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羅瓦胥局部引理在匯集設計上的應用 

研究生：余國安    指導教授：傅恆霖 

 

國 立 交 通 大 學 

應 用 數 學 系 

 

摘  要 

 

  在計算分子生物學的應用中，一個群試演算法(group testing 

algorithm)被稱作一個匯集設計(pooling design)，而每個合成測試被稱

作一個匯集(pool)。匯集的數目反映了我們必須花費在實驗上的時間

與金錢；因此，在測試物件數目固定的前提之下，不管使用逐步演算

法(sequential algorithm)或是非調整型演算法(nonadaptive algorithm)，

讓匯集的數目最小化是研究群試演算法的最重要任務。 

  在這篇論文裡，我們主要針對幾類可以應用在匯集設計的矩陣

（其中包括(d,r]-分離矩陣、(d,r)-分離矩陣、(d,s out of r]-分離

矩陣以及(k,m,n)-選擇器)，在固定行(column)數的前提之下，利用

羅瓦胥局部引理分別去求得這些矩陣的最小列(row)數的上界。 
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Abstract

In the application to computational molecular biology, a group testing algorithm

is called a pooling design and the composition of each test is called a pool. The num-

ber of tests (pools) reflects to the time and cost we have to spend on the experiment.

Therefore, minimizing the number of tests with fixed number of items in either se-

quential or nonadaptive algorithms is the most important task in the study of group

testing algorithms.

In this thesis, we mainly apply the Lovász Local Lemma to obtain upper bounds

for the minimum number of rows for (d, r]-disjunct matrices, (d, r)-disjunct matrices,

(d, s out of r]-disjunct matrices, and (k, m, n)-selectors with n columns, respectively,

i.e., upper bounds for t(n, d, r], t(n, d, r), t(n, d, r, s], and ts(k,m, n), respectively,

which are listed in the following:

t(n, d, r] ≤
(

1 +
d

r

)r

·
(
1 +

r

d

)d

·{
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]}
,

t(n, d, r) ≤
(

1 +
d

r

)
·
(
1 +

r

d

) d
r ·{

1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]}
,

t(n, d, r, s] ≤
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
fd,r,s(p)

for all 0 < p < 1, where

fd,r,s(p) = (1− p)d ·

[
1−

s−1∑
i=0

(
r

i

)
pi(1− p)r−i

]
,

ts(k,m, n) ≤ m(
k

m

)
·m!

·

[
k ·

(
1 +

1

k − 1

)k−1
]m

·
{

1 + ln

[(
n

k

)
−

(
n− k

k

)]}
.
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Chapter 1

Introduction

Combinatorial group testing is a basic tool in conducting experiments of tests

which can be applied to computational molecular biology. A brief description of the

basic model is as follows: Given a set N of n items consisting of at most d positive

(used to be called defective) items with the others being negative (used to be called

good). Let P denote the set of all positive items. The problem is to identify P . The

tool of identification is the so-called group tests, sometimes called pools, while a group

test is applicable to an arbitrary subset S of N with two possible outcomes; a negative

outcome indicates that all items in S are negative; a positive outcome indicates that

there are at least one positive item in S, not knowing which one or how many. The

goal is to minimize the number of such tests in identifying P .

Li [12] started to consider combinatorial group testing where the presumed knowl-

edge on the set of defectives is that it must be a member, called a sample, of a given

family called a sample space. For instance, the sample space could consist of all

d-subsets of the n items when the presumed knowledge is that there are exactly d

defectives among the n items. We will refer to this space as the S(d, n) space while

the S(d, n) space specifies that d is an upper bound of the number of defectives.

Group testing algorithms (pooling designs) can be generally divided into two types:

sequential and nonadaptive. A sequential algorithm conducts the tests one by one and
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the outcomes of all previous tests can be used to set up the later test. A nonadaptive

algorithm specifies all tests in advance so that they can be conducted simultaneously;

thus forbidding using the information of previous tests to design later ones. In most

applications to molecular biology, an experiment can be time-consuming. Therefore,

it is much preferable to have a nonadaptive algorithm. In this thesis we′ll focus on

some matrices used for nonadaptive group testing.

There are various models for group testing. In screening clone library, the goal is

to determine which clones in the library hybridize with a given probe in an efficient

fashion. A clone is said to be positive if it hybridizes with the given probe, and

negative otherwise. In practical applications, there is another category of clones

besides positive and negative clones, called inhibitors whose effect is to neutralize

positive clones. Therefore, we shall have models of group testing with or without

inhibitors. Also in applications, we may face the situation that the property of being

positive or negative is defined on subsets of items instead of on individual items.

Such models are known as complex models. The study of complex models does have

a significant impact in recent years. As a generalization of the classical group testing

problem, the threshold model appears.

The probabilistic method is a useful tool for tackling many problems in discrete

mathematics. Roughly speaking, the method works as follows. Trying to prove that a

structure with certain desired properties exists, one defines an appropriate probability

space of structures and then shows that the desired properties hold in this space with

positive probability. Among various probabilistic methods, the Lovász Local Lemma,

first proved by Erdős and Lovász [10], is extremely powerful and plays the main role

in this thesis.

In this thesis, we first introduce a few types of matrices such as separable or

2



disjunct matrices and also the relationship between them and nonadaptive group

testing. Then we introduce some models for group testing. Next, also in Chapter

2, we illustrate the probabilistic method by a simple example, followed by reviewing

our main tool, the Lovász Local Lemma. In Chapter 3, we review two known results:

d-disjunct matrices by Yeh [17] and (k, m, n)-selectors by De Bonis, Ga̧sieniec, and

Vaccaro [5]. Finally, in Chapter 4, we obtain various upper bounds for the minimum

number of rows for (d, r]-disjunct matrices, (d, r)-disjunct matrices, (d, s out of r]-

disjunct matrices, and (k, m, n)-selectors with n columns, respectively, by applying

the Lovász Local Lemma.
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Chapter 2

Preliminaries

2.1 Nonadaptive Group Testing

A nonadaptive group testing algorithm can be represented by a binary matrix

M = (mij) where rows are indexed by pools, columns by items, and mij = 1 if and

only if item j is in pool i. For convenience, we identify a column Cj of M with a set

of row indices corresponding to the 1-entries in Cj. Hence we could consider union or

intersection of some columns of M . In the classic group testing problem, three types

of binary matrices have been the major tools in understanding and constructing a

pooling design.

Definition 2.1.1. A t× n binary matrix M is called d-separable if for any two

distinct d-sets D, D′ of columns of M ,
⋃

D 6=
⋃

D′, i.e., no two unions of d columns

of M are the same.

Definition 2.1.2. A t× n binary matrix M is called d-separable if for any two

distinct sets D, D′ of columns of M with |D|, |D′| ≤ d,
⋃

D 6=
⋃

D′, i.e., no two

unions of at most d columns of M are the same.

Definition 2.1.3. A t × n binary matrix M is called d-disjunct if the union of any

d columns does not contain any other column in M .
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We explain the properties in the above definitions in terms of pooling designs.

Consider the sample space S(d, n) where exact d positive items are present. The

d-separability property shows that each sample in S(d, n) induces a different outcome

vector. Hence there is a 1-1 correspondence between outcome vectors and samples in

S(d, n), and the d positive items can be identified. Moreover, the d-separability is also

a necessary condition for a matrix M used to identify the d positive items. Similarly,

the d-separability shows that samples in S(d, n), where at most d positive items are

present, are distinguishable while the d-disjunctness guarantees an appearing of each

negative item in some negative pool.

2.2 Models

More detailed descriptions of some models for group testing are given in this

section.

2.2.1 The Inhibitor Model

In some applications, an item can be positive, negative, or anti-positive in the

sense that the presence of anti-positives cancels the effect of positives. They are

called inhibitors in the literature. In the simplest inhibitor model, first proposed by

Farach et al. [11], the presence of an inhibitor in a pool dictates a negative outcome,

regardless of the presence of positive items in the pool.

Consider a set N of n items consisting of at most d positives and at most h in-

hibitors with the others being negatives. Let P denote the set of all positive items and

I the set of all inhibitors. The usual concern in the inhibitor model is to identify the

set P . Another interesting problem one can consider is to also identify the inhibitor

set I.
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2.2.2 The Complex Model

In the complex model, we consider a set N of n items and an unknown family

P = {Pi} of subsets of N where each such subset is a cause of a certain given

biological phenomenon. A set S of items which is a candidate of a member of P is

called a complex while members of P are called positive complexes. The problem is

to identify P from a given set of complexes. An experiment can be applied to an

arbitrary complex S with two possible outcomes; a positive outcome indicates that S

contain some Pi ∈ P , while a negative outcome indicates the remaining cases.

2.2.3 The Threshold Model

The threshold model is quite a natural generalization of the classical group testing

problem, which is described as follows. Consider a set N of n items containing a set

P of positive items with the others being negative. Let l and u be two nonnegative

integers with l < u, called the lower and upper threshold, respectively. A group test

applied to a subset S of items shows positive if S contains at least u positives, and

negative if at most l positives are present in S. If the number of positives in S is

between l and u, the test will show an arbitrary answer. The goal is still to identify

P . Clearly, the classic group testing problem is a special case of the threshold model

with l = 0 and u = 1.

2.3 The Probabilistic Method

We illustrate the probabilistic method by a simple example, which is presented in

Alon and Spencer [1].

The Ramsey number R(k, l) is the smallest integer n such that in any two-coloring

of the edges of a complete graph Kn on n vertices by red and blue, either there is a

6



red Kk (i.e., a complete subgraph on k vertices all of whose edges are colored red) or

there is a blue Kl. Ramsey [14] showed that R(k, l) is finite for any two integers k and

l. Here, we show that if

(
n

k

)
· 21−(k

2) < 1, then R(k, k) > n. Thus R(k, k) >
⌊
2

k
2

⌋
for

all k ≥ 3. Consider a random two-coloring of the edges of Kn obtained by coloring

each edge independently either red or blue, where each color is equally likely. For

any fixed set R of k vertices, let AR be the event that the induced subgraph of Kn

on R is monochromatic (i.e., that either all its edges are red or they are all blue).

Clearly, Pr(AR) = 21−(k
2). Since there are

(
n

k

)
possible choices for R, the probability

that at least one of the events AR occurs is at most

(
n

k

)
· 21−(k

2) < 1. Thus, with

positive probability, no event AR occurs and there is a two-coloring of Kn without a

monochromatic Kk, i.e., R(k, k) > n. Note that if k ≥ 3 and we take n =
⌊
2

k
2

⌋
, then

(
n

k

)
· 21−(k

2) <
21+ k

2

k!
· nk

2
k2

2

< 1

and hence R(k, k) >
⌊
2

k
2

⌋
for all k ≥ 3.

2.4 The Lovász Local Lemma

There is a trivial case in which one can show that a certain event holds with

positive, though small, probability. Indeed, if we have n mutually independent events

and each of them holds with probability at least p > 0, then the probability that

all events hold simultaneously is at least pn, which is positive, although it may be

exponentially small in n. It is natural to expect that the case of mutual independence

can be generalized to that of rare dependencies, and provide a more general way of

proving that certain events hold with positive, though small, probability. Such a

generalization is indeed possible and is stated in the Lovász Local Lemma.

Next, we review the main ideas of the Lovász Local Lemma, following the treat-
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ment described in Alon and Spencer [1].

Definition 2.4.1. Let A1, A2, · · · , An be events in an arbitrary probability space. A

graph G = (V, E) on the set of vertices V = {1, 2, · · · , n} is said to be a dependency

graph for the events A1, A2, · · · , An if for each i, 1 ≤ i ≤ n, the event Ai is mutually

independent of a set of all the other events except for those Aj with {i, j} ∈ E.

We’re now in the position to state the Lovász Local Lemma by skipping its proof:

Theorem 2.4.2. (The Lovász Local Lemma; General Case)

Let A1, A2, · · · , An be events in an arbitrary probability space and let G = (V, E)

be a dependency graph for them. Suppose there are real numbers x1, · · · , xn such

that 0 ≤ xi < 1 and Pr(Ai) ≤ xi ·
∏

{i,j}∈E(1 − xj) for all 1 ≤ i ≤ n. Then

Pr(
⋂n

i=1 Ai ) ≥
∏n

i=1(1 − xi). In particular, with positive probability no event Ai

holds.

The next corollary establishes a result that holds when all events have probability

at most p, for some constant p. In this corollary and elsewhere, e denotes the base of

natural logarithms (i.e., e ≈ 2.71828).

Corollary 2.4.3. (The Lovász Local Lemma; Symmetric Case)

Let A1, A2, · · · , An be events in an arbitrary probability space. Suppose that each event

Ai is mutually independent of a set of all the other events Aj but at most µ, and that

Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If e · p · (µ + 1) ≤ 1, then Pr(
⋂n

i=1 Ai ) > 0.

In the remaining of this thesis, our goal is to prove the existence of some kind of

matrix with the desired properties under some conditions, e.g., the number of rows

is large enough, by using Corollary 2.4.3. Thus deducing an upper bound for the

minimum size of this kind of matrix.
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Chapter 3

Known Results

3.1 d-Disjunct Matrices

For positive integers n and d, let [n] denote the set {1, 2, · · · , n} and

(
[n]

d

)
denote

the collection of all subsets of [n] with cardinality d. Let t(d, n) denote the minimum

number of rows for a d-disjunct matrix with n columns. Yeh [17] proves the following

theorem by using Corollary 2.4.3. For completeness, we include his proof in what

follows, with a little adjustment.

Theorem 3.1.1. [17]

t(d, n) ≤ (d + 1) ·
(

1 +
1

d

)d

·
{

1 + ln

[
(d + 1)

((
n

d + 1

)
−

(
n− d− 1

d + 1

))]}
.

Proof. Let M = (mij) be a
t

q
×n random matrix with entries in {1, 2, · · · , q} such

that Pr(mij = k) =
1

q
for 1 ≤ k ≤ q, and the entries mij are mutually independent.

Let M∗ be a t × n random {0, 1}-matrix converted from M by replacing each q-ary

alphabet by a unique q-digit binary column array with unit weight. For example,

when q = 3, the replacement can be

1 →
1
0
0

, 2 →
0
1
0

, 3 →
0
0
1

.

Let C1, · · · , Cn be the columns of M∗. For J ∈
(

[n]

d

)
and s ∈ [n]\J , let AJ,s be the

9



event that the union of columns Cj, j ∈ J , contains column Cs. For i ∈
[

t

q

]
, let

Ai,J,s be the event that mij = mis for some j ∈ J . Then

Pr(AJ,s) = Pr

 t
q⋂

i=1

Ai,J,s

 =

t
q∏

i=1

Pr(Ai,J,s)

=
[
1− Pr( Ai,J,s )

] t
q

=

[
1− q · 1

q
·
(

1− 1

q

)d
] t

q

=

[
1−

(
1− 1

q

)d
] t

q

.

Note that AJ,s is mutually independent of all the other events AJ ′,s′ except for those

with (J ′ ∪ {s′}) ∩ (J ∪ {s}) 6= φ. There are exactly

(d + 1) ·
[(

n

d + 1

)
−

(
n− d− 1

d + 1

)]
− 1

such events. According to Corollary 2.4.3, a t× n d-disjunct matrix exists whenever

e ·

[
1−

(
1− 1

q

)d
] t

q

· (d + 1) ·
[(

n

d + 1

)
−

(
n− d− 1

d + 1

)]
≤ 1.

holds. Taking natural logarithm to both sides yields the equivalent inequality

t ≥ q ·
1 + ln

[
(d + 1) ·

((
n

d + 1

)
−

(
n− d− 1

d + 1

))]
− ln

[
1−

(
1− 1

q

)d
] .(3.1)

Using the fact that − ln(1 − x) ≥ x for 0 ≤ x < 1, we conclude that whenever the

inequality

t ≥ q ·
1 + ln

[
(d + 1) ·

((
n

d + 1

)
−

(
n− d− 1

d + 1

))]
(

1− 1

q

)d
(3.2)

holds, (3.1) holds. To minimize the R.H.S. of (3.2), we let q = d + 1 and complete

the proof.
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3.2 (k, m, n)-Selectors

We begin this section with the definition of a (k,m, n)-selector.

Definition 3.2.1. Given integers k,m, and n, with 1 ≤ m ≤ k ≤ n, we say that

a t × n binary matrix M is a (k, m, n)-selector if any submatrix of M obtained by

choosing k out of n arbitrary columns of M contains at least m distinct rows of the

identity matrix Ik. The integer t is the size of the (k,m, n)-selector.

As the relationship between (k,m, n)-selectors and group testing, De Bonis,

Ga̧sieniec, and Vaccaro [5] proved that there exists a two-stage group testing algorithm

for finding up-to-d positives out of n items and that uses a number of tests equal to

t + k − 1, where t is the size of a (k, d + 1, n)-selector.

Let ts(k, m, n) denote the minimum size of a (k, m, n)-selector. De Bonis, Ga̧sieniec,

and Vaccaro [5] obtain upper bounds for ts(k,m, n) by translating the problem into

the hypergraph language. Still for completeness, we include their proof in what fol-

lows. Given a finite set X and a family F of subsets of X, a hypergraph is a pair

H = (X,F). Elements of X will be called vertices of H, and elements of F will be

called hyperedges of H. A cover of H is a subset T ⊆ X such that for any hyperedge

E ∈ F we have T ∩ E 6= φ. The minimum size of a cover of H will be denoted by

τ(H). A fundamental result by Lovász [13] implies that

τ(H) <
|X|

minE∈F |E|
(1 + ln ∆),(3.3)

where ∆ = maxx∈X |{E : x ∈ E ∈ F}|.

Essentially, Lovász proves that, by greedily choosing vertices in X that intersect

the maximum number of yet nonintersected hyperedges of H, one obtains a cover of

a size smaller than the R.H.S. of (3.3). Our aim is to show that (k,m, n)-selectors
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are covers of properly defined hypergraphs. Lovász’s result (3.3) will then provide us

with the desired upper bound on the minimum selector size.

We shall proceed as follows. Let X be the set of all binary vectors x = (x1, · · · , xn)

of length n containing n/k 1’s (the value n/k is a consequence of an optimized choice

whose justification can be skipped here). For any integer i, 1 ≤ i ≤ k, denote by ai

the binary vector of length k having all components equal to zero with the exception

of the component in position i. Moreover, for any set of indices S = {i1, · · · , ik},

with 1 ≤ i1 < i2 < · · · < ik ≤ n, and for any binary vector a = (a1, · · · , ak) ∈

{a1, · · · , ak}, define the set of binary vectors Ea,S = {x = (x1, · · · , xn) ∈ X : xi1 =

a1, · · · , xik = ak}. For any set A ⊆ {a1, · · · , ak} of size r, r = 1, · · · , k, and any

set S ⊆ {1, · · · , n} with |S| = k, define EA,S =
⋃

a∈A Ea,S. For any r = 1, · · · , k

we define Fr = {EA,S : A ⊂ {a1, · · · , ak}, |A| = r, S ⊆ {1, · · · , n}, |S| = k} and

the hypergraph Hr = (X,Fr). We claim that any cover T of Hk−m+1 is a (k,m, n)-

selector; i.e., any submatrix of k arbitrary columns of T contains at least m distinct

rows of the identity matrix Ik. The proof is done by contradiction. Assume that

there exists a set of indices S = {i1, · · · , ik} such that the submatrix of T obtained

by considering only the columns of T with indices i1, · · · , ik contains at most m− 1

distinct rows of Ik. Let such rows be aj1 , · · · , ajs , with s ≤ m−1; let A be any subset

of {a1, · · · , ak} \ {aj1 , · · · , ajs} of cardinality |A| = k − m + 1; and let EA,S be the

corresponding hyperedge of Hk−m+1. By construction we have that T ∩ EA,S = φ,

contradicting the fact that T is a cover for Hk−m+1.

The above proof that (k,m, n)-selectors coincide with the covers of Hk−m+1 allows

us to use Lovász’s result (3.3) to give upper bounds for ts(k,m, n).

12



Theorem 3.2.2. [5]

ts(k,m, n) <
ek2

k −m + 1
ln

n

k
+

ek(2k − 1)

k −m + 1
,(3.4)

where e = 2.71828... is the base of the natural logarithm.

Proof. We need only to evaluate the quantities |X|, min{|E| : E ∈ Fk−m+1}, and ∆

for the hypergraph Hk−m+1. By definition |X| =

(
n

n/k

)
. Moreover, each hyperedge

EA,S of Hk−m+1 is the union of k−m+1 disjoint sets Ea,S; therefore it has cardinality

|EA,S| = (k −m + 1) · |Ea,S| = (k −m + 1)

(
n− k

n/k − 1

)
.

To compute ∆, observe that each x ∈ X belongs to

(
n/k

1

)(
n− n/k

k − 1

)
distinct sets

Ea,S, and each Ea,S belongs to

(
k − 1

k −m

)
distinct hyperedges EA,S. Therefore, for

Hk−m+1 we have

∆ =

(
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

)
.

Hence one has

t(k,m, n) <

(
n

n/k

)
(k −m + 1)

(
n− k

n/k − 1

) [
1 + ln

(
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

)]
.(3.5)
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For k ∈ {1, 2}, it is

(
n

n/k

)
(

n− k

n/k − 1

) < 2k, whereas for k ≥ 3 it is

(
n

n/k

)
(

n− k

n/k − 1

) = k
n− 1

n− n/k
· n− 2

n− n/k − 1
× · · · × n− k + 1

n− k − n/k + 2

≤ k

(
n− k + 1

n− k − n/k + 2

)k−1

= k

(
k(n− k + 1)

k(n− k + 1)− (n− k)

)k−1

= k

(
1 +

n− k

k(n− k + 1)− (n− k)

)k−1

≤ k

(
1 +

1

k − 1

)k−1

< ek.

Moreover, using the well-known inequality

(
a

b

)
≤

(ea

b

)b

, one can conclude

(
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

)
≤

(
k − 1

k −m

)k−m

ek−m n

k

(
n− n/k

k − 1

)k−1

ek−1

= e2k−m−1

(
1 +

m− 1

k −m

)k−m (n

k

)k

≤ e2k−m−1

(
1 +

m

k −m

)k−m (n

k

)k

≤ e2k−m−1em
(n

k

)k

.

The theorem now follows from (3.5) and the above inequalities.
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Chapter 4

Main Results

4.1 (d, r]-Disjunct Matrices

To generalize Theorem 3.1.1, we start by giving a more general definition.

Definition 4.1.1. A t×n binary matrix M is called (d, r]-disjunct if the union of any

d columns does not contain the intersection of any other r columns in M . Clearly,

(d, 1]-disjunctness is precisely d-disjunctness.

As the relationship between (d, r]-disjunct matrices and nonadaptive group test-

ing, Chen, Du and Hwang [2] proved that a (d, r]-disjunct matrix can identify the

up-to-d positives on the complex model.

Let t(n, d, r] denote the minimum number of rows for a (d, r]-disjunct matrix with

n columns. We have the following generalization of Theorem 3.1.1, followed by the

proof using the same approach used in the proof of Theorem 3.1.1.

Theorem 4.1.2.

t(n, d, r] ≤
(

1 +
d

r

)r

·
(
1 +

r

d

)d

·(4.1) {
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]}
.

Proof. Let M and M∗ be as in the proof of Theorem 3.1.1. Again let C1, · · · , Cn

be the columns of M∗. For D ∈
(

[n]

d

)
and R ∈

(
[n]

r

)
with D ∩ R = φ, let AD,R be

15



the event that the union of columns Cj, j ∈ D, contains the intersection of columns

Ck, k ∈ R. For i ∈
[

t

q

]
, let Ai,D,R be the event that mik1 = mik2 for all k1 6= k2 ∈ R

and mij 6= mik1 for all j ∈ D. Then

Pr(AD,R) = Pr

 t
q⋂

i=1

Ai,D,R

 =

t
q∏

i=1

Pr(Ai,D,R)

=
[
1− Pr( Ai,D,R )

] t
q

=

[
1− q ·

(
1

q

)r

·
(

1− 1

q

)d
] t

q

=

[
1−

(
1

q

)r−1 (
1− 1

q

)d
] t

q

.

Note that AD,R is mutually independent of all the other events AD′,R′ except for those

with (D′ ∪R′) ∩ (D ∪R) 6= φ. There are exactly(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)
− 1

such events. According to Corollary 2.4.3, a t×n (d, r]-disjunct matrix exists whenever

e ·

[
1−

(
1

q

)r−1 (
1− 1

q

)d
] t

q

·[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
≤ 1

holds. Taking natural logarithm to both sides yields the equivalent inequality

t ≥ q ·
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
− ln

[
1−

(
1

q

)r−1 (
1− 1

q

)d
] .(4.2)

Using the fact that − ln(1− x) ≥ x for 0 ≤ x < 1, we conclude that whenever

t ≥ q ·
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
(

1

q

)r−1 (
1− 1

q

)d
(4.3)
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holds, (4.2) holds. To minimize the R.H.S. of (4.3), we let q =
d

r
+ 1 and complete

the proof.

In the above proof of Theorem 4.1.2, some small problems may occur. For example,

with the restriction that the number of rows of M and q must be positive integers,

how about q doesn’t divide t or r doesn’t divide d ? For this sake, we provide another

proof of Theorem 4.1.2 by omitting the process converting M into M∗ and letting

M be a random {0, 1}-matrix directly. (Note that in the remaining sections of this

chapter, we adopt the above technique.) However, if q divides t and r divides d, the

above proof says more: the column sum of the desired matrix equals a constant
t

q
.

The following is our second proof of Theorem 4.1.2.

Proof. Let M = (mij) be a t × n random {0, 1}-matrix with Pr(mij = 1) = p,

Pr(mij = 0) = 1− p, and the entries mij are mutually independent. Let C1, · · · , Cn

be the columns of M . For D ∈
(

[n]

d

)
and R ∈

(
[n]

r

)
with D ∩ R = φ, let AD,R be

the event that the union of columns Cj, j ∈ D, contains the intersection of columns

Ck, k ∈ R. Then

Pr(AD,R) =
[
1− pr · (1− p)d

]t

.

Similar to the first proof, a t× n (d, r]-disjunct matrix exists whenever

e ·
[
1− pr · (1− p)d

]t

·[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
≤ 1

holds, which is equivalent to

t ≥
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
− ln

[
1− pr · (1− p)d

] .(4.4)
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Using the fact that − ln(1− x) ≥ x for 0 ≤ x < 1, we conclude that whenever

t ≥
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
pr · (1− p)d

(4.5)

holds, (4.4) holds. To minimize the R.H.S. of (4.5), we let p =
r

d + r
and complete

the proof.

Chen, Fu and Hwang [3] also provided an upper bound for t(n, d, r]:

t(n, d, r] <

(
1 +

d

r

)r

·
(
1 +

r

d

)d

·
{

1 + (d + r) ·
[
1 + ln

(
n

d + r
+ 1

)]}
.(4.6)

Observe that the bound in (4.6) is O((d + r) ln n) and the bound in (4.1) is O((d +

r − 1) ln n), which is a little bit better.

Note that Stinson and Wei [16] provided two asymptotic upper bounds for t(n, d, r]

by using two other structures. One bound is O

((
d + r

r

)
(dr)log∗ n log n

)
, where the

function log∗ is defined recursively by log∗(1) = 1 and log∗ n = log∗(dlog ne) + 1 if

n > 1. The bound of the other one is O

((
d + r

r

)
log n

)
. Also note that their

bounds are asymptotic and our bound in (4.1) is non-asymptotic.

4.2 (d, r)-Disjunct Matrices

We present another generalization of Theorem 3.1.1 in this section.

Definition 4.2.1. A t × n binary matrix M is called (d, r)-disjunct if the union of

any d columns does not contain the union of any other r columns in M . Clearly,

(d, 1)-disjunctness is precisely d-disjunctness.

As the relationship between (d, r)-disjunct matrices and nonadaptive group test-

ing, De Bonis and Vaccaro [6] proved that the (h, d)-disjunctness is a necessary con-

dition for identifying P on the (d, h)-inhibitor model.
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Let t(n, d, r) denote the minimum number of rows for a (d, r)-disjunct matrix with

n columns. We have the following generalization of Theorem 3.1.1.

Theorem 4.2.2.

t(n, d, r) ≤
(

1 +
d

r

)
·
(
1 +

r

d

) d
r ·(4.7) {

1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]}
.

Proof. Let M = (mij) be a t × n random {0, 1}-matrix with Pr(mij = 1) = p,

Pr(mij = 0) = 1− p, and the entries mij are mutually independent. Let C1, · · · , Cn

be the columns of M . For D ∈
(

[n]

d

)
and R ∈

(
[n]

r

)
with D ∩ R = φ, let AD,R

be the event that the union of columns Cj, j ∈ D, contains the union of columns

Ck, k ∈ R. Then

Pr(AD,R) =
{

1− (1− p)d · [1− (1− p)r]
}t

.

Similar to the proof of Theorem 4.1.2, a t× n (d, r)-disjunct matrix exists whenever

e ·
{

1− (1− p)d · [1− (1− p)r]
}t

·[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
≤ 1

holds, which is equivalent to

t ≥
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
− ln

{
1− (1− p)d · [1− (1− p)r]

} .(4.8)

Using the fact that − ln(1− x) ≥ x for 0 ≤ x < 1, we conclude that whenever

t ≥
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
(1− p)d · [1− (1− p)r]

(4.9)

holds, (4.8) holds. To minimize the R.H.S. of (4.9), we let p = 1 −
(

d

d + r

) 1
r

and

complete the proof.
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Du and Hwang [9] proved that a (k,m, n)-selector is (m− 1, k −m + 1)-disjunct,

which implies that a (d + r, d + 1, n)-selector is (d, r)-disjunct. By Theorem 3.2.2, we

have

t(n, d, r) <
e(d + r)2

r
ln

n

d + r
+

e(d + r)[2(d + r)− 1]

r
.(4.10)

Note that the bound in (4.10) is O((d + r) ln n) and the bound in (4.7) is O((d + r−

1) ln n), which is a little bit better.

4.3 (d, s out of r]-Disjunct Matrices

In section 4.1 and 4.2, two versions of generalizations of Theorem 3.1.1 are given.

However, there exists a more generalized category containing these two versions, which

is presented in this section.

Definition 4.3.1. For 1 ≤ s ≤ r, a t × n binary matrix M is called (d, s out of r]-

disjunct if for any d columns and any other r columns of M , there exists a row

index in which none of the d columns appear and at least s of the r columns do.

Clearly, (d, 1 out of r]-disjunctness is precisely (d, r)-disjunctness and (d, r out of r]-

disjunctness is precisely (d, r]-disjunctness.

Let t(n, d, r, s] denote the minimum number of rows for a (d, s out of r]-disjunct

matrix with n columns. We have the following theorem:

Theorem 4.3.2.

t(n, d, r, s] ≤
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
fd,r,s(p)

(4.11)

for all 0 < p < 1, where

fd,r,s(p) = (1− p)d ·

[
1−

s−1∑
i=0

(
r

i

)
pi(1− p)r−i

]
.
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Proof. Let M = (mij) be a t × n random {0, 1}-matrix with Pr(mij = 1) = p,

Pr(mij = 0) = 1− p, and the entries mij are mutually independent. Let C1, · · · , Cn

be the columns of M . For D ∈
(

[n]

d

)
and R ∈

(
[n]

r

)
with D ∩ R = φ, let AD,R be

the event that there exists a row index in which none the columns Cj, j ∈ D, appear

and at least s of the columns Ck, k ∈ R, do. Then

Pr(AD,R) =

{
1− (1− p)d ·

[
1−

s−1∑
i=0

(
r

i

)
pi(1− p)r−i

]}t

.(4.12)

Define the function

fd,r,s(p) = (1− p)d ·

[
1−

s−1∑
i=0

(
r

i

)
pi(1− p)r−i

]

for 0 < p < 1. Then (4.12) becomes

Pr(AD,R) = [1− fd,r,s(p)]t .

Similar to the proof of Theorem 4.1.2, a t × n (d, s out of r]-disjunct matrix exists

whenever

e · [1− fd,r,s(p)]t ·
[(

n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
≤ 1

holds, which is equivalent to

t ≥
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
− ln [1− fd,r,s(p)]

.(4.13)

Using the fact that − ln(1− x) ≥ x for 0 ≤ x < 1, we conclude that whenever

t ≥
1 + ln

[(
n

d

)(
n− d

r

)
−

(
n− (d + r)

d

)(
n− (d + r)− d

r

)]
fd,r,s(p)

holds, (4.13) holds, completing the proof.
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4.4 (k, m, n)-Selectors

We can use similar approaches to obtain an upper bound for the minimum size of

a (k, m, n)-selector.

Theorem 4.4.1.

ts(k,m, n) ≤ m(
k

m

)
·m!

·

[
k ·

(
1 +

1

k − 1

)k−1
]m

·
{

1 + ln

[(
n

k

)
−

(
n− k

k

)]}
.

(4.14)

Proof. Let M∗ = (mij) be a t × n random binary matrix with Pr(mij = 1) = p,

Pr(mij = 0) = 1− p, and the entries mij are mutually independent. For K ∈
(

[n]

k

)
and M ∈

(
[t]

m

)
, define AK be the event that the t×k submatrix of M∗ corresponding

to K contains at most m − 1 rows of Ik, and AK,M be the event that the m × k

submatrix of M∗ corresponding to K and M doesn’t consist of m distinct rows of Ik.

Observe that

AK =
⋂

M∈([t]
m)

AK,M .

Let Mi = {m · (i− 1) + 1, m · (i− 1) + 2, · · · , mi} for 1 ≤ i ≤ t

m
. Then

Pr(AK) = Pr

 ⋂
M∈([t]

m)

AK,M


≤ Pr

 t
m⋂

i=1

AK,Mi


=

[
1−

(
k

m

)
·m! · pm · (1− p)m·(k−1)

] t
m

.

Note that AK is mutually independent of all the other events AK′ except for those

with K ∩K ′ 6= φ. There are exactly(
n

k

)
−

(
n− k

k

)
− 1
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such events. According to Corollary 2.4.3, a t× n (k,m, n)-selector exists whenever

e ·
[
1−

(
k

m

)
·m! · pm · (1− p)m·(k−1)

] t
m

·
[(

n

k

)
−

(
n− k

k

)]
≤ 1.

holds. Taking natural logarithm to both sides yields the equivalent inequality

t ≥ m ·
1 + ln

[(
n

k

)
−

(
n− k

k

)]
− ln

[
1−

(
k

m

)
·m! · pm · (1− p)m·(k−1)

] .(4.15)

Using the fact that − ln(1− x) ≥ x for 0 ≤ x < 1, we conclude that whenever

t ≥ m ·
1 + ln

[(
n

k

)
−

(
n− k

k

)]
(

k

m

)
·m! · pm · (1− p)m·(k−1)

(4.16)

holds, (4.15) holds. To minimize the R.H.S. of (4.16), we let p =
1

k
and complete the

proof.

As m = 1, the bound in (3.4) is O(k ln n) and the bound in (4.14) is O((k−1) ln n),

which is a little bit better.
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Chapter 5

Conclusion

In Theorem 4.3.2, we define a function fd,r,s(p) of p. To minimize the R.H.S. of the

inequality (4.11), we must maximize fd,r,s(p), which is indeed a tough task. However,

the maximum does exist, since t(n, d, r, s] is a positive integer for fixed n, d, r, and s.

We leave this as an open problem. Also, in our proof of Theorem 4.4.1, we partition

the row indices into
t

m
parts of equal size to obtain an approximation of Pr(AK).

However, when m ≥ 2, this approximation is not as good as we expect. Finally, we

point out that all bounds in Chapter 4 are obtained by using probabilistic method.

We do wish that deterministic constructions can be discovered in the near future.
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