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A Study of Graphs and Multigraphs Associated
with Various Designs

Student: Chieh-Yu Wu Advisor: Tayuan Huang

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

The notion of strongly regular multigraphs was first introduced by R. C.
Bose, followed by Neumaier for characterizing quasi-residual 2-designs, and fur-
ther by Metsch for embeddings of residual 2-designs. Recently, the notion of
partial geometric designs was .also used by. van Dam and Spence over com-
binatorial designs with two singular values. The basic definitions and most
results regarding strongly regular multigraphs and partial geometric designs
covered in the works of Neumaier and Metsch are given in a unified way in this
thesis. The associated multigraphs or graphs of 2-designs are then studied, fol-
lowed by a few examples of 2-designs and their corresponding strongly regular
multigraphs. Motivated by these graphs, connected regular graphs with 3 or 4
distinct eigenvalues are also studied.
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1 Introduction

The notion of strongly regular multigraphs (SR multigraphs) was first introduced
by R. C. Bose in a very cumbersome notation. While characterizing quasi-residual
2-designs, Neumaier gave an equivalent definition of strongly regular multigraphs in
an elegant and self-contained way [2]. Metsch continued the study of embeddings of
residual 2-designs within the framework of strongly regular multigraphs. However,
the notations used by them are quite different.

Neumaier showed that the block multigraph of a 2-design of order n is a strongly
regular multigraph, together with a partial converse with some constraints over its
parameters. Its proof involves 2-designs and its variations, called 1% - designs (or
called partial geometric designs), or weak 1% - designs. Neumaier showed also that a
strongly regular multigraph under some numerical constraints is the point multigraph
of a unique 1% - design. Recently, the notion of partial geometric designs was also
used by van Dam and Spence [3, 4] over combinatorial designs with two singular
values.

Though strongly regular multigraphs and partial geometric designs are the com-
mon themes covered in [7, 6], the notations used by Neumaier and Metsch are quite
different. We expect that these notions will keep playing essential roles in the fu-
ture. The basic definitions and most results regarding strongly regular multigraphs
and partial geometric designs covered in [7, 6] are given in a unified way in section
2. The block multigraphs or associated block graphs, and the point multigraphs of
2-designs are studied in section 3, followed by a few examples of 2-designs and their
corresponding strongly regular multigraphs. Motivated by these graphs, connected

regular graphs with 3 or 4 distinct eigenvalues are studied in section 4.



2 Basic Definitions and preliminary

2.1 Graphs and multigraphs

Definition 2.1. A graph is a triple consisting of a vertex set V(I'), an edge set E(I),
and a relation that associates with each edge two vertices (not necessarily distinct)
called its endpoints. Two nonloops are parallel when they have the same ends; graphs
that contain them are called multigraphs. Equivalently, a multigraph T consists of a

nonempty set V' of vertices and a multiset £ of edges.

For a multigraph I' and z, yeV = V(I'), let my,:=0 , and my,:=the number of

edges joining x and y.

Definition 2.2. The eigenvalues of an adjacency matrix A(I') = A of a connected
graph are called eigenvalues of the graph I', denoted by Spec(I') = (6,"°,0,™*,65™2,. .. ,0,™)

with 6y > 0, > 6, > ... > 6, and m; is the multiplicity of the eigenvalue 6;.

Definition 2.3. For a connected k-regular graph of diameter d with Spec(I') =

(k1761m1 ,02m2,. . ,Hsms), then

I -6

1<i<s

is called the Hoffman polynomial of the graph I'.

Definition 2.4. A simple graph T is strongly regular if there are parameters k, A,
such that I' is k-regular, every adjacent pair of vertices have A common neighbors,
and every nonadjacent pair of vertices have mu common neighbors, denoted by SR(v,

k, A, pt), where v is the number of vertices in I'.

Lemma 2.1. If I" is an SR graph (v, k, A\, p), then k(k— X —1) = p(v — k —1).
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For a connected graph I' with an adjacency matrix A, then I' is a strongly regular

graph if and only if

AJ = kJ, A2 = kI + A+ pu(J — 1 — A)

= A=A+ (k— )+ pJ.

A multigraph version of strongly regular graphs is defined by Bose and Shrikhande
1973; similar to strongly regular graphs, the matriz expressions in terms of their

adjacency matrices A = [m; ;] for strongly regular multigraphs are given.

Definition 2.5. [1, 6] A multigraph I' is called a strongly reqular multigraph (SR
multigraph) with parameters (m, n, p, 7, R) for real numbers m, n, u, v, R with

n > 0, if

3. Z:mmc(mmr —1) =~ for each z € V.

zeV

4. vp=(R+m)(R+m—n).

Indeed, condition 4 is a consequence of the fact that

Z(mam)2 = Z Moz + Z Maz(Maz — 1) and the conditions 1 3 above.

eV z€eV zeV
Note that the parameters v = mey(mxy —-1), R = me for each vertex z

yev yev
were defined explicitly, though m, n, u and are not. The parameter

N = mey(mw — 1) measures the derivations of the multigraphs from graphs; if

v = mey(mxy — 1) = 0, then either m,, = 0 or m,, = 1 for z,y € V. The
yeVv
parameter p in SRMG(m, n, p, v, R) is identical with that of p in SRG (v, k, A\, u) in

3



case v = 0. Some subsets of vertices including claws, maximal cliques play essential
roles in the study of their geometric structures. The parameter m is the constant
number of maximal cliques containing a fix vertex in the study of maximal claws

under some numerical constraints.

Proposition 2.1. [6] An SR multigraph I" with parameters (m, n, u, v, R) with

v =0 is an SR graph with parameters

R(R—n+2m—p—1)
0

+R+1,R,n—2m+ p, 1)

(m,n, 1,7y, R) = (

Proof: Let A = |my,|, it suffices to show that m,, > 0 for all z,y € V(I).
Consider the (a, b) entry of a,b € V(I'):

L. Z = R =k for each a € V(T),

2. Z MazMpe = (N — 2m)mgp + m(n = m)dap + K,

5 ates = S = i ) R
when a, b are adjacent,
membx =(n—=2m)mgp+p=(n—2m)+p=MX

when a, b are nonadjacent,

E MagzMpy = U

Since k(k — XA — 1) = u(v — k — 1) for SR graphs, we have

y_ME=A-1) . R(R—n+t2m-—p-1)
Iz I

+ R+ 1. (]

The following lemma will be used in the proof of an inequality below.

Lemma 2.2. [7] Let A be an integral symmetric matrix with zero diagonal satisfying
AJ=RJ, A= (n—-2m)A+m(n—m)I +pJ. If

n > mazx{2m —4,2m — 1 + p +~}



where v = m(n — m) + u — R, then A is the adjacency matrix of a SR multigraph
(m, n, p, v, R).
Proof: Since A% = (n — 2m)A + m(n —m)I + pJ, then
Z MazMpe = (N — 2m)mgp + m(n — m)dap + K,

Zmax(max—l):'y:m(n—m)+u—R.

For a # b, we have:

2Tn'ab(frnab - ]-) S Z(mam + mbm)(mam + Mpy — 1)
- Zmax(mam - 1) + 2 Zma:c + My — Zmbaj(mbm - 1)

=7 +2((n = 2m)mg, + p) + 7.

it follows that

Maz(Maz — 1)< (0 — 2m)mgp + ) + 7,

and

(Map + 1) (map +2) < (n=2m+ 4)ma +p+v+2 > 0.
Since

n > max{2m —4,2m — 1 + p + v},
then

(n—=2m+4)mep +p+y+22> (u+y+3)mep+p+7+22>0,s0
ma > 0. Hence A is the adjacency matrix of an SR multigraph (m, n, u, v, R).
Some other combinatorial interpretations for the parameters can be found in the

following lemma.
Lemma 2.3. [7| For an SR multigraph (m, n, u, v, R)

1. m —n < mg < m whenever a # b.



2. m > 1, with equality if and only if it is the disjoint union of complete graphs.
3. If there are nonadjacent vertices, then n > m.

4. > (R+m)(m —n), with equality if and only if my, = m — n for all a # b.
5. wy < (n—2m+ p)(m(n —m) + ), with equality if I' contains no triangles.
6. u>2m—n.

7. It n <2m+4, then v < 2m(n —m) +n —2m — 1+ p.

Proof:

1. 2mab2 = 7nab2 + mab2 S Z (max - mbx)2 + Z (max - mb:(;>2

z=a or b aa or b
S =S s S
= Z;n(n —m) — g(n —2m)mgy, ’
= ma? + (n — 2m)mg — m(n—m) < 0
= (Mg — m)(mg + (n —m)) < 0.
Then m —n < mgyg < m.
2. For adjacent a, b, 1 <mgy < m =1 <m by 1 above.
If Mg = 1, since 2my,* < Z (Mg — Mz )* + Z (Maz — Mz )?, then my, = 1 =
z=a or b a#a or b
Mpe and Mgy, = My, i.6. a and b are joined to exactly the same points. This implies
that it is the disjoint union of complete graphs.
3. For nonadjacent a, b, then m —n < mg, = 0 and hance m < n by (1).
4. vy=mn—m)+pu—R>0
=u>R+m(m—n)>R(m—n)+m(m—mn) (since m —n <0)
= > (R+m)(m—n)

If my, = m — n for distinct a, b, then

membx =Ww—-2)(m—n)*=mn-2m)(m—n)+p



N ((R—l—m)(R—i-m—n)
w

m)(R+m —n))

—2)(m —n)* — (n — 2m)(m — n) = p (since vy = (R +

= 1>+ (n—2m)(m — n)u — (m —n)*(R+m)(R+m —n) —2u) =0
= pu—(R+m)(m—n)] - [p+(R+m—n)(m—n)]=0
w=(R+m)(m—n)or u=—(R+m-—n)(m-—n).

Since p > (R +m)(m —n), we assume p = (R + m)(m —n) + s for some s > 0,

R 2 ’
OSZ(mam_v_l) :Zma‘rQ_QU}_%lZm“z—i_Z(U}_%l)

r#a T#a T#a x#a
RQ
:m(n—m)—i—,u—v_l
R2
—s— R(m—n)—
s (m —n) "
0
plv'=1)
R R
When s = 0, then m,, = 1= Pz = m —n for each x # a. 5. For a fixed
/(]_
m-—n

point a, the number of triangles containing a is

35 ettty = 3 1 )
T Yy x )
= Z maz((n — 2m)ma$ + ,u)

— (n— 2m)(m(n —m) + u) + p(m(n — m) + 1 — )

= (n—2m+ p)(m(n —m) +p) —ypu >0,

it follows that yu < (n — 2m + p)(m(n —m) + u).

When yu = (n — 2m + p)(m(n — m) + p), then Zmemxymya = 0, i.e. the
Ty

number of triangles is 0.

6. Since (n—2m+pu)(m(n—m)+u)—~yu > 0by (5), and v > 0, then (m(n—m)+u) >0

7



and (n —2m + p) > 0, hence p > 2m — n.
7. Let T be an SR multigraph (m, n, p, v, R) with an adjacency matrix M, then
MJ=RJ...(%)
M? = (n—2m)M +m(n—m)I + puJ ... (xx)
Let M’ = —M ,then
M'J=-MJ=—-RJ=RJ, and
(W'Y = (=M = A2
Hence,
(n' =2m")(=M)+m'(n —m/) ]+ p'J = (n—2m)M +m(n —m)l + pnJ.
Compare the coefficients of the above two equations, we have
m =n—m,n =n,u =u, R =R,
v =m'(n—m')+ ' — R =2m(n—=m)+2u—.
By lemma 2.2 [7], it follows that if n < 2m+4, then v < 2m(n—m)+n—2m—1+u,

as required. n

Similar to SR graphs, the matriz expressions in terms of their adjacency matrices

A = [my;| for strongly regular multigraphs are given below.

Lemma 2.4. [7] Let A be an adjacency matrix of a multigraph I' of order v, then

the following are equivalent:

1. T"is an SR multigraph (m, n, u, v, R),

2. AJ = RJ and A% = (n —2m)A + m(n —m)I + uJ
=(mn—m)+p)l+n—-2m+pA+uJ—1-A)
for some real numbers R, m, n, p with n > 0.

Moreover, v = (F+ m>(i rm= n)




Proof: Let A be an adjacency matrix of an SR multigraph I with vertex set X.
1. Since Zm‘” = R for each a € X, hence AJ = RJ.
2. For a, bg:E X,
Z Mg = (1 — 2m)my + m(n — m)da, + p
gives
A2 =(n—2m)A+m(n—m)I +pJ... (%)
Multiplying both sides of (*) by J, and J? = vJ with v = | X|, then
A?J = (n—2m)AJ +m(n —m)IJ + pJ?, and
R%*J = R(n —2m)J + m(n —m)J + pvlJ,
It follows that
R?> = R(n — 2m) + m(n — m) + pv, and

po = R*— (n —2m) —m(n=m) = (R+m)(R+m—n),
(R—l—m)(R—l—m—n)'

hence v =
7
Conversely, Zm’” Myy — Zm‘” Z Moy = —m)+pu—Risa
constant, denoted by 7, and hence R —I— v =m(n-m)+ p. ]

Lemma 2.5. [7, 6] Suppose I' is an SR multigraph (m, n, u, v, R), then
1. There are unique k£ > 1, » > 0 and ¢, ¢ > 0 such that
(m,n,u, v, R) = (r,k+r+c—1—trt,re,r(k — 1)),
and (r, k, t, c) is called the geometric parameters of this multigraph.
2. The number of vertices of an SR graph with parameters (m, n, u, v, R), or with
geometric parameter (1, k, t, ¢), is

v=(R+m)(R+m—n)/pu=r((r—1)(k—1)+t—c)/t.

The parameter p in SR multigraph(m, n, p, v, R) is identical with that of u in

SR graph(wv, k, A, ) in case v = 0. Some subsets of vertices including claws, mazimal

9



cliques play essential roles in the study of their geometric structures. The parameter
m is the constant number of maximal cliques containing a fix vertex in the study of

maximal claws under some numerical constraints.

A clique of a multigraph is a set of pairwise adjacent points; a clique which
cannot be extended to a larger clique is called mazimal clique. In an SR multigraph
(m, n, u, v, R), motivated by the following lemma, a maximal clique C' with |C| >

(n/2) + p+1—mis called a grand clique.

Lemma 2.6. [7] In an SR multigraph (m, n, u, v, R), an edge of multiplicityl is in

at most one grand clique.

Proof: Let ab be an edge of multiplicity 1 contained in two distinct grand cliques
C and C'. Since C' and C" are maximal, there is € C’ such that C' U {z} is not a
clique, and hence there is y € C' with m,, = 0.
1. The points z € CNC" are adjacent to 2 and y and hence |CNC’| < Z MMy, = b
2. The points z € |C U C'| — {a, b} are adjacent to both a and b, Wheznce
IcCuC|—-2< Zmazmbz =n—2m+ .
Hence |C| + |C'| = |C'N 6’] +|CUC| <n+2(u+1—m), this contradicts the fact

that both |C| and |C’| are grand cliques. ]

Theorem 2.1. [7] If C is a clique of an SR multigraph(m, n, u, v, R) with p > 0,
then
ICI(R+m —p) < (n+1—m)(R+m).

Equality holds if and only if

1. every edge contained in C' has multiplicity 1, and

10



2. for x ¢ O, there are a constant number « of edges containing = and intersecting
C; in this case, a = |C|+m — 1 —n.
Proof: Let C be a clique with |C| = ¢ points. Define o, = me. Then, for
zeC

x ¢ C, « is the number of edges containing x and intersecting C. We compute the

expression

N(@) = S (0w — ) + 3 — at-m—n)(a, — a+m)

z¢C xeC

T acC =z
3. EE:(Ix j{: :£:7naxn%x
T a, beC =
— (n — 2m) ZO‘”C + m(n -— m)c+ ,ucg,
zeC
Whence

N(a):Z( —a)*+ (2m —n) Zax+(m(m—n)—a(2m—n))]0\

zeC
—uc —ca(2R +2m —n) + o*v
= p Hep — a(R+m))(cu — a(R+ m —n)).

In particular, for o = cu/(R +m), N(a) = 0, and we conclude from

N(a):Z(Ozx—oz)Z—f—Z(ozm—oz—i—m—n)(ozm—a—km)

z¢C zeC
that o, < a4+ n —m for all z € C since otherwise N(a)) would be strictly positive.
But, for x € C, a, = Zm‘“? > c—1since (' is a clique. Hence c — 1 < a+n—m

acC
which leads to |C|(R+m —p) < (n+1—m)(R+ m).

11



If equality holds then o, =c—1=a+n —m for all x € C. Hence, C contains
only edges of multiplicity 1. Moreover, N(a) = 0 implies that «p, =a =c+m—1—n
for all x ¢ C.

Conversely, if C' contains only edges of multiplicity 1, and o, = o for all x ¢ C(for

some ') then a,, = ¢ — 1 for all x € C, and we obtain from 1~3. ]

2.2 Designs

Definition 2.6. Let X be a set of v points and B C ()/: ) such that any two elements

of X lie in exactly A blocks, then (X, B) is called 2-(v, k, \)design

Definition 2.7. A 2-(v, k, \) design has exactly b blocks, and every point occurs in

exactly r blocks.

1. A 2-(v, k, N)design is called a symmetric design if b = v(or, equivalently, r = k
or N(v—1)=k*—k).
2. A 2-(v, k, \)design is called a quasi symmetric if the cardinality of the inter-
section of two distinct blocks takes only two distinct values.
Note that for a 2-(v, k, A) design,
r=ANv—-1)/(k—1),b=M(v—1)/k(k—1) and
(k—1)
A

v=k+ -

k(= 1)
)

where n = r — \ is the order, and

v=1+ for symmetric designs.

Definition 2.8. [7]

1. The block multigraph of a 2-design m = (X, 3) is the multigraph defined over
the set of blocks, and two distinct vertices (blocks) A, B are connected by

map = |AN B| edges.

12



2. The point multigraph(collinearity graph) of a 2-design m = (X, 3) is the multi-
graph defined over the set of points, and two distinct vertices (points) z, y are

connected by m,, edges if they are contained in my, blocks.

3. The block graph of a quasi-symmetric 2-design with sizes z, y of intersections of
blocks is defined over the set of blocks, and two distinct vertices (blocks) A, B

are adjacent if and only if their intersection has cardinality .

Theorem 2.2. [7] The block multigraph of a 2-(v, k, A) design of order n = r — \ is

an SR multigraph (m, n, u, v, R) with
(m,n, 1,7y, R) = (k,n, E*X\ k(k — 1)(A = 1), k(n + X — 1)).

A partial converse is given in the following theorem with some constraints over its

parameters:
Theorem 2.3. [7] Every SR multigraph with parameters

(m,n, p, 7y, R) = (k,n, KX\ k(k = 1) (A= 1), k(n+ X — 1))
for positive integers n, k(# 1), A, and

n > maz{k(k— )X — (b — 1), 20k — 1) (F2A+ kA — 2\ + 1), %(kQ ) (A —k+2))

(r—XA)(k—1)
3 :

is isomorphic to the block multigraph of a 2-(v, k, \) design with v = k+

1
2.3 15 -designs(or called partial geometric designs)

It is well known that the block graphs of quasi-symmetric 2-designs are strongly
regular. This leads to the question whether strongly regular multigraphs can be
associated with some designs of various types? The notion of partial geometric design

with parameters (r, k, ¢, ¢) was introduced as a generalization of a partial geometry

13



with parameters (r, k, t)(with ¢ = 0 above). As a generalization of strongly regular
graphs(SR graph), a partial geometric design with parameters (7, k, ¢, ¢) gives rise in
a natural manner to a strongly regular multigraph(SR multigraph) whose parameters
depend on 7, k, t and c.

The notion of 1% -designs(called partial geometric designs by R.C. Bose 1976).
Note that 2-designs, transversal designs, semiregular partially balanced incomplete
block designs, partial geometries, and polar spaces are examples of 1% -designs. The
block multigraphs of 1% -designs, and dually, the point multigraphs of weak 1% -designs
still are strongly regular, and by investigating closely the properties of cliques and
claws in a multigraph, general characterization theorems which specialize to Theorem
2.3([7]). The matrix techniques were used by Neumaier in order to get the relations
among the five parameters, and then to derive the essential relations between SR

1
multigraph and 15 -design.
Definition 2.9. [7] An incidence structure with an incidence matrix A is

1. a weak 2-design if AJ =rJ, AAT =nl + \J and

1
2. a weak 15 -design if AJ =rJ, and AATA =nA+ NJA.

A class of incidence structure lies between 1-designs (regular) and 2-designs is
considered. For an incidence structures, let
Mg, = 0, and

ma,= the number of blocks containing points z and y. ([6])

1
Definition 2.10. [7, 6] A 15 -dsign (or called partial geometric design) with param-

eter (1, k, t, ¢) is an incidence structure I = (X, B) such that

1. each point lies on r blocks of B;

14



2. each block consists of k£ points in X;

3. for a point z and a block B

a. t= mey > 11is a constant if x ¢ B;
yeB

b. ¢ = Z (may — 1) is a constant if = € B.
yeEB—x

A partial geometry is a partial geometry design with parameters (r, k, ¢, 0) with

c =0, i.e., a semilinear incidence structure such that

1. each point lies on r blocks of B;
2. each block consists of k£ points in X;

3. for a point z and a block b with x ¢ B; there are exactly ¢ blocks contain z

meeting b.

Let A be the incidence matrix of the incidence structure under consideration, and

(x, B) is a pair of point and block, let ¢ = Z (may—1) for z € B, and t = mey

yeB—x yeB
for x ¢ B.
If © ¢ B, then
AAT A2, B) = 32 3 Alw, C)A(y, ) Aly, B)
all Call y
= Az, C)A"(C,y)
yeB
= Z My (say t).
yeB
If x € B, then
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AATA(x,B) = > Y Az, C)A(y,C)A(y. B)

all Call y
=1+ (k=1 +F =1+ Y (mgy—1)
yeEB—zx
=r+k—1+4+c
Remark|6]:
If © ¢ B, then
ZZA:ECATCy mey—ale t);
C#B y#z yeB
If x € B, then
=3 ) A, O)AT(C.y)A(y,B) = > (may—1) =n+a—(r+k-1)=p
C+#B y#x yeEB—x
(i.e., c).

Lemma 2.7. [7, 6] For a binary matrix A, the following are equivalent:
. .. . 1 . :
1. A is the incidence matrix of a 15 -design with parameters (r, k, ¢, ¢)and t > 1.

2. AJ=rJ, JA=kJ and
AATA=(r+k—-1+c)A+t(J-A) =@ +k—1+c—t)A+tJ(i.e., nA+al

in[7]) for some integers r, k, ¢, ¢ with ¢t > 1.

We restate the conditions for SR graphs and SR multigraphs in terms of their
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adjacency matrices as following:

AJ = kJ,
A2 = kI + M+ u(J — 1 — A)

:()\—M)A—l—(k—,u)]-i-,uj.

AJ = RJ,
A% = (n—2m)A+m(n—m)I + uJ

=(mn—m)+p) I+ (n—2m+p)A+u(J—1-—A).

Al =rJ, JA=FkJ,

AATA=(r+k—1+e)A+t(J-A) =(r+k—1+c—t)A+tJ.
Lemma 2.8. [7]

1
1. Each 2-(v, k, \) design is a 1§—design with parameters
AMv—1)

(T’,k,t,C):( k—l Y

k. kX, (k= 1)(A —1)).

1
2. Each 1§—design with parameters (r, k, t, ¢) satisfying (t+1—c—k)k =t is a

2-(v, k, \) design with

r(k—1)
A

(v, \)=(1+ t+1—c—k).

Proof: 1. For a 2-(v, k, \) design (X, B), each block consists of k points in X
Av—1)

and each points lies on r = blocks of B. For a point z and a block b,

ifx@éb,thent:mey:k-)\Zl;

if x € b, then v
c= Y (my=1)=(> my)—(k=1)=(k=DA=(k=1) = (k—=1)(A-1).
yeb—w YyEb—2x

17



1
Hence it is a 1= -design with parameters
Av—1)
k—1

1
2. Let A be an incidence matrix of a 15 -design with parameters (r, k, ¢, ¢) satisfying

(rik,t,c) = ( Sk kRN (BE—1)(A—1)).

(t+1—c—k)k =t. Toshow AAT = kI +\(J—1), consider X = AAT —kI—-\(J—1),

then show that X2 is the zero matrix, and hence X = 0 as required. [

Theorem 2.4. [6] The collinearity graph of a partial geometry with parameters

(r,k,t,c =0) is an SR graph (v, K, A\, ) with

(v, K, \, p) = (r(w +1),r(k=1),(k—=2)+ (r—1)(t — 1), rt).
Proof:
U:r((r—l)(k:—l)—l—t—c) _r(r=D(k—1)+1) :r~((r—1)(k—1) )
t t t ’

K =r(k — 1) since each point lies on 7 blocks of B.

If z, y are in the same block, there are (k —2) points in the block containing z, y. Fix

z, there are (r — 1) blocks containing z but not containing y. Since y is not in those

(r — 1) blocks, then Z Mgy =t —1 for each b of those (r — 1) blocks. Hence, there

are A\ = (k —2) + (rye—bilx) - (t — 1) points in the block containing = and y . Let z, y

be in the different block, there are r blocks containing = but not g, then Z Mgy =1
yeb

for each b of those r blocks. There are u = r -t points in the same blocks containing

x and y. ]

1
Theorem 2.5. [6] The collinearity graph of a 15 -design with parameters (r, k, t, c)
is an SR multigraph with parameters

(m,n,u, \, R) = (r,)k+r+c—1—t,rt,rc,r(k —1)).

1
Proof: Let A be an incidence matrix of a 15 -design with parameters (r, k, t, c),

then M = AAT —r[ is an adjacency matrix of the cor responding collinearity graph.
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Since AJ =rJ, JA=kJ,and AATA=(r+k—1+c—t)A+tJ(ie, nA+t]),

We have

MJ=AAT] —rlJ =rkJ —rJ =r(k—1)J,
AATAAT = (AAT? = (r+k—1+c—)AAT 4+ tJAT = nAAT +-trJ
= (M +r1)?>=n(M+7rl)+trJ

= M?=(n—2r)M +r(n—r)I +trJ.

If M is an adjacency matrix of an SR multigraph with parameters (m, n, u, v, R),
then

MJ=RJ,

M? = (n—2m)M +m(n —m)I + pJ.
Compare the coefficients, then

m=r,n=n=(r+k+c—=1—1t), p=rt,

y=mn—-—m)+pu—R=rlk+c—1—t)+rt—=r(k—1)=rc, R=r(k—1). n

The above lemma shows that the collinearity graph of a 1% -design is an SR multi-
graph. Following this trend, we are interested in those strongly regular multigraphs
which are the collinearity graph of 1% -designs? Theorem 2.6 provides sufficient
numerical constrains to guarantee the uniqueness of such 1% -designs. There is no
example of SR multigraphs meeting those numerical constraints found in the papers
of Bose [1], Neumaier and Metsch [6]. A class of SR multigraphs associated with the

distance regular graphs Alt(n, q) was considered by Huang [5].

Theorem 2.6. [7] If " is an SR multigraph (m,n, u,~y, R) with integral m > 2,

integral 4 =0 mod m, u > 0, and

(p+m)y
m2

2(m—1)(p+1—m)+27, M(u+l)+mz+m—l}

n > max{m—1+ 5 5
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1
then I' is the point multigraph of a unique 15 -design, with parameters
R Loy
k,t,c) = —+1,—,—).
(lr" ) 7C) (m7 m + ) ) )
The above bound

(p+m)y
m2

(m —1))

n > max{m—1+ ,2(m—1)(p+1—m)+27, =

was simproved by Metsch as shown below.

Theorem 2.7. [6]
Suppose that I' is an SR multigraph whose parameters
(m,n,u,v,R) = (r,k+r+c—1—t,rt,re,r(k—1))
with integers » > 3 and ¢t > 1, and real numbers £ > 0 and ¢ > 0. If
k> (ir+7’+5)rt ~ 5, 6r%, k> (c+ 1)t, and r(c+r—1) < (r — 1)t,

V3

1
then I' is the collinearity graph of a 15 -design with parameters (r, k, t, c).

A construction method for eliques in multigraphs was proposed by Metsch [6], this
method generalized the ideas used in improving the well-known completion theorem
for nets of Bruck. The bound for k in the above 2 improves previous bounds given by
Bose et al. [1] and Neumaier [7], however note that the condition r(c+r—1) < (r—1)t

did not occur in [7].

Corollary 2.1. [6] Suppose the parameters (m, n, u, v, R) of an SR multigraph can
be written in the form

(m,n, p,v, R) = (k,r — N\, K>\ k(k — 1), k(r — 1))
for some integers k > 3, r, and \. If

r > (%k +k+5)k*A~5, 6K3\, and r > k(k — 1)A\? — k(k — 2)),

then I' is the block-multigraph of a 2-(v, k, \) design with point degree r.
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Corollary 2.2. [7] Two distinct blocks A and B of a 2-(v, k, A\) design intersect in

at least k — r + \ points.

Theorem 2.8. [1, 6] A quasi-residual 2-(w, n, A\) design B is embeddable iff the

following three conditions are satisfied:
1. Any distinct blocks A and B intersect psp < A points,

2. The multigraph I" on the blocks, with map = A — uap edges between A and B,
is a strongly regular multigraph SR(m, n, u, v, R) , where

m=XAnpu=XNA=1),y=XA=-1)(A=2), R=An+A—-2),
3. T'is isomorphic to the block multigraph of a 2-(n 4+ A, A, A — 1) design B’.

Theorem 2.9. [7] Let B be a quasi-residual 2-(w, n, A) design with
n > 223 —4X2 4\ — 1.
Then two distinct blocks intersect in at most A points, and property 2 of Theorem

2.7 holds.

Proof: Since B is quasi-residual, r = n+ X, b = r(r — 1)/A. Hence, the incidence
matrix A of B satisfies AJ = nJ, JA = (n+ \)J, AAT = nI + \J. By straight-
forward calculation, the matrix M = (n — A\)I + \J — AAT satisfies MJ = RJ,
M?* = (n—2m)M +m(n — m)[ + pJ, n > 0 with m = X\, n, p = A2\ — 1),
R = A(n+ X —2). Hence, with v = A(A — 1)(A — 2), Lemma 2.2 applies. Therefore
M is the adjacency matrix of a SR(m, n, u, v, R), i.e., 2 of Theorem 2.7 holds. In
particular, the offdiagonal entries A — uap of M are nonnegative, i.e., two distinct

blocks A and B intersect in puap < A points. (]
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The next two results are preliminary conditions for an SR multigraph to be the

1 1
point multigraph of a weak 15 -design, respective a 15 -design.

Theorem 2.10. [7] An SR multigraph(m, n, u, v, R) is the point multigraph of a
weak 1% -design if and only if there is a collection ) of cliques such that every point
is in exactly m cliques of ), and every edge ab of multiplicity mg, is in exactly mg,
cliques of »_. In this case the blocks are the cliques of ), and the weak 1% -design
has parameters (v, m, r, \) with
(R+m)(R+m —n)

\) —
(v,m,r,\) = ( p T

).

Proof: Let g be an SR(m, n, i, v, R). If ¢ is the point multigraph of a weak 1%
-design B then the blocks of B are cliques in g, and ) =B satisfies the Conditions of
the theorem.

Conversely, if > is a collection of cliques with the stated properties, then define a
design B with > as set of blocks and natural incidence. If A is the incidence matrix
of B, then the assumed properties can be stated in terms of A and the adjacency
matrix M of g as AJ =mJ, AAT = M +ml.

With A = u/(R+m), the property that g is a SR(m, n, p, v, R) means MJ = RJ,
(M +mI)(M+(m—n)I—X\J) =0. Hence X = (AAT —nI—\J)A satisfies X X7 = 0,
whence X = 0. Therefore, AATA = nA+ M\JA, and by vu = (R+ m)(R+m — n),

1
B is a weak 15 -design with parameters as required. ]
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3 The graphs and multigraphs associated with some
designs

Theorem 3.1. The block graph of a symmetric design is the complete graph K, and

the adjacency matrix of the block multigarph of a symmetric design is A(J — I).

Proof: Since (X, B) is a symmetric design, any two blocks have A common points
in any two blocks are adjacent. ]
Theorem 3.2. Let (X, B) be a quasi-symmetric 2 — (v, k, A) design with sizes z and

y of intersections of blocks, then

1. the block graph is a SR graph (v', R, X', u) with (v, R, N, u) = (b, R, (61 + 02) +

f(R) [(R) _kr=1)—ax(b-1) [(R)
o Tp ), where R = =2 = =010 + b
0, = M, 0y = v , are three distinct eigenvalues of A,
(y — ) FE Y
v(v =
f(R)=(R—01)(R—10),b= —k(k: 2 and

2. its block multigraph is a SR multigraph (m,n, u,~, R) with (m,n, u,v, R) =
(b, — M\ AK2, k(k — 1)\ — 1), k(r —1)).

Proof: To prove 1, let N be the v x b ncidence matrix of the design and A be
the adjacency matrix of its block graph I'. We have (using the parameters v, k, b, 7,

A of the 2 - design):

NNT =(r —XNI+ M, N'N =kl + yA+z(J -1 — A).

We know that both NNT and NTN have all-one eigenvectors j with eigenvalue kr.
Also, we know that NNT has only the eigenvalue » — X on j7, with multiplicity
v — 1. Therefore NTN has this same eigenvalue, with the same multiplicity, and the

eigenvalue 0 with multiplicity b — v. Since x # y, A is a linear combination of I, J,
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and NTN. Therefore A has eigenvector j and only two eigenvalues on the space ;7.
They are (r — A — k + z)/(y — «) with multiplicity v — 1 and (x — k)/(y — x) with

multiplicity b — v. By our observation above, I' is an SR graph.

QR S5 N ) S
(y — ) (y—2) (y—2)
Multiplying both sides of (*) by J, and J? = b.J, then
k k— b
WY P Ut ) S

= R = =

(y — i) . (y —z)
Since R, 6, = w» 2 = Lo are three distinct eigenvalues of A

(y — ) (y —x)
Let f(x) = (z — 01)(x — 0y) = 2% — (01 + Oo)x + 0,0,
R (v —1

Then A? = (6) + 02) A — 0,051 + #J, where b = —k((k - 1)>
Thus N = (6, + 65) + f(bR)7 = f(;"i)‘

To prove 2, let M = NTN — kI = yA+ x2(J — I — A) be a adjacency matrix of a

block multigraph of the design

MJ = (NTN —kI)J

=k(r—1)J
=RJ
= R=Fk(r—1)

M? = (NTN — kI)?
= N'NNTN — 2kNTN + k*I
=(r—XA=2k)(NTN —KI) + k(r — X — k) + \k*J

=(r—A=2k)M +k(r — X\ —k)I + \k*J

Compare the coefficients with Lemma 2.4
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m=kn=r—\u=X>* vy=mn—m)+p—R=k(k—1)(\—1). ]
Theorem 3.3. [7] The block multigraph of a 2-(v, k, A) design is an SR multigraph
with (m,n, u,v, R) = (k,r — M\, k2 k(k — 1) (A = 1), k(r — 1)).

Proof: Similarly to Theorem 3.2 (2). ]

Remark: when are the above multigraphs simple graphs? Are they designs with

some interests?

Seven examples of 2-designs together with the related graphs and multigraphs are

given below:

2-(v, k, \) SR(m, n, u, v, R)
2-0,3 1) | SR(3,3,90,9)
2-(6,3,2) | SR(3,3, 18,6, 12)
2 (8,4, 3) | SR(4, 4, 48, 24] 24)
2 (10, 4, 2) | SR(4, 4, 32, 12, 20)
2-(16,4, 1) | SR(4, 4, 16, 0, 16)
2 - (16, 6, 2) | SR(6, 4, 72, 30, 30)
2 - (16, 6, 3) | SR(6, 6, 108, 60, 48)

Example 1: 2 - (6, 3, 2) design
Let X ={1,2,3,4,5,6}, then (X, B) is a 2 - (6, 3, 2) design where B = {B,|1 <z <
10},
By ={1,2,3}, By = {1,2,4}, By = {1,3,5}, By = {1,4,6}, Bs = {1,5,6},
B = {2,3,6}, By = {2,4,5}, By = {2,5,6}, By = {3,4,5}, Bio = {3,4,6}.
Note that |B; N B;| = 1 or 2 for distinct 1 < ,5 < 10, that is it is quasi-symmetric.
Av—1) 2-(6-1)

Note also that r = = = 5.
ote also that r = 1) B-1)

The block multigraph of " the above 2 - (6, 3, 2) design of order n =r — A =3

is an SR multigraph (m,n,pu, v, R) = (k,r — M\, A% k(kE — 1)(A — 1),k(r — 1)) =
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(3,3,18,6,12). The block graph of the 2 - (6, 3, 2) design is the Petersen graph(see

Figure 1).

Example 2: 2 - (8, 4, 3) design
Let X ={0,1,2,3,4,5,6,7}, then (X, B)is a2 - (8, 4, 3) design where B = {B,|1 <
x < 14},
Bi = {0,1,2,3}, B, = {0,1,2,4}, By = {0,1,5,6}, B, = {0,2,5,7}, Bs = {0,3,4,5},
By = {0,3,6,7}, By = {0,4,6,7}, Bs = {1,2,6,7}, By = {1,3,4,6), Bio = {1,3,5,7},

By ={1,4,5,7}, Bio ={2,3,4,7}, Biz ={2,3,5,6}, B1s = {2,4,5,6}.
3.(8—1)
(4—1)
n =4 is an SR multigraph (4, 4, 48, 24, 24).

Note that r = = 7. The block multigraph I" of 2 - (8, 4, 3) design of order

Example 3: 2 - (9, 3, 1) design

Let X ={1,2,3,...,9}, and those 9 elements are arranged in a 3 x 3 array as show
below:

1 2 3

4 5 6

789

Then (X, B) isa 2 - (9, 3, 1) design where B = {B,|1 <z < 12}, and

slope 0, By = {1,2,3}, B, = {4,5,6}, B3 = {7,8,9},

slope oo, By = {1,4,7}, Bs = {2,5,8}, Bs = {3,6,9},

slope 1, B; = {1,6,8}, Bs = {2,4,9}, By = {3,5,7},

slope —1, Byg = {1,5,9}, By1 = {2,6,7}, Bis = {3,4,8}.

The block multigraph I" of the above 2 - (9, 3, 1) design of order n = 3 is an SR
multigraph (3, 3, 9, 0, 9).

Since v =0, I is an SR graph with parameters
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R(R—n+2m—p—1)
0

(v, kA, 1) = ( +R+1,R,n—2m+ p,u) =(12,9,6,9).
Example 4: a 2 - (10, 4, 2) design

Let X ={0,1,2,...,9} and B = {B,|1 <z < 15}, where

By =1{0,1,2,3}, By = {0,1,4,5}, By = {0,2,4,6}, B, = {0,3,7,8},

Bs =1{0,5,7,9}, Bs = {0,6,8,9}, By = {1,2,7,8}, Bs = {1,3,6,9},

By =1{1,4,7,9Y, Bio = {1,5,6,8}, By, = {2,3,5,9}, Bj» = {2,4,8,9},

By = {2,5,6,7}, Biys = {3,4,5,8}, Bis = {3,4,6,7}.

Note that |B; N Bj| = 1 or 2 for distinct 1 < 4,5 < 15, and hence it is a quasi-

symmetric design; note also that » = 6. The block multigraph I of 2 - (10, 4, 2)

design of order n = 4 is an SR multigraph (4, 4, 32, 12, 20).

Example 5: a 2 - (16, 4, 1) design
Let X = {0,1,2,...,9,a,b,..., f}, then (X,B) is a 2 - (16, 4, 1) design where
B ={B,]1 <z <20},
B ={0,1,2,3}, B, = {0,4,5,6}, By = {0,7,8,9}, By = {0,a,b, ),
Bs={0,d,e, f}, Bs = {1,4,7,a}, By = {1,5,b,d}, Bs = {1,6,8, ¢},
By ={1,9,¢, f}, Bio = {2,4,¢,e}, By = {2,5,7, f}, Bia = {2,6,9,0},
Bis = {2,8,a,d}, B = {3,4,9,d}, Bis = {3,5,8,c}, Big = {3,6,a, f},
By ={3,7,b,e}, Bis =1{4,8,b, f}, Big = {5,9,a,¢e}, By = {6,7,¢,d},
Note that |B; N B;| = 0 or 1 for distinct 1 < ¢,57 < 20, and hence it is a quasi-
symmetric design. r = 5. The block multigraph T" of the above 2 - (16, 4, 1) design
of order n = 4 is an SR multigraph (4, 4, 16, 0, 16).

Since v = 0, that is " is an SR graph (7, 16, 12, 16).
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Example 6: a 2-(16, 6, 2) design
Let X = {0,1,2,...,15}, and those 16 elements are arranged in a 4 X 4 array A as

shown below:

0o 1 2 3
4 5 6 7
8§ 9 10 11
12 13 14 15

For each x, 0 < x < 15, we define a block B, consisting of the elements in the same

row or column of A as z, excluding x. Then (X, B) is a 2-(16, 6, 2) design where

B = {B.,|0 <z < 15}. More precisely, 2 - (16, 6, 2) design

By ={1,2,3,4,8,12}, B; = {0,2,3,5,9,13}, B, = {0, 1,3,6,10, 14}, B3 = {0,1,2,7,11, 15},
B, ={5,6,7,0,8,12}, Bs = {4,6,7,1,9,13}, B¢ = {4,5,7,2,10, 14}, B; = {4,5,6, 3,11, 15},
Bs ={9,10,11,0,4,12}, By = {8,10,11,1,5,13}, Byy = {8,9,11,2,6, 14},

By =1{8,9,10,3,7,15}, Biy = {13,14,15,0,4,8}, B3 = {12,14,15,1,5,9},

By ={12,13,15,2,6,10}, Bys = {12,13,14,3,7,11}.

The block multigraph I' of the above 2 - (16, 6, 2) design of order n = 4 is an SR
multigraph (6, 4, 72, 30, 30). Moreover, since it is symmetric, the adjacency matrix

Aof I'is

A= =2J-21

16x16

Example 7: a 2-(16, 6, 3) design
Let X ={1,2,...,24}, then (X, B) is a 2 - (16, 6, 3) design with B = {B,[|0 < z <
24}, where
(i) By = {1,2,5,6,9,10}, B, = {1,3,5,7,9,11}, B; = {1,4,5,8,9,12};

By = {3,4,7,8,11,12}, Bs = {2,4,6,8,10,12}, Bs = {2,3,6,7,10,11};
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(ii) Br = {1,2,7,8,15,16}, Bs = {1,3,6,8, 14,16}, By = {1,4,6,7,14, 15};
Bio = {3,4,5,6,13,14}, By; = {2,4,5,7,13,15}, By = {2,3,5,8,13, 16}

(i) Bis = {1,2,11,12,13,14}, By = {1,3,10,12,13,15}, By5 = {1,4,10,11,13,16};
Bis = {3,4,9,10,15,16}, Bir = {2,4,9,11,14, 16}, Bis = {2,3,9,12, 14, 15};

(iv) Bio = {5,6,11,12,15,16}, By = {5,7,10,12, 14, 16}, By = {5,8, 10,11, 14, 15};
Bsy = {7,8,9,10,13,14}, By = {6,8,9,11,13,15}, Boy = {6,7,9,12,13,16}.

The 6 blocks { By, By, Bs, By, Bs, Bg} in case (i) satisfying the conditions that
_J O if|i—j]=3 S
1. |BZﬁB]|—{3 if i — j| £ 3 fori#7j,1,57€{1,2,...,6}

2. Each block B; of (i) meet 2 points |B; N B;| = 2 for By, is any block of (ii), (iii),

or (iv).

Similarly conclusion hold for cases (i), (iii), and (iv).
Then very vertex (i.e., a block) lies on 3 x4+ 2 x 18 = 48 edges, the block multigraph

of the above 2 - (16, 6, 3) design of order is an SR multigraph (6, 6, 108, 60, 48).
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4 Regular graphs of 3 or 4 distinct eigenvalues

Lemma 4.1. Let I" be a graph which is not complete or empty, with adjacency matrix

A Then I' is an SR graph if and only if A? is a linear combination of A, I and J.

Proof: The ij - entry of A? is equal to the number of walks of length two from i
tojin I'. If I' is an SR graph with parameters k, A, i according as ¢ and j are equal,
adjacent or distinct and non - adjacent, hence A% = kI + X\ + u(J — I — A).
Conversely, if A% is a linear combination of A, I and J. A%? = m; A + mol + msA this
number are (mg + ms), (my + mg3), ms according as i and j are equal, adjacent or

distinct and non-adjacent. Hence I' is an SR graph. ]

Lemma 4.2. If I is a connected graph with diameter d then A(T") has at least d+1
distinct eigenvalues, or equivalently if I' is a graph with d+1 distinct eigenvalues, the

the diameter of I' is at most d.

Proof: Suppose A=A(T") has distinet eigenvalues 6y, 01,05, - - , 6, where m < d.

Then m(z) = H(I—Qi) is the minimal polynomial of A, and hence A4~(m+D-m(4) =
i=0
then we have A = Cy_ 1A + Cy 0AT2 + ... + C1A + Gyl for some C; € R. For

two vertices z,y € V(') with d(z,y) = d, the zy position in the above equation and
0# (A%, = Ca1 (A4 1)y +Cao(AT2) 4+ - +C1 Ay +Colyy = 0, a contradiction;

so A(I') has at least d + 1 distinct eigenvalues. ]

Theorem 4.1. Let I' be a connected k-regular graph with s distinct eigenvalues,
1. if s = 2, then I' is complete graph.

2. if s = 3, with distinct eigenvalues k > 6; > 65, then I' is an SR graph.
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Proof: To prove 1, by above lemma, the diameter d(I") of I" is 0 or 1. Since I is
connected, d(I') # 0, hence d(I') = 1, and I" is a complete graph.
To prove 2, let A be an adjacency matrix of I', and

f(@) = (x = 01)(x — 02) = 2> — (01 + O2)x + 016,
f (k)

Then A? = (61 + 05)A — 6,10,1 + ——=J. Hence I is an SR graph with (v, k, A\, p) =
n
k k
(U,—6192+¥,91+02+¥,M). [ |

Theorem 4.2. Let I' be a connected k-regular graph with 4 distinct eigenvalues

k > 01 > 92 > 93, then
1. T' is walk regular;

2. the diameter of I' is 3 if the number of vertices of the graph is more than

a+/a?—4p3 a.~\ a2 =40
2

or less than 5 , where

a=1+ k'2 — (91 —+ 92 -+ 93)]%’ .z 619263,811(1

B = (k - 91)<k - 92)(k - 93)-

Proof: To prove 1, let I be a regular graph with 4 distinct eigenvalues, and A

be an adjacency matrix of T

f(z) = (z — 01)(x — ) (x — 03)

= 133 - (91 + 92 + 93)I2 + (9192 + 6293 —+ 6391)1} — 9192@3

Let ag = 01+05+03, a1 = 0105+0205+050,, ag = 016,03 and 3 = (k—6,)(k—02)(k—63),
then A% — A% + a1 A — apl = gJ (*), where n = |V(T')|, and

hence A% = A% — oy A + al + gJ.

Since the diagonal entries of A%, A, I, J are constant, the diagonal entries of A% are

constant apgk +ap+ é Multiplying both sides of (*) by A will give a recursive formula
n
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for the diagonal entries of A% A5 A% ... etc are constant. Hence all regular graphs
with 4 distinct eigenvalues are walk regular.

To prove 2, let A be an adjacency matrix of I', and

f(x) = (x = 01)(z — 02)(z — 05)

= wg - (01 + 02 + 93)1‘2 + (0192 + 02&3 + 03&1) — 919203

Then

g

A3 - (01 + 62 + 93)142 + (8192 + 9203 + 9301)A - 610293[ == EJ(*)

and hence the diameter of I is at most 3.

We will claim that k3(z) > 0 for each « € V(I') under the numerical constraints.

For x € V(T'), we first evaluate A2 :

Z A2 by definition, and

yel'y x)
k
Al = k) + (01 + 02 + 03) A2, — (0105 + 0205 + 0301) Ay + 60102051,

n
k
= fgﬂb : + (61 + 02 + 03)k + 016203 by (¥).

Hence,

> oA, = k2

yeV(I)

Y Ay =A2 =k,
y€el'i(z)

oA, =48 = i + (01 + Oy + 03)k + 0,005,
yeFl :E)
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and then

oA = N A A - > A - A

yela(x) yeV (T) yel (z) yels(x)

= k?2 —k— g — (01 + 02 + 93)]{3 — 010203 Z kQ(ZE)

It follows that

&

1—|—k’—|—k’g(l’) < 1—|—k‘2—]€—5—(91—%92—{—93)/{7—919293
_ p
= X — —,
n
whenever n > aEN or n < : , as required. ]

Theorem 4.3. [2] Let I" be a connected k-regular graph on v vertices with

Spec(D)=(k', 07", 052, 65). Then

I.mi=mg=mg=(wv—1)/3and k= (v—1)/3 or 2(v —1)/3, or
2. I" has two or four integral eigenvalues.

Moreover, if I' has exactly two integral eigenvalues, then the other two have the same

1
mulitplicities and are of the form 5((1 +/b) for a,b € Z.

Theorem 4.4. Let I be a connected regular graph on v vertices with four distinct
eigenvalues, say Spec(T') = (k', 67", 05, 05").
Let A = (k% + m10:® + my0y”) + msfs® /vk. Then I is distance-regular if and only if

for every vertex x the number of vertices ko(z) at distance two from z is

k() = k(k—1—)\)?
AT k=N (A =k — (01 + 0y + 03) — (01605 + 0505 + 0501) + 0,0,05)
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It was conjectured by van Dam [2] that the proposition was also true without the
conditions for ky(x) , i.e., that for every connected regular graph with four distinct
eigenvalues we have that the number of vertices ks at distance two from a given vertex

is at least ky(x).

The following are examples of some connected regular graphs with 4 distinct
eigenvalues and with diameter 2, all of them are walk-regular, though some of them
are not, distance regular.

Example 1: T' = Cj, the complement of Cg(see Figure 2)

|
O R~ PP, OO
— = —_0 O O
= = O O =
= OO O O = =
O OO =
O O = =

the characteristic polynomial of A(C%) is f(x) = 2*(z — 1)(z — 3)(x + 2)?, and

Spec(Cg) = (3,11, 0%, —22), this graph is walk regular.

Example 2: I' = 3, the complement of Qs3(see Figure 3)

|
=0 OO OO0
— O = = O OO
_ o = = O OO
O = == OO O
O OO = M=M= O
_ O OO = O
O OO M, O
OO = OO ===

the characteristic polynomial of A(Qs) is f(z) = 23(z — 2)(z — 4)(x + 2)3, and

Spec(Q3) = (4%,2',0%, —23), this graph is walk regular.
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Example 3: I' = 2C}, the complement of 20, (see Figure 4)

|
R, O~, OO
== == O OO
e e e e e R e R e I
=== O O = O

O = OO = = ==
_ O O O = =
OO O H B
OO RO R KRR KRR

the characteristic polynomial of A(2C,) is f(z) = (z —5)(z — 1)*(z + 1)*(x + 3), and

Spec(2Cy) = (5,12, —1*, —31), this graph is walk regular.
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