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Abstract

In this thesis, we study-the numerical ranges of two kinds of operators. For
companion matrices, we show: that the numerical range of a 3-by-3 reducible
companion matrix C(p) contains the numerical range of the 2-by-2 companion
matrix C'((1/3)p’) if and only if the absolute value of its determinant is greater
than 1. However, the corresponding assertion for n-by-n reducible companion
matrices is false. For a normal operator, we express its numerical range in

terms of the function in its multiplication operator representation.
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1 Introduction

Let A be a bounded linear operator on the complex Hilbert space H. The numerical
range of A is the set of complex numbers of the form (Az,z), where z is any unit

vector in H and (-, -) denotes the inner product in H. We denote it by W (A). Namely,
W(A) = {{(Az,z) - x € H, |[zf| = 1}.

If H is an n-dimensional space, then A can be seen as an n X n complex matrix.

The information about the numerical range of an n x n complex matrix has been
quite well known. The shape of W(A) for a 2 X 2 matrix A is known to be a (possibly
degenerate) elliptic disc. More generally, the numerical range of an n x n (n > 3)
matrix can be expressed in terms of an algebraic curve associated with the matrix [6].
Consider a 3 x 3 reducible companion matrix A associated with a monic polynomial
p and the companion matrix B associated with the monic polynomial (1/3)p’. In
Section 2, we will discuss the relation between W (A) and W (B). We prove that W (A)
contains W(B) if and only if jdetA| > 1. We will.also show that the corresponding
result does not hold for a 4 x4 reducible companion matrix.

If A is a normal operator onthe Hilbert space H, it is known that the numerical
range of A can be expressed by its spectral measure [2]. If H is separable, then there
exists a o-finite measure space (X, 2, u) and a function f in L°°(u) such that A is
unitarily equivalent to the multiplication operator My. In Section 3, we will show
that W (A) can be described by the behavior of f.

We now introduce the notations to be used in the following sections. The boundary
of a subset A in the plane is denoted by d/A. The convex hull of a set A, denoted
by A", is the smallest convex set including A. The interior of A is denoted by Int
A. The closure of A is denoted by A. A* is the adjoint operator of A. Next, we list

properties of the numerical range of an operator.

Proposition 1.1. Let A be an operator on H. Then the following hold:

(1) W(A) is bounded. Moreover, if A acts on a finite-dimensional space, then
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W(A) is compact.
(2) W(A+al) =W(A) + a for any complex number a.
(3) W(bA) = bW (A) for any complex number b.
(4) W

4) W(A) is a convex subset of C.

(1), (2) and (3) are easily obtained from the definition. (4) appeared in [4, p.
315].
It follows from the definition of the numerical range that the diagonal entries a;;

of a matrix A are all in W(A).

Theorem 1.2. Let A and B be operators (on possibly different spaces).
(1) If A is unitarily equivalent to B, then W(A) = W(B).
(2) If B dilates to A, then W (B) is contained in W (A).
(3) If A= A, @ Ay, then W(A) equals the convex hull of W(A;) W (Az).

Recall that B is said to dilate to A _if A is unitarily equivalent to an operator

B
matrix of the form . Both (1) and (2) can be derived directly from the
* ok

definition. The proof of (3) can be found in [4, p. 116].

In what follows, we explore the relations between the numerical range and the
spectrum of an operator. The spectrum of an operator A, denoted by o(A), is the
set of scalars z for which A — 2 is not invertible. The point spectrum o,(A) of A is

the set of eigenvalues of A.

Theorem 1.3. For an arbitrary operator A, we have
(1) 0,(A) CW(A), and
(2) o(A) C W(A).

(1) can be proved from the definition, and (2) is justified in [4, Problem 214].



2 Companion Matrices

Recall that for every complex monic polynomial p(z) = 2™ + a;2" ' + ... + a, of

degree n, there is associated an n x n matrix

0 1
0 1
(2.1) C(p) = :
0 1
—Q, —Op—1 ... —Qy —a

called the companion matrix of p. Note that the characteristic polynomial and min-
imal polynomial of C'(p) are both equal to p. We say that a matrix is reducible if it
is unitarily equivalent to the direct sum of two other matrices. The numerical ranges

of 2-by-2 and 3-by-3 matrices have been known before. Here we give a brief sketch.

Proposition 2.1. Let A be a2 X 2 maotriz unitarily equivalent to
0 c

(1) If b =0, then W (A) is the line segment with endpoints a and c.

(2) If b # 0 and a = ¢, then W(A) is the circular disc centered at a with radius
b]/2.

(3) If b # 0 and a # ¢, then W(A) is the elliptic disc with foci a and ¢ and with

the length of minor axis |b|.

The proof of this proposition is provided in [5, pp. 20-23].

To describe the numerical ranges of 3 x 3 matrices, we need some extra notions.

A point in homogeneous coordinates is an ordered triple

(z,y, 2)

of complex numbers =, y and z which are not all zero. Two such points (z1, ¥y, 21)

and (zg,ys, 29) are equivalent if and only if 5 = axy, yo = ay1, 22 = az for some



a # 0. Then the complex projective plane is the set of all the equivalence classes
[z,y,z]. That is,

CP? = {[z,y,2] : (x,y,2) € C* — {0}}.
The point [z,y,2] in CP? with z # 0 can be mapped to the point (z/z,y/2) in
nonhomogeneous coordinates. On the other hand, the point (z,y) in nonhomogeneous
coordinates becomes [z,y, 1] in CP?. The points [z, %, 0] in CP? are points at infinity.
If C is an algebraic curve in CP? given by p(z,y,2) = 0, where p is a homogeneous

polynomial in x,y and z, then its dual curve C* is given by
{[u,v,w] € CP*: uz + vy + wz = 0 is a tangent line of C'}.

For an n x n matrix A, Re A = (A+A*)/2 and Im A = (A— A*)/(2i) denote the real
and imaginary parts of A, respectively. Define the degree-n homogeneous polynomial

pa in x,y and z by
(2.2) pa(x,y,2) = det(zReA + ylmA + z1,).

Kippenhahn [6] proved that the numerical range of an n x n matrix A can be de-

scribed in terms of p4 as follows.

Theorem 2.2. The numerical range of A equals the convex hull of the real points of

the dual curve of pa(x,y,z) =0.

Next we state the classification for the numerical ranges of 3 x 3 matrices, which

is also given by Kippenhahn [6].

Proposition 2.3. If A is a 3 X 3 matriz and p4 is defined as in (2,2), then W(A)
can be classified into four classes:

(1) If pa is the product of three linear factors:

3
pA(:Ea Y, Z) = H(Z + a;x + bjy>7
j=1
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then A is normal and W (A) is the closed triangular region with vertices (a;,b;),7 =
1,2, 3 (it may degenerate to a line segment or a point ).

(2) If pa is the product of a linear and an irreducible quadratic factor:

pA($7yvz) = (Z +azr + by)q(x,y, Z)a

then W (A) is the convez hull of the point (a,b) and the ellipse given by the dual curve
of q(x,y,z) = 0. Hence W(A) is an elliptic disc possibly with a cone added to it; in
the latter case, A is reducible.

(3) If pa is irreducible and the dual curve of px = 0 has degree four, then W(A)
has a line segment on the boundary.

(4) If pa is irreducible and the dual curve of pa = 0 has degree siz, then W(A) is

an oval set.

We now start to consider our problem on the numerical ranges of companion ma-

trices. The next two results are from [3].

Proposition 2.4. If A is a companion-matriz, then \A is unitarily equivalent to a

companion matriz for any A\, |\ = 1.

This proposition says that if A is of the form

0 1

0 1

an aAp—1 ... A1

then AA is unitarily equivalent to the companion matrix




The detailed proof can be found in [3, Lemma 2.8].

Theorem 2.5. Ann xn (n > 2) companion matriz A is reducible if and only if its
eigenvalues are of the form:

aw,’, ..., awy’?, (a)wnh’“, . (a)w,ﬂ”,

where a # 0, w, = exp(2mi/n) denotes the nth primitive root of 1, 1 < p < n,
and {j1, ..., jp} and {jp+1, ..., Jn} form a partition of {0,1,...,n—1}. In this case,
A is unitarily equivalent to Ay @ Ay with o(A;) = {aw,”, ..., aw,?} and o(As) =

{(1/a)w, 7+, ..., (1/@)w, " }.

This theorem is verified in [3, Theorem 1.1].

The next theorem is our mainresult in this section. It partially solves a question

posed by J. Zemanek.

Theorem 2.6. Let A be a 3 X 3 reducible companion matriz and p be its associated
polynomial. For the monic polynomial (1/3)p’, there is associated a 2 x 2 companion
matriz B. Then their numerical ranges W(A) and W (B) have the following contain-
ment relations:

(1) W(A) W (B) £0.

(2) If |detA| < 1, then W(B) € W(A).

(3) If |detA| > 1, then W (B) C W(A). Moreover, OW (A) (oW (B) =0 if
|detA| > 1, and OW (A) intersects OW (B) at exactly three points if |detA| = 1.

Proof. Since A and B are companion matrices, 0 is in both W (A) and W (B). This
proves (1).
For (2) and (3), we may assume by Theorem 2.5 that the eigenvalues of A are



where w = exp(2mi/3) is the 3rd primitive root of 1. Let e~ be such that ae~

t > 0. Since the characteristic polynomial of A is

1 1,
p(2) = (z = )z = ~w)(z = —u?)
1 a 1 a
:2’3—(61—5)22—(5—?)2——_2
1 7 1 % 1 %
223—(t —)692’2—(1 t_2)629z_ 346

0 1 0
0 0 1
L si9 L\ 20 L\ o
;6 (]_ — t—z)e (t ;)6
A direct computation shows that
1 5 2 1, .0 1 1
gp’(z):z —g(t—g)e Z_g(l_t_Q e
and thus B is of the form
0 1
1 Il 1. .
2 = 200455 t = 0
34~ @5t 7g)e

It follows from Proposition 2.4 that ¢~ A is unitarily equivalent to

1 0

0 1
1 ! t !
t2 t

Similarly, e~ B is unitarily equivalent to

+ | = O (@)

0 1
1 1, 2 1

5(1 - =) g(t - ;)

16

Hence we can assume that @ > 0. Under this assumption, det A = 1/a > 0. Obvi-

ously,

detA >1<a<1,
detA=1<a=1,

detA <1 a>1.



Using Theorem 2.5, we derive that the reducible companion matrix A is unitarily

equivalent to

—w b
n@a-[a@] )|
0 —w?
a
where the entry b satisfies

1 1 1 1 1
2 e P 2w = T 14 (2)2 4 (] — =2 L
@ 4 P PP = T4 1 o (1= ) o )

and can be taken to be nonnegative. A simple computation yields

1
b=11— |

a2

Clearly, if a = 1, then b = 0. In this case, A is normal and W(A) is the regular
triangular region with vertices 1,w and w?. When a # 1, the numerical range of A,
is the singleton {a}, and the numerical range of A, is the elliptic disc with foci w/a
and w?/a and with the length of minor axis |1 —.1/a?| by Proposition 2.1. Therefore
the boundary of W (As) is given by the equation
Ly

(ZE + %) S, y2 _

1(1_i)2 1 CL4+O,2+1

4 a Z( at )

Y

which we call I'4. Note that the center of I'4, labeled c4, is at —1/(2a). It is easy

01
to see that when a =1, B = and W (B) is the circular disc centered at 0
00

with radius 1/2. In this case, W (A) contains W (B) and their boundaries intersect at

exactly three points. If a # 1, by a brief computation, B is unitarily equivalent to

a?—1++Va*t+a? -2

3a ¢
0 a?*—1—+va*+a2 -2 |’
3a
where the nonnegative c¢ satisfies
a?—1+vVat+a®2—-2, a*—1—+Va+a>—-2, , 1 1 2, 1
= 1+(=(1—-=) %+ (5 (a—=)?).
| - 2+ - P = 1+(5 (1= ) P+ (0= )



Hence the preceding equation yields

2a% 4+ 1
3a?

c= if a > 1,

and

—\/42+8 4+1 if a <1
TV T T 92 T gt NS T

Again, Proposition 2.1 says that the numerical range of B is an elliptic disc and the

boundary of W (B) is given by the equation

a?—1,

(x — 3@) . 2 :1
2 1 1 a 2a2+1,
(___2+ 4+_)( 2)

9 9a 36a 9 6a

which we call 'g. Note that the center of I'g, labeled cg, is at (a*—1)/(3a). Obviously,
the points a, c4 and cp are on the z-axis and satisfy a > cg > c4. As the point ¢ may
be in or out of (I'4)", we have two different. cases to consider. These are illustrated

in the following figures.

I'p

K
5
=V

Figure 1: @ is in (I'4)".



N
-

Figure 2: a is not in (I'4)".

If a is in (I'4)", then we need only check that I'p is in the interior of (I'4)".
This can be observed from Figure 1 visually. If a is not in (I'4)", then let my4
(resp., mp) denote the slope of the tangent line from point a to 'y (resp., I'g). Since
W (B) C W(A) if and only if ma? > mp?2; to complete the proof, we need compare the
magnitudes of m4? and mp?. ~This can be observed from Figure 2. For convenience,

let by and by denote one half of the lengths of the minor axis of I'4 and I'g, respectively.

Our discussion is now divided into two cases:

(a) If a is in (['4)", then d(a, c4) < by, that is,

a- Yt
a——| < =[1——=|
2 — 2 a?

By computation, this holds if and only if @ < 1/2. We claim that in this case

(2.3) by > d(ca,cp) + by,
that means

1.1 a 1 2 1 1 a?
24 —(-1)>-4+— - — — —
(24) 2(a2 ) 3+6a+\/9 9&2—’_?)6@4—’_97
and the point at the major axis of I'p

a’—1 2a*+1 . .\

(2.5) ( 3 62 ) isin (I'4)",

10



that means

a2—1 1, 2a* + 1,

(2.6) ( 3a +%) ( 6a? )
1(1 - i)Q 1(a4+a2+1)
4 a? 4 at

For a < 1/2,(2,4) and (2.6) are easily seen to be true. From (2.3) and (2.5), it implies
that ' is contained in the interior of (I'4)", and hence W(B) C W (A).

(b) Assume that a is not in (I'4)". The tangent lines from a to 0I'4 are given by

at+a?+1
4at

y—0=ma(x — (—=— \/mA 1——))+( ).

Since they pass through the point (a,0), a calculation shows that

9 at+a*+1
ma° = )
A 4ab + 3a* + 3a2 — 1

Applying this formula to B, one can get

5 dat £ 4a*+ 1
1208 +'8at + 8a2 — 1

mp

Thereby it leads to

my® (a4 a® +1)(12a° 4 8a + 8a® — 1)
mp?  (4at + 4a® +1)(4ab + 3a* + 3a2 — 1)

Noting that

(a* +a® +1)(12a5 + 8a* + 8a? — 1) — (4a* + 4a® + 1)(4a® + 3a* + 3a* — 1)
= 4a*(—a® + 1)(a® + 2)

is positive when 0 < a < 1 and negative when a > 1, we have m4? < mg? when a > 1

and m4% > mp® when a < 1. Notice that m4? > mp?

means that the boundary of
W (A) intersects W (B) at no point.
As a conclusion, we have W (B) C W(A) when a < 1 and W(B) € W(A) when

a > 1. Our proof is completed.

11



For n x n (n > 4) reducible companion matrices, assertion (2) in Theorem 2.6 is

in general false.

Example 2.7. Let p(z) = (#—20)(2+1/20)(2—i/20)(2+i/20) be a monic polynomial.

Then ~ .
0 1 0 0
0 0 1 0
A=
0 0 0 1
i 1/400 399/8000 399/400 399/20 ]

is the associated 4 x 4 reducible companion matrix. The 3 x 3 companion matrix B
associated with the monic polynomial (1/4)p’ is
0 1 0
B = 0 0 1
399/32000:399/800 1197/80
Although det A = 1/400 < 1, the numerical range of B is contained in the numerical
range of A. We prove this via Theorem 2:2. First, we calculate the homogeneous

polynomial p4 as follows.

pA(xa Y, Z) _ _
0 1/2 0 1/800
1/2 0 /2 399/16000
=det | z
0 1/2 0 799/800
i 1/800 399/16000 799/800 399/20
[ 0 —i/2 0 i/800 | (100 0]
i/2 0 —i/2 399i/16000 0100
+y + 2
0 i/2 0 —i/800 0010
| —i/800 —399i/16000 /800 0 | [0 0 0 1
[ 2 (x — iy)/2 0 (@ +iy)/800 |
det (x +1y)/2 z (x —iy)/2 399(z + iy) /16000
=de
0 (x +1y)/2 z (7992 — iy)/800
| (z—iy)/800 399(x — iy)/16000 (799z +iy)/800 =+ 399z/20

12



399
=2+ a2 — (

383520001 , 128160001 2,2
20

556 < 106~ 256 x 106/ )*
(SO0 o 159999, 159201 160801,
— X X VA —X _—
16 x 10° 16 x 105 64x 1007 T 6ax 10t Y

1 , 128160001 , 127520001 , 160801 159201

= (24202)(2° — =20 — o 2%y —
(200 = 55 = Sae 100~ ¥ 256 x 100 L T 128 x 1077 U 128 x 107"

3)'

Similarly, pp(z,y,z) =

, 1197
80

1281440801 2, 3324320801 2) 383838399 , 382561599 5
x%)z— x— .
4096 x 106 Y 4096 x 106 1024 x 105y 1024 x 10°

2t —(

Hence W (A) is the convex hull of the point (20, 0) plus the dual curve of the polyno-
mial

o 1, 128160001 , 127520001 , 160801 , = 159201 ,
3 1 » 128160001 , 127520001 160801 159201
20 256 x 106 - Y 256 x 106 128 x 1007 * " 128 x 105

W (B) is the convex hull of the dual eurve of the polynomial

, 1197
80

12814400 , [30RU0R0L oo 383838390 , 382561599 ,
R — X — .
4096 x 1057 " 4096 x 10° 1024 x 1057 7 1024 x 105

22— (

Their figures are sketched as follows.

13



0.8 i

0.2

Figure 3: W(B) C W(A).

We believe that Theorem 2.6(3) should be true for n x n reducible companion

matrices A, but its proof is too complicated to be written down explicitly here.

14



3 Normal Operators

Let A be a bounded linear operator on the complex Hilbert space H. The

numerical range of an operator A is closely related to its spectrum. In fact, we have

W(A) D o(A)". Recall that A is normal if AA* = A*A. For such an A, W(A) and

(A)" are even equal.

Q

Theorem 3.1. If A is a normal operator, then W (A) = o(A)".

Its proof can be found in [4, pp. 115-116].

Instead of its closure, the numerical range of a normal A can be expressed more
precisely in terms of its spectral measure. We introduce the spectral measure and its
properties first. Let X be a set, €2 be a g-algebra of subsets of X, and H be a Hilbert

space. B(H) denotes the algebra of bounded operators on H.

Definition 3.2. A spectral measure for (X,Q, H) is a function
E:Q— B(H)

such that

(1) E(A) is an (orthogonal) projection for A € §;

(2) E0) =0 and E(X) = I;

(3) E(A1NAy) = E(A)E(A2) for all Ay and Dy in Q;
(4) if {A.} is a sequence of disjoint sets in ), then

(0]

where Y E(A,) denotes the convergence in strong operator topology.

Theorem 3.3. If A is normal on H, then there exists a unique spectral measure

E4 : {Borel subsets of C} — B(H)

15



such that
(1) Ea(o(A)) = I;
(2) A= fo(A) 2dEA(z).

This theorem is verified in [1, pp. 263-264]. This unique measure F is called the
spectral measure for A.

Next we describe W (A) in terms of its spectral measure.

Theorem 3.4. If A is normal, then the numerical range of A equals the interior of
a(A)" plus the points z on the boundary 0o (A)" for which the longest interval [z, 2]
in o(A)" containing z is such that both E4([z1,z]) and Ea([z,22]) are nonzero.
Namely, W(A) = (Int o(A)")U{z € 9(c(A)") : [2z1,29] is the longest interval in
(o (A)") containing z such that Ea([z1,2]) # 0 and E4([z, 22]) # 0}.

Corollary 3.5. If A is normal, then the numerical range of A equals the intersection

of all convex Borel subsets I\ of C with E4(A).= I. Namely,
W(A) = ﬂ{A C C: A Borel convex, Ex(AN) =1}.

Both this theorem and its corollary appeared in [2].

There is another representation for normal operators on a separable Hilbert space.
In the following, we will express the numerical range of such a normal operator in
terms of the ingredients in its representation. Let {2 be a g-algebra of subsets of X
and yp be a positive measure on Q. For any f in L>°(u), M denotes the multiplication

operator Mg = fg for g in L?(u).

Theorem 3.6. If A is normal on a separable Hilbert space, then there exists a o-finite
measure space (X,Q, 1) and a function f in L () such that A is unitarily equivalent

to My on L*(w). In this situation, o(A) = o(M;) = essential range of f.
Recall that the essential range of f is defined as
ess. ran. (f) = ﬂ{f(A) A e Qand u(X \ A) =0}

16



The proof of this theorem is provided in [1, p. 265, and pp. 272-273].

The next two results are the expressions of the numerical range of a normal A in

terms of the function f in the above representation.

Theorem 3.7. If A is normal on a separable Hilbert space and f is the function as
in Theorem 3.6, then the numerical range of A equals the interior of o(A)" plus the
points z on the boundary O(c(A)") for which the longest interval [z1, 2] in do(A)"
containing z is such that both u(f~'([21,2])) and u(f~'([z, 22])) are positive. Namely,
W(A) = (Int o(A)M)U{z € I(c(A)") : [z1,22] is the longest interval in do(A)"

containing z such that p(f=1([z1, 2])) > 0 and u(f~1([z, 22])) > 0}.
The following lemma is useful in proving the theorem.

Lemma 3.8. Let /A be a convex subset of C and v be a probability measure on /\.

Then we have

/ zdv(z) € A.
A
The lemma is trivially the consequence of the theorem in [7].

Proof of Theorem 3.7. According to Theorem 3.6, we may assume that A = My on
L?(p). If z is a point in the interior of W (A), then, by Theorem 3.1, z is in the
interior of o(A)".

Let z be a point on do(A)" for which the longest interval [z1, 2] containing z is
such that u(f~1([21,2])) = 0. Assume that z is in W (A), that is, z = (Ag, g) for some

unit vector g in L?(u). We have

17



2z = (Myg, g)

/ floldy

= / flgldu
X\f1([z1,2))

= / flglPdp.
F1(o(AY M [z1,2])

Define the measure v by

:/ lg|?dp for Ain Q.
A

Then v is a probability measure and

z = / wdy
a(A) \[21,7]

by the Randon-Nikodym theorem. Sinee.a(A)" \ [z, 2] is convex, Lemma 3.8 implies
that z is in o(A)" \ [21, 2], a contradiction. Therefore, p(f~([21,2])) > 0. Similarly,

wu(f~1([z, 22])) > 0. This proves one direction of the containment.

For the converse, if z is in the interior of o(A)”", then trivially z is in W(A). Let z
be in do(A)" satisfying the asserted condition. Let g be a unit vector in L*(p) with
g=0on X\ f([z1,2]). Then

(Ag,g)

/ flglPdp

- / flald,
~1([z1,2])

which belongs to [z1, 2] by Lemma 3.8. This shows that [zq, z] [ W (A) is nonempty.
In the same way, we also have [z, z5] () W (A) is nonempty. Thus z is in W(A) by the
convexity of W(A). O
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Corollary 3.9. If A is normal on a separable Hilbert space and f is the function as
in Theorem 3.6, then the numerical range of A equals the intersection of all convex

Borel subsets A\ of C with u(X \ f~1(A)) = 0. Namely,
W(A) = ﬂ{A C C: A Borel convexr, u(X \ f~H(A)) =0}

Proof. Let A be a convex Borel subset of C with pu(X \ f~!'(A)) = 0. For any unit

vector g in L?(u), we have

z=(Ag,9)

/ flgPPdu

= / flglPdp,
1)

which is in A by Lemma 3.8. Therefore we conclude that W(A) C A. This implies
that
W(A) C ({4 € C: A Borel convex, u(X\ f7(A)) =0}

Conversely, let B =({A C C: A Borel convex, u(X \ f71(A)) =0}. We claim
that B is contained in (Int o(A)2)J{z € d(o(A)") : [21, 22] is the longest interval in
do(A)" containing z such that u(f7'([z1,2])) > 0 and u(f'([2,22])) > 0}. If 2 is
in the interior of B, then z is in the interior of o(A)”". For the other case, z is in B
and also on the boundary 0B of B. Let [z1, 23] be the longest interval in d(c(A)")
containing z. If u(f~'([21, 2])) = 0, then A = o(A)"\ [21, 2] is Borel convex and

PN\ FTHA)) = XN\ (fH (AN 7 ([21,2])) = 0.

Then B C A and hence z is in A, a contradiction. Therefore, we must have
w(f~Y([z1,2])) > 0. Similarly, u(f([z,22])) > 0. We conclude from Theorem 3.7
that z is in W(A), completing the proof. [
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