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摘 要

令P是一個由路徑 (path) 所形成的集合。若P裡的路徑兩兩交集為空

集合,而且P中所有路徑的點聯集為圖G所有的點, 則P是圖G的一組路徑

分割 (path partition)。 令k是一個正整數, 則我們對任一組路徑分割P可

以定義它的k範數 (k-norm): |P|k =
∑m

i=1min{|Pi|, k}。若一組路徑分

割擁有最小的k範數, 則此路徑分割被稱為是最優化的k範數路徑分割 (k-

optimal path partition)。

令Ck是圖G的一組k著色, 即圖G中k個由點形成的獨立集所成之集合,

而且兩兩獨立集交集為空集合。若路徑分割P裡任一條路徑中有 min{|Pi|, k}個

點分別落在Ck裡不同的獨立集, 則稱此k著色Ck正交於路徑分割P。

Berge 猜測對於任一組最優化的k範數路徑分割, 都可找到一組k著色

與之正交。 這個猜測至今尚未被解決, 只有一些特別的情形被證明; 而在

這篇論文裡, 我們藉由一些特殊的圖來驗證 Berge 的猜測是對的。
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Abstract

A family P = {P1, P2, . . . , Pm} of paths is called a path partition of G if its

members are vertex disjoint and V [P ] = V (G). Let k be a positive integer, then the

k-norm of a path partition P is defined by |P|k =
∑m

i=1min{|Pi|, k}. A path partition

P minimizes |P|k is called k-optimal.

A k-coloring of G is a family Ck = {C1, C2, . . . , Ck} of k vertex disjoint independent

sets called color classes. A k-coloring Ck is orthoganal to a path partition P =

{P1, P2, . . . , Pm} if Ck meets every path in P in min{|Pi|, k} different color classes.

Berge conjectured that for every k-optimal path partition P , there exists a k-coloring

orthogonal to it, and this is known as Berge’s strong path partition conjecture.

This conjecture is still open today, but several results have been obtained in some

special cases. In this thesis, we verify this conjecture to be true for certain special

digraphs.
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Chapter 1

Introduction and Preliminaries

1.1 Basic Notation

A graph G is composed of two types of objects. It has a finite set of elements

called vertices and a set of unordered pairs of vertices called edges. The vertex set is

denoted by V (G) or V , and the edge set is denoted by E(G) or E.

A directed graph or digraph G is composed of two types of objects. It has a vertex

set V and an edge set E, and the edge set is a set of ordered pairs of vertices. For each

edge of G, the first vertex of the ordered pair is the tail of the edge and the second is

the head; together, they are endpoints of the edge. If there is an edge (u, v), then u is

a predecessor of v, and v is the successor of u. A loop in a digraph is an edge whose

endpoints are the same. Multiple edges are edges having the same ordered pair of

endpoints. The graphs or digraphs we consider hereinafter contain no loops and no

multiple edges.

A subgraph of a graph (or digraph) G is a graph H such that V (H) ⊆ V (G) and

E(H) ⊆ E(G). A spanning subgraph of a graph (or digraph) G is a subgraph with

vertex set V (G).

Let x and y be two vertices of a graph (or digraph) G. An x-y walk of G is an

alternating sequence (x = v0, e1, v1, e2, ..., vk−1, ek, vk = y) of vertices and edges, such
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that ei = (vi−1, vi) ∈ E(G) for i = 1, 2, ..., k. A trivial walk contains no edges, i.e., the

walk contains only one vertex. An x-y walk is closed if x = y, and an x-y walk is not

closed (or open) if x 6= y. An x-y trail is an x-y walk in which no edge is repeated.

A nontrivial closed trail of a graph (or digraph) G is called a circuit of G. A circuit

(v1, v2, ..., vn, v1) is a cycle if the n vertices are all distinct. A graph (or digraph) G is

acyclic if there is no cycle (or directed cycle respectively) in G.

A path P in a digraph G = (V, E) is a sequence of distinct vertices (v1, v2, ..., vl)

such that (vi, vi+1) ∈ E, for i = 1, 2, ..., l − 1. Let V (P ) denote the set of vertices

v1, v2, ..., vl of a path P , and |P | denote the cardinality of P , i.e. |P | = |V (P )|. A

path of cardinality one is called a trivial path. For any path P in a digraph G, we

denote the first vertex in P by in(P ), and the last vertex by ter(P ). For a path P

and a vertex x ∈ P , let P−(x) denote the vertex preceding x on P , and P+(x) denote

the vertex following x on P .

For a set of vertex disjoint paths P , we denote
⋃
{V (P ); P ∈ P} by V [P ], and⋃

{E(P ); P ∈ P} by E[P ]. A family P of paths is called a path partition of G if

its members are vertex disjoint paths and V [P ] = V (G). Note that a digraph may

have many path partitions. The trivial path partition, where every path is a trivial

path, is an example of a path partition. The cardinality of a path partition P is

the number of paths in P , and we denote it by |P|. Let π(G) denote the minimum

number of paths in any path partition of G. In other words, π(G) = min|P|, where

the minimum is taken over all path partitions P . A path partition P of G is called

optimal if |P| = π(G).

A vertex subset X in a graph (or digraph) G is independent if for any pair of

vertices in X, there is no edge in G adjoining them. The size of X, denoted by |X|,

is the number of vertices in X. The indenpendence number α(G) of a graph G is the

2



size of a maximum independent vertex set in G.

1.2 Motivation

Before talking about Berge’s conjecture, we introduce the Dilworth’s theorem

and the Greene-Kleitman theorem which are generalized and extended by Berge’s

conjecture. Now, we need some definitions and notations.

Let S be a nonempty set. A binary relation R is a subset of A×A. R is reflexive

on A if for all x ∈ A, (x, x) ∈ R. R is transitive on A if for all x, y, z ∈ A, (x, y) ∈ R

and (y, z) ∈ R would imply that (x, z) ∈ R. R is antisymmetric on A if for all

x, y ∈ A, (x, y) ∈ R and (y, x) ∈ R would imply that x = y.

Definition 1.2.1. A partially ordered set (or poset for short) S is a set with a binary

relation R, such that R is reflexive, transitive, and antisymmetric on S. R is called a

partial order of S.

If there is a poset (S, R), we can define a digraph G of this poset as following:

let V (G) = S and for any x, y ∈ V (G), (x, y) ∈ E(G) if and only if (x, y) ∈ R. For

convenience, we delete the loops in G. Note that every path in G induces a clique,

in other words, a set of pairwise adjacent vertices (ignoring the direction) because

of the transtivity of S. The maximum independent set in a clique is exactly one

vertex. Hence if G is a digraph of a poset, then every path partition can meet an

independent set at most once. Therefore, the size of maximum independent set is at

most the number of paths in any path partition, then we have π(G) > α(G). Together

with the follwing theorem due to Gallai and Milgram, we have the Dilworth’s theorem.

Theorem 1.2.2. (Gallai and Milgram [5]). Every directed graph satisfies π(G) 6

α(G).

3



Theorem 1.2.3. (Dilworth [4]). If G is a digraph of a poset, then π(G) = α(G).

Furthermore, every path in an optimal path partition in G meets every maximum

independent set exactly once.

Dilworth’s theorem was generalized by Greene and Kleitman by considering a

collection of k disjoint independent sets (1 ≤ k ≤ n), instead of one independent set.

For a positive integer k, a k-coloring of a graph G is a labeling f : V (G) → S,

where |S| = k (often we use S = {1, 2, ..., k}). The labels are colors, and the vertices

of the same color form a color class. A k-coloring is proper if the labeled endpoints

of each edge have different labels. We say that a vertex subset X of a graph (or a

digraph) is an independent set if ∀x, y ∈ X, there is no edge adjoin x and y. Observe

that each color class is an independent set in a proper k-coloring, and hence we could

denote a proper k-coloring by Ck = {C1, C2, ..., Ck}, where each Ci is an independent

vertex set, and for any two color classes Ci and Cj, they are vertex disjoint. On

the other hand, a family Ck = {C1, C2, ..., Ck} of k vertex disjoint independent sets

in G could be thought as a proper k-coloring. Now, we give a formal definition of a

k-coloring.

Definition 1.2.4. A k-coloring of G is a family Ck = {C1, C2, ..., Ck} of k vertex

disjoint independent sets called color classes. The cardinality of a k-coloring Ck =

{C1, C2, ..., Ck} is |Ck| =
∑k

i=1 |Ci| and Ck is optimal if |Ck| is as large as possible.

Denote by αk(G) the cardinality of an optimal k-coloing in G.

Berge called a k-coloring of a graph (or digraph) G a partial k-coloring, because

it is a partial coloring of the vertex set of G with k colors, i.e., we don’t need to color

all vertices of G. We prefer the shorter name k-coloring for convenience. In Theorem

1.2.2 and Theorem 1.2.3, we considered the minimum number of paths in all path

partitions, and now we extend the value to k-norm.

4



Definition 1.2.5. (k-norm of a path partition). For each positive integer k, the

k-norm |P|k of a path partition P = {P1, P2, ..., Pm} is defined by

|P|k =
m∑

i=1

min{|Pi|, k}.

A path partition P that minimizes |P|k is k-optimal. Denote by πk(G) the k-norm

of a k-optimal path partition in G.

In a k-optimal path partition, those paths of cardinality at least k are called long

paths, and denote by P+ the set of long paths. Those paths of cardinality less than k

are called short paths, and denote by P0 the set of short paths. Note that a 1-optimal

path partition is a partition with the minimum number of paths in all path partitions

of G, i.e., π1(G) = π(G). We are able to state the Greene-Kleitman theorem now.

Theorem 1.2.6. (Greene-Kleitman theorem [6]). Let G be a digraph of a poset, and

let k be a positive integer. Then αk(G) = πk(G).

Observe that for k = 1, Theorem 1.2.6 is identical to Theorem 1.2.3 (Dilworth’s

theorem). If G is a digraph of a poset, then each path Pi meets each k-coloring at

most min{|Pi|, k} vertices. Hence for any k-coloring Ck = {C1, C2, .., Ck} and any

path partition P = {P1, P2, ..., Pm}, the following holds:

|Ck| =
m∑

i=1

|V [Ck] ∩ V (Pi)| ≤
m∑

i=1

{min |Pi|, k} = |P|k.

Therefore, for an optimal k-coloring and a k-optimal path partition, αk(G) ≤ πk(G)

holds in a digraph of poset. The following corollary is from above and Theorem 1.2.6.

Corollary 1.2.7. Let G be a digraph of a poset, k be a postive integer, P be a k-

optimal path partition, and Ck be an optimal k-coloring. Then Ck meets every path in

P in exactly min{|Pi|, k} vertices.
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If G is not a digraph of a poset, then a color class may meet a path more than

once, and hence a k-coloring may meet a path more than k times. Lineal’s conjecture

extends the Greene-Kleitman theorem to all digraphs.

Conjecture 1.2.8. (Linial [8]) Let G be a digraph and k a positive integer. Then

αk(G) ≥ πk(G).

Conjecture 1.2.8 can also be called the “weak path partition conjecture”, and the

strong path partition conjecture is also known as the Berge’s strong path partition

conjecture. We give a formal definition of the relation between coloring and path

partition.

Definition 1.2.9. (Orthogonality of path partitions and k-colorings). A k-coloring

Ck is orthogonal to a path partition P = {P1, P2, ..., Pm} if Ck meets every path in P

in min{|Pi|, k} different color classes.

Berge defined a k-coloring Ck to be strong for a path partition P if Ck meet

every path P in P in exactly min{|Pi|, k} different color classes. We prefer using

“orthogonal” to “strong” in this thesis. The following conjecture is proposed by

Berge and is what we focus in this thesis.

Conjecture 1.2.10. (Berge’s strong path partition conjecture [2]). Let G be a di-

graph and let k be a positive integer. Then for every k-optimal path partition P

there exists a k-coloring orthogonal to it.

Conjecture 1.2.10 is still open today, but several results have been obtained in

some special cases. In the next chapter, we will introduce some known results and

present their proofs for some of them.

6



Chapter 2

Known Results

Berge observed in [2] that Conjecture 1.2.10 holds in the following special cases:

1. For k = 1.

2. In the case that the k-optimal path partition contains no path of cardinality

more than k, i.e. the paths in the path partition are all short paths.

3. For digraphs containing a Hamilton path.

4. For bipartite graphs.

If G is acyclic then Conjecture 1.2.10 was shown to be true in [9, 3, 1, 7].

2.1 A Proof of Berge’s Conjecture for Acyclic Di-

graphs

In this section, we will introduce the proof given by Hartman and Berger in [7] for

acyclic digraphs. For any path partition P , Hartman and Berger gave an algorithm

for acyclic digraphs to find out either a k-coloring orthogonal to P or a path partition

P ′ such that |P ′|k < |P|k, i.e. P is not k-optimal.

7



2.1.1 Notations and Definitions

Before we talk about the algorithm, we need some notations and definitions. Re-

view that for a given path partition P , P+ denote the set of all long paths (i.e. of

cardinality at least k) in P , and P0 denote the set of all short paths (i.e. of cardinality

less than k) in P . We assume that all paths in P0 are of cardinality one by breaking

each short path of cardinality greater than one into single vertex. Additionally, we

denote by P0 the set of trivial paths in P and P+ the set of nontrivial paths in P . If

x is a vertex on a path P ∈ P , then P−(x) denote the unique vertex that precedes x

on P . When x is the initial vertex of P , P−(x) is undefined. Similarly, P+(x) denote

the unique vertex that follows x on P . When x is the terminal vertex of P , P+(x) is

undefined.

Definition 2.1.1. An undirected trail Q in G is a sequence Q = (v0, e1, v1, ..., el, vl)

such that, for each 1 ≤ i ≤ l, either ei = (vi−1, vi) ∈ E(G) or ei = (vi, vi−1) ∈ E(G),

and all edges are distinct. We assign a direction to Q from v0 to vl. After assigning

the direction, for each edge ei, if ei = (vi−1, vi) ∈ E(G), then ei is a forward edge,

and if ei = (vi, vi−1) ∈ E(G), then ei is a backward edge.

Definition 2.1.2. (k-alternating trail). Given a path partition P , an undirected trail

Q = (v0, e1, v1, ..., el, vl) is k-alternating relative to P , if the conditions below hold:

1. All forward edges of Q are in E(G)−E[P+], all backward edges are in E[P+],

and every forward edge (u, v), where v ∈ V [P+] is followed by a backward edge,

unless v ∈ in[P+] and v = vl.

2. There are at most k − 1 consecutive backward edges in Q, unless the first one

follows a forward edge, in which case, there are at most k consecutive backward

edges.

8



3. For every vertex v ∈ V (Q), there exists at most one forward edge (u, v) ∈ E(Q)

and at most one forward edge (v, w) ∈ E(Q).

Definition 2.1.3. (Prim and proper k-alternating trail). A k-alternating trail Q =

(v0, e1, v1, ..., el, vl) is proper if either (a) v0 ∈ ter[P+] or (b) v0 ∈ V [P0]. A k-

alternating trail is prim if either (1) vl ∈ in[P+] or (2) vl ∈ V [P0].

According to the definition 2.1.3, we have four types of prim and porper k-

alternating trails, (a-1), (a-2), (b-1) and (b-2). A prim and porper k-alternating

trail is of type (a-1) if it is of type (a) and type (1). The others are defined similarly.

We denote by P ⊕Q the spanning subgraph of G containing edges in the symmetric

difference E[P ]⊕ E(Q) = E[P ] ∪ E(Q) \ (E[P ] ∩ E(Q))

Lemma 2.1.4. Let P be a path partition, Q be a prim and proper k-alternating trail

relative to P, and P ′ = P ⊕Q. Then the spanning subgraph P ′ of G contains disjoint

paths and cycles.

Proof. Let Q = (v0, e1, v1, ..., el, vl) be a prim and proper k-alternating trail rel-

ative to P . Note that v0 ∈ ter[P+] ∪ V [P0] and vl ∈ in[P+] ∪ V [P0] by the def-

inition 2.1.3. According to conditions (1) and (3) of the definition 2.1.2, for every

v ∈ V [P+] \ {v0, vl}, deg−P ′(v) ≤ deg−P(v) = 1 and deg+
P ′(v) ≤ deg+

P(v) = 1. For

v0 ∈ ter[P+], deg+
P ′(v0) ≤ 1 and deg−P ′(v0) ≤ 1. For vl ∈ in[P+], deg+

P ′(vl) ≤ 1

and deg−P ′(vl) ≤ 1. By the condition (3) of the definition 2.1.2, all vertices in V [P 0]

receive indegree and outdegree at most one respectively. Because each vertex in P ′

has indegree and outdegree at most one respectively, P ′ contains disjoint paths and

cycles.

Let ei = (vi, vi−1) be a backward edge of Q. If ei does not follow a forward edge

in Q, then vi−1 is a trivial path in P ′ = P ⊕ Q. Similarly, if ei is not followed by a
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forward edge in Q, then vi is also a trivial path in P ′. Denote by w+(Q) the set of

such trivial paths, then

w+(Q) = {vi−1 ∈ V (Q) ∩ V [P+] | ei = (vi, vi−1) does not follow a forward edge} ∪

{vi ∈ V (Q) ∩ V [P+] | ei = (vi, vi−1) is not followed by a forward edge}.

On the other hand, if a vertex v ∈ V [P0] is an endpoint of a forward edge in Q, then

v is on a nontrivial path or cycle in P ′. We denote by w−(Q) the set of such vertices,

then w−(Q) = {v ∈ V (Q) ∩ V [P 0] | v is an endpoint of a forward edge}. Now, we

define the weight of a k-alternating trail.

Definition 2.1.5. (Weight of k-alternating trail). The weight of Q is defined as

w(Q) = |w+(Q)| − |w−(Q)|. By the description above, we have w(Q) = |P ′0| − |P0|.

Definition 2.1.6. (k-improving trail). A prim and proper k-alternating trail Q is

k-improving, or for short, improving, if one of the following conditions holds:

1. Q is of type (a-1) with w(Q) ≤ k − 1.

2. Q is of type (a-2), (b-1), or (b-2) with in(Q) = ter(Q) and w(Q) ≤ −1.

3. Q is of type (b-2), Q is not a closed trail and w(Q) ≤ −(k + 1)

Lemma 2.1.7. Let Q be a k-improving trail relative to a path partition P and P ′ =

P ⊕ Q. Then P ′ is a path partition with |P ′|k < |P|k provided that P ′ contains no

cycles.

Proof. For each type of improving trails, we first show that k|P ′+| + |P ′0| <

k|P+|+ |P0|.

Type(a-1): In this case, |P ′+| = |P+| − 1, and w(Q) ≤ k − 1 by definition 2.1.6,

thus we have w(Q) = |P ′0| − |P0| ≤ k − 1, and then |P ′0| ≤ |P0|+ k − 1.
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Type(a-2) or (b-1): Since |P ′+| = |P+| and w(Q) ≤ −1, we have |P ′0| ≤ |P0| − 1.

Type(b-2): If Q is a closed trail, then |P ′+| = |P+|. Since w(Q) ≤ −1, |P ′0| ≤

|P0| − 1. Therefore, if Q is not a closed trail, then |P ′+| ≤ |P+| + 1, and

|P ′0| ≤ |P0| − (k + 1).

Since P ′ is acyclic, P ′ is a path partition by lemma 2.1.4. According to the

discussion above, we have |P ′|k ≤ k|P ′+|+ |P ′0| < k|P+|+ |P0| = |P|k.

Definition 2.1.8. (k-transversal). Let P = {P1, P2, ..., Pm} be a path partition of G.

A vertex subset X = X1∪X2∪ . . .∪Xk, where Xi∩Xj = ∅ for i 6= j is a k-transversal

of P if V [P 0] ⊆ X and |Xi ∩ Pj| = 1, for Pj ∈ P+, 1 ≤ i ≤ k, 1 ≤ j ≤ m, .

Conjecture 1.2.10 is equivalent to showing that for every k-optimal path partition

P , there exists a k-transversal X = {X1, X2, ..., Xk} of P , where Xi is an independent

set for all 1 ≤ i ≤ k. The output of the algorithm is either a k-transversal X =

{X1, X2, ..., Xk} of P where Xi is an independent set for all 1 ≤ i ≤ k, or a path

partition P ′ with less k-norm than P where P ′ = P⊕Q and Q is a k-improving trail.

Remind that for a set P of disjoint paths, we denote by ter[P ] the set of all terminal

vertices of paths in P , by ter−[P ] the set of vertices preceding the terminal vertices

in P and by ter−2[P ] the set of vertices preceding the vertices in ter−[P ]. Similarly,

let ter−i[P ] denote the set of vertices preceding the vertices in ter−(i−1)[P ].

2.1.2 Description of Algorithm

I Initialize Transversals

We initialize the set Xi in X for 1 ≤ i ≤ k as follows:

X1 = ter[P+], X2 = ter−[P+], . . . , Xi = ter−(i−1)[P+], . . ., Xk = ter−(k−1)[P+]∪

V [P0]. In other words, we color the bottom k vertices with colors 1, 2, ..., k for

each long paths and color all the vertice in short paths with color k.
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II Updating Transversals

An admissible edge is an edge e = (u, v), where u, v ∈ Xi for some 1 ≤ i ≤ k.

Since admissible edges are not allowed in the objective k-transversal, we use

admissible edges to update the set Xi. There are two types of admissible edges,

either the tail v ∈ V [P+] or v ∈ V [P0].

Case 1: v ∈ V [P+], and we assume that v ∈ Pj. We replace Xi by Xi− v +P−(v),

and we say that v gets ‘bumped up’ the path. If the preceding vertex

x = P−(v) is also in X, then x also gets bumped up the path and replace x

by the preceding vertex of x. The process continues until either a vertex x1

is replaced by its preceding vertex not in X (Case 1.1) or x1 ∈ in[P+]∩X,

i.e. x1 has no preceding vertex in P (Case 1.2). In Case 1.2, an improving

trail Q is traced back from x1.

Case 2: v ∈ V [P0]. If i > 1 (Case 2.1), then v is relabeled as color i−1 and hence

v is moved from Xi to Xi−1. Otherwise, i = 1 (Case 2.2), then v cannot

be relabeled and an improving trail Q is traced back from v.

III Initialize Predecessors

In order to trace back the improving trail, every vertex x involved in the algo-

rithm has a predecessor p[x] defined as follows:

For each vertex v ∈ X1 ∪ V [P0], p[v]← v. For each vertex v ∈ V [P+], v ∈ Xi,

i > 1, p[v] ← P+(v). In other words, the predecessor of a vertex v on a long

path in Xi is the vertex following v on the long path which is in Xi−1. Note

that we trace back the improving trail Q according to the predecessors of the

vertices we pass through.

IV Updating Predecessors
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For an admissible edge (u, v) ∈ Xi, let p(v)← u. If v gets bumped up the path

as in Case 1.1, then let p[P−(v)]← v.

2.1.3 The Algorithm

1. input: Graph G = (V, E), path partition P , integer k ≥ 1.

2. initialize

3. Transversals: As in Part I of Section 2.1.2

4. Predecessors: As in Part III of Section 2.1.2

5. while (there exists e = (u, v), u, v ∈ Xi) do

6. p[v]← u

7. Case 1: v ∈ V [P+] (Assume v ∈ Pj)

8. Case 1.1: v can be bumped up the path

9. Bump v (and possibly preceding vertices) up the path as

10. in Part II of Section 2.1.2

11. Update predecessors as in Part IV of Section 2.1.2

12. Case 1.2: in(Pj) ∈ Xk and v cannot be bumped up the path

13. Backtrack from in(Pj) to find Q

14. P ′ ← P ⊕Q

15. Stop

16. Case 2: v ∈ V [P0]

17. Case 2.1: i > 1

18. Xi ← Xi − v

19. Xi−1 ← Xi−1 + v

20. Case2.2: i = 1

21. Backtrack from v to find Q

22. P ′ ← P ⊕Q

23. Stop

24. Xi, 1 ≤ i ≤ k are independent sets

Theorem 2.1.9. (Hartman and Berger [7]) Assume G is an acyclic directed graph.

Let P be a path partition of G, k ≥ 1, and assume that every path in P0 is a trivial
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path (i.e. of cardinality one). Then the algorithm finds either a path partition P ′ with

|P ′|k < |P|k or a k-coloring orthogonal to P.

Proof. If the algorithm stops at line 24, then we have a set X = {X1, X2, ..., Xk}

which is a k-coloring orthogonal to P . Otherwise, a trail Q is found in Case 1.2

and Case 2.2, and Q is a k-alternating trail. Note that Q is proper because of the

initialization of predecessors, and that Q is prim of type(1) (Case 1.2) and type(2)

(Case 2.2). For each case, we show that Q has weight as defined in Definition 2.1.6.

Remark: Since vi ∈ V [P0] decreases the color of vi when ei = (vi−1, vi) is a forward

edge in Q (Case 2.1 of the algorithm). For convenience, if vi ∈ X1, we shall define

the color class of vi to be X0 after ei is chosen.

Claim: Let Q = (v0, e1, v1, . . . , el, vl) be a proper (not necessarily prim) k-alternating

trail found during the algorithm.

1. If Q is of type (a) (i.e. v0 ∈ X1), and vl ∈ Xt (after updating the colors), then

Q is of weight t− 1.

2. If Q is of type (b) (i.e. v0 ∈ Xk), and vl ∈ Xt (after updating the colors), then

Q is of weight t− k − 1.

We prove the claim by induction on l, the length of Q.

For l = 1, it is trivial to check that the claim holds. If Q is of type (a) and e1 = (v0, v1)

is a forward edge such that v1 ∈ V [P+] then v1 ∈ X1 and w(Q) = 1 − 1 = 0; if

v1 ∈ V [P0] then v1 ∈ X0 after updating and w(Q) = |P ′0|−|P0| = −1 = 0−1. If e1 =

(v1, v0) is a backward edge, then v1 ∈ X2∩V [P+] and w(Q) = |P ′0|−|P0| = 1 = 2−1.

If Q is of type (b), i.e. v0 ∈ V [P0], then e1 = (v0, v1) is a forward edge. If v1 ∈ V [P0],

then v1 ∈ X0 after updating and w(Q) = |P ′0| − |P0| = −2 = (k − 1) − k − 1. If

v1 ∈ V [P+], then v1 ∈ X1 and w(Q) = |P ′0| − |P0| = −1 = k − k − 1. Assume l > 1.
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For the induction step, we consider the different types of edges in Q:

1. Let ei+1 = (vi+1, vi) be a backward edge in Q which is not followed by a forward

edge. If vi ∈ Xi1 , then vi+1 ∈ Xi1+1, and then the value of t increases one. On

the other hand, vi+1 is an additional trivial path in P ′ = P⊕Q. Hence we have

w(v0, . . . , vi, vi+1) = w(v0, . . . , vi) + 1.

2. Let ei = (vi−1, vi) be a forward edge where vi ∈ V [P0]. If vi−1 ∈ Xi1 , then vi ∈

Xi1−1 after updating in Case 2.1 of algorithm, and then the value of t decreases

by one. On the other hand, V [P ′0] = V [P0]− {vi}. Hence w(v0, . . . , vi, vi+1) =

w(v0, . . . , vi)− 1.

3. For all other edges ei = (vi−1, vi) ∈ Q, the color class of vi−1 is the same as vi,

and ei contributes zero to w(Q).

A prim and proper trail found in the algorithm satisfies vl ∈ in[P+] ∩ Xk if it is of

type (1)(Case 1.2), and vl ∈ V [P0] ∩X1 if it is of type (2)(Case 2.2).

A trail Q of type (a-1) has weight k − 1. If Q is either of types (a-2), (b-1) or a

closed trail of type (b-2), then w(Q) = −1. If Q is of type (b-2) then w(Q) = −(k+1).

In all cases, Q has weight as difined in Definition 2.1.6, then Q is a k-improving trail.

Hence by Lemma 2.1.7, P ′ = P ⊕Q is a path partition with |P ′|k < |P|k.
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Chapter 3

New Results and Conclusion

In this chapter, we claim that Berge’s strong path partition conjecture holds for

certain special digraphs. First, we review a couple of definitions.

An undirected graph G is connected if for every pair of vertices x and y, there

is a path from x to y. For a disconnected graph G, a component of G is a maximal

connected subgraph of G. For a directed graph D, the underlying graph G of D is

the graph obtained by letting the edges of D be unordered pairs. The vertex set of

G is the same as the vertex set of D, but for any edge of D, it becomes undirected

in G. An induced subgraph is a subgraph obtained by deleting a set of vertices. We

write G[T ] for G − T , where T = V (G)\T ; this is the subgraph of G induced by T .

Now, we are ready for the results.

3.1 The Main Results

Proposition 3.1.1. Given a directed graph D and a k-optimal path partition P =

{P1, P2, . . . , Pm}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:

1. There is a vertex x of degree n− 1, where n = |V (G)|.

2. ∀v ∈ V (G− x), degG(v) = 3.
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3. G− x is connected.

Proof. Our goal is to show that there is a k-coloring f orthogonal to P . Let P1

be the path containing x in P .

Claim 1: For any path Pi = (a1, a2, . . . , al) ∈ P \ P1, Pi + x forms a path of D.

Since degG(x) = n − 1, there is a directed edge adjoining x to each vertex of Pi in

D. If (x, a1) ∈ E(D) or (al, x) ∈ E(D), it is easy to check that the claim is true.

Suppose the edges adjoining x to a1 and al are (a1, x) and (x, al) respectively. Since

for each vertex a ∈ V (Pi) − {a1, al}, either (a, x) ∈ E(D) or (x, a) ∈ E(D), and

(a1, x) and (x, al) are different directions for x, there exist two consecutive vertices

aj and aj+1 on Pi such that (aj, x) and (x, aj+1) appear simultaneously in D. Hence

Pi + x = (a1, a2, . . . , aj, x, aj+1, . . . , al) is also a path of D.

Claim 2: If |P1| ≤ k, then |Pi| < k for all Pi ∈ P \ P1.

Suppose there is a path Pi ∈ P \ P1 with |Pi| ≥ k, and let P ′ = {P1 − x, P2, . . . , Pi +

x, . . . , Pm}. Note that P1−x is either exactly a path or two separate paths according

to the position of x, and Pi+x is also a path by Claim 1. Hence P ′ is a path partition,

and |P ′|k = |P|k − 1 because x contributes one to |P|k in P1 (since |P1| ≤ k), and

contributes zero to |P ′|k in Pi + x (since Pi + x > k). Therefore we have a path

partition P ′ such that |P ′|k ≤ |P|k, a contradiction to that P is a k-optimal path

partition.

The condition 1 together with 2 are equivalent to the statement below: For any

vertex v ∈ V (G′), degG′(v) = 2, where G′ is the graph obtained by deleting x from

G. Therefore, G′ is a disjoint union of cycles. And the condition 3 implies that G is

a cycle.

17



Case 1. |P1| = l + 1 ≤ k. This implies that x must be colored, W.L.O.G, let the

color of x be k. Since x is of degree n− 1, x is the unique vertex with color k.

Hence there are k− 1 remaining colors left available for the rest of vertices. For

convenience, we denote the underlying graph of D − Pi by G − Pi although G

is an undirected graph and Pi is a directed path in P .

Case 1.1. G− P1 is connected, and hence G− P1 is a (undirected) path, and

V (P1) ∩ V (G′) is a set of l consecutive vertices in G′. Let these l consecutive

vertices be a1, a2, . . . , al, where a1 and al are the neighbors of the endpoints

of G − P1. Let G − P1 be the path (al+1, al+2, . . . , an−1) where al+1 and an−1

are the neighbors of al and a1 respectively. Define a coloring f : V (G′) →

{1, 2, . . . , k − 1} by

f(aj) = j, for 1 ≤ j ≤ l;

f(al+p) ≡ p (mod k − 1), 1 ≤ p ≤ k − l − 1, if n− 1− l 6≡ 1 (mod k − 1); and

f(al+p) ≡ p + 1 (mod k − 1), 1 ≤ p ≤ k − l − 1, if n− 1− l ≡ 1 (mod k − 1)

Then for any segment of length less than k in G − P1, the number of colors is

exactly the same as the length of this segment. Note that every directed path in

D could be represented as a segment in G′, and the segment for P1 is obtained

by ignoring x. Therefore, f is a k-coloring orthogonal to P .

Case 1.2. G−P1 is disconnected, and hence G−P1 has two paths. Note that x

is not an endpoint in P1 since G−P1 is disconnected. Let G′ = (v1, v2, . . . , vn−1)

be a cycle where v1 is the first vertex in P1, v2 is the second one, and so on.

In other words, the first i vertices of G′ are the first i vertices of P1, where

vi = P−(x), the unique vertex preceding to x. Suppose j ≥ q, then either

P1 = (v1, v2, . . . , vi, x, vj, vj−1, . . . , vq) or P1 = (v1, v2, . . . , vi, x, vq, vq+1, . . . , vj).

We give a coloring f for P1 first as following: f(vh) = h for 1 ≤ h ≤ i and
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f(vq+h) = i + 1 + h for 0 ≤ h ≤ j − q. Then the two paths separated by P1

are (vi+1, vi+2, . . . , vq−1) and (vj+1, vj+2, . . . , vn−1). Now, we can extend f to a

coloring for G. Note that f(vq) = i+1, and f(vj) 6= 1. For (vi+1, vi+2, . . . , vq−1),

if |(vi+1, vi+2, . . . , vq−1)| = q−1− i 6≡ 1 (mod k−1), then f(vh) ≡ h (mod k−1)

for i + 1 ≤ h ≤ q − 1, else f(vh) ≡ h + 1 (mod k − 1) for i + 1 ≤ h ≤ q − 1.

Note that i ≡ i + 1 if k = 3 , i.e. vi and vi+1 might be in the same color class.

but it is easy to check that this case does not exist by considering the directions

of edges which is restricted by the length of P1. For (vj+1, vj+2, . . . , vn−1), if

|(vj+1, vj+2, . . . , vn−1)| = n − j − 1 6≡ 1 (mod k − 1), then f(vj+h) ≡ h (mod

k−1) for 1 ≤ h ≤ n−j−1, else f(vj+h) ≡ h+1 (mod k−1) for 1 ≤ h ≤ n−j−1.

Similarly, for every segment of length less than k in (vi+1, vi+2, . . . , vq−1) and

(vj+1, vj+2, . . . , vn−1), the number of colors is exactly the same as the length of

this segment. Since every path in D could be represented as a segment, f is a

k-coloring orthogonal to P .

Case 2. If |P1| = l+1 > k, then x need not to be colored. The technique that we use

in this case is similar to Case 1. We color V (P1)∩V (G′) first, but we only need

to pick k vertices in P1 to color. After finishing the coloring of P1, we consider

the coloring of the remaining vertices in G − P1 as we have done in Case 1.

Note that the difference is that in Case 1 the colors are taken modulo k − 1,

but in Case 2 the color are taken modulo k. Then for any segment with length

≤ k in G− P1, it is easy to see that the vertices in this segment have different

colors from each other, and then for any segment with length greater than k in

G−P1, there are k colors in this segment (some colors might appear more than

once). So, for |P1| = l + 1 > k, there also exists a k-coloring orthogonal to P .

This concludes the proof of this case.
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Most of the notations hereunder are the same as the notations in Proposition

3.1.1. They are P1, the path containing x; G′, the graph obtained by deleting x from

G; and G− Pi, the underlying graph of D − Pi.

Proposition 3.1.2. Given a directed graph D and a k-optimal path parition P =

{P1, P2, . . . , Pm}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:

1. There is a vertex x of degree n− 1, where n = |V (G)|.

2. ∀v ∈ V (G− x), degG(v) ≤ 3.

3. G− x is connected.

Proof. In condition 2, we have shown the case that degG(v) = 3, ∀v ∈ V (G− x).

When degG(v) < 3, and together with condition 1 and 3, we know that G′ = G − x

is a path (a trivial path is possible). If G′ is a path of length 1 or 2, then D has a

hamiltonian path. Hence this proposition holds. Let G′ = (v1, v2, . . . , vn−1), n−1 ≥ 3.

Let H be the graph obtained by adding the edge (vn−1, v1) into G. Then for any

digraph D′ whose underlying graph is H, Berge’s strong path paritition conjecture

holds for D′ by Proposition 3.1.1. But in Proposition 3.1.1, the coloring is found

for any segment in H − P1. Therefore, for the k-optimal path parition P in D, the

coloring found by Proposition 3.1.1 is orthogonal to it.

Proposition 3.1.3. Given a directed graph D and a k-optimal path parition P =

{P1, P2, . . . , Pm}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:

1. There is a vertex x of degree n− 1, where n = |V (G)|.
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2. ∀v ∈ V (G− x), degG(v) = 3.

3. G− x is disconnected.

Proof. Let G′ = G− x. Since G′ is disconnected, G′ is a disjoint union of cycles

by condition 2. Let G′ = {C1, C2, . . . , Cr} and x ∈ V (P1). Note that the vertices of

P1−x are from at most two cycles in G′. For conveninece, we denote the set of paths

in P ∩D[V (C)] by P ∩ C.

We first color the vertices in C ∈ G′, where V (C) ∩ V (P1) = ∅. For each C =

(b1, b2, . . . , bs, b1) ∈ G′ such that V (C) ∩ V (P1) = ∅, we can define a coloring for C

according to the length of the longest path in P ∩ C. W.L.O.G, let the longest path

in P ∩ C be (b1, b2, . . . , bt), t ≤ s.

Case 1. For t < k, we define f as following:

If |C| = s 6≡ 1 (mod k − 1), then f(bi) ≡ i (mod k − 1) for 1 ≤ i ≤ s.

If |C| = s ≡ 1 (mod k − 1), then f(bi) ≡ i (mod k − 1) for 1 ≤ i ≤ s − 1 and

f(bs) = 2.

Case 2. For t = k, we first color the longest path (b1, b2, . . . , bt) by f(bi) = i for

1 ≤ i ≤ t and extend f to a coloring for C:

If |C| = s 6≡ 1 (mod k), then f(bi) ≡ i (mod k) for 1 ≤ i ≤ s.

If |C| = s ≡ 1 (mod k), then f(bi) ≡ i (mod k) for 1 ≤ i ≤ t and (bi) ≡

i + 1 (mod k) for t + 1 ≤ i ≤ s.

Case 3. For t > k, there is at least one vertex which needs not be colored, and let it

be b1. We define f as f(bi) ≡ i− 1 (mod k), 2 ≤ i ≤ s.

In all three cases above, it is clear that (b1, b2, . . . , bt) contains exactly min{t, k} colors.

For any segment with length less than k in (bt+1, bt+2, . . . , bs), it is easy to see that the

number of colors in the segment equals the length of this segment. For any segment
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with length equals to k, the number of colors is k. Only in Case 3., there might be

some paths with length greater than k. For any segment with length greater than k

(in Case 3. only), it is not difficult to see that the number of colors is k. Note that

any path in (bt+1, bt+2, . . . , bs) could be represented as a segment. Therefore, f is a

coloring orthogonal to P partially in C.

The remaining part is the cycle(s) which is involved by P1 and the coloring can

be obtained accordingly. Note that Claim 2. in Proposition 3.1.1 is also true here.

Subcase 1. x is a path itself, i.e., a trivial path. The paths in P are all of length

less than k by Claim 2 in Proposition 3.1.1. According to Case 1. above, we

only use k − 1 colors for the vertices of G− x, and we can color x in k.

Subcase 2. The vertices of P1−x are exactly from one cycle in G′. The coloring for

C1 ∪ P1 is the same as the discussion in Proposition 3.1.1, i.e., C1 ∪ P1 can be

viewed as a connected graph.

Subcase 3. The vertices of P1 − x are from two cycles, called C1 and C2. Let

P1 = (a1, a2, . . . , ai, x, ai+1, . . . , al), where (a1, a2, . . . , ai) and (ai+1, ai+2, . . . , al)

are paths in D[V (C1)] and D[V (C2)] respectively. First, we give a coloring f

for P1. If |P1| ≤ k, then all the other paths in P are of length less than k. We

color P1 as following: f(ai) = i for 1 ≤ i ≤ l, and f(x) = k. The remaining

vertices in C1 and C2 form undirected paths respectively, then we can obtain

the coloring respectively as in Proposition 3.1.1 Case 1.1. Note that we might

need to permute the colors appearing in C2 to ensure that P1 has l +1 different

colors on it. Clearly, if |P1| > k, we don’t have to color x. Since the argument

is similar to above, except we use k to replace k − 1, we omit the details. This

concludes the proof.
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Proposition 3.1.4. Given a directed graph D and a k-optimal path parition P =

{P1, P2, . . . , Pm}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:

1. There is a vertex x of degree n− 1, where n = |V (G)|.

2. ∀v ∈ V (G− x), degG(v) ≤ 3.

3. G− x is disconnected.

Proof. According to the conditions, we obtain that G − P1 is a disjoint union of

some cycles and paths. We color P1 first. The two cases, whether x is colored or

not, are discussed the same as above. For each component of G− P1, if it is a cycle,

then we color the vertices of it by Proposition 3.1.3; if it is a path, then we color the

vertices of it by Proposition 3.1.2. Therefore we have a k-coloring orthogonal to P .

Now we have the theorem by combining the above four propositions together.

Theorem 3.1.5. Given a directed graph D and a k-optimal path parition P =

{P1, P2, . . . , Pm}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following condi-

tions:

1. There is a vertex x of degree n− 1, where n = |V (G)|.

2. ∀v ∈ V (G− x), degG(v) ≤ 3.

3.2 Conclusion

As can be seen from this study, due to the diversity of general directed graphs,

to prove the truth (we believe) of Berge’s strong path partition conjecture seems to

be very difficult. This can also be seen from the known results obtained so far only

23



a short list in Chapter 2. Nevertheless, we step forward to make some contributions

by showing the conjecture holds for a class of graphs in this thesis. Mainly, we prove

that the conjecture holds for the graphs obtained by joining a vertex to a set of vertex

disjoint paths and/or cycles. Hopefully, the technique used in this thesis (considering

only underlying graph) can be applied to do a better job in any future study.
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