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摘         要 

 

在本篇文章中，我們提出了使用快速傅立葉演算法來加速

蒙地卡羅評價選擇權的方法。我們以快速傅立葉演算法計算選

擇權的Delta值，並且利用這些Delta值去建立馬丁格爾控制變

異數項來降低估計值的變異數。我們發現結合快速傅立葉演算

法與馬丁格爾控制變異數方法在增加運算效率方面是非常有

用的，並且也保留了運算的正確性。同時我們也討論了利用快

速傅立葉演算法的誤差分析。 
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ABSTRACT 

 

In this paper, we proposed the use of Fast Fourier transform (FFT) method 
to accelerate Monte Carlo simulations in option pricing. The method of FFT is 
applied to compute the Deltas of the options. These Deltas are essential in 
construct martingale control for variance reduction. We find that the 
combination of the FFT method with the martingale control variate method is 
very useful to reduce the computational time while preserving the accuracy of 
simulations. The error analysis of using FFT method is also discussed. 
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1 Introduction

The method of Monte Carlo simulations is a very popular technique which

is applied in many scholastic �elds, such as physics, engineering, statistics,

�nance, and so on. This method is based on the analogy between proba-

bility and volume. The measure theory formalizes the intuitive notion of

probability of the event to be its volume or measure relatives to that of a

universe of possible outcomes. Monte Carlo uses this identity in reverse, to

calculate the volume of a set by interpreting it as a probability. For example,

we can randomly sample from a universe of possible outcomes and take the

fraction of random draws that fall in a given set as an estimate of the set�s

volume. According to the law of large numbers, this estimate converges to

the correct value as the number of draws increases. The advantage of Monte

Carlo simulations is that it is no or less sensitive to dimensionality of the un-

derlying problem and suitable for parallel computations. However the main

disadvantage of this method is that the rate of convergence is slow because

it is limited by the central limit theorem. It is relatively slow compared to

deterministic schemes for low dimensional problems.

To improve the e¢ ciency of Monte Carlo methods, there are two main

possible approaches : Quasi Monte Carlo simulation (QMC) and variance

reduction technique. Quasi Monte Carlo simulations are also called low-

discrepancy methods. The main di¤erence between QMC and the Monte
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Carlo method is that QMC makes no attempt to mimic the underlying ran-

domness. Indeed, it seeks to increase the accuracy speci�cally by generating

points evenly to obtain the randomness. QMC forms a class of methods

where low-discrepancy numbers are generated in a deterministic way while

basic Monte Carlo uses pseudo-random numbers. Variance reduction method

exploits information about the errors to reduce the errors in estimates of un-

known variables. On the other hand, this method seeks probabilistic ways

to reformulate the undertaken problem in order to gain signi�cant variance

reduction. For example, control variate methods take into account the corre-

lation properties of random variables, but the e¢ ciency of these techniques

is often restricted to certain undertaken problems.

In �nancial applications such as pricing derivatives, taking the control as

a (local) martingale is a very useful method. This method is called �martin-

gale control variate method.�The martingale control variate method can be

well understood in �nance terminology. The constructed control variate cor-

responds to a continuous Delta hedge strategy taken by a trader who sells an

option. So this method is also known as �hedging martingale variance control

method�. Fouque and Han [7] apply this method to price European option,

American option, and Barrier option(down and out) in stochastic volatility

models. Also they show the variance analysis of this method. However, the

weakness of this method is that it takes time to compute the parameter val-

ues for each path. If we want to estimate an option price by Monte Carlo

simulations, we will construct many simulated paths. The martingale con-

trol is a stochastic integral consisting of a partial derivative, known as Delta.

We need to compute Delta at each simulated time step. Section 2 will de-

scribe the martingale control variate method in detail. The purpose of this

paper is to apply the fast Fourier transform (FFT) methodology to reduce

the computing time in Monte Carlo simulation for option pricing.
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FFT option pricing method is �rst developed by Carr and Madan [14].

They use Fourier transform to change the option pricing problem from the

real domain to the complex domain. This Fourier transform can be repre-

sented by the characteristic function of the natural logarithm of the under-

lying at the expiration date. The reason for using characteristic function is

that under some models or processes, the characteristic functions are eas-

ier to compute. For example, under Levy processes, we can have general

forms of characteristic functions. See, Bertoin [6] in detail. We can take

inverse Fourier transform to get the option price. FFT is used to approx-

imate this inverse Fourier transform. In other words, this method requires

only the characteristic function of the natural logarithm of the underlying at

maturity. Borak, Detlefsen, and Härdle [21] use this method to price call op-

tion under Heston model and Bates model. Itkin [2] applies this in variance

gamma (VG) process. Lee [15] o¤ers the error bound of this method. The

restriction of this method is it is only suitable for pricing European option.

Based on this method, we estimate the Delta in the related Black-Scholes

model. Moreover, we give the error analysis of this estimation.

The rest of this paper is arranged as the following. In section 2, we

review the martingale control variate method, and discuss its computational

issue of this method. Section 3 introduces the FFT option pricing method

and discusses the models which can apply this method. In section 4, we

apply FFT option pricing method to compute the Delta of the call option

in geometric Brownian motion (GBM) environment using martingale control

variate method, and illustrate numerical results in �gures. Moreover, the

error bound of this method is computed. Finally, we conclude in section 5.
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2 Hedging Martingale Control with Variance

Reduction

2.1 Review of Martingale Control Variate Method

Under the risk-neutral probability space (
;F ; (Ft)0�t<1; P �), we consider

the risky underlying asset St which is governed by the geometric Brownian

motion

dSt = rStdt+ �StdW
�
t , (1)

where r is a risk-free rate and � is the volatility. Both r and � are

constants. W �
t is the Brownian motion under risk-neutral probability. There

are two corollaries of this model.

Corollary 1 The logarithm of the underlying asset St follows the normal

distribution with mean (r � 1
2
�2)t and variance �2t. i.e.

logSt � N((r �
1

2
�2)t; �2t) (2)

Corollary 2 The closed form solution of this model is

ST = St exp((r �
1

2
�2)(T � t) + �W �

T�t), (3)

where St is the price of the underlying asset at time t.

Given this model, the fair price of a European-style derivative with ma-

turity T <1, denoted by P , is simply a conditional expectation

P (t; x) = E�t;x[e
�r(T�t)H(ST )jFt], (4)
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where E�t;x denotes the expectation with respect to P
� conditioned on the

current states St = x, H(x) the payo¤ function satisfying the integrability

condition. For example, H(x) = maxfx � K; 0g for strike price K > 0,

it is a call payo¤. A��nancial contract with the call or put payo¤ is called

a European call option or a European put option respectively. From the

simulation point of view, it is straightforward to construct the basic Monte

Carlo estimator of the option price P (0; S0) at time 0 by

1

Q

QX
i=1

e�rTH(S
(i)
T ), (5)

where Q is the total number of independent sample paths and S(i)T denotes

the i-th independent replication of the underlying asset price at time T:

Assuming that the European option price P (t; x) is smooth enough, we

apply Ito�s lemma to its discounted price e�rtP , and then integrate from time

0 to the maturity T . The following martingale representation is obtained

P (t; x) = e�rTH(ST )�M0(P ;T ) (6)

where centered martingale is de�ned by

M0(P ;T ) =

Z T

o

e�rs
@P

@x
(s; Ss)�SsdW

�
s . (7)

Remark 3 M0(P ) is a martingale and it has mean zero.

This martingale plays the role of �perfect�control for Monte Carlo sim-

ulations and the integrand consists of the perfect Delta hedge if the partial

derivative @P
@x
(t; x) is known so that the option price P (t; x) would be known

in advance. In reality, P (t; x) is not known. Therefore, equation (6) is not

feasible for a direct computation for the option price. Nevertheless by em-

ploying a martingale as a control we can formula the unbiased control variate

estimator
1

Q

QX
i=1

[e�rTH(S
(i)
T )�M

(i)
0 (PBS;T )] (8)

5



for the option price P0 = E�[e�rTH(ST ) �M0(PBS;T )jF0] where the mar-

tingale control M0(PBS;T ) consists of the price approximation PBS of the

actual option price P . That is

M0(PBS;T ) =

Z T

o

e�rs
@PBS
@x

(s; Ss)�SsdW
�
s , (9)

where PBS is the solution of Black-Scholes partial di¤erential equation with

the terminal condition PBS(T; x) = H(x). In �nancial interpretationM0(PBS;T )

represents the Delta hedging portfolio accumulated up to time T, so the term

M0(PBS;T ) is called the hedging martingale be the price PBS so that the esti-

mator de�ned by (9) is called the martingale control variate estimator. Apply

Ito�s isometry, the variance of the controlled payo¤ P0 is simply the sum of

quadratic variations of martingale :

V ar(e�rTH(ST )�M0(PBS;T )) (10)

= E�0;xf
Z T

o

e�2rs(
@P

@x
(s; Ss)�

@PBS
@x

(s; Ss))
2�2S2sds.g.

Therefore, if the Delta trading @PBS
@x
(t; x) is closed to the actual hedging

strategy, the variance of the martingale control estimator should be small.

Now, we introduce the algorithm to estimate the martingale control.

Step1. Simulate the underlying asset�s paths in order to obtain the terminal

prices of the asset. Compute the sample paths of H(ST ) and its discounted

value e�rT H(ST ).

Step2. Discretize the martingale control of the e�rT H(ST ). Use the lower

Riemann sum to approximate the integral (9) . i.e.

M0(PBS;T ) =

Z T

o

e�rs
@PBS
@x

(s; Ss)�SsdW
�
s (11)

�
MX
j=1

e�r
T
M
(j�1)@PBS

@x
(
T

M
(j � 1); S T

M
(j�1))�S T

M
(j�1)

r
T

M
"j,
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where f0; T
M
; T
M
� 2; :::; T

M
� (M � 1)g is the partition of the interval [0; T ] ,

K is the strike price of option, and "j are identical and independent (I.I.D)

standard normal random variables.

Step3. An estimator of the martingale control variate for the option price

is the following,

E�0;x[e
�rTH(ST )�

Z T

o

e�rs
@PBS
@x

(s; Ss)�SsdW
�
s ] (12)

� 1

Q
(

QX
l=1

e�rTH(S
(l)
T )�

QX
l=1

MX
j=1

e�r
T
M
(j�1)@PBS

@x
(
T

M
(j � 1); S(l)T

M
(j�1))�S

(l)
T
M
(j�1)

r
T

M
"j,

where Q is the number of sample paths.

2.2 Examples

We take two examples in European call option to observe the e¢ ciency of the

martingale control variance method. The payo¤ function H(x) = (x�K)+,

where K is the strike price. We suppose the risk-free rate r = 0:1 , the

volatility � = 0:25 , and the maturity T = 1. The current time is assumed 0,

and the initial underlying asset price S0 is 100. In the �rst example, we take

the strike price K as 80 to �t the case of in-the-money. The other example,

we take K = 120 which is in the out-of-the money environment. Let the

number of sample paths Q = 10000 and the partitions of time interval [0; T ]

= 100. We compare the standard error (SE) of Monte Carlo simulations with

and without martingale control. We also show the CPU time spending in

these two conditions. The variance reduction ratio is also represented.

(1) K = 80

Call Price Standard Error Time(Seconds)

Using martingale control variate 28.581 0.0107 63.5897

Without using martingale control variate 28.683 0.2416 0.4594

7



The variance reduction ratio =590:83

(2) K = 120

Call Price Standard Error Time(Seconds)

Using martingale control variate 6.638 0.0195 65.7116

Without using martingale control variate 6.589 0.1407 0.4317

The variance reduction ratio =52:062

From numerically results, we can observe that when we use martingale

control variate to reduce variance, the standard error is diminished so much.

As we know, the convergence rate of Monte Carlo simulations is governed

by 1=
p
Q, where Q is the number of sample paths. In the �rst example,

if we want to reduce the standard error from the method of without using

martingale control variate to that of using martingale control variate, the

sample paths should be increased from 10000 to 6250000 approximately. This

is the power of the martingale control variate method. But there comes

a disadvantage of this method, it spends a lot of time. The time using

martingale control variate method is much greater that it without using

this method. Observe the martingale control in equation (9), we can �nd

that the most part of time spending in martingale control variate method

is to compute the term @PBS
@x
(t; x), which is call the Delta of the option.

We would estimate Delta values @PBS
@x
(t; x) in every pairs (t; St), where t 2

f0; T
M
; T
M
�2; :::; T

M
�(M�1)g. For this reason, we want to search some methods

to increase the e¢ ciency in computing martingale control. We �nd that take

advantage of FFT option pricing method to compute Delta may be a feasible

way. Next, we introduce the FFT option pricing method and explain how

to use this method to make the martingale control variate method more

e¢ ciently.

8



3 Apply FFT Method to Price Option

In this section, we will introduce how to apply Fast Fourier transform (FFT)

method to price the call option. The approach has been addressed by Carr

and Madan [14]. The big attraction of this method is the Fast Fourier trans-

form (FFT) could be used to make computation more e¢ cient. This e¢ ciency

is even boosted by the possibility of the pricing algorithm to calculate prices

for a whole range of strikes. The other advantage for this method is that if

we know the characteristic function of nature logarithm of underlying asset

price at maturity, this method can be applied directly. The characteris-

tic function often has a simple form for many models while the probability

density functions of the log price is often not get in the closed form.

3.1 Introduction of FFT

FFT is �rst developed by Cooley and Tukey [8]. It is an e¢ cient algorithm

for computing the summation

w(k) =
NX
j=1

e�i
2�
N
(j�1)(k�1)x(j) for k = 1,. . . ,N , (13)

where N is typically a power of 2. The power of FFT is that the method

can compute the element of the sequence fw(1); w(2),...,w(N)g rapidly. The

algorithm reduces the number of multiplications in the requireN summations

from an order of N2 to that of N log2N , a very considerable reduction. We

go into details this algorithm in appendix B.

3.2 Fourier Transform of Option Price

We de�ne some notations and these notations are used around this section.

Let CT (k) be the discounted value of the call option with maturity T at the

9



current time 0. k is the natural logarithm of the strike price K of the option.

And we use St to represent the underlying asset price at time t. The initial

price of asset is denoted by S0. In this method, we usually suppose S0 = 1

for convenience. We also de�ne XT = logST .

De�nition 4 The characteristic function of the natural logarithm of the

price of the underlying asset , XT , is de�ned by

�T (u) , E�[exp(iuXT )] =

Z 1

�1
eiusqT (s)ds (14)

where qT (s) is the probability density function of XT under the risk-neutral

world.

De�nition 5 De�ne AXT as the set

AXT , fv 2 Rn : E�[eu�XT ] <1g; (15)

where � is the inner product.

De�nition 6 De�ne �XT as the set

�XT , f� 2 Cn : �Im(�) 2 AXT g , (16)

the complex vectors whose negated imaginary parts are in �XT form a �strip�or

�tube�.

Lemma 7 The characteristic function �T is well-de�ned and analytic (in�-

nitely di¤erentiable) in �X , which is a convex set. Partial derivative of �T

may be taken through the expectation.

10



De�ne the initial (discounted) call value CT (k) is related to the risk-

neutral density qT (s) by:

C0;T (k;S0) , E�[e�rT (max(eXT � ek; 0))]

=

Z 1

�1
e�rT max(es � ek; 0)qT (s)ds

=

Z 1

k

e�rT (es � ek)qT (s)ds:

Here, simply, we suppose the risk-free rate, r is a constant.

Theorem 8 For any p > 0,

C0;T (k;S0) �
e�rTE�[exp(p+ 1)XT ]

(p+ 1) exp(pk)
(
p

p+ 1
)p and C0;T (k;S0) � e�rTE�[expXT ]

(17)

Proof. For all s � 0 we have

s� ek � sp+1

(p+ 1) exp(pk)
(
p

p+ 1
)p,

because the left-hand and right-hand sides, as function of s, have equal values

and �rst derivatives at s = (p + 1)exp(k)=p, and the second derivative of

the right-hand side is always positive. Moreover, since the right-hand side

is positive, the left side can improve to (s � exp(k))+:Now, substitute s =

exp(XT ), take expectations, and discount both sides to obtain the �rst bound.

The second bound is obvious.

De�nition 9 The Fourier transform of the function f on R is de�ned by

'(v) =

Z
R
f(x)eivxdv (18)

and its attached inversion is given by

f(x) =
1

2�

Z
R
'(v)e�ivxdv: (19)

11



Lemma 10 The Fourier transform of the function f on R exists if kfk1is

�nite or f 2 L1(R). i.e. Z
R
jf(x)j dx <1. (20)

Lemma 11 If f 2 L1(R), then lim
x!�1

f(x) = 0:

But, we know that when k = logK tends to negative in�nity, in other

words, the strike price K tends to zero, the option is deeply in the money,

and the discounted option price tends to the initial underlying price. That

is

lim
k!�1

C0;T (k;S0) = S0 6= 0: (21)

By the lemma 11 , we know that the Fourier transform of the discounted

call option price does not exist. To make C0;T (k;S0) to be an absolutely

integral function, we add a parameter � into C0;T (k;S0), the parameter is

usually called the �damping parameter�. Consider the modi�ed call price

de�ned by

c0;T (k;S0) , exp(�k)CT (k) (22)

for � > 0. [The reason for � > 0 is that we want c0;T (k;S0) tends to zero as k

tends to negative in�nity. For a range of positive value of �, we expect that

c0;T (k;S0) is integrable in k over the entire real line. How to choose the value

of � will be discussed later. Consider the Fourier transform of c0;T (k;S0),

	
X(T )
T (v) =

Z
R
eivkc0;T (k;S0)dk. (23)

Lemma 12 We develop an analytical expression for 	X(T )T (v) in terms of

�T (v). i.e.

	
X(T )
T (v) =

e�rT�T (v � (�+ 1)i)
�2 + �� v2 + i(2�+ 1)v . (24)
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Proof.

	
X(T )
T (v) =

Z
R

c0;T (k;S0)e
ivkdk

=

Z 1

�1
eivk

Z 1

k

e�ke�rT (es � ek)qT (s)dsdk

=

Z 1

�1
e�rT qT (s)

Z s

�1
e�k(es � ek)eivkdkds

=

Z 1

�1
e�rT qT (s)

Z s

�1

�
es+�k+ivk � ek+�k+ivk

�
dkds

=

Z 1

�1
e�rT qT (s)

�
es+�k+ivk

�+ iv
� ek+�k+ivk

�+ 1 + iv

�s
�1
ds

=

Z 1

�1
e�rT qT (s)

�
es+�s+ivs

�+ iv
� es+�s+ivs

�+ 1 + iv

�
ds

=

Z 1

�1
e�rT qT (s)

es+�s+ivs

(�+ iv)(�+ 1 + iv)
ds

=
e�rT

(�+ iv)(�+ 1 + iv)

Z 1

�1
qT (s)e

s+�s+ivsds

=
e�rT

(�+ iv)(�+ 1 + iv)

Z 1

�1
qT (s)e

i(v�((�+1)i))sds

=
e�rT�T (v � (�+ 1)i)

�2 + �� v2 + i(2�+ 1)v

Then, we take the inverse Fourier transform of 	T (v) and undamp it to

get the call price,

C0;T (k;S0) = e
��k 1

2�

Z 1

�1
	
X(T )
T (v)e�ivkdv. (25)

Lemma 13 The call option price can be simpli�ed to the following form

C0;T (k;S0) = e
��k 1

�

Z 1

0

Re(	
X(T )
T (v)e�ivk)dv. (26)

Proof. See appendix A.

We note that the integration (26) is a direct Fourier transform and lends

itself to an application of the FFT. Also note that in the denominator of (24)

vanishes when v = 0, this is another reason for using damping parameter or

13



something similar is required. Positive value of � assist the integrability of

the modi�ed call value (22) over the negative nature logarithm of strike price

axis, but aggravate the same condition for positive nature logarithm of strike

price axis. For the modi�ed call value c0;T (k;S0) to be integrable in the

positive nature logarithm of strike price direction, a su¢ cient condition is

provided by 	X(T )T (0) being �nite. From (24), we observe that �T (�(�+1)i)

should be �nite. It means that

(�+ 1) 2 �XT (27)

is a su¢ cient condition. Carr and Madan [14] proposed that one fourth of

the upper bound which satisfying the condition (27) serves as good choice

for �. Schoutens [17] found that 0:75 is a good choice for � and led to stable

algorithms.

3.3 Evaluation of Option Price by FFT Method

The remainder work is to estimate the integral (26) numerically. Using the

Trapezoid rule for the integral on the right-hand side of (26) and setting

vj = �(j � 1), an approximation for CT (k) is:

C0;T (k;S0) t
exp(��k)

�
Re(

NX
j=1

(e�ivjk	T (v)�): (28)

The e¤ective upper limit for the integration is now

U = N�. (29)

Here, we called U as the truncated upper bound and � as discretization

size of out FFTmethod. We are mainly interested in at-the-money call option

14



value CT (k), which correspond to k near 0. The FFT returns N values of k

and we employ a regular spacing of size �, so that our values for k are

ku = �b+ �(u� 1), for u = 1,. . . ,N . (30)

This gives us log strike levels ranging from �b to b where

b =
N�

2
. (31)

On the other hand, the sequence of strike price K correspond to ku is

K = fexp(�b); exp(�b+ �); :::; exp(�b+ �(N � 1))g. (32)

Substituting (30) into (28) yields:

CT (ku) t
exp(��ku)

�
Re(

NX
j=1

(e�ivj(�b+�(u�1))	T (vj)�); for u = 1; : : : ; N .

(33)

Noting that vj = �(j � 1) and after arranging the summation, we get

CT (ku) t
exp(��ku)

�
Re(

NX
j=1

(e�i��(j�1)(u�1)eibvj	T (vj)�). (34)

Taking �� = 2�
N
, then the summation (34) becomes that

CT (ku) t
exp(��ku)

�
Re(

NX
j=1

(e�i
2�
N
(j�1)(u�1)eibvj	T (vj)�). (35)

Then the equation (35) �ts the FFT form (13). FFT method can be

applied to compute the summation (35). Note that if we want to use FFT

option pricing to evaluate call option price, the condition is we should know

	T (v). By (24), 	T (v) can be represented as the function of characteristic

function of nature logarithm of underlying asset price at maturity, �T (u).

That is, knowing �T (u) is the only condition to use the FFT option pricing

15



method. This is very powerful. In many models, �T (u) can be computed

easily. Next , we o¤er characteristic functions, �T (u), in some models. And

these models can directly apply FFT option pricing method to pricing Eu-

ropean derivatives.

3.4 Examples

(1) Merton model:

The price of the underlying asset follows the dynamics

dSt
St

= rdt+ �dWt + dZt, (36)

where Zt is a compound Poisson process with a log-normal distribution of

jump sizes. The jumps follow a Poisson process Nt with intensity � which

is independent of Wt. The log-jump sizes Yi � N(�; �2) are i.i.d random

variables with mean � and variance �2, which are independent of both Nt

and Wt. The dynamics of asset price is then given by:

St = S0 exp(�
M t+ �Wt +

NtX
i=1

Yi), (37)

where �M = r � �2 � �(exp(� + 1
2
�2) � 1). The characteristic function of

XT = logST is

�T (u) = exp[T (�
�2u2

2
) + i�Mu+ �(exp(��

2u2

2
+ i�u� 1)]. (38)

(2) Heston model:

The price of the underlying asset follows the dynamics

dSt
St

= rdt+
p
vtdW

(1)
t (39)

dvt = �(� � vt)dt+ �
p
vtdW

(2)
t ,
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where vt is another unobservable stochastic process and follows the square

root process. So, this model is a type of �stochastic volatility model�. And

the two Brownian motions W (1)
t and W (2)

t are correlated with rate �. i.e.

Cov(dW
(1)
t ; dW

(2)
t ) = �dt. (40)

Parameter � measures the speed of mean reversion, � is the average level

of volatility and � is the volatility of volatility. In (40) the correlation � is

typically negative, which is known as the �leverage e¤ect�.For the natural

logarithm price of the underlying asset Xt = logSt, one obtains the equation:

dXt = (r �
1

2
vt)dt+

p
vtdW

(1)
t . (41)

The characteristic function of XT = logST is

�T (u) =
exp(��T (��i��u)

�2
+ iuTr + iux0)

(cosh 
T
2
+ ��i��u



sinh 
T

2
)
2��
�2

� exp(� (u2 + iu)v0


 coth 
T
2
+ �� i��u

),

(42)

where 
 =
p
�2(u2 + iu) + (�� i��u)2, and x0 and v0 are the initial values

for the log-price process and volatility process, respectively.

(4) Bates model:

The price of the underlying asset follows the dynamics

dSt
St

= rdt+
p
vtdW

(1)
t + dZt (43)

dvt = �(� � vt)dt+ �
p
vtdW

(2)
t

Cov(dW
(1)
t ; dW

(2)
t ) = �dt. (44)

As in (43) Zt is a compound Poisson process with intensity � and log-

normal distribution of jump sizes independent ofW (1)
t andW (2)

t . If J denotes

the jump size then log(1 + J) � N(log(1 + &) � 1
2
�2; �2) for some &. Under

the risk neutral probability one obtains the equation for the logarithm of the

asset price:

dXt = (r � �& �
1

2
vt)dt+

p
vtdW

(1)
t + ~Zt, (45)

17



where ~Zt is a compound Poisson process with normal distribution of jump

magnitudes. Since the jumps are independent of the di¤usion part in (36),

the characteristic function of XT = logST is

�T (u) = �
D
T (u)�

J
T (u), (46)

where

�DT (u) =
exp(��T (��i��u)

�2
+ iuT (r � �&) + iux0)

(cosh 
T
2
+ ��i��u



sinh 
T

2
)
2��
�2

�exp(� (u2 + iu)v0


 coth 
T
2
+ �� i��u

)

(47)

is the di¤usion part characteristic function and

�JT (u) = exp(T�(exp(�
�2u2

2
+ i(ln(1 + &)� 1

2
�2)u)� 1), (48)

is the jump part characteristic function.

(5) Variance Gamma (VG) process:

The VG process is obtained by evaluating arithmetic Brownian motion

with drift � and volatility � at a random time given by a gamma process

having a mean rate per unit time of 1 and the variance rate of �. The resulting

process Xt(�; �; v) is a pure jump process with two additional parameters �

and v relative to the Black Scholes model, providing control over skewness

an kurtosis respectively.See [3] in detail. The underlying asset follows the

process

St = S0 exp(rt+Xt(�; �; v) + !t) t > 0, (49)

where by setting ! = (1=v) log(1��v��2v=2), the mean rate of return on the

asset equals the interest rate r. The characteristic function of XT = logST

is

�T (u) = exp(log(S0 + (r + !)T )(1� i�vu+ �2u2v=2))�T=v. (50)

The VG process is hard to using Monte Carlo Simulation to pricing op-

tion when underlying asset follows this process. But in FFT option pricing
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method, since we know the characteristic function of logST , we can apply

this method to pricing call option. This is the advantage of this method.

Next, we will apply this method to estimate the Delta of the call option.

4 Delta Estimation Using FFT Option Pric-

ing Method

4.1 Introduction

In this subsection, we discuss how to use the FFT pricing option method

to compute the Delta of the call option. We also suppose that the price of

underlying asset follows the geometric Brownian motion which is described

in section 2. We use the notation �t(k) to represent the Delta of the call

option at the time t. Simply, we let the current time is 0. k is the natural

logarithm of the strike price K. The de�nition of delta �t(k) is

�t(k) =
@Ct(t; St)

@St
, (51)

where T is the maturity of the call option. We will deduce it to our wanted

form which can apply FFT option pricing method. Note that

Ct(t; St) = e
�r(T�t)E�[(ST �K)+jS0] = e�r(T�t)E�[(ST �K)+], (52)

where the E� is the expectation under the risk-neutral probability P �. Recall

that the closed form solution of ST under geometric Brownian motion is

ST = St exp((r �
1

2
�2)(T � t) + �W �

T�t), (53)
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W �
T�t is the Brownian motion under risk-neutral probability with mean 0 and

variance T � t. Then substitute (3) and (2) into (1), we obtain that

�t(k) =
@e�r(T�t)E�[(St exp((r � 1

2
�2)T + �W �

T�t)�K)+]
@St

(54)

= e�r(T�t)E�[
@(St exp((r � 1

2
�2)(T � t) + �W �

T�t)�K)+

@St
] (1)

= e�r(T�t)E�[IfST�Kg exp((r �
1

2
�2)(T � t) + �W �

T�t)]; (2)

where IfST�Kg is the indicator function. i.e.

IfST�Kg =

8><>: 1; if ST � K

0; otherwise.
.

In order to simplify �t(k), we use the following lemma, called Girsanov�s

theorem.

Lemma 14 Let W (t), 0 � t � T , be a Brownian motion on a probability

space (
; F; P ), and let F (t), 0 � t � T , be a �ltration for this Brownian

motion. Let �(t), 0 � t � T , be an adapted process. De�ne

Z(t) = expf�
Z t

0

�(u)dW (u)� 1
2

Z t

0

�2(u)dug;

~W (t) =W (t) +

Z t

0

�(u)du;

and assume that

E[

Z T

0

�2(u)Z2(u)du] <1:

Set Z = Z(T ). Then E[Z] = 1 and under the probability measure

~P (A) =

Z
A

Z(w)dP (w) for all A 2 F;

the process ~W (t), 0 � t � T , is a Brownian motion.

In our case, we de�ne

~Wt = W
�
t � �t = W �

t +

Z t

0

��du (55)
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and

Z(t) = expf
Z t

0

�dW �
u �

1

2

Z t

0

�2dug = exp((�1
2
�2)t+ �W �

t ); (56)

then under the new probability measure

~P (A) =

Z
A

Z(w)dP (w) (57)

~Wt is a Brownian motion. Then

�t(k) = e�r(T�t)E�[IxT � Kg exp((r �
1

2
�2)(T � t) + �W �

T�t)] (58)

= ~E[If ~ST�Kg],

where log( ~ST ) � N((r + 1
2
�2)(T � t); �2(T � t)). Let ~XT = log( ~ST ), then

�t(k) could be rewrote as

�t(k) = ~E[If ~XT�kg] (59)

Now, we apply the FFT option pricing method to estimate this expec-

tation. Note �t(k) tends to 1 when k tends to �1, damping parameter �

should be used to let �t(k) 2 L1(R). De�ne

~�t(k) = exp(�k)�t(k). (60)

The Fourier transform of ~�t(k) is

	T (v) =

Z
R

eivk ~�t(k)dk. (61)

Lemma 15 We develop an analytical expression for 	T (v) in terms of the

characteristic function of ~XT , �T (v). i.e.

	T (v) =
1

�+ iv
�T (v � �i). (62)
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Proof.

	T (v) =

Z
R

~�t(k)e
ivkdk

=

Z 1

�1
eivk

Z 1

k

e�kqT (s)dsdk

=

Z 1

�1
qT (s)

Z s

�1
e�keivkdkds

=

Z 1

�1

ei(v��i)s

�+ iv
qT (s)ds

=
1

�+ iv
�T (v � �i),

where qT (s) is the density function of ~XT under the risk-neutral probability.

Lemma 16 If Y is a random variable whose probability density function

follows the normal distribution with mean � and variance �2, then the char-

acteristic function of Y , '(t) is

exp(i�t� 1
2
�2t2). (63)

Proof.

'(t) =

Z
R

eiyt
1p
2��

exp(�(y � �)
2

2�2
)dy

=

Z 1

�1

1p
2��

exp(
�y2 + 2y�� �2 + 2�2ity

2�2
)dy

=

Z 1

�1

1p
2��

exp(
�(y � (�+ �2it))2

2�2
) exp(

2��2it� �4t2
2�2

)dy

= exp(
2��2it� �4t2

2�2
)

Z 1

�1

1p
2��

exp(
�(y � (�+ �2it))2

2�2
)dy

= exp(�it� 1
2
�2t2)

Since ~XT � N((r+ 1
2
�2)(T�t); �2(T�t)), by the above lemma, we obtain

that

�T (v) = exp((r +
1

2
�2)(T � t)iv � 1

2
�2(T � t)v2). (64)
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Taking the inverse Fourier form of (61) and undamped, we obtain

�t(k) = exp(��k)
1

2�

Z
R
e�ivk	T (v)dv = exp(��k)

1

�

Z 1

0

Re(e�ivk	T (v))dv.

(65)

Follow the FFT option pricing method, we transform �t(k) into the FFT

form (13),

�t(ku) t
exp(��k)

�
Re(

NX
j=1

(e�ivj(�b+�(u�1))	T (vj)�); for u = 1; : : : ; N ,

(66)

the choice of b, �, � and k is the same as in FFT option pricing method

in (29) (30) (31).

4.2 Examples

Now, we use this method to compute the Delta and compare the results of

this method to the closed form solution.We choose N = 256, the truncated

upper is 500, the damping parameter � is 0:7, the risk-free rate r is 0:03, and

volatility � = 0:25. We compare two environments of maturity T = 0:5 and

1. In our setting, the sequence of natural logarithm of strike price

ku = f�
64

125
�;� 64

125
� +

�

250
;� 64
125

� + 2 � �

250
; :::;� 64

125
� + 255 � �

250
g:

We can �nd that in these two cases, the value of Delta is very near to the

closed form solution when the strike price K is larger than 0.5. But when

the strike price is smaller than 0.5, the method seems to be not suitable for

estimating Delta. The reason may be the convergence rate of the FFT option

pricing method is slow. If we focus on the at-the-money, out-the-money, even

deeply out-the-money option, this method is good for computing Delta. In

the next section, we will discuss the error of using FFT option pricing method

to estimate Delta. We give the the upper bound of this error theoretically.
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Figure 1: Delta estimating using FFT option pricing method and closed form

solution (T=0.5)
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Figure 2: Delta estimating using FFT option pricing method and closed form

solution (T=1)
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4.3 Error of Using FFT Option Pricing Method to Es-

timate Delta

The total error is de�ned as the absolute di¤erence between the true value

�t(k) = exp(��k)
Z 1

0

Re(e�ivk	T (v))dk,

and the discrete approximation given by the N -point sum

X
N(k) =

exp(��k)
�

Re(

NX
j=1

(	T (j�) exp(�ij�k)�).

The total error is bounded by the sum of the sampling error and the trunca-

tion error����t(k)�
X

N(k)
��� � ����t(k)�

X
1(k)

���+ ���X 1(k)�
X

N(k)
��� ,

where
P 1(k) is de�ned as

P
N(k) is expect with an in�nite upper limit

of summations. Truncation error because the upper limit of the numeric

integration is �nite, and the sampling error because the integrand is evaluated

numerically only at the grid points.

4.3.1 Truncation Error

Theorem 17 If �T is such that 	T (v) decays exponentially, j	T (v)j � �(v) exp(��v)

for all v � U0, where � > 0 and �(v) is decreasing in v, then the truncation

error ���X 1(k)�
X

N(k)
��� � exp(��k)�(N�)�

�

exp(���N)
1� exp(���) (67)

provide that N� > U0.
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Proof.���X 1(k)�
X

N(k)
��� � exp(��k)�

�

1X
j=N

j�(vj) exp(��vj)j

� exp(��k)�
�
�(N�)

1X
j=N

exp(��vj)

� exp(��k) 1
�
�(N�)

exp(���N)
1� exp(���)

Note that by (40) and (42),

�T (v) = exp((r +
1

2
�2)(T � t)iv � 1

2
�2(T � t)v2),

and

	T (v) =
1

�+ iv
�T (v � �i).

Then

j	T (v)j �
�����T (v � �i)v

����
=

����exp((r + 1
2
�2)(T � t)iv) exp(�2(T � t)�i) exp((r + 1

2
�2)(T � t)�))

v

����
�
����exp(�1

2
�2(T � t)(v2 � �2)

v

����
=

exp((r + 1
2
�2)(T � t)�) exp(�1

2
�2(T � t)(v2 � �2))

v

=
exp((r + 1

2
�2)(T � t)�) exp(�1

2
�2(T � t)(v � �)2)

v
exp(�(�2�(T � t))v).

Let � = �2�(T � t) > 0 and �(v) = exp((r+ 1
2
�2)(T�t)�) exp(� 1

2
�2(T�t)(v��)2)

v
is a

decreasing function in v. By the theorem (17), we can prove that���X 1(k)�
X

N(k)
���

� exp(��k)
exp((r + 1

2
�2)(T � t)�) exp(�1

2
�2(T � t)(N� � �)2)

N�

��
�

exp(��2�(T � t)�N)
1� exp(��2�(T � t)�)

=
exp(��k) exp((r + 1

2
�2)(T � t)�)

N�(1� exp(��2�(T � t)�))

� exp(�1
2
�2(T � t)(N� � �)2) exp(��2�(T � t)�N):
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4.3.2 Sampling Error

We �rst describe a lemma and will be used in this subsubsection.

Lemma 18 For any p > 0,

�t(k) �
E�[exp(p ~XT )]

exp(pk)
and �t(k) � 1. (68)

Theorem 19 The sampling error����t(k)�
X

1(k)
���

�
1X
j=1

(exp(���j
�
) + exp(

(�� p)�j
�

) exp(�pk) exp((r � 1
2
�2)(T � t)p) + �

2(T � t)
2

p2).

Proof. Recall

~�t(k) =
1

2�

Z
R
e�ivk	T (v)dv.

And,

~�t(k �
�j

�
) + ~�t(k +

�j

�
)

=
1

2�

Z
R

[exp(�iv(k � �j
�
))	T (v) + exp(�iv(k +

�j

�
))	T (v)]dv

=
1

2�

Z
R

[exp(�ivk) exp(�i�vj
�
)	T (v) + exp(�ivk) exp(

i�vj

�
)	T (v)]dv

=
1

2�

Z
R

exp(�ivk)	T (v)(cos(
�vj

�
)� i sin(�vj

�
) + cos(

�vj

�
) + i sin(

�vj

�
))dv

=
1

�

Z
R

exp(�ivk)	T (v) cos(
�vj

�
)dv

= 2

Z �

0

F (v) cos(
�vj

�
)dv = �(

2

�

Z �

0

F (v) cos(
�vj

�
)dv),

where

F (v) , 1

2�

1X
n=�1

	T (v + n�) exp(�i(v + n�)k):

Note that F is piesewise continuous. Let

Ak = ~�t(k �
�j

�
) + ~�t(k +

�j

�
);
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then

F (v)� =
A0
2
+

1X
n=1

An cos(
n�v

�
)

is called the Fourier cosine of F (v)�. So,

F (v)� = ~�t(k)+
1X
j=1

[ ~�t(k �
�j

�
) + ~�t(k +

�j

�
)] cos(

j�v

�
).

In particular, taking v = 0, we have��� ~�t(k)�F (0)�
��� = �����

1X
j=1

~�t(k �
�j

�
) + ~�t(k +

�j

�
)

����� .
Multiplying by exp(��k) to undamp ~�t(k),

j�t(k)�exp(��k)F (0)�j =
�����
1X
j=1

exp(���j
�
)�t(k �

�j

�
) + exp(

��j

�
)�tt(k +

�j

�
)

����� .
Note that, in our setting

exp(��k)F (0)� =
X

1(k)

.Then, we apply lemma,����t(k)�
X

1(k)
��� =

�����
1X
j=1

exp(���j
�
)�t(k �

�j

�
) + exp(

��j

�
)�tt(k +

�j

�
)

�����
�

�����
1X
j=1

exp(���j
�
)+ exp(

��j

�
)
E�[exp(pXT )]

exp(p(k+�j
�
))

�����
=

�����
1X
j=1

exp(���j
�
)+ exp(

(�� p)�j
�

)
E�[exp(pXT )]

exp(pk)

����� ;
in our case of geometric Brownian motion,

E�[exp(p ~XT )] =

Z 1

�1
exp(ps)

1p
2��

p
(T � t)

exp(�
(s� (r + 1

2
�2)(T � t))2

2�2(T � t) )ds

= exp((r +
1

2
�2)(T � t)p+ �

2(T � t)
2

p2).

Then,������t(k)�
1X
(k)

����� �
�����
1X
j=1

exp(���j
�
)+ exp(

(�� p)�j
�

)
exp((r + 1

2
�2)(T � t)p+ �2(T�t)

2
p2)

exp(pk)

�����
=

1X
j=1

exp(���j
�
)+ exp(

(�� p)�j
�

) exp(�pk) exp((r + 1
2
�2)(T � t)p+ �

2(T � t)
2

p2).

29



So, we can conclude that the upper bound of the total error in our esti-

mating Delta method is

exp(��k) exp((r + 1
2
�2)(T � t)�) exp(�1

2
�2(T � t)(N� � �)2) exp(��2�(T � t)�N)

N�(1� exp(��2�(T � t)�))

+

1X
j=1

exp(���j
�
)+ exp(

(�� p)�j
�

) exp(�pk) exp((r + 1
2
�2)(T � t)p+ �

2(T � t)
2

p2).

Theorem 20 The variance of martingale control between using FFT option

pricing method and true value

E�[

Z T

0

e�2rs(
@P

@x
� @PFFT

@x
)2(s; ~Ss) ~Ss

2
�2ds]

� �F1
84

U4
1

4D1

(1� exp(4D1T )� F2�484
1

4D2

(1� exp(4D2T ),

for some constants D1, D2, F1 and F2.

The proof of this theorem is presented in appendix C.

4.4 Apply FFT Option Pricing Method in Martingale

Control Variate Method

In section 3, we introduce how to use the FFT option pricing method to

estimate Delta. In the structure of this method, it �xes the initial underlying

asset price to be 1. And this method could give us the Delta values correspond

to the sequence of di¤erent strike prices. But in the section 2, the problem is

to compute the Delta with respect to every unbiased estimators of underlying

asset in the same strike price.. Because of it, we should do some work to

make us can apply FFT option pricing method. Recall that in section 2, the

martingale control is
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M0(PBS;T ) =

Z T

o

e�rs
@PBS
@x

(s; Ss)�SsdW
�
s

�
MX
j=1

e�r
T
M
(j�1)@PBS

@x
(
T

M
(j � 1); S T

M
(j�1))�S T

M
(j�1)

r
T

M
"j,

We want to �nd @PBS
@x
( T
M
(j�1); S T

M
(j�1)) in any pairs (

T
M
(j�1); S T

M
(j�1)),

j = 1::N .. If we construct Q sample paths, we will compute

@PBS
@x

(
T

M
(j � 1); S(l)T

M
(j�1)) for j = 1:::M and l = 1::Q:

In the other words, we will estimate the all elements in the matrix H, we

call this matrix is Delta matrix. i.e.

H =

0BBBBBBBB@

@PBS
@x
( T
M
(0); S

(1)
T
M
(0)
) : : : @PBS

@x
( T
M
(M � 1); S(1)T

M
(M�1))

@PBS
@x
( T
M
(0); S

(2)
T
M
(0)
) : : : @PBS

@x
( T
M
(M � 1); S(2)T

M
(M�1))

...
. . .

...

@PBS
@x
( T
M
(0); S

(Q)
T
M
(0)
) : : : @PBS

@x
( T
M
(M � 1); S(Q)T

M
(M�1))

1CCCCCCCCA
;

note that the strike priceK is �xed. In order to apply FFT option pricing

method, we claim that

@PBS
@x

(
T

M
(j � 1); S(l)T

M
(j�1); K) =

@PBS
@x

(
T

M
(j � 1); 1; K

S
(l)
T
M
(j�1)

): (69)

The above equal sign is because

�t( ~ST ; K) = ~E[If ~ST�Kg] =
~E[I

f
~ST
~St
� K

~St
g
]. (70)

So, we �x the initial underlying asset price and let the strike price is

�oating. Then, we can apply FFT option pricing method as following steps:
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Step 1. Using FFT option pricing method to compute the Delta at each

time, f0; T
M
; 2 T

M
; :::; (M � 1) T

M
g.

Step 2. To predict whether K

S
(l)
T
M
(j�1)

is located within the range of (32) or

not. If K

S
(l)
T
M
(j�1)

is located within the range of (32), the method of interpolation

is applied here to approximate the Delta value with respect to the strike price

K

S
(l)
T
M
(j�1)

. In the case where K

S
(l)
T
M
(j�1)

is prior to the range of (32), Delta is set to

1, because the option is deeply out-the money.. If K

S
(l)
T
M
(j�1)

exceeds the range

of (32), then we set Delta to 0, because the option is deeply in-the money.

The numerical results show in the next section.

4.5 Numerical Result

In this section, we compare the time we use to compute Delta value in closed

form solution and in FFT option pricing method. We also show the standard

error in the two conditions, without control variate and using martingale

variate. In FFT option pricing method, we also take N = 256, the truncated

upper is 500, the damping parameter � is 0:75, the risk-free rate r is 0:03, and

volatility � = 0:25:In Monte Carlo control variance method. we take 100000

sample paths and the number of partitions of time interval [0; T ] is 100. The

initial underlying asset price S0 is 100. We test the four cases, the strike

price K = 20; 80; 120; 180.i.e. the environment of deeply in-the-money, in-

the-money, out-the-money, and deeply out-the-money. The computations are

done under MATLAB-7.0 in a PC with 2.4 GHz P4 CPU. For convenience,

SE means standard error and MCVmeans martingale control variate in brief.

We summary the algorithms as followng.

Step1. Simulate the underlying asset�s paths in order to obtain the
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terminal prices of the asset. Compute the sample paths of H(ST ) and its

discounted value e�rT H(ST ).

Step2. Discretize the martingale control of the e�rT H(ST ). Use the lower

Riemann sum to approximate this integral. i.e.

M0(PBS;T ) =

Z T

o

e�rs
@PBS
@x

(s; Ss)�SsdW
�
s (71)

�
MX
j=1

e�r
T
M
(j�1)@PBS

@x
(
T

M
(j � 1); S T

M
(j�1))�S T

M
(j�1)

r
T

M
"j,

where f0; T
M
; T
M
� 2; :::; T

M
� (M � 1)g is the partition of the interval [0; T ] ,

K is the strike price of option, and "j are identical and independent (I.I.D)

standard normal random variables.

Step3. An estimator of the martingale control for the option price is the

following,

E�0;x[e
�rTH(ST )�

Z T

o

e�rs
@PBS
@x

(s; Ss)�SsdW
�
s ] (72)

� 1

Q
(

QX
l=1

e�rTH(S
(l)
T )�

QX
l=1

MX
j=1

e�r
T
M
(j�1)@PBS

@x
(
T

M
(j � 1); S(l)T

M
(j�1))�S

(l)
T
M
(j�1)

r
T

M
"j,

where Q is the number of sample paths.

Step 4. Using FFT option pricing method to compute the Delta at each

time, f0; T
M
; 2 T

M
; :::; (M � 1) T

M
g.

Step 5. To predict whether K

S
(l)
T
M
(j�1)

is located within the range of (32) or

not. If K

S
(l)
T
M
(j�1)

is located within the range of (32), the method of interpolation

is applied here to approximate the Delta value with respect to the strike price

K

S
(l)
T
M
(j�1)

. In the case where K

S
(l)
T
M
(j�1)

is prior to the range of (32), Delta is set

to 1, because the option is deeply out-of-the money. If K

S
(l)
T
M
(j�1)

exceeds the

range of (32), then we set Delta to 0, because the option is deeply in-the

money.

(1) K = 20
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Time(Seconds) Call Price SE(MCV) SE(No MCV)

Closed Form Solution 654.047 81.901 0.0012 0.0783

FFT option pricing method 91.798 81.961 0.0944 0.0783

(2) K = 80

Time(Seconds) Call Price SE(MCV) SE(No MCV)

Closed Form Solution 701.197 28.592 0.0033 0.0760

FFT option pricing method 120.547 28.592 0.0035 0.0760

(3) K = 120

Time(Seconds) Call Price SE(MCV) SE(No MCV)

Closed Form Solution 661.272 6.6379 0.0194 0.0450

FFT option pricing method 130.644 6.6377 0.0200 0.0450

(4) K = 180

Time(Seconds) Call Price SE(MCV) SE(No MCV)

Closed Form Solution 697.729 0.3085 0.0020 0.0101

FFT option pricing method 144.452 0.3082 0.0025 0.0101

The result shows that the time using FFT option pricing method to �nd

Delta at every estimators of underlying asset is one �fth of time using closed

form solution even better. And this method also preserves the e¤ect of

reducing variance expect to deeply in-the-money case. This is not surprising,

we have showed that this method is not good for estimating Delta in the

condition of deeply in-the-money option in section 3.1. But in other cases,

this method is very well.
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5 More Examples

In this section, we provide two extensions of the martigale control variate

method we proposed above and also combine FFTmethod with it. In the �rst

extension, we get rid of the assumption of constant volatility of the underlying

asset. We let the volatility of the underlying asset can be stochastic and

follwes some stochastic process. In our example, we suppose this volatility

followes the OU process. This model is well-known as Heston model. In

the other extension, we consider the American style options which allow the

investors exercise the options at any time before the deadline.

5.1 Stochastic Volatility Model: Heston Model

Under the risk-neutral probability measure P �, the Heston model is describe

the the underlying asset follow the dynamics

dSt = rStdt+
p
ytStdW

(1)�
t (73)

dyt = m(� � yt)dt+ �ytdW (2)�
t ,

where St is the underlying asset price with a constant risk-free interesst rate r.

Its stochastic volatility is driven by the stochastic process yt. The process yt

has the mean reversion property. m is the mean reversion rates, � is the long-

run mean and � is the volatility of the volatility. m,� � are constants. And

W
(1)�
t and W (2)�

t are independent standard Brownian motions. We consider

the European style option payo¤ P , is simply a conditional expectation

P (t; x; y) = E�t;x;y[e
�r(T�t)H(ST )],

where E�t;x;y denotes the expectation with respect to P
� conditioned on the

current states St = x and yt = t. And T is the maturity of the option. A

basic Monte Carlo simulation estimates the option price P (0; x0; y0) at time
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0 by

1

Q

QX
i=1

e�rTH(S
(i)
T ),

where Q is the total number of indenpendent sample paths and S(i)T denotes

the i-th simulated stock price at time T: As described in section 2, we can

use Ito�s lemma and follow the martingale representation theorem, then

P (0; x0; y0) = e
�rTH(ST )�M1(P )� �M2(P ), (74)

where centered martingales are de�ned by

M1(P ) =

Z T

0

e�rs
@P

@x
(t; x; y)

p
ytSsdW

(1)�
s , (75)

M2(P ) =

Z T

0

e�rs
@P

@y
(t; x; y)

p
ytdW

(2)�
s . (76)

These martingales play the role of �perfect�control variates for Monte Carlo

simulations and their integrands would be the perfect Delta hedges if P were

known and volatility traded. Unfortunately neither the option price P (t; x; y)

nor its gradient at any time 0 � s � T are in any analytic form even though

all the parameter of the model have been calibrated as we suppose here.

One can choose an approximation option price to substitute P used in

the martingale and still retain martingale properties. An approximation of

the Black-Sholes type is

P (t; x; y) � PBS(t; x; �). (77)

In our setting, the martingale control variate estimator is formulated as

1

Q

QX
i=1

h
e�rTH(S

(i)
T )�M1(PBS)

i
. (78)

Note that there is no M2 martingale term since the approximation PBS dose

not depend on y and the y-derivative. And the Delta term in martingale

control varitate can aslo be compute using FFT option pricing method which

is described above.
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5.1.1 Numerical Result

Here, we take a example to observe the e¤ect of martingale control variance

method and also show the e¢ ciency when combining FFT option pricing

method to compute Delta rather than using closing form solution. We let

the European style option is European call. Setting the initial underlying

asset price S0 is 100, the initial volatility of underlying asset,
p
y0 is 0.1, the

mean reversion rates, m is 2, the long-run mean of volatility, � is 0.1, the

volatility of volatility, � is 0.01. The number of sample paths we simulated

Q is 5000. The number of time steps in discreting the martingale control

variate is 100. The parameter of FFT option pricing method is setting the

same as before. We test three situations in which the strike priceK = 80; 100

and 120. Finally, the maturity is set to be half year. The numerical results

show in the following.

(1) Without Using Martingale Control Variate Method

Call Price Standard Error

K=80 20.9655 0.7522

K=100 3.3854 0.3087

K=120 0.0307 0.0023

(2) Using Martingale Control Variate Method (computing Delta using

closed form solution)

Call Price Standard Error Computational Time(s)

K=80 20.7976 5.1753e-006 78.4

K=100 3.2908 0.0036 78.1

K=120 0.0270 1.6844r-004 78.3

(3) Using Martingale Control Variate Method (computing Delta using
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FFT option pricing method)

Call Price Standard Error Computational Time(s)

K=80 20.7981 1.1447e-005 8.4

K=100 3.2914 0.0036 8.8

K=120 0.0271 1.8723r-004 8.9

5.2 American option

The most important feature of an American option is that the option holder

has the right to exercise the contract early. Under the geometric Brownian

motion considered, the price of an American option with the payo¤ function

H is given by:

P (t; x) = (ess) sup
t���T

E�t;x[e
�r(T��)H(S� )], (79)

where � denotes any stopping time greater than t, bounded by T . We consider

a typical American put option pricing problem, name H(x) = (K�x)+, and

maturity T. By the connection of optimal stopping problem and variational

unequalitues [11], P (t; x) can be characterized as the solution of the following

variational inequalities

LSP (t; x) � 0

P (t; x) � (K � x)+

LSP (t; x)�(P (t; x)� (K � x)+) = 0

, (80)

where LS denotes the in�nitesimal generator of the Markov process (St). The

optimal stopping time is characteristized by

� �(t) = ft � s � T; (K � Ss)+ = P (s; Ss)g. (81)

The approximation by a formal expansion is

P (t; x) � PABS(t; x; �) (82)
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while PABS(t; x; �) solves the homogenized variational inequality

LBS(�)PABS(t; x;�) � 0

PABS(t; x;�) � (K � x)+

LBSPABS(t; x;�)�(PABS(t; x;�)� (K � x)+) = 0

, (83)

where LBS(�) denotes the Black-Scholes operator with constant volatility �.

In contrast to typical European options, there is no colsed-form solution for

the American put option under a constant volatility. The derivation of the

accuracy of the approximation (82) is still an open problem.

As in the previous sections, we assume that the discounted American op-

tion price e�rtP (t; x) before exercise is smooth enough to apply Ito�s lemma,

then we integrate from 0 to the optimal stopping time � � such that we obtain

P (t; x) = e�rT (K � S��)+ �M(P (t; x)),

the local martingale are de�ned as in (7) except that the upper bounds are

replaced by the optimal tine � �.

As revealed in (81), the characterization of the optimal stopping time

� �(t) does depend on the American option price, which itself is unknow in

advance. This causes an immediate di¢ culty to implement Monte Carlo

Simulations because one does not know the time to stop in order to collect

the payo¤ along each realized sample path. Longsta¤ and Schwartz [10] took

a dynamic programming approach and proposed a least-squre regression to

estimate the continuation value at each in-the-money stock price state. Their

method exploit a decision rule for early exercise along each sample path

generated. Thus an adapted stopping time, denoted by � , is induced. It is

sub-optimal because specifying any stopping time to price American option

is always less than or equal to the true price by its de�nition:

E�[e�r(��t)(K � S� )+] � sup
0���T

E�[e�r(��t)(K � S� )+]: (84)
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Like in previous sections, a local martingale control variate can be in

principle contructed as

M(PABS; �
�) =

Z ��

0

e�rs
@PABS
@x

(s; Ss;�)�SsdW
(0)�

s .

The optimal stopping time � � is of course not known, thus we use the sub-

optimal stopping time � obtained by Longsta¤ and Schwartz�s method. To

summarize, we contruct the following stopped martingale as a control variate

M((PABS; �) =

Z �

0

e�rs
@PABS
@x

(s;Ss;�)�dW
(0)�
s .

The Monte Carlo estimator with the martingale control variate is

1

Q

QX
i=1

[e�r� (K � S(i)� )+ �M (i)((PABS; �)]. (85)

As seen in (84), the estimator in (85) is low-biased. On the opposite, Rogers

[17] proposed a dual formulation to contruct a high-biased estimator as fol-

lows:
1

Q

QX
i=1

sup
0�t�T

[e�rt(K � S(i)t )+ �M (i)((PABS)].

In next section we perform numerical experiments to show high and low

biased estimators of American option price. In particular, we see the com-

putating time are dramatically speed up by FFT algorithm.

5.2.1 Numerical Result

We show the e¤ect of the martingale control variance method in pricing

American option using Monte Carlo simulations. Simultaneously, we use

FFT option pricing method to acclerate this control variance method. The

parameter is setting as following : � = 0:4, r = 0:06, the initial underlying

asset price S0 = 100. The number of sample paths is 5000 and time steps

is 100. The deadline of the American option is half of the year. We also

test three conditions : K = 80; 100 and 120. We use UB to stand for
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upper bound of the American put option price, LB is lower bound and CT

means computational time. The standard error is presented using the bracket

following the price. The numerical results is represented as following:

Case1. Computing Delta Terms Using Closed Form Solutions

LSM Price UP LB CT

K=80 2.6306(0.0790) 2.6410(0.0085) 2.5466(0.0074) 76.51

K=100 9.9816(0.1568) 10.0745(0.0120) 9.8907(0.0123) 76.61

K=120 22.9384(0.1916) 23.3454(0.0130) 22.9127(0.0134) 76.84

Case2. Computing Delta Terms Using FFT Option Pricing Method

LSM Price UP LB CT

K=80 2.6306(0.0790) 2.6369(0.0085) 2.5539(0.0074) 6.57

K=100 9.9816(0.1568) 10.0745(0.0115) 9.8905(0.0120) 6.76

K=120 22.9384(0.1916) 23.3454(0.0124) 22.9129(0.0129) 7.33

6 Conclusion

In this paper, we apply the FFT option pricing method to �nd �Delta�along

every simulated price trajectory. We compare our FFT method with cases

such as Black-Scholes model where the �Delta�has a closed-form solution.

Simultaneously, we provide a variance analysis to show that the variance

of FFT-approximation error depends on the truncated upper bound and

discretization size of our FFT method. Numerical results show that: (1)

our FFT algorithm outperforms the martingale control variate method in

terms of computing time by 5~10 better times, (2) our method is good for

out-the-money, at-the-money, out-of-the-money, and even deeply out-of-the-

money call option. But it is not suitable for deeply in-the-money call option.
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To �nd this reason or modi�es this method in order to suitable for deeply

in-the-money call option is a future work.
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7 Appendix

A.Proof claim 9 in section 3.1

Proof.

CT (k) = e��k
1

2�

Z 1

�1
	T (v)e

�ivkdv

= e��k
1

2�

Z 1

�1
	T (v)(cos(�vk) + i sin(�vk))dv (by Euler formula)

= e��k
1

2�

Z 1

�1
(Re(	T (v)) + i Im(	T (v)))(cos(vk)� i sin(vk))dv

= e��k
1

2�

Z 1

�1
(Re(	T (v)) cos(vk) + Im(	T (v)) sin(vk))

+i(Im(	T (v)) cos(vk)� Re(	T (v)) sin(vk))dv

= e��k
1

2�

Z 1

�1
(Re(	T (v)e

�ivk)dv

The reason of above equal sign is the call option value is real, so, the imagine

part of 	T (v)e�ivk must equals to zero. i.e.

Z 1

�1
(Im(	T (v)) cos(vk)� Re(	T (v)) sin(vk))dv = 0:

As we know, cos(x) is an even function, i.e. cos(�v) = cos(v). And sin(v) is

an odd function, i.e. sin(�v) = �sin(v). In order to make the above integra-

tion equals to zero, Im(	T (v)) cos(vk) and Re(	T (v)) sin(vk)) could be odd

functions with respect to v. Or, Re(	T (v)) is an even function and Im(	T (v)

is an odd function. It makes Re(	T (v)) cos(vk) and Im(	T (v)) sin(vk) are

even functions. So, the real part of 	T (v)e�ivk is a even function. Then, we

can conclude that

CT (k) = e
��k 1

2�

Z 1

�1
(Re(	T (v)e

�ivk)dv = e��k
1

�

Z 1

0

(Re(	T (v)e
�ivk)dv
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B.Algorithm of FFT (Fast Fourier Transform)

De�nition 21 Given N complex numbers

fhjgN�1j=0

their N-point Discrete Fourier Transform(DFT) is denote by fHkg where Hk

is de�ned by

Hk =

N�1X
j=0

hjW
kj (B.1)

W = e�2�i=N

for all integer k = 0, 1, 2,..., N � 1

Moreover , fhkg is called the N-point Inverse Discrete Fourier Trans-

form(IDFT) of fHkg. And

hj =
1

N

N�1X
k=0

HkW
�kj (B.2)

for all integer j = 0, 1, 2,..., N � 1

Note : we usually choose N is a power of 2, in order to discuss the

algorithm of computation easily.

Basically , our problem is that.given the sequence fHkg (or fhkg) of

N complex valued numbers, how to compute its DFT(or IDFT) e¢ ciently,

according to the above-mentioned formula. Since DFT and IDFT involve

basically the same type of computations, our discussion of e¢ ciently compu-

tational algorithm for the DFT applies as well to the e¢ cient computation

of the IDFT.

We observe that for each value of k, direct computation of Hk involves

N complex multiplications and N � 1 complex additions. Consequently, to

compute all N values of the DFT requires N2 complex multiplications and
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N(N � 1) complex additions. So, direct computation of the DFT or IDFT

is basically ine¢ cient primarily because it does not exploit the symmetry

and periodicity properties of the phase factor W . In particular, these two

properties are:

Symmetry property: W k+N=2 = �W k

Periodicit property: W k+N = W k

then, we will use these two properties to introduce the FFT algorithm.

We begin FFT algorithm by dividing the N-point DFT in (B.1) into two

sums, each of which is a (1/2) N-point DFT

Hk =

1
2
N�1X
j=0

h2j(W
2)jk +

1
2
N�1X
j=0

h2j+1(W
2)jkW k. (B.3)

Based on (B.3) we write Hk as

Hk = H
0
k +W

kH1
k (B.4)

H0
k =

1
2
N�1X
j=0

h2j(W
2)jk

H1
k =

1
2
N�1X
j=0

h2j+1(W
2)jk (k = 0,1,...,N�1)

Because of the periodicit property, the periods of fH0
kg and fH1

kg are (1=2)N

; they are (1=2)N -point DFTs of fh0,h2,...,hN�2g and fh1,h3,...,hN�1g, re-

spectively. Since N = 2R we can divide N evenly by 2, and we have, by Euler

formula,

W
1
2
N = e�i�jk = cos(��jk) + i sin(��jk) = �1: (B.5)

Using (B.5) we will write the �rst equation in (B.4) as

Hk = H
0
k +W

kH1
k k = 0,1,...,

N

2
� 1

Hk+(1=2)N = H
0
k �W kH1

k k = 0,1,...,
N

2
� 1: (B.6)
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Figure 3: Butter�y in FFT algorithm

The calculation in (B.6) can be diagrammed as Figure 3.

Figure3. is called a butter�y. There are (1=2)N butter�ies for this stage

of the FFT. We observed that the directly computation ofH0
k requires (N=2)

2

complex multiplications. The same applies to the computation of H1
k . Fur-

ther, there are N/2 additional complex multiplications requires to compute

W kH1
k . Hence the computataion ofHk requires 2(N=2)

2+N=2 = N2=2+N=2

complex multiplications. This �rst step results in a reduction of the number

of multiplications from N2 to N2=2 +N=2, which is about a factor of 2 for

N large.

By computing N=4-point DFTs, we would obtain the N/2-point

DFTs H0
k and H

1
k from the relations

H0
k = H

00
k + (W

2)kH01
k , H0

k+ 1
4
N
= H00

k � (W 2)kH01
k

H1
k = H

10
k + (W

2)kH11
k , H1

k+ 1
4
N
= H10

k � (W 2)kH11
k (B.7)

for k = 0,1,...,(1=4)N � 1.In (2.7), fH00
K g is the (1/4)N-point DFTs of

fh0,h4,h8,...,hN�4g, fH01
k g is the (1/4)N-point DFTs of fh2,h6,h10,...,hN�2g,

fH10
k g is the (1/4)N-point DFTs of fh1,h5,...,hN�3g, fH11

k g is the (1/4) N-

point DFTs of fh3,h7,...,hN�1g.The decimation of the sequence can be re-

peated again and again until the resulting sequences are reduced to one-
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Figure 4: FFT algorithm with 8 points

point sequences. For N = 2R, this can be performed R = log2N times. Thus

the total number of complex multiplications is reduced to (N=2)log2N . The

number of complex additions is Nlog2N . So, use the FFT algorithm, we

reduce the computation of complex multiplications from N2 to (N=2)log2N:

When N is large, it is a considerable method. Figure 4. is a example of FFT

method with N=8.

C.Derivation of the accuracy of the variance analysis

Proof. Note that by Cauchy-Schwarz inequality,

E�[

Z T

0

e�2rs(
@P

@x
� @PFFT

@x
)2(s; ~Ss) ~Ss

2
�2ds]

�
�
E�[

Z T

0

(e�2rs ~Ss
2
�2)2ds]

�1=2�
E�[

Z T

0

(
@P

@x
� @PFFT

@x
)4(s; ~Ss)ds]

�1=2
,
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where @PFFT
@x

is obtained by our FFT option pricing method.

(1) �
E�[

Z T

0

(e�2rs ~Ss
2
�2)2ds]

�1=2
=

�
�4
Z T

0

E�[(e�rs ~Ss)
4]ds

�1=2
(by Fubini�s theorem)

(e�rs ~Ss = e�rsS0e
(r+ 1

2
�2)s+� ~Ws = S0e

1
2
�2s+� ~Ws)

=

�
�4
Z T

0

E�[(S0e
1
2
�2s+� ~Ws)4]ds

�1=2
=

�
S40�

4

Z T

0

E�[e2�
2s+4� ~Ws ]ds

�1=2
=

�
S40�

4

Z T

0

e10�
2sds

�1=2
=

�
1

10
S40�

2(e10�
2s � 1)

�1=2
(2)

E�[

Z T

0

(
@P

@x
� @PFFT

@x
)4(s; ~Ss)ds]

� E�[

Z T

0

(

����@P@x � @PFFT@x

����)4(s; ~Ss)ds],
note����@P@x � @PFFT@x

���� � ~Ss
� exp(��k) exp((r + 1

2
�2)(T � s)�)

N�(1� exp(��2�(T � t)�))

� exp(�1
2
�2(T � s)(N� � �)2) exp(��2�(T � s)�N)

+

1X
j=1

[exp(���j
�
) + exp(���j

�
) exp(�pk)

� ~Ss exp((r +
1

2
�2)(T � s)p+ �

2(T � s)
2

p2)]:

And

~Ss
� exp(��k) exp((r + 1

2
�2)(T � s)�)

N�(1� exp(��2�(T � s)�))

� exp(�1
2
�2(T � s)(N� � �)2) exp(��2�(T � s)�N)

� 1

U
~Ss
�
exp((r +

1

2
�2)(T � s)�)

� 1

U
~Ss
�
exp(D1(T � s)),
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where U = N� is the truncated upper bound and for some constant D1.

The other series term

1X
j=1

[exp(���j
�
) + exp(���j

�
) exp(�pk) � ~Ss exp((r +

1

2
�2)(T � s)p+ �

2(T � s)
2

p2)]

=
1X
j=1

exp(���j
�
) + exp(�pk) ~Ss exp((r +

1

2
�2)(T � s)p+ �

2(T � s)
2

p2)
1X
j=1

exp(���j
�
).

Note that

1X
j=1

exp(���j
�
) =

exp(���
�
)

1� exp(���
�
)

� 1

1� exp(���
�
)

� exp(���
�
) (if � is small enough)

� �.

Then

1X
j=1

[exp(���j
�
) + exp(���j

�
) exp(�pk) � ~Ss exp((r +

1

2
�2)(T � s)p+ �

2(T � s)
2

p2)]

� �(1 + ~Ss exp((r +
1

2
�2)(T � s)p+ �

2(T � s)
2

p2))

� �(1 + ~Ss exp(D2(T � s))) for some constant D2.

Finally,

E�[

Z T

0

(

����@P@x � @PFFT@x

����)4(s; ~Ss)ds]
=

Z T

0

[E�(

����@P@x � @PFFT@x

����)4(s; ~Ss)]ds
�

Z T

0

[E�(
1

U
~Ss
�
exp(D1(T � s)) + �(1 + ~Ss exp(D2(T � s))))4]ds

�
Z T

0

[E�8(
1

U
~Ss
�
exp(D1(T � s))4 + 8(�(1 + ~Ss exp(D2(T � s)))))4]ds

�
Z T

0

E�[8(
1

U
~Ss
�
exp(D1(T � s))4]ds+

Z T

0

E�[8(� ~Ss exp(D2(T � s)))))4]ds

=
84

U4

Z T

0

exp(4D1(T � s))E�[ ~Ss
4�
]ds

+�484
Z T

0

exp(4D2(T � s))E�[ ~Ss
4
]ds,
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since E�[ ~Ss
4�
] and E�[ ~Ss

4
] are bounded, there exists F1 and F2 such as

E�[ ~Ss
4�
] � F1 and E�[ ~Ss

4
] � F2, then

84

U4

Z T

0

exp(4D1(T � s))E�[ ~Ss
4�
]ds

+�484
Z T

0

exp(4D2(T � s))E�[ ~Ss
4
]ds

� 84

U4

Z T

0

F1 exp(4D1(T � s))ds+ �484
Z T

0

F2 exp(4D2(T � s))ds

= �F1
84

U4
1

4D1

(1� exp(4D1T )� F2�484
1

4D2

(1� exp(4D2T )
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