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Decomposing the Complete Graph into Paths

Student: Shu-Ren Zhang Advisor: Hung-Lin Fu

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

It is known that if m | (;), then the complete graph K, can be decomposed
into paths of length m as long as 1 < m < v—1. But, for a given positive integer
1 <m < wv—1, m may not be a factor of (;) Therefore, we are interested in the
case m 1 (g) In these cases, we need a path of distinct length. Let P denote a
path with ¢ edges. Then, it is proved in this thesis that the complete graph K,
can be decomposed into k P,,’s and one P, if and only if (g) = km + r where
0<r<m<wv-—1.
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1 Introduction

Graph decomposition has been one of the most important topics in Graph Theory.
Not only the study is close related to discover the structures of graphs, but also give
rise another approach to construct combinatorial designs. It is well-known that the
existence of a balanced incomplete block design (BIBD), (v, k, A)-design, is equivalent
to the decomposition of the multi-graph AK, into edge-disjoint complete graphs Kj.
As an analog, a A-fold k-cycle system of order v is a decomposition of MK, into cycles
of length £ and a A-fold k-path system of order v is a decomposition of MK, into
paths of length k.

To construct a BIBD for each admissible triple v, £ and X is not an easy task, see
8, 12] for references. But, path systems have been obtained for all possible parameters
v, k and A, see [6, 13].

A bit of reflection, if K, can be decomposed into paths of length &, then v > k+1
and k | (72’) But, k | (g) does not occur very often. In case that (;’) = qgm +r,
0 <7 < m, then decomposing K, into paths of length m is not possible. Instead, we
try to decompose K, into q paths each of length m and one path which is of length

r. This is the main theme of this thesis.



2 Preliminaries

Note that the following definitions and notations can be referred to the book :
INTRODUCTION TO GRAPH THEORY [14].

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and
a relation that associates with each two vertices (not necessary distinct) called its
endpoints.

A loop is an edge whose endpoints are equal. Multiple edges are edges having the
same pair of endpoints. A simple graph is a graph having no loops or multiple edges.

A complete graph K, is a simple graph whose vertices are pairwise adjacent. A
complete graph with v vertices is denoted K,.

A walk is a list v, e, vy, €2, V9, ..., €, v Of vertices and edges such that, for 1 <
1 < k, the edge e; has endpoints v;_; and v;. If the edges ey, e, ..., €5 are distinct, then
this walk is called a trail. If, in addition, the vertices vy, v1, ..., v, are distinct, then
this walk is called a path. If this walk is a path and vy = vy, then this walk is called
a cycle. A path with k vertices is denoted P, and a cycle with k vertices is denoted
C}. But, for convenience, we use P, to denote a path with k edges throughout this
thesis.

The length of a walk, trail, path, or cycle is its number of edges. A walk or trail
is closed if its endpoints are the same.

A factor of a graph G is a spanning subgraph of G. A k-factor is a spanning
k-regular subgraph.

A matching of size k in a graph G is a set of k pairwise disjoint edges. The vertices
belonging to the edges of a matching are saturated by the matching; the others are
unsaturated. If a matching saturates every vertex of GG, then it is a perfect matching

or 1-factor. We shall denote 1-factor by I.



A Hamiltonian graph is a graph with a spanning cycle, also called a Hamiltonian
cycle. A Hamiltonian path is a path containing all the vertices. An FEulerian circuit
(or Eulerian trail) in a graph is a circuit (or trail) containing all the edges.

A separating set or vertex cut of a graph G is a set S C V(G) such that G — S has
more than one component. The connectivity of G is the minimum size of a vertex set
S such that G — S is disconnected or has only one vertex. A graph G is k-connected
if its connectivity is at least k.

In this thesis, let v be an even integer and let Z, denote the vertex set of K,. The
operations, addition and multiplication, are taken modulo v. We have listed some
fundamental definitions of Graph Theory above. For our specific subject we also need

the following notations :

1. Let d; (difference i) be an edge set where 1 < i < %, then
(v,y)edi i=min{|z—y|,v—|z—y|}

v
NOte|d1’:|d2‘::‘d%_l{:v,|d%|:§

2. Let A = (ag,aq,...,as) be an ordered trail, then d(A) is the least number of
edges between two appearances of the same vertex along A (the length of the

minimal cycle).

3. Let A = (ag,ay,...,as), B = (by,b1,...,b;) be two ordered trails and a5 = by,

then A+ B = (ag, ay, ..., as, by, ba, ..., by).

4. Let A = (ag,aq,...,as) and k € Z,

then A+ k = (ag + k,a1 + k, ..., as + k) (right shift k).

5. For A = (ag,ay,...,as), A = {as,as_1, ..., ag).



6.

7.

10.

11.

For z,y € Z,, [(z,y) = (z,x+ L,z +2,...,y — L, y).

For v even, x € Z,, a,b € {1,2,...,%— 1} such that 1 <a<b< g -1,
S(v,xz,a,b) = (x,x+a,x—1,x+a+1,x—2,...,y), where the vertex y is chosen
to make the length of the path (b —a + 1).

Note : The first edge is in d,, the second edge is in d,,1, and so on, and the
last edge is in dp. Thus S(v,x,a,b) is a path containing exactly one edge of

dg,dgiy, ..., dy respectively.

For v, x, a, b satisfying the conditions of the previous construction,
L(v,z,a,b) = S(v,z,a,b) + (y,y + g) + S(v,x + %,a,b)t.
Note : This is a path of length 2(b — a) 4+ 3 which uses two edges in differences

a,a+1,...,b and one edge in difference g

For v, x, a, b satisfying the conditions of the previous construction,
Myap ={L(v,z,a,b) | 0 <z < g — 1}
Note : This is a set of %} paths with length 2(b — a) 4+ 3 which uses all the edges

in dg, dg41, .., dp and dz. Each vertex is the end vertex of exactly one path.

For v even, k € {1,2, ..., g -2},
Clok) =0,k +1,1,k+2,2.k+3,...k—Lv—1k0).

Note : This is a circuit of length 2v which contains all the edges in d and dj 1.

For v even, a,b € {1,2,...,%—1} such that 1 <a < b < %— 1 and b — a is odd,
PC(v,a,b) = C(v,a) + C(v,a+2) 4+ ...+ C(v,b—1).

Note : This is a circuit which contains all the edges in differences a,a +1,...,b.



3 Known Results

3.1 Some results in cycle decomposition

Theorem 3.1. [9] (1) For all odd integers n and all non-negative integer r satisfying

-1
3r = % there is a decomposition of K, into r 3-cycles which partitions the
edge set of K,. (2) For all even integers n and all non-negative integers r satisfying
-2
3r = % there is a decomposition of K,, — F into r 3-cycles which partitions the

edges set of K, — F.

We can establish the existence of cycle systems not only the 3-cycle system but

also the m-cycle system for any m.

Theorem 3.2. [11] (1) For all odd integers n and all non-negative integer r and

n(n —1)
2

partitions the edge set of K,,. (2) For all even integers n and all non-negative integers

n(n — 2)
2

m satisfying mr = there is a decomposition of K, into r m-cycles which

r and m satisfying mr = there is a decomposition of K, — F into r m-cycles

which partitions the edge set of K, — F.

Theorem 3.3. [1] (1) For all odd integers n and all non-negative integers r, and

n(n—1)
2

s satisfying 3r + 5s = there is a decomposition of K, into r 3-cycles and

s b-cycles which partitions the edge set of K,. (2) For all even integers n and all

n(n —2
2

non-negative integers r, and s satisfying 3r + 5s = there is a decomposition

of K,, — F into r 3-cycles and 5-cycles which partitions the edge set of K, — F.

Theorem 3.4. [7] (1) For all odd integers n and all non-negative integer r, s and t

n(n —1)
2

satisfying 3r + 4s + 6t = there is a decomposition of K, into r 3-cycles, s

4-cycles, and t 6-cycles which partition the edge set of K,. (2) For all even integers

n(n —2)
2

n and all non-negative integer r, s and t satisfying 3r + 4s + 6t = there is



a decomposition of K, — F into r 3-cycles, s 4-cycles, and t 6-cycles which partition

the edge set of K, — F.

Theorem 3.5. [3] (1) For all odd integers n and all non-negative integer r and

n(n —1)

s satisfying 4r + bs = there 1s a decomposition of K, into r 4-cycles, s

5-cycles which partition the edge set of K,,. (2) For all even integers n and all non-

n(n — 2)

negative integer r and s satisfying 4r + bs = there is a decomposition of

K,, — F into r 4-cycles, s 5-cycles which partition the edge set of K, — F.
The following useful contains three different lengths which are n, n — 1, n — 2.

Theorem 3.6. [7] Let S = {n—2,n—1,n}. If nis odd and a(n—2)+b(n—1)+cn =

-1
M, then K, = aCy,_o+bC,,_1+cC,. If n is even and a(n—2)+b(n—1)+cn =

n(n — 2)

5 , then K,, — F = aC,,_o + bC,,_1 + cC,,.

Alspach Conjecture is also true if the cycles lengths m; are bounded by some linear

function of n and n is sufficiently large.

Theorem 3.7. [2] Assume n must be larger than Ny which is very large absolute
n—112 "
and 3iymi = (3) (n

odd) or (5) — g (n even), then one can pack K, (n odd) or K, — I (n even) with

constants. If my,...,my are integers with 3 < m; < |

2

cycles of lengths myq, ..., my.
3.2 Some results in path decomposition

Theorem 3.8. [5] Let n be an even positive integer. Then K, can be decomposed

nto g hamiltonian paths.

Theorem 3.9. [10] If n is odd and {a; : 1 <i <r} is a multiset of r positive integers
satisfying 1 < a; < n—2 and > ;_,a; = (72‘) Then K, can be decomposed into

(P |1<i<r).



Theorem 3.10. [13] Let m | A(}), and m < n — 1. Then AK,, can be decomposed

into isomorphic paths of length m.

Theorem 3.11. [4] If v is odd. Let my,ms,...,m; be t positive integers such that

n —

1
1<m; <n—2 Y mi+k(n—1)= (), and k € {1,2,7}, then K, can
be decomposed into t + k paths P', P%, ..., P* such that the length of P! is m; for

i=1,2,...,t and the length of P' isn — 1 fori > t.

Theorem 3.12. [/ If v is odd. Let n —1 > my > mg > ... > my > 1 and
h<m;<n-—h-—1 such thatz;lmi = (Z), mi=me=..=m,=n—1. Then
K, can be decomposed into t paths P!, P%, ..., P! such that the length of P' is m; for
i=1,2,....,t. Moreover, if there exists a h <t' <t such that h < my <n—h—1 or
h < Zzzt, m; <n—h—1, then K, can be decomposed into t paths P, P?, ..., Pt such

that the length of P is m; fori=1,2,...,t.

Theorem 3.13. [/ If v is odd. Letn—1>my; >mg > ...>my > 1, my <h, and
me_1 —my <n—h-—1 such that Z§:1mi = (g), my=mg=..=my =n—1. Then
K, can be decomposed into t paths P, P2, ..., Pt such that the length of P* is m; for

i=1,2,..t.

Theorem 3.14. [4] If v is odd. Let n —1 > my > mg > ... > my > 1 and
n+h—2<mg+mi_1 < 2n—h— 3 such that Zlemi = (Z), m; = myg = ... =
mp = n — 1. Then K, can be decomposed into t paths P', P?, ..., Pt such that the
length of P is m; for i = 1,2,...,t. Moreover, if there exists a h < t' < t such
that n +h — 2 < Zf:t, m; < 2n — h — 3, then K, can be decomposed into t paths

Pt P% ... P! such that the length of P is m; fori=1,2,....t.



4 Main Result

We shall prove the main theorem in what follows.

Theorem 4.1. K, can be decomposed into k P,,’s and one P, if and only if (;’) =

km+r where 0 <r<m<wv-—1.
First of all, we obtain some lemmas below by using the preliminary definitions.

Lemma 4.2. The union of the i-th path of M,z = (the endpoints arei—1 andi— 1—1—%

) and one of (i — 1,i) and (i — 1+ g,i + g> is a simple path of length m.

Proof. By the definition, the i-th path : (i —1,i+1,i—2,i+2, ... 4) + (y,y + g) +
(y + %,...,i+2+ %,i -2+ g,i+ 1+ %,i -1+ %), where y is chosen to make the
length of the path (m — 1).

Checking the segment (i — 1,4+ 1,i—2,742,...,y) which contains (% —1) edges.
The subsequence of even indices which starts at the vertex i+11is {i+1,i+2,i+3,...}.
The subsequence of odd indices which starts at the vertex i —1is {i—1,i—2,i—3,...}.
Since % —-1< g — 1 and the length of these two subsequences are less than Z Thus
the segment (i — 1,7+ 1,7 — 2,7+ 2,...,y) does not contain the vertex i.

Now, consider the segment (y + %, a2+ g,i -2+ %,2’ +1+ g,z’ -1+ g)t
Since the length is (% —1), the subsequence of even indices is an increasing sequence
which starts at the vertex i+ 1 +§ and the subsequence of odd indices is a decreasing
sequence which starts at ¢ — 1 + g Then it is proved by the same way as above.

Similarly, since the i-th path does not contain the vertex ¢ + g, the union of the

i-th path of M,9m (endpoints are i — 1 and i — 1 + g ) and one of (i — 1,i) and

(¢—1+g,@'+g> is a path of length m. .

Lemma 4.3. d(C(v,k)) =2k + 1.



Proof. Since C(v,k) = (0,k+ 1,1,k +2,2,k+3,....k — 1,v — 1,k,0). The odd
places of C(v, k) is the subsequence {0, 1,2, ..., — 1} and the even places of C(v, k)
is the subsequence {k + 1,k +2,...,v —1,0,1, ...,k — 1, k}. Thus, each vertex of K,
appears twice in C'(v, k); one in the odd places of C'(v, k) and the other one in the
even places of C(v, k). Let Tepen (Toaq) denote the vertex = € Z, which appears in
the even (odd) places of C'(v, k). If x,45 appears before zeye,, then the distance from
Todd O Tepen 18 20 — 2k — 1 > 2k + 1. Else, the distance from e, t0 Togqq is 2k + 1.

This concludes the proof. [

Lemma 4.4. d(PC(v,a,b)) = 2a+ 1.

Proof. Looking at Lemma 4.3 and the structure of PC(v,a,b), it suffices to check
whether the length of the cycle C' which begins in C(v, k) and ends in C'(v, k + 2) is
larger than 2k + 1.

Let x.; denote the vertex = € Z, which appears in the even places of C(v, k) and
Ze1 be the other one which appears in the odd places of C(v, k). Similarly, let x.o and
Zo2 denote the vertex x which appear in C'(v, k+2). Let d(x,y) be the distance from z
to y. If the cycle C begins at x, and ends at .2, then d(z,1, To2) = 20 > 2k+1. If the
cycle C begins at x.; and ends at x., then d(ze1, Te2) > 2v —4 > 2k + 1. If the cycle
C' begins at x,; and ends at .o, then d(z,1, ) = 2v — 2k — 5 > 2k + 1. If the cycle
C begins at x.; and ends at x,9, then d(ze1, ) = 2k + 1. Thus, d(PC(v,a,b)) =
min{d(C(v,a)),d(C(v,a+ 2)),...,d(C(v,b—1))} = min{2a +1,2a+5,...,2b — 1} =

2a + 1. (]

Lemma 4.5. When v is odd, (g) =km+rand<r<m=wv-—1. K, can be

decomposed into k P,,’s and one P,.



Proof. Let V(K,) = {0, 1, T2, ..., Ty_1}.
Let C" = (Too, T4, Togi—2; Tit1, Toti-3, Tit2, ---,$i+%—3>$i+%a9€oo> (Indices take mod-

. —1 .
ulo v — 1). Then K, can be decomposed into {C*" | 1 < i < UT} and each C"

v —

is a hamiltonian cycle. Observe that (z;,,.; o) € C* for 1 < i < Thus,

v—1

hamiltonian path of length
v—1

edges from each C?, we have

/l) —
cutting these

v —1 =m. Now, the proof follows by combining the above edges into the path

<£L'U_1,IL'1,LU2,...,ZE%—1>. |

Proof of Theorem 4.1.

Since the necessary part is easy to see, it is left to prove the sufficiency. Note
that when v is odd and 1 < m < v — 2, the condition is proved to be sufficient by
[10]. Moreover, if v is odd and m = v — 1, the condition is proved to be sufficient by
Lemma 4.5. Thus, we put the accent on the case : when v is even. The proof is split

into four cases by taking M, ,; into consideration.
Casel: v—m=1 (mod 4)
Casel.l: m<wv-5

Because MvamTfl covers all the edges in dj,dy,...,dm=1 and dy exactly once,
m+1 v

2

PC(v, 5 3 1) covers all the edges in meH, meJrs, ..., d» 1 exactly once. Hence,
these two parts cover all the edges of K, exactly once, i.e., E(K,) = Mv,l,T*l U
m+1 v

PC ——1).

(U7 2 ) 2 )

i : v m—1
By definition, MU7l7mTfl is a set of 5 paths of length 2(T —1)+3 =m. By
1 1
Lemma 4.3, d(PC (v, m2+ ,% —-1)) = 2(%) +1=m+2>m. Then we can
m+1 v

partition PC/(v, — 1), starting from it’s beginning, into paths of length m,

2 72

and the remainder is a path of length r.

10



Case1.2: m=v—1

The proof follows by decomposing K, into Hamiltonian paths.

Case 2 : v —m =3 (mod 4)

Case2.1: m<v-—7

3
First, we claim that E(K,) = M, g ms1 Ul(0,m)U(I(m,0)+PC(v, m;— : g— 1)).
This is by the fact that M,U’Q’mTJrl contains all the edges in ds, ds, ...,meH and dg,
3
{1(0,m)UI(m,0)} contains all the edges in d;, and PC(v, m;— : g — 1) contains all

the edges in meﬁ, ey dzg.
Next, we show that this construction provide a set of P,,’s and exactly one P,. By

definition M, 5 ms1 is a set of g P,’s and 1(0,m) is a P,,. Now the proof follows by

1 1
m;t ,g—l))>m. Since[(m,O)jLPC(U,m;_ ’g_

mT—i_?)—H,l,mTjLSvLQ,Q,mT—H’—l—&--)- Therefore,
1

m;— ,% — 1) is alternately increasing. The first

m+1 v

claiming that d(I(m,0)+PC(v,

1)=(mm+1,m+2,..,v—1,0,

I(m,0) is increasing and PC/(v,

repeat vertex between I(m,0) and PC(v, —1)ism. So, if the first vertex m of

2 2
1
PC(v, m ;— , g— 1) appears in the even (index) part, then the distance between these
two vertices is (v —m) + (m —4) > m. Otherwise, the distance is (v —m) +2m > m.
1
Thus d(I(m,0) + PC(u, m; L) m.

Case 2.2: m=v—3

Since My 221 s a set of % paths of length v — 3 = m, it covers all the edges of
K, exactly once except these edges in d;. Now, the cycle (0,1,2,...,0 — 1,0) covers
all the edges in d; and each segment of length less than v on the cycle is a path. This

concludes the proof of this case.

11



Case 3 : v —m =2 (mod 4)

Case 3.1: m<

| <

Note that E(K,) = (M, = UI(0, g)) U (I(g, 0)+ PC (v, % T, g —1)). Now, we
prove that the construction is a set of P,,’s and exactly one P,. By Lemma 4.2, The
union of the i-th path of M, = (the endpoints are i — 1 and ¢ — 1 + % ) and one of

(i —1,7) and (i — 1—1—%,2’4—%} is a path of length m. Since [(O,g) ={@,i—1)|i=

1,2, ..., ;—]}, My 2= UI(0, %) can be decomposed into paths of length m.
Similar to the proof of the claim in Case 2.1. We have to prove that the distance

between repeating vertices is larger than m. Since the first repeat vertex between

I(g,O) and PC(U,% + 1,% —1)is g, m < g and the length of I(g,O) is g No

matter the first repeat vertex g belongs to the even part of PC(v, % + 1,% —1) or

not, the distance between these two vertices is larger than m. This concludes the

proof of this subcase.

v ] [v(v —m —2)
T 2(2m —w)
(Denote the integer part of z as [z]). Let S; = I(m,0) + (i — 1)(m — %), where

J}

Before the proof, we need some notations. Let f = mm{[2 ( ]
v—m

1 <i< fand Sg = I(O,%—f(v—m))—l—(f—l)g. Denote by T;, 1 < i < f,
f paths of length 2m — v each, cut along PC(v, % + 1,% — 1), and denote by Tk,

the final segment remaining of PC(v, % + 1,% — 1) after taking out 13,75, ..., 1.

Finally, let D; = S; +T;, 1 < i < f and Dg = Sg + Tg. Since the end of S; is
0+ (i —1)(m — g) (mod v). And because [(T;) = 2m — v is even and each T; is

gotten by cut along PC(v, % +1, g —1). Thus, the beginning of T; = the end of T;_4
9 —
m2 Y= . = the beginning of T; + (i — 1)(m — %) =

0+ (—1)(m— g) = the end of S; (mod v). So D; and Dpg are well defined. And by

= the beginning of T;_; +

12



definition, (M, 2= U[d; \ (S1US2U...US;USR)])UD;UDyU...U Dy U Dg is obtained

from Mv&% UdiUPC (v, % +1, %— 1) which contains all the edges of K, exactly once.

Then we have E(Kv) == (MU,Z,% U [dl \ (517 SQ, ceey Sf, SR)]) U Dl U D2 U...u Df U DR'
Now, let = be the end vertex of S;. Then S; = (z + m,x + m + 1,...,z) and
v
1,=—1
2 _|_ Y 2 )7
we have % < k < g Thus, the vertices in the even places of T; belong to the

T, = (x, x+k, v+1, x+k+1, 242, ... $+m—§) By the property of PC'(v,

open interval (z + %, x + m). And because the vertices in the odd places of T; is
{z,z4+1,.,2+m— g}, Si={x+m,z+m+1,..,2}. The vertex z is the only
common vertex of S; and T;. Hence, for each i, D; = S; + T; is a path of length
1(S;) +UT;) = (v—m) + (2m — v) = m. Since

SZ:{ 1(5 = ()(v = m), 5 = (i = 1)(v = m)) i: even
I(v = (i) (v —m),0 = (i=1)(v =m)) i: odd;and

o [ 1Ge=w=m) £ even
R= v
10,5 =(f)lw=m)) f:odd,
S1, 52, ..., Sf, Sg are all distinct and that exactly one of (x, z+1) and (a:—i-g, x+g+l)

belongs to [dy \ (S1 U Sy U...U Sy U Sg)]. Then we can obtain g P,’s by Lemma 4.2.

Finally, if f = | |, then I(Sg) < I(S;) = v — m. Therefore, by the same

v

2(v —m)

argument as above, we obtain d(Dg) > d(D;) = m.

(PC(v, 5 +1,5—1))
2m —wv

_w(v—m—2) v
=5 < Gyt
This implies (v —m — 2)(v — m) < (2m — v). Because v — m = 2 (mod 4) which

On the other hand, if f = |

v(v—m—2) v—m —2

implies that {(PC(v, % 4, g —1)) = . = () em =) + (v -
—m—2

Cw—m), f= UM A UTR) = (0 —m — 2)(0 — m) = g is even,

Since (v —m — 2)(v —m) < (2m —v) < 2v, Tk is contained in the last circuit

C(v,g—2)ofPC( 5 15—1)andTR—<v—gv_q 1,...,v—1,%—2,0>.

2" 2

—m—2
m—2) implies that SR:](2 U_ﬁ) Hence Dp = Sk + Tg is also a

Andf:(

13



path. This concludes the proof of this subcase.

Case 3.3: m=v—2

The proof follows by the fact that E(K,) = (M2 -1 U I(0, g)) U I(g, 0).

Case 4: v—m =0 (mod 4)

Note that if tm < wv, then the proof follows by decomposing K, into paths of

length tm and a path of length less than ¢m (may be zero). Therefore, it suffices to

consider the cases v > m > g
v 3v
Case 4.1 : §§m<z,m§v—8andv50(mod4) or
3 1
g§m<£—§,m§v—8and052(mod4)

First, we need some notations.

' my_ e L v Vol
Let L(U,l‘72, 2) [S(’U7.I'727 2)] +<I’,LE+ 9 +1,l’+ 2) +S(U7ZL’+ 2727 2 )7
M={L(v2,2,5)|0<e< 51},
v v v v
A_I(07§) and B = <0,§,1,§+1,2,§+2,3,...7U— 1,§>
Let A be obtained from A by replacing the last (m — %) edges with the last 2(m — g)
edges of B and B be obtained from B by replacing the last 2(m — g) edges with the

last (m — g) edges of A. Let B = D + E, where [(D) = 37” —2m, [(E) = m. Then,

we have E(K,) = MUAUEU (PC(U,% + 1,% —2)+ D).

So, it is sufficient to prove that M U AU E U (PC (v, % +1, g —2)+ D) is aset
of P,,’s and one P, by the following steps :
(1) M is a set of % paths of length m.

(2) A is a path of length m.

14



(3) E is a path of length m.

(4) d(PC(v, 2 41,2 —2)+ D) =m + 3.

2 2

Step (1) : By definition, M is a set of ;—] paths of length m.

Step (2) : Because A = (0, 1,2,...,v—m,3—;—m,v—m+1,3§—m—|—1,...,v—1,%>.
Thus, A is a path if and only if there is no repeat vertex of the following vertex sets :
{0,1,2,...,v —m}, {v—m+1,v—m+2,...,g} and {%—m,%}—erl,...,v—l}.
Since g < 32—U —m < m < v, the proof follows.

Step (3) : Notice that if v =0 (mod 4), then

C = (??Tv—m,%—m,%—m—i—l,%—m—i—l,...,
330—m—l,v—m,v—m+1,v—m+2,...,g>.

Thus, F is a path if and only if there is no repeat vertex of the following vertex sets

3 3 5) )
: {ZU—mézv—m—l—l,...,v—m},év—m—i-l,v—?;%—i-l...,%} and {Zv—m,zv—
m—l—l,...,?v—m—l}. Since g < Zv—m<:>m< Zv,we have the claim.

On the other hand, if v = 2 (mod 4), then

c <5U 1 3v +15v 1 3v +3
= (— —m—-—=.— —m _ — — - — — M — ...
1 2,4 2,4 274 27 )
3v

7—m—l,v—m,v—m—i—1,U—m+2,...,g).

Thus, E is a path if and only if there is no repeat vertex of the following vertex

3 13 3
sets:{Zv—m+§,zv—m+§,...,v—m},{v—m—i—l,v—m—i—Q,...,g}and
Hv 1 5v +1 3v 1}, i 1)<5U 1@ <3v 1
— —m-=, — — — ....——m—1}. Since - < — —m — = — =
g M Ty Ty T Cosy TSy Ty

the proof follows.
Step (4) : Because the length of E is larger then (m — g) Thus, D is contained
3
in B. Then D is a segment of the first (71} — 2m) edges of C(v, g —1). By Lemma

4.4, we are done.

15



3 1 3
Case 4.2 : f—§§m<f,m§v—8 and v =2 (mod 4)
" o v 1 )
These conditions implies that m = T 7 We shall use the same notations for

L',M,A B,A B as in Case 4.1. Let B = F + G, where [(F) = m, I(G) = 1. Then,
we have B(K,) = M UAUF U (PC(U,% + 1,% —2)UG).
By applying the idea of the proof in Case 4.1, we only have to check F is a P,

and PC(v, m +1, v 2) U G can be decomposed into P,,’s and exactly one P,.

2 2
v 1 — v 3v
F = — — = k hat B = - 1,=-+12,..,——m—-—1,v— —
orm = -~ — 7, we now that (0,2,,2—1—,, 5 —m—Lv—mu
m+ 1,v—m—+ 2,...,% — 1,g> of length m + 1. Because the length of the path
3
(0, g, 1, %} +1,2,.., ?U —m — 1,v — m) is even. Which implies that the number of

vertices in F is 3?“ —m=m+1=I(F)+1. Thus, F is a path of length m.

Let C'(v, k) = (g—1,%—1+k5+1,g,g—1+k+2,g+1,...,§—1+k,g—1>,
where 1 < k < g — 2. Then PC(v,a,b) = C(v,a) + C(v,a+2)+ ..+ C(v,b—1) =
C'(v,a)+C"(v,a+2)+...4+C"(v,b—1). By Lemma 4.4, we have d(C'(v,a)+C"(v,a+
2)+...+C"(v,b—1)) = 2a+1. Because the end vertex of C’(v, g— 3) is the beginning
vertex of G. Thus PC(v, % + 1,% =2) UG = C'(v, % +1) + C'(v, % +3)+ ...+
' (v, %—3)—1—(%—1, g) Since the distance between the last vertex (the second vertex)
gofC”(v,g—B) and the end vertex g—l ofC’('U,g—ES) is 2(1}—4—;—]) =v—8>m.
Thus, we can cut C’(v, % +1)+C'(v, % +3)+...+C(v, ;—J —3)+ (% -1, g}, starting

from its end vertex, into paths of length m, and the remainder is a path of length r.

This concludes the proof of this subcase.

v
<m<—and m=v—4

v
C 4.3 : —
ase 5 1

Since 8 < v < 16, there are only four cases left to prove.

iv=8 m=4

K, can be decomposed into {(0,z,z 4+ 6,2+ 1,z +5) |z € {1,2,3,...,6,7}}.
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i v=10,m=6
Let V(K,) ={0,1,2,3,...,8,9}. Then, the decomposition is
(1,0,2,9,4,7,5) U (2,1,3,0,5,8,6) U (3,2,4,1,6,9,7) U (4,3,5,2,7,0,8)U

(5,4,6,3,8,1,9) U (0,4,8,9,3,7,1) U (1,5,9,0,6,7,8) U (8,2,6,5).

i v=12, m =38
Let V(K,) ={0,1,2,3,...,10,11}. Then, the decomposition is
(0,2,11,3,9,5,8,6,7) U (2,1,3,0,4,10,6,9,7) U (3,2,4, 1,5, 11,7, 10, 8)U
(4,3,5,2,6,0,8,11,9) U (5,4,6,3,7,1,9,0,10) U (6,5,7,4,8,2,10,1, 11)U

(7,0,1,6,11,10,3,8,9) U (11,0,5,10,9,2,7,8, 1) U (11,4, 9).

iveo=14,m=10
Let V(K,) ={0,1,2,3,...,12,13}. Then, the decomposition is
(1,0,2,13,3,12,5,10,6,9,7) U (2,1,3,0,4,13,6,11,7,10,8)U
(3,2,4,1,5,0,7,12,8,11,9) U (4,3,5,2,6, 1,8,13,9, 12, 10)U
(5,4,6,3,7,2,9,0,10,13,11) U (5,7,4,8,3,10, 1,11,0, 12, 13)U
(7,6,8,5,9,4,11,2,12,1,13) U (0,6,5,11, 12,4,10,9,8, 7, 13)U
(

5,13,0,8,2,10,11,3,9,1,7) U (6, 12).

3
Case4.4:mzzv,m:v—élcmdvEO(modél)

Let A = (2+452+67 Y18, 3 L@+I®4%H42+56 247, ?
v
B—<212+232+®+I%+40H%02+122+3®am

M =M,z m U I(4, 3 +4). Then, we have E(K,) = M U AU B.

It suffices to check A is a path of length m and B is a path of length g + 4.
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Because v = 0 (mod 4), the cycle

(O,%—|—1,2,§—|—3,4,§—|—5,6,...,v—1,%,
v v v v

1,2 492,3,% 14,572 o201
72—"_ 7372—"_ 7572+6777 7U 72 70>

contains all the edges in dy_; and each vertex of K, appears exactly once. Since

(% (% (% [ v (% v
A= (=445 = — vy = — 1 1(0,4 4, — — ey =) 1
<2+ 7572 +67772 +87 72 70>+ (07 )+<72 +57672+77 72> 18

obtained from the union of two segments of this cycle and a path 7(0,4), moreover,
the vertices in {1,2,3} appear in B (thus the vertices in {1,2,3} will not appear in
A). So, A is a path of length (v —8) +4 = v —4 = m. By a similar idea as above,
we prove that B is a Pyi4. This concludes the proof of this subcase.

Case4.5:mz%,m:v—élandvEQ(modll)

Let A = <4,g+5,6,§+7,8,...,0>+I(0,3)+<3,§+4,5,;—’+6,...,§>,

S L5 +23) LB 4+ (4,548,225 + 1,00+ [I(5 +4,0)]) and

M = M, m UI(4, g +4). Then, E(K,) = MUAUB.

B=

Now, it suffices to check that A is a path of length m and B is a path of length

Y 4 4. Because v = 2 (mod 4), the following cycles

2
<Oag+172ug+3747§+5767"')U_4ag_37U_27g_170> and
v v v v v
1,=+4+2,3,-+4,5, = w0 —3, = —2v—1,-/1
<’2+ 73a2+ 7572+6777 y U 372 U 727 >

contain all the edges in dz_; and each vertex of K, appears exactly once. Since
A= (4, g+5, 6, g+7, 8,...,0)+1(0,3)+ (3, g—i—él, 5, g+6, s g> is obtained from the
union of two segments of these cycles and a path 7(0,3), and the vertices in {1,2}
appear in B (thus the vertices in {1,2} will not appear in A), A is a path of length

(v —7)+3=wv—4=m. By the same idea as above, we also prove that B is a Py 4.

This concludes the proof of this subcase.
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Case 4.6 : %gmgv—SandvEO(modél)

First, we need some notations.

3 3
LetAz<?”—m,v—m+1,§—m+2,v—m+3,...,g—1,0>+I(0,v—m)+
3
(v—m,?—m+1,v—m+2,§—m+3,...,v—1,g>,
v v 3v 3v
B=( 1,423 v45 . o-—m-12_ (2
<27 72+ 7372+ 757 3’U m ) 2 m>+ (2 m70)+
(O,g+1,2,g+3,4,...,§—m—l,v—m), 3
T = PC(v, % +1, g —2) and K be the last 2(2m — ?U) edges of T.
_ 3
Let B be obtained from B by replacing the last (2m — 72}) edges of the segment
3 T\ K
1(7” — m,0) with K. Also, let f = mm{[ﬁ — 2], [%}} (Denote the

integer part of x as [z]), S; = I(m,0) +
Sp =120 —m), 5 = f(v —m)) + (f — 1)

collection of f paths of length 2m — v each, cut along 7'\ K, and denote by Tg, the

(1 —1)(m — %), where 1 < ¢ < f and
g. Finally, denote by T;, 1 < i < f, the

final segment remaining of 7'\ K" after taking away 13,7, ..., Ty. Now, let D; = S;+1;,

3 5
1 <i<fand Dy = Sp+Tx andM:MU,Q,%u{dl\[(I(o,v—m)uf(%’—m,%’—

2m) U Sy U Sy U ... Usp U Sg|}. Similar to the proof of Case 3.2, we know that D,

3 5
and Dpg are well defined. And since {I(0,v —m) N I(;U —m, %] —2m)N SN SN
.NSgN Sk} = ¢, M is a set of g paths of length m. Then, by routine checking,
E(K,)=AUBUMUD;UDyU...UD;U Dg.

We prove that K, can be decomposed into a set of P,,,’s and one P, by the following

A is a path of length m.
B is a path of length m.
D; is a path of length m.
d(Dg) > m.

Note that the proofs of (1) and (2) are similar to that of Case 4.4, and the proofs
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of (3) and (4) are similar to that of Case 3.2.

Step (1) : Since v = 0 (mod 4), the cycle

(% (% v v
0,-+1,2,-+3,4,-+4+5,6,...,v—1, =
<a2+772+772+77 y U 727

v (% ( v
1,=+2,3,-4+4,5-+6,7,....,v—2,-—1,0
72+772+772+77 » U 72 7>

contains all the edges in dy_; and each vertex of K, appears exactly once. Since

3 3 3
A= (%—m,v—m%—l,g—m+2,v—m+3,...,g—l,O)%—](O,U—m)—i—(v—m,%}—

m+1,v—m+ 2, 70 -—m+3,...,0—1, g) which is obtained from the union of two

segments of this cycle and a path I(0,v—m) and the vertices in {1,2,3,....,.v—m—1}

appear in B (thus the vertices in {1,2,3,...,v —m — 1} will not appear in A), A is a

path of length (m — g) +(v—m)+ (m— g) = m.
Step (2) : Similar to the proof of Step (1), B is a path of length (v —m) + (m —
g) +(v—m)= 370 — m. Since K = (57@ — 2m, 57@ —2m+1,...,0), the vertex set of

5 5
K is {?U—Qm,%} —2m+1,..,0} U{2(v—m) — 2,2(v —m) — 1,...,%—3} and each

vertex of {2(v —m) —2,2(v —m) —1,..., g — 3} will not appear in B. Hence B is a
3 3 3
path of length (711 —m)— (2m — EU) +2(2m — %) = m.

Step (3) : Let x be the end vertex of S;. Let S; = (x + m,x + m + 1,...,x)

and T; = (z,o+ ko + Lo+ k+ 1Lz 42,0 +m— g) Then by the property of

PC(v, % +1, % —1), we have % <k< g Thus, the vertices in the even places of T;

m

belong to the open interval (x + 5 x +m), since the vertices in the odd places of T;
v

is{r,z+1,..., 2 4+m— 5} and S; = {x +m,z+m+1,...,x}. Moreover, the vertex

x is the only common vertex of S; and T;. Hence, for each i, D; = S; + T; is a path

of length I(S;) + I(T;) = (v —m) + (2m — v) = m.
2(v —m)

the same argument as above, we obtain d(Dg) > d(D;) = m.

Step (4) : First, if f = | | — 2, then I(Sg) < I(S;) = v —m. Therefore, by
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l(T\K)]<[ v

On the other hand, f = | ] — 2. This implies that (v —m —

2m — v 2(v —m))
2)(v—m) < (2m—w). Thus, (T\K) = v(g— n —2)—4dm+3v = W(Zm—
(v—m —6)

v)+ (v—m—=2)(v—m)and f = ATR)=(w—m—=2)(v—m) :=¢<

2
(2m — v) < 2v which is even. Since I(K) = 4m — 3v is even and [(K) + [(Tg) <

(4m — 3v) + (2m —v) = 6m — 4v < 2v. Tg is contained in the last circuit C(v, g —3)

5V q q 5V

m v

f PO(v, = 41,2 —2\K and Tp = (= —2m) — L o(w—m)—2- L 22 9

0 C(U? 9 + 9 6)\ and Tx <( 9 m) 9’ (52] m) 97 g m>

Since f = (v= 7; —6) implies that Sg = I(2(v — m), (?U —2m) — g), Dg is a path.
v

Case 4.7 <m<wv—_8andv=2 (mod 4)

We start with some new notations.

3 3
LetA:<v—m,—v—m+1,v—m—|—2,—v—m—|—3,...,2—1,0>+I(O,v—m—1)—|—

2 2 2
3 3
(v—m—l,?v—m,v—m—kzg—m+2,...,v—1,g) and
3
B:<§,1,%+2,3,...,§—m—2,v—m—1>+I(U—m—1,v—m)+
3 3 3
(U—m,%}—m—1,v—m—2,7v—m—3,...,§+1,0>+[I(;v—m,O)]t.

— 3
Let B be obtained from B by replacing the first (2m — ?U) edges of the segment

3 3

[[(?U —m, 0)]* with the last 2(2m — 71)) segment of PC(v, % +1, g —2). Finally, let
M, D;, Dy and Dg be defined as in Case 4.6. Then, we have F(K,) = AUBUM U
DyUD,U...UD;U Dy,

Since v = 2 (mod 4), the following two cycles

(0,2 +1,2,5+8,4,5 +5,6,.,v-4,7 =302 ~1,0) and

2 2 2
<Lg+z&%+¢a§+@zmw—&g—zv—L%U

contain all the edges in dz_; and each vertex of K, appears in these two cycles exactly

3 3
once. Moreover, since A = (v—m,%}—m+1,v—m—|—2,§—m+3,...,%—1,0>+

3 3
I1(0,v—m—1)+{v—m—1, ?U—m,v—m+2, Ev—quQ, ey 0—1, g> is obtained from
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the union of two segments of these cycles and a path 1(0,v —m — 1) and the vertices
in {1,2,...,v —m — 2} appear in B (thus the vertices in {1,2,...,v —m — 2} will not
appear in A), A is a path of length (m—g—l)—l—(v—l—m)+(m—g+1) =m. By

the same way as above, we can prove that B is a Pyi4. Thus, by a similar argument

as in Case 4.6, we have the proof of this subcase and the theorem. [

22



5 Conclusion

In this thesis, we have generalized the idea of decomposing K, into paths of length
m to a maximum packing of K, with paths of length m and the leave is also a path.

But, our long-term project is to settle the following problem.

Problem 5.1. Let v and t be positive integers such that t > —=. Let mi,ma,...,my

N <

be t positive integers less than v such that 22:1 m; = (;’) Prove that K, can be

decomposed into t paths P, P?, ..., Pt such that the length of P* ism; fori=1,2,...,t.

So far, partial results have been obtained especially when v is odd. But, for the

case when v is even, not much is know.
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