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Abstract

In an edge-colored graph, a subgraph whose edges are of distinct colors is known as a
multicolored (or rainbow) subgraph. Insthis: thesis, we shall first introduce several
known results and conjectures related to multicolored subgraph in an edge-colored K,
according to four categories.of multicolored subgraphs. Then, we extend this study to
consider whether there is a proper edge-coloring in a,complete bipartite graph which
forbids multicolored cycles. First, we claim that it{isiampossible to forbid multicolored
4-cycles in any proper n-edge-coloring of K, "where 2 < m < n and n > 4. Second, we

prove that any n-edge-colored K,,, (m < n) contains a multicolored C; if (i) m > 3 and

m,n

n>9;or (1) m>4 and n = 7. Finally, if k is odd, we obtain a proper 2k-edge-coloring

of K

m,2

, which forbids multicolored (2k)-cycles where k < m < 2k.
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1 Introduction and Preliminaries

In the study of graph theory, graph decomposition and coloring are two important
topics. A decomposition of a graph is a list of subgraphs such that each edge appears in
exactly one subgraph in the list. In graph coloring, we study the vertex-coloring and
edge-coloring which deal with the assignments of colors onto the vertex set of G and the
edge set of G respectively.

We combine these two topics together in this thesis. In an edge-colored graph, a
subgraph whose edges are of distinct colors is known as a multicolored (or rainbow)
subgraph. First, in the study of the edge-colorings of the complete graphs. In 2006,
Akbari, Alipour, Fu and Lo [2] showed that there exists an edge-coloring of K,, such
that all the edges can be partitioned into edge-disjoint multicolored isomorphic
spanning trees. Then considet: the complete graph of edd order. In 2005, Constantine
[10] partitioned K, into “multicolored Hamtiltonian “cycles by a given proper
n-edge-coloring if n is an odd prime. In addition, he proposed a new conjecture that for
any proper n-edge-coloring ef \K . the edges'.can beupartitioned into multicolored
unicyclic isomorphic subgraphs.”Several years later, Fu and Lo [15] improved above
result from 7 is an odd prime to n is an odd integer and therefore verify the conjecture.

Montellano-Ballesteros and Neumann-Lara [20] presented that if the edges of K,
are colored by m or more colors actually appearing, then there is a multicolored C;
somewhere. That means, there is no edge-coloring of K, with n or more colors actually
appearing which forbids multicolored cycles. With the same idea, we discuss whether
there exists a proper edge-coloring in a complete bipartite graph which forbids
multicolored cycles. It is impossible to forbid multicolored 4-cycles in any proper
n-edge-coloring of K, , where 2 < m < n and n > 4. How about forbidding multicolored
(2k)-cycles? In this thesis, the first part of the main results are concerned about the
discussion of forbidding multicolored (i in a proper n-edge-colored K,,, where 3 < m <

n and n > 6. We discuss the lower bound of n such that in any proper n-edge-coloring of



K

m,n?

there is a multicolored 6-cycle somewhere. Then, for each smaller m, n, we will give
a specific proper n-edge-coloring which forbids multicolored 6-cycles. If k£ is an odd

integer, furthermore, there exists a proper (2k)- edge-coloring of K, ,, which forbids

m2
multicolored (2k)-cycles, where k < m < 2F.

Now, we introduce the terminologies and definitions of graphs. For details, the
readers may refer to the book “Introduction to Graph Theory” by D. B. West [22].

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a
relation that associates with each edge two vertices (not necessarily distinct) called its
endpoints. A loop is an edge whose endpoints are equal. Multiple edges are edges having
the same pair of endpoints. A simple graph is a graph having no loops or multiple edges.
In this thesis, all the graphs we consider are simple.

The size of the vertex set V(«G), denoted by {V(G)], is called the order of G, and the
size of the edge set E(G), denoted by |E(G)| is called the size of G. When u and v are
the endpoints of an edge, written ww in shorty they are adjacent and are neighbors. If
vertex v is an endpoint of edge e, then 4 and e.are incident. The neighborhood of v,
written N(v), is the set of vertices adjacent to v."The degree of v, written deg(v), is the
number of neighbors of v; that is,"deg(w)=-|N(v)|.

A subgraph of a graph G'is a graph H such that V(H) ¢ V(G) and E(H) c E(G) and
the assignment of endpoints to edges in H is the same as in G, denoted by H < G. A
spanning subgraph of G is a subgraph H with V(H) = V(G). A matchingin G is a set of
edges with no shared endpoints. A perfect matching in a graph G is a matching that
saturates all vertices. A k-factor is a spanning subgraph with each degree equal to k.
Then a 1-factor and a perfect matching are almost the same thing.

A cycleis a graph with an equal number of vertices and edges whose vertices can be
placed around a circle so that two vertices are adjacent if and only if they appear
consecutively along the circle. A cycle with n vertices is denoted by C,. A Hamiltonian
cycle is a graph with a spanning cycle. A graph with no cycles is called acyclic and a

graph with exactly one cycle is unicyclic. A tree is a connected acyclic graph. A



spanning tree is a spanning subgraph that is a tree.

A complete graph is a simple graph whose vertices are pairwise adjacent, and the
complete graph with n vertices is denoted by K,. An independent set in a graph is a set
of pairwise nonadjacent vertices. A graph G is bipartite if V (G) is the union of two
disjoint sets, called partite sets of G. A graph G is m-partite if V (G) can be expressed
as the union of m independent sets. A complete bipartite graph is a bipartite graph such
that two vertices are adjacent if and only if they are in different partite sets. When the
sets have the sizes s and ¢, the complete bipartite graph is denoted by K, If the sets
have the same size n, the complete bipartite graph is called balanced, denoted by K, ,.
Similarly, the complete m-partite graph is denoted by Ks,, s,, -, s, if the sets have the
sizes , 8, -+ and s,. The balanced complete m-partite graph is denoted by K, where
each partite set has n vertices.

An isomorphism from asgraph G to a|graph H is'a-bijection f: V(G)— V(H) such
that uwv € E(G) if and onlysif f(u)f(v)e E(H).-We say “GHis isomorphic to H”, written
G= H, if there is an isomorphism from.G-to H.

A k-edge coloring of G is"a labeling from E(G) into a set S, where |S| = k. In this
thesis, we use S = {1, 2, 3, -+, k}. Thelabels are colors, and the edges which have the
same color form a color class. A k-edge coloring is proper if all incident edges have
different labels (i.e., each color class is a matching). The chromatic indez of a graph G,
x'(G), is the minimum number k for which G has a proper k-edge coloring. A subgraph
in an edge-colored graph is said to be multicolored if no two edges have the same color.

If the edges of a graph G are colored by r colors {1, 2, ---, r}, then its color
distribution (a,, a,, -+, a, ) means that the number of edges with color i is equal to g, for
every 1 < ¢ < r. An edge-coloring of a graph G is called an edge coloring with complete
bipartite decomposition if each color class forms a complete bipartite subgraph of G. If
the edges of G are colored so that no color is appeared in more than k edges, we refer to
this as a k-bounded coloring. For a vertex v of G, the color degree of v, denoted by

deg,,(v), is the number of colors on the edges which are incident with v.



Let S be an n-set. A latin square of order n based on S is an nxn array in which
every element of §is arranged such that each element occurs exactly once in each row
and column. For convenience, let S = {1, 2, -+, n}. We denote a latin square of order n
based on S by LS(n) = [ I;],x, where [; € S. An mxn latin rectangle ( m < n) is an mxn
array in which n distinct elements are arranged such that each element occurs at most
once in each row and column, denoted by LR(m, n). A partial latin square of order r is
an rxr array in which n distinct elements are arranged, n > r, such that each element
occurs at most once in each row and column. A circulant latin square of order n is a
special LS(n) where each row is rotated one element to the right relative to the
preceding row, denoted by L,. A transversal of a LS(n) is a set of n entries from each
column and each row such that these n entries are all distinct. Replace LS(n) by partial
latin square of order r, its transversal is a set of rentries from each column and each row

such that these r entries areall distinct:

5 11234

112 4111213
2

573 3141112

2131411

Figure 1: Circulant latin squares of order 2, 3, and 4

There is a corresponding relationship between an mxn latin rectangle and a proper
n-edge-colored K, where m < n. Let {u,, u,, -+, u,} and {v;, v, -+, v,} be the two
is an

partite sets of K,,, and the edge uv;be colored with [;; where LR(m, n) = [[]

mXn

mxn latin rectangle, then we have a proper n-edge-colored K, ,.
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Figure 2: A 3x5 latin rectangle’and its corresponding 5-edge colored Kj



2 Known Results

In this section, some theorems and conjectures related to multicolored subgraph in an
edge-colored K, will be reorganized. It can be introduced according to the following four

categories of multicolored subgraph.

2.1 Multicolored Spanning Tree
First, consider a non-proper coloring in K,. Assume that it uses r colors. The following

two results were proposed by Akbari and Alipour [1] in 2006.

Theorem 2.1. [1] If the completesgraph K

n’

n > 3, 48#-edge-colored and r > (H;Q] +2,
then K, has a multicolored spanning tree.
Theorem 2.2. [1]| If the complete graph K, n =6, is r-edge-colored and r > (H;Q] +3,
then K, has two edge-disjoint malticolored spanning trees.

In the same paper, they also used a different perspective, color distribution, to deal
with this problem as follows.
Theorem 2.3. [1] If the r-edge-colored K, has a color distribution (a, -+, a, ) with 1 < a,
< <4, < (n+3)/2 and 7> n — 1, then K, has a multicolored spanning tree.
Theorem 2.4. [1] If the r-edge-colored K, has a color distribution (a, -+, a, ) with 1 < a,
<-- < a, < n/2, then K, has two multicolored spanning trees.

As early as in 1991, however, Alon, Brualdi and Shader [4] discussed the existence

of multicolored spanning trees from the perspective of complete bipartite



decomposition.
Theorem 2.5. [4] Every K, having an edge-coloring with complete bipartite decomposition
contains a multicolored spanning tree.
On the other hand, the existence of multicolored spanning trees in a proper
edge-colored complete graph was discussed. Since y'(K,,) = 2n — 1, it is natural to ask
if there exists a partition of the edges of an edge-colored K,, into multicolored
subgraphs each has 2n — 1 edges. Here are three conjectures related to this problem.
Conjecture 2.6. [11] For n > 2, there_existssa proper (2n—1)-edge-coloring of K,, such
that all edges can be partitioned-anto n isomorphic multicolored spanning trees.
Conjecture 2.7. [7] If n > 2sthen in any proper edge-coloring of K,, with 2n—1 colors, all
edges can be partitioned into.n multicolored spanning trees.
Conjecture 2.8. [11] If n > 2, thenin any proper-edge-coloring of K,, with 2n—1 colors, all
edges can be partitioned into n isomorphic multicolored spanning trees.

For the first conjecture, it has been verified by Akbari, Alipour, Fu and Lo [2] in
2006.
Theorem 2.9. [2] For n > 3, K,, can be properly edge-colored with 2n—1 colors in such a
way that the edges can be partitioned into edge-disjoint multicolored isomorphic spanning
trees.

As for Conjecture 2.7, proposed by Brualdi and Hollingsworth [7], they also proved



the existence of two multicolored spanning trees in the same paper. Then, the existence
of three multicolored spanning trees has been proven by Krussel, Marshall and Verrall
[19] in 2002.
Theorem 2.10. [7] If n > 2, then in any proper edge-coloring of K,, with 2n — 1 colors,
there exist two edge-disjoint multicolored spanning trees.
Theorem 2.11. [19] If n > 2, then in any proper edge-coloring of K,, with 2n —1 colors,
there exist three edge-disjoint multicolored spanning trees.

Later, Kaneko, Kano and Suzuki [18];extended the above theorem from K,,to K, in
2003.
Theorem 2.12. [18] FEwverysproperly edge-colored K, (n> 6) has three edge-disjoint
multicolored spanning trees.

Conjecture 2.8 can imply Conjecture 2:7 easily; therefore, it has not been
completely solved yet. A partial result, however, was proposed by Fu and Lo [14]

recently.

Theorem 2.13. [14] In any proper edge-coloring of K,, with 2n — 1 colors, if n > 2, then
there exist two edge-disjoint isomorphic multicolored spanning trees; and if n > 13, then

there exist three edge-disjoint isomorphic multicolored spanning trees.

2.2 Multicolored Cycle

In an edge-colored K,, it is clear that there is no multicolored cycle if and only if there



is no multicolored Cj. Notice that there exists a cycle somewhere in a subgraph of K,
with n edges. Montellano-Ballesteros and Neumann-Lara [20] presented the following
results.

Theorem 2.14. [20] If the edges of K, are colored by n or more colors actually appearing,
then there is a rainbow K, somewhere.

This theorem infers that there is no edge-coloring of K, with n or more colors which
forbids multicolored cycles. Analogous to the multicolored trees, the existence of
multicolored cycles in a proper edge-colored eemplete graph was discussed. It is natural
to think about a multicolored Hamiltoniamieyele'in a proper (2n+1)-edge colored K,, ;.
Theorem 2.15. [10] If 2n+1 is an odd . prime, then there exists a proper
(2n+1)-edge-coloring of K,, v such that alivedges can be partitioned into n multicolored
Hamiltonian cycles.

Above theorem was provided by Constantine [10] in 2005, and he also gave a
relative conjecture.

Conjecture 2.16. [10] Any proper coloring of the edges of a complete graph on an odd
number of vertices allows a partition of the edges into multicolored isomorphic unicyclic
subgraphs.

Theorem 2.15 was improved by Fu and Lo [15] in 2009.

Theorem 2.17. [15] For any odd integer 2n+1, there exists a proper (2n+1)-edge-coloring



of K,,., such that all edges can be partitioned into n multicolored Hamiltonian cycles.
Now, we consider a k-bounded coloring. For any positive integer k, the problem is
to find a positive integer n which is large enough so that every k-bounded edge-colored
K, contains a multicolored Hamiltonian cycle. Here are three relative results. We list
them in historical order.
Theorem 2.18. [16] There exists a constant number ¢ such that if n > ck’, then every
k-bounded edge-colored K, has a multicolored Hamiltonian cycle.
Theorem 2.19. [13] There exists a constant number ¢ such that if n is sufficiently large
and k < n/(clnn), then every k-bounded edge-colored K, contains a multicolored
Hamiltonian cycle.
Theorem 2.20. [3] Let ¢ < '1/32. If nwiswsufficiently large and k < [ enl, then every
k-bounded edge-colored K, contains, a multicolored Hamiltonian cycle.
Theorem 2.18 was obtained by Hahn and Thomassen [16] in 1986 and implied that
k could grow as fast as n'/® to guarantee that a kbounded edge-colored K, contains a
multicolored Hamiltonian cycle. In 1993, Frieze and Reed [13] made further progress,
see Theorem 2.19. Few years later, in 1995, Albert, Frieze and Reed [3] improved

Theorem 2.19 and proved the growth rate of k£ could in fact be linear.

2.3 Multicolored Matching

10



The perfect matching only exists in K,, and the general case has been mentioned in 1998
by Woolbright and Fu [23].
Theorem 2.21. [23] For n > 3, every properly (2n — 1)-edge-colored K,, has a rainbow
perfect matching.

There is a conjecture concerning matching a long time ago.
Conjecture 2.22. [6, 21] In any proper edge-coloring of K, , with n colors,
(1) If n is even, then there exists a multicolored matching M with |M | = n — 1.
(2) If n is odd, then there exists a multicalored matching M with |M | = n.

Notice that there is a cofrespondingirelation between a matching in K, , and a
partial transversal in LS(n)=We have the following theorem.

Theorem 2.23. [17] Every latin square has @ partial transversal of length at least

n —11.053 log *n.

2.4 Multicolored Path

The length of a multicolored path will increase along with the number of colors. So we
can get the following.

Theorem 2.24. [12] Every r-edge-colored graph G of order n has a multicolored path of
length, at least[ (2r)/n] .

In 2005, Broersma, Li, Woeginger and Zhang [5] obtained the following result.

11



Theorem 2.25. [5] Let G be an edge-colored graph. If deg,,(x) 2 k for every vertezx z of G,
then for every vertex v of G, there exists a multicolored path starting at v and of length at
least | (k+1)/21.
Then Chen and Li [8] improved theorem 2.25.
Theorem 2.26. [8] Let G be an edge-colored graph and k> 1 be an integer. If deg,,(z) > k
for every vertex x of G, then there exists a multicolored path of length at least |_(3k)/5—|+1.
Moreover, if 1 £ k<7, there exists a multicolored path of length at least k — 1.
Theorem 2.27. [9] Let G be an edge-coloredsgraph and k> 8 be an integer. If deg,,(z) > k
for every vertex x of G, then thére exists ammulticolored path of length at least| (2k) /3 1+1.
We can get the following corollary by Theorem 2.27:
Corollary 2.28. In any proper coloring of K, if m=> 9, then there exists a multicolored

path of length at least[ (2n — 2) /31 #1

12



3 Main Results

Now, we will discuss whether there exists a proper n-edge-coloring in a complete
bipartite graph K, , which forbids multicolored (2k)-cycles. For k> 2 and 2 < m < n, we
define the forbidding multicolored (2k)-cycles set, FMC (2k) in short, by (m, n) € FMC
(2k) if there exists a proper n-edge-coloring of K, , which forbids multicolored
(2k)-cycles. Obviously, (i, j) € FMC (2k) if i < kor j < 2k. In this thesis, we completely
determine the two sets FMC (4) and FMC (6). Furthermore, for kis odd, we find several
elements in the set FMC (2k). Besides, we denote an mxn latin rectangle which forbids

multicolored (2k)-cycles in its corresponding K, , by L, .(2k).

3.1 Forbidding Multicolored.4-cycles and 6-cycles

It is impossible to forbid multicoloredi4-cycles in any proper n-edge-coloring of K,

n,n

where 2 < m < n and n > 4. Thus we have the following theorem.
Theorem 3.1. FMC (4) = {(2,2), (2,3), (3,:3)}:

Proof. It suffices to show that there exists a multicolored C| in a proper 4-edge-colored
K,,. Let {u,, w,} and {v, v, v;, v,} be the two partite sets of K,,. Without loss of
generality, assume the colors on u,v;, u,v; are 1 and 2. There must be one vertex v, where
i € {2, 3, 4} such that the colors on w,v;, u,v; are different from {1, 2}. Thus we have a

multicolored C,. [

Then we will have a discussion on forbidding multicolored C; in a proper
n-edge-colored K,,, where 3 < m < mnand n = 6. Notice that every proper n-edge-coloring
of K, , has its corresponding mxn latin rectangle using n distinct entries. In an mxn
latin rectangle, consider a 3x3 partial latin square. If there exist 2 disjoint transversals
using 6 distinct entries in the 3x3 partial latin square, then there exists a multicolored

Cs in its corresponding K, K, ,. On the other hand, we can regard the existence of 2

13



disjoint transversals as omitting three positions that no two of them are in the same row
or column. Figure 3 is an example of a 3x3 partial latin square, and the two disjoint
transversals, which can be combined to a multicolored Cj, are discovered by omitting

the three “gray” positions.

713 |5
11412
2 18| 6

Figure 3: A 3x3 partial latin square

Obviously, in a 3x3 partial latin square, if there appear 9 kinds of entries, then a
multicolored C; must occur somewheré. And if there appear 8 kinds of entries, then we

can omit the two positions which have the,repeated entry to obtain a multicolored Ci.

Proposition 3.2. Let L be a.3%3" partial latin square with ¢ distinct entries. There is no

multicolored Cg in its corresponding K, gifand only if L has an L,.

Proof. Assume that L has no L.

Case 1. If there is one entry appearing 3| times, then omitting these three positions
yields a multicolored C;, a contradiction.

Case 2. There are two entries appeared twice separately. Without loss of generality, let
the two entries be 1 and 2, and let the positions of entry 1 be arranged at the diagonal,

see Figure 4.

Figure 4: Case 2 of Proposition 3.2

Now, consider the positions where entry 2 may appear. Since there is no L,, there

14



must be at least one position which labels entry 2 in the third column or the third row.
Name this position be A. Then we just omit position A and one of the positions labeled
1 which is not in the same row and column with A. Thus, we have a multicolored Cj.
Conversely, suppose the two entries in L, be 1 and 2. Since there is none or two 1’s
(or 2’s) in any transversal of L, any two disjoint transversals couldn’t have 6 kinds of

entries. Then, there is no multicolored G in its corresponding Kj . [

Proposition 3.3. Let L be a 3x3 partial latin square with 6 distinct entries. There is no
multicolored Cg in its corresponding K if one of the following conditions occurs:

(i) There exists 2 columns (or rows) in L used exactly 3 distinct entries.

(it) Some entry appears three times in L.

(ii1) There is an L, in L.

Proof. Since there are just 6,kinds of entries, we should keep every kind of entries left

and omit the other repeated.ones. Thus we have done. [

Consider an n-edge-colored K, i my<mrthelarger n.is, the more colors we can use.

T, 7

Therefore, the possibility to forbid multicolored 6-¢ycles in an n-edge-colored K, gets

lower as n increases.

Proposition 3.4. For any proper n-edge-coloring of K,,, where n 2 9 and m < n, there

exists a multicolored C.

Proof. It is sufficient to consider m = 3. Suppose NOT. There exists a proper
n-edge-coloring of K, which forbids multicolored Ci’s. Let Ly, (6) be the corresponding
latin rectangle. Without loss of generality, let the three entries of the first column in
L, ,(6) be 1, 2 and 3.

Except the first column, the three entries 1, 2 and 3 can occur in at most 6 columns.
So, there is at least one column which has no entries 1, 2 and 3. We can assume the three

entries of the second column be 4, 5 and 6. There are n — 6 unused entries left and each

15



of them must appear in the remaining n — 2 columns exactly three times. Consider the

inequality: 3(”—_26) = 1+ 2n = ;6
n-— n-—

be one column which has at least two entries disjoint from the set {1, 2, 3, 4, 5, 6}.

> 1, if n > 9. By Pigeon-hole principle, there must

Combining this column with the first two ones, there will be a multicolored Cj in its

corresponding K. It leads a contradiction. [
So far, we have narrowed the two indices n and m downto 6 <n<8and 3 <m< n.
Lemma 3.5. For 3<m <6, (m, 6) € FMC (6).

Proof. Let L;4(6) = Ly x L, be composed of four copies of Ly, and suppose the entries in
the top-left and bottom-right copies are from {1, 2, 3} while the entries in the other two
copies are from {4, 5, 6}. For convenience, name'the four copies A, B, C'and D clockwise

from the top-left one, see Figure 5.

213|115 |64

Figure 5: L;4(6) and the four copies of L,

Suppose that there exist 6 positions somewhere which induce a multicolored Ci.
Let L be the 3x3 partial latin square which contains the 6 positions. By Proposition 3.2
(7), we can assume L cross all four copies. Without loss of generality, suppose there are
four positions of L locating on A. Since A has only 3 kinds of entries, some entry must
appear twice, say a.

Then consider the only one entry of L in C. By Proposition 3.2 (ii), let the entry be

16



b, where b # a. Moreover, there is exactly one repeated entry in the other four positions
of Lin B and D. Recall that we can obtain a multicolored C; by omitting three positions
that no two of them are in the same row or column. If we omit the position in C, then
there must be a repeated entry left in B and D. Otherwise, the two positions having

entry a in A will be left. It’s a contradiction. [
Lemma 3.6. For 3<m <8, (m,8) € FMC (6).

Proof. Let Ly4(6) = L, x L, x L, be composed of 8 copies of L,. Similar to the proof of
Lemma 3.5, suppose the entries in the top-left and bottom-right copies are from {1, 2,
3, 4} while the entries in the other two copies are from {5, 6, 7, 8}, and the four copies

are arranged as following Figure 6. For conyvenience, let Ly4(6) = [ [;;] where 1 <, j< 8.

=~ W [N | = 100 | ./ |t

W k|| NI [0 | O

N [ | | R ] OOt | 00 [

=N | W s | O ST | 0o

|l lN|lo|la]les| Wl |-
S|l |la|lolw |k |~ |
ool |~ |~ e |w
g~ | |w|~

Figure 6: Ly (6) and the four copies of (L, )?

Suppose that there are 6 positions somewhere which induce a multicolored Cj. Let
L be the 3x3 partial latin square which contains the 6 positions. It is easy to see that
any 2x3 partial latin rectangle in L, x L, contains an L,. By Proposition 3.1, we can
assume [ cross all four copies. Without loss of generality, suppose there are four
positions of L locating on A. Let the four positions in A be (a, ¢), (a, d), (b, ¢), (b, d),

and the only one position in C be (h, k), where 1 < a, b, ¢, d<4 and 5 < h, k< 8.
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Actually, the four entries |

a,c)

By Proposition 3.2, [, . # [, ,or I, ,# [

) Ya,c b,c*

lb,da la,da lb,c are

distinct. Assume [, # [

a,c)

then [, # I, because of Lg4(6) = (L,)*. Thus, we have an L,

in L, a contradiction. [J
Lemma 3.7. (3, 7) € FMC (6).

Proof. Let L,.(6) be the corresponding latin rectangle of the specific proper
7-edge-coloring which forbids multicolored Cy’s, see Figure 7.

It is easy to see that any two columns of the first 4 columns have an L,, and any two
columns of the last 3 columns used exactly 3 distinct entries. By proposition 3.3 (i) and

(i17), we have done. []

Ly (6) =" |24l 48 [62 7 | 5

Figure:T: Ly -(6)

Lemma 3.8. There exists a 3-edge-colored Kyg™in.'a proper 7-edge-colored K, which

forbids multicolored C’s.

Proof. Let L;(6) be the corresponding latin rectangle of a proper 7-edge-colored Kj. It
suffices to show there must be a latin subsquare of order 3.
Claim 1. There exist two columns having disjoint entries.

Suppose NOT. Let the entries of the first column be 1, 2 and 3. Notice that each
entry in {1, 2, 3} must appear twice in the other columns. By our assumption, each
remaining column has exactly one position with entry in {1, 2, 3}. Without loss of
generality, let the second column contain entries 1, 4, and 5. Except the first two
columns, there are at most 4 columns having entries 4 or 5. Therefore, there exists one

column having exactly one entry from {1, 2, 3} but no entries from {4, 5}. By
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proposition 3.2, this column and the first two columns will create a multicolored Cj, a
contradiction.
Claim 2. There exists a latin subsquare of order 3.
By Claim 1, we can assume the entries of the first two columns be 1, 2, 3 and 5, 6,
7 respectively. Consider the first two columns and the three columns which have entry
4. By proposition 3.1, the other two entries in the column which has entry 4 must be
both from {1, 2, 3} or {5, 6, 7}.
Case 1. The entries in the three columns with entry 4 are all from {1, 2, 3} or {5, 6, 7}.
Assume the six entries are all in {5, 6, 7} by symmetry. Then combining the first

column and the last two ones, we have a latin square of order 3, see Figure 8.

1 |84 4
24 6 4
3| 1 4

Figure'8: Case 1

Case 2. The entries in the threefcolumns with entry 4.are NOT all from {1, 2, 3} or {5,
6, 7}.

We will use Figure 9 and Figure 10 to illustrate our arguments. First, look at
Figure 9. Without loss of generality, suppose the entries in position A are from {1, 2, 3}

while the entries in position B are from {5, 6, 7}.

Figure 9: Case 2

By proposition 3.2, since combining the first two columns and one of the columns

with entry 4 will form a partial latin square with 7 kinds of entries, the entries in
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position A and position B are uniquely determined as Figure 10. Meanwhile, the entries
in some positions of the last two columns are determined except positions denoted as C.

Note that the entries in position C must be from the set {5, 6}.

Figure 10: Case 2

Consider column 1, column 5, and column 6, they use 7 distinct entries but without

L,. By Proposition 3.2, there exists a multicolored Cj, a contradiction. [

Corollary 3.9. For any proper T-edge-coloring of K, . , 4 < m < 7, there exists a

multicolored Cy.

Proof. It is sufficient to consider the case ms= 4. Suppese NOT. There exists some
proper T7-edge-coloring ofis K,, which <forbids multicolored C’s. Consider its
corresponding latin rectangle 7,z By Lemma‘3:7; there exists a latin subsquare of order
3 in the first three rows of L,,(6). Without loss-of generality, we put the latin subsquare
of order 3 in the last three columns and let the entries be 5, 6 and 7, see Figure 11. Then,
consider the last three rows. It’s impossible to find a latin subsquare of order 3. It

contradicts Lemma 3.7. [

516 |7
71516
6| 7|5

Figure 11: L,.(6)

To sum up, we have the following conclusion.
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Theorem 3.10. For each m, n (m < n) satisfying one of the follow conditions, any
n-edge-colored K,,, contains a multicolored C:
(i) m>3 and n>09;

(i) m24 andn=T1.

Proof. It can be easily proved by Proposition 3.4, Lemma 3.5, Lemma 3.6, Lemma 3.7,

Lemma 3.8 and Corollary 3.9. [
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3.2 Forbidding Multicolored (2k)-cycles

In this subsection, we consider the general version: forbidding multicolored (2k)-cycles.
In the followings, we extend the method of Lemma 3.4, which shows a proper
6-edge-coloring of K, that forbids multicolored 6-cycles, to the case that forbids

multicolored (2k)-cycles.
Theorem 3.11. If k is odd, then (m, 2k) € FMC (2k) for k< m < 2k.

Proof. It suffices to show (2k, 2k) € FMC (2k). Let Ly, (2k) = L, xL,, where L, is the
circulant latin square of order k. Similar to above proofs, suppose the top-left and
bottom-right copies of L, are based on {1, 2, ---, k} while the other two copies are based
on {k+1, k+2, ---, 2k}. Now, we claimithat there.are no two disjoint transversals using
2k kinds of entries. For conveniénce, name.the four copies A, B, C'and D clockwise from

the top-left one, see Figure 12.

L, based on | L, based on

(1,2, -, K} | {k+1, -, 2k}

L, based on L, based on

{k+1, -+, 2k} | {1, 2, -, k}

Figure 12: L,,,,(2k) and four copies of L,

Suppose that there exist two disjoint transversals using 2k kinds of entries. Let
L be the kxk partial latin square containing these two transversals. Note here that each
column and row contains exactly two entries from the two transversals. If L crosses only
two copies of L,, the two disjoint transversals must contain an even number of entries

from [k]. Therefore, we can assume that L crosses all four copies. Let a, b, ¢ and d be the
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numbers of entries of the two transversals from A, B, C'and D respectively. Clearly, a+c
is even because a+b and b+c are both even. By the hypothesis, a+c¢ = k is odd, a

contradiction. Then we complete the proof. [
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4 Conclusion

In this thesis, we have obtained the following three main results:
1. FMC (4) ={(2,2), (2, 3), (3,3)}.
2. FMC (6) ={(a, b), (¢,8),(3,7)|2<a<b<6,2< <8}
3. If kis odd, then (m, 2k) € FMC (2k) for 2 < m < 2k.

For the future study, we shall try to find the smallest n such that there always
exists a multicolored C,, in an arbitrary proper n-edge-colored K, , for k> 4. In
order to solve this problem, we may find the smallest ¢ such that there always exists
a multicolored C,;, in an arbitrary proper t-edge-colored K, for k > 4. Hopefully,

this task can be done in the near future.
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