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Abstract

In the application to computational molecular biology, a group testing algorithm
is called a pooling design and the composition of each test is called a pool. The num-
ber of tests (pools) reflects to the time and cost we have to spend on the experiment.
Therefore, minimizing the number of tests with fixed number of items in either se-
quential or nonadaptive algorithms is the most important task in the study of group
testing algorithms.

In this thesis, we mainly apply the Lovéasz Local Lemma to obtain upper bounds
for the minimum number of rows for (d, r|-disjunct matrices, (d, r)-disjunct matrices,
(d, s out of r]-disjunct matrices, and (k, m, n)-selectors with n columns, respectively,
i.e., upper bounds for t(n,d,r|, t(n,d,r), t(n,d,r,s], and ts(k,m,n), respectively,

which are listed in the following:
t(n,d,r]§(1+£l)r-<1+§>d.
e @) -0 0TS
t(n,d,r) <1+ ) (1+g)i
(I -C 8]
Qe

t(n,d,r,s| <
( fd,r,s(p)

for all 0 < p < 1, where

furolp) = (1= p)"- [1 S (e —p)f—f] ,
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Chapter 1

Introduction

Combinatorial group testing is a basic tool in conducting experiments of tests
which can be applied to computational molecular biology. A brief description of the
basic model is as follows: Given a set N of n items consisting of at most d positive
(used to be called defective) items with the others being negative (used to be called
good). Let P denote the set of all positive items. The problem is to identify P. The
tool of identification is the so-called group tests, sometimes called pools, while a group
test is applicable to an arbitrary subset S of N with two possible outcomes; a negative
outcome indicates that all items in S are negative; a positive outcome indicates that
there are at least one positive item in S, not knowing which one or how many. The
goal is to minimize the number of such tests in identifying P.

Li [12] started to consider combinatorial group testing where the presumed knowl-
edge on the set of defectives is that it must be a member, called a sample, of a given
family called a sample space. For instance, the sample space could consist of all
d-subsets of the n items when the presumed knowledge is that there are exactly d
defectives among the n items. We will refer to this space as the S(d,n) space while
the S(d,n) space specifies that d is an upper bound of the number of defectives.

Group testing algorithms (pooling designs) can be generally divided into two types:

sequential and nonadaptive. A sequential algorithm conducts the tests one by one and



the outcomes of all previous tests can be used to set up the later test. A nonadaptive
algorithm specifies all tests in advance so that they can be conducted simultaneously;
thus forbidding using the information of previous tests to design later ones. In most
applications to molecular biology, an experiment can be time-consuming. Therefore,
it is much preferable to have a nonadaptive algorithm. In this thesis we'll focus on
some matrices used for nonadaptive group testing.

There are various models for group testing. In screening clone library, the goal is
to determine which clones in the library hybridize with a given probe in an efficient
fashion. A clone is said to be positive if it hybridizes with the given probe, and
negative otherwise. In practical applications, there is another category of clones
besides positive and negative clones, called inhibitors whose effect is to neutralize
positive clones. Therefore, we shall have models of group testing with or without
inhibitors. Also in applications, we may face the situation that the property of being
positive or negative is defined on subsets of items instead of on individual items.
Such models are known as complex models. The study of complex models does have
a significant impact in recent years. As a generalization of the classical group testing
problem, the threshold model appears.

The probabilistic method is a useful tool for tackling many problems in discrete
mathematics. Roughly speaking, the method works as follows. Trying to prove that a
structure with certain desired properties exists, one defines an appropriate probability
space of structures and then shows that the desired properties hold in this space with
positive probability. Among various probabilistic methods, the Lovasz Local Lemma,
first proved by Erdés and Lovész [10], is extremely powerful and plays the main role
in this thesis.

In this thesis, we first introduce a few types of matrices such as separable or



disjunct matrices and also the relationship between them and nonadaptive group
testing. Then we introduce some models for group testing. Next, also in Chapter
2, we illustrate the probabilistic method by a simple example, followed by reviewing
our main tool, the Lovasz Local Lemma. In Chapter 3, we review two known results:
d-disjunct matrices by Yeh [17] and (k, m,n)-selectors by De Bonis, Gasieniec, and
Vaccaro [5]. Finally, in Chapter 4, we obtain various upper bounds for the minimum
number of rows for (d,r]-disjunct matrices, (d,r)-disjunct matrices, (d, s out of r|-
disjunct matrices, and (k, m,n)-selectors with n columns, respectively, by applying

the Lovasz Local Lemma.



Chapter 2

Preliminaries

2.1 Nonadaptive Group Testing

A nonadaptive group testing algorithm can be represented by a binary matrix
M = (m;;) where rows are indexed by pools, columns by items, and m;; = 1 if and
only if item j is in pool 7. For convenience, we identify a column Cj of M with a set
of row indices corresponding to the 1-entries in C;. Hence we could consider union or
intersection of some columns of M. In the classic group testing problem, three types
of binary matrices have been the major tools in understanding and constructing a

pooling design.

Definition 2.1.1. A t X n binary matrix M is called d-separable if for any two
distinct d-sets D, D' of columns of M, |JD # |J D/, i.e., no two unions of d columns

of M are the same.

Definition 2.1.2. A t x n binary matrix M is called d-separable if for any two
distinct sets D, D’ of columns of M with |D|,|D'| < d, |JD # D/, i.e., no two

unions of at most d columns of M are the same.

Definition 2.1.3. A t x n binary matrix M is called d-disjunct if the union of any

d columns does not contain any other column in M.



We explain the properties in the above definitions in terms of pooling designs.
Consider the sample space S(d,n) where exact d positive items are present. The
d-separability property shows that each sample in S(d, n) induces a different outcome
vector. Hence there is a 1-1 correspondence between outcome vectors and samples in
S(d,n), and the d positive items can be identified. Moreover, the d-separability is also
a necessary condition for a matrix M used to identify the d positive items. Similarly,
the d-separability shows that samples in S(d,n), where at most d positive items are
present, are distinguishable while the d-disjunctness guarantees an appearing of each

negative item in some negative pool.

2.2 Models

More detailed descriptions of some models for group testing are given in this

section.
2.2.1 The Inhibitor Model

In some applications, an item can be positive, negative, or anti-positive in the
sense that the presence of anti-positives cancels the effect of positives. They are
called inhibitors in the literature. In the simplest inhibitor model, first proposed by
Farach et al. [11], the presence of an inhibitor in a pool dictates a negative outcome,
regardless of the presence of positive items in the pool.

Consider a set N of n items consisting of at most d positives and at most h in-
hibitors with the others being negatives. Let P denote the set of all positive items and
I the set of all inhibitors. The usual concern in the inhibitor model is to identify the
set P. Another interesting problem one can consider is to also identify the inhibitor

set I.



2.2.2 The Complex Model

In the complex model, we consider a set N of n items and an unknown family
P = {P,} of subsets of N where each such subset is a cause of a certain given
biological phenomenon. A set S of items which is a candidate of a member of P is
called a compler while members of P are called positive complexes. The problem is
to identify P from a given set of complexes. An experiment can be applied to an
arbitrary complex S with two possible outcomes; a positive outcome indicates that S

contain some P; € P, while a negative outcome indicates the remaining cases.
2.2.3 The Threshold Model

The threshold model is quite a natural generalization of the classical group testing
problem, which is described as follows. Consider a set N of n items containing a set
P of positive items with the others being negative. Let [ and u be two nonnegative
integers with [ < u, called the lower and upper threshold, respectively. A group test
applied to a subset S of items shows positive if S contains at least u positives, and
negative if at most [ positives are present in S. If the number of positives in S is
between [ and u, the test will show an arbitrary answer. The goal is still to identify
P. Clearly, the classic group testing problem is a special case of the threshold model

withl=0and u = 1.

2.3 The Probabilistic Method

We illustrate the probabilistic method by a simple example, which is presented in
Alon and Spencer [1].
The Ramsey number R(k,[) is the smallest integer n such that in any two-coloring

of the edges of a complete graph K,, on n vertices by red and blue, either there is a



red K} (i.e., a complete subgraph on k vertices all of whose edges are colored red) or
there is a blue K;. Ramsey [14] showed that R(k,[) is finite for any two integers k and
. Here, we show that if (Z) -917(2) < 1, then R(k, k) > n. Thus R(k, k) > {TJ for
all £ > 3. Consider a random two-coloring of the edges of K, obtained by coloring
each edge independently either red or blue, where each color is equally likely. For
any fixed set R of k vertices, let Ar be the event that the induced subgraph of K,
on R is monochromatic (i.e., that either all its edges are red or they are all blue).

Clearly, Pr(Ag) = 91-(5). Since there are (Z) possible choices for R, the probability

k

n
that at least one of the events Ag occurs is at most <k> . 21_(2) < 1. Thus, with

positive probability, no event Ag occurs and there is a two-coloring of K, without a

k
2

monochromatic Ky, i.e., R(k, k) > n. Note that if £ > 3 and we take n = {2 J, then

n k ol+5
.21*(2) < — <1
(k) kL ol

and hence R(k, k) > PEJ for all k > 3.
2.4 The Lovasz Local Lemma

There is a trivial case in which one can show that a certain event holds with
positive, though small, probability. Indeed, if we have n mutually independent events
and each of them holds with probability at least p > 0, then the probability that
all events hold simultaneously is at least p™, which is positive, although it may be
exponentially small in n. It is natural to expect that the case of mutual independence
can be generalized to that of rare dependencies, and provide a more general way of
proving that certain events hold with positive, though small, probability. Such a
generalization is indeed possible and is stated in the Lovasz Local Lemma.

Next, we review the main ideas of the Lovasz Local Lemma, following the treat-



ment described in Alon and Spencer [1].

Definition 2.4.1. Let A;, Ay, - , A, be events in an arbitrary probability space. A
graph G = (V, E) on the set of vertices V = {1,2,--- ,n} is said to be a dependency
graph for the events Aq, Ag, -+, A, if for each 7,1 < i < n, the event A; is mutually

independent of a set of all the other events except for those A; with {7,j} € E.
We’re now in the position to state the Lovasz Local Lemma by skipping its proof:

Theorem 2.4.2. (The Lovdsz Local Lemma; General Case)

Let Ay, Ag, -+ | A, be events in an arbitrary probability space and let G = (V, E)
be a dependency graph for them. Suppose there are real numbers xq,--- ,x, such
that 0 < z; < 1 and Pr(4;) < x; - [[; ep(1 — ;) for all 1 < i < n. Then
Pr(N, A)) > TI,(1 — ;). In particular, with positive probability no event A,

holds.

The next corollary establishes a result that holds when all events have probability
at most p, for some constant p. In this corollary and elsewhere, e denotes the base of

natural logarithms (i.e., e ~ 2.71828).

Corollary 2.4.3. (The Lovdsz Local Lemma,; Symmetric Case)
Let Ay, As, - -, A, be events in an arbitrary probability space. Suppose that each event
A; s mutually independent of a set of all the other events A; but at most j1, and that

Pr(A) <pforall1<i<n. Ife-p-(u+1)<1, then Pr((;_, 4;) > 0.

In the remaining of this thesis, our goal is to prove the existence of some kind of
matrix with the desired properties under some conditions, e.g., the number of rows
is large enough, by using Corollary 2.4.3. Thus deducing an upper bound for the

minimum size of this kind of matrix.



Chapter 3

Known Results

3.1 d-Disjunct Matrices

For positive integers n and d, let [n] denote the set {1,2,--- ,n} and <[Z]) denote
the collection of all subsets of [n] with cardinality d. Let ¢(d,n) denote the minimum
number of rows for a d-disjunct matrix with n columns. Yeh [17] proves the following
theorem by using Corollary 2.4.3. For completeness, we include his proof in what

follows, with a little adjustment.

Theorem 3.1.1. [17]

t(d,n) < (d+1)- <1+%l)d~ {1+1n [(d+1) ((dil) - <”;i;1>)”

i
Proof. Let M = (m;;) be a — x n random matrix with entries in {1,2,--- , ¢} such
1
that Pr(m;; = k) = — for 1 <k < ¢, and the entries m,;; are mutually independent.
q
Let M* be a t x n random {0, 1}-matrix converted from M by replacing each g-ary

alphabet by a unique ¢-digit binary column array with unit weight. For example,

when ¢ = 3, the replacement can be

1 0 0
l1— 0, 2—1, 3— 0.
0 0 1

Let C1,---,C, be the columns of M*. For J € ([Z]) and s € [n]\J, let A;, be the

9



t
event that the union of columns Cj, j € J, contains column C,. For i € [—}, let
q

A; ;s be the event that m;; = m;, for some j € J. Then

Pr(Ass) = Pr| (A | = [ Pr(4is)
=1 =1

Note that A, is mutually independent of all the other events Ay o except for those

with (J'U{s'}) N (JU{s}) # ¢. There are exactly

(i) (i)

such events. According to Corollary 2.4.3, a t X n d-disjunct matrix exists whenever

t

) T (B R e

holds. Taking natural logarithm to both sides yields the equivalent inequality

(3.1) t>q.1+ln :<d+1)'(<dil)<jdi1l>)]
- (1-4)]

Using the fact that —In(1 —2) > 2z for 0 < z < 1, we conclude that whenever the

6 .

inequality

) t>q.1+1n[(d+1)'<<dii>d (”;izl»}
(-2)

holds, (3.1) holds. To minimize the R.H.S. of (3.2), we let ¢ = d + 1 and complete

the proof. [

10



3.2 (k,m,n)-Selectors

We begin this section with the definition of a (k,m, n)-selector.

Definition 3.2.1. Given integers k,m, and n, with 1 < m < k < n, we say that
a t x n binary matrix M is a (k,m,n)-selector if any submatrix of M obtained by
choosing k out of n arbitrary columns of M contains at least m distinct rows of the

identity matrix I. The integer ¢ is the size of the (k, m,n)-selector.

As the relationship between (k, m,n)-selectors and group testing, De Bonis,
Gasieniec, and Vaccaro [5] proved that there exists a two-stage group testing algorithm
for finding up-to-d positives out of n items and that uses a number of tests equal to
t + k — 1, where ¢ is the size of a (k,d + 1, n)-selector.

Let ts(k, m,n) denote the minimum size of a (k, m, n)-selector. De Bonis, Gasieniec,
and Vaccaro [5] obtain upper bounds for ¢,(k, m,n) by translating the problem into
the hypergraph language. Still for completeness, we include their proof in what fol-
lows. Given a finite set X and a family F of subsets of X, a hypergraph is a pair
H = (X, F). Elements of X will be called vertices of H, and elements of F will be
called hyperedges of H. A cover of H is a subset T' C X such that for any hyperedge
E € F we have TN E # ¢. The minimum size of a cover of ‘H will be denoted by

7(H). A fundamental result by Lovész [13] implies that

| X|
3.3 H) < ———(1+1InA),
(3.3) () m1nE€f|E]( )

where A = max,ex {E: 2z € E € F}|.
Essentially, Lovasz proves that, by greedily choosing vertices in X that intersect
the maximum number of yet nonintersected hyperedges of H, one obtains a cover of

a size smaller than the R.H.S. of (3.3). Our aim is to show that (k,m,n)-selectors

11



are covers of properly defined hypergraphs. Lovész’s result (3.3) will then provide us
with the desired upper bound on the minimum selector size.

We shall proceed as follows. Let X be the set of all binary vectors x = (z1,--- ,z,)
of length n containing n/k 1’s (the value n/k is a consequence of an optimized choice
whose justification can be skipped here). For any integer i, 1 < i < k, denote by a;
the binary vector of length £ having all components equal to zero with the exception
of the component in position i. Moreover, for any set of indices S = {iy, - iy},
with 1 <4 < iy < -+ < i < n, and for any binary vector a = (ay,--- ,a) €
{a1,---,a}, define the set of binary vectors Ep s = {x = (z1, -+ ,2,) € X : 7, =
ap,---,x; = ag}y. For any set A C {ay,---,a,} of size r, r = 1,--- |k, and any

set S C {l,---,n} with |S| = k, define Exs = |,y Pas. For any r = 1,--- |k

acA
we define F, = {Ess : A C {ay,--,ax}, |[A] =7, 5 C{l,---,n}, |S| = k} and
the hypergraph H, = (X, F,). We claim that any cover T' of Hy_,,11 is a (k, m,n)-

selector; i.e., any submatrix of k arbitrary columns of 7' contains at least m distinct

rows of the identity matrix Ix. The proof is done by contradiction. Assume that

there exists a set of indices S = {iy,--- ,ix} such that the submatrix of 7" obtained
by considering only the columns of T with indices i1, - - - , %, contains at most m — 1
distinct rows of I;. Let such rows be a;,,--- ,a,,, with s < m—1; let A be any subset

of {aj,---,a,} \ {a;,, -+ ,a;,} of cardinality |A| = k — m + 1; and let E4 g be the
corresponding hyperedge of Hy_,,41. By construction we have that TN Es g = ¢,
contradicting the fact that 7" is a cover for Hy_,,11.

The above proof that (k,m, n)-selectors coincide with the covers of Hy_,,+1 allows

us to use Lovdsz’s result (3.3) to give upper bounds for ts(k, m,n).

12



Theorem 3.2.2. [5]

ek? n  ek(2k —1)

4 e
(3:4) alkomon) < A e

where e = 2.71828... is the base of the natural logarithm.

Proof. We need only to evaluate the quantities | X|, min{|E| : E € Fy_myi1}, and A

for the hypergraph Hy_,,+1. By definition | X| = ( ) Moreover, each hyperedge

n
n/k

E4 g of Hi—m+1 is the union of k —m+1 disjoint sets I, g; therefore it has cardinality

n—=k
|Basl = (k—m+1) |Eag| =<’€—m+”<n/k_1>'

k —n/k
To compute A, observe that each x € X belongs to (n{ > (nk n{ ) distinct sets

k—1
E, s, and each F, ¢ belongs to (k ) distinct hyperedges E4 g. Therefore, for
m

- (NG

Hi—m+1 we have

Hence one has

oo < B pn (i)

n/k—1

13



()

_\n/k) < 2k, whereas for k > 3 it is
n—Fk

(i)

n
(n/k) n—1 n—2 n—k+1
=k . X ooee X
<n—/<:) n—n/k n—n/k—1 n—k—n/k+2

n/k—1
i n—k+1 kot
n—k—n/k+2

n—k+1) @)Ml

For k € {1,2}, it is

IN

:k<kn—k+1 (n— _
:k<L+ n_kZBk(n—@)
§k<l+ )

. L a ea\b
Moreover, using the well-known inequality ( ) & <—> , one can conclude

() (0) =G

i pm? (n—n/k o k1
E\ k-1

The theorem now follows from (3.5) and the above inequalities.

14



Chapter 4

Main Results

4.1 (d,r|-Disjunct Matrices

To generalize Theorem 3.1.1, we start by giving a more general definition.

Definition 4.1.1. A ¢ xn binary matrix M is called (d, r|-disjunct if the union of any
d columns does not contain the intersection of any other r columns in M. Clearly,

(d, 1]-disjunctness is precisely d-disjunctness.

As the relationship between (d, r]-disjunct matrices and nonadaptive group test-
ing, Chen, Du and Hwang [2] proved that a (d,r|-disjunct matrix can identify the
up-to-d positives on the complex model.

Let t(n, d, r] denote the minimum number of rows for a (d, r]-disjunct matrix with
n columns. We have the following generalization of Theorem 3.1.1, followed by the

proof using the same approach used in the proof of Theorem 3.1.1.

Theorem 4.1.2.

(4.1)  t(n,d,r] < (1 4 g) (1 4 g)d.

(6 G

Proof. Let M and M* be as in the proof of Theorem 3.1.1. Again let C4,--- ,C),

be the columns of M*. For D € ([Z]) and R € ([Z]) with DN R = ¢, let Ap r be

15



the event that the union of columns Cj, j € D, contains the intersection of columns
t I

Cy, ke R. Fori e [—], let A; p.r be the event that m;;, = m, for all ky # ke € R
q

and m;; # my, for all j € D. Then

o

Pr(Apr) = Pr ﬂ Aipr| = H Pr(Aip,r)
i=1 i=1

Qe+

= [1 — PT’(A@D’R)]

(-3

@77

Note that Ap r is mutually independent of all the other events Aps g except for those

with (DU R')N (DU R) # ¢. There are exactly

n\ (n—d n—(d+r)\/n=—(d+r)—d
— —1
d r d r
such events. According to Corollary 2.4.3, atxn (d, r]-disjunct matrix exists whenever
r—1 d
)
q q
n\(n—d\ (n—(d+r)\(n—(d+r)—d 1
d r d r -
holds. Taking natural logarithm to both sides yields the equivalent inequality
Lo | (" n—d\ (n—(d+r)\(n—(d+r)—d
d r d r
(4.2) t>q- — , :
1 1
RN
[ q q
Using the fact that —In(1 —x) > z for 0 < 2 < 1, we conclude that whenever
1o [(n) (n—d) B (n— (d+7")> (n— (d+r) —d)}
d r d r
(4.3) t>q- - y
(@) ()
- 1- =
q q

t
q




holds, (4.2) holds. To minimize the R.H.S. of (4.3), we let ¢ = d + 1 and complete
r

the proof. [

In the above proof of Theorem 4.1.2, some small problems may occur. For example,
with the restriction that the number of rows of M and ¢ must be positive integers,
how about ¢ doesn’t divide ¢ or r doesn’t divide d? For this sake, we provide another
proof of Theorem 4.1.2 by omitting the process converting M into M* and letting
M be a random {0, 1}-matrix directly. (Note that in the remaining sections of this
chapter, we adopt the above technique.) However, if ¢ divides ¢ and r divides d, the
above proof says more: the column sum of the desired matrix equals a constant E
The following is our second proof of Theorem 4.1.2.

Proof. Let M = (my;) be a t x n random {0, 1}-matrix with Pr(m;; = 1) = p,
Pr(m;; =0) =1 — p, and the entries m;; are mutually independent. Let Cy,---,C,
be the columns of M. For D € ([Z]) and R € ([7:]) with DN R = ¢, let Ap g be
the event that the union of columns Cj, j € D, contains the intersection of columns

Ck, k € R. Then

t

Pr(Apg) = [1 e (1— p)d} .

Similar to the first proof, a t x n (d, r]-disjunct matrix exists whenever

e [1—pr-(1—p)dr-

0-Ce )

holds, which is equivalent to

» . L+ In {(7;) (n;d) B (n—(((j—l—?‘)) (n—(d;i—r)—d)]

—In [1—p’"‘(1—p)d]
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Using the fact that —In(1 —x) > z for 0 < 2 < 1, we conclude that whenever

- tZ1+1n[<z)(n;d)_(n—(;l+r))<n—(d;l—r)—d)]

pr(1—p)

holds, (4.4) holds. To minimize the R.H.S. of (4.5), we let p = d—T— and complete
T

the proof. 1

Chen, Fu and Hwang [3] also provided an upper bound for t(n,d, r]:

(4.6)  t(n,d,r] < (1+g)r~ <1+§)d- {1+(d+r)- [l—l-ln <dir+1>]}.

Observe that the bound in (4.6) is O((d + r)Inn) and the bound in (4.1) is O((d +

r —1)Inn), which is a little bit better.
Note that Stinson and Wei [16] provided two asymptotic upper bounds for t(n, d, ]|
d >k
by using two other structures. One bound is O ( ( N T) (dr)l°s™ " log n), where the
r

function log™ is defined recursively by log*(1) = 1 and log"n = log™([logn]) + 1 if
d+r

n > 1. The bound of the other one is O ((
7,

) log n) Also note that their

bounds are asymptotic and our bound in (4.1) is non-asymptotic.
4.2 (d,r)-Disjunct Matrices
We present another generalization of Theorem 3.1.1 in this section.

Definition 4.2.1. A t x n binary matrix M is called (d,r)-disjunct if the union of
any d columns does not contain the union of any other r columns in M. Clearly,

(d, 1)-disjunctness is precisely d-disjunctness.

As the relationship between (d, r)-disjunct matrices and nonadaptive group test-
ing, De Bonis and Vaccaro [6] proved that the (h,d)-disjunctness is a necessary con-

dition for identifying P on the (d, h)-inhibitor model.

18



Let t(n,d,r) denote the minimum number of rows for a (d, r)-disjunct matrix with

n columns. We have the following generalization of Theorem 3.1.1.

Theorem 4.2.2.

d
T\~

4.7)  t(n.d,r) < (1 n g) . (1 n E)

L G el

Proof. Let M = (my;) be a t x n random {0, 1}-matrix with Pr(m;; = 1) = p,

Pr(m;; =0) =1 — p, and the entries m;; are mutually independent. Let Cy,---,C,

be the columns of M. For D € ([Z]> and R € ([n]) with DN R = ¢, let Ap g
r

be the event that the union of columns Cj, j € D, contains the union of columns

Ck, k € R. Then

t

Pr(dpg) = {1-(1-p)*- 1= (1=p)1} .

Similar to the proof of Theorem 4.1.2, a t X n (d, r)-disjunct matrix exists whenever

e {1-(-p'n-0-pr}

(7] =

holds, which is equivalent to

. 1+IHKZ) (n;d) 1 (n—(;lJrr)) (n—(d;rr)—d)]
) ~m{1-(-p"1-0-p}

Using the fact that —In(1 —x) > z for 0 < 2 < 1, we conclude that whenever

- tZ1_Hn[<7;)(n;d)_(n—(j%-r))(n—(d;i—r)—d)]

1-p)" [1—(1-p)]

d \r
holds, (4.8) holds. To minimize the R.H.S. of (4.9), we let p = 1 — (d—l— ) and
T

complete the proof. [
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Du and Hwang [9] proved that a (k, m,n)-selector is (m — 1, k —m + 1)-disjunct,
which implies that a (d +r,d + 1, n)-selector is (d, r)-disjunct. By Theorem 3.2.2, we

have

<e(d+r)2l n +e(d+r)[2(d—|—r)—1]

4.1 t(n,d
( 0) (n7 7lr) r nd+r r

Note that the bound in (4.10) is O((d + r)Inn) and the bound in (4.7) is O((d+r —

1)Inn), which is a little bit better.

4.3 (d,s out of r|-Disjunct Matrices

In section 4.1 and 4.2, two versions of generalizations of Theorem 3.1.1 are given.
However, there exists a more generalized category containing these two versions, which

is presented in this section.

Definition 4.3.1. For 1 < s < r, a t X n binary matrix M is called (d, s out of r|-
disjunct if for any d columns and any other r columns of M, there exists a row
index in which none of the d columns appear and at least s of the r columns do.
Clearly, (d, 1 out of r|-disjunctness is precisely (d, r)-disjunctness and (d,r out of r]-

disjunctness is precisely (d, r|-disjunctness.

Let t(n,d,r, s] denote the minimum number of rows for a (d, s out of r]-disjunct

matrix with n columns. We have the following theorem:

Theorem 4.3.2.

o |t In Kz> (n;d) B (n— (;lJrr)) (n— (d;kr)—d)]

fd,r,s (p)

(Z)pi(l - p)“‘i] :

for all 0 < p < 1, where

—_

s—

fars(p) = (1 —p)*- [1 —

Il
o

7
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Proof. Let M = (m;;) be a t x n random {0, 1}-matrix with Pr(m;; = 1) = p,
Pr(m;; =0) =1 — p, and the entries m;; are mutually independent. Let Cy,---,C,
be the columns of M. For D € ([Z]) and R € ([Z]) with DR = ¢, let Ap 5 be
the event that there exists a row index in which none the columns C}, j € D, appear

and at least s of the columns Cy, k € R, do. Then

(4.12) Pr(Apr) = {1 —(1—p)*. [1 _ Sz_: <:)pz(1 _p)’r—i] } .

=0

Define the function

fars(®) = (1= p)*- [1 E @”i(l ) p)”]

7

for 0 < p < 1. Then (4.12) becomes

Pr(Apgr) =[1— fors(p)]

Similar to the proof of Theorem 4.1.2, a t X n (d, s out of r]-disjunct matrix exists

whenever

Al R G USRI

holds, which is equivalent to

", - | 1o KZ) (n;d) L (n—(;lJr?")) (n—(djr)—dﬂ.

—In [1 - fd,fr,s(p)]

Using the fact that —In(1 —x) > z for 0 < 2 < 1, we conclude that whenever

t> ven | (D (") - ()Y

N fd,r,s(p>

holds, (4.13) holds, completing the proof. ]
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4.4 (k,m,n)-Selectors

We can use similar approaches to obtain an upper bound for the minimum size of

a (k,m,n)-selector.

Theorem 4.4.1.
(4.14)

N A Sl R IRV

Proof. Let M* = (m;;) be a t X n random binary matrix with Pr(m;; = 1) = p,

Pr(m;; =0) =1 — p, and the entries m,;; are mutually independent. For K € ([Z])
and M € ([ ]> define Ax be the event that the t x k submatrix of M* corresponding
m

to K contains at most m — 1 rows of I, and Ag y be the event that the m x k
submatrix of M* corresponding to K and M doesn’t consist of m distinct rows of I.
Observe that

t
Let Mi={m-(i—1)+1,m-(i—1)+2,--- ,mi} for 1 <i < —. Then
m

PT(AK):PT ﬂ AK,M

SP?" ﬁAK,Mi

Note that Ag is mutually independent of all the other events A except for those

with K N K’ # ¢. There are exactly

(1) - ()
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such events. According to Corollary 2.4.3, a t x n (k,m,n)-selector exists whenever

k = [ /n n—k
1= ol o™ (1 — pym =D | _ -1
€ { (m) m!-p™-(1—p) L . <
holds. Taking natural logarithm to both sides yields the equivalent inequality
venl) - (1)
—In {1 — ( ) -m!-pm-(1— p)m-(kn]
m

Using the fact that —In(1 —x) > z for 0 < 2 < 1, we conclude that whenever

" L )

(k) -mlb-pm - (1 —p)mk=b)
m

1
holds, (4.15) holds. To minimize the R.H.S. of (4.16), we let p = % and complete the

proof. [

Asm = 1, the bound in (3.4) is O(k Inn) and the bound in (4.14) is O((k—1) Inn),

which is a little bit better.
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Chapter 5

Conclusion

In Theorem 4.3.2, we define a function fy, s(p) of p. To minimize the R.H.S. of the
inequality (4.11), we must maximize fy, s(p), which is indeed a tough task. However,
the maximum does exist, since t(n,d, r, s] is a positive integer for fixed n, d, r, and s.
We leave this as an open problem. Also, in our proof of Theorem 4.4.1, we partition
the row indices into % parts of equal size to obtain an approximation of Pr(Ag).
However, when m > 2, this approximation is not as good as we expect. Finally, we
point out that all bounds in Chapter 4 are obtained by using probabilistic method.

We do wish that deterministic constructions can be discovered in the near future.
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