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ABSTRACT

In this paper, we proposed the use of Fast Fourier transform (FFT) method
to accelerate Monte Carlo simulations in option pricing. The method of FFT is
applied to compute the Deltas of the options. These Deltas are essential in
construct martingale control for variance reduction. We find that the
combination of the FFT method with the martingale control variate method is
very useful to reduce the computational time while preserving the accuracy of
simulations. The error analysis of using FFT method is also discussed.
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1 Introduction

The method of Monte Carlo simulations is a very popular technique which
is applied in many scholastic fields, such as physics, engineering, statistics,
finance, and so on. This method is based on the analogy between proba-
bility and volume. The measure theory formalizes the intuitive notion of
probability of the event to be its volume or measure relatives to that of a
universe of possible outcomes. Monte Carlo uses this identity in reverse, to
calculate the volume of a set by interpreting it as a probability. For example,
we can randomly sample from a universe of possible outcomes and take the
fraction of random draws that fall in a given set as an estimate of the set’s
volume. According to the law of large numbers, this estimate converges to
the correct value as the number of deaws increases. The advantage of Monte
Carlo simulations is that it is no er less sensitive:to dimensionality of the un-
derlying problem and suitable for parallel computations. However the main
disadvantage of this method is that the'rate-of convergence is slow because
it is limited by the central limit theorem. Tt is relatively slow compared to

deterministic schemes for low dimensional problems.

To improve the efficiency of Monte Carlo methods, there are two main
possible approaches : Quasi Monte Carlo simulation (QMC) and variance
reduction technique. Quasi Monte Carlo simulations are also called low-

discrepancy methods. The main difference between QMC and the Monte



Carlo method is that QMC makes no attempt to mimic the underlying ran-
domness. Indeed, it seeks to increase the accuracy specifically by generating
points evenly to obtain the randomness. QMC forms a class of methods
where low-discrepancy numbers are generated in a deterministic way while
basic Monte Carlo uses pseudo-random numbers. Variance reduction method
exploits information about the errors to reduce the errors in estimates of un-
known variables. On the other hand, this method seeks probabilistic ways
to reformulate the undertaken problem in order to gain significant variance
reduction. For example, control variate methods take into account the corre-
lation properties of random variables, but the efficiency of these techniques

is often restricted to certain undertaken problems.

In financial applications such as pricing derivatives, taking the control as
a (local) martingale is a very useful method.. Fhisimethod is called “martin-
gale control variate method.” The martingalecontrol, variate method can be
well understood in finance terminology.The constructed control variate cor-
responds to a continuous Delta hedge strategy taken by a trader who sells an
option. So this method is also known as “hedging martingale variance control
method”. Fouque and Han [7] apply this method to price European option,
American option, and Barrier option(down and out) in stochastic volatility
models. Also they show the variance analysis of this method. However, the
weakness of this method is that it takes time to compute the parameter val-
ues for each path. If we want to estimate an option price by Monte Carlo
simulations, we will construct many simulated paths. The martingale con-
trol is a stochastic integral consisting of a partial derivative, known as Delta.
We need to compute Delta at each simulated time step. Section 2 will de-
scribe the martingale control variate method in detail. The purpose of this
paper is to apply the fast Fourier transform (FFT) methodology to reduce

the computing time in Monte Carlo simulation for option pricing.



FFT option pricing method is first developed by Carr and Madan [14].
They use Fourier transform to change the option pricing problem from the
real domain to the complex domain. This Fourier transform can be repre-
sented by the characteristic function of the natural logarithm of the under-
lying at the expiration date. The reason for using characteristic function is
that under some models or processes, the characteristic functions are eas-
ier to compute. For example, under Levy processes, we can have general
forms of characteristic functions. See, Bertoin [6] in detail. We can take
inverse Fourier transform to get the option price. FFT is used to approx-
imate this inverse Fourier transform. In other words, this method requires
only the characteristic function of the natural logarithm of the underlying at
maturity. Borak, Detlefsen, and Hérdle [21] use this method to price call op-
tion under Heston model and Bates anodel. Ttkin [2] applies this in variance
gamma (VG) process. Lee [15] offers the-error bound of this method. The
restriction of this method is it is only suitable for pricing European option.
Based on this method, we estimate the Delta in the related Black-Scholes

model. Moreover, we give the error analysis of this estimation.

The rest of this paper is arranged as the following. In section 2, we
review the martingale control variate method, and discuss its computational
issue of this method. Section 3 introduces the FFT option pricing method
and discusses the models which can apply this method. In section 4, we
apply FFT option pricing method to compute the Delta of the call option
in geometric Brownian motion (GBM) environment using martingale control
variate method, and illustrate numerical results in figures. Moreover, the

error bound of this method is computed. Finally, we conclude in section 5.



2 Hedging Martingale Control with Variance

Reduction

2.1 Review of Martingale Control Variate Method

Under the risk-neutral probability space (2, F, (Ft)o<t<co, P*), we consider
the risky underlying asset S; which is governed by the geometric Brownian

motion

dSt = T’Stdt + O'Stth*, (1)

where r is a risk-free rate and o _is the volatility. Both r and o are
constants. W} is the Brownian motion under risk-neutral probability. There

are two corollaries of this model:

Corollary 1 The logarithm of the wunderlying asset S; follows the normal

distribution with mean (r — $0)t and variance o*t. i.e.

log S; ~ N((r — %02)75, o’t) (2)

Corollary 2 The closed form solution of this model is
1 2 *

St = Syexp((r — 50 WT —t)+oW5_,), (3)
where S; is the price of the underlying asset at time t.

Given this model, the fair price of a European-style derivative with ma-

turity 7' < oo, denoted by P, is simply a conditional expectation

P(t,x) = B le”" TV H(Sr)| A, (4)



where Ef, denotes the expectation with respect to P* conditioned on the
current states S; = x, H(z) the payoff function satisfying the integrability
condition. For example, H(x) = max{x — K,0} for strike price K > 0,
it is a call payoff. A‘financial contract with the call or put payoff is called
a European call option or a European put option respectively. From the
simulation point of view, it is straightforward to construct the basic Monte

Carlo estimator of the option price P(0,Sy) at time 0 by

Q
1 . ;
g2 ¢ THSY), (5)
i=1
where () is the total number of independent sample paths and S(Ti) denotes

the ¢-th independent replication of the underlying asset price at time 7.

Assuming that the European option price P(t,x) is smooth enough, we
apply Ito’s lemma to its discounted:price e " P, anid then integrate from time

0 to the maturity 7. The following martingale representation is obtained
P(t,z) = e H(Sp)r—rbdo( P53 T) (6)

where centered martingale is defined by

T
My(P;T) :/ e gp(s Ss)oSsdW?. (7)

Remark 3 My(P) is a martingale and it has mean zero.

This martingale plays the role of “perfect” control for Monte Carlo sim-
ulations and the integrand consists of the perfect Delta hedge if the partial
derivative 28 9E(t,x) is known so that the option price P(¢,z) would be known
in advance. In reality, P(t,z) is not known. Therefore, equation (6) is not
feasible for a direct computation for the option price. Nevertheless by em-
ploying a martingale as a control we can formula the unbiased control variate

estimator

e TH(SY) — My (Pps; T)] 8)

m M@



for the option price Py = E*[e”"" H(St) — My(Pgs; T)|Fo] where the mar-
tingale control My(Ppgs;T) consists of the price approximation Pgg of the

actual option price P. That is

r 77~58PBS *
MO(PBS;T> = e W(S,SS)USSCZWS, (9)

where Ppgg is the solution of Black-Scholes partial differential equation with
the terminal condition Ppg(T, z) = H(z). In financial interpretation My(Ppg; T)
represents the Delta hedging portfolio accumulated up to time T, so the term
Moy(Ppg;T) is called the hedging martingale be the price Pgg so that the esti-
mator defined by (9) is called the martingale control variate estimator. Apply
Ito’s isometry, the variance of the controlled payoff F, is simply the sum of

quadratic variations of martingale :

Var(e "™ H(St) —My(Ppsi L)) (10)

* ! —2rs ap aP
= EO,;E{/ € 2 (%(S,SS) = WBS(S,SS))2OQSECZS.}.

Therefore, if the Delta trading m;—ﬁs(t, x) 18 closed to the actual hedging

strategy, the variance of the martingale control estimator should be small.
Now, we introduce the algorithm to estimate the martingale control.
Stepl. Simulate the underlying asset’s paths in order to obtain the terminal

prices of the asset. Compute the sample paths of H(Sr) and its discounted
value e™"1 H(S7).

Step2. Discretize the martingale control of the e H(Sr). Use the lower

Riemann sum to approximate the integral (9) . i.e.

r ,maPBS *
Moy(Pps;T) = - (s,S5)0SsdW; (11)
M
2 OPps T | T
~ Ze AY) 1)8—m(M(j — 1)’5%0—1))03%(]—1) Méj,
j=1



where {0, AT4, JTM * 2, ..., % « (M — 1)} is the partition of the interval [0, 7] ,
K is the strike price of option, and ¢; are identical and independent (I.I.D)
standard normal random variables.

Step3. An estimator of the martingale control variate for the option price

is the following,

T
By le " H(Sr) - / e 8(193? (5, 5.)0-SodW?] (12)

1 < —TTH S(l) A rl (J-1) aPBS . S(l) S(l) T
_(Ze ( T ) - Zze M (M(] - 1)7 %(j_l))g L (j—1) MEM

=1 j=1

where () is the number of sample paths.

2.2 Examples

We take two examples in European call-option te observe the efficiency of the
martingale control variance method. The payoff function H(z) = (v — K)™,
where K is the strike price. We suppose the risk-free rate r = 0.1 , the
volatility o = 0.25 , and the maturity:T:=.1.-The current time is assumed 0,
and the initial underlying asset price Sy is 100. In the first example, we take
the strike price K as 80 to fit the case of in-the-money. The other example,
we take K = 120 which is in the out-of-the money environment. Let the
number of sample paths ¢ = 10000 and the partitions of time interval [0, 7]
= 100. We compare the standard error (SE) of Monte Carlo simulations with
and without martingale control. We also show the CPU time spending in

these two conditions. The variance reduction ratio is also represented.

(1) K =80
Call Price | Standard Error | Time(Seconds)
Using martingale control variate 28.581 0.0107 63.5897
Without using martingale control variate | 28.683 0.2416 0.4594




The variance reduction ratio =590.83

(2) K =120
Call Price | Standard Error | Time(Seconds)
Using martingale control variate 6.638 0.0195 65.7116
Without using martingale control variate | 6.589 0.1407 0.4317

The variance reduction ratio =52.062

From numerically results, we can observe that when we use martingale
control variate to reduce variance, the standard error is diminished so much.
As we know, the convergence rate of Monte Carlo simulations is governed
by 1/4/Q, where @ is the number of sample paths. In the first example,
if we want to reduce the standard error; from the method of without using
martingale control variate to that of usimg-martingale control variate, the
sample paths should be increased from 10000 to 6250000 approximately. This
is the power of the martingale ‘conttol variate; method. But there comes
a disadvantage of this method, it.spends a-lot of time. The time using
martingale control variate method is much greater that it without using
this method. Observe the martingale control in equation (9), we can find
that the most part of time spending in martingale control variate method

is to compute the term agis (t,z), which is call the Delta of the option.

We would estimate Delta values 81;’;’5 (t,x) in every pairs (t,S;), where t €
{0, %, %*2, - %*(Z\/[—l)} For this reason, we want to search some methods

to increase the efficiency in computing martingale control. We find that take
advantage of FF'T option pricing method to compute Delta may be a feasible
way. Next, we introduce the FFT option pricing method and explain how
to use this method to make the martingale control variate method more

efficiently.




3 Apply FFT Method to Price Option

In this section, we will introduce how to apply Fast Fourier transform (FFT)
method to price the call option. The approach has been addressed by Carr
and Madan [14]. The big attraction of this method is the Fast Fourier trans-
form (FFT) could be used to make computation more efficient. This efficiency
is even boosted by the possibility of the pricing algorithm to calculate prices
for a whole range of strikes. The other advantage for this method is that if
we know the characteristic function of nature logarithm of underlying asset
price at maturity, this method can be applied directly. The characteris-
tic function often has a simple form for many models while the probability

density functions of the log price is often not get in the closed form.

3.1 Introduction of FFT

FFT is first developed by Cooley and Tukey [8]. It is an efficient algorithm

for computing the summation
N
27 .
w(k) = e WUNENg(j)  fork=1,...,N, (13)
j=1

where N is typically a power of 2. The power of FFT is that the method
can compute the element of the sequence {w(1),w(2),...,w(N)} rapidly. The
algorithm reduces the number of multiplications in the require N summations
from an order of N2 to that of Nlog, N, a very considerable reduction. We

go into details this algorithm in appendix B.

3.2 Fourier Transform of Option Price

We define some notations and these notations are used around this section.

Let Cr(k) be the discounted value of the call option with maturity 7" at the

9



current time 0. k is the natural logarithm of the strike price K of the option.
And we use S; to represent the underlying asset price at time ¢. The initial
price of asset is denoted by Sy. In this method, we usually suppose Sy = 1

for convenience. We also define X1 = log St.

Definition 4 The characteristic function of the natural logarithm of the
price of the underlying asset , Xr, is defined by

[e.o]

or(u) 2 Elexpliuxe)] = [ ear(s)ds (14)

where qr(s) is the probability density function of Xt under the risk-neutral
world.
Definition 5 Define Ax, as the set
Ax, = {v € R™: B*[e"™] < oo}, (15)

where - is the inner product.

Definition 6 Define Ax, as the set
AXT = {C eC": _Im(C) € AXT} ’ (16)
the complex vectors whose negated imaginary parts are in Ax,. form a “strip”or

“tube”.

Lemma 7 The characteristic function ¢5 is well-defined and analytic (infi-
nitely differentiable) in Ax, which is a convex set. Partial derivative of ¢p

may be taken through the expectation.

10



Define the initial (discounted) call value Cr(k) is related to the risk-

neutral density ¢r(s) by:

Cor(k;So) = E*[e”™ (max(eX” — €*,0))]

= / e "I max(e® — e*,0)qr(s)ds

o0

_ /k T (e — eYgp(s)ds.

Here, simply, we suppose the risk-free rate, r is a constant.

Theorem 8 For any p > 0,

e " E*exp(p + 1) X7]
(p+1)exp(pk) ‘p+1

Cor(k; Sp) <
(17)

Proof. For all s > 0 we have

+1
k s’ P

ST S AR A

)p7

because the left-hand and right-hand sides, as function of s, have equal values
and first derivatives at s = (p + 1)exp(k)/p, and the second derivative of
the right-hand side is always positive. Moreover, since the right-hand side
is positive, the left side can improve to (s — exp(k))*.Now, substitute s =
exp(Xr), take expectations, and discount both sides to obtain the first bound.

The second bound is obvious. =

Definition 9 The Fourier transform of the function f on R is defined by

¢w=4ﬂmmm (18)

and its attached inversion is given by

ﬂmz—iéwwfmw. (19)

( b ) and Cor(k;Sy) < e " E*lexp X7]



Lemma 10 The Fourier transform of the function f on R exists if || f]|,is
finite or f € LY(R). i.e.
/|f(a:)|dx<oo (20)
R

Lemma 11 If f € L'(R), then lirin f(x)=0.

But, we know that when k = logK tends to negative infinity, in other
words, the strike price K tends to zero, the option is deeply in the money,
and the discounted option price tends to the initial underlying price. That
is

khm C()j(k’; Sg) = So 7é 0. (21)

By the lemma 11 , we know that thé Fourier. transform of the discounted
call option price does not exist. . To make Coir(k;Sy) to be an absolutely
integral function, we add a parameter a into Cyr(k; Sy), the parameter is
usually called the “damping parameter”.. Consider the modified call price
defined by

cor(k; So) = exp(ak)Cr(k) (22)

for > 0. [The reason for @ > 0 is that we want co r(k; Sp) tends to zero as k
tends to negative infinity. For a range of positive value of o, we expect that
cor(k; Sp) is integrable in k over the entire real line. How to choose the value
of o will be discussed later. Consider the Fourier transform of ¢q r(k; Sp),

PO () — /R ¢ o (ks So)dk. (23)

Lemma 12 We develop an analytical expression for \Ilf(T) (v) in terms of

oOp(v). d.e.
e Tor(v— (a+1)i)

vy () = .
() a?+a—v2+i2a+1)v

(24)

12



v D) = /R co.r (k; So)e™*dk
= / ei”k/ e e (ef — M) qr(s)dsdk
—00 k
= / e ar(s) / e*(ef — e dkds
_ / G_TTQT<S)/ (es—l—ak-i-ivk i ek-l—ak-‘rivk:) dkds
0 stak+ivk k+ak+ivk 7S
= / e ar(s) ¢ — — ¢ : ds
oo o+ a+1+w o
00 stas+ivs stas+ivs
_ —rT e _ e
N /006 QT(S)[Q—H’U 04—1—1—1—2'2}]
00 o €s+as+ivs d
B /OO6 QT<S)(a+iv)(a—l—1—|—iv) i

(0.9]

—rT oA
i(v— 1)3))s
" (a+iv) (a1 +iv) /_OOQT(S)G(“ (a+1)))s 1

e or(t (et D)
a?+a— 241 2a41)v

e rT [o's] )
_ s+as+wsd
(o +iv)(a+1+iv) /_ ar(s)e °
(&

Then, we take the inverse Fourier transform of ¥, (v) and undamp it to

get the call price,

1 [ .
Cor(k; So) = e_ak%/ \IJJ)f(T)(v)e_’”kdv. (25)

Lemma 13 The call option price can be simplified to the following form

Cor(k; So) = ookl / Re(U7 ") (v)e %) dv. (26)

T™Jo
Proof. See appendix A. m

We note that the integration (26) is a direct Fourier transform and lends
itself to an application of the FFT. Also note that in the denominator of (24)

vanishes when v = 0, this is another reason for using damping parameter or

13



something similar is required. Positive value of a assist the integrability of
the modified call value (22) over the negative nature logarithm of strike price
axis, but aggravate the same condition for positive nature logarithm of strike
price axis. For the modified call value ¢y r(k;Sy) to be integrable in the
positive nature logarithm of strike price direction, a sufficient condition is
provided by \Ifj)f(T) (0) being finite. From (24), we observe that ¢, (—(a+1)i)

should be finite. It means that
(Oé + 1) € AXT (27)

is a sufficient condition. Carr and Madan [14] proposed that one fourth of
the upper bound which satisfying the condition (27) serves as good choice
for av. Schoutens [17] found that 0.75 is a good choice for o and led to stable

algorithms.

3.3 Evaluation of Option Price by FFT Method

The remainder work is to estimate the'mtegral (26) numerically. Using the
Trapezoid rule for the integral on the right-hand side of (26) and setting
v; =n(j — 1), an approximation for Cr(k) is:

N

Cor(k; So) = exp(—ak) Z (e F W (v)n). (28)

The effective upper limit for the integration is now
U = Nn. (29)

Here, we called U as the truncated upper bound and 7 as discretization

size of out FF'T method. We are mainly interested in at-the-money call option

14



value Cp(k), which correspond to k near 0. The FFT returns N values of k

and we employ a regular spacing of size A, so that our values for k are

ky=—-b+XNu—-1), foru=1,..,N. (30)

This gives us log strike levels ranging from —b to b where

N
b= —. 1

On the other hand, the sequence of strike price K correspond to k, is

K = {exp(—b),exp(—b+ A),...,exp(=b+ A(N — 1))}. (32)

Substituting (30) into (28) yields:

—ak, N o2
Cr(k,) = WRe(Z(e_wj(_bH(“_l))\I’T(vj)n), foru=1,...,N.
=1

(33)
Noting that v; = n(j — 1) and after.arranging the summation, we get

N

Crh) o SRR R (S (MDD gy (1)), (34)

J=1

Taking A\ = 27, then the summation (34) becomes that
exp(—ak,) al
— " _a2ma _ o
Cr(k,) = — " Re(Y (e FUDO Dt (0)n).  (35)

™ -
Jj=1

Then the equation (35) fits the FFT form (13). FFT method can be
applied to compute the summation (35). Note that if we want to use FFT
option pricing to evaluate call option price, the condition is we should know
Ur(v). By (24), Ur(v) can be represented as the function of characteristic
function of nature logarithm of underlying asset price at maturity, ¢,(u).

That is, knowing ¢, (u) is the only condition to use the FFT option pricing

15



method. This is very powerful. In many models, ¢,(u) can be computed
easily. Next , we offer characteristic functions, ¢,(u), in some models. And
these models can directly apply FFT option pricing method to pricing Eu-

ropean derivatives.

3.4 Examples

(1) Merton model:

The price of the underlying asset follows the dynamics

d
% — rdt + odW, + dZ,, (36)
t

where Z; is a compound Poisson process with a log-normal distribution of
jump sizes. The jumps follow a Poissonmproeeéss N; with intensity A which
is independent of W;. The log=jump sizes ¥;'~ Ny, >) are i.i.d random
variables with mean p and variance 9% -which-are independent of both N,
and W;. The dynamics of asset price is.then given by:
Ny
Sy = Soexp(pMt+ oW, + > Y;), (37)
i=1
where p™ = r — 6% — A(exp(p + 36%) — 1). The characteristic function of
Xr =logSr is

2,2 52U2

T ) 4 ipMu+ Mexp(——— +ipu—1).  (38)

¢r(u) = exp[T'(—

(2) Heston model:

The price of the underlying asset follows the dynamics
dS;
St
dvy = k(0 —wv)dt + O’\/U_tth(Q),

= rdt + o dW (39)

16



where v; is another unobservable stochastic process and follows the square
root process. So, this model is a type of “stochastic volatility model”. And

the two Brownian motions Wt(l) and Wt(2) are correlated with rate p. i.e.
Cov(dW ", dw?) = pdt. (40)

Parameter 0 measures the speed of mean reversion, # is the average level
of volatility and o is the volatility of volatility. In (40) the correlation p is
typically negative, which is known as the “leverage effect”.For the natural

logarithm price of the underlying asset X; = log .S;, one obtains the equation:
1
dX, = (r = gu)dt + Vo dWw . (41)

The characteristic function of X = log St is

exp(—”eT(”;ipm) + T + duxg) (u? + iu)vg
(bT(u) = - . 220 11k exp(— T . )
(cosh % + ’*"Wﬂ sinh %)?T 7y coth - + Kk — ipou

(42)

where v = \/02(u® + iu) + (k —ipow)?, and &y and vy are the initial values

for the log-price process and volatility.-precessyrespectively.
(4) Bates model:

The price of the underlying asset follows the dynamics
s,
St
dvy, = k(0 —v)dt + O'\/?Ttth@)

= rdt + o dW " + dz, (43)

Cov(dWM, aw?) = pdt. (44)

As in (43) Z; is a compound Poisson process with intensity A and log-
normal distribution of jump sizes independent of Wt(l) and Wt@). If J denotes
the jump size then log(1 4+ J) ~ N(log(1 4 <) — 26°,6°) for some . Under
the risk neutral probability one obtains the equation for the logarithm of the
asset price:

1 ~
AXe = (r =X = godt +v/udW," + 7, (45)
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where Z, is a compound Poisson process with normal distribution of jump
magnitudes. Since the jumps are independent of the diffusion part in (36),

the characteristic function of X7 = log St is

or(u) = o7 (u)dr(u), (46)
where
kKOT (k—ipou . . .
o(u) = eXp(% + zyT(r - ) —;:u:cg) rexp(— (ujT—i— iu)vg |
(cosh 2- + === sinh oz v coth 5=+ Kk —ipou
(47)
is the diffusion part characteristic function and
J Su? 1,
op(u) = eXp(T)\(exp(—T +i(ln(1+¢) — 5(5 Ju) — 1), (48)

is the jump part characteristic function.
(5) Variance Gamma (VG) process:

The VG process is obtained=by evaluating arithmetic Brownian motion
with drift # and volatility o at a-random time given by a gamma process
having a mean rate per unit time of 1 and'the variance rate of v. The resulting
process X;(o,0,v) is a pure jump process with two additional parameters 0
and v relative to the Black Scholes model, providing control over skewness
an kurtosis respectively.See [3] in detail. The underlying asset follows the
process

St = S() exp(rt + Xt(O', 9, 'U) + wt) t > O, (49)

where by setting w = (1/v)log(1—6v—oc?v/2), the mean rate of return on the
asset equals the interest rate r. The characteristic function of X1 = log Sy
is

o (1) = exp(log(Sy + (r + w)T)(1 — ibvu + o*uv/2))~1/v. (50)

The VG process is hard to using Monte Carlo Simulation to pricing op-

tion when underlying asset follows this process. But in FFT option pricing
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method, since we know the characteristic function of log Sy, we can apply
this method to pricing call option. This is the advantage of this method.

Next, we will apply this method to estimate the Delta of the call option.

4 Delta Estimation Using FFT Option Pric-
ing Method

4.1 Introduction

In this subsection, we discuss how to use the FFT pricing option method
to compute the Delta of the call option. We also suppose that the price of
underlying asset follows the geometri¢! Brownian motion which is described
in section 2. We use the notatien A;(%)-to represent the Delta of the call
option at the time ¢. Simply, we let the current time is 0. k is the natural

logarithm of the strike price K. The definition-of delta A,(k) is

Al = SR, (1)

where T is the maturity of the call option. We will deduce it to our wanted

form which can apply FFT option pricing method. Note that
Ci(t, ) = e "I [(Sr — K)F|So) = e "I E(Sr — K)Y], (52)

where the £* is the expectation under the risk-neutral probability P*. Recall

that the closed form solution of St under geometric Brownian motion is

Sy = Sy exp((r — %&’)(T )+ oW, (53)
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W _, is the Brownian motion under risk-neutral probability with mean 0 and
variance T — t. Then substitute (3) and (2) into (1), we obtain that

de T E((Syexp((r — 50°)T +oWi_,) — K)*]

At(k) = ('95',5 (54)
_ e—r(T—t)E*[a<St exp((r — %‘72)(7;;5 t)+oWr_,) — K)+] (1)
= OB Loy (- 5ot (T ) W), ()

where I, >k} is the indicator function. i.e.

1, if S0 > K
lisr>ky =
0, otherwise.

In order to simplify A;(k), we use the following lemma, called Girsanov’s

theorem.

Lemma 14 Let W(t), 0 < t <T, be a Brownian motion on a probability
space (Q, F, P), and let F(t), 0«< t < 5 be a filtration for this Brownian
motion. Let ©(t), 0 <t <T , be an-adapted process. Define

t 1 t
Z(t) = exp{— [ O(u)dW (u)— 5/0 ©2(u)du},

0

i
~+~

~—
I

t

W (t) —i—/ O(u)du,
0

and assume that

E[/O 0% (u)Z*(u)du] < oo.

Set Z = Z(T). Then E[Z] =1 and under the probability measure
P(A) = / Z(w)dP(w) for all A € F.
A

the process W (t), 0 < t < T, is a Brownian motion.

In our case, we define
R t
Wy =W} —ot =W+ / —odu (55)
0
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and

t 1 [ 1
Z(t) = (%p{/ cdW; — 5/ oldu} = exp((—iaz)t + oWy), (56)
0 0

then under the new probability measure

P(A) = / Z(w)dP(w) (57)
A
Wt is a Brownian motion. Then

AR = T TIE L, > KYexp((r — 5o?) (T — 1)+ 0Wi_,)] (59

= E[I{S}ZK}],

where log(St) ~ N((r + 30%)(T — t),0*(T — t)). Let X7 = log(Sr), then

A(k) could be rewrote as

At(k) I E[I{X'TZk}] (59)

Now, we apply the FFT option pricing-method to estimate this expec-
tation. Note A;(k) tends to 1 when k-tends to =00, damping parameter «

should be used to let A;(k) € L'(R). Define

Ru(k) = exp(ak) (k). (60)
The Fourier transform of A (k) is

Up(v) = /R eF A, (k)dk. (61)

Lemma 15 We develop an analytical expression for Ur(v) in terms of the

characteristic function of Xr, ¢p(v). i.e.

Ur(v) = —— (v — ai). (62)

o+ 1w
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Proof.

Ur(v) = /R Ay(k)e™*dk

= / e“’k/ e“*qp(s)dsdk
—0o0 k

= / qT(s)/ e“* ek dkds

oo _i(v—ai)s
e
= / qr(s)ds

—00

where gr(s) is the density function of X7 under the risk-neutral probability.

Lemma 16 If Y is a random variable whose probability density function
follows the normal distribution withanean i andsvariance o2, then the char-

acteristic function of Y, ¢(t) is

1
expliut — 502t2). (63)
Proof.
i1 (y — n)?
t) = eVt exp(———=——)d
o) = [ ey
< 1 —y? + 2yp — p? + 20%ity
= d
] —(y — (1 + o%it))? 2uctit — o*t?
_ RO TV,
—0o V21O b 202 ) exp( 202 Jdy
2uc?it —ott? [ 1 —(y — (p+ o%it))?
= d
exp(PT T [ ey
1
= exp(uit — 5021&2)
]
Since X7 ~ N((r+10?)(T —t),0*(T—t)), by the above lemma, we obtain
that

bo(v) = exp((r + %ﬁ)(T ~ #)iv — %ﬁ(T — 1)), (64)
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Taking the inverse Fourier form of (61) and undamped, we obtain

1

Ay(k) = exp(—ak) o

/Rei”k\IfT('U)dv = exp(—ak)% /000 Re(e ™ W (v))dv.
(65)

Follow the FFT option pricing method, we transform A;(k) into the FFT

form (13),

N
Ay(ky)  ——= Re(z(e_wf(_b“(“_l))\IJT(Uj)n), foru=1,...,N,
j=1
(66)
the choice of b, A\, 7 and k is the same as in FF'T option pricing method
in (29) (30) (31).

4.2 Examples

Now, we use this method to compute the 'Delta and’compare the results of
this method to the closed form solution.We chooser N = 256, the truncated
upper is 500, the damping parameter «i8'0.7; the risk-free rate r is 0.03, and
volatility o = 0.25. We compare two environments of maturity 7" = 0.5 and

1. In our setting, the sequence of natural logarithm of strike price

64 64 64 64
b4 m 2k e 4255 )

by = {— —
250 125 250

125" 125" ' 250° 125"
We can find that in these two cases, the value of Delta is very near to the
closed form solution when the strike price K is larger than 0.5. But when
the strike price is smaller than 0.5, the method seems to be not suitable for
estimating Delta. The reason may be the convergence rate of the FFT option
pricing method is slow. If we focus on the at-the-money, out-the-money, even
deeply out-the-money option, this method is good for computing Delta. In
the next section, we will discuss the error of using FFT option pricing method

to estimate Delta. We give the the upper bound of this error theoretically.
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—©&— FFT option pricing method
— Closed Form (N(d1))
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Strike Price

Figure 1: Delta estimating using FF'T option pricing method and closed form

solution (T=0.5)
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1.2

T
—<— FFT option pricing method
— Closed form (N(d1))
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0.8 |
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Strike Price

Figure 2: Delta estimating using FF'T option pricing method and closed form

solution (T=1)
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4.3 Error of Using FFT Option Pricing Method to Es-

timate Delta

The total error is defined as the absolute difference between the true value
Au(k) = exp(—ak) / Re(e "Wy (v))dk,
0

and the discrete approximation given by the N-point sum

N

() = “PE RS () exp (- ik,

The total error is bounded by the sum of the sampling error and the trunca-

tion error

Auk) =D M) < [Aum) = D2 sl + [0 =) -3 V)

where >° (k) is defined as Y ¥(k) is'expect with an infinite upper limit

)

of summations. Truncation ertor because the upper limit of the numeric
integration is finite, and the sampling error-because the integrand is evaluated

numerically only at the grid points.

4.3.1 Truncation Error

Theorem 17 If ¢ is such that Up(v) decays exponentially, |V (v)| < ®(v) exp(—L5v)
for all v > Uy, where § > 0 and ®(v) is decreasing in v, then the truncation

error

s N n_exp(—fnN)
20 0 =3 V)] < exp(-ake(V) TS (67)

provide that Nn > Uj.
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‘Z Oo(k)_z NUg)‘ < exp(— Z|‘1> v;) exp(—Pv;)|

< exp(—ak) 77 O(Nn) Zexp —Bv;)

3 |

eXp( BnN)
1 — exp(—fn)

AL

< exp(—ak)

O(Nn)

Note that by (40) and (42),

L, , 1, 2
dp(v) = exp((r + 20 WT —t)iv — 50 (T —t)v?),

and
1 :
Vr(v) = - or(v — ai).
Then
] < [0 |
_ exp((r + 50%)(T —t)iv)exp(a?(T = t)ai) exp((r + 30°)(T — t)av))
(3ot (T — ke 4
exp((r + Lo?)(T — 1)) EIFAT — 1)(u? — 0?))

exp((r + 30°)(T — t)a) exp(—302(T — t)(v — @)?)

- . exp(—(a?a(T — t))v).

L —l)x)ex —lO' - v—« .
Let f = o?a(T —t) > 0 and ®(v) = (o )(I=he) xp(—po M0 g

v

decreasing function in v. By the theorem (17), we can prove that

DRCOED DRI
exp((r + 30*) (T — t)a) exp(—10*(T — ) (Ny — @)
Nn

IA

exp(—ak)
N exp(—a?a(T — t)nN)
w1 —exp(—c2a(T —t)n)
exp(—ak)exp((r + 10%)(T — t)a)
N1 — exp(=o2a(T = t)))
* exp(—%az(T —t)(Nn — o)) exp(—c*a(T — t)nN).
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4.3.2 Sampling Error

We first describe a lemma and will be used in this subsubsection.

Lemma 18 For any p > 0,

E* [exp(pXT)]

Belh) < = o)

and  Ai(k) < 1. (68)

Theorem 19 The sampling error

Auk) =D =(k)]

< Y (exp= )+ exp(C ) expphy exp(r — 50%)(T - 1) +

o} (T —1t) ,

Proof. Recall

A o 1 —ivk
(k) = S /Re U (v)do:
And,
Ak — %) + Ak + %)
] : .
= 5= [ [exp(=iv(k = Z2)¥r(v) + exp(—iv(k + =) ¥r(v))dv
2ﬂ- R n . . ,r] . .
1 [exp(—ivk) exp(—”w] YUr(v) + exp(—ivk) exp(@)\llgp(v)]dv
2T Jr T | 7 .
I exp(—ivk:)\IfT(v)(cos(w) — isin(w) + cos(m) + isin(ﬂ))dv
27 Jr 4 U U U
_ 1 / exp(—ivk) Uz (v) cos( 2 )du
T JR Ui
i ; 0 ;
= 2/ F(v)cos(w)dv:n(g/ F(v) cos(w)dv),
0 n Jo n
where

F) 2 o= 37 Wrlo 4 nm) exp(—i(o + nm)h).

n=—oo

Note that F' is piesewise continuous. Let

A = Ak — %) + Ak + W—jx
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then
Fo) Ao n iA <n7m)
v = — n COS(——
17 2 n=1 77

is called the Fourier cosine of F'(v)n. So,

HWFAMHEMM—%HAM+%MM%%

In particular, taking v = 0, we have

mj

k:—— —l—At(/{Z-i-
n

=)

Flon| =
Multiplying by exp(—ak) to undamp A, (k),

|A(k)—exp(—a

O”” At(k:—?)—kexp( ; )Att(m 77)

Note that, in our setting

exp(—ak)B0)n = >o k)

.Then, we apply lemma,

’At(k)_ Z Oo(k)‘ = Zexp(——')At(k = ﬂ) + exp(%‘j)Att(k; + %)

IN

; N X
Zexp(_ﬂ)JreX arj, E*[exp(p M'Tﬂ
U n "exp(p(k+7)

)
IS e (O 4 o (@) B exp(pXr )]
= D exp(——=)+expl ) e oh)

in our case of geometric Brownian motion,

(s — (r+30°)(T —1))°

E*[exp(pXr)] = (=

o 1
/oo exp(ps) VI JT—D exp

202(T — 1)
= expl(r+ 52—t T2
Then,
- > anj a— i exp((r + Lo? _ o2(T—t) 2
Ak)= (k)] < ZGXP(——j)Jrexp(( 2) 1) pilr + )e(z;o(pl?)er 7P

amj < (o~ p)Wj) exp(—pk) exp((r + %U2)<T —tp+

2

o*(T —t) ,

p

)



So, we can conclude that the upper bound of the total error in our esti-

mating Delta method is

exp(—ak) exp((r + 302)(T — t)a) exp(—30*(T — t)(Nn — a)?) exp(—o*a(T — t)nN)

Nn(1 — exp(—a?a(T —t)n))

o(T —t) ,

_i_;exp(_a%j)_}_exp(W) exp(—p/{j) exp((?“+ 502)(T—t)p—l— 9 p )

Theorem 20 The variance of martingale control between using FFT option

pricing method and true value

T 8P GPFFT ~ A2
* —2rs o 2 2
E [/0 (G0~ DLy 68 )

1
< —F——(1-— 4D T) — Foyn*8*——(1 — 4DyT
< 1U44D1( exp(4D:T) — Fon 4D2( exp(4D,T),

for some constants Dy, Do, Fy and Fs.

The proof of this theorem is presented-in-appendix C.

4.4 Apply FFT Option Pricing Method in Martingale
Control Variate Method

In section 3, we introduce how to use the FFT option pricing method to
estimate Delta. In the structure of this method, it fixes the initial underlying
asset price to be 1. And this method could give us the Delta values correspond
to the sequence of different strike prices. But in the section 2, the problem is
to compute the Delta with respect to every unbiased estimators of underlying
asset in the same strike price.. Because of it, we should do some work to
make us can apply FFT option pricing method. Recall that in section 2, the

martingale control is
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We want to find 2225 (L (j—1), S%(jq)) in any pairs (4 (j — 1), S%(jfl)),

7 =1..N.. If we construct () sample paths, we will compute

0Pps (1
orx "M

(7 — 1),5%)071)) for j=1..M and [=1.Q.

In the other words, we will estimate the all elements in the matrix H, we

call this matrix is Delta matrix. i.e.

OPps (T (1) 9Pgs [T (1)
2 2

o | G0 S EEREGIE . 57, )
Q Q

81;;;3 (%(0),55\%20)) _31553 (%(M— 1),5(%2]\/[71))

note that the strike price K is fixed. In order to apply FFT option pricing

method, we claim that

OPps T g0 K)

. _ 0Pps, T
ax (M(j - 1)7 %(j*l)’ — T a_ \ar

, K
O (M<] - 1)7 17 S(l)—) (69)

TG-1)

The above equal sign is because

A(St, K) = E[I{gTzK}] = E[[{ﬁ>g}]'
St — St

(70)

So, we fix the initial underlying asset price and let the strike price is

floating. Then, we can apply FFT option pricing method as following steps:
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Step 1. Using FF'T option pricing method to compute the Delta at each
time, {0, =, 2L .. (M —1)L}.

Step 2. To predict whether —"— is located within the range of (32) or
g e
M
not. If S(Z)L is located within the range of (32), the method of interpolation
7=
is applied here to approximate the Delta value with respect to the strike price

72— In the case where —7%— is prior to the range of (32), Delta is set to

T /. T /.
7 G-1) 7 G-1)
1, because the option is deeply out-the money.. If S(Z)L exceeds the range
T, .
FrG-1)

of (32), then we set Delta to 0, because the option is deeply in-the money.

The numerical results show in the next section.

4.5 Numerical Result

In this section, we compare the time we use to compute Delta value in closed
form solution and in FFT option pricing method. We also show the standard
error in the two conditions, without control variate and using martingale
variate. In FF'T option pricing method, we also take N = 256, the truncated
upper is 500, the damping parameter « is 0.75, the risk-free rate r is 0.03, and
volatility o = 0.25.In Monte Carlo control variance method. we take 100000
sample paths and the number of partitions of time interval [0, 7] is 100. The
initial underlying asset price Sy is 100. We test the four cases, the strike
price K = 20,80,120,180.i.e. the environment of deeply in-the-money, in-
the-money, out-the-money, and deeply out-the-money. The computations are
done under MATLAB-7.0 in a PC with 2.4 GHz P4 CPU. For convenience,
SE means standard error and MCV means martingale control variate in brief.

We summary the algorithms as followng.

Stepl. Simulate the underlying asset’s paths in order to obtain the
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terminal prices of the asset. Compute the sample paths of H(Sr) and its
discounted value e~""" H(Sr).
Step2. Discretize the martingale control of the e H(Sr). Use the lower

Riemann sum to approximate this integral. i.e.

[ nsOPps )
MO(PBS;T) = € W(S,SS)O'SSdWS (71)
M
21 OPs T T
~ Zle M(j 1)8—1‘(M(‘7_1>’S%(J_1))US%U_1) Mé],
j=

where {0, %, % * 2, ..., % « (M — 1)} is the partition of the interval [0,7] ,
K is the strike price of option, and ¢; are identical and independent (I.I.D)
standard normal random variables.

Step3. An estimator of the martingale control for the option price is the

following,
T oP
E(’)‘,x[e_”TH(ST)—/ G_TSW%(S,SS)USSdWS*]
Q Q M
1 Y ——") L) 9Fps L 0) (1)
S OGECIE Wt = I ORAE
= =1 j=

where () is the number of sample paths.

Step 4. Using FF'T option pricing method to compute the Delta at each

time, {0, 47,247, ..., (M — 1)&}.

Step 5. To predict whether s(”L is located within the range of (32) or
ArG-1
not. If S(Z)L is located within the range of (32), the method of interpolation
£ G-1)
is applied here to approximate the Delta value with respect to the strike price

—5—. In the case where S(Z)L is prior to the range of (32), Delta is set

T /. T /.
ar@-1 #rG-1)
to 1, because the option is deeply out-of-the money. If s(”L exceeds the
FG-1)

range of (32), then we set Delta to 0, because the option is deeply in-the

money.

(1) K =20
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Time(Seconds) | Call Price | SE(MCV) | SE(No MCV)
Closed Form Solution 654.047 81.901 0.0012 0.0783
FFT option pricing method | 91.798 81.961 0.0944 0.0783
(2) K =80
Time(Seconds) | Call Price | SE(MCV) | SE(No MCV)
Closed Form Solution 701.197 28.592 0.0033 0.0760
FFT option pricing method | 120.547 28.592 0.0035 0.0760
(3) K = 120
Time(Seconds) | Call Price | SE(MCV) | SE(No MCV)
Closed Form Solution 661.272 6.6379 0.0194 0.0450
FFT option pricing method 4 130.644 6.6377 0.0200 0.0450
(4) K =180
Time(Seconds) | Call Price | SE(MCV) | SE(No MCV)
Closed Form Solution 697.729 0.3085 0.0020 0.0101
FFT option pricing method | 144.452 0.3082 0.0025 0.0101

The result shows that the time using FFT option pricing method to find

Delta at every estimators of underlying asset is one fifth of time using closed
form solution even better. And this method also preserves the effect of
reducing variance expect to deeply in-the-money case. This is not surprising,
we have showed that this method is not good for estimating Delta in the

condition of deeply in-the-money option in section 3.1. But in other cases,

this method is very well.
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5 More Examples

In this section, we provide two extensions of the martigale control variate
method we proposed above and also combine FFT method with it. In the first
extension, we get rid of the assumption of constant volatility of the underlying
asset. We let the volatility of the underlying asset can be stochastic and
follwes some stochastic process. In our example, we suppose this volatility
followes the OU process. This model is well-known as Heston model. In
the other extension, we consider the American style options which allow the

investors exercise the options at any time before the deadline.

5.1 Stochastic Volatility Model: Heston Model

Under the risk-neutral probability measure 7%, the Heston model is describe

the the underlying asset follow the dynamics

dS, = rSudtFi/yS i (73)

dy, = m(v— y)dt + By dW, >,

where S; is the underlying asset price with a constant risk-free interesst rate r.
Its stochastic volatility is driven by the stochastic process ;. The process y;
has the mean reversion property. m is the mean reversion rates, v is the long-
run mean and [ is the volatility of the volatility. m,v 8 are constants. And
W * and W®* are independent standard Brownian motions. We consider

the European style option payoft P, is simply a conditional expectation

P(t,,y) = Ef,,le" TV H(Sr)),
where EY,  denotes the expectation with respect to P* conditioned on the

current states S; = x and y; = t. And T is the maturity of the option. A

basic Monte Carlo simulation estimates the option price P(0, zg,yo) at time
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0 by
1 (i)
azeirTH(ST )7
=1

where () is the total number of indenpendent sample paths and Sg) denotes
the i-th simulated stock price at time 7. As described in section 2, we can

use Ito’s lemma and follow the martingale representation theorem, then
P(0,20,y0) = e H(Sr) — Mi(P) — BM,(P), (74)

where centered martingales are defined by

T oP
M,(P) = / e‘”a—x(t,x,y)\/@SdeS(I)*, (75)
0
T oP
My(P) = / e’”a—y(t,x,y)\/@de)*. (76)
0

These martingales play the role of “perfect” ¢ontrol variates for Monte Carlo
simulations and their integrands would he the perfeet Delta hedges if P were
known and volatility traded. Unfortunately neither the option price P(t, z,y)
nor its gradient at any time 0 <'s < 7 arelin-any analytic form even though

all the parameter of the model have‘been.calibrated as we suppose here.

One can choose an approximation option price to substitute P used in
the martingale and still retain martingale properties. An approximation of

the Black-Sholes type is
P(t,z,y) =~ Pps(t,z,v). (77)

In our setting, the martingale control variate estimator is formulated as

Q
%Z e TH(S()) = My(Pps)] (78)

Note that there is no Ms martingale term since the approximation Pgg dose
not depend on y and the y-derivative. And the Delta term in martingale
control varitate can aslo be compute using FFT option pricing method which

is described above.
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5.1.1 Numerical Result

Here, we take a example to observe the effect of martingale control variance
method and also show the efficiency when combining FFT option pricing
method to compute Delta rather than using closing form solution. We let
the European style option is European call. Setting the initial underlying
asset price Sy is 100, the initial volatility of underlying asset, /1o is 0.1, the
mean reversion rates, m is 2, the long-run mean of volatility, v is 0.1, the
volatility of volatility, 8 is 0.01. The number of sample paths we simulated
@ is 5000. The number of time steps in discreting the martingale control
variate is 100. The parameter of FFT option pricing method is setting the
same as before. We test three situations in which the strike price K = 80, 100
and 120. Finally, the maturity is set .to be Half,year. The numerical results

show in the following.

(1) Without Using Martingale Control Variate Method

Call Price | Standard Error

K=80 | 20.9655 0.7522

K=100 | 3.3854 0.3087

K=120 | 0.0307 0.0023

(2) Using Martingale Control Variate Method (computing Delta using

closed form solution)

Call Price | Standard Error | Computational Time(s)

K=80 | 20.7976 5.1753e-006 78.4

K=100 | 3.2908 0.0036 78.1

K=120 | 0.0270 1.6844r-004 78.3

(3) Using Martingale Control Variate Method (computing Delta using
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FFT option pricing method)

Call Price | Standard Error | Computational Time(s)

K=80 | 20.7981 1.1447e-005 8.4

K=100 | 3.2914 0.0036 8.8

K=120 | 0.0271 1.8723r-004 8.9

5.2 American option

The most important feature of an American option is that the option holder
has the right to exercise the contract early. Under the geometric Brownian
motion considered, the price of an American option with the payoff function

H is given by:

P(t,x) = (ess)zsup Ezw[e""(T*T)H(ST)], (79)

t<T<T
where 7 denotes any stopping tinie greaterthant, bouhded by T'. We consider
a typical American put option pricing.problem,name H(z) = (K —x)", and
maturity T. By the connection of optimal stopping problem and variational
unequalitues [11], P(t, z) can be characterized as the solution of the following

variational inequalities

LsP(t,x) <0
Pt,z) > (K —z)* , (80)
LsP(t,z)-(P(t,z) — (K —2)T) =0
where Lg denotes the infinitesimal generator of the Markov process (S;). The

optimal stopping time is characteristized by
™) ={t<s<T,(K-S5,)" = P(s,5)} (81)
The approximation by a formal expansion is

P(t,x) = Phs(t,z,0) (82)
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while P4s(t,z,0) solves the homogenized variational inequality

Lps(o)Phs(t,z;0) <0
Pis(t,z;0) > (K —x)*t ; (83)
LpsPhs(t,v;0) (Phs(t,z;0) — (K —x)%) =0
where Lpg(0) denotes the Black-Scholes operator with constant volatility o.
In contrast to typical European options, there is no colsed-form solution for
the American put option under a constant volatility. The derivation of the

accuracy of the approximation (82) is still an open problem.

As in the previous sections, we assume that the discounted American op-
tion price e " P(t, x) before exercise is smooth enough to apply Ito’s lemma,

then we integrate from 0 to the optimal stopping time 7* such that we obtain
P(t,z) = e " (K= S, f — M(B(t, 1)),

the local martingale are defined-as‘in (7) except that the upper bounds are

replaced by the optimal tine 7*.

As revealed in (81), the characterization of the optimal stopping time
7*(t) does depend on the American option price, which itself is unknow in
advance. This causes an immediate difficulty to implement Monte Carlo
Simulations because one does not know the time to stop in order to collect
the payoff along each realized sample path. Longstaff and Schwartz [10] took
a dynamic programming approach and proposed a least-squre regression to
estimate the continuation value at each in-the-money stock price state. Their
method exploit a decision rule for early exercise along each sample path
generated. Thus an adapted stopping time, denoted by 7, is induced. It is
sub-optimal because specifying any stopping time to price American option

is always less than or equal to the true price by its definition:

Effe "= O(K — S)*] < sup E*[e""O(K — S.)*]. (84)

0<r<T
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Like in previous sections, a local martingale control variate can be in

principle contructed as

*

M(Phg; 1) —/0 e 8855(8 Sy;0)o S, dW O

The optimal stopping time 7* is of course not known, thus we use the sub-
optimal stopping time 7 obtained by Longstaff and Schwartz’s method. To

summarize, we contruct the following stopped martingale as a control variate

M((PSS;I) :/e 86 S(s S: )adWLS?O)*.
x

0

The Monte Carlo estimator with the martingale control variate is

3. Z — SOY = MO((Phsi 7)) (85)

As seen in (84), the estimator in (85)d8low-biased. On the opposite, Rogers
[17] proposed a dual formulation<to ¢ontruct a high-biased estimator as fol-

lows:

Q
Z sup [e " = SEEEEM D PAy)).

1 0<t<T

In next section we perform numerical” experiments to show high and low
biased estimators of American option price. In particular, we see the com-

putating time are dramatically speed up by FFT algorithm.

5.2.1 Numerical Result

We show the effect of the martingale control variance method in pricing
American option using Monte Carlo simulations. Simultaneously, we use
FFT option pricing method to acclerate this control variance method. The
parameter is setting as following : o = 0.4, r = 0.06, the initial underlying
asset price Sg = 100. The number of sample paths is 5000 and time steps
is 100. The deadline of the American option is half of the year. We also

test three conditions : K = 80,100 and 120. We use UB to stand for
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upper bound of the American put option price, LB is lower bound and CT

means computational time. The standard error is presented using the bracket

following the price. The numerical results is represented as following:

Casel. Computing Delta Terms Using Closed Form Solutions

LSM Price UP LB CT
K=80 | 2.6306(0.0790) | 2.6410(0.0085) | 2.5466(0.0074) | 76.51
K=100 | 9.9816(0.1568) | 10.0745(0.0120) | 9.8907(0.0123) | 76.61
K=120 | 22.9384(0.1916) | 23.3454(0.0130) | 22.9127(0.0134) | 76.84

Case2. Computing Delta Terms Using FFT Option Pricing Method

LSM Price UP LB CT
K=80 | 2.6306(0.0790) | 2.6369(0.0085). |2.5539(0.0074) | 6.57
K=100 | 9.9816(0.1568) | 10.0745(0.0115) |-9:8905(0.0120) | 6.76
K=120 | 22.9384(0.1916) | 23.3454(0.0124). | 22:9129(0.0129) | 7.33

6 Conclusion

In this paper, we apply the FFT option pricing method to find “Delta” along
every simulated price trajectory. We compare our FFT method with cases
such as Black-Scholes model where the “Delta” has a closed-form solution.
Simultaneously, we provide a variance analysis to show that the variance
of FFT-approximation error depends on the truncated upper bound and
discretization size of our FFT method. Numerical results show that: (1)
our FFT algorithm outperforms the martingale control variate method in
terms of computing time by 5710 better times, (2) our method is good for
out-the-money, at-the-money, out-of-the-money, and even deeply out-of-the-

money call option. But it is not suitable for deeply in-the-money call option.
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To find this reason or modifies this method in order to suitable for deeply

in-the-money call option is a future work.
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7 Appendix

A.Proof claim 9 in section 3.1

Proof.
Cr(k) = et N v e "y
T o 7(
1
— ’“2 / Ur(v)(cos(—vk) + isin(—vk))dv  (by Euler formula)
T
1
= e — (Re(Ur(v)) +iIm(Vr(v)))(cos(vk) — isin(vk))dv
27

_ e—ak% / (Re(W(1)) cos(ok) + Im( ¥y (1) sin(ok)

+i(Im (P (v)) cos(vk) — Re(Vr(v)) sin(vk))dv

1 [~ .
= e_o‘k—/ (Re(Up(v)e ™k )du
2r J_ o

The reason of above equal sign is-the call option value is real, so, the imagine

part of Ur(v)e ™% must equals to zero. i

/_00 (Im(Ur(v)) cos(vk) — Re(¥r(v)) sin(vk))dv = 0.

As we know, cos(z) is an even function, i.e. cos(—v) = cos(v). And sin(v) is
an odd function, i.e. sin(—v) = —sin(v). In order to make the above integra-
tion equals to zero, Im(¥y(v)) cos(vk) and Re(¥r(v)) sin(vk)) could be odd
functions with respect to v. Or, Re(¥r(v)) is an even function and Im(¥,(v)
is an odd function. It makes Re(WUr(v)) cos(vk) and Im(¥r(v))sin(vk) are
—ivk

even functions. So, the real part of ¥r(v)e is a even function. Then, we

can conclude that

CT(]{?) = e_aki

o /OO (Re(\I/T(U)e_ivk)d/U = e_ak% Aw(Re(QT(U)e_ivk)dv

e}
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B.Algorithm of FFT (Fast Fourier Transform)

Definition 21 Given N complex numbers
{n}i5

their N-point Discrete Fourier Transform(DFT) is denote by { H,} where Hy,
is defined by
N-1
Hy = ;W (B.1)
=0

W = 6727ri/N

for all integer k=0, 1, 2,..., N —1

Moreover , {hy} is called the N-point Inverse Discrete Fourier Trans-
form(IDFT) of {Hy}. And
| Nt ’
h; = NZH,CW"“ (B.2)

k=0

for all integer j =0, 1, 2,..., N =1

Note : we usually choose N is a power of 2, in order to discuss the

algorithm of computation easily.

Basically , our problem is that.given the sequence {H;} (or {h;}) of
N complex valued numbers, how to compute its DFT (or IDFT) efficiently,
according to the above-mentioned formula. Since DFT and IDFT involve
basically the same type of computations, our discussion of efficiently compu-
tational algorithm for the DFT applies as well to the efficient computation

of the IDFT.

We observe that for each value of k, direct computation of Hj involves
N complex multiplications and N — 1 complex additions. Consequently, to

compute all N values of the DFT requires N? complex multiplications and
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N(N — 1) complex additions. So, direct computation of the DFT or IDFT
is basically inefficient primarily because it does not exploit the symmetry
and periodicity properties of the phase factor W. In particular, these two
properties are:

Symmetry property: W*V/?2 = _jyk

Periodicit property: WY = 11/*

then, we will use these two properties to introduce the FFT algorithm.

We begin FFT algorithm by dividing the N-point DFT in (B.1) into two
sums, each of which is a (1/2) N-point DFT

IN-1 IN-1
Hy = hoj(W2)% + haji1 (W2)IFIVE, (B.3)
j=0 j=0
Based on (B.3) we write Hj, as
Hy= H, = WEH, (B.4)

1

H) = Y gy 0aRe*
7=0

N—

1
Hli = Z h2j+1(W2)]k (k = 0517"'

=0
Because of the periodicit property, the periods of { HY} and { H}} are (1/2)N

; they are (1/2)N-point DFTs of {hg,ha,...,Ax_o} and {hq,hs,....Ax_1}, Te-
spectively. Since N = 2f we can divide N evenly by 2, and we have, by Euler

formula,

Wal — -imik — cos(—mjk) + isin(—mjk) = —1. (B.5)

Using (B.5) we will write the first equation in (B.4) as

N
Hy=H)+W'H! k= 015 =1

N
Hyiqon = H —WFHL k= 01, = 1. (B.6)
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HY -WXH!

.
Figure 3: Butterfly in FFT algorithm

The calculation in (B.6) can be diagrammed as Figure 3.

Figure3. is called a butterfly. There are (1/2)N butterflies for this stage
of the FFT. We observed that the directly computation of HY requires (N/2)?
complex multiplications. The samé appliesstosthe computation of H}. Fur-
ther, there are N/2 additional complex multiplications requires to compute
W*H}. Hence the computataion-of Hjrequires-2(N/2)>+N/2 = N?/2+N/2
complex multiplications. This first step.results«in‘a reduction of the number
of multiplications from N? to N?/2 + N/2, which is about a factor of 2 for

N large.

By computing N/4-point DFTs, we would obtain the N/2-point

DFTs HY and H} from the relations

HyY = H + (W*)FHYY, HY

k+%N — H]SO . (Wz)kH]E;)l

H; = H’ + (W?)*H,', Hyvy

= H* — (W) ;! (B.7)
for £ = 0,1,...,(1/4)N — 1.In (2.7), {HY} is the (1/4)N-point DFTs of
{h07h4,h8,...,hN_4}, {ngl} is the (1/4)N—p0111t DFTs of {hgvhﬁ,hlo,...,h]\]_g},
{H]°} is the (1/4)N-point DFTs of {hy hs,...,hx_3}, {H'} is the (1/4) N-
point DFTs of {hs hz,....,hx_1}.The decimation of the sequence can be re-

peated again and again until the resulting sequences are reduced to one-
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Combine

2-point

DFT 5

x(0) =— 2-point
x(2) DFT
x(4) 2-point
x(6) DFT
x(1) =—— 2-point
x(3) DFT
x(5) 2-point
X(7) = DFT

Figure 4: FF'T algorithm with 8 points

Combine

2-point

DFTs

Combine
4-point
DFT s

—* X(0)
= X(1)
—e X(2)
—e X(3)

e X(4)
—a X(5)
—e X(6)
—e X(7)

point sequences. For N = 2%, this can be performed R = log, N times. Thus

the total number of complex multiplications.is.reduced to (IN/2)logoN. The

number of complex additions is=NlogaN. Se, use the FFT algorithm, we

reduce the computation of complex multiplications ffom N? to (N/2)logaN.

When N is large, it is a considerable method. Figure 4. is a example of FFT

method with N=&.

C.Derivation of the accuracy of the variance analysis

Proof. Note that by Cauchy-Schwarz inequality,

E*[/OTe

T 1/2 T
5 oP 0P
< E* —2rs 52 2\2 E*/ o FFT
< {p1[ @rstoral {e] G-

72rs(

ox

OP  O0Pppr

)(s, 5,)S. 0% ds)
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where 81)5% is obtained by our FF'T option pricing method.

(1)
) 1/2
E* 721"3578 02)2d5] }
T 1/2
o / E*[(e7S,)* } (by Fubini’s theorem)
0

— 5 1.2
(6 rsSs _ —rs g r+ o2)s+oWs __ S 620 s—i—oW)

T
o / E*] Seia S+"WS) ]ds}

1/2

1/2

1 4 100°s 12
= {steren -1
@)
Pl Grg e
< E[/ (|5 S 45, )as),
note

OP _ OPprr| _  gacxp(=ak)exp((r + L62)(T — s)a)
- Np(1—exp(=o2a(T — t)n))

Oz ox
* exp(—%o2(T —5)(Nn — a)?) exp(—a?a(T — s)nN)
+ 3 lexp(— L) + exp(— L) exp(—pk)
= n n
~ 2 —_
xSs exp((r + %02)(T —s)p+ U (T2 S)pQ)].
And

- aexp(—ak) exp((r + 302)(T — s)a)
T N1 = exp(=o*a(T - s)n))
* exp(—%aQ(T — 8)(Nn — a)?) exp(—a?a(T — s)nN)

1l za 1

< — e —

< USS exp((r+20 T — s)a)
1

<

55}“ exp(Dy(T — s)),
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where U = N is the truncated upper bound and for some constant D;.

The other series term

- amj amj ~ 1 o*(T — s
Z[exp(—Tj) + exp(—Tj) exp(—pk) * Sy exp((r + 502)(T —s)p+ ( 5 )p2)]
j=1

= an . 1 o?(T —s an

= Zexp(——) + exp(—pk)Ss exp((r + 502)(T —s)p+ ( 5 )p2) Zexp(——])
7j=1 7=1
Note that
. amy (o)
> exp(-%) = =)
j=1 " Pt
v
1 —exp(—4%)
R~ exp(—a—;) (if n is small enough)
< 7.
Then

= anj axy = 1 o?(T — s
> lexp(~222) + exp(~ 222 Fexplophf S, exp((r + 5021 = s+ Ty
j=1

~ 1 AT —
< 1+ Svexpl(r + 50°)(T — N )
< (1 + Ssexp(Dy(T — 5))) for some constant Ds.
Finally,
T |OP  OPppr -
E* il 4
(5 = o)t Sgas
T 0P 0Pppr|, &
= (G = T e S

< [ 1B G exp(Du(T = 9) (1 + S,exp(DalT = 5)) s

IN

/0 [E*S(%gsa exp(Dy (T — s5))* 4 8(n(1 + S, exp(Dy(T — 5)))))*ds

Q

/0 E*[8(%S~Saexp(D1(T—s))4]ds—|— /0 E*[8(nS. exp(Da(T — 5)))))"]ds

4 T

- = exp(4D1(T — s))E*[S,“|ds
0
T
—|—77484/ exp(4Dy(T — S))E*[§s4]d87
0
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since E* [§s4a] and E*[§s4] are bounded, there exists F; and F, such as
B[S, < F, and E*[S,"] < Fy, then
4 T ~ 4o
i exp(4D1(T — s))E*[Ss |ds
0

T
+77484/ exp(4Dy(T — s))E* [584]ds
0

4 T T
< % I exp(4D1(T—s))ds+n484/ Fyexp(4Dy(T — s))ds
0 0
F LN (1 —exp(dDiT) — F: g L (1 — exp(4D-T)
'U44D, P 28D, p(4D,
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