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Cyclic Triples
Student: Yi-Ting Chen Advisor: Dr. Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

Let C denote the complex field and let d be a positive integer. We essentially
determine all the triples A, B, C of (d+1) x (d+ 1) matrices over C that satisfy

AT = o, B = g1, 0¥ =4I, BA=qAB, CB = ¢BC, AC = ¢CA

for some nonzero complex numbers «, 3, v, and a primitive root ¢ of unity of
order d + 1.
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1 Introduction

Let C denote the complex field and let Maty,1(C) denote the set of (d+ 1) x (d+1)
matrices over C with the index set {0,1,...,d}.

Definition 1.1. Let A denote a matrix in Maty.1(C). We say A is left-cyclic when-
ever each of the entries A;, 1 and Ay is nonzero for ¢« = 1,2,...,d and all other
entries of A are zero ; or A is right-cyclic whenever its transpose is left-cyclic. We
say a square matrix is cyclic whenever it is left-cyclic or right-cyclic.

Definition 1.2. Let V denote a vector space over C with finite dimension. Let
A:V—V , B:V — YV, and C : V — V denote linear transformations which
satisfy (i) — (4i7) below.

(i) There exists a basis for V with respect to which the matrix representing A is
left-cyclic, the matrix representing B is diagonal, and the matrix representing
C' is right-cyclic.

(77) There exists a basis for V with respect to which the matrix representing A is
right-cyclic, the matrix representing B is left-cyclic, and the matrix representing
C is diagonal.

(7i1) There exists a basis for V with respect to which the matrix representing A is
diagonal, the matrix representing B is right-cyclic, and the matrix representing
C is left-cyclic.

We call such a triple (A, B, C') a cyclic triple on V.
The following is our main result.

Theorem 1.3. Let 'V denote a vector space over C with dimension d + 1. Let A :
V—V,B:V—V, and C:V — V denote linear transformations. We prove
the following are equivalent.

(i) (A, B,C) is a cyclic triple on V.

(i) There exist three nonzero complex numbers o, 3, v and a primitive root q of
unity of order d + 1 such that

AT = oI, B = I, 04 =~I, BA=qAB, CB = ¢BC, AC = qCA.

(i1i) There exists a basis vy, v1, ..., vg for V with respect to which the matrices
representing A (resp. B,C') is left-cyclic (resp. diagonal, right-cyclic) with the
following forms,

0 1



1 0 0 ¢q 0
q 0 ¢?
(rsp. B - € e S
qd—l 0 qd
0 qd 1 0

for some nonzero complex numbers n, £, (, and a primitive root q of unity of
order d + 1.

2 Cyclic pairs

To prove Theorem 1.3 we need some previous results in [1, 3]. For the thesis to be
self-contained, these results are stated in this section and the proofs are given in
slightly different ways.

Lemma 2.1. Cyclic matrices are diagonalizable with distinct nonzero eigenvalues.

Proof. For any left-cyclic matrix

0 Qo
aq 0
A Qo
-
0 aq 0

the characteristic polynomial of A is

d
f(z) =% — Hai.
i=0

Since ag, ay, ..., aq are not zeros, f(x) has d + 1 distinct roots. Hence A has d + 1
distinct eigenvalues. This implies A is diagonalizable with nonzero eigenvalues. For
any right-cyclic matrix A, since A7 is left-cyclic and A have the same characteristic
polynomial with AT, A is also diagonalizable with nonzero eigenvalues. We complete
the proof. O

Definition 2.2. Let V denote a vector space over C with finite positive dimension.
By a cyclic pair on V we mean an ordered pair of linear transformations A: V — V
and B : V — V that satisfy conditions (1), (2) below.

(1) There exists a basis for V with respect to which the matrix representing A is
diagonal and the matrix representing B is cyclic.

(77) There exists a basis for V with respect to which the matrix representing B is
diagonal and the matrix representing A is cyclic.



Lemma 2.3. Suppose

o = O
= O

(o #0)
0
10

is a left-cyclic matriz and 0 # 0 is an eigenvalue of A. Let u be an eigenvector
corresponding to 6. Then

for some nonzero scalar ug € C.

d+1

Proof. Since the characteristic polynomial of A is x%"" — «, it is obvious that

Qd—i—l —

a.
Suppose
Uo
Uy
U= Uz
Ug
Observe
0 o U Qg Oug
Lo Ul Uo Hul
Au=1] 0 1 uy [ = w | =] Ous ||
0
1 0 Uq Ud—1 9ud
since Au = Qu. Hence u; = Qu;,q for i = 0,1,...,d — 1 and ug = (6/a)uy = 0~ %uy.
Then u; = ugf~" (1 < i < d). Note that ug # 0 since u # 0 and 6 # 0. Hence the
proof is completed. O]

Theorem 2.4. Let 'V denote a vector space over C with dimension d + 1. Let A :
V — V and B : V — V denote linear transformations. Then the following (i)-(iii)
are equivalent.

(i) (A, B) is a cyclic pair on 'V .



(ii) There exist two nonzero complex numbers « and [ such that
ATt = o, B™' =3I, BA=¢AB,
where q is a primitive root of unity of order d + 1.

(11i) There exists a basis vg,v1,...,vq for V with respect to which the matrices rep-
resenting A and B have the following forms,

0 o} ¢ 0
10 £q
A: o1 - ., B: £ :
0 "
10 0 £q°
where a, & € C are nonzero scalars and q € C is a primitive root of unity of
order d + 1.

Proof. ((iii) = (i1)) By direct computation

o 0
«Q
AL = «Q =al,
0 o
§d+1 0
€d+1
Bd+1 _ é‘d-i—l _ /6]-’
0 éd—H
0 al
q 02
¢ 0
0 g4 0
and
0 a{qd
E 0
¢ O
AB = £q2
0 gt 0

Therefore A = oI, B! = 31, and BA = ¢AB, where 3 = £41,

4



((71) = (4)) Since V is over the complex field C, there exists an eigenvalue ¢ for B.
Let vy be an eigenvector of B with respect to eigenvalue &, that is, Bvy = vy with
vy # 0. Consider vectors vy, Avg, A%vy, . . ., Adv.

Claim. {vg, Avg, A%vg, ..., A%y} is a basis of eigenvectors of B.

Set u; = Alvy for 1 = 0,1,...,d. Note that u; # 0 since A is invertible. Ob-
serve Bu; = BA'wy = ¢*A'Bvy = £¢'Avy = Eqiu,, since BA = gAB. Hence u; are
distinct eigenvectors of B with respect to distinct eigenvalues £¢' (0 < i < d), and

{ug, uq,uz, ..., uq} is a basis of eigenvectors of B. This proves the claim.
For the basis {ug, u1,ug, ..., uq},
Aui = AH_IUO = Uj+1 (O S 7 S d— ].)

and

Auy = Ay = avg = aug (AT = aI).
Hence with respect to the basis {ug, uy, us, ..., uq}, the matrices representing A and
B are

0 o 3 0

10 &q

A 1 . B: £
0 150 0 &q

0 16
10 n 0
1

0 1 0

for some n € C, since B! = BI and AB = ¢ 'BA. Therefore, (A, B) is a cyclic
pair.

((i) = (4i7)) Since (A, B) is a cyclic pair, there exists a basis {ug, uq,...,uq} such
that the matrices representing A is cyclic and B is diagonal. Without loss of gener-
ality, we suppose the matrix representing A, B as follows.(exchange the ordered basis
to ug, Ug_1, - .., up as A is right-cyclic)

0 QAo bo 0
aq 0 bl
A az 0 , B: by
0 ag O 0 bq
So we know that
Aui = Qi1 Ui41 (0 S 1 S d— 1) (21)

5



and

Aug = aguyg. (2.2)

Set
Vo = Up (23)

and
Vi = a1y ...4a;U; (]_ S 1 S d) (24)

So by (2.1) - (2.4),
A’UZ' == Ui+1(0 S 1 S d— 1)

and

A’Ud = Aq..-a10a9Vg.

Therefore, for the new basis {vg, v1,...v4}, the matrices represent A and B as follows,

0 «
10
A L0 , (a=ap...aq)
0 1.0
bo 0
b1
B by . (eigenvector invariant)
0 by
Similarly there exists a basis {wg, w1, ..., ws} of V such that the matrix representing
A is diagonal and the matrix representing B as
0 p
10
1 0 ’
0 1 0

for some § € C. Note that wg, w; are eigenvectors of A. Let 0y, #; be the corresponding
eigenvalues. Then there exists ¢y € C such that

Co
00061
Wo 00962
Cgeo_d
with respect to basis vg, v1,...,vq by lemma 2.3. Namely |,
wo = coup + cobly tvy + 00(90_2112 +... .+ 0090_dvd. (2.5)

6



In the same way, there exists ¢; € C such that
wy = cvg + 16y oy e vy L+ clﬁfdvd. (2.6)
By (2.5),

Bwo — COBUO + 0000_131)1 + 006)0_231)2 + ...+ C()QO_dBUd

= Cobovo + Coealbl'l}l -+ CoeaZbg’UQ + ...+ Coeadbdvd. (28)

Compare coefficients in ( 2.6) and ( 2.8), since Bwy = wy, we get

c
bO - _17
Co
c1 6
bl = _1_07
Co 491
c1 0y 2
by = — ()7,
2 Co ((91)
1,00 d
b = — (=)
=2
Note that by, b, ..., by is a geometric sequence with common ratio ¢ = 6y/6;. Hence

by =E&¢ fori=1,2,...,d with € = by. Observe ¢*™! = QBIJFI/Q‘{*IJrl = 1 by lemma 2.1.
Further, ¢ # ¢/ for 1 < i,j < d, otherwise b; = b;, a contradiction to lemma 2.1.
It implies that ¢ is a primitive root of unity of order d + 1. Therefore, for the basis

{vo,v1,...,v4} , the matrices representing A and B are as follows.
0 @ & 0
10 &q
A: 10 . B &g
0 1 0 0 £q?

3 Proof of Theorem 1.3

Proof. ((i1) = (7)) It suffices to show that the condition (¢) in Definition 1.2 is true,
since (#4) and (ii7) can be obtained similarly. Consider that A®™! = oI, B! =
61, BA = qAB. According to Theorem 2.4, let v be an eigenvector of B correspond-
ing to eigenvalue ¢ and form a basis {v, Av, A%v, ..., A%} for V such that the
matrix representing A (resp. B) is left-cyclic (resp. diagonal) as follows

0 a & 0
1 0 &q

A 10 , B: &g
0 1 0 0 £q?



Similarly, let v, Cv, C?v, ..., C% form another basis for V such that the matrices
representing C' (resp. B) is left-cyclic (resp. diagonal) as follows

0 vy 19 0
10 &gt
ok 10 . B: &g :
0 1 0 0 g
since B! = BI,C™! = ~I,CB = ¢BC, namely, BC = ¢~ 'CB. Observe
&g’ =& (1<i<d).

We know that A and C%1~% are the same eigenvector of B corresponding eigen-
value £q¢°. Hence
Aty = g, CT 0 (1 <i<ad),

where ¢; is nonzero complex number. Note that the basis

{v, Av, ..., A%, ..., A%}
is regarded as
{v, ciC%, 2.0, cge1-:C %, ..., ciCov}.
Hence for the basis {v, Av, A%v, ..., A%}, the matrix representing C' is right-cyclic
as follows
0 cqy 0
0 cd_lcgl
C 0
C1Co !
et 0
Now we find the basis {v, Av, A%v, ..., A%} such that the matrices representing

A (resp. B, C) is left cyclic (resp. diagonal, right-cyclic) .
Hence (A, B, C) is a cyclic triple.

((i) = (7i)) By Theorem 2.4, it is obvious that there exists three nonzero complex
numbers o, 3 and v such that A% = of, B¥!' = BI, and C%! = ~I. By the
condition (7) in Definition 1.2, there exists a basis {ug, u1, ..., ugq} such that the
matrices representing A (resp. B, C) is left-cyclic (resp. diagonal, right-cyclic) as



follows

0 Qo
aq 0
A as ’
0
0 Qq 0
bo 0
b
(res. B by )
0 bq
0 C1 0
0 Co
C 0 )
Cd
Co 0
Set
v = ug and v; = aias . ..a;u; for i =1,2,...,d.

For the basis {vg,v1,...,v4}, the matrix representing C' (resp. B, A) is right-cyclic
(resp. left-cyclic, diagonal) as

0 T 0
0 i)
C 0o . ,
oy
o 0
(resp.

0 Q@ 19 0

10 &q

A L0 . B : £ ),

0 1 0 0 £q?

with o = aga; ... aq, £ # 0, and ¢ is a primitive root of unity of order d 4+ 1. We know
that BA = qAB, and by direct computation

0 x&q 0
0 x28¢?
CB : 0 ,
z4€q"
zo§ 0



0 1'15 0

0 x28q
BC : 0
za€qh!
206" 0
Hence we have
BA =qgAB, CB = qBC. (3.1)

Similarly, by condition (i¢) in Definition 1.2 we have

AC =¢'CA,CB = q¢BC, (3.2)
where ¢’ is a primitive root of unity of order d+1. By ( 3.1) and ( 3.2), CB = ¢BC =
¢ BC'. It implies ¢ = ¢, so that BA = qAB,CB = qBC, AC = qCA.

((#41) = (i1)) By direct computation, A" = oI, B = BI,C¥ = I, where
a=ntt 3 =¢H v = (9 and then

0 1 0 g !
q—l 0 q—2 0
BA : 775 q_2 ) AB : 7]5 q_3 )
’ 0 0
0 q—d 0 0 qf(d+1) 0
0 ¢ 0 0 ¢ 0
0 ¢ 0 ¢
CB : (€ , BC : (¢ ’
0 q2d 0 q2d—1
1 0 q° 0
1 0 g ! 0
q q?
AC : nC , CA = nC
A g
0 g ? 0 1

Hence BA = ¢AB,CB = qBC, AC = qCA.

(() and (#i) = (7i7)) Let v be the eigenvector of B with corresponding eigenvalue &,

and let 1) be an eigenvalue of A. Then for the basis v, n™'¢q?Av, n~2¢> 4 A%, ... ndg? i+ T2d Ady,
where ¢ is the primitive root of unity of order d + 1 that satisfies (ii), the matrices
representing A (resp. B) is left-cyclic (resp. diagonal) as follows

0 1 1 0
A gt o (rep. B : & ),
0 g2 0 0 q

10



and the matrix representing C' is right-cyclic as

0 C1 0
0 Co
C : 0
Cd
Co 0
Hence
o 0 q 3¢ 0
qg - a q "C2
AC q e L CA -
' q ey
0 q ey 0 co

We find ¢;417 = q¢; for i = 0,1,...,d — 1 and ¢y = qcg, since AC = qC A. Hence the
matrix representing C' is as follows

0 qgo 0 0 ¢ 0
0 ¢’ 0 ¢
g% 0 q°
Co 0 1 0
where ( = ¢o. The proof is completed. O]
4 Remarks

The study of a pair or a triple of linear transformations with specified combinatorial
properties was first appeared in [4] with the motivation from the study of P- and
@-polynomial schemes. Also see [5] for a survey on this topic. These are related to
the representation theory of some algebra defined from relations. See [2] for reference.
To finish the thesis we propose the following conjecture.

Conjecture 4.1. Let V denote a vector space over C with dimension d + 1. Let
A: V—YV, B: V—V and C: V — V denote linear transformations. The
following (i) and (ii) are equivalent.

(i) (A,B), (B,C), (C, A) are cyclic pairs.

(ii) (A, B,C) is a cyclic triple.
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