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Abstract

In this thesis. we focus on Hermitian forms graphs. Firstly, we
construct a poset P from a Hermitian forms graph Herg( D), where D
is the diameter. The elements in P are those subgraphs of Herg(D)
which are isomorphic to Herg(t) for 0 < ¢ < D, We order P by
reversed inclusion. Some counting properties of P are obtained. Then.
we try to construct a zigzag-like structure in P so that we can count

the number of zigzags inside P.
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1 Introduction

It is well-known that a Hermitian forms graph is a distance-regular graph
that contains many subgraphs, each of them isomorphic to a Hermitian forms
graph with smaller diameter. In this thesis, we fix a Hermitian forms graph
Her,(D) and construct a poset P from Her,(D), where D is the diameter.
The elements in P are those subgraphs of Her,(D) which are isomorphic to
Her,(t) for 0 <t < D. We order P by reversed inclusion. P is known to
be a raked poset. What we aim in this thesis is to study other properties
of P in counting aspects. After introducing the background, in chapter 4,
we count the number of the subgraphs with diameter D — ¢ in Her,(D) by
Theorem 4.1, i.e., we know thé |P;| in P It helps us to count the number
of |w™ N Pj| because w is=the, Hermitian:forms graph Her,(D — i), where
w e Pyand 0 <7 <5 < D. Then, we get Lemma 5.1. Besides, we are also
interested in counting |[0, Z}Q1.P|;wherez € P, and 0 < ¢ < j < D. By 2-way
counting, we solve this question, mamely Lemma 5.2. In Lemma 5.3, we get
the general case of Lemma 5.2, namely we get |[w, z] N P,|, where w € P,
z€ Pj,and 0 <7 < h <j < D. Those lemmas are basic tools that help us
to count the complex structure in P. In Lemma 5.4, we try to construct a
zigzag-like structure in P so that we can count the number of zigzags inside

P. Then, we solve it by multiplication principle.

In chapter 6, we count more numbers based on Lemma 5.4. We add some

conditions on z and y for x € P, and y € Py, thus, we let z, y meet in



P, and x, u, v, y to form a zigzag. We name ¢;(x, y) the number of zigzags
based on x, y. But it will be difficult if there is no element in = V y. There
is a simple case with x V y not existing in Lemma 6.1, we find tp_;(z,y)=0
or 1. But in the cases of 1 <17 < D — 2, it is hard to find out. There are a

lot of difficulties that we need to overcome in the future.

2 Preliminaries

Let P denote a finite set. By a partial order on P, we mean a binary relation

< on P such that
l.z<x (Vz € P),
2. r<yandy<z—oa<z (Vo ypz '€ P),
J.x<yandy <z —a=1 Nazy € P).

By a partially ordered set" (ot poset, for short), we mean a pair (P, <),
where P is a finite set, and where < is a partial order on P. Abusing nota-

tion, we will suppress reference to <, and just write P instead of (P, <).

Let P denote a poset, with partial order <, and let x and y denote any
elements in P. As usual we write x < y whenever z < y and = # y. We say
y covers x whenever x < y, and there is no z € P such that x < z < y. An
element x € P is said to be minimal whenever there is no y € P such that

y < x. Let min(P) denote the set of all minimal elements in P. Whenever



min(P) consists of a single element, we denote it by 0, and we say P has 0.

Suppose P has a 0. By an atom in P, we mean an element in P that

covers 0. We let A, denote the set of atoms in P.

Suppose P has 0, By a rank function on P, we mean a function
rank:P — Z
such that rank(0)=0, and such that for all z,y € P,
y covers x — rank(y) - rank(x)=1.

Observe the rank function is;unique if it exits. P is said to ranked whenever

P has a rank function. In-this case; we set
rank(P) = mewf{zank(z) | r € p},
P, :={z |z &Prank(z) =i} (i€ Z),

and observe Py = 0, P, = A,.

Let P denote any poset, and let .S denote any subset of P. Then there is

a unique partial order on S such that for all x,y € S,
r<y(inS) < z<yin P.

This partial order is said to be induced form P. By a subposet of P, we

mean a subset of P, together with the partial order induced from P. Pick
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any z,y € P such that x < y. By the interval [z,y], we mean the subposet
[z, y] ={z|z€e Pe <2<y}

of P.

Let P denote any poset, and pick any x,y € P. By a lower bound for
x,y, we mean an element z € P such that z < x and z < y. Suppose the
subposet of lower bounds for x, y has a unique maximal element. In this case
we denote this maximal element by x Ay, and say x Ay exists. This element
x Ay is known as the meet of x and y. P is said to be (meet)semi-lattice
whenever P is nonempty, and z Awexists for all z,y € P. A semi-lattice
has 0. Suppose P is a semi-latticegandspick =,y € P. By an upper bound
for z and y, we mean an élement 2z € P-such that z < z and y < z.Observe
that subset of upper bounds for 2 and z is ¢losed under A; in particular, it
has a unique minimal element iff it is nonemipty. In this case we denote this
minimal element by x V y, and say that x V y exists. The element x V y is

known as the join of x and y.

Let P be a semi-lattice. Then P is said to be atomic whenever each
element of P that is neither 0 nor an atom is a join of atoms. Observe if P
is a ranked atomic semi-lattice, then | [0,2] N P, |> rank(z) for all z € P. A
semi-lattice P is atomic iff each element of P that is not 0 and not an atom

covers at least 2 elements of P.



Let I' = (X, R) denote a finite undirected graph without loops or multiple
edges with vertex set X, edge set R and diameter D. For all x € X and for

all integers 0 < i < D, set
Li(z) :={y € X | 0(z,y) = i}.

' is said to be distance-reqular whenever for all integers 0 < h,,j < D and

for all z,y € I with d(z,y) = h, the number

piy = |Ta(x) N T5(y)]

is independent of z,y. The constants pzhj are known as the intersection num-
bers of I'. For convenience, set ¢; ;= pl; 4, a; := pl;, b; := pl;q, and k; == pj,.

Note that ¢; =1, a9 =0, bp'= 0, ki, = ¢ +a; + b;,

k = Posieiwl (2.1)
C1C2 - -+ G
for 1 <:< D, and
| X|=1+k + -+ kp. (2.2)

We give an example of distance-regular graph. Let ¢ denote a prime
power, and let U denote a finite vector space of dimension D over the field
GF(q*). Let H denote the D?-dimensional vector space over GF(q) of the

Hermitian forms on U. Thus f € H if and only if f(u,v) is linear in v, and

f(v,u) = f(u,v) for all u,v € U. Pick f € H. We define

rk(f) = dim(U \ Rad(/)),
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where

Rad(f) ={u e U|f(u,v) =0 for all v e U}.

The Hermitian forms graph Her,(D) = (X, R) is the graph with vertex set
X = H and vertices z,y € R iff rk(z —y) = 1 for 2,y € X. It is well known

that Hery(D) is distance-regular with diameter D and intersection numbers

i1 _ (1)
Lo D) 23)
qg+1
2D 2%
p, = L 9 (2.4)
q+1

for 0 <i < D [1, Theorem 9.5.7]. Note that

| Xzl = ¢”". (2.5)

3 Subgraphs in 'a Hermitian forms graph

The following theorem about:Hermitian forms graphs will be used in the

thesis.

Theorem 3.1. (/2], [3], [4]) Let I' = (X, R) be the Hermitian forms graph
Her, (D). Then the following hold.

(i) For two vertices x,y € X with distancet, there exists a subgraph A(zx,y)

such that A(x,y) is isomorphic to Hery(t).

(ii) Let A(z,y) be as in (i). Then for any u,v € A(z,y) and w € X we
have

O(u,w) + d(w,v) <A u,v)+1 = w € A(z,y). (3.1)

6



In particular A(x,y) has intersection numbers

N 32)
LBy = T2 33)

for 0 <i<D.

(i1i) Set P = {A(z,y) | z,y € G}, and order P by reversed inclusion.
Then P is a ranked meet semi-lattice with each interval isomorphic to

a projective space over a finite field of ¢* elements.
(iv) The set P; of rank i elements in P is
P, = {A € P | diameter(A) =D — i}
for 0 < i < D, the meetis defined by

ANAES (J 0,

Qep
AN CQ

and the join (if it exists) is

AVA =ANA (assuming AN A" # ()

for A, A" € P.

4 The shape of P

Throughout the remaining of the thesis, fix a Hermitian forms graph I' =

(X,R) = Hery(D), and let P denote the corresponding poset as described

7



in Theorem3.1(iii). Let P; be as defined in Theorem3.1(iv) for 0 < i < D.

The following theorem counts the number of elements in P;.

Theorem 4.1.

RI= || e

q2

where

D

._ﬁ q2D . qu
t o q2t _ q2z
q2

Proof. For x € Pp, set

pe(2) =[P N [0, x]].

Note that

D
pi() =
t

q2

(4.2)

is independent of the choice 6f @ by Theorem 3.1(iii). By the 2-way counting

in the pairs (z, A) such that x € Pp, A € P, with € A we find

|Pp| < |pe(2)] = [P] x |A.

(4.3)

Note that A is Her,(D —t) by Theorem 3.1(iv). Solving (4.2), (4.3) for |P],

and simplifying the result using (2.5), we find (4.1).

]

Note that by Theorem 3.1, the P, collects the subgraphs of Her,(D)

which are isomorphic to Her,(t). Hence Theorem 4.1 determines the number

of such subgraphs.



5 The subposets w™ and [0, w]

For w € P, set

wt:={u€P|u>w}

and

0,w] :=={u e P |u<w}.
We study the shape of w™ and [0,w] in this section.

Lemma 5.1. For w € P;,
wrapl=| DT e

where i < 53 < D.

Figure 5.1
F,




Proof. Fix w € P;. Since w is the Hermitian forms graph Her,(D — i), we
know w has diameter D — i and w™ N P; is the rank j — i elements in w™.

Hence we have (5.1) by Theorem 4.1.

The following is the downward version of Lemma 5.1.

Lemma 5.2. For z € P;

where 0 <1 <5< D.

Figure 5.2
F,

Proof. By the 2-way counting of the pairs (w, z) such that w € P, z € P;

with w < z we find
| P3| x |w™ N Py = |Py] x [0, 2] N B (5.3)

10



Now (5.2) follows by solving (5.3) using (4.1), (5.1) for |[0, z] N P;|.

O
The following is a generalization of Lemma 5.2.
Lemma 5.3. For z€ P, we F;, and w < 2
j—i
Hw7 Z] N Ph‘ = ’ (54>
h—1

q2

where 0 <1 < h<j<D.

[w,zIN P,

Figure 5.3 P
0

Proof. Fix w € P;. Since w is the Hermitian forms graph Her,(D — i), we
know w has diameter D —i. Also we know that z is the rank j — ¢ elements
and [w, z] N Py is the rank A — 7 elements in w*. Hence we have (5.3) by

Lemma 5.2.
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Now we want to count a structure by using the above lemmas. Let
Zig(1,j) == {(z,u,v,y) | z,v € Pu,y € Pj,z,v <u,v <y, #v,u+y},
where 0 <7 < 7 < D. The structure looks like a zigzag so we name it zigzag.

Lemma 5.4.

Zig(i, j)
_ D ¢12P9) D—i gU—D@D=i=j)
g q? S q?
D —1 o
< (|7 —vx QU= 1) (5.5)
N J—i |,

where 0 <1 <5< D.

Figure 5.4
F,

Proof. First to choose z, we have |P;| choices. Second to choose u, we have

|z N P;| choices. Third to choose v, we have |[0,u] N P;| — 1 choices. Fi-

12



nally, to choose y, we have [v* N P;| — 1 choices. We count those choices by

Theorem 4.1, Lemma 5.1, and Lemma 5.2. Hence,

Zig(i, j)
_ D §20D D—i U= E@D=i=3)
g q? S q?
' D—i o o
< (7] —1x( qUIED==) ) (5.6)
7 j—1
. q2 q2

6 Zigzags in P
Forx € P, y € Piyq, s.t. @ A\ y, €L v, set
tl<x7y) = ’{(U,,U) I U/\y =0, < U}’,

where 1 <i < D — 1. We name t;(z,y) the number of zigzags based on x, y.

13



Figure 6.1 P
0

Lemma 6.1. For z € Pp_j and y&Pp, tp=1(z,y)= 0 or 1 is independent

of the choices of x, y.

Proof. Given a vertex y and & maximal clique = such that xt Ay € Pp_o,
i.e. a weak-geodetically closed subgraph of diameter 2. Now we prove this
lemma by cases. Case 1: 0(u,y)=2 for all u in x. Hence, tp_1(z,y)=0. Case
2: O(u,y) =1 for some wu is in . Then v = A(u,y) is the unique element in

Pp_; containing u and y by Theorem 3.1(i), so tp_1(x,y)=1.

The following problem is still open.

Problem 6.2. For x € P, and y € P4, determine t;(z,y), where 1 < i <

D —2.
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