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摘 要 
當2≤m≤n，一個m乘n的陣列是由m個列和n個行組成的mn個格子。在m乘n的陣列裡 

的一個部分橫截是收集m個格子的集合，這些格子是來自不同行不同列。在m乘n的 

陣列裡的一個橫截是一個部分橫截，這個部分橫截裡的m個符號都是不一樣的。定 

義L(m,n)是一個最大的整數使得如果每一個符號在m乘n的陣列裡出現最多L(m,n) 

次，則這個陣列一定會有一個橫截。在本篇論文，我們把找拉丁方陣的橫截的研究 

延伸到找m乘n陣列的橫截的研究。大體上，我們對於對某些正整數m和n的L(m,n)值 

感到興趣。 
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Transversals in m× n Arrays

Student: Chang-Chun Lee Advisor: Hung-Lin Fu

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

An m by n array consists of mn cells in m rows and n columns, where
2 ≤ m ≤ n. A partial transversal in an m by n array is a set of m cells, one
from each row and no two from the same column. A transversal in an m by
n array is a partial transversal which m symbols are distinct. Define L(m, n)
as the largest integer such that if each symbol in an m by n array appears at
most L(m, n) times, then the array must have a transversal. In this thesis, we
extend the study of finding transversals in a Latin square to find transversals
in m×n arrays. Mainly, we are interested in determining the value L(m, n) for
certain pairs of positive integers m and n.
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1 Introduction and Preliminaries

1.1 Introduction

A Latin square M of order n based on an n-set S is an n×n array such that each

symbol of S occurs in each row and each column exactly once. For convenience, we

may use S = {1, 2, 3, ..., n} and the symbol appears in the i-th row and j-th column

is called the (i, j)-entry of the Latin square, denoted by M(i, j). Then, the following

figures are examples of a Latin square of order 4 and a Latin square of order 5 re-

spectively.

M1 =

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

M2 =

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

A transversal T of a Latin square is a set of n cells such that no two are in

the same row and the same column and the symbols occur in T are distinct. It is

not difficult to see that the above squares have transversals respectively. For exam-

ples, {(1, 1), (2, 2), (3, 3), (4, 4)} and {(1, 1), (2, 3), (3, 5), (4, 2), (5, 4)}. These two sets

are the transversals of M1 and M2 respectively. But, not every Latin square has a

transversal. For example,

M3 =

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

It is easy to check that M3 has no transversal. Therefore, to determine whether a

Latin square has a transversal or not is an interesting problem. More than 250 years
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ago, Euler conjectured that there do not exist two orthogonal Latin squares of order

4k + 2 for each positive integer k. It is believed that the idea is mainly originated

from the fact that there exists a Latin square of order 4k + 2 which does not have a

transversal. This is easy to see from M3.

Now, we known that a pair of orthogonal Latin squares of order 4k+2, k ≥ 2 , does

not exist [9]. But, for a given Latin square, to determine whether a transversal exists

is still an open problem. Toward solving this problem, in 1967, Ryser [7] conjectured

that every Latin square of odd order has a transversal, and the number of transversals

of a Latin square has the same parity as the order of the square. But, Parker pointed

out that many Latin square of order 7 have an even number of transversals in 1989.

Balasubramanian [2] proved that a Latin square of even order has an even number of

transversals in 1990.

Unfortunately, the above results do not provide any assistance in determining

whether there exists a transversal in a given Latin square or not. An intuitive ap-

proach is to find as many distinct elements from distinct rows and columns as possi-

ble. A partial transversal of a Latin square is a set of n cells from distinct rows and

columns. The size of a partial transversal is the number of distinct symbols which

appears in the partial transversal. For example, P1 = {(1, 1), (2, 3), (3, 2), (4, 4)} is

a partial transversal of M1 of size 2. P2 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} is a par-

tial transversal of M2 of size 1. It is easy to see that we can always find a partial

transversal of size at least n/2 in a Latin square of order n. (Pick any cell in the

first row, then a cell in the second row with a different symbol, and so on.) But,

for larger size, it takes a while to get to the best known result today. First, in 1969,

Koksma [6] showed that the length of a partial transversal in a Latin square is at least

n−(1/3)n. Later Drake [3] showed that the lower bound is n−(1/4)n in 1977. Then,
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by using the idea of matchings in the bipartite graph Kn,n, Woolbright [11] improved

this lower bound to n−
√
n in 1978. Four years later, 1982, Shor [10] gave a better

bound n − (5.53)(lnn)2. Finally, by using a careful calculation in Shor’s technique,

Fu et al. [5] improved this the lower bound to n− (5.518)(lnn)2 in 2002.

Recently, the notion ”transversals in Latin square” has been converted to that

of arrays where we allow common symbols in both rows and columns. For positive

integers m and n, where 2 ≤ m ≤ n, an m by n array contains m rows and n columns.

An m by n array A consists of mn cells and each cell contains one symbol and for

1 ≤ i ≤ m and 1 ≤ j ≤ n, we use A(i, j) to denote the symbol which appears in

the row i and column j. A partial transversal in an m by n array is a set of m cells

such that no two are in the same row and the same column. A partial transversal of

size k contains exactly k distinct symbols which appears in the partial transversal.

A transversal is a partial transversal of size m. Let L(m,n) be the largest integer

such that if each symbol in an m by n array appears at most L(m,n) times, then the

array must have a transversal. For example,

A =
1 1 2 3
4 2 4 1
2 5 3 2

B =
1 1 2 2
2 2 3 3
3 3 1 1

Then A and B are 3 by 4 arrays. Each symbol in A appears at most 4 times.

Each symbol in B appears at most 4 times. T = {(1, 1), (2, 2), (3, 3)} is a transversal

of A. P = {(1, 1), (2, 2), (3, 3)} is a partial transversal of B of size 2. It is easy to

check that B has no transversal. By the array B, L(3, 4) < 4. In 1991, P. Erdős and

J. Spencer [4] showed that an array of order n in which each symbol appears at most

(n − 1)/16 times has a transversal. This implies L(n, n) ≥ b(n − 1)/16c. Recently,

S. Akbari. et al. [1] proved that L(m,n) = b(mn − 1)/(m − 1)c for m ≥ 2 and
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n ≥ 2m3− 6m2 + 6m− 1. In this thesis, we study the value L(m,n) for certain pairs

of positive integers m and n.

1.2 Preliminaries

1.2.1 Probabilistic method: Lovász Local Lemma

Let A1, A2, ..., An be events in an arbitrary probability space. Let Āi denote

the complement of event Ai. Then the probability of A1 given A2 is Pr(A1|A2) =

Pr(A1 ∩ A2)

Pr(A2)
. If Pr(A1|A2) = Pr(A1), we say that A1 and A2 are mutually inde-

pendent. Let S be a set of events. In general, Ai is mutually independent of S if

Pr(Ai|
⋂

Aj∈T Aj) = Pr(Ai) for all T ⊆ {Aj|Aj ∈ S or Āj ∈ S}.

Definition 1.1. Let A1, A2, ..., An be events in an arbitrary probability space. A

graph G = (V,E) on the set of vertices V = {1, 2, ..., n} is called a lopsidependency

graph for the events A1, A2, ..., An if Pr(Ai|
⋂

j∈S Āj) ≤ Pr(Ai) for each i ∈ V and

each S ⊆ V \NG[i].

Definition 1.2. Let A1, A2, ..., An be events in an arbitrary probability space. A di-

rected graph D = (V,E) on the set of vertices V = {1, 2, ..., n} is called a dependency

digraph for the events A1, A2, ..., An if for each i, 1 ≤ i ≤ n, the event Ai is mutually

independent of all the events {Aj : (i, j) /∈ E}.

Theorem 1.3. [Lopsided Lovász Local Lemma] Let A1, A2,...,An be events with

lopsidependency graph G and suppose all the events have probability at most p and

that each i ∈ G has degree at most d. Assume 4pd ≤ 1. Then Pr(
⋂n

i=1 Āi) > 0.

The following lemma, first proved in Erdős and Lovász in 1975, is an extremely

powerful tool.

Theorem 1.4. [Lovász Local Lemma; General Case] Let A1, A2, ..., An be

events in an arbitrary probability space. Suppose that D = (V,E) is a dependency
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digraph for the above events and suppose there are real numbers x1, x2, ..., xn such

that 0 ≤ xi < 1 and Pr(Ai) ≤ xi

∏
(i,j)∈E(1 − xi) for all 1 ≤ i ≤ n. Then

Pr(
⋂n

i=1 Āi) ≥
∏n

i=1(1 − xi). In particular, with positive probability for no event

Ai holds.

Theorem 1.5. [Lovász Local Lemma; Symmetric Case] Let A1, A2, ..., An be

events in an arbitrary probability space. Suppose that each event Ai is mutually inde-

pendent of a set of all the other events Aj but at most d, and that Pr(Ai) ≤ p for all

1 ≤ i ≤ n. If ep(d+ 1) ≤ 1 then Pr(
⋂n

i=1 Āi) > 0.

In 1985, Shearer proved that the constant ”e” is the best possible constant in

the above lemma. In Lovász Local Lemma of general case, we can replace the two

assumptions that each ”Ai is mutually independent of {Aj : (i, j) /∈ E} ” and that

”Pr(Ai) ≤ xi

∏
(i,j)∈E(1 − xi) ” by the weaker assumption that ”for each i and each

S ⊂ {1, 2, ..., n}\{j : (i, j) ∈ E}, Pr(Ai|
⋂

j∈S Āj) ≤ xi

∏
(i,j)∈E(1− xi) ”.

1.2.2 Ideas in direct argument

Besides probabilistic method, we also use a direct argument to find the lower

bound of L(m,n). The idea is based on the following fact which is easy to see.

Proposition 1.6. Let A be an m by n array such that A has a transversal. Then,

the new array A′ obtained by the following three operations also has a transversal.

1. a permutation of rows

2. a permutation of columns

3. a permutation of symbols

5



So, without loss of generality, we may assume the transversal of an m by n array

A lies on the following set of cells: {(1, 1), (2, 2), ..., (m,m)}. For convenience, we also

use A(1, 1), A(2, 2), ..., A(m,m) to denote the transversal of A.

Thus, we are ready to introduce several known results.
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2 Known Results

For completeness, we also include their proofs.

Theorem 2.1. [4] Given an n× n array A. Let k ≤ (n− 1)/16 and suppose that no

entry of A appears more than k times. Then A has a transversal.

Proof. We use Lopsided Lovász Local Lemma. Let Sn be a set of permutations

on an n-set. Let V = {(s, t, u, v)| s < u, t 6= v and A(s, t) = A(u, v)}. For

each (s, t, u, v) ∈ T , let Astuv = {σ| σ ∈ Sn, σ(s) = t and σ(u) = v}. Then A

has a transversal if and only if Pr(
⋂

(s,t,u,v)∈V Āstuv) 6= 0. Hence we will show that

Pr(
⋂

(s,t,u,v)∈V Āstuv) 6= 0.

Note that Pr(Astuv) = (n− 2)!/n! = 1/n(n− 1).

Define a graph G with vertex set V and (s, t, u, v) adjacent to (x, y, z, w) if and

only if {s, u} ∩ {x, z} 6= ∅ or {t, v} ∩ {y, w} 6= ∅. Then we can count the maximal

degree of G. Given (s, t, u, v) ∈ V , there are at most 4n choices of (x, y) with either

x ∈ {s, u} or y ∈ {t, v} and k choices for (z, w) with A(x, y) = A(z, w). Either

(x, y, z, w) adjacent to (s, t, u, v) or (z, w, x, y) adjacent to (s, t, u, v). Thus G has

maximal degree at most 4nk. Then 4 · 4nk · (1/n(n− 1)) ≤ 1.

To show G is a lopsidependency graph. By symmetric, it suffices to show

Pr(A1122|
⋂

(s,t,u,v)∈S Āstuv) ≤ 1/n(n− 1) where s, t, u, v 6= 1, 2.

Let Nij = {σ| σ(1) = i, σ(2) = j and σ ∈
⋂

(s,t,u,v)∈S Āstuv}

Claim: |N12| ≤ |Nij| for all i 6= j.

subpf : If i, j > 2. Let σ ∈ N12. There exist a, b with σ(a) = i, σ(b) = j. Define σ∗

by σ∗(1) = i, σ∗(2) = j, σ∗(a) = 1, σ∗(b) = 2, and σ∗(x) = σ(x) for all x 6= 1, 2, a, b.

Since (1, i), (2, j), (a, 1), (b, 2) are not part of any element in S, σ∗ is in Nij. Then

f : N12 → Nij is injective. Thus |N12| ≤ |Nij|. The case {1, 2}∩{i, j} 6= ∅ is similar.
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Hence,

Pr(A1122|
⋂

(s,t,u,v)∈S

Āstuv) = |N12|/
∑
i 6=j

|Nij| ≤ |N12|/
∑
i 6=j

|N12| = 1/n(n− 1).

By Lopsided Lovász Local Lemma, Pr(
⋂

(s,t,u,v)∈V Āstuv) 6= 0. SoA has a transversal.

The followings are direct proofs

Lemma 2.2. [8] (1) L(m+ 1, n) ≤ L(m,n) and (2) L(m,n) ≤ L(m,n+ 1).

Proof. (1) Suppose that L(m + 1, n) = k. Consider an m by n array A in which

each symbols appears at most k times. Without loss of generality, the symbols in

A are positive integers. Then we add a row to get an (m + 1) × n array B and the

symbols in that row are negative integers and each symbol in that row appears at most

k times. Hence B has a transversal. This implies that A must have a transversal.

(2) Suppose that L(m,n) = k. Consider an m by (n + 1) array A in which each

symbols appears at most k times. Deleting the first column, then we get an m × n

array B. Hence B has a transversal. This implies that A must have a transversal.

Theorem 2.3. [8] If n ≤ 2m− 2, then L(m,n) ≤ n− 1.

Proof. We illustrated for the cases when (m,n) = (3, 3), and (m,n) = (3, 4):

1 1 3
2 2 1
3 3 2

1 1 3 3
2 2 1 1
3 3 2 2

It is easy to check that the above arrays have no tranversals.

Theorem 2.4. [8] L(m,n) < mn/(m− 1).

Proof. If only m− 1 distinct symbols appear in an m× n array, the array has no

transversal. Hence, if each of (m − 1) symbols appears at most mn/(m − 1) times,

the symbols can fill all the cells.
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Theorem 2.5. [8] L(2, n) = 2n− 1 for n ≥ 3.

Proof. Consider a 2 by n array A in which each symbol appears at most 2n − 1

times. Suppose A has no transversal. Then A is equivalent to the following array:

1 b b b b b ...
a 1 a a a a ...

It is easy to check that a, b stand for 1.

Then 1 appears 2n times, a contradiction.

Lemma 2.6. [8] Assume that in a 3 by n array, n ≥ 4, some symbol occurs at most

three times. Then, if there is no transversal some symbol occurs at least 2n−2 times,

hence at least 3n/2 times.

Proof. There are 10 inequivalent cases when one symbol appears at most three

times. We list the 10 cases.

1 1 1 1
1

1 1 1 1 1 1 1
1

1 1
1

1
1
1

1
1

1

1
1

1

We illustrate the case when 1 appears one time. Then we have the following ar-

ray:

1
2 b b b b b ...
a 2 2 2 2 2 ...

9



It is easy to check that a and b stand for 2. Hence the symbol 2 appears at least

2n− 2 times. The other cases are similar.

Theorem 2.7. [8] (a) L(3, 3) = 2 and L(3, 4) = 3. (b) For n ≥ 5, L(3, n) =

b(3n− 1)/2c.

Proof. Exhaustive computer calculations shows that

L(3, 3) = 2, L(3, 4) = 3, L(3, 5) = 7.

By induction on n. Assume that the induction holds for a particular odd n. i.e.

L(3, n) = (3n − 1)/2. We will show that it holds for n + 1, that is, L(3, n + 1) =

(3n+ 1)/2.

Consider a 3 by n + 1 array A in which each symbol appears at most (3n + 1)/2

times. If each symbol appears at most (3n− 1)/2 times, then deleting one column to

obtain a 3 by n array. By induction hypothesis, the 3 by n array has a transversal.

Hence A has a transversal.

Suppose there is at least one symbol appears at least (3n+1)/2 times. If there are

two such symbols, they appear at least 3n+ 1 times. Hence some symbol appears at

most three times. By Lemma 2.6, if there is no transversal, then some symbol occurs

at least 3(n+ 1)/2 times. So A has a transversal.

Hence there is only one symbol that appears at least (3n + 1)/2 times. There

must be a column in which it appears at least twice. Deleting that column, we

get a 3 by n array in which each symbol appears at most (3n − 1)/2 times. By

induction hypothesis, the 3 by n array has a transversal. Hence A has a transversal.

Thus L(3, n + 1) ≥ (3n + 1)/2. By Theorem 2.4, L(3, n + 1) < (3n + 3)/2. So,

L(3, n+ 1) = (3n+ 1)/2. When n is even, the argument is similar.

Theorem 2.8. [8] L(m,n) ≥ n−m+ 1.
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Proof. We use induction on m to prove the assertion.

The theorem is true for m = 2 or m = 3. Assume that it is true for m − 1. We

will show that it holds for m.

Assume that L(m − 1, n) ≥ n − m + 2. Consider an m by n array A in which

each symbol appears at most n−m+ 1 times. Deleting the last row of A, we get an

m − 1 by n array. The m − 1 by n array has a transversal. Suppose that A has no

transversal. Then A is equivalent to the following array:

1 a a a a ...
2 ...

3 ...
. . . ...

m− 1 ...
1 a a a a ...

An a stands for 1, 2, ...,m−1. Then there are at least 2(n−m)+2 cells containing

a or 1. Since 1 appears at most n−m+ 1 times in A and 2(n−m) + 2 > n−m+ 1,

there must be an element in {2, 3, ...,m−1} occuring in some cells marked a. Without

loss of generality, we take the symbol to be 2. Then we have the following array:

1 2 a a a ...
a 2 a a a ...

3 ...
. . . ...

m− 1 ...
1 a a a a ...

Then there are at least 3(n − m) + 3 cells containing a, 1 or 2. Since 1 and 2

appear at most 2n− 2m+ 2 times inA and 3(n−m) + 3 > 2n− 2m+ 2, there be an

element in {3, ...,m− 1} occuring in some cells marked a. Without loss of generality,

we take the symbol to be 3.

11



1 2 3 a a ...
a 2 a a a ...
a 3 a a a ...

. . .

m− 1 ...
1 a a a a ...

Continuing the analysis, the symbols 1, 2, ...,m − 1 appear at least (m − 1)(n −

m) +m times. But, (m− 1)(n−m) +m > (m− 1)(n−m+ 1), a contradiction. This

concludes the proof.
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3 Main Result

Theorem 2.1 implies L(n, n) ≥ b(n− 1)/16c. We improve this lower bound.

Theorem 3.1. L(n, n) ≥ b(n+ 4e)/4ec.

Proof. Let k = b(n+ 4e)/4ec.

Consider an n by n array A in which each symbol appears at most k times.

We use Lovász Local Lemma. Let Sn be a set of permutations on an n-set. Let

V = {(s, t, u, v)| s < u, t 6= v and A(s, t) = A(u, v)}. For each (s, t, u, v) ∈ T , let

Astuv = {σ| σ ∈ Sn, σ(s) = t and σ(u) = v}. Then A has a transversal if and only if

Pr(
⋂

(s,t,u,v)∈V Āstuv) 6= 0. Hence we will show that Pr(
⋂

(s,t,u,v)∈V Āstuv) 6= 0.

Note that Pr(Astuv) = (n− 2)!/n! = 1/n(n− 1).

Define a graph G with vertex set V and (s, t, u, v) adjacent to (x, y, z, w) if and

only if {s, u} ∩ {x, z} 6= ∅ or {t, v} ∩ {y, w} 6= ∅. Then we can count the maximal

degree of G. Given (s, t, u, v) ∈ V , there are at most 4n − 4 choices of (x, y) with

either x ∈ {s, u} or y ∈ {t, v} and k − 1 choices for (z, w) with A(x, y) = A(z, w).

Either (x, y, z, w) adjacent to (s, t, u, v) or (z, w, x, y) adjacent to (s, t, u, v). Thus G

has maximal degree at most (4n− 4)(k − 1)− 1. Then e · ((4n− 4)(k − 1)− 1 + 1) ·

(1/n(n− 1)) ≤ e · 4(n− 1)(n/4e) · (1/n(n− 1)) = 1.

To show G is a lopsidependency graph. By symmetric, it suffices to show

Pr(A1122|
⋂

(s,t,u,v)∈S Āstuv) ≤ 1/n(n− 1) where s, t, u, v 6= 1, 2.

Let Nij = {σ| σ(1) = i, σ(2) = j and σ ∈
⋂

(s,t,u,v)∈S Āstuv}

Claim: |N12| ≤ |Nij| for all i 6= j.

subpf : If i, j > 2. Let σ ∈ N12. There exist a, b with σ(a) = i, σ(b) = j. Define σ∗

by σ∗(1) = i, σ∗(2) = j, σ∗(a) = 1, σ∗(b) = 2, and σ∗(x) = σ(x) for all x 6= 1, 2, a, b.

Since (1, i), (2, j), (a, 1), (b, 2) are not part of any element in S, σ∗ is in Nij. Then
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f : N12 → Nij is injective. Thus |N12| ≤ |Nij|. The case {1, 2}∩{i, j} 6= ∅ is similar.

Hence,

Pr(A1122|
⋂

(s,t,u,v)∈S

Āstuv) = |N12|/
∑
i 6=j

|Nij| ≤ |N12|/
∑
i 6=j

|N12| = 1/n(n− 1).

By Lovász Local Lemma, Pr(
⋂

(s,t,u,v)∈V Āstuv) 6= 0. So A has a transversal.

The following results obtain from direct argument.

Lemma 3.2. L(m,n) ≤ b(mn− 1)/(m− 1)c

Proof. Suppose mn = k(m − 1) + r where k, r ∈ Z, 0 ≤ r < m − 1. If r = 0. By

Theorem 2.4, L(m,n) < mn/(m−1) = k. Then L(m,n) ≤ k−1 = b(mn−1)/(m−1)c.

If 1 ≤ r < m − 1, L(m,n) < mn/(m − 1) = k + r/(m − 1) < k + 1. Then

L(m,n) ≤ k = b(mn− 1)/(m− 1)c.

By above Lemma, if we can show that L(m,n) ≥ b(mn − 1)/(m − 1)c, then

L(m,n) = b(mn− 1)/(m− 1)c. The following results use the idea.

Theorem 3.3. For n ≥ 43, L(4, n) = b(4n− 1)/3c.

Proof. Consider a 4 by n array A in which each symbol appears at most b(4n−1)/3c

times. Since L(3, n) = b(3n − 1)/2c ≥ b(4n − 1)/3c, the 3 by n array consisting of

the first three rows of A has a transversal. Suppose that A has no transversal. Then

A is equivalent to the following array:

1 x1 x2 x3 x4 x5 ...... xn−4

2 ......
3 ......

1 xn−3 xn−2 xn−1 xn xn+1 ...... x2n−8

where xi ∈ {1,2,3}, for all 1 ≤ i ≤ 2n− 8.
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Then there are at least 2(n − 4) + 2 cells containing xi or 1. Since 1 appears at

most b(4n− 1)/3c times in A and 2(n− 4) + 2 > b(4n− 1)/3c, there must be a 2 or

3 in some cells marked xi. Without loss of generality, we take x1 to be 2. Then we

have the following array:

1 2 x2 x3 x4 x5 ...... xn−4

y1 2 y2 y3 y4 y5 ...... yn−4

3 ......
1 xn−3 xn−2 xn−1 xn xn+1 ...... x2n−8

where xi, yj ∈ {1,2,3}, for all 2 ≤ i ≤ 2n− 8 and 1 ≤ j ≤ n− 4.

Then there are at least 3(n − 4) + 3 cells containing xi, yj, 1, or 2. Since 1 and

2 appear at most 2b(4n− 1)/3c times in A and 3(n− 4) + 3 > 2b(4n− 1)/3c, there

must be a 3 in some cell marked xi or yj. There are 5 inequivalent cases, x2 = 3,

xn−3 = 3, xn−2 = 3, y1 = 3 or y2 = 3.

If x2 = 3, then we have the following array:

1 2 3 x3 x4 x5 ...... xn−4

y1 2 y2 y3 y4 y5 ...... yn−4

z1 3 z2 z3 z4 z5 ...... zn−4

1 xn−3 xn−2 xn−1 xn xn+1 ...... x2n−8

where xi, yj, zk ∈ {1,2,3}, for all 3 ≤ i ≤ 2n − 8 and 1 ≤ j ≤ n − 4 and

1 ≤ k ≤ n− 4. Deleting the first six columns and deleting the last row we get a 3 by

n − 6 array B in which each symbol appears at most b(4n − 1)/3c − 2 times. Since

b(3(n− 6)− 1/2c ≥ b(4n− 1)/3c − 2, B has a transversal T . Note that the symbols

occur in T are 1, 2, 3. Hence A(4, 1), A(4, 2), A(4, 3) ∈ {1, 2, 3}. Otherwise, A has

a transversal. Similarly, all cells contain 1, 2, 3. Then the symbols 1, 2, 3 appear 4n

times. But 4n > 3b(4n − 1)/3c, a contradiction. Then A has a transversal. Since

the argument of the other cases are similar, we omit the details. In fact, no matter
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which case, we can get an 4 by n− 6 array consisting of the last n− 6 columns of A

in which symbols in the array are 1, 2, 3.

Thus, L(4, n) ≥ b(4n − 1)/3c. By Lemma 3.2, L(4, n) ≤ b(4n − 1)/3c. So,

L(4, n) = b(4n− 1)/3c.

We can use the same technique for general case.

Theorem 3.4. For m ≥ 2 and n ≥ 2m3 − 8m2 + 12m− 5,

L(m,n) = b(mn− 1)/(m− 1)c.

Proof. We use induction on m to prove the assertion.

If m = 2. Then n ≥ 3. By Theorem 2.5, L(2, n) = 2n − 1. Assume that

it is true for m − 1. That is L(m − 1, n) = b((m − 1)n − 1)/(m − 2)c for n ≥

2(m− 1)3 − 8(m− 1)2 + 12(m− 1)− 5 = 2m3 − 14m2 + 34m− 27. To show it holds

that for n ≥ 2m3 − 8m2 + 12m− 5, L(m,n) = b(mn− 1)/(m− 1)c.

For n ≥ 2m3 − 8m2 + 12m − 5, consider an m by n array A in which each sym-

bol appears at most b(mn − 1)/(m − 1)c times. Since 2m3 − 8m2 + 12m − 5 ≥

2m3−14m2 +34m−27 and b((m−1)n−1)/(m−2)c ≥ b(mn−1)/(m−1)c, then the

m− 1 by n array consisting of the first m− 1 rows of A has a transversal. Suppose

that A has no transversal. Then A is equivalent to the following array:

1 a a a a ..... a
2

. . .

m− 1
1 a a a a ..... a

where an a stands for 1, 2, ...,m− 1.

There are at least 2(n −m) + 2 cells containing a or 1. Since 1 appears at most

b(mn − 1)/(m − 1)c times and 2(n − m) + 2 > b(mn − 1)/(m − 1)c, there must
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be an element in {2, 3, ...,m − 1} occuring in some cells marked a. Without loss of

generality, we take the symbol to be 2. Then A is equivalent to the following array:

1 2 a a a ..... a
a 2 a a a ..... a

. . .

m− 1
1 a a a a ..... a

where an a stands for 1, 2, ...,m− 1.

If k(n−m)+k > (k−1)b(mn−1)/(m−1)c for 2 ≤ k ≤ m−1, then we can continue

the argument. It is enough to show k(m− 1)(n−m) + k(m− 1) > (k − 1)(mn− 1).

k(m − 1)(n − m) + k(m − 1) − (k − 1)(mn − 1) = (m − k)n − km2 + 2km − 1.

Since m − k ≥ 1, it is enough to show that n > km2 − 2km + 1 = m(m − 2)k + 1.

When k is getting larger, m(m− 2)k + 1 is getting larger. It is enough to show that

n > (m−1)m2−2(m−1)m+1. Since 2m3−8m2+12m−5 > (m−1)m2−2(m−1)m+1,

then n > (m− 1)m2 − 2(m− 1)m+ 1. Hence, we can continue the argument. Then

we can get an m by n − (2m − 2) array B consisting of the last n − (2m − 2)

columns of A. The symbols in B are 1, 2, ...,m − 1. And each symbol in B appears

at most b(mn− 1)/(m− 1)c− 2 times. Since b((m− 1)(n− 2m+ 2)− 1)/(m− 2)c ≥

b(mn−1)/(m−1)c−2, the array obtained from deleting any row in B has a transversal

T . Note that the symbols occur in T are 1, 2, ...,m − 1. Then all cells contain

1, 2, ...,m − 1. Otherwise, A has a transversal. Therefore, in total 1, 2, ...,m − 1

appear mn times. But, mn > (m− 1)b(mn− 1)/(m− 1)c, a contradiction. Thus, A

has a transversal. Hence L(m,n) ≥ b(mn− 1)/(m− 1)c.

By Lemma 3.2, L(m,n) ≤ b(mn− 1)/(m− 1)c, we conclude the proof.
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4 Conclusion

From the study of the ”transversal problem” of an m by n array, we notice that

the most difficult part remains in the situation when m is not that far from n. That is

why the transversal problem of a Latin square is still one of the most difficult problem

in combinatorial designs. So, for future study, we should focus on determining L(n, n)

or L(m,n) where m is a linear function of n instead the bound we obtain in this thesis

which is in cubic order.
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