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Abstract

A family P = {P,, P,,...,P,} of paths is called a path partition of G if its
members are vertex disjoint and V[P] = V(G). Let k be a positive integer, then the
k-norm of a path partition P is defined by |P|, = >_.* min{|P|, k}. A path partition
P minimizes |P|; is called k-optimal.

A k-coloring of G is a family C* = {C}, Cs, ..., Ci} of k vertex disjoint independent
sets called color classes. A k-coloring C* is orthoganal to a path partition P =
{P, Py, ..., P,} if C* meets every path in P in min{|P]|, k} different color classes.
Berge conjectured that for every k-optimal path partition P, there exists a k-coloring
orthogonal to it, and this is known as Berge’s strong path partition conjecture.

This conjecture is still open today, but several results have been obtained in some
special cases. In this thesis, we verify this conjecture to be true for certain special

digraphs.
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Chapter 1

Introduction and Preliminaries

1.1 Basic Notation

A graph G is composed of two types of objects. It has a finite set of elements
called vertices and a set of unordered pairs of vertices called edges. The vertex set is
denoted by V(G) or V, and the edge set is denoted by E(G) or E.

A directed graph or digraph G is composed of two types of objects. It has a vertex
set V and an edge set E, and the edge set is a set of ordered pairs of vertices. For each
edge of GG, the first vertex of the ordered pair is the tail of the edge and the second is
the head; together, they are endpoints of the edge. If there is an edge (u, v), then w is
a predecessor of v, and v is the successor of u. A loop in a digraph is an edge whose
endpoints are the same. Multiple edges are edges having the same ordered pair of
endpoints. The graphs or digraphs we consider hereinafter contain no loops and no
multiple edges.

A subgraph of a graph (or digraph) G is a graph H such that V(H) C V(G) and
E(H) C E(G). A spanning subgraph of a graph (or digraph) G is a subgraph with
vertex set V(G).

Let z and y be two vertices of a graph (or digraph) G. An z-y walk of G is an

alternating sequence (x = vy, €1, v1, €9, ..., Ug_1, €, U = y) of vertices and edges, such



that e; = (v;_1,v;) € E(GQ) fori = 1,2, ..., k. A trivial walk contains no edges, i.e., the
walk contains only one vertex. An z-y walk is closed if = y, and an x-y walk is not
closed (or open) if # # y. An z-y trail is an z-y walk in which no edge is repeated.
A nontrivial closed trail of a graph (or digraph) G is called a circuit of G. A circuit
(v1,vg, ..., Uy, v1) 18 a cycle if the n vertices are all distinct. A graph (or digraph) G is
acyclic if there is no cycle (or directed cycle respectively) in G.

A path P in a digraph G = (V, E) is a sequence of distinct vertices (vy, va, ..., ;)
such that (v;,v;41) € E, for i = 1,2,....,1 — 1. Let V(P) denote the set of vertices
U1, Va,...,u; of a path P, and |P| denote the cardinality of P, i.e. |P| = [V(P)|. A
path of cardinality one is called a trivial path. For any path P in a digraph G, we
denote the first vertex in P by in(P), and the last vertex by ter(P). For a path P
and a vertex x € P, let P_(z) denote the vertex preceding = on P, and P, (z) denote
the vertex following z on P.

For a set of vertex disjoint paths P, we denote |J{V(P); P € P} by V[P], and
U{E(P); P € P} by E[P]. A family P of paths is called a path partition of G if
its members are vertex disjoint paths and V[P] = V(G). Note that a digraph may
have many path partitions. The trivial path partition, where every path is a trivial
path, is an example of a path partition. The cardinality of a path partition P is
the number of paths in P, and we denote it by |P|. Let m(G) denote the minimum
number of paths in any path partition of G. In other words, 7(G) = min|P|, where
the minimum is taken over all path partitions P. A path partition P of G is called
optimal if |P| = n(G).

A vertex subset X in a graph (or digraph) G is independent if for any pair of
vertices in X, there is no edge in G adjoining them. The size of X, denoted by | X]|,

is the number of vertices in X. The indenpendence number «(G) of a graph G is the



size of a maximum independent vertex set in G.

1.2 Motivation

Before talking about Berge’s conjecture, we introduce the Dilworth’s theorem
and the Greene-Kleitman theorem which are generalized and extended by Berge’s
conjecture. Now, we need some definitions and notations.

Let S be a nonempty set. A binary relation R is a subset of A x A. R is reflexive
on A if for all z € A, (z,z) € R. R is transitive on A if for all z,y,z € A, (z,y) € R
and (y,z) € R would imply that (z,2z) € R. R is antisymmetric on A if for all

z,y € A, (z,y) € R and (y,z) € R would imply that z = y.

Definition 1.2.1. A partially ordered set (or poset for short) S is a set with a binary
relation R, such that R is reflexive, transitive, and antisymmetric on S. R is called a

partial order of S.

If there is a poset (S, R), we can define a digraph G of this poset as following:
let V(G) = S and for any z,y € V(G), (z,y) € E(G) if and only if (z,y) € R. For
convenience, we delete the loops in G. Note that every path in G induces a clique,
in other words, a set of pairwise adjacent vertices (ignoring the direction) because
of the transtivity of S. The maximum independent set in a clique is exactly one
vertex. Hence if GG is a digraph of a poset, then every path partition can meet an
independent set at most once. Therefore, the size of maximum independent set is at
most the number of paths in any path partition, then we have 7(G) > a(G). Together

with the follwing theorem due to Gallai and Milgram, we have the Dilworth’s theorem.

Theorem 1.2.2. (Gallai and Milgram [5]). Every directed graph satisfies n(G) <

a(G).



Theorem 1.2.3. (Dilworth [4]). If G is a digraph of a poset, then ©(G) = a(G).
Furthermore, every path in an optimal path partition in G meets every maximum

independent set exactly once.

Dilworth’s theorem was generalized by Greene and Kleitman by considering a
collection of k disjoint independent sets (1 < k < n), instead of one independent set.

For a positive integer k, a k-coloring of a graph G is a labeling f : V(G) — S,
where |S| =k (often we use S = {1,2,...,k}). The labels are colors, and the vertices
of the same color form a color class. A k-coloring is proper if the labeled endpoints
of each edge have different labels. We say that a vertex subset X of a graph (or a
digraph) is an independent set if Vz,y € X, there is no edge adjoin z and y. Observe
that each color class is an independent set in a proper k-coloring, and hence we could
denote a proper k-coloring by C* = {C}, Cs, ..., Ci}, where each C; is an independent
vertex set, and for any two color classes C; and C;, they are vertex disjoint. On
the other hand, a family C* = {C, 05, ..., Cy} of k vertex disjoint independent sets
in G could be thought as a proper k-coloring. Now, we give a formal definition of a

k-coloring.

Definition 1.2.4. A k-coloring of G is a family C* = {C},C,,...,Cy} of k vertex
disjoint independent sets called color classes. The cardinality of a k-coloring C* =
{C,Cy, ...,Ch} is |CF| = Zle |C;| and C* is optimal if |C*| is as large as possible.

Denote by a(G) the cardinality of an optimal k-coloing in G.

Berge called a k-coloring of a graph (or digraph) G a partial k-coloring, because
it is a partial coloring of the vertex set of G with k colors, i.e., we don’t need to color
all vertices of G. We prefer the shorter name k-coloring for convenience. In Theorem
1.2.2 and Theorem 1.2.3, we considered the minimum number of paths in all path

partitions, and now we extend the value to k-norm.
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Definition 1.2.5. (k-norm of a path partition). For each positive integer k, the

k-norm |P|; of a path partition P = { Py, Py, ..., P,,} is defined by

Pl =) _ min{|P|, k}.
1=1

A path partition P that minimizes |P|; is k-optimal. Denote by m(G) the k-norm

of a k-optimal path partition in G.

In a k-optimal path partition, those paths of cardinality at least k are called long
paths, and denote by P+ the set of long paths. Those paths of cardinality less than k
are called short paths, and denote by P the set of short paths. Note that a 1-optimal
path partition is a partition with the minimum number of paths in all path partitions

of G, i.e., m(G) = m(G). We are able to state the Greene-Kleitman theorem now.

Theorem 1.2.6. (Greene-Kleitman theorem [6]). Let G be a digraph of a poset, and

let k be a positive integer. Then ax(G) = mr(G).

Observe that for k£ = 1, Theorem 1.2.6 is identical to Theorem 1.2.3 (Dilworth’s
theorem). If GG is a digraph of a poset, then each path P, meets each k-coloring at
most min{|P,|, k} vertices. Hence for any k-coloring C* = {C},C,..,Cy} and any

path partition P = {Py, P, ..., P,, }, the following holds:
CH =D VI nV(P) <D {min|P|, k} = [Pl
i=1 i=1

Therefore, for an optimal k-coloring and a k-optimal path partition, ax(G) < m(G)

holds in a digraph of poset. The following corollary is from above and Theorem 1.2.6.

Corollary 1.2.7. Let G be a digraph of a poset, k be a postive integer, P be a k-
optimal path partition, and C* be an optimal k-coloring. Then C* meets every path in

P in exactly min{|P;|, k} vertices.



If G is not a digraph of a poset, then a color class may meet a path more than
once, and hence a k-coloring may meet a path more than k times. Lineal’s conjecture

extends the Greene-Kleitman theorem to all digraphs.

Conjecture 1.2.8. (Linial [8]) Let G be a digraph and k a positive integer. Then

Oék(G> > 7Tk<G)

Conjecture 1.2.8 can also be called the “weak path partition conjecture”, and the
strong path partition conjecture is also known as the Berge’s strong path partition
conjecture. We give a formal definition of the relation between coloring and path

partition.

Definition 1.2.9. (Orthogonality of path partitions and k-colorings). A k-coloring
C* is orthogonal to a path partition P = { Py, P,, ..., P,,} if C* meets every path in P

in min{|P;|, k} different color classes.

Berge defined a k-coloring C* to be strong for a path partition P if C*¥ meet
every path P in P in exactly min{|P;|, k} different color classes. We prefer using
“orthogonal” to “strong” in this thesis. The following conjecture is proposed by

Berge and is what we focus in this thesis.

Conjecture 1.2.10. (Berge’s strong path partition conjecture [2]). Let G be a di-
graph and let k£ be a positive integer. Then for every k-optimal path partition P

there exists a k-coloring orthogonal to it.

Conjecture 1.2.10 is still open today, but several results have been obtained in
some special cases. In the next chapter, we will introduce some known results and

present their proofs for some of them.



Chapter 2

Known Results

Berge observed in [2] that Conjecture 1.2.10 holds in the following special cases:
1. For k=1.

2. In the case that the k-optimal path partition contains no path of cardinality

more than k, i.e. the paths in the path partition are all short paths.
3. For digraphs containing a Hamilton path.
4. For bipartite graphs.

If G is acyclic then Conjecture 1.2.10 was shown to be true in [9, 3, 1, 7.

2.1 A Proof of Berge’s Conjecture for Acyclic Di-
graphs

In this section, we will introduce the proof given by Hartman and Berger in [7] for
acyclic digraphs. For any path partition P, Hartman and Berger gave an algorithm
for acyclic digraphs to find out either a k-coloring orthogonal to P or a path partition

P’ such that |P'|, < |P|k, i.e. P is not k-optimal.



2.1.1 Notations and Definitions

Before we talk about the algorithm, we need some notations and definitions. Re-
view that for a given path partition P, PT denote the set of all long paths (i.e. of
cardinality at least k) in P, and P denote the set of all short paths (i.e. of cardinality
less than k) in P. We assume that all paths in PY are of cardinality one by breaking
each short path of cardinality greater than one into single vertex. Additionally, we
denote by P the set of trivial paths in P and P+ the set of nontrivial paths in P. If
x is a vertex on a path P € P, then P_(z) denote the unique vertex that precedes z
on P. When z is the initial vertex of P, P_(z) is undefined. Similarly, P, (x) denote
the unique vertex that follows  on P. When z is the terminal vertex of P, P, (z) is

undefined.

Definition 2.1.1. An undirected trail ¢ in G is a sequence @ = (v, €1, V1, ..., €, ;)
such that, for each 1 <7 <[, either ¢; = (v;_1,v;) € E(G) or ¢; = (v;,v;_1) € E(G),
and all edges are distinct. We assign a direction to @) from vy to v;. After assigning
the direction, for each edge e;, if ¢; = (v;_1,v;) € E(G), then e; is a forward edge,

and if e; = (v;,v;—1) € E(G), then e; is a backward edge.

Definition 2.1.2. (k-alternating trail). Given a path partition P, an undirected trail

Q@ = (vo, €1,v1, ..., e, ;) is k-alternating relative to P, if the conditions below hold:

1. All forward edges of @ are in F(G) — E[P*], all backward edges are in E[P*],
and every forward edge (u,v), where v € V[P] is followed by a backward edge,

unless v € in[P*] and v = ;.

2. There are at most k — 1 consecutive backward edges in (), unless the first one
follows a forward edge, in which case, there are at most k consecutive backward

edges.



3. For every vertex v € V(Q), there exists at most one forward edge (u,v) € E(Q)

and at most one forward edge (v, w) € E(Q).

Definition 2.1.3. (Prim and proper k-alternating trail). A k-alternating trail Q =
(vo, €1, V1, ..., e, v7) is proper if either (a) vy € ter[P*] or (b) vy € V[PY. A k-

alternating trail is prim if either (1) v; € in[P*] or (2) v; € V[PY].

According to the definition 2.1.3, we have four types of prim and porper k-
alternating trails, (a-1), (a-2), (b-1) and (b-2). A prim and porper k-alternating
trail is of type (a-1) if it is of type (a) and type (1). The others are defined similarly.
We denote by P @ @ the spanning subgraph of GG containing edges in the symmetric

difference E[P] @ E(Q) = E[P]UE(Q) \ (E[P]|NE(Q))

Lemma 2.1.4. Let P be a path partition, Q) be a prim and proper k-alternating trail
relative to P, and P’ = P& Q. Then the spanning subgraph P' of G contains disjoint

paths and cycles.

Proof. Let Q = (vg,e1,v1,...,€,v;) be a prim and proper k-alternating trail rel-
ative to P. Note that vy € ter[PT] U V[PY] and v; € in[P*] U V[P by the def-
inition 2.1.3. According to conditions (1) and (3) of the definition 2.1.2, for every
v € VIPT]\ {vo, v}, degp (v) < degp(v) = 1 and deg), (v) < degh(v) = 1. For
vy € ter[PT], degh (vg) < 1 and degp (vg) < 1. For v € in[PT], degh (v) < 1
and degp, (v;) < 1. By the condition (3) of the definition 2.1.2, all vertices in V[P
receive indegree and outdegree at most one respectively. Because each vertex in P’
has indegree and outdegree at most one respectively, P’ contains disjoint paths and

cycles. [

Let e; = (v;,v;_1) be a backward edge of Q. If e; does not follow a forward edge

in @, then v; 4 is a trivial path in P’ = P @ (. Similarly, if e; is not followed by a

9



forward edge in @, then v; is also a trivial path in P’. Denote by w™(Q) the set of

such trivial paths, then

wh(Q) = {vi-1 € V(Q)NV[PT] | e; = (vi,v;—1) does not follow a forward edge} U
{v; e V(Q)NV[PT] | e; = (vi,v;_1) is not followed by a forward edge}.

On the other hand, if a vertex v € V[P?] is an endpoint of a forward edge in @, then

v is on a nontrivial path or cycle in P’. We denote by w™(Q) the set of such vertices,

then w™(Q) = {v € V(Q) N V[P’ | v is an endpoint of a forward edge}. Now, we

define the weight of a k-alternating trail.

Definition 2.1.5. (Weight of k-alternating trail). The weight of @ is defined as

w(Q) = |wt(Q)| — |w™(Q)|. By the description above, we have w(Q) = |P| — |P9|.

Definition 2.1.6. (k-improving trail). A prim and proper k-alternating trail @ is

k-improving, or for short, improving, if one of the following conditions holds:
1. @ is of type (a-1) with w(Q) < k — 1.
2. @ is of type (a-2), (b-1), or (b-2) with in(Q) = ter(Q) and w(Q) < —1.
3. Q is of type (b-2), Q is not a closed trail and w(Q) < —(k + 1)

Lemma 2.1.7. Let Q be a k-improving trail relative to a path partition P and P’ =
P& Q. Then P’ is a path partition with |P'|, < |P|r provided that P' contains no

cycles.

Proof.  For each type of improving trails, we first show that k|P*| + |P9| <

k|PF| + PO

Type(a-1): In this case, |P'F| = [PF| — 1, and w(Q) < k — 1 by definition 2.1.6,

thus we have w(Q) = |PP| — |P9] < k — 1, and then |P9| < |PO| + &k — 1.

10



Type(a-2) or (b-1): Since |[P't| = [P*] and w(Q) < —1, we have |P0] < |P°| — 1.

Type(b-2): If Q is a closed trail, then |[P"+| = |P*|. Since w(Q) < —1, |P9| <
|PO| — 1. Therefore, if @ is not a closed trail, then |[P¥| < [P¥| + 1, and

PO < [PY = (k +1).
Since P’ is acyclic, P’ is a path partition by lemma 2.1.4. According to the

discussion above, we have |P’|;, < k[P'F| + |PO| < k|PF| + |PO| = |P|s. ]

Definition 2.1.8. (k-transversal). Let P = { Py, P, ..., P, } be a path partition of G.
A vertex subset X = X;UX,U...UX}, where X;NX; = (0 for i # j is a k-transversal
of P V[P C X and [X;NPj|=1,for PePr 1<i<k 1<j<m,.
Conjecture 1.2.10 is equivalent to showing that for every k-optimal path partition
P, there exists a k-transversal X = {X;, X», ..., X;.} of P, where X is an independent
set for all 1 < ¢ < k. The output of the algorithm is either a k-transversal X =
{X1, X5, ..., X} of P where X; is an independent set for all 1 < i < k, or a path
partition P’ with less k-norm than P where P’ = P& () and @ is a k-improving trail.
Remind that for a set P of disjoint paths, we denote by ter[P] the set of all terminal
vertices of paths in P, by ter_[P] the set of vertices preceding the terminal vertices
in P and by ter_»[P] the set of vertices preceding the vertices in ter_[P]. Similarly,

let ter_;[P] denote the set of vertices preceding the vertices in ter__y)[P].
2.1.2 Description of Algorithm

I Initialize Transversals
We initialize the set X; in X for 1 < i < k as follows:
Xy =ter[Pt], Xy = ter_[PT], ..., X; = ter__n[P*], ..., Xp = ter_p—1y[PT|U
V[P?]. In other words, we color the bottom k vertices with colors 1,2, ..., k for

each long paths and color all the vertice in short paths with color k.

11



IT Updating Transversals
An admissible edge is an edge e = (u,v), where u,v € X; for some 1 <i < k.
Since admissible edges are not allowed in the objective k-transversal, we use
admissible edges to update the set X;. There are two types of admissible edges,

either the tail v € V[P*] or v € V[PY].

Case 1: v € V[PT], and we assume that v € P;. We replace X; by X; — v+ P_(v),
and we say that v gets ‘bumped up’ the path. If the preceding vertex
x = P_(v) is also in X, then x also gets bumped up the path and replace x
by the preceding vertex of z. The process continues until either a vertex x;
is replaced by its preceding vertex not in X (Case 1.1) or x; € in[PT]NX,
i.e. 1 has no preceding vertex in P (Case 1.2). In Case 1.2, an improving

trail @) is traced back from z;.

Case 2: v € V[PY]. If i > 1 (Case 2.1), then v is relabeled as color i — 1 and hence
v is moved from X; to X;_;. Otherwise, i = 1 (Case 2.2), then v cannot

be relabeled and an improving trail () is traced back from wv.

[T Initialize Predecessors
In order to trace back the improving trail, every vertex x involved in the algo-
rithm has a predecessor p[z] defined as follows:
For each vertex v € X; U V[PY], p[v] « v. For each vertex v € V[P*], v € X,
i > 1, p[v] < Py (v). In other words, the predecessor of a vertex v on a long
path in X; is the vertex following v on the long path which is in X; ;. Note
that we trace back the improving trail () according to the predecessors of the

vertices we pass through.

IV Updating Predecessors

12



For an admissible edge (u,v) € Xj, let p(v) < u. If v gets bumped up the path

as in Case 1.1, then let p[P_(v)] « wv.
2.1.3 The Algorithm

1. input: Graph G = (V, E), path partition P, integer k£ > 1.

2. initialize

3. Transversals: As in Part I of Section 2.1.2
4. Predecessors: As in Part III of Section 2.1.2
5. while (there exists e = (u,v),u,v € X;) do
6. plv] — u
7. Case 1: v € V[P*] (Assume v € P;)
8. Case 1.1: v can be bumped up the path
9. Bump v (and possibly preceding vertices) up the path as
10. in Part II of Section 2.1.2
11. Update predecessors as in Part IV of Section 2.1.2
12. Case 1.2: in(F;) € X}, and v cannot be bumped up the path
13. Backtrack from in(P;) to find @
14. P —PdQ
15. Stop
16. Case 2: v € V[P
17. Case 2.1: 1 > 1
18. X, —X;—v
19. Xi1— X, 1+v
20. Case2.2: 1 =1
21. Backtrack from v to find )
22. P —PaQ
23. Stop

24. X;, 1 <1 < k are independent sets

Theorem 2.1.9. (Hartman and Berger [7)) Assume G is an acyclic directed graph.

Let P be a path partition of G, k > 1, and assume that every path in P° is a trivial

13



path (i.e. of cardinality one). Then the algorithm finds either a path partition P’ with

|P|i < |Pl|x or a k-coloring orthogonal to P.

Proof. If the algorithm stops at line 24, then we have a set X = {X;, Xs, ..., X;.}
which is a k-coloring orthogonal to P. Otherwise, a trail @ is found in Case 1.2
and Case 2.2, and @) is a k-alternating trail. Note that () is proper because of the
initialization of predecessors, and that @ is prim of type(1) (Case 1.2) and type(2)
(Case 2.2). For each case, we show that @ has weight as defined in Definition 2.1.6.
Remark: Since v; € V[P?] decreases the color of v; when e; = (v;_1,v;) is a forward
edge in @ (Case 2.1 of the algorithm). For convenience, if v; € X, we shall define
the color class of v; to be X, after e; is chosen.

Claim: Let @ = (vg, €1, v1, ..., €, v;) be a proper (not necessarily prim) k-alternating

trail found during the algorithm.

1. If @ is of type (a) (i.e. vgp € X7), and v; € X; (after updating the colors), then

Q is of weight t — 1.

2. If Q is of type (b) (i.e. vo € Xi), and v; € X (after updating the colors), then

Q is of weight t — k — 1.

We prove the claim by induction on [, the length of Q).

For [ = 1, it is trivial to check that the claim holds. If @ is of type (a) and e; = (vg, v1)
is a forward edge such that v; € V[P*] then v; € X; and w(Q) =1 -1 = 0; if
vy € V[P?] then v; € X, after updating and w(Q) = |PO|—|PO| = -1 =0—1. Ife; =
(v1,0) is a backward edge, then v; € XoNV[P*] and w(Q) = |PO|—|P% =1 =2—1.
If Q is of type (b), i.e. vo € V[PY], then e; = (vg,v1) is a forward edge. If v; € V[P],
then v; € X after updating and w(Q) = |P9| — [P%| = -2 = (k—1) —k — 1. If

vy € V[P*], then v; € X; and w(Q) = [PO| — |PO| = =1 =k — k — 1. Assume [ > 1.

14



For the induction step, we consider the different types of edges in Q:

1. Let e;41 = (v;41,v;) be a backward edge in () which is not followed by a forward
edge. If v; € X;,, then v;11 € X, 41, and then the value of ¢ increases one. On
the other hand, v;,; is an additional trivial path in P’ = P & @). Hence we have

w(vg, ..., V5, V1) = w(vg, ..., v;) + 1.

2. Let e¢; = (v;_1,v;) be a forward edge where v; € V[P°]. If v;_; € X;,, then v; €

X, -1 after updating in Case 2.1 of algorithm, and then the value of ¢ decreases

by one. On the other hand, V[P"] = V[PY — {v;}. Hence w(vo, ..., v;,vi41) =

w(vg, ..., v;) — L.

3. For all other edges e¢; = (v;_1,v;) € @, the color class of v;_; is the same as v,

and e; contributes zero to w(Q).

A prim and proper trail found in the algorithm satisfies v; € in[P*] N X if it is of
type (1)(Case 1.2), and v; € V[P N Xy if it is of type (2)(Case 2.2).

A trail @ of type (a-1) has weight & — 1. If @ is either of types (a-2), (b-1) or a
closed trail of type (b-2), then w(Q) = —1. If @ is of type (b-2) then w(Q) = —(k+1).
In all cases, @) has weight as difined in Definition 2.1.6, then @) is a k-improving trail.

Hence by Lemma 2.1.7, P’ = P @& @ is a path partition with |P’|p < |P|x. |
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Chapter 3

New Results and Conclusion

In this chapter, we claim that Berge’s strong path partition conjecture holds for
certain special digraphs. First, we review a couple of definitions.

An undirected graph G is connected if for every pair of vertices x and y, there
is a path from x to y. For a disconnected graph G, a component of GG is a maximal
connected subgraph of G. For a directed graph D, the underlying graph G of D is
the graph obtained by letting the edges of D be unordered pairs. The vertex set of
GG is the same as the vertex set of D, but for any edge of D, it becomes undirected
in G. An induced subgraph is a subgraph obtained by deleting a set of vertices. We
write G[T] for G — T, where T = V(G)\T; this is the subgraph of G induced by T.

Now, we are ready for the results.

3.1 The Main Results

Proposition 3.1.1. Given a directed graph D and a k-optimal path partition P =
{Py, Py,...,P,}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:
1. There is a vertex z of degree n — 1, where n = |V(G)|.
2. Yo e V(G — ), dege(v) = 3.
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3. G — x is connected.

Proof.  Our goal is to show that there is a k-coloring f orthogonal to P. Let P;

be the path containing x in P.
Claim 1: For any path P, = (ay,as,...,a;) € P\ P, P, + x forms a path of D.

Since degg(x) = n — 1, there is a directed edge adjoining x to each vertex of P; in
D. If (x,a1) € E(D) or (a,z) € E(D), it is easy to check that the claim is true.
Suppose the edges adjoining x to a; and a; are (a;,x) and (x, q;) respectively. Since
for each vertex a € V(P;) — {a1,q}, either (a,z) € E(D) or (x,a) € E(D), and
(a1, x) and (z,a;) are different directions for z, there exist two consecutive vertices
a; and aj4q on P; such that (a;,z) and (z,a;11) appear simultaneously in D. Hence

P+ 2= (ay,aq,...,a;,T,aj11,...,a;) is also a path of D.

Claim 2: If |P,| < k, then |P;| < k for all P, € P\ P;.

Suppose there is a path P, € P\ P, with |P;| > k, and let P = {P, —x, P,,..., P, +
x,...,Py}. Note that P —x is either exactly a path or two separate paths according
to the position of x, and P,+x is also a path by Claim 1. Hence P’ is a path partition,
and |P’|, = |P|r — 1 because x contributes one to |P|; in P, (since |P| < k), and
contributes zero to |P’|y in P; + = (since P; + x > k). Therefore we have a path
partition P’ such that |P’|, < |P|k, a contradiction to that P is a k-optimal path

partition.

The condition 1 together with 2 are equivalent to the statement below: For any
vertex v € V(G'), deger(v) = 2, where G’ is the graph obtained by deleting = from
G. Therefore, G’ is a disjoint union of cycles. And the condition 3 implies that G is

a cycle.
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Case 1. |Pj| = 1+ 1 < k. This implies that x must be colored, W.L.O.G, let the
color of « be k. Since x is of degree n — 1, x is the unique vertex with color k.
Hence there are k — 1 remaining colors left available for the rest of vertices. For
convenience, we denote the underlying graph of D — P; by G — P; although G
is an undirected graph and F; is a directed path in P.

Case 1.1. G — P, is connected, and hence G — P; is a (undirected) path, and
V(P) NV (G") is a set of | consecutive vertices in G’. Let these [ consecutive
vertices be aq,as,...,a;, where a; and a; are the neighbors of the endpoints
of G — P;. Let G — P; be the path (a;11,a149,...,a,-1) where ;41 and a,_4
are the neighbors of a; and a; respectively. Define a coloring f : V(G') —
{1,2,...,k—1} by

fla;) =7, for 1 <j <l

flagp) =p(mod k—1),1<p<k—-Il-1,iffn—1—-1%#1 (mod k—1); and

flagp) =p+1(modk—1),1<p<k—-Il-1,iffn—1—-1=1 (mod k—1)

Then for any segment of length less than k& in G — P, the number of colors is
exactly the same as the length of this segment. Note that every directed path in
D could be represented as a segment in G’, and the segment for P is obtained

by ignoring x. Therefore, f is a k-coloring orthogonal to P.

Case 1.2. GG— P, is disconnected, and hence GG — P; has two paths. Note that x
is not an endpoint in P since G — P, is disconnected. Let G' = (vy, vg, ..., v,_1)
be a cycle where vy is the first vertex in Pj, vy is the second one, and so on.
In other words, the first i vertices of G’ are the first i vertices of P;, where
v; = P_(z), the unique vertex preceding to x. Suppose j > ¢, then either
P = (01,02, ...,0, 2,0, 0j_1,...,Uy) OF Py = (1,02, ...,0;, %, Vg, Vgi1,- - -, 0j).

We give a coloring f for P; first as following: f(v,) = h for 1 < h < ¢ and
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f(vgen) =i+ 1+ h for 0 < h < j —q. Then the two paths separated by P,
are (Vit1,Vita,...,Ue—1) and (Vj41,Vj42,...,0,—1). Now, we can extend f to a
coloring for G. Note that f(v,) =i+1, and f(v;) # 1. For (vit1, viya, ..., v4-1),
if |(Vit1, Viz2, .-, U—1)| =q—1—1# 1 (mod k—1), then f(v,) = h (mod k—1)
fori+1<h<g-—1,else flo) =h+1 (mod k—1)fori+1<h<gqg-—1.
Note that e =i+ 1 if k = 3, i.e. v; and v;;1 might be in the same color class.
but it is easy to check that this case does not exist by considering the directions
of edges which is restricted by the length of P;. For (vji1,vj42,...,05-1), if
|(Vj41, Vit - Up1)] =m—j—1# 1 (mod k — 1), then f(vj1n) = h (mod
k—1)for1 <h<n—j—1,else f(vjin) = h+1 (mod k—1)for1 <h<n—j—1.
Similarly, for every segment of length less than &k in (vi41,vi42,...,v,-1) and
(Vj41,Vj42, ..., Un_1), the number of colors is exactly the same as the length of
this segment. Since every path in D could be represented as a segment, f is a

k-coloring orthogonal to P.

Case 2. If |Pi| = [+1 > k, then z need not to be colored. The technique that we use
in this case is similar to Case 1. We color V(P;)NV(G’) first, but we only need
to pick k vertices in P to color. After finishing the coloring of P;, we consider
the coloring of the remaining vertices in G — P, as we have done in Case 1.
Note that the difference is that in Case 1 the colors are taken modulo k — 1,
but in Case 2 the color are taken modulo k. Then for any segment with length
< k in G — Py, it is easy to see that the vertices in this segment have different
colors from each other, and then for any segment with length greater than & in
G — P, there are k colors in this segment (some colors might appear more than
once). So, for |P;| =1+ 1 > k, there also exists a k-coloring orthogonal to P.

This concludes the proof of this case.
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Most of the notations hereunder are the same as the notations in Proposition
3.1.1. They are P;, the path containing z; G, the graph obtained by deleting x from

G; and G — P;, the underlying graph of D — P;.

Proposition 3.1.2. Given a directed graph D and a k-optimal path parition P =
{Py, Py,...,P,}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:

1. There is a vertex z of degree n — 1, where n = |V(G)|.
2. Yo € V(G —x), degg(v) < 3.
3. G — x is connected.

Proof. In condition 2, we have shown the case that degs(v) = 3, Vv € V(G — z).
When degg(v) < 3, and together with condition 1 and 3, we know that G' = G — z
is a path (a trivial path is possible). If G’ is a path of length 1 or 2, then D has a
hamiltonian path. Hence this proposition holds. Let G’ = (v, va,...,v,-1), n—1 > 3.
Let H be the graph obtained by adding the edge (v,_1,v1) into G. Then for any
digraph D’ whose underlying graph is H, Berge’s strong path paritition conjecture
holds for D" by Proposition 3.1.1. But in Proposition 3.1.1, the coloring is found
for any segment in H — P;. Therefore, for the k-optimal path parition P in D, the

coloring found by Proposition 3.1.1 is orthogonal to it. [

Proposition 3.1.3. Given a directed graph D and a k-optimal path parition P =
{Py, Py,...,P,}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:

1. There is a vertex  of degree n — 1, where n = |V(G)].
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2. Yo e V(G — ), dege(v) = 3.
3. G — x is disconnected.

Proof. Let G' = G — x. Since G’ is disconnected, G’ is a disjoint union of cycles
by condition 2. Let G' = {C4,C,...,C,} and = € V(P;). Note that the vertices of
P, — x are from at most two cycles in G'. For conveninece, we denote the set of paths
in PN DV (C)] by PNC.

We first color the vertices in C' € G', where V(C)NV(P;) = (. For each C =
(b1,ba,...,bs,b1) € G' such that V(C) NV (P) = 0, we can define a coloring for C'
according to the length of the longest path in P N C. W.L.O.G, let the longest path

in PN C be (by, b, ....b), t <s.

Case 1. For t < k, we define f as following:
If |C]=s%#1 (mod k — 1), then f(b;) =i (mod k —1) for 1 <i <s.
If |C|=s=1(modk—1), then f(b;) =i (mod k—1) for 1 <i<s—1and
f(b) =2.

Case 2. For t = k, we first color the longest path (b1, bs,...,0;) by f(b;) = ¢ for
1 <4 <t and extend f to a coloring for C:
If |C] =s#1 (mod k), then f(b;) =i (mod k) for 1 <i <s.
If |C] =s =1 (mod k), then f(b;) =i (mod k) for 1 < i <t and (b;) =
i+1 (mod k) fort+1<i<s.

Case 3. Fort > k, there is at least one vertex which needs not be colored, and let it

be by. We define f as f(b;)) =i —1 (mod k), 2 <i < s.

In all three cases above, it is clear that (b, bs, . .., b;) contains exactly min{t, k} colors.
For any segment with length less than &k in (byy1, b1, ..., bs), it is easy to see that the

number of colors in the segment equals the length of this segment. For any segment
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with length equals to k, the number of colors is k. Only in Case 3., there might be
some paths with length greater than k. For any segment with length greater than &
(in Case 3. only), it is not difficult to see that the number of colors is k. Note that
any path in (by1,bey, ..., bs) could be represented as a segment. Therefore, f is a
coloring orthogonal to P partially in C.

The remaining part is the cycle(s) which is involved by P; and the coloring can

be obtained accordingly. Note that Claim 2. in Proposition 3.1.1 is also true here.

Subcase 1. x is a path itself, i.e., a trivial path. The paths in P are all of length
less than k& by Claim 2 in Proposition 3.1.1. According to Case 1. above, we
only use k — 1 colors for the vertices of G — x, and we can color x in k.

Subcase 2. The vertices of P, — x are exactly from one cycle in G’. The coloring for
C1 U P is the same as the discussion in Proposition 3.1.1, i.e., C} U P; can be
viewed as a connected graph.

Subcase 3. The vertices of P, — x are from two cycles, called C and C5. Let
P = (ay,as,...,a;,2,a;41,...,4;), where (aj,as,...,a;) and (a1, @540, ..., a)
are paths in D[V (C4)] and D[V (Cy)] respectively. First, we give a coloring f
for P. If |Pi| < k, then all the other paths in P are of length less than k. We
color P; as following: f(a;) = ¢ for 1 < i <[, and f(x) = k. The remaining
vertices in C7 and Cy form undirected paths respectively, then we can obtain
the coloring respectively as in Proposition 3.1.1 Case 1.1. Note that we might
need to permute the colors appearing in C5 to ensure that P, has [ + 1 different
colors on it. Clearly, if |P;| > k, we don’t have to color z. Since the argument
is similar to above, except we use k to replace k — 1, we omit the details. This

concludes the proof.
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Proposition 3.1.4. Given a directed graph D and a k-optimal path parition P =
{Py, Py,...,P,}, where k is a positive integer. Then Berge’s strong path partition

conjecture holds for D if the underlying graph G of D satisfies the following conditions:
1. There is a vertex z of degree n — 1, where n = |V(G)|.
2. Yv € V(G —x), degg(v) < 3.
3. G — x is disconnected.

Proof.  According to the conditions, we obtain that G — P is a disjoint union of
some cycles and paths. We color P, first. The two cases, whether x is colored or
not, are discussed the same as above. For each component of G — Py, if it is a cycle,
then we color the vertices of it by Proposition 3.1.3; if it is a path, then we color the

vertices of it by Proposition 3.1.2. Therefore we have a k-coloring orthogonal to P. n

Now we have the theorem by combining the above four propositions together.

Theorem 3.1.5. Given a directed graph D and a k-optimal path parition P =
{P\, Py,...,P,}, where k is a positive integer. Then Berge’s strong path partition
congecture holds for D if the underlying graph G of D satisfies the following condi-

tions:
1. There is a vertex x of degree n — 1, where n = |V (G)|.

2. Yv e V(G — ), dega(v) < 3.

3.2 Conclusion

As can be seen from this study, due to the diversity of general directed graphs,
to prove the truth (we believe) of Berge’s strong path partition conjecture seems to

be very difficult. This can also be seen from the known results obtained so far only
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a short list in Chapter 2. Nevertheless, we step forward to make some contributions
by showing the conjecture holds for a class of graphs in this thesis. Mainly, we prove
that the conjecture holds for the graphs obtained by joining a vertex to a set of vertex
disjoint paths and/or cycles. Hopefully, the technique used in this thesis (considering

only underlying graph) can be applied to do a better job in any future study.
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