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友 矩 陣 和 規 範 算 子  

的 數 值 域 
 

 

研 究 生：陳育慈 指導老師：吳培元 教授

 

 

 

國 立 交 通 大 學 

應 用 數 學 系 

 

摘 要 

 
 

  在本篇論文中，我們研究兩類算子的數值域。針對友矩陣部分，我們

證明3 3× 可分解友矩陣的數值域會包含相對應的 2 2× 友矩陣的數值域的

充要調件為3 3× 可分解友矩陣的行列式值的絕對值會大於 1。然而，相對

應的結果在一般的 n n× 可分友矩陣並不正確。針對規範算子的部份，我

們將數值域以乘積算子的表現函數來表示。 
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Numerical Ranges of Companion Matrices

and Normal Operators

Student: Yu-Tzu Chen Advisor: Pei Yuan Wu

Department of Applied Mathematics

National Chiao Tung University

Abstract

In this thesis, we study the numerical ranges of two kinds of operators. For

companion matrices, we show that the numerical range of a 3-by-3 reducible

companion matrix C(p) contains the numerical range of the 2-by-2 companion

matrix C((1/3)p′) if and only if the absolute value of its determinant is greater

than 1. However, the corresponding assertion for n-by-n reducible companion

matrices is false. For a normal operator, we express its numerical range in

terms of the function in its multiplication operator representation.
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1 Introduction

Let A be a bounded linear operator on the complex Hilbert space H. The numerical

range of A is the set of complex numbers of the form 〈Ax, x〉, where x is any unit

vector in H and 〈·, ·〉 denotes the inner product in H. We denote it by W (A). Namely,

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

If H is an n-dimensional space, then A can be seen as an n× n complex matrix.

The information about the numerical range of an n× n complex matrix has been

quite well known. The shape of W (A) for a 2×2 matrix A is known to be a (possibly

degenerate) elliptic disc. More generally, the numerical range of an n × n (n ≥ 3)

matrix can be expressed in terms of an algebraic curve associated with the matrix [6].

Consider a 3× 3 reducible companion matrix A associated with a monic polynomial

p and the companion matrix B associated with the monic polynomial (1/3)p′. In

Section 2, we will discuss the relation between W (A) and W (B). We prove that W (A)

contains W (B) if and only if |detA| ≥ 1. We will also show that the corresponding

result does not hold for a 4× 4 reducible companion matrix.

If A is a normal operator on the Hilbert space H, it is known that the numerical

range of A can be expressed by its spectral measure [2]. If H is separable, then there

exists a σ-finite measure space (X, Ω, µ) and a function f in L∞(µ) such that A is

unitarily equivalent to the multiplication operator Mf . In Section 3, we will show

that W (A) can be described by the behavior of f .

We now introduce the notations to be used in the following sections. The boundary

of a subset 4 in the plane is denoted by ∂4. The convex hull of a set 4, denoted

by 4∧, is the smallest convex set including 4. The interior of 4 is denoted by Int

4. The closure of 4 is denoted by 4. A∗ is the adjoint operator of A. Next, we list

properties of the numerical range of an operator.

Proposition 1.1. Let A be an operator on H. Then the following hold:

(1) W (A) is bounded. Moreover, if A acts on a finite-dimensional space, then
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W (A) is compact.

(2) W (A + aI) = W (A) + a for any complex number a.

(3) W (bA) = bW (A) for any complex number b.

(4) W (A) is a convex subset of C.

(1), (2) and (3) are easily obtained from the definition. (4) appeared in [4, p.

315].

It follows from the definition of the numerical range that the diagonal entries aii

of a matrix A are all in W (A).

Theorem 1.2. Let A and B be operators (on possibly different spaces).

(1) If A is unitarily equivalent to B, then W (A) = W (B).

(2) If B dilates to A, then W (B) is contained in W (A).

(3) If A = A1

⊕
A2, then W (A) equals the convex hull of W (A1)

⋃
W (A2).

Recall that B is said to dilate to A if A is unitarily equivalent to an operator

matrix of the form


 B ∗
∗ ∗


. Both (1) and (2) can be derived directly from the

definition. The proof of (3) can be found in [4, p. 116].

In what follows, we explore the relations between the numerical range and the

spectrum of an operator. The spectrum of an operator A, denoted by σ(A), is the

set of scalars z for which A− zI is not invertible. The point spectrum σp(A) of A is

the set of eigenvalues of A.

Theorem 1.3. For an arbitrary operator A, we have

(1) σp(A) ⊆ W (A), and

(2) σ(A) ⊆ W (A).

(1) can be proved from the definition, and (2) is justified in [4, Problem 214].

2



2 Companion Matrices

Recall that for every complex monic polynomial p(z) = zn + a1z
n−1 + ... + an of

degree n, there is associated an n× n matrix

(2.1) C(p) =




0 1

0 1
. . . . . .

0 1

−an −an−1 . . . −a2 −a1




,

called the companion matrix of p. Note that the characteristic polynomial and min-

imal polynomial of C(p) are both equal to p. We say that a matrix is reducible if it

is unitarily equivalent to the direct sum of two other matrices. The numerical ranges

of 2-by-2 and 3-by-3 matrices have been known before. Here we give a brief sketch.

Proposition 2.1. Let A be a 2× 2 matrix unitarily equivalent to


 a b

0 c


.

(1) If b = 0, then W (A) is the line segment with endpoints a and c.

(2) If b 6= 0 and a = c, then W (A) is the circular disc centered at a with radius

|b|/2.
(3) If b 6= 0 and a 6= c, then W (A) is the elliptic disc with foci a and c and with

the length of minor axis |b|.

The proof of this proposition is provided in [5, pp. 20–23].

To describe the numerical ranges of 3 × 3 matrices, we need some extra notions.

A point in homogeneous coordinates is an ordered triple

(x, y, z)

of complex numbers x, y and z which are not all zero. Two such points (x1, y1, z1)

and (x2, y2, z2) are equivalent if and only if x2 = ax1, y2 = ay1, z2 = az1 for some
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a 6= 0. Then the complex projective plane is the set of all the equivalence classes

[x, y, z]. That is,

CP2 = {[x, y, z] : (x, y, z) ∈ C3 − {0}}.

The point [x, y, z] in CP2 with z 6= 0 can be mapped to the point (x/z, y/z) in

nonhomogeneous coordinates. On the other hand, the point (x, y) in nonhomogeneous

coordinates becomes [x, y, 1] in CP2. The points [x, y, 0] in CP2 are points at infinity.

If C is an algebraic curve in CP2 given by p(x, y, z) = 0, where p is a homogeneous

polynomial in x, y and z, then its dual curve C∗ is given by

{[u, v, w] ∈ CP2 : ux + vy + wz = 0 is a tangent line of C}.

For an n×n matrix A, Re A = (A+A∗)/2 and Im A = (A−A∗)/(2i) denote the real

and imaginary parts of A, respectively. Define the degree-n homogeneous polynomial

pA in x, y and z by

(2.2) pA(x, y, z) = det(xReA + yImA + zIn).

Kippenhahn [6] proved that the numerical range of an n × n matrix A can be de-

scribed in terms of pA as follows.

Theorem 2.2. The numerical range of A equals the convex hull of the real points of

the dual curve of pA(x, y, z) = 0.

Next we state the classification for the numerical ranges of 3× 3 matrices, which

is also given by Kippenhahn [6].

Proposition 2.3. If A is a 3 × 3 matrix and pA is defined as in (2,2), then W (A)

can be classified into four classes:

(1) If pA is the product of three linear factors:

pA(x, y, z) =
3∏

j=1

(z + ajx + bjy),

4



then A is normal and W (A) is the closed triangular region with vertices (aj, bj), j =

1, 2, 3 (it may degenerate to a line segment or a point ).

(2) If pA is the product of a linear and an irreducible quadratic factor:

pA(x, y, z) = (z + ax + by)q(x, y, z),

then W (A) is the convex hull of the point (a, b) and the ellipse given by the dual curve

of q(x, y, z) = 0. Hence W (A) is an elliptic disc possibly with a cone added to it; in

the latter case, A is reducible.

(3) If pA is irreducible and the dual curve of pA = 0 has degree four, then W (A)

has a line segment on the boundary.

(4) If pA is irreducible and the dual curve of pA = 0 has degree six, then W (A) is

an oval set.

We now start to consider our problem on the numerical ranges of companion ma-

trices. The next two results are from [3].

Proposition 2.4. If A is a companion matrix, then λA is unitarily equivalent to a

companion matrix for any λ, |λ| = 1.

This proposition says that if A is of the form



0 1
. . . . . .

0 1

an an−1 . . . a1




,

then λA is unitarily equivalent to the companion matrix



0 1
. . . . . .

0 1

λnan λn−1an−1 . . . λa1




.
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The detailed proof can be found in [3, Lemma 2.8].

Theorem 2.5. An n× n (n ≥ 2) companion matrix A is reducible if and only if its

eigenvalues are of the form:

aωn
j1 , . . . , aωn

jp , (
1

ā
)ωn

jp+1 , . . . , (
1

ā
)ωn

jn ,

where a 6= 0, ωn = exp(2πi/n) denotes the nth primitive root of 1, 1 ≤ p < n,

and {j1, . . . , jp} and {jp+1, . . . , jn} form a partition of {0, 1, . . . , n− 1}. In this case,

A is unitarily equivalent to A1

⊕
A2 with σ(A1) = {aωn

j1 , . . . , aωn
jp} and σ(A2) =

{(1/ā)ωn
jp+1 , . . . , (1/ā)ωn

jn}.

This theorem is verified in [3, Theorem 1.1].

The next theorem is our main result in this section. It partially solves a question

posed by J. Zemánek.

Theorem 2.6. Let A be a 3× 3 reducible companion matrix and p be its associated

polynomial. For the monic polynomial (1/3)p′, there is associated a 2× 2 companion

matrix B. Then their numerical ranges W (A) and W (B) have the following contain-

ment relations:

(1) W (A)
⋂

W (B) 6= ∅.
(2) If |detA| < 1, then W (B) * W (A).

(3) If |detA| ≥ 1, then W (B) ⊆ W (A). Moreover, ∂W (A)
⋂

∂W (B) = ∅ if

|detA| > 1, and ∂W (A) intersects ∂W (B) at exactly three points if |detA| = 1.

Proof. Since A and B are companion matrices, 0 is in both W (A) and W (B). This

proves (1).

For (2) and (3), we may assume by Theorem 2.5 that the eigenvalues of A are

a,
1

a
ω,

1

a
ω2,
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where ω = exp(2πi/3) is the 3rd primitive root of 1. Let e−iθ be such that ae−iθ =

t > 0. Since the characteristic polynomial of A is

p(z) = (z − a)(z − 1

a
ω)(z − 1

a
ω2)

= z3 − (a− 1

a
)z2 − (

a

a
− 1

a2 )z − a

a2

= z3 − (t− 1

t
)eiθz2 − (1− 1

t2
)e2iθz − 1

t
e3iθ,

the 3× 3 reducible companion matrix A is of the form



0 1 0

0 0 1
1

t
e3iθ (1− 1

t2
)e2iθ (t− 1

t
)eiθ


 .

A direct computation shows that

1

3
p′(z) = z2 − 2

3
(t− 1

t
)eiθz − 1

3
(1− 1

t2
)e2iθ,

and thus B is of the form 
 0 1

1

3
(1− 1

t2
)e2iθ 2

3
(t− 1

t
)eiθ


 .

It follows from Proposition 2.4 that e−iθA is unitarily equivalent to



0 1 0

0 0 1
1

t
1− 1

t2
t− 1

t


 .

Similarly, e−iθB is unitarily equivalent to

 0 1

1

3
(1− 1

t2
)

2

3
(t− 1

t
)


 .

Hence we can assume that a > 0. Under this assumption, det A = 1/a > 0. Obvi-

ously,

detA > 1 ⇔ a < 1,

detA = 1 ⇔ a = 1,

detA < 1 ⇔ a > 1.

7



Using Theorem 2.5, we derive that the reducible companion matrix A is unitarily

equivalent to

A1

⊕
A2 =

[
a

]⊕



1

a
ω b

0
1

a
ω2


 ,

where the entry b satisfies

a2 + |1
a
ω|2 + |b|2 + |1

a
ω2|2 = 1 + 1 + (

1

a
)2 + (1− 1

a2
)2 + (a− 1

a
)2,

and can be taken to be nonnegative. A simple computation yields

b = |1− 1

a2
|.

Clearly, if a = 1, then b = 0. In this case, A is normal and W (A) is the regular

triangular region with vertices 1, ω and ω2. When a 6= 1, the numerical range of A1

is the singleton {a}, and the numerical range of A2 is the elliptic disc with foci ω/a

and ω2/a and with the length of minor axis |1− 1/a2| by Proposition 2.1. Therefore

the boundary of W (A2) is given by the equation

(x +
1

2a
)2

1

4
(1− 1

a2
)2

+
y2

1

4
(
a4 + a2 + 1

a4
)

= 1,

which we call ΓA. Note that the center of ΓA, labeled cA, is at −1/(2a). It is easy

to see that when a = 1, B =


 0 1

0 0


 and W (B) is the circular disc centered at 0

with radius 1/2. In this case, W (A) contains W (B) and their boundaries intersect at

exactly three points. If a 6= 1, by a brief computation, B is unitarily equivalent to




a2 − 1 +
√

a4 + a2 − 2

3a
c

0
a2 − 1−√a4 + a2 − 2

3a


 ,

where the nonnegative c satisfies

|a
2 − 1 +

√
a4 + a2 − 2

3a
|2+|a

2 − 1−√a4 + a2 − 2

3a
|2+c2 = 1+(

1

3
(1− 1

a2
))2+(

2

3
(a−1

a
)2).

8



Hence the preceding equation yields

c =
2a2 + 1

3a2
if a > 1,

and

c =

√
4

9
a2 +

8

9
− 4

9a2
+

1

9a4
if a < 1.

Again, Proposition 2.1 says that the numerical range of B is an elliptic disc and the

boundary of W (B) is given by the equation

(x− a2 − 1

3a
)2

(
2

9
− 1

9a2
+

1

36a4
+

a2

9
)

+
y2

(
2a2 + 1

6a2
)2

= 1,

which we call ΓB. Note that the center of ΓB, labeled cB, is at (a2−1)/(3a). Obviously,

the points a, cA and cB are on the x-axis and satisfy a > cB > cA. As the point a may

be in or out of (ΓA)∧, we have two different cases to consider. These are illustrated

in the following figures. �
A �

B 

a x 

 

y

Figure 1: a is in (ΓA)∧.
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�
A �

B 

a

y

x 

Figure 2: a is not in (ΓA)∧.

If a is in (ΓA)∧, then we need only check that ΓB is in the interior of (ΓA)∧.

This can be observed from Figure 1 visually. If a is not in (ΓA)∧, then let mA

(resp., mB) denote the slope of the tangent line from point a to ΓA (resp., ΓB). Since

W (B) ⊆ W (A) if and only if mA
2 ≥ mB

2, to complete the proof, we need compare the

magnitudes of mA
2 and mB

2. This can be observed from Figure 2. For convenience,

let b1 and b2 denote one half of the lengths of the minor axis of ΓA and ΓB, respectively.

Our discussion is now divided into two cases:

(a) If a is in (ΓA)∧, then d(a, cA) ≤ b1, that is,

|a− −1

2a
| ≤ 1

2
|1− 1

a2
|.

By computation, this holds if and only if a ≤ 1/2. We claim that in this case

(2.3) b1 > d(cA, cB) + b2,

that means

(2.4)
1

2
(

1

a2
− 1) >

a

3
+

1

6a
+

√
2

9
− 1

9a2
+

1

36a4
+

a2

9
,

and the point at the major axis of ΓB

(2.5) (
a2 − 1

3a
,
2a2 + 1

6a2
) is in (ΓA)∧,

10



that means

(2.6)
(
a2 − 1

3a
+

1

2a
)2

1

4
(1− 1

a2
)2

+
(
2a2 + 1

6a2
)2

1

4
(
a4 + a2 + 1

a4
)

6 1.

For a ≤ 1/2, (2,4) and (2.6) are easily seen to be true. From (2.3) and (2.5), it implies

that ΓB is contained in the interior of (ΓA)∧, and hence W (B) ⊆ W (A).

(b) Assume that a is not in (ΓA)∧. The tangent lines from a to ∂ΓA are given by

y − 0 = mA(x− (− 1

2a
))±

√
mA

2(
1

4
(1− 1

a2
)2) + (

a4 + a2 + 1

4a4
).

Since they pass through the point (a, 0), a calculation shows that

mA
2 =

a4 + a2 + 1

4a6 + 3a4 + 3a2 − 1
.

Applying this formula to B, one can get

mB
2 =

4a4 + 4a2 + 1

12a6 + 8a4 + 8a2 − 1
.

Thereby it leads to

mA
2

mB
2

=
(a4 + a2 + 1)(12a6 + 8a4 + 8a2 − 1)

(4a4 + 4a2 + 1)(4a6 + 3a4 + 3a2 − 1)
.

Noting that

(a4 + a2 + 1)(12a6 + 8a4 + 8a2 − 1)− (4a4 + 4a2 + 1)(4a6 + 3a4 + 3a2 − 1)

= 4a2(−a6 + 1)(a2 + 2)

is positive when 0 < a < 1 and negative when a > 1, we have mA
2 < mB

2 when a > 1

and mA
2 > mB

2 when a < 1. Notice that mA
2 > mB

2 means that the boundary of

W (A) intersects W (B) at no point.

As a conclusion, we have W (B) ⊆ W (A) when a < 1 and W (B) * W (A) when

a > 1. Our proof is completed.
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For n× n (n ≥ 4) reducible companion matrices, assertion (2) in Theorem 2.6 is

in general false.

Example 2.7. Let p(z) = (z−20)(z+1/20)(z−i/20)(z+i/20) be a monic polynomial.

Then

A =




0 1 0 0

0 0 1 0

0 0 0 1

1/400 399/8000 399/400 399/20




is the associated 4× 4 reducible companion matrix. The 3× 3 companion matrix B

associated with the monic polynomial (1/4)p′ is

B =




0 1 0

0 0 1

399/32000 399/800 1197/80


 .

Although det A = 1/400 < 1, the numerical range of B is contained in the numerical

range of A. We prove this via Theorem 2.2. First, we calculate the homogeneous

polynomial pA as follows.

pA(x, y, z)

= det




x




0 1/2 0 1/800

1/2 0 1/2 399/16000

0 1/2 0 799/800

1/800 399/16000 799/800 399/20




+y




0 −i/2 0 i/800

i/2 0 −i/2 399i/16000

0 i/2 0 −i/800

−i/800 −399i/16000 i/800 0




+ z




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







= det




z (x− iy)/2 0 (x + iy)/800

(x + iy)/2 z (x− iy)/2 399(x + iy)/16000

0 (x + iy)/2 z (799x− iy)/800

(x− iy)/800 399(x− iy)/16000 (799x + iy)/800 z + 399x/20



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= z4 +
399

20
xz3 − (

383520001

256× 106
x2 +

128160001

256× 106
y2)z2

−(
159201

16× 103
x3 +

159999

16× 103
xy2)z +

159201

64× 104
x4 +

160801

64× 104
x2y2

= (z+20x)(z3− 1

20
z2x−128160001

256× 106
z2y−127520001

256× 106
zx2+

160801

128× 105
y2x+

159201

128× 105
x3).

Similarly, pB(x, y, z) =

z3+
1197

80
xz2−(

1281440801

4096× 106
y2+

3324320801

4096× 106
x2)z− 383838399

1024× 105
y2x− 382561599

1024× 105
x3.

Hence W (A) is the convex hull of the point (20, 0) plus the dual curve of the polyno-

mial

z3 − 1

20
z2x− 128160001

256× 106
z2y − 127520001

256× 106
zx2 +

160801

128× 105
y2x +

159201

128× 105
x3.

W (B) is the convex hull of the dual curve of the polynomial

z3+
1197

80
xz2−(

1281440801

4096× 106
y2+

3324320801

4096× 106
x2)z− 383838399

1024× 105
y2x− 382561599

1024× 105
x3.

Their figures are sketched as follows.
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Figure 3: W (B) ⊆ W (A).

We believe that Theorem 2.6(3) should be true for n × n reducible companion

matrices A, but its proof is too complicated to be written down explicitly here.
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3 Normal Operators

Let A be a bounded linear operator on the complex Hilbert space H. The

numerical range of an operator A is closely related to its spectrum. In fact, we have

W (A) ⊇ σ(A)∧. Recall that A is normal if AA∗ = A∗A. For such an A, W (A) and

σ(A)∧ are even equal.

Theorem 3.1. If A is a normal operator, then W (A) = σ(A)∧.

Its proof can be found in [4, pp. 115–116].

Instead of its closure, the numerical range of a normal A can be expressed more

precisely in terms of its spectral measure. We introduce the spectral measure and its

properties first. Let X be a set, Ω be a σ-algebra of subsets of X, and H be a Hilbert

space. B(H) denotes the algebra of bounded operators on H.

Definition 3.2. A spectral measure for (X, Ω, H) is a function

E : Ω → B(H)

such that

(1) E(4) is an (orthogonal) projection for 4 ∈ Ω;

(2) E(∅) = 0 and E(X) = I;

(3) E(41 ∩42) = E(41)E(42) for all 41 and 42 in Ω;

(4) if {4n} is a sequence of disjoint sets in Ω, then

E

(⋃
n

4n

)
=

∑
n

E(4n),

where
∑

n E(4n) denotes the convergence in strong operator topology.

Theorem 3.3. If A is normal on H, then there exists a unique spectral measure

EA : {Borel subsets of C} → B(H)
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such that

(1) EA(σ(A)) = I;

(2) A =
∫

σ(A)
zdEA(z).

This theorem is verified in [1, pp. 263–264]. This unique measure EA is called the

spectral measure for A.

Next we describe W (A) in terms of its spectral measure.

Theorem 3.4. If A is normal, then the numerical range of A equals the interior of

σ(A)∧ plus the points z on the boundary ∂σ(A)∧ for which the longest interval [z1, z2]

in ∂σ(A)∧ containing z is such that both EA([z1, z]) and EA([z, z2]) are nonzero.

Namely, W (A) = (Int σ(A)∧)
⋃{z ∈ ∂(σ(A)∧) : [z1, z2] is the longest interval in

∂(σ(A)∧) containing z such that EA([z1, z]) 6= 0 and EA([z, z2]) 6= 0}.

Corollary 3.5. If A is normal, then the numerical range of A equals the intersection

of all convex Borel subsets 4 of C with EA(4) = I. Namely,

W (A) =
⋂
{4 ⊆ C : 4 Borel convex, EA(4) = I}.

Both this theorem and its corollary appeared in [2].

There is another representation for normal operators on a separable Hilbert space.

In the following, we will express the numerical range of such a normal operator in

terms of the ingredients in its representation. Let Ω be a σ-algebra of subsets of X

and µ be a positive measure on Ω. For any f in L∞(µ), Mf denotes the multiplication

operator Mfg = fg for g in L2(µ).

Theorem 3.6. If A is normal on a separable Hilbert space, then there exists a σ-finite

measure space (X, Ω, µ) and a function f in L∞(µ) such that A is unitarily equivalent

to Mf on L2(µ). In this situation, σ(A) = σ(Mf ) = essential range of f .

Recall that the essential range of f is defined as

ess. ran. (f) =
⋂
{f(4) : 4 ∈ Ω and µ(X \ 4) = 0}.
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The proof of this theorem is provided in [1, p. 265, and pp. 272–273].

The next two results are the expressions of the numerical range of a normal A in

terms of the function f in the above representation.

Theorem 3.7. If A is normal on a separable Hilbert space and f is the function as

in Theorem 3.6, then the numerical range of A equals the interior of σ(A)∧ plus the

points z on the boundary ∂(σ(A)∧) for which the longest interval [z1, z2] in ∂σ(A)∧

containing z is such that both µ(f−1([z1, z])) and µ(f−1([z, z2])) are positive. Namely,

W (A) = (Int σ(A)∧)
⋃{z ∈ ∂(σ(A)∧) : [z1, z2] is the longest interval in ∂σ(A)∧

containing z such that µ(f−1([z1, z])) > 0 and µ(f−1([z, z2])) > 0}.

The following lemma is useful in proving the theorem.

Lemma 3.8. Let 4 be a convex subset of C and ν be a probability measure on 4.

Then we have ∫

4
zdν(z) ∈ 4.

The lemma is trivially the consequence of the theorem in [7].

Proof of Theorem 3.7. According to Theorem 3.6, we may assume that A = Mf on

L2(µ). If z is a point in the interior of W (A), then, by Theorem 3.1, z is in the

interior of σ(A)∧.

Let z be a point on ∂σ(A)∧ for which the longest interval [z1, z2] containing z is

such that µ(f−1([z1, z])) = 0. Assume that z is in W (A), that is, z = 〈Ag, g〉 for some

unit vector g in L2(µ). We have

17



z = 〈Mfg, g〉

=

∫

X

f |g|2dµ

=

∫

X\f−1([z1,z])

f |g|2dµ

=

∫

f−1(σ(A)∧\[z1,z])

f |g|2dµ.

Define the measure ν by

ν(4) =

∫

4
|g|2dµ for 4 in Ω.

Then ν is a probability measure and

z =

∫

σ(A)∧\[z1,z]

wdν

by the Randon-Nikodym theorem. Since σ(A)∧ \ [z1, z] is convex, Lemma 3.8 implies

that z is in σ(A)∧ \ [z1, z], a contradiction. Therefore, µ(f−1([z1, z])) > 0. Similarly,

µ(f−1([z, z2])) > 0. This proves one direction of the containment.

For the converse, if z is in the interior of σ(A)∧, then trivially z is in W (A). Let z

be in ∂σ(A)∧ satisfying the asserted condition. Let g be a unit vector in L2(µ) with

g = 0 on X \ f−1([z1, z]). Then

〈Ag, g〉

=

∫

X

f |g|2dµ

=

∫

f−1([z1,z])

f |g|2dµ,

which belongs to [z1, z] by Lemma 3.8. This shows that [z1, z]
⋂

W (A) is nonempty.

In the same way, we also have [z, z2]
⋂

W (A) is nonempty. Thus z is in W (A) by the

convexity of W (A).
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Corollary 3.9. If A is normal on a separable Hilbert space and f is the function as

in Theorem 3.6, then the numerical range of A equals the intersection of all convex

Borel subsets 4 of C with µ(X \ f−1(4)) = 0. Namely,

W (A) =
⋂
{4 ⊆ C : 4 Borel convex, µ(X \ f−1(4)) = 0}.

Proof. Let 4 be a convex Borel subset of C with µ(X \ f−1(4)) = 0. For any unit

vector g in L2(µ), we have

z = 〈Ag, g〉

=

∫

X

f |g|2dµ

=

∫

f−1(4)

f |g|2dµ,

which is in 4 by Lemma 3.8. Therefore we conclude that W (A) ⊆ 4. This implies

that

W (A) ⊆
⋂
{4 ⊆ C : 4 Borel convex, µ(X \ f−1(4)) = 0}.

Conversely, let B ≡ ⋂{4 ⊆ C : 4 Borel convex, µ(X \ f−1(4)) = 0}. We claim

that B is contained in (Int σ(A)∧)
⋃{z ∈ ∂(σ(A)∧) : [z1, z2] is the longest interval in

∂σ(A)∧ containing z such that µ(f−1([z1, z])) > 0 and µ(f−1([z, z2])) > 0}. If z is

in the interior of B, then z is in the interior of σ(A)∧. For the other case, z is in B

and also on the boundary ∂B of B. Let [z1, z2] be the longest interval in ∂(σ(A)∧)

containing z. If µ(f−1([z1, z])) = 0, then 4 ≡ σ(A)∧ \ [z1, z] is Borel convex and

µ(X \ f−1(4)) = µ(X \ (f−1(σ(A)∧) \ f−1([z1, z]))) = 0.

Then B ⊆ 4 and hence z is in 4, a contradiction. Therefore, we must have

µ(f−1([z1, z])) > 0. Similarly, µ(f−1([z, z2])) > 0. We conclude from Theorem 3.7

that z is in W (A), completing the proof.
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