt�1 � ��)d


=

Z 1

0

kDg(
(xt�1; xt+1))(xt�1 � ��; xt�1 � ��)k d
 k(xt�1 � ��; xt�1 � ��)k

� � k(xt�1 � ��; xt�1 � ��)k ;

where the last inequality holds since max
(x�1;x1)2(Kp0�Kp0 )

kDgp(x�1; x1)k < 1:

Note that if (xt�1 � ��,xt�1 � ��) = 0; then xt = ��(since gp(��,��) = ��). Hence,

kx� ��k = sup
t:k(xt�1���;xt�1���)k>0

kxt � ��k

� sup
t:k(xt�1���;xt�1���)k>0

� k(xt�1 � ��; xt�1 � ��)k � � kx� ��k ;

where the �rst inequality holds by the claim above. But this is a contraction since

� < 1:

Proof of Theorem. As we illustrate in the proof of Proposition 3, let w, w
0 2 (0,1)

with w 6= w0
. Let w = minfw,w0g and m 2 N [ f0g. For n 2 N, let un = [10

nw
2
]: We

11



have


(xwun�m; :::; xwun+m)� (�1; :::; �1)

 = 0 for n is large enough thus

lim inf
t!1




(xwt�m; :::; xwt+m)� (xw0t�m; ::; xw0t+m)


 = 0:
For this xw and xw

0
, by theorem 11, theres exists the corresponding orbit of G� called

x� and x
0� respectively. By the above lemma, we have



(x�un�m; :::; x�un�m)� (��; :::; ��)

!
0 as n!1 and



(x0�un�m; :::; x0�un�m)� (��; :::; ��)

! 0 as n!1: So we have

lim inf
t!1




(x�t�m; :::; x�t+m)� (x0�t�m; ::; x0�t+m)


 = 0:

If G0 is chaotic , i.e., G0 satis�es (T1) (T2) below.

(T1) For all n 2 N, G0 has a n-periodic orbit.

(T2) G0 has an uncountable set � of asymptotically nonperiodic orbit such that

for all x,y 2 � : (x 6= y)

lim sup
t!1

kxt � ytk > 0; (13)

lim inf
t!1

k(xt�n; :::; xt+n)� (yt�n; ::::; yt+n)k = 0; for all n 2 N [ f0g: (14)

If � satis�es (10), by theorem 11and theorem14 there exists the corresponding

orbit and it also satis�es (T1) and (T2), that is, G� is chaotic.

12



References

[1]M. Henon, A two-dimensional mapping with a strange attractor, Comm. Math.

Phys. 50, 69-77(1976).

[2] R. Devaney and Z. Nitecki, Shift Automorphisms in the Henon Mapping,

Comm. Math. Phys. 67, 137-148(1979).

[3] T. Kamihigashi, Chaotic dynamics in quasi-static system:theory and applica-

tionds, Journal of mathematical economics 31, 183-214(1999).

[4] D. Sterling and J.D. Meiss, Computing periodic orbits using the anti-integrable

limit, Physics letter A 241, 46-52(1998).

[5] E. Zeidler, Nonlinear Functional Analysis and its Application, Springer-Verlag,N.Y.(1985).

[6] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos,

CRC Press LLC(1999).

13


	封面
	國立交通大學
	An estimate of chaotic region for the Henon map

