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摘 要 

在一個邊已著色的圖中，若有一個子圖它的每個邊的顏色皆不相同，我們稱這種子

圖為混色子圖。在這篇論文中，我們先整理了一些以往有關混色子圖的定理與猜測，我

們將依照子圖的種類分成四類來介紹；接下來我們討論在一個完全二部圖 Km,n中，是否

存在一種恰用了 n 色的邊著色可以避免混色的圈出現，我們證明出來當 2  m  n 及 

n  4 時，在 Km,n中一定會產生混色的 C4。而在下列兩種情形：(1) m  3 且 n  9 或

(2) m  4 且 n = 7 時，在 Km,n中也會產生混色的 C6。更進一步的，對於 k  m  2k

且 k 為奇數時，我們找到一種 2k 個顏色的著色法使得 Km,2k 中能避免混色的 C2k出現。 
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Abstract 

In an edge-colored graph, a subgraph whose edges are of distinct colors is known as a 

multicolored (or rainbow) subgraph. In this thesis, we shall first introduce several 

known results and conjectures related to multicolored subgraph in an edge-colored Kn, 

according to four categories of multicolored subgraphs. Then, we extend this study to 

consider whether there is a proper edge-coloring in a complete bipartite graph which 

forbids multicolored cycles. First, we claim that it is impossible to forbid multicolored 

4-cycles in any proper n-edge-coloring of Km,n where 2  m  n and n  4. Second, we 

prove that any n-edge-colored Km,n (m  n) contains a multicolored C6 if (i) m  3 and 

n  9; or (ii) m  4 and n = 7. Finally, if k is odd, we obtain a proper 2k-edge-coloring 

of Km,2k which forbids multicolored (2k)-cycles where k  m  2k. 
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1  Introduction and Preliminaries 

In the study of graph theory, graph decomposition and coloring are two important 

topics. A decomposition of a graph is a list of subgraphs such that each edge appears in 

exactly one subgraph in the list. In graph coloring, we study the vertex-coloring and 

edge-coloring which deal with the assignments of colors onto the vertex set of G and the 

edge set of G respectively. 

 We combine these two topics together in this thesis. In an edge-colored graph, a 

subgraph whose edges are of distinct colors is known as a multicolored (or rainbow) 

subgraph. First, in the study of the edge-colorings of the complete graphs. In 2006, 

Akbari, Alipour, Fu and Lo [2] showed that there exists an edge-coloring of K2n such 

that all the edges can be partitioned into edge-disjoint multicolored isomorphic 

spanning trees. Then consider the complete graph of odd order. In 2005, Constantine 

[10] partitioned Kn into multicolored Hamiltonian cycles by a given proper 

n-edge-coloring if n is an odd prime. In addition, he proposed a new conjecture that for 

any proper n-edge-coloring of Kn, the edges can be partitioned into multicolored 

unicyclic isomorphic subgraphs. Several years later, Fu and Lo [15] improved above 

result from n is an odd prime to n is an odd integer and therefore verify the conjecture. 

 Montellano-Ballesteros and Neumann-Lara [20] presented that if the edges of Kn 

are colored by n or more colors actually appearing, then there is a multicolored C3 

somewhere. That means, there is no edge-coloring of Kn with n or more colors actually 

appearing which forbids multicolored cycles. With the same idea, we discuss whether 

there exists a proper edge-coloring in a complete bipartite graph which forbids 

multicolored cycles. It is impossible to forbid multicolored 4-cycles in any proper 

n-edge-coloring of Km,n where 2  m  n and n  4. How about forbidding multicolored 

(2k)-cycles? In this thesis, the first part of the main results are concerned about the 

discussion of forbidding multicolored C6 in a proper n-edge-colored Km,n where 3  m  

n and n  6. We discuss the lower bound of n such that in any proper n-edge-coloring of 
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Km,n, there is a multicolored 6-cycle somewhere. Then, for each smaller m, n, we will give 

a specific proper n-edge-coloring which forbids multicolored 6-cycles. If k is an odd 

integer, furthermore, there exists a proper (2k)- edge-coloring of Km,2k which forbids 

multicolored (2k)-cycles, where k  m  2k. 

Now, we introduce the terminologies and definitions of graphs. For details, the 

readers may refer to the book “Introduction to Graph Theory” by D. B. West [22]. 

 A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a 

relation that associates with each edge two vertices (not necessarily distinct) called its 

endpoints. A loop is an edge whose endpoints are equal. Multiple edges are edges having 

the same pair of endpoints. A simple graph is a graph having no loops or multiple edges. 

In this thesis, all the graphs we consider are simple. 

The size of the vertex set V(G), denoted by |V(G)|, is called the order of G, and the 

size of the edge set E(G), denoted by |E(G)|, is called the size of G. When u and v are 

the endpoints of an edge, written uv in short, they are adjacent and are neighbors. If 

vertex v is an endpoint of edge e, then v and e are incident. The neighborhood of v, 

written N(v), is the set of vertices adjacent to v. The degree of v, written deg(v), is the 

number of neighbors of v; that is, deg(v)= |N(v)|. 

A subgraph of a graph G is a graph H such that V(H)  V(G) and E(H)  E(G) and 

the assignment of endpoints to edges in H is the same as in G, denoted by H  G. A 

spanning subgraph of G is a subgraph H with V(H) = V(G). A matching in G is a set of 

edges with no shared endpoints. A perfect matching in a graph G is a matching that 

saturates all vertices. A k-factor is a spanning subgraph with each degree equal to k. 

Then a 1-factor and a perfect matching are almost the same thing. 

A cycle is a graph with an equal number of vertices and edges whose vertices can be 

placed around a circle so that two vertices are adjacent if and only if they appear 

consecutively along the circle. A cycle with n vertices is denoted by Cn. A Hamiltonian 

cycle is a graph with a spanning cycle. A graph with no cycles is called acyclic and a 

graph with exactly one cycle is unicyclic. A tree is a connected acyclic graph. A 
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spanning tree is a spanning subgraph that is a tree. 

A complete graph is a simple graph whose vertices are pairwise adjacent, and the 

complete graph with n vertices is denoted by Kn. An independent set in a graph is a set 

of pairwise nonadjacent vertices. A graph G is bipartite if V (G) is the union of two 

disjoint sets, called partite sets of G. A graph G is m-partite if V (G) can be expressed 

as the union of m independent sets. A complete bipartite graph is a bipartite graph such 

that two vertices are adjacent if and only if they are in different partite sets. When the 

sets have the sizes s and t, the complete bipartite graph is denoted by Ks,t. If the sets 

have the same size n, the complete bipartite graph is called balanced, denoted by Kn,n. 

Similarly, the complete m-partite graph is denoted by Ks1, s2, …, sm if the sets have the 

sizes s1, s2, … and sm. The balanced complete m-partite graph is denoted by Km(n) where 

each partite set has n vertices. 

An isomorphism from a graph G to a graph H is a bijection f : V(G)V(H) such 

that uv  E(G) if and only if f(u)f(v)E(H). We say “G is isomorphic to H”, written 

G H, if there is an isomorphism from G to H. 

A k-edge coloring of G is a labeling from E(G) into a set S, where |S| = k. In this 

thesis, we use S = {1, 2, 3, …, k}. The labels are colors, and the edges which have the 

same color form a color class. A k-edge coloring is proper if all incident edges have 

different labels (i.e., each color class is a matching). The chromatic index of a graph G, 

(G), is the minimum number k for which G has a proper k-edge coloring. A subgraph 

in an edge-colored graph is said to be multicolored if no two edges have the same color. 

If the edges of a graph G are colored by r colors {1, 2, …, r}, then its color 

distribution (a1, a2, …, ar ) means that the number of edges with color i is equal to ai for 

every 1  i  r. An edge-coloring of a graph G is called an edge coloring with complete 

bipartite decomposition if each color class forms a complete bipartite subgraph of G. If 

the edges of G are colored so that no color is appeared in more than k edges, we refer to 

this as a k-bounded coloring. For a vertex v of G, the color degree of v, denoted by 

degcol(v), is the number of colors on the edges which are incident with v. 
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Let S be an n-set. A latin square of order n based on S is an nn array in which 

every element of S is arranged such that each element occurs exactly once in each row 

and column. For convenience, let S = {1, 2, …, n}. We denote a latin square of order n 

based on S by LS(n) = [ li,j ]nn where li,j  S. An mn latin rectangle ( m  n ) is an mn 

array in which n distinct elements are arranged such that each element occurs at most 

once in each row and column, denoted by LR(m, n). A partial latin square of order r is 

an rr array in which n distinct elements are arranged, n > r, such that each element 

occurs at most once in each row and column. A circulant latin square of order n is a 

special LS(n) where each row is rotated one element to the right relative to the 

preceding row, denoted by Ln. A transversal of a LS(n) is a set of n entries from each 

column and each row such that these n entries are all distinct. Replace LS(n) by partial 

latin square of order r, its transversal is a set of r entries from each column and each row 

such that these r entries are all distinct. 

 

 

1 2 3 4 

4 1 2 3 

3 4 1 2 

2 3 4 1 

1 2 3 

3 1 2 

2 3 1 

1 2 

2 1 

 

 

 

 

Figure 1: Circulant latin squares of order 2, 3, and 4 
 
 
 

There is a corresponding relationship between an mn latin rectangle and a proper 

n-edge-colored Km,n where m  n. Let {u1, u2, …, um} and {v1, v2, …, vn} be the two 

partite sets of Km,n and the edge uivj be colored with li,j where LR(m, n) = [li,j] mn is an 

mn latin rectangle, then we have a proper n-edge-colored Km,n. 
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Figure 2: A 35 latin rectangle and its corresponding 5-edge colored K3,5 
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2  Known Results 

In this section, some theorems and conjectures related to multicolored subgraph in an 

edge-colored Kn will be reorganized. It can be introduced according to the following four 

categories of multicolored subgraph. 

 

2.1  Multicolored Spanning Tree 

First, consider a non-proper coloring in Kn. Assume that it uses r colors. The following 

two results were proposed by Akbari and Alipour [1] in 2006. 

Theorem 2.1. [1] If the complete graph Kn, n  3, is r-edge-colored and r  +2, 

then Kn has a multicolored spanning tree. 

 

 

n 2

2 

Theorem 2.2. [1] If the complete graph Kn, n  6, is r-edge-colored and r  +3, 

then Kn has two edge-disjoint multicolored spanning trees. 

 

 

n 2

2

In the same paper, they also used a different perspective, color distribution, to deal 

with this problem as follows. 

Theorem 2.3. [1] If the r-edge-colored Kn has a color distribution (a1,…, ar ) with 1  a1 

…  ar  (n+3)/2 and r  n  1, then Kn has a multicolored spanning tree. 

Theorem 2.4. [1] If the r-edge-colored Kn has a color distribution (a1,…, ar ) with 1  a1 

…  ar  n/2, then Kn has two multicolored spanning trees. 

As early as in 1991, however, Alon, Brualdi and Shader [4] discussed the existence 

of multicolored spanning trees from the perspective of complete bipartite 
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decomposition. 

Theorem 2.5. [4] Every Kn having an edge-coloring with complete bipartite decomposition 

contains a multicolored spanning tree. 

On the other hand, the existence of multicolored spanning trees in a proper 

edge-colored complete graph was discussed. Since (K2n) = 2n  1, it is natural to ask 

if there exists a partition of the edges of an edge-colored K2n into multicolored 

subgraphs each has 2n  1 edges. Here are three conjectures related to this problem. 

Conjecture 2.6. [11] For n > 2, there exists a proper (2n1)-edge-coloring of K2n such 

that all edges can be partitioned into n isomorphic multicolored spanning trees. 

Conjecture 2.7. [7] If n > 2, then in any proper edge-coloring of K2n with 2n1 colors, all 

edges can be partitioned into n multicolored spanning trees. 

Conjecture 2.8. [11] If n > 2, then in any proper edge-coloring of K2n with 2n1 colors, all 

edges can be partitioned into n isomorphic multicolored spanning trees. 

For the first conjecture, it has been verified by Akbari, Alipour, Fu and Lo [2] in 

2006. 

Theorem 2.9. [2] For n  3, K2n can be properly edge-colored with 2n1 colors in such a 

way that the edges can be partitioned into edge-disjoint multicolored isomorphic spanning 

trees. 

As for Conjecture 2.7, proposed by Brualdi and Hollingsworth [7], they also proved 

 7



the existence of two multicolored spanning trees in the same paper. Then, the existence 

of three multicolored spanning trees has been proven by Krussel, Marshall and Verrall 

[19] in 2002. 

Theorem 2.10. [7] If n > 2, then in any proper edge-coloring of K2n with 2n  1 colors, 

there exist two edge-disjoint multicolored spanning trees. 

Theorem 2.11. [19] If n > 2, then in any proper edge-coloring of K2n with 2n  1 colors, 

there exist three edge-disjoint multicolored spanning trees. 

Later, Kaneko, Kano and Suzuki [18] extended the above theorem from K2n to Kn in 

2003. 

Theorem 2.12. [18] Every properly edge-colored Kn (n  6) has three edge-disjoint 

multicolored spanning trees. 

Conjecture 2.8 can imply Conjecture 2.7 easily; therefore, it has not been 

completely solved yet. A partial result, however, was proposed by Fu and Lo [14] 

recently. 

Theorem 2.13. [14] In any proper edge-coloring of K2n with 2n  1 colors, if n > 2, then 

there exist two edge-disjoint isomorphic multicolored spanning trees; and if n > 13, then 

there exist three edge-disjoint isomorphic multicolored spanning trees. 

 

2.2  Multicolored Cycle 

In an edge-colored Kn, it is clear that there is no multicolored cycle if and only if there 
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is no multicolored C3. Notice that there exists a cycle somewhere in a subgraph of Kn 

with n edges. Montellano-Ballesteros and Neumann-Lara [20] presented the following 

results. 

Theorem 2.14. [20] If the edges of Kn are colored by n or more colors actually appearing, 

then there is a rainbow K3 somewhere. 

This theorem infers that there is no edge-coloring of Kn with n or more colors which 

forbids multicolored cycles. Analogous to the multicolored trees, the existence of 

multicolored cycles in a proper edge-colored complete graph was discussed. It is natural 

to think about a multicolored Hamiltonian cycle in a proper (2n+1)-edge colored K2n+1. 

Theorem 2.15. [10] If 2n+1 is an odd prime, then there exists a proper 

(2n+1)-edge-coloring of K2n+1 such that all edges can be partitioned into n multicolored 

Hamiltonian cycles. 

Above theorem was provided by Constantine [10] in 2005, and he also gave a 

relative conjecture. 

Conjecture 2.16. [10] Any proper coloring of the edges of a complete graph on an odd 

number of vertices allows a partition of the edges into multicolored isomorphic unicyclic 

subgraphs. 

Theorem 2.15 was improved by Fu and Lo [15] in 2009. 

Theorem 2.17. [15] For any odd integer 2n+1, there exists a proper (2n+1)-edge-coloring 
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of K2n+1 such that all edges can be partitioned into n multicolored Hamiltonian cycles. 

Now, we consider a k -bounded coloring. For any positive integer k, the problem is 

to find a positive integer n which is large enough so that every k -bounded edge-colored 

Kn contains a multicolored Hamiltonian cycle. Here are three relative results. We list 

them in historical order. 

Theorem 2.18. [16] There exists a constant number c such that if n  ck3, then every 

k-bounded edge-colored Kn has a multicolored Hamiltonian cycle. 

Theorem 2.19. [13] There exists a constant number c such that if n is sufficiently large 

and k  n/(clnn), then every k-bounded edge-colored Kn contains a multicolored 

Hamiltonian cycle. 

Theorem 2.20. [3] Let c < 1/32. If n is sufficiently large and k  cn, then every 

k-bounded edge-colored Kn contains a multicolored Hamiltonian cycle. 

Theorem 2.18 was obtained by Hahn and Thomassen [16] in 1986 and implied that 

k could grow as fast as n1/3 to guarantee that a k-bounded edge-colored Kn contains a 

multicolored Hamiltonian cycle. In 1993, Frieze and Reed [13] made further progress, 

see Theorem 2.19. Few years later, in 1995, Albert, Frieze and Reed [3] improved 

Theorem 2.19 and proved the growth rate of k could in fact be linear. 

 

2.3  Multicolored Matching 
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The perfect matching only exists in K2n and the general case has been mentioned in 1998 

by Woolbright and Fu [23]. 

Theorem 2.21. [23] For n  3, every properly (2n  1)-edge-colored K2n has a rainbow 

perfect matching. 

There is a conjecture concerning matching a long time ago. 

Conjecture 2.22. [6, 21] In any proper edge-coloring of Kn,n with n colors, 

(1) If n is even, then there exists a multicolored matching M with |M | = n  1. 

(2) If n is odd, then there exists a multicolored matching M with |M | = n. 

Notice that there is a corresponding relation between a matching in Kn,n and a 

partial transversal in LS(n). We have the following theorem. 

Theorem 2.23. [17] Every latin square has a partial transversal of length at least 

n  11.053 log 2n. 

 

2.4  Multicolored Path 

The length of a multicolored path will increase along with the number of colors. So we 

can get the following. 

Theorem 2.24. [12] Every r-edge-colored graph G of order n has a multicolored path of 

length at least (2r)/n . 

In 2005, Broersma, Li, Woeginger and Zhang [5] obtained the following result. 
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Theorem 2.25. [5] Let G be an edge-colored graph. If degcol(x) ≥ k for every vertex x of G, 

then for every vertex v of G, there exists a multicolored path starting at v and of length at 

least (k+1)/2. 

Then Chen and Li [8] improved theorem 2.25. 

Theorem 2.26. [8] Let G be an edge-colored graph and k  1 be an integer. If degcol(x)  k 

for every vertex x of G, then there exists a multicolored path of length at least (3k)/5+1. 

Moreover, if 1  k  7, there exists a multicolored path of length at least k  1. 

Theorem 2.27. [9] Let G be an edge-colored graph and k  8 be an integer. If degcol(x)  k 

for every vertex x of G, then there exists a multicolored path of length at least (2k)/3+1. 

 We can get the following corollary by Theorem 2.27. 

Corollary 2.28. In any proper coloring of Kn, if n  9, then there exists a multicolored 

path of length at least (2n  2)/3 +1. 

 

 

 

 

 

 

 

 

 

 

 12



3  Main Results 

Now, we will discuss whether there exists a proper n-edge-coloring in a complete 

bipartite graph Km,n which forbids multicolored (2k)-cycles. For k  2 and 2  m  n, we 

define the forbidding multicolored (2k)-cycles set, FMC (2k) in short, by (m, n)  FMC 

(2k) if there exists a proper n-edge-coloring of Km,n which forbids multicolored 

(2k)-cycles. Obviously, (i, j )  FMC (2k) if i < k or j < 2k. In this thesis, we completely 

determine the two sets FMC (4) and FMC (6). Furthermore, for k is odd, we find several 

elements in the set FMC (2k). Besides, we denote an mn latin rectangle which forbids 

multicolored (2k)-cycles in its corresponding Km,n by Lm,n(2k). 

 

3.1  Forbidding Multicolored 4-cycles and 6-cycles 

It is impossible to forbid multicolored 4-cycles in any proper n-edge-coloring of Km,n 

where 2  m  n and n  4. Thus we have the following theorem. 
 

Theorem 3.1. FMC (4) = {(2, 2), (2, 3), (3, 3)}. 
 

Proof. It suffices to show that there exists a multicolored C4 in a proper 4-edge-colored 

K2,4. Let {u1, u2} and {v1, v2, v3, v4} be the two partite sets of K2,4. Without loss of 

generality, assume the colors on u1v1, u2v1 are 1 and 2. There must be one vertex vi where 

i  {2, 3, 4} such that the colors on u1vi, u2vi are different from {1, 2}. Thus we have a 

multicolored C4. � 
 

Then we will have a discussion on forbidding multicolored C6 in a proper 

n-edge-colored Km,n where 3  m  n and n  6. Notice that every proper n-edge-coloring 

of Km,n has its corresponding mn latin rectangle using n distinct entries. In an mn 

latin rectangle, consider a 33 partial latin square. If there exist 2 disjoint transversals 

using 6 distinct entries in the 33 partial latin square, then there exists a multicolored 

C6 in its corresponding K3,3  Km,n. On the other hand, we can regard the existence of 2 
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disjoint transversals as omitting three positions that no two of them are in the same row 

or column. Figure 3 is an example of a 33 partial latin square, and the two disjoint 

transversals, which can be combined to a multicolored C6, are discovered by omitting 

the three “gray” positions. 

 

7 3 5 

1 4 2 

2 8 6 

 

  

 

Figure 3: A 33 partial latin square 

Obviously, in a 33 partial latin square, if there appear 9 kinds of entries, then a 

multicolored C6 must occur somewhere. And if there appear 8 kinds of entries, then we 

can omit the two positions which have the repeated entry to obtain a multicolored C6. 
 

Proposition 3.2. Let L be a 33 partial latin square with 7 distinct entries. There is no 

multicolored C6 in its corresponding K3,3 if and only if L has an L2. 
 

Proof. Assume that L has no L2.  

Case 1. If there is one entry appearing 3 times, then omitting these three positions 

yields a multicolored C6, a contradiction. 

Case 2. There are two entries appeared twice separately. Without loss of generality, let 

the two entries be 1 and 2, and let the positions of entry 1 be arranged at the diagonal, 

see Figure 4. 

 

1   

 1  

   

 

 

 

Figure 4: Case 2 of Proposition 3.2 

Now, consider the positions where entry 2 may appear. Since there is no L2, there 
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must be at least one position which labels entry 2 in the third column or the third row. 

Name this position be A. Then we just omit position A and one of the positions labeled 

1 which is not in the same row and column with A. Thus, we have a multicolored C6.  

 Conversely, suppose the two entries in L2 be 1 and 2. Since there is none or two 1’s 

(or 2’s) in any transversal of L, any two disjoint transversals couldn’t have 6 kinds of 

entries. Then, there is no multicolored C6 in its corresponding K3,3. � 
 

Proposition 3.3. Let L be a 33 partial latin square with 6 distinct entries. There is no 

multicolored C6 in its corresponding K3,3 if one of the following conditions occurs: 

(i) There exists 2 columns (or rows) in L used exactly 3 distinct entries. 

(ii) Some entry appears three times in L. 

(iii) There is an L2 in L. 
 

Proof. Since there are just 6 kinds of entries, we should keep every kind of entries left 

and omit the other repeated ones. Thus we have done. � 
 

Consider an n-edge-colored Km,n, m  n, the larger n is, the more colors we can use. 

Therefore, the possibility to forbid multicolored 6-cycles in an n-edge-colored Km,n gets 

lower as n increases. 
 

Proposition 3.4. For any proper n-edge-coloring of Km,n where n  9 and m  n, there 

exists a multicolored C6. 
 

Proof. It is sufficient to consider m = 3. Suppose NOT. There exists a proper 

n-edge-coloring of K3,n which forbids multicolored C6’s. Let L3,n(6) be the corresponding 

latin rectangle. Without loss of generality, let the three entries of the first column in 

L3,n(6) be 1, 2 and 3. 

Except the first column, the three entries 1, 2 and 3 can occur in at most 6 columns. 

So, there is at least one column which has no entries 1, 2 and 3. We can assume the three 

entries of the second column be 4, 5 and 6. There are n  6 unused entries left and each 
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3 6 2 16
�=�1+

n n

of them must appear in the remaining n  2 columns exactly three times. Consider the 

inequality:                      > 1, if n  9. By Pigeon-hole principle, there must 

be one column which has at least two entries disjoint from the set {1, 2, 3, 4, 5, 6}. 

Combining this column with the first two ones, there will be a multicolored C6 in its 

corresponding K3,3. It leads a contradiction. � 

2 2n n

 

So far, we have narrowed the two indices n and m down to 6  n  8 and 3  m  n. 
 

Lemma 3.5. For 3  m  6, (m, 6)  FMC (6). 
 

Proof. Let L6,6(6) = L3  L2 be composed of four copies of L3, and suppose the entries in 

the top-left and bottom-right copies are from {1, 2, 3} while the entries in the other two 

copies are from {4, 5, 6}. For convenience, name the four copies A, B, C and D clockwise 

from the top-left one, see Figure 5. 

 

A B 

D C 

1 2 3 4 5 6 

3 1 2 6 4 5 

2 3 1 5 6 4 

1 2 3 4 5 6 

3 1 2 6 4 5 

2 3 1 5 6 4 

L6,6(6) = 

Figure 5: L6,6(6) and the four copies of L3 
 

Suppose that there exist 6 positions somewhere which induce a multicolored C6. 

Let L be the 33 partial latin square which contains the 6 positions. By Proposition 3.2 

(i), we can assume L cross all four copies. Without loss of generality, suppose there are 

four positions of L locating on A. Since A has only 3 kinds of entries, some entry must 

appear twice, say a. 

Then consider the only one entry of L in C. By Proposition 3.2 (ii), let the entry be 
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b, where b  a. Moreover, there is exactly one repeated entry in the other four positions 

of L in B and D. Recall that we can obtain a multicolored C6 by omitting three positions 

that no two of them are in the same row or column. If we omit the position in C, then 

there must be a repeated entry left in B and D. Otherwise, the two positions having 

entry a in A will be left. It’s a contradiction. � 
 

Lemma 3.6. For 3  m  8, (m, 8)  FMC (6). 
 

Proof. Let L8,8(6) = L2  L2  L2 be composed of 8 copies of L2. Similar to the proof of 

Lemma 3.5, suppose the entries in the top-left and bottom-right copies are from {1, 2, 

3, 4} while the entries in the other two copies are from {5, 6, 7, 8}, and the four copies 

are arranged as following Figure 6. For convenience, let L8,8(6) = [ li,j ] where 1  i, j  8. 

 

 

A             B 

D             C 

a 

k d c 

b 

h 

8 1 2 3 4 5 6 7  

2 1 4 3 6 5 8 7 

3 4 1 2 7 8 5 6 

4 3 2 1 8 7 6 5 

5 6 7 8 1 2 3 4 

6 5 8 7 2 1 4 3 

7 8 5 6 3 4 1 2 

8 7 6 5 4 3 2 1 

L8,8(6) = 

 

Figure 6: L8,8(6) and the four copies of (L2 )
2 

 

 Suppose that there are 6 positions somewhere which induce a multicolored C6. Let 

L be the 33 partial latin square which contains the 6 positions. It is easy to see that 

any 23 partial latin rectangle in L2  L2 contains an L2. By Proposition 3.1, we can 

assume L cross all four copies. Without loss of generality, suppose there are four 

positions of L locating on A. Let the four positions in A be (a, c), (a, d), (b, c), (b, d), 

and the only one position in C be (h, k), where 1  a, b, c, d  4 and 5  h, k  8. 
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By Proposition 3.2, la,c  lb,d or la,d  lb,c. Actually, the four entries la,c, lb,d, la,d, lb,c are 

distinct. Assume lh,k  la,c, then la,k  lh,c because of L8,8(6) = (L2 )
3. Thus, we have an L2 

in L, a contradiction. � 
 

Lemma 3.7. (3, 7)  FMC (6). 
 

Proof. Let L3,7(6) be the corresponding latin rectangle of the specific proper 

7-edge-coloring which forbids multicolored C6’s, see Figure 7. 

It is easy to see that any two columns of the first 4 columns have an L2, and any two 

columns of the last 3 columns used exactly 3 distinct entries. By proposition 3.3 (i) and 

(iii), we have done. � 

 

1 2 3 4 5 6 7 

2 1 4 3 6 7 5 

3 4 1 2 7 5 6 

L3,7(6) = 

Figure 7: L3,7(6) 
 
 

Lemma 3.8. There exists a 3-edge-colored K3,3 in a proper 7-edge-colored K3,7 which 

forbids multicolored C6’s. 
 

Proof. Let L3,7(6) be the corresponding latin rectangle of a proper 7-edge-colored K3,7. It 

suffices to show there must be a latin subsquare of order 3.  

Claim 1. There exist two columns having disjoint entries. 

Suppose NOT. Let the entries of the first column be 1, 2 and 3. Notice that each 

entry in {1, 2, 3} must appear twice in the other columns. By our assumption, each 

remaining column has exactly one position with entry in {1, 2, 3}. Without loss of 

generality, let the second column contain entries 1, 4, and 5. Except the first two 

columns, there are at most 4 columns having entries 4 or 5. Therefore, there exists one 

column having exactly one entry from {1, 2, 3} but no entries from {4, 5}. By 
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proposition 3.2, this column and the first two columns will create a multicolored C6, a 

contradiction. 

Claim 2. There exists a latin subsquare of order 3. 

By Claim 1, we can assume the entries of the first two columns be 1, 2, 3 and 5, 6, 

7 respectively. Consider the first two columns and the three columns which have entry 

4. By proposition 3.1, the other two entries in the column which has entry 4 must be 

both from {1, 2, 3} or {5, 6, 7}. 

Case 1. The entries in the three columns with entry 4 are all from {1, 2, 3} or {5, 6, 7}. 

Assume the six entries are all in {5, 6, 7} by symmetry. Then combining the first 

column and the last two ones, we have a latin square of order 3, see Figure 8. 

 

1 5 4     

2 6  4    

3 7   4   

 

 

 

Figure 8: Case 1 
 

Case 2. The entries in the three columns with entry 4 are NOT all from {1, 2, 3} or {5, 

6, 7}. 

 We will use Figure 9 and Figure 10 to illustrate our arguments. First, look at 

Figure 9. Without loss of generality, suppose the entries in position A are from {1, 2, 3} 

while the entries in position B are from {5, 6, 7}. 
 

 
1 5 4 A B   

2 6 A 4 B   

3 7 A A 4   

 
 

 

Figure 9: Case 2 
 

By proposition 3.2, since combining the first two columns and one of the columns 

with entry 4 will form a partial latin square with 7 kinds of entries, the entries in 
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position A and position B are uniquely determined as Figure 10. Meanwhile, the entries 

in some positions of the last two columns are determined except positions denoted as C. 

Note that the entries in position C must be from the set {5, 6}. 
 

1 5 4 3 6 7 2 

2 6 3 4 5 1 7 

3 7 2 1 4 C C 

 

 

 

Figure 10: Case 2 
 

Consider column 1, column 5, and column 6, they use 7 distinct entries but without 

L2. By Proposition 3.2, there exists a multicolored C6, a contradiction. � 
 

Corollary 3.9. For any proper 7-edge-coloring of Km,7 , 4  m  7, there exists a 

multicolored C6. 
 

Proof. It is sufficient to consider the case m = 4. Suppose NOT. There exists some 

proper 7-edge-coloring of K4,7 which forbids multicolored C6’s. Consider its 

corresponding latin rectangle L4,7. By Lemma 3.7, there exists a latin subsquare of order 

3 in the first three rows of L4,7(6). Without loss of generality, we put the latin subsquare 

of order 3 in the last three columns and let the entries be 5, 6 and 7, see Figure 11. Then, 

consider the last three rows. It’s impossible to find a latin subsquare of order 3. It 

contradicts Lemma 3.7. � 

 
    5 6 7 

    7 5 6 

    6 7 5 

       

 

 
 

 

Figure 11: L4,7(6) 
 

To sum up, we have the following conclusion. 
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Theorem 3.10. For each m, n (m  n) satisfying one of the follow conditions, any 

n-edge-colored Km,n contains a multicolored C6: 

(i) m  3 and n  9; 

(ii) m  4 and n = 7. 
 

Proof. It can be easily proved by Proposition 3.4, Lemma 3.5, Lemma 3.6, Lemma 3.7, 

Lemma 3.8 and Corollary 3.9. � 
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3.2  Forbidding Multicolored (2k)-cycles 

In this subsection, we consider the general version: forbidding multicolored (2k)-cycles. 

In the followings, we extend the method of Lemma 3.4, which shows a proper 

6-edge-coloring of K6,6 that forbids multicolored 6-cycles, to the case that forbids 

multicolored (2k)-cycles. 
 

Theorem 3.11. If k is odd, then (m, 2k)  FMC (2k) for k  m  2k. 
 

Proof. It suffices to show (2k, 2k)  FMC (2k). Let L2k,2k(2k) = Lk L2, where Lk is the 

circulant latin square of order k. Similar to above proofs, suppose the top-left and 

bottom-right copies of Lk are based on {1, 2, …, k} while the other two copies are based 

on {k+1, k+2, …, 2k}. Now, we claim that there are no two disjoint transversals using 

2k kinds of entries. For convenience, name the four copies A, B, C and D clockwise from 

the top-left one, see Figure 12. 

 

 Lk based on Lk based on 
A 

 

 

 

 

 
 

Figure 12: L2k,2k(2k) and four copies of Lk 
 

 Suppose that there exist two disjoint transversals using 2k kinds of entries. Let 

L be the kk partial latin square containing these two transversals. Note here that each 

column and row contains exactly two entries from the two transversals. If L crosses only 

two copies of Lk, the two disjoint transversals must contain an even number of entries 

from [k]. Therefore, we can assume that L crosses all four copies. Let a, b, c and d be the 

{1, 2, …, k} 

Lk based on 

{1, 2, …, k} 

Lk based on 

{k+1, …, 2k} 

{k+1, …, 2k}

C D 

B 
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numbers of entries of the two transversals from A, B, C and D respectively. Clearly, a+c 

is even because a+b and b+c are both even. By the hypothesis, a+c = k is odd, a 

contradiction. Then we complete the proof. � 
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4  Conclusion 

In this thesis, we have obtained the following three main results: 

1. FMC (4) = {(2, 2), (2, 3), (3, 3)}. 

2. FMC (6) = {(a, b), (c, 8), (3, 7) | 2  a  b  6, 2  c  8}. 

3. If k is odd, then (m, 2k)  FMC (2k) for 2  m  2k. 

 

For the future study, we shall try to find the smallest n such that there always 

exists a multicolored C2k in an arbitrary proper n-edge-colored Kk,n for k  4. In 

order to solve this problem, we may find the smallest t such that there always exists 

a multicolored C2k in an arbitrary proper t-edge-colored Kk,k for k  4. Hopefully, 

this task can be done in the near future. 
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