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Abstract

Let C denote the complex field and let d be a positive integer. We essentially
determine all the triples A,B, C of (d+1)× (d+1) matrices over C that satisfy

Ad+1 = αI, Bd+1 = βI, Cd+1 = γI, BA = qAB, CB = qBC, AC = qCA

for some nonzero complex numbers α, β, γ, and a primitive root q of unity of
order d + 1.
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1 Introduction

Let C denote the complex field and let Matd+1(C) denote the set of (d + 1)× (d + 1)
matrices over C with the index set {0, 1, . . . , d}.

Definition 1.1. Let A denote a matrix in Matd+1(C). We say A is left-cyclic when-
ever each of the entries Ai,i−1 and A0d is nonzero for i = 1, 2, ..., d and all other
entries of A are zero ; or A is right-cyclic whenever its transpose is left-cyclic. We
say a square matrix is cyclic whenever it is left-cyclic or right-cyclic.

Definition 1.2. Let V denote a vector space over C with finite dimension. Let
A : V −→ V, B : V −→ V, and C : V −→ V denote linear transformations which
satisfy (i)− (iii) below.

(i) There exists a basis for V with respect to which the matrix representing A is
left-cyclic, the matrix representing B is diagonal, and the matrix representing
C is right-cyclic.

(ii) There exists a basis for V with respect to which the matrix representing A is
right-cyclic, the matrix representing B is left-cyclic, and the matrix representing
C is diagonal.

(iii) There exists a basis for V with respect to which the matrix representing A is
diagonal, the matrix representing B is right-cyclic, and the matrix representing
C is left-cyclic.

We call such a triple (A, B, C) a cyclic triple on V.

The following is our main result.

Theorem 1.3. Let V denote a vector space over C with dimension d + 1. Let A :
V −→ V, B : V −→ V, and C : V −→ V denote linear transformations. We prove
the following are equivalent.

(i) (A, B, C) is a cyclic triple on V.

(ii) There exist three nonzero complex numbers α, β, γ and a primitive root q of
unity of order d + 1 such that

Ad+1 = αI, Bd+1 = βI, Cd+1 = γI, BA = qAB, CB = qBC, AC = qCA.

(iii) There exists a basis v0, v1, . . . , vd for V with respect to which the matrices
representing A (resp. B, C) is left-cyclic (resp. diagonal, right-cyclic) with the
following forms,

A : η


0 1

q−2 0

q−4 . . .
. . . 0

0 q−2d 0
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,

(rsp. B : ξ


1 0

q
. . .

qd−1

0 qd

 , C : ζ


0 q 0

0 q2

. . . . . .

0 qd

1 0

 )

for some nonzero complex numbers η, ξ, ζ, and a primitive root q of unity of
order d + 1.

2 Cyclic pairs

To prove Theorem 1.3 we need some previous results in [1, 3]. For the thesis to be
self-contained, these results are stated in this section and the proofs are given in
slightly different ways.

Lemma 2.1. Cyclic matrices are diagonalizable with distinct nonzero eigenvalues.

Proof. For any left-cyclic matrix

A =


0 a0

a1 0

a2
. . .
. . . 0

0 ad 0


the characteristic polynomial of A is

f(x) = xd+1 −
d∏

i=0

ai.

Since a0, a1, . . . , ad are not zeros, f(x) has d + 1 distinct roots. Hence A has d + 1
distinct eigenvalues. This implies A is diagonalizable with nonzero eigenvalues. For
any right-cyclic matrix A, since AT is left-cyclic and A have the same characteristic
polynomial with AT , A is also diagonalizable with nonzero eigenvalues. We complete
the proof.

Definition 2.2. Let V denote a vector space over C with finite positive dimension.
By a cyclic pair on V we mean an ordered pair of linear transformations A : V −→ V
and B : V −→ V that satisfy conditions (1), (2) below.

(i) There exists a basis for V with respect to which the matrix representing A is
diagonal and the matrix representing B is cyclic.

(ii) There exists a basis for V with respect to which the matrix representing B is
diagonal and the matrix representing A is cyclic.
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Lemma 2.3. Suppose

A =


0 α
1 0

0 1
. . .
. . . 0

1 0

 (α 6= 0)

is a left-cyclic matrix and θ 6= 0 is an eigenvalue of A. Let u be an eigenvector
corresponding to θ. Then

θd+1 = α and u =


u0

u0θ
−1

u0θ
−2

...
u0θ

−d


for some nonzero scalar u0 ∈ C.

Proof. Since the characteristic polynomial of A is xd+1 − α, it is obvious that

θd+1 = α.

Suppose

u =


u0

u1

u2
...

ud

 .

Observe

Au =


0 α
1 0

0 1
. . .
. . . 0

1 0




u0

u1

u2
...

ud

 =


αud

u0

u1
...

ud−1

 =


θu0

θu1

θu2
...

θud

 ,

since Au = θu. Hence ui = θui+1 for i = 0, 1, . . . , d − 1 and ud = (θ/α)u0 = θ−du0.
Then ui = u0θ

−i (1 ≤ i ≤ d). Note that u0 6= 0 since u 6= 0 and θ 6= 0. Hence the
proof is completed.

Theorem 2.4. Let V denote a vector space over C with dimension d + 1. Let A :
V → V and B : V → V denote linear transformations. Then the following (i)-(iii)
are equivalent.

(i) (A, B) is a cyclic pair on V .
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(ii) There exist two nonzero complex numbers α and β such that

Ad+1 = αI, Bd+1 = βI, BA = qAB,

where q is a primitive root of unity of order d + 1.

(iii) There exists a basis v0, v1, . . . , vd for V with respect to which the matrices rep-
resenting A and B have the following forms,

A :


0 α
1 0

0 1
. . .
. . . 0

1 0

 , B :


ξ 0

ξq
ξq2

. . .

0 ξqd

 ,

where α, ξ ∈ C are nonzero scalars and q ∈ C is a primitive root of unity of
order d + 1.

Proof. ((iii) =⇒ (ii)) By direct computation

Ad+1 =


α 0

α
α

. . .

0 α

 = αI,

Bd+1 =


ξd+1 0

ξd+1

ξd+1

. . .

0 ξd+1

 = βI,

BA =



0 αξ
ξq 0

ξq2 0
ξq3

. . . . . .

0 ξqd 0


,

and

AB =



0 αξqd

ξ 0
ξq 0

ξq2

. . . . . .

0 ξqd−1 0


.

Therefore Ad+1 = αI,Bd+1 = βI, and BA = qAB, where β = ξd+1.
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((ii) =⇒ (i)) Since V is over the complex field C, there exists an eigenvalue ξ for B.
Let v0 be an eigenvector of B with respect to eigenvalue ξ, that is, Bv0 = ξv0 with
v0 6= 0. Consider vectors v0, Av0, A

2v0, . . . , A
dv0.

Claim. {v0, Av0, A2v0, . . . , Adv0} is a basis of eigenvectors of B.

Set ui = Aiv0 for i = 0, 1, . . . , d. Note that ui 6= 0 since A is invertible. Ob-
serve Bui = BAiv0 = qiAiBv0 = ξqiAiv0 = ξqiui, since BA = qAB. Hence ui are
distinct eigenvectors of B with respect to distinct eigenvalues ξqi (0 ≤ i ≤ d), and
{u0, u1, u2, . . . , ud} is a basis of eigenvectors of B. This proves the claim.

For the basis {u0, u1, u2, . . . , ud},

Aui = Ai+1v0 = ui+1 (0 ≤ i ≤ d− 1)

and
Aud = Ad+1v0 = αv0 = αu0 (Ad+1 = αI).

Hence with respect to the basis {u0, u1, u2, . . . , ud}, the matrices representing A and
B are

A :


0 α
1 0

1
. . .
. . . 0

0 1 0

 , B :


ξ 0

ξq
ξq2

. . .

0 ξqd

 .

Similarly, there exists a basis for V which the matrices represent B and A as follows.

B :


0 β
1 0

1
. . .
. . . 0

0 1 0

 , A :


η 0

ηq−1

. . .

0 ηq−d

 ,

for some η ∈ C, since Bd+1 = βI and AB = q−1BA. Therefore, (A, B) is a cyclic
pair.

((i) =⇒ (iii)) Since (A, B) is a cyclic pair, there exists a basis {u0, u1, . . . , ud} such
that the matrices representing A is cyclic and B is diagonal. Without loss of gener-
ality, we suppose the matrix representing A, B as follows.(exchange the ordered basis
to ud, ud−1, . . . , u0 as A is right-cyclic)

A :


0 a0

a1 0
a2 0

. . . . . .

0 ad 0

 , B :


b0 0

b1

b2

. . .

0 bd

 .

So we know that

Aui = ai+1ui+1 (0 ≤ i ≤ d− 1) (2.1)
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and
Aud = a0u0. (2.2)

Set
v0 = u0 (2.3)

and
vi = a1a2 . . . aiui (1 ≤ i ≤ d). (2.4)

So by (2.1) - (2.4),

Avi = vi+1(0 ≤ i ≤ d− 1)

and

Avd = ad...a1a0v0.

Therefore, for the new basis {v0, v1, ...vd}, the matrices represent A and B as follows,

A :


0 α
1 0

1 0
. . . . . .

0 1 0

 , (α = a0 . . . ad)

B :


b0 0

b1

b2

. . .

0 bd

 . (eigenvector invariant)

Similarly there exists a basis {w0, w1, . . . , wd} of V such that the matrix representing
A is diagonal and the matrix representing B as

0 β
1 0

1 0
. . . . . .

0 1 0

 ,

for some β ∈ C. Note that w0, w1 are eigenvectors of A. Let θ0, θ1 be the corresponding
eigenvalues. Then there exists c0 ∈ C such that

w0 :


c0

c0θ
−1
0

c0θ
−2
0
...

c0θ
−d
0


with respect to basis v0, v1, . . . , vd by lemma 2.3. Namely ,

w0 = c0v0 + c0θ
−1
0 v1 + c0θ

−2
0 v2 + . . . + c0θ

−d
0 vd. (2.5)
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In the same way, there exists c1 ∈ C such that

w1 = c1v0 + c1θ
−1
1 v1 + c1θ

−2
1 v2 + . . . + c1θ

−d
1 vd. (2.6)

By (2.5),

Bw0 = c0Bv0 + c0θ
−1
0 Bv1 + c0θ

−2
0 Bv2 + . . . + c0θ

−d
0 Bvd (2.7)

= c0b0v0 + c0θ
−1
0 b1v1 + c0θ

−2
0 b2v2 + . . . + c0θ

−d
0 bdvd. (2.8)

Compare coefficients in ( 2.6) and ( 2.8), since Bw0 = w1, we get

b0 =
c1

c0

,

b1 =
c1

c0

θ0

θ1

,

b2 =
c1

c0

(
θ0

θ1

)2,

...

bd =
c1

c0

(
θ0

θ1

)d.

Note that b0, b1, . . . , bd is a geometric sequence with common ratio q = θ0/θ1. Hence
bj = ξqj for i = 1, 2, . . . , d with ξ = b0. Observe qd+1 = θd+1

0 /θd+1
1 = 1 by lemma 2.1.

Further, qi 6= qj for 1 ≤ i, j ≤ d, otherwise bi = bj, a contradiction to lemma 2.1.
It implies that q is a primitive root of unity of order d + 1. Therefore, for the basis
{v0, v1, . . . , vd} , the matrices representing A and B are as follows.

A :


0 α
1 0

1 0
. . . . . .

0 1 0

 , B :


ξ 0

ξq
ξq2

. . .

0 ξqd

 .

3 Proof of Theorem 1.3

Proof. ((ii) =⇒ (i)) It suffices to show that the condition (i) in Definition 1.2 is true,
since (ii) and (iii) can be obtained similarly. Consider that Ad+1 = αI, Bd+1 =
βI, BA = qAB. According to Theorem 2.4, let v be an eigenvector of B correspond-
ing to eigenvalue ξ and form a basis {v, Av, A2v, . . . , Adv} for V such that the
matrix representing A (resp. B) is left-cyclic (resp. diagonal) as follows

A :


0 α
1 0

1 0
. . . . . .

0 1 0

 , B :


ξ 0

ξq
ξq2

. . .

0 ξqd

 .
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Similarly, let v, Cv, C2v, . . . , Cdv form another basis for V such that the matrices
representing C (resp. B) is left-cyclic (resp. diagonal) as follows

C :


0 γ
1 0

1 0
. . . . . .

0 1 0

 , B :


ξ 0

ξq−1

ξq−2

. . .

0 ξq−d

 ,

since Bd+1 = βI, Cd+1 = γI, CB = qBC, namely, BC = q−1CB. Observe

ξqi = ξq−(d+1−i) (1 ≤ i ≤ d).

We know that Aiv and Cd+1−iv are the same eigenvector of B corresponding eigen-
value ξqi. Hence

Aiv = cd+1−iC
d+1−iv (1 ≤ i ≤ d),

where ci is nonzero complex number. Note that the basis

{v, Av, . . . , Aiv, . . . , Adv}

is regarded as
{v, cdC

dv, . . . , cd+1−iC
d+1−iv, . . . , c1Cv}.

Hence for the basis {v, Av, A2v, . . . , Adv}, the matrix representing C is right-cyclic
as follows

C :


0 cdγ 0

0 cd−1c
−1
d

0
. . .
. . . c1c

−1
2

c−1
1 0

 .

Now we find the basis {v, Av, A2v, . . . , Adv} such that the matrices representing
A (resp. B, C) is left cyclic (resp. diagonal, right-cyclic) .

Hence (A, B, C) is a cyclic triple.

((i) =⇒ (ii)) By Theorem 2.4, it is obvious that there exists three nonzero complex
numbers α, β and γ such that Ad+1 = αI, Bd+1 = βI, and Cd+1 = γI. By the
condition (i) in Definition 1.2, there exists a basis {u0, u1, . . . , ud} such that the
matrices representing A (resp. B, C) is left-cyclic (resp. diagonal, right-cyclic) as
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follows

A :


0 a0

a1 0

a2
. . .
. . . 0

0 ad 0

 ,

(res. B :


b0 0

b1

b2

. . .

0 bd

 ,

C :


0 c1 0

0 c2

0
. . .
. . . cd

c0 0

).

Set

v0 = u0 and vi = a1a2 . . . aiui for i = 1, 2, . . . , d.

For the basis {v0, v1, . . . , vd}, the matrix representing C (resp. B, A) is right-cyclic
(resp. left-cyclic, diagonal) as

C :


0 x1 0

0 x2

0
. . .
. . . xd

x0 0

 ,

(resp.

A :


0 α
1 0

1 0
. . . . . .

0 1 0

 , B :


ξ 0

ξq
ξq2

. . .

0 ξqd

),

with α = a0a1 . . . ad, ξ 6= 0, and q is a primitive root of unity of order d+1. We know
that BA = qAB, and by direct computation

CB :


0 x1ξq 0

0 x2ξq
2

0
. . .
. . . xdξq

d

x0ξ 0

 ,
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BC :


0 x1ξ 0

0 x2ξq

0
. . .
. . . xdξq

d−1

x0ξq
d 0

 .

Hence we have
BA = qAB, CB = qBC. (3.1)

Similarly, by condition (ii) in Definition 1.2 we have

AC = q′CA, CB = q′BC, (3.2)

where q′ is a primitive root of unity of order d+1. By ( 3.1) and ( 3.2), CB = qBC =
q′BC. It implies q = q′, so that BA = qAB, CB = qBC, AC = qCA.

((iii) =⇒ (ii)) By direct computation, Ad+1 = αI,Bd+1 = βI, Cd+1 = γI, where
α = ηd+1, β = ξd+1, γ = ζd+1, and then

BA : ηξ


0 1

q−1 0

q−2 . . .
. . . 0

0 q−d 0

 , AB : ηξ


0 q−1

q−2 0

q−3 . . .
. . . 0

0 q−(d+1) 0

 ,

CB : ζξ


0 q2 0

0 q4

. . . . . .

0 q2d

1 0

 , BC : ζξ


0 q 0

0 q3

. . . . . .

0 q2d−1

qd 0

 ,

AC : ηζ


1 0

q−1

. . .

q−d+1

0 q−d

 , CA : ηζ


q−1 0

q−2

. . .

q−d

0 1

 .

Hence BA = qAB, CB = qBC, AC = qCA.

((i) and (ii) =⇒ (iii)) Let v be the eigenvector of B with corresponding eigenvalue ξ,
and let η be an eigenvalue of A. Then for the basis v, η−1q2Av, η−2q2+4A2v, . . . , η−dq2+4+...+2dAdv,
where q is the primitive root of unity of order d + 1 that satisfies (ii), the matrices
representing A (resp. B) is left-cyclic (resp. diagonal) as follows

A : η


0 1

q−2 0

q−4 . . .
. . . 0

0 q−2d 0

 (rep. B : ξ


1 0

q
. . .

qd−1

0 qd

),
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and the matrix representing C is right-cyclic as

C :


0 c1 0

0 c2

0
. . .
. . . cd

c0 0

 .

Hence

AC :


c0 0

q−2c1

q−4c2

. . .

0 q−2dcd

 , CA :


q−2c1 0

q−4c2

. . .

q−2dcd

0 c0

 .

We find ci+1 = qci for i = 0, 1, . . . , d − 1 and c0 = qcd, since AC = qCA. Hence the
matrix representing C is as follows

C :


0 qc0 0

0 q2c0

0
. . .
. . . qdc0

c0 0

 = ζ


0 q 0

0 q2

. . . . . .

0 qd

1 0

 ,

where ζ = c0. The proof is completed.

4 Remarks

The study of a pair or a triple of linear transformations with specified combinatorial
properties was first appeared in [4] with the motivation from the study of P - and
Q-polynomial schemes. Also see [5] for a survey on this topic. These are related to
the representation theory of some algebra defined from relations. See [2] for reference.
To finish the thesis we propose the following conjecture.

Conjecture 4.1. Let V denote a vector space over C with dimension d + 1. Let
A : V −→ V, B : V −→ V, and C : V −→ V denote linear transformations. The
following (i) and (ii) are equivalent.

(i) (A, B), (B, C), (C, A) are cyclic pairs.

(ii) (A, B, C) is a cyclic triple.
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