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An estimate of chaotic region for the Henon map

Student: yi-ting hsiao Advisor: Ming-Chia Li

Department (Institute) of Applied Mathematics

National Chiao Tung University

Abstract
We investigate the global behavior of.the quadratic diffeomorphism of the
, ey ,
plane given by H_ (X, y) =1+ Yy, ==X",bX) . If we fix b, the Henon map can
a

be considered as H _, a difference-~equation, where a is the parameter.

For a =0, the difference equation, Ha , reduces to the full shift on two symbols,
and we study orbits that continues from these states. We first show that the
system Hois chaotic and under a small perturbation, the system satisfies the su
fficient condition of chaos, that is for a close enough to zero, Ha display chaotic

dynamics. In this paper, we estimate for which a, Ha display chaotic to get the

chaotic region for the Henon map.
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1 Introduction

Let H,; : R? — R? be given by
L,
Ha,b<x7y) = (1 +y— am 5bx);

where «,b are the parameters. This map is called the Henon map. It was written
down by Henon[1] to realize the Smale horseshoe for a specific function which could
be iterated on the computer. Instead of being a model of any particular physical
situation, the Henon map is a map with a simple algebraic form which could easily

be studied by means of computer simulation.

In 1979, Devaney and Nitecki used a geometrical argument to get the bound
on the existence of the horseshoe [2]."In 1999, Kamihigashi provided easy-to-verify
sufficient conditions for chaos [3]. Iffwe fix'b, the Henon map can be considered as
(i, a difference equation, where®a is the‘parameter. “We first show that for o = 0 the
system is chaotic and under a small perturbation; the system satisfies the sufficient
condition of chaotic; that is, for « close enough to zero, it also displays chaotic

dynamics. More precisely, we have the estimate of chaotic region below:

Theorem 1 (Main) Fizing b and considering the difference equation G, If v <

2v2 -2 L , where v = \/a(1 + |b|), then G, is chaotic.
(V2= Db, where ) = V(L4 )

We conclude this introductory section by mentioning the structure of the thesis
as follows. In Section 2, we give some defintions and show that for o = 0, the Henon
map is chaotic. In Section 3, we estimate o such that G, has some propositions.
Finally, in Section 4, we prove these propositions to be the sufficient conditions of

chaos.



2 Preliminary

Let’s start from giving some definitions. For any function f, we denote its domain

by Dom(f). We consider difference equation of the form
G(*/Enfla T, -Z'nJrl) = 07 (1)

where G :Dom(G)C R* — R. A bi-infinite sequence {z;}2___ is called the orbit of
G provided for all t € Z, G(xy_1,24,24+1) = 0. The orbit is n-periodic orbit provided
there exists n € N such that y,., = y;, for all t € Z and y,1; # y, for 0 < j < n.

The orbit {y;}52 . is called asymptotically periodic if there is a periodic sequence

{y;} such that ||y — y;|| — 0 as t — oo. If y is not asymptotically periodic, then y

is called asymptotically nonperiodic. Foriany: sequence {y;}, let ||-|| denote the sup

norm whenever its argument is a‘vector;or a sequence.

Definition 2 We say that a difference equation G- is chaotic if (T1) and (T2) are

held below:

(T1) There exists m € N such that for all n > m, G has an n-periodic orbit.

(T2) G has an uncountable set x of asymptotically nonperiodic orbit such that for all

vy €x:(r#y)

lim sup 2, — ] > 0, 2)

t—o0

li{g(i)loqf (@t ooy Tein) = Yt—ny ooy Yean) || = 0, for alln € NU{0}.  (3)

For Dom(G) C R?, we define Dom(G)g = {x¢ € R | (z_1,79,71) € Dom(G)}. We
define a static system as a difference equation that depends only on x;. More precisely,

we say that G is static or a static system if there is a function G* : Dom(G)y — R,



such that for all (z_1,x0,21) € Dom(G), G*(xy) = G(x_1,x0,21). If G is static, we

defin a static point of G as a point £ € Dom(G), such that G*(¢) = 0.

Now return to the theme. Investigating the behavior of the quadratic diffeomor-
phism of Henon map, the Henon map is a two dimensional quadratic map (z,y;) —

(T¢41,9¢41) defined by
T = 14y — La7,
(4)
Yir1 = by
Substituting the second equation into the first yields x;4 1 — 1 — bxy_1 + éxf =0.

Let z, = %, we have\/azi 11 — 1 — by/az_1 + 22 = 0. We can reduce the Henon map

to a difference equation G, : R? — R
Go(Tp_1, T, Trg1 ) =N Ty 1 =11 — b/ oz, + xi, (5)
where « is the parameter. For az =0, this equation reduces to a static system:
Go(Tn )&, Try1) =21 + 2. (6)

We know that G is a static system with static point & = {1}, £, = {—1}. Next, we

will show that for o = 0, (G is chaotic.

Proposition 3 The difference equation Go(xp 1,2, Tny1) = —1 + 22 is chaotic.

Proof. First of all, we verify (T1). Go(zn_1,Zn,2n11) = 0 has two solutions £, = 1,

&, = —1. Since Gy is a function of x,, alone, the orbit {z;}?° _ must be z; € {£,,&,},

—00
for all t. Given any n € N, let g = 21 =...= z,,_9 = &, Tp_1 = & and 2,1 = X,

for all k € Z. This sequence {x,}°° __ is the orbit of Gy and n € N is the smallest

—00
number that satisfies ., = xx, which means that for all n > 1, GGy has an n-periodic

orbit. The above illustrates (T1).



Secondly we verify (T2). For r € R, let [r] denote the largest integer less than
or equal to r. For w € (0,1), define a bi-infinite sequence of natural number y" as
follows. For ¢ <0, let 2" = ¢,. For i > 1, we defined z" as follows:

[10w]¢ys  (10-[10w])éys

w ——
Ti10 = {STE TR S S
[100w]€ys  (100—[100w])Eys
w —N— ——
T11110 = {€1, 06, &8 T
[1000w]eys (1000—[1000w])¢ys
w —— ——
Ti11,1110 = €086 & & b

and so on. More precisely, let T,, = 1 4+ 10+...4+10", for n € N, we have for all n € N,

xzf = ¢ foralli="T,,..T,+ [10"w] — 1,

xf = & forall i =&y [10"w], ..., T, — 1.

Let x = {z" | w € (0,1) }.We-show that ysatisfies (T2). Clearly, y is an uncount-
able set. Let w € (0,1). Since [10%w] =>B0rasii — 0o, z* is asymptotically nonperi-
odic. Note that for all w, w' € (0,1) wherew % w . We have [10"w] # [10"w'], for n
is large enough. Thus, for all w, w" € (0,1) (w # w') 2 # x}”/ for infinitely many i's.

> 0. Let w, w' € (0,1) with w # w'. Let @ = min{w,w'} and

!
w w
Ty — Ty

So lim sup

t—oo

m € NU{0}. For n € N, let u,, = [*%®]. We have H(xfrmuﬁm) — (&4, ...,§1)H =0,

for n is large enough. So

I !
lim inf H(x;”_m, o Tihm) — (@3, ,a:ﬁrm)H

t—o0

S hmlnf H(x;lima .“’x;Uer) - (517 751)“ + hggf H(glv B 51) - (x}tuflnw tety x:‘,Uer)H

t—o00

= 0.

The above proves (T2). So Gy is chaotic. m



3 The estimate of «

We first show that we can choose A such that the orbit of GG, containsin W = I x I x I,

where [ = [-1—A,—1+ AJU[1 — A\, 14+ A]. The method was mentioned by D. Sterling

and J.D Meiss[4]. We will write an orbit z(e) of the Henon map as a fixed point of

an operator 1" whose ¢-th component is

Ti(z) = j:\/l — Va1 — by 1).

Define the [*° norm, let ||z||_, = sup |z;| and define B, to be the closed ball of radius
t

M around the point s,

Bu(s) ={z:]z—s| < M}

Proposition 4 For any G,,we define v = [/al(1+ |b]). If v < LQ,

7
V2 +4

2 )

then the orbit of G, is contained in the ball By(s)

Proof. Let T be defined by (10). For any z € B,(s), it is easy to see that
o < T"(2)]l oo < da,

where the sequences c,, and d,, are given by the iterations

dn+1 - f(dn> = 1+ Vdna
Ch+1 = V 1-— Vdna

with the initial conditions ¢g = 1 + X and dy = 1 — A. The map f(d) has a single

attracting fixed point

9t /P

- 2



Each of the ¢, must be real, so we must have 1 — vd,, > 0. This requirement gives a
right boundary to the region in the (v, A) plane where T™ exists. As n — oo these

boundaries approach the vertical line defined by

1—7de =0=~v=

Nl

which gives one of the bounds in the lemma.
Finally, (8) implies that
1T — 5|, <max(|c, —1],|d, — 1]) =1 — c,.

Thus the requirement M,, for which 1 — ¢, — M,, = 0 converges monotonically to M,
from above; therefore for any A > M (7), there is an N such that T":B,(s) — Bi(s),

for all n > N. The orbit is fixed pointyef I":S0 it is contained in the ball B)(s). m

Let K1 =[-1—\, =1+ )], K3 =[1 =X, 1 +X], where M () < A < 1. Such that
Kiand K, are disjoint, compact;and convex. Let P = {(p_1,po,p1) € R? | p; € {1,2},

for all 1 = 1,2,3}.

Definition 5 We say that G, is quasi-static if for all p = (p_1,po,p1) € P, for all
r_1 € K, |, and for all 1 € K,,, there is a unique vy = g,(x_1,71) € K, such that
GQ<I,1,I0,J;1> =0.

Remark 6 G is quasi-static since we can define gy(v_1,71) = &, .

Proposition 7 For all p = (p_1,po.p1) € P, define Y, = K, , x K,,, Z, = K,

W, =K, , x K, x Kj,. If sup [Galy,2)—Goly,2)| < 1, then G, is quasi-
(y7 Z)EWP

static.

Proof. We have sup ||G.(y,2) — Go(y, 2)||
(y, z)eWp



= sup |V oz, 1 — by/ax, 1| < 1. Then we can define g, :

($—17z071'1)eK§p71 ><K§p0 ><K§p1

Y, — Z, by

\/1 + b\/axnfl - \/aanrla if Po = 1

gp(xflaxl) = 5

—\/1 + b\/al’n_l - \/&In_;_l, if Po = —

then Gy (x_1,9,(z_1,21),21) = 0. =

For any m x n matrix B = (Bij), let || B||denote the operator norm of B :

B¢ -
1B, —g%nw 1<%>7<71;|Bw|.
Proposition 8 For sup |Ga(y,2) — Gol(y, 2)| < 2v/2—2, we have max | Dgp(x_1,21)| <
(y, 2)EW)p (x_1,21)E(KpyxKpy)

1.

Before the proof of Proposition8; ‘we first prove the lemma.

Lemma 9 If we can choose o such that sup |G, (y, z) — Go(y, 2)|| < 0, then for
(y7 z)GWP

the same o« sup || DG4(y,z) — DGo(y, z)|| < 9.
(y7 Z)GWP

Proof. The inequality sup |[|Ga(y,2) — Go(y, 2)||
(y7 Z)GWP

= sup ||\/axn+1 - b\/a$n—1||

(x_l,xo,x1)€K§p71 ><K§p0 XKgpl
= a(l+b)(14+ X) < ¢ implies

1

ve<sanarm® (9)

On the other hand, sup ||[DG.(y,z)— DGo(y,2)|| = max{y/a,|b]/a} < ¢

(y, z)EW)p

implies /o < min{d,ﬁé}. It is clear that —(1+/\) oy d < min{d, |b|6} n



Proof of Propositon 8. Suppose sup |[Ga(y,2) — Go(y, 2)|| < 6, where 0 <

(y, 2)EW)
o<1
(x—1,x1)rél(%()iopro) HDQp(x,l, $1)H
bva
2\/1+b\/5xn—1—\/aa:n+1>
—Va

2\/1+b\/a$n, 1 7\/amn+1
by/a

2\/1 + b\/&rn_l — ﬁxnﬂ
sup || DGal(y, 2) — DGo(y, )

(y7 Z)EWP

_\/a
2\/1 + b\/Exn_l — \/&ZL‘n_H

= max {
(x—1,21)€(Kpg X Kp)

}

Y

<
2 1- Sup ||\/axn+1 - b\/axnfln
(z-1,m0,1)€K, XK, K¢,
o
< <1,
2v1—96

this implies 0 < § < 2W/2—-2. m

From Proposition7, 8, we can ‘¢onclude that if = sup |Ga(y,2) — Go(y, 2)|| <
(y) Z)GWP

2v/2 — 2, then G, is quasi-staticiand ax | Dgp(x_1,21)|| < 1.
(wflaxl)e(KpoXKpo)

4 Main Result

In this section, we solve sup ||Ga(y, 2) — Go(y, 2)|| < 2v/2 — 2 to get the restrict of
(ya Z)GWP

a. By (7) and (9), the conclusion is as follows.

Corollary 10 Define v = a1 + [b)). Ify < (2v2 — 2)] L |, we can
(0172

solve this inequality by numerical method to get that. If 0 < v < A =~ 0.56, i.e.,

1 1
a4 < A—— ~0.56—— 10
Vo <A > 098 (10)
then we have that G, is quasi-static w.r.t Ky, Ky and max |Dgp(z_1,21)] <

(x—1,21)€(Kpy X Kpy)

1.



Now we want to show that if « satisfies (10), then G, is chaotic, i.e., (1)G,, is quasi-

static and (2) max |Dgy(x_1,21)|] < 1 which are the sufficient conditons
(z—1,21)E(Kpg X Kpg)

for chaos. Recall that we define K1 = [-1 — A\, =14+ A], Ky = [1 — A\, 1 + A], where
Mo(7) <A< 1. P={(p-1,p0,p1) € R | p; € {1,2} for all i = 1,2,3}. We first prove

the theorem below.

Theorem 11 Suppose {s;}° . is the orbit of Go. If o satisfies (10), then there

—0o0

exists a corresponding orbit of G, called {x}}2 where xi € K, for all t € Z.

-0

Moreover, the corresponding orbit preserves period of {s;}2 . ; that is, if {s;}2

—007 —00

is n—periodic, then {x}}2 _ is n—periodic.

—00

Lemma 12 For allp € P, g, : K, X K72 Ky, 18 continuous.

Lemma 13 (Brouwer fixed point theorem) Suppose that M is a nonempty , con-
vex, and compact subset of R", and that-f-+—— M is a continuous mapping then f

has a fized point.

Proof. Let {s:};° ., be the orbit of Gy. Suppose {s;} is n-periodic. Given z;, =

—00

(X1,eesty) € Ky, X K, %...X K, . Let x be the n-periodic sequence such that x,...,x,

are as given. Define T} ,, : K, x K, x..K,, — K, X K, x...K;, by

Tl,n(xl,n) = (9(50,81,52)(I07 T3), 9(51752,53)(9317 r3); s g(sn—275n—175n)<xn_2’ Tn))-

Since T} ,, is continuous and K, x K, X...K, is compact and convex, T}, has
6%

a fixed point z¥, = (27,....,7;) (by the Brouwer fixed point theorem). Clearly, the

associated n-periodic orbit ¢ is an orbit of GG, such that a3 € K;,, forallt € Z. m

Since G satisfies (T1), by theoreml1l, G, also satisfies (T1). It remains to show

that G, satisfies (T2). From the proof of Proposition3, Gy has an uncountable set

9



x = {2% | w € (0,1)} of asymptotically nonperiodic orbit that satisfies (T2). If
« satisfies (3), by theoremll, there exists the corresponding orbit of G, called y'.
Then Y’ is also uncountable and asymptotically nonperiodic. For all z,y € y, we have
limsup ||z; — y|| > 0. For the corresponding z’, v/, we also have liItn sup ||z, — y;|| > 0.

t—o0

Next, we will show that x’ satisfies (3).

Theorem 14 If « satisfies (10), let x* be the corresponding orbit of x = {z* | w €
(0,1)}. For all x*y* € x* : (2" # y*)

Hminf ||(2,_p, s @5 ) = Wieps s Yian) || = 0, for alln € NU {0} (11)

t—o00

Lemma 15 Given p = (p_1,po,p1). Suppose there is a unique orbit x* such that
x; € K, for allt € Z. Then for all € > 0, there is n € N such that for any t € Z
and for any asymptotic obit x with x; Gl foirall @ = t —n,...,t +n. We have

|z — zf|| <e.

Proof. Let ¢ > 0 and suppose thereis no n € Nisuch that for all t € Z, for any orbit
x with z; € K, for all i =t —n,...,t +n, we have ||z; — £*|| < . This means that for

n € N, there is an orbit y™ such that for some T, € Z, ||y§1n — &

> e and y!' € Kp,,
for i =T, —n,...,T;, + n. For n € N, define 2" by z} = yf',; , for t € Z. Note that
for n € N, 2™ is an orbit and ||zf — £*|| > . Taking a subsequence if necessary, we
may assume that for ¢ € Z, 2} — T; € K, as n — oo. Then we have |75 — &*|| > ¢
and thus {7;} # {£*}. But this is a contraction since z* is the unique orbit such that

x; € Ky, forallt€Z. m

Lemma 16 The constant sequence{...,§, &, .-} 5 the orbit of Go, by theorem 11

po’”
there exists a corresponding constant sequence {...,.£*,£*,...} is the orbit of G, where

§0 € Kpy Then the constant sequence {...,.£*,£",...} which is the unique orbit {x;} of

G, such that x; € Kp,, for allt € Z.

10



Proof. Suppose there is another orbit x with ||z — " = sup [2; — £ > 0. Then by

mean value theorem, for all ¢t € Z,

T —& = gp(xtflaxt+1)_gp(€*>€*>

1
- / Dy(W (1o, 2e2)) (11 — €201 — E)eb. (12)

Claim 17 Lett € Z (a1 —& 21 —&") #0, ||xe — || < M [(w4—1 — & 21 — 7],

where \ = sup ’Dgp(C)ﬁ ’ < 1.
CE(Kpg ) x (Kpg)\{€7}
|
Proof. Lett € Z and suppose (z;—1—&",2;-1—E") # 0. Since max | Dgp(z_1,21)|| <

(x—1,21)E(Kpyx Kpg)

1(and Zeidler[3] )

1
le— €] < / Dy, vt i )y

1
= /O [1Dg(y (-1, 250)) (@ =L@ 4= &) dy |21 — & 20 — )
Mi(@e—1 = & 2 = E)F

IA

where the last inequality holds since max | Dgy(x_1,21)|| < 1.
(x_1,21)E(KpyxKpg)

Note that if (x;—3 — "2, — €*) = 0, then =z, = " (since ¢,(£%,£") = £*). Hence,

|z =& = sup |ze — &7l
tl[(ze—1—E&" xe—1—€%)||>0
< sSup M(zeor =z = )| < Al = €7,

]| (we—1—€" -1 —E€")[|>0
where the first inequality holds by the claim above. But this is a contraction since

A<l m

Proof of Theorem. As we illustrate in the proof of Proposition 3, let w, w" € (0,1)

with w # w'. Let @ = min{w,w'} and m € NU {0}. For n € N, let u, = [2Z™]. We

11



have||(z% _ z¥ ) — (&1, -, &)|| = 0 for n is large enough thus

my Un+m

! /

litrgcigf H(l’;ﬂ_m, s Tiam) — (@, ’x:fﬂer)H = 0.

For this 2" and 93“’,, by theorem 11, theres exists the corresponding orbit of GG, called

2* and z"* respectively. By the above lemma, we have || (R A S (R o 1
0 as n — oo and H(:L‘;;kn_m, @) — (€5, 69| — 0 as n — oo. So we have
. . ’ I
lim inf H(x;lm, e Tim) — (2, ,xtim)H = 0.
t—00

If Gy is chaotic , i.e., Gy satisfies (T1) (T2) below.
(T1) For all n € N, Gy has a n-periedic oubit.

(T2) Gy has an uncountable’set y of asynptotically nonperiodic orbit such that

for all z,y € x : (z # y)

lim sup [|z¢ — ]| > 0, (13)

t—o0

li%n inf ||(%1—n, ooy Tewn) — Wt—ny s Yean) || = 0, for all n € NU{0}. (14)

If o satisfies (10), by theorem 1land theoreml4 there exists the corresponding

orbit and it also satisfies (T1) and (T2), that is, G, is chaotic.

12
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