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Abstract

The applications of TA'codes, IPP-cades;y-SFP codes and FP codes play an
important role in the protection of digital data. The destination of these
codes is to prevent an unauthorized copy. Some new and old examples of
these codes are given. This thesis studies basic properties of the above
codes and the relationships between theses codes and cover-free families.
Therefore, we construct some new incidence matrices and prove these
matrices are disjunct matrices. According to our constructions, in the
language of pooling design, the construction allows some test errors. In
the end, we collect some simple and important constructions of SFP

codes and IPP codes.
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1 Introduction

To protect an electronie product, such as digital data, a distributor marks
each copy with some eodeword and then ships-each user his data "marked”
with that codeword.*This marking, a.”digital fingérprint”, permits the dis-
tributor to detect any unauthorized copy and trace it back to the user that
created it. This will prevent users from releasing an unauthorized copy. A
coalition of users, yet, may deteect-some of the marks where their copies dif-
fer. They can then change these marks arbitrarily. Boneh and Shaw (1995)[2]
defined ”wu-frame proof codes” as preventing users from ”framing” another
user. A w-frame proof code possesses the property that no coalition of at
most w can frame another registered user. In Stinson and Wei (1998)[15],
combinatorial methods are used to further probe frame proof codes. Several

constructions of w-frame proof codes are given in Boneh and Shaw (1995)[2],

Chee (1996)[4] and Stinson and Wei (1998)[15].



In Chapter 2, we introduce five classes of codes w-TA codes, w-IPP codes,
w-SFP codes, and w-FP codes from the most to the least restrictive. By
above codes, we define the registered user, unregistered user, and guilty user
in order to apply to copyright protection. We provide examples and counter
examples for theses definition originally introduced by D.R. Stinson, Tran van
Trung and R. Wei (2000)[13]. Define desc™' () consisting of all the coalitions
of size at most w that could framed x and suppose z is an unregistered user
in 2-SFP code C (z ¢ C). Since desc ™' (x) consists of a collection of 2-subsets
of C, we can view it as the set of edges of a graph on vertex set C. That is,
we can give the link from a,2:SFP code'to.a star graph (i.e. there exists a
vertex that is incident to every edges).and K3(the complete graph on three

vertices).

In Chapter 3, we.first introduce’ the set system (P,B) and the (w;«)-
cover-free family. Lemma.3!2 give relationships between a cover-free family
and a w-FP code. By abéve lemma, we generalize a w-FP code to a (w; a)-
FP code in our new Definition 3.3. Finally, we analyse minimum distance d
and «a of a (w; a)-FP code and reprove Corollary 3.6.(Staddon, Stinson and
Wei, 2001)[14].

In Chapter 4 and 5, in our language, we generalize a (w; «)-cover-free fam-
ily to an (¢, s; e)-cover-free family in Definition 4.1. Our treatment simplifies
the original definition of an (¢, s)-sandwich-free family in [13]. Theorem 4.2

which connects a w-SFP code with a cover-free family is similiar to lemma



3.2. We research the properties relating to w-SFP codes. In Theorem 4.5,
we construct some new incidence matrices and prove these matrices are dis-
junct matrices. Recalling the definition of a (w; a)-FP code, we construct a
(w; a)-CFF in Theorem 5.1 by means of the disjunct matrix. This tells us,

in the language of pooling design, the construction allows some test errors.

In Chapter 6 and 7, we collect and introduce some simple constructions
of SFP and IPP codes. In Chapter 7, let C; and Cs be two different codes
with the same length. Bush (1952)[3] proved the existence of combination of
C} and Cy in Theorem 7.6. Further, Tran and Sosina (2004) [16] constructed
a similiar one, but more general with distinet length in Theorem 7.4. Based
on above two theoremg; Tran and Sosina (2005)[17] used concatenation tech-
nique to construct a new aw=IPP code with-the same-parameter ¢, in Theorem

7.14.

2 Codes for copyright protection

Definition 2.1. Let ) denote a set of ¢ elements. A subset C' C Q™ is called
a code of length n over (). The elements in C' are called codewords. The
number of codewords in C'is called the size of C. C'is called an (n, N, q)-code
over @ if |C| = N and @ is the set of alphabets. An (n, N,2)-code is called
an (n, N)-code for short.

To reveal the application for codes to copyright protection, an element

in Q" is also called a user, in C is a registered user, and in Q" — C' is an



unregistered user, or an illegal copy.

Definition 2.2. Let C' denote an (n, N, g)-code over Q). For X C C| the set

of descendants of X is the subset
desc(X) := X7 x Xy x -+ x X,

of Q", where X; := {¢; | ¢ € X} is the set of alphabets used in the ith

coordinate of X.

An element in desc(X) is referred to as a user framed by the coalition
X. For z € desc(X), X is called the set of parents of x. The set X C C is
intercepted as a family of registered users and = € desc(X) — C is an illegal
copy produced by X.

It is clear that C:& desc(C).

We see an example before going to our new definition.

Example 2.3. Set @ = {0, 1} sand
C = {(0,0,0)5(1,0;0)(0,1,0)(0,0,1)} € Q°.
Then C is an (3,4,2)-code. Observe desc(C) = Q3.

Throughout the remaining of the section, C' is an (n, N, q)-code over

Q:={1,2,...,¢q} and w < N is a positive integer.

Definition 2.4. For z,y € @, define the Hamming distance 9(z,y) to be

the number of different positions in z,y. That is

INw,y) = {i | zi # i}

4



for z,y € Q™. An (n, N, ¢;d)-code C is an (n, N, gq)-code with
d=min{0(z,y) | z,y € C,z # y}.

Now we are ready to introduce the first class of codes.

Definition 2.5. C is a w-traceability code (w-TA code) whenever for any

X C C with |X| < w and for any = € desc(X),
Iz, X) < I(z,C —X), (2.1)
where 0(z, X) := min{d(z,y) | y € X}.

Note that every code is 14TA ¢code. Tw.a w-TA code, desc(X)NC = X

for any X C C with | X £ w.

A code is w-TA if; for any n-tuple & framed by a set X of w parents, the
nearest codeword to the x is taken-from-the.set of parents. In particular, the
register users with minimum Hamming distance to x are all in X. Hence we
can trace some register users im.X from an illegal copy z. Hence TA codes are

designed to be used in schemes that protect copyrighted digital data against
piracy.
Example 2.6. Set
C={(1,1,....,1,1) | i€ Q} CQ",
observe desc(X) = X for any X C C. Then C is a ¢-TA code.
The following property of w-TA codes will give link to our next definition.

5



Lemma 2.7. Suppose C' is a w-TA code. Then for any X,Y C C with
| X, Y| <w and for any x € desc(X) Ndesc(Y),

{ye X | 0(y,x) =0(X,z)} CY. (2.2)

Proof. Assume that there exists y € X with 0(y,z) = 0(X,z) and there
exists Y C C with |Y| < w, x € desc(X) Ndesc(Y) and y ¢ Y. Then

Oz,y) < Iz, C—X)

< Jz,Y —X)
and
dzr,y) = _0(x,X)
el Bl R
Hence 0(z,y) < 0(xgY), a contradiction. O

Now we give the seécond class of codes:

Definition 2.8. C is a w-identifiable, parent property code (w-IPP code)

whenever for all z € desc(C),

Y #0, (2.3)

where Y € desc™! ().
An registered user y € NY in (2.3) is called a guilty user for x. An w-IPP
code is also called a code with traceability. If there isno Y C C with |Y| < w

and = € desc(Y') in the above definition then in convention we realize (Y

as Q".



A code is w-IPP if for all € desc(C), then there exists a quilty user
for . Hence IPP codes are introduced to provide protection against illegal
producing of copyrighted digital material.

Observe that if x € C' then the set in (2.3) is {z} since we can choose one

of the Y to be {z}. By Lemma 2.7, we have
Corollary 2.9. A w-TA code is a w-IPP code. 0
We see two examples.
Example 2.10. Set
C = {121232121 /4343, 3434, 1144},
It is easy to see that Cuis & 2-1PPu(dsby4)-codes1f we set
S S Sy

x = 1111 € desc(X),then d(x; X)=2 £ 2 = des¢(a, C — X). Hence C is not
a 2-TA code.

Example 2.11. Set
C:={(i,1,...,1) | 1€ Q} C Q"

Then C' is an (n,q,q)-code. Observe desc(C') = Q", and for any x =

(x1, 2, .., x,) € Q™,
(Y = {(ii,....0)[i€{z, 22, .. 2.}}
# 0.

where the intersection is taking for all Y C C' and = € desc(Y'). Hence C is

a w-1PP code for any w.



Now we are ready to give the 3th and 4th class of codes.

Definition 2.12. C is a w-secure frame proof code (w-SFP code) whenever

for any X, Y C C with | X]|, |Y| < w,
desc(X)Ndesc(Y)#0 — XNY #0.

Note that desc(X) Ndesc(Y) = ¢ iff X; NY; = ¢ for some i.

A code is w-SFP if no two disjoint coalitions of size at most w can frame

a cominon user.

Definition 2.13. Suppose that Ciissan(n, N)-code and for any = € {0,1}",
define
desc ()= {X €€ ||X] € wand% € desc(X)}.

Evidently, desc™! (x)weonsists of all the. coalitions of size at most w that could

have framed z.

A w-SFP (n, N)-codé dees not permit traceability, but it does afford some

security, as follows:

(i) It is impossible for a coalition C; of size at most w to implicate a
disjoint coalition Cy of size at most w by constructing an unregistered

user = € desc(Ch).

(ii) If z is an unregistered user that has been constructed by a coalition of
size at most w, then any X € desc™'(x) contains at least one guilty

user.



From (2.3) we have
Corollary 2.14. A w-IPP code is w-SFP code. O

Example 2.15. Set
C={(1,0,1),(1,1,0),(0,1,1)}.

Then C'is a 2-SFP code over {0, 1}. Note that C'is not a 2-IPP code because
for

Y ={(1,0,1),(1,1,0)}

Z=1{(1,1,0),(0,1,1)},

and

W= {(150,1),(0 13 1)},

we have (1,1,1) € dese(Y') Ndese(Z)Ndesc(W) and Y NZNW = 0.

Definition 2.16. C' is'a w-frame proof eode (w-FP code) whenever for any

X C C with | X| < w, we'have

desc(X)NC = X.

A code is w-FP if no coalition of size at most w can frame another regis-

tered user.

FP codes were introduced by Boneh and Shaw|[2] as a method of 7 digital
fingerprinting” which prevents a coalition of a special size w from framing

a user not in the coalition. Stinson and Wei [15] then gave a combinatorial
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formulation of the problem in terms of certain types of extremal set systems.

We study FP codes that provide a certain (weak) form of traceability.
Lemma 2.17. A w-SFP code is w-FP code.

Proof. X C desc(X)NC is clear. Suppose y € (desc(X)NC) — X. Then by
setting Y = {y} in Definition 2.12 we find X N{y} = 0, a contradiction. [

We see an example.
Example 2.18. Set
C = {111,123, 132, 222,213, 231, 333, 312, 321}.
It is easy to see that Cuis a 2-FP (3;953)-code. If we set
o, el OB Lt W B

then X NY = ¢, but desc(X)Ndesc(Y) = {121} # ¢. Hence C' is not a
2-SFP (3,9, 3)-code.

Related questions, including generalizations of frame proof codes to the
setting of public-key, cryptography, have been studied in Biehl and Meyer
(1997) [1], Chor et al. (1994)[5], Pfitzmann (1996)[10], and Pfitzmann and
Waidner (1997a,b) [11], [12].

Suppose that C' is a w-FP (n, N)-code and = € {0,1}"\ C (i.e., z is
an unregistered user). If it happened that |desc™!(x)| = 1, say desc™'(z) =

{X}, then we could conclude that X was the coalition that constructed z

10



(assuming, of course, that all coalitions have size at most w). More generally,
if desc™ () # () and there exists a codeword cU) such that ¢¥) € X for all
X € desc™!(x), then we would at least be able to identify user j as being
guilty. Unfortunately, as shown in Boneh and Shaw (1995)[2], this is hoping
for too much. The following theorem is a simple generalization of (Boneh
and Shaw, 1995 [2], Theorem 11), which concerned the case w = 2.

A w-FP (n, N)-code is not necessary to permit traceability. D.R. Stinson,

Tran van Trung and R. Wei (2000) [13] claimed why in following.

Theorem 2.19. (D.R. Stinson , Tran van Trung and R. Wei, 2000 )[13].
Suppose C' is a w-FP (n, Ny-code with N -2, 2w — 1. Suppose D C C' with
|D| = 2w — 1. Let maj(D) € {0, 1} be-defined as

I if e | a =1 }| > w,
0, ifdffee D |'c; =0 }| > w.

maj(D); =
Then maj(D) is an unregistered. user-and-maj(Dy) € desc(X) for all X C D
with | X| = w. That is, C'*does.not permit.traceability.

Proof. 1t is easy to see that maj(D) € desc(X) for all X C D with | X| = w.
It remains to show that maj(D) is an unregistered user. Suppose not; then

maj(D) = c™ for some u. Let
X C D\ {c™} with |X| = w.

Then ¢ € desc(X) N C = X, which contradicts the fact that C is a w-FP
code. O

11



The above theorem says that we cannot be guaranteed of identifying a
guilty user in a w-FP (n, N)-code. For, if x = maj(D) for some D where

|D| = 2w — 1, then

N x=0

Xedesc™H(z)

Corollary 2.20. Any w-IPP (n, N)-codes have N < 2w — 1. O

We now consider 2-SFP (n, N)-code in more detail. Suppose that C is
a 2-SFP (n, N)-code, suppose that z is an unregistered user, and suppose
that X € desc™'(z) with |X| < 2. Since z is an unregistered user, |X| # 1.
Therefore, | X| = 2.

Since desc(z) consists of a celleetion. of 2-subsets of C, we can view it
as the set of edges ofra graph om ¥ertex set €. Since C' is a 2-SFP code, it
must be the case that any two distinet-eédges in dese ' () are incident. From

this it is easily seen that onesof twe-pessibilities must occur:

(i) desc™!(z) is a star graphi(i.c., there exists a vertex that is incident to
every edge of desc™'(x)).

(ii) desc™'(x) is isomorphic to K3 (the complete graph on three vertices).

As a consequence of this characterization of desc™(z) in the case w = 2, we

obtain the following result.

Theorem 2.21. (D.R. Stinson, Tran van Trung and R. Wei, 2000 )[13].
Suppose that C is a 2-SFP (n, N)-code and suppose that x is an unregistered

12



user that is produced by a coalition of size at most two. Then one of the

following two possibilities must occur:

(i) at least one guilty user can be identified; or

(i1) a set of three user can be identified, two of which must be guilty.

O

Since its inception in the early 1980’s, the field of copyright and distri-
bution rights protection of multimedia documents has become an essential
concern to companies that distribute digital documents. This is the case
of Networked University fef.e-Learning. Independently of the use of the
documents and the type of organizétion” (public.or private) the authors of
educational documents have-to be protected against dishonest users. The
possibility of making.ecopies of these.documents without a quality degrada-
tion constitutes a severe threat-to authors rights.

The security mechanismi«in this environment'must be more strict than in
the e-commerce market with physical goods delivered to the user using tra-
ditional networks. Cryptographic techniques are insufficient because the lack
of confidence about the receiver behavior. The most acceptable techniques
to solve this situation are watermarking and fingerprinting. Both techniques
are based on embedding an imperceptible mark in the document. In the case
of fingerprinting, analogously to the human fingerprint, the mark is unique
for every legally distributed copy with the aim of discovering fraudulent re-

distributors.

13



3 Cover-Free Families

We first define some terminologies concerning set systems. A set system
is a pair (P,B) where P is a set of elements called points, and B is a set

consisting of subsets of P, the members of B which are called blocks.
Let (P, B) be a set system with |B| = N. Fix w < N.

Definition 3.1. A set system (P, B) is a (w; «)-cover-free family ((w; a)-CFF
) whenever for any X C B with |X| < w and any A € B — X,

A- | X|>za+1.

Xex
We refer a (w;0)-CFF touw-CFF for short. (P, B) is k-uniform whenever
|B| = k for any B € B:

Let C denote an {n, N, g)-code ovet.Q. For each c € C, set
B { REARRTET N Gl < Q.
Then ([n] x Q,{B:}cec) istanm-uniform family. Observe for any z,y € C,
B, =B, iff z=y,
and for X C C, x € Q", we have
B, C U B, iff z € desc(X).

ceX

Then we immediately have

Lemma 3.2. Let C be an (n, N, q)-code over Q). Then the set system ([n] x
Q,{B:}ecc) is a w-CFF if and only if C is a w-FP code.

14



Proof. (=) Suppose a set system ([n] X @, {B.}ccc)is a w-CFF. Fix X C C

with | X| < w, and given any codeword x € desc(X) N C. Hence
B, C | JB.

and z € C. Since ([n] x Q,{B:}cec) is a w-CFF, we know = € X.

(«<=) Suppose C' is a w-FP code. Given any X C C with |X| < w, and
pick any y € C'— X. Since C' is a w-FP code, we know desc(X) N C = X.
Thus

y ¢ desc(X) implies B, ¢ U B,.

zeX
Hence |By — U,cx B2| > 1 O

It is natural to generalize the definition of a#v-FP code to

Definition 3.3. An«n, N;q)-code C'is a*(w; &)-frame proof code ((w; «)-FP
code) whenever ([n] x @, { B:}eee)48-@ (w; )-CFE:

Hence a (w;0)-FP ¢ode is‘anw-FPcode.

Proposition 3.4. Suppose €t is an (i, Nyqi d)-code , where d > n(1 — 25).
Then C'is a (w; «)-FP code where

a:“u_%)J.

Proof. Fix X C {B.}ccc with |X| < w and B € {B.}.cc — X. Observe
|IBN B'| <n—d for any B’ € X. Hence
|B — U B| > n—w(n—d)
Blex

> n(l——).

1
w

15



Since |B — |J B’| is an integer, we have
B'ex

5- U Bl> | n1-1) |+1

]

Proposition 3.5. Suppose that an (n,N,q)-code C' is a (w;«a)-FP code,

where

Then C' is a w-TA code.

Proof. Fix X C C with |X| < w and = € desc(X). Since x € desc(X), there
exists y € X such that |B, OwBy| = nfw.sHence 0(z, X) < a. Since C' is a
(w; a)-FP code,

|Bz K- Ba:| a1 |Bz i U By|

yeX
> a+1

for any z € C' — X. Hence O(a;C — X) >a+1 > 0(x, X). O

From the above two Propositions, we reprove the following results.
Corollary 3.6. (Staddon, Stinson and Wei, 2001)[14] Suppose C' is an

n, N, q;d)-code with d > n(1 — . en C is an w- n, N, q)-code.
N, q;d)-cod h d LY. Then C TA N d ([l

w?

4 Complexes

Definition 4.1. A set system (P, B) is an (¢, s; e)-cover-free family ((¢, s; e)-

CFF) whenever for any ¢ members A;, Ay, ..., Ay € B and any other s

16



members By, By, ..., B, € B,

yﬂA UBy>e+1

J=1
By an (¢, s;e)-disjunct matric M we mean an incidence matrix of some
(¢, s; e)-cover-free family (P,B), i.e. M is a binary matrix with rows and
columns indexed by B and P respectively such that
1, if j€i;
0, if j &q.

Our matrix is the transpose of the one studied in pooling designs [6].

M., =

v

In the language of pooling'designs, theabove /¢ is refer to the size of com-
plezes, s to the numbersof positivercomplezes, € to the number of allowed test

errors, | P| to the nuniber of tests, and |B| to'the number of items respectively.

Theorem 4.2. Let G-be an (n, N')=¢ode. Then the set system ([n]|xQ,{B:}cec)
is an (w,w;0)-CFF ifsand onlyf CTis an w-SEP«code for 1 <w <n —1.

Proof. (=) Pick any X7¥ € C with [X}]|¥] < w and X NY = . Then
Neex Bx — Uyey By = 0 by assumption. Choose
(1, ¢) ﬂ B, U B,.
weX yey

Then with refering to the Definition 2.2, X; = {¢;} and ¢; ¢ Y;. Hence
X;NY; = 0. Thus desc(X) Ndesc(Y) = 0.

(<) Pick any X,Y C C with |X|,]Y| < w and X NY = (. Then
desc(X) Ndesc(Y) = (0. That is

X;NY; = for some 7.

17



Note that X; # {0,1}, X; # 0, and similarly for Y;. Hence we can assume
X, = {0} and Y; = {1}. Then (i,0) € M,cx B: — U, ey By- O

Unlike Lemma 3.2, here we only can consider the binary code in Theorem

4.2.

Example 4.3. Set
C' = {100,010,001, 111}.

It is easy to see that C' is a 2-SFP (3,4)-code by computing desc(X) N
desc(Y) = 0 for all X, Y C C with |X| = |Y| = 2. The following (2,2;0)-
CFF is equivalent to the 2-SFP (3,4)-code presented

P o= {(LO):(L,1).(2,0), (2 1)(8,0)(3, 1)},
B = (11,2 0430 Ve, 0,02 1), (3,0)},
£1.0).2,0), B0 {(1,1), 27), (3, 1)}

n
Lemma 4.4. Set P = [n] ="{1;2;"" 0} and B = 4 , the set of
n—1
(n — 1)-subsets of P. Then (B, B)uiswan (¢,150)-CFF.
n
Proof. For any ¢ members Ay, Ay,--- , A, € n , and other B €
n—1
[]
, note that
n—1
¢
n
Anel )
i=1 n—1{
and |i_, A; — B| = 1. O

18



Motivated by the above fact B ¢ ﬂle A; in the proof of Lemma 4.4 | we

immediately have the following theorem.

Theorem 4.5. Fiz n — E < n—1. Let M denote the incidence matrix
n
of n i.e. M s a binary matrix with rows and
n—1
columns indexed by and respectively such that M;; =
n—1 n—~¢
L ifj S

; Then M is an (¢, s;0)-disjunct matriz of size n X
0, ifjgi. ¢
where £ + s < n.

Note that when ¢ = L'the-above M is an identity matrix, hence we refer

this construction as astrivial construction.

5 Allowing-Test, Errors

Recalling the definition of (w; a)-FP code;iwe want to construct (w;a)-
CFF by means of the disjunct matrix.“In the study of pooling design, this
« is related to the error correcting ability [8]. The following theorem give a

construction of disjunct matrices with some error correcting ability.

Theorem 5.1. Fizs <n—{ <n—1. Let M denote the incidence matriz of

] ] . -
and . Then M is an ({,s;n —{ — s — 2)-disjunct
n—1 n—{¢—1
n
matrix of size n X
(41
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Proof. Pick any distinct Ay, As,--- , Ay, B1,Bs, -+ , B, € . Then

[n]

J4
(A) N B, €
i n—~¢—1

for any 1 < j < s. Note that there are n — ¢ (n — ¢ — 1)-subsets contained in
ﬂf A; and s of then are contained in some B; for 1 < j < s. Hence we still
can pick e+1=n—-¢—1—s (n—{— 1)-subsets which are contained in

each of A;, but none of B;. n

We believe the existence of agé,sye)-disjunct matrix is applicable to the
study of codes for copyright protection with ertor correcting ability. Further

study is necessary.

6 A Simple:Construction of SFP codes
An (n, N)-code C can;be.depicted as an®/NeX n binary matrix M, where

each row of the matrix correspondsto one of the codewords.

Example 6.1. Let C = {cV) = 111,¢? = 100,c® = 010,¢® = 001}, and
C' can be depicted as

1 11

1 00
M=

010

0 01
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We will show that C' is a 2-SFP (3,4)-code by computing desc(X) for all X
with [X| =2

desc({c, @) = {100, 111,101,110},

desc({c,c®Y) = {010, 111,011,110},

desc({cV,c®}) = {001,111,011,101},

desc({c?,c®}) = {100,010, 110,000},
( )

desc({c?,c®}) = {100,001,101,000},

and
desc({c®5 &M} ="4010;001,000,011}.
From this, it can easily be checked-that

dese({cV, ®}) pdese({c®, W}y = 0,
desc({eV, &) Aadese(fe?, (V}) 0
and
desc({cV, ¢M}) N desc({c?, P}) = 0.
Next, we collect some direct and explicit constructions for secure frame
proof codes.
Theorem 6.2. (D.R. Stinson, Tran van Trung and R. Wei, 2000 )[13]. For
2w — 1

any integer w > 2, there is a w-SFP ( , 2w)-code.
w—1
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Proof. We define a binary matrix M and the rows of M will be a w-SFP

2w —1
( ,2w)-code. The rows of M are indexed by the elements in
w—1

the set {1,...,2w}, and the columns are indexed by the w-subsets S C
{1,...,2w} such that 1 € S. Denote these subsets as S, ...,S,, where n =

2w —1
. Now, the entry in row ¢ and column j of M is defined to be

w—1
1 ifiej
0 ifidj
2w —1
We show that C' = {cal: eV g §ay-SFP ( , 2w)-code.
w—1

It suffices to verify that Definition is satisfied for all X, Y C C such that
| X| =1Y] =w and X NY = (. Since N: = 2w, it=follows that Y = C'\ X.
Without loss of genetality, suppose that ¢l € X Now, there is a unique bit
position ¢ such that Xj = {1}pand¥m=+0}which implies X;NY; = (). Hence,
desc(X) Ndesc(Y) = 0 as desired. O

Example 6.3. The 2-SFP (3,4)-eode 'given in Example 6.1 is constructed
by the method of Theorem 6.2.

Example 6.4. We present a 3-SFP (10, 6)-code constructed using the method
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described in Theorem 6.2. The binary matrix M is as follows:

11111111171

111 100O0O00O00O0

1000111000
M=

01 001O0O0T1T1FP®

0O 01 00 1O0T1O01

0O 001 0O0T1TO0T11

The following result can be proved in a similar way.

Theorem 6.5. (D.R. Stinson, Tran van Trung and R. Wei, 2000 )[13]. For

2w —1
any integer w > 2, there is a W=-SEP (2 , 2w + 1)-code.
w =1
Rw g1
Proof. Let the 2w x maftrix M be defined as in Theorem 6.2.
w—1
{ 2w—1
Then construct a (2w 1) X2 matrix M’ as follows:
w "1
v, MM
0---0 1---1
It is not hard to show that the set of rows in M’ is the incidence matrix of
2w —1
a w-SFP (2 , 2w + 1)-code. O
w—1

7 A Simple Construction of IPP Codes

We depict an (n, N, q; d)-code C' as an N x n matrix M (C') on ¢ symbols,

where each row of the matrix corresponds to one of the codewords of C'. For
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any a € (), define
mj(a) = [{i | M(C)i; = a}l,

i.e.,mj(a) is the frequency of a on the j-th column of M(C). Define

m(C) = maxi<j<nacq(m;(a)).

Example 7.1. Set
1 01

MC)=10 11/,
0 01
then my(0) = 2,m2(0) = 2,m3(0) =:0-and m;(1) = 1,ms(1) = 1,ms(1) = 3.
So m(C) = 3.

Definition 7.2. Let.. €' be an (5 V;¢; d)-code.We say that C' has an o-
resolution if the codewords of C' can be partitioned into s subsets Ay,. .., A;,
where |A;| = o, for4 = 1,...,s4n suchia way that each A; is a code of
minimum distance equal to*ngi.e. any=two. codewords of A; agree in no

position.

We see an example.

Example 7.3. Set
C = {123,132,213,231, 312,321}
be a (3,6, 3;2)-code. Set

Ay = {123,231,312}, A, = {132,321,213}.
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Since C' can be partitioned into 2-subsets A1, A, and the minimum distance

of A; and A, are equal to n = 3, we say C' has a 3-resolution.

Theorem 7.4. (Tran and Sosina, 2004 )[16]. Let Cy be an (ny, N1, q1;dy)-
code over Q1 and let Cy be an (ng, No, go; d2)-code over Qo with a o-resolution

Ay, ..., A such that s > m(Cy). Then the following hold.
(i) there exist an (nyns, o N1, q1q2;ning — (ng — dy)(ne — ds)) code C.

(ii) Further, if qigo > Ny, then C can be extended to a code C* having
parameters (ning + 1,0N1, q1g2; d), where d = min{ning;ning + 1 —

(n1 —dy)(ny — da)}.

Proof. Let Cy be an (ny, Ny, q1; dy)-code over @. Let Cy be an (ng, No, qo; do)
code over ()y with a garesolution Ay, ..., As. Suppose s > m(C}). For each

a € 1 denote by Cy(a) a-copy of Cy defined over €)(a) such that
Q(al) i) Q(CLQ) F @ if ay,ay € Ql and aq 7é as.

Denote by Ai(a), ..., Afa) a o-resolution of.Cy(a).

Let col; = (ayj,as;, - .y 3) bethe j=th column of M(C),1 < j < ny.
Let a(1),...,a(t), say, be t positions of col; at which symbol a € @); appears.
Note that ¢ < m(Cy). Now replace a at position a(1) by A;(a), a at position
a(2) by Aj(a), etc., and a at position a(t) by A;(a). Perform this process for
every symbol of Q1 and for every column of M(C}). The resulting code C
obtained by this replacement has parameters (nins, o N1, q1q2; ning — (ng —

di)(ng — dz)).

Obviously, the length and the number of codewords of C' is nins and

o Ny respectively. Further, any two codewords ci,co € C agree in at most
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(ny — dy) positions. After replacement ¢; and ¢y correspond to two subsets
Ry and Ry of o codewords each. Any two codewords in R; (resp. Ry) agree
in no position, whereas a codeword from R; and a codeword from Ry agree
in at most (n; — dy)(ne — da) positions. Hence the minimum distance of C' is
ning — (N — dy)(ne — dy) , as stated.

Further, if ¢;qo > N; then C can be extended to a code C* having parame-
ters (nine+1, 0 N1, q1qo; d), where d = min{ning, nyno+1—(ny—dy)(na—ds)}.
Let @ = {a1,as, ..., aq4 } be the alphabet of C and let Cy = {cq1,¢a, ..., cn, }-
By construction, any codeword ¢; € ' corresponds to a subset R; of o code-
words. For any i =1,..., N7, we add symbol a; to the (nyns + 1)-th column
of each codeword of R;. Thisdorms aset R} +The collection of all R} forms an
(ning+ 1,0 N1, q1q2; d) gode C* with, d.= min{nng, nins +1— (ng —dy)(ng —
dy)}. This can be seen.as follows. Any.two codewords z* and y* of C* belong
either to some R} or to two different R; and R?. In tlie first case their distance
is nyny because their’components-agree only at the (niny + 1)-th column,
and in the second casestheir distancesis atdeast'nin, + 1 — (ny — dy)(ny — da)

because their components at the (nins +1)-th column are distinct. O

We illustrate the construction in Theorem 7.4 by the following example.

Example 7.5. Let C} be a (3,4,2;2)-code over (); = {0, 1} given by

S = = O
)
—

Let C2(0) be a (3,6,3;2)-code over {1,2,3} with a 3-resolution A;(0) and
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123 1 3 2
A(0O)=12 3 1 [,A0)=]3 21
31 2 2 1 3

Let Cy(1) be a copy of C2(0) over {4,5,6} with a 3-resolution

4 5 6 4 6 5
AA(l)=15 6 4 |,A0)=1]6 5 4
6 4 5 5 4 6

Replacing entries of M (C}) by A;(j) gives
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M(C*) =

We describe a simple construction for ¢-ary cedes which has been pre-

sented by Bush (1952)[3] for orthogonal arrays.

Theorem 7.6. (Bush,1952 )[3]. "Let Cy be an (n, Ny, q;dy)-code over @y
and Cy be an (n, Ny, go; do)-code. Then there exists an (n, N1 Na, g1q2; d)-code,
where d = min{dy, ds}.

Proof. Let Cy be an (n, N1, q1; d1)-code over Q)1 and let Cy be an (n, N, go; da)-
code over (Yy. Let Q = Q1 x Q2. We define a code C over () as follows. For
any pair of codewords a = (ay,...,a,) € C; and b = (by,....,b,) € Cy we
construct a vector

c(a,b) = ((a1,b1), ..., (an, by)) € Q™.
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Then it is easy to verify that
C={c(a,b) |Jac (C;,be(Cy} CQ"
is an (n, N1 N2, q1qo; d)-code, where d = min{dy, ds}. ]

Definition 7.7. A code C C F is a [n, k, d]-linear code if C' is a subspace

of F q” with dimension k£ and minimum distance d.

Definition 7.8. A [n, k, d|-linear code with d = n—k+1 is called a maximum

distance separable code, denoted M DS codes.

Theorem 7.6 can be used to censtruet, g-ary codes achieving M D.S codes,

for which ¢ is not a prime power, in the language of orthogonal arrays an

(n, N,q;d) MDS codeis an OAi{(mw —d + 1,1, ¢);yhere we have N = ¢~ @+,

We record this special ¢ase of the Bush construction in the following

theorem.

Theorem 7.9. (Bush, 1952)[3] Theewistence of (n, q, q1;d) and (n, g5, go; d)
MDS codes having the same d = n — k + 1 implies the existence of an
(n, (142)%, q1q2; d) MDS code.

As a consequence of Theorem 7.9 | we have the following corollary.

Corollary 7.10. For any integer n > 2 and s with a prime factorization
s =pi..p¢ such thatn < p§*, i =1,2,...,r, there is an (n, s*,s) MDS codes,
forall2 <k <n.
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Proof. The corollary follows from the existence of (n, (pi*)*, (p*)) MDS codes
fori=1,....r O]

By combining Corollary 7.10 and Corollary 3.6 we obtain the following
theorem.

Theorem 7.11. Let w > 2 be any given integer. For any integer n > w?
and s having s = pi*..pi¥ as its prime factorization with n < p;* for all

i=1,...,k there ezists an w-IPP (n, N, s)-code, where N = slwrl, O

Definition 7.12. Let C; be an (ng, Ns, g2)-code over ()3 and let Cy be an
(n1, q2, q1)-code over Q1. We define the concatenated code of C; and Cj as
following: Let Q2 = {a1, ..4a4 } and let Cy'= {bq, ..., by, }. Let 6 : Q2 — s
be the one-to-one mapping defined by

0(a;) = by
for 1 <1 < ¢. For any codeword a’'=(ay, =, a,,) € C; we denote by
a=[(0(a1),...,0(an,)) =(b1s-..,bn,)
the ¢-ary sequence of length nimy obtained from a by using 6. The set
C={a=(by,...bn,) |a=(a,..,a,) € C}
is an (ning, No, q1)-code, called the concatenated code of C; and Cs.

Example 7.13. Set
Cy = {12,13,23}

be a (2,3,3)-code over {a; = 1,as = 2,a3 = 3}. Set
Cy = {by = 445, by = 455, by = 555}
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be a (3, 3,2)-code over {4,5}. Define 6 be the one to one mapping by 6(a;) =
b; for i = 1,2,3. Then the concatenated code C' of C and C5 presented

C = {(445,455), (445, 555), (455, 555)}
be a (6,3, 2)-code.

Next important theorem shows that the concatenation technique works

for IPP codes.

Theorem 7.14. (Tran and Sosina, 2005 )[17]. Let Cy be an w-IPP (ny, No, q2)-
code over Q3 and let Cy be an w-IPP (ni,qs,q1)-code over Q1. Then the
concatenated code C' of Cy and Cs_is an w-IPP (nins, No, q1)-code.

Proof. Letx = (21, ..., Tagny) € Q1'"*. We partition x into ng blocks X, ..., Xp,
with X; = (T(i—1)n, 190 Ting ) € Q70, 1< < np. We will write x =
(X1, ...y Xpy). Speciallyy if x = ¢ = (bi,+..,bs,) € C, then bls are them-
selves blocks of the partition of €.

Suppose x € desc(@;), 1< <, where C; € € with |C;| = a; < w. We
prove that (,_,..(Ci) 70, ie. C is a w-IPP code.

Let C; = {cgi), . caz} C O where c() (b§1 . b§n2> Forany1 <i<r
and any 1 < ¢ < ny define D, @ — {bw N a¢2}7 ie. D§ is the collection of
all £th blocks of the codewords of C;. In other words, Déi) C (5 is a subset of
a; codewords. As x € desc(C;) by the assumption, we have x, € desc(Déi))
for 1 <7 <rand 1 </ <nsy. Since (5 is a w-IPP code, we have

M D #0.
1<i<r
Let b, € nlgigr Dy) be an arbitrary but fixed codeword, i.e. by is a guilty
user for x, in code Cy. Set y = (by,...,b,,). Let ¥ = (ay,...,a,,) € Q™ be
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the corresponding sequence obtained from y using 6, i.e. a; = 6~1(b;). In the

same way let C; = {Egi), s ng } C () denote the corresponding subset of C;.

Since y € desc(C;) by the construction, we have y € desc(C;). for 1 <

1 < r. Hence

y € ﬂ desc(C;).
1<i<r

Since (' is a w-IPP code, we have

ﬂ C; # 0.
1<i<r
Let z' = (a},...,a},) € ﬂlgig(éi) be a guilty user for y in C;. Then z’' =
(b'y,...,b',) € C; for 1 < i < r, where z’ the codeword of C' corresponding

to z’'. Therefore

m G2,

1<

Thus C is an w-IPP:eode. O]
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