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Transversals in m x n Arrays

Student: Chang-Chun Lee Advisor: Hung-Lin Fu

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

An m by n array consists of mn cells in m rows and n columns, where
2 < m < n. A partial transversal in an m by n array is a set of m cells, one
from each row and no two from the same column. A transversal in an m by
n array is a partial transversal which m symbols are distinct. Define L(m,n)
as the largest integer such that if each symbol in an m by n array appears at
most L(m,n) times, then the array must have a transversal. In this thesis, we
extend the study of finding transversals in a Latin square to find transversals
in m x n arrays. Mainly, we are interested in determining the value L(m,n) for
certain pairs of positive integers m and n.
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1 Introduction and Preliminaries

1.1 Introduction

A Latin square M of order n based on an n-set S is an n X n array such that each
symbol of S occurs in each row and each column exactly once. For convenience, we
may use S = {1,2,3,...,n} and the symbol appears in the i-th row and j-th column
is called the (7, j)-entry of the Latin square, denoted by M (i, j). Then, the following
figures are examples of a Latin square of order 4 and a Latin square of order 5 re-

spectively.

e 12345
i 51234
M, = My=[4[5[1]2]3

21143
e 34512
o345 1

A transversal T of a Latin square is a set of n cells such that no two are in
the same row and the same column and the symbols occur in 7' are distinct. It is
not difficult to see that the above squares have transversals respectively. For exam-
ples, {(1,1),(2,2),(3,3),(4,4)} and {(1,1),(2,3),(3,5), (4,2), (5,4)}. These two sets
are the transversals of M; and M, respectively. But, not every Latin square has a

transversal. For example,

W DN —| D] O b~
=W N | O Ot
DNO| || U x| D

Y O N | W

= OO = W N

| O | W DO -

It is easy to check that M3 has no transversal. Therefore, to determine whether a

Latin square has a transversal or not is an interesting problem. More than 250 years



ago, Euler conjectured that there do not exist two orthogonal Latin squares of order
4k + 2 for each positive integer k. It is believed that the idea is mainly originated
from the fact that there exists a Latin square of order 4k + 2 which does not have a
transversal. This is easy to see from Mj.

Now, we known that a pair of orthogonal Latin squares of order 4k+2, k£ > 2, does
not exist [9]. But, for a given Latin square, to determine whether a transversal exists
is still an open problem. Toward solving this problem, in 1967, Ryser [7] conjectured
that every Latin square of odd order has a transversal, and the number of transversals
of a Latin square has the same parity as the order of the square. But, Parker pointed
out that many Latin square of order 7 have an even number of transversals in 1989.
Balasubramanian [2] proved that a Latin square of even-order has an even number of
transversals in 1990.

Unfortunately, the above results do not provide any assistance in determining
whether there exists a transversal in a given Latin square or not. An intuitive ap-
proach is to find as many distinct elements from distinct rows and columns as possi-
ble. A partial transversal of a Latin square is a set of n cells from distinct rows and
columns. The size of a partial transversal is the number of distinct symbols which
appears in the partial transversal. For example, P, = {(1,1),(2,3),(3,2),(4,4)} is
a partial transversal of M; of size 2. P, = {(1,1),(2,2),(3,3),(4,4),(5,5)} is a par-
tial transversal of M, of size 1. It is easy to see that we can always find a partial
transversal of size at least n/2 in a Latin square of order n. (Pick any cell in the
first row, then a cell in the second row with a different symbol, and so on.) But,
for larger size, it takes a while to get to the best known result today. First, in 1969,
Koksma [6] showed that the length of a partial transversal in a Latin square is at least

n—(1/3)n. Later Drake [3] showed that the lower bound is n— (1/4)n in 1977. Then,



by using the idea of matchings in the bipartite graph K, ,, Woolbright [11] improved
this lower bound to n — /n in 1978. Four years later, 1982, Shor [10] gave a better
bound n — (5.53)(Inn)?. Finally, by using a careful calculation in Shor’s technique,
Fu et al. [5] improved this the lower bound to n — (5.518)(Inn)? in 2002.

Recently, the notion ”transversals in Latin square” has been converted to that
of arrays where we allow common symbols in both rows and columns. For positive
integers m and n, where 2 < m < n, an m by n array contains m rows and n columns.
An m by n array A consists of mn cells and each cell contains one symbol and for
1 <i<mand1l<j<n, weuse A(i,j) to denote the symbol which appears in
the row ¢ and column j. A partial transversal in an m by n array is a set of m cells
such that no two are in the same row and the same column. A partial transversal of
size k contains exactly k distinct symbols which appears in the partial transversal.
A transversal is a partial transversal of size m. Let L(m,n) be the largest integer
such that if each symbol in an m by n array appears at most L(m,n) times, then the

array must have a transversal. For example,

11112 L[ | 2
A=|4124 |1 B =8 3
21543 313|111

Then A and B are 3 by 4 arrays. Each symbol in A appears at most 4 times.
Each symbol in B appears at most 4 times. 7' = {(1,1),(2,2),(3,3)} is a transversal
of A. P ={(1,1),(2,2),(3,3)} is a partial transversal of B of size 2. It is easy to
check that B has no transversal. By the array B, L(3,4) < 4. In 1991, P. Erdés and
J. Spencer [4] showed that an array of order n in which each symbol appears at most
(n —1)/16 times has a transversal. This implies L(n,n) > |(n — 1)/16]. Recently,

S. Akbari. et al. [1] proved that L(m,n) = [(mn — 1)/(m — 1)] for m > 2 and



n > 2m?3 — 6m? + 6m — 1. In this thesis, we study the value L(m,n) for certain pairs

of positive integers m and n.

1.2 Preliminaries

1.2.1 Probabilistic method: Lovasz Local Lemma

Let Ay, As, ..., A, be events in an arbitrary probability space. Let A; denote

the complement of event A;. Then the probability of A; given Ay is Pr(A;|As) =

Pr(A; N A,)
Pr(A,y)

pendent. Let S be a set of events. In general, A; is mutually independent of S if

. If Pr(A|As) = Pr(A;), we say that A; and Ay are mutually inde-

Pr(AilNa,er Aj) = Pr(A;) for all T C {A;|4; € S or Aj e St

Definition 1.1. Let A;, Ao, ..., A, be events in an arbitrary probability space. A
graph G = (V, E)) on the set of vertices V = {1,2,...,n} is called a lopsidependency
graph for the events Ay, Ay, .., A, if Pr(A|[);cq A;) < Pr(A;) for each i € V and
each S C V' \ Ng[il.

Definition 1.2. Let Ay, A, ..., A, be events in an arbitrary probability space. A di-
rected graph D = (V, E) on the set of vertices V' = {1,2,...,n} is called a dependency

digraph for the events Ay, As, ...; A, if for each i, 1 < ¢ < n, the event A; is mutually

independent of all the events {A," (¢,7) ¢ E}.

Theorem 1.3. [Lopsided Lovdsz Local Lemma] Let Ay, As,...,A, be events with
lopsidependency graph G and suppose all the events have probability at most p and

that each i € G has degree at most d. Assume 4pd < 1. Then Pr((._, 4;) > 0.

The following lemma, first proved in Erdés and Lovasz in 1975, is an extremely

powerful tool.

Theorem 1.4. [Lovdsz Local Lemma; General Case] Let Ay, As, ..., A, be

events in an arbitrary probability space. Suppose that D = (V| E) is a dependency
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digraph for the above events and suppose there are real numbers x1,xo, ..., x, such
that 0 < x; < 1 and Pr(4;) < xiH(i7j)€E(1 — ;) for all 1 < i < n. Then
Pr(N, A) > [T=,(1 — ;). In particular, with positive probability for no event

A; holds.

Theorem 1.5. [Lovdsz Local Lemma; Symmetric Case] Let Ay, As, ..., A, be
events in an arbitrary probability space. Suppose that each event A; is mutually inde-
pendent of a set of all the other events A; but at most d, and that Pr(A;) <p for all

1<i<n. Ifep(d+1) <1 then Pr(N, 4;) > 0.

In 1985, Shearer proved that the constant ”"e” is the best possible constant in
the above lemma. In Lovész Local Lemma of general case, we can replace the two
assumptions that each ”A; is mutually independent of {A4; : (i,5) ¢ £} 7 and that

"Pr(4;) < xi]]; jyes(l —2:) 7 by the weaker assumption that ”for each i and each
Sc L2, ... n\{ju(i ) € B}, PrAilNes Aj) <zl jen(l — i) ™.

1.2.2 Ideas in direct argument

Besides probabilistic method, we also use a direct argument to find the lower

bound of L(m,n). The idea'is based on the following fact which is easy to see.

Proposition 1.6. Let A be an m by n array such that A has a transversal. Then,

the new array A’ obtained by the following three operations also has a transversal.
1. a permutation of rows
2. a permutation of columns

3. a permutation of symbols



So, without loss of generality, we may assume the transversal of an m by n array
A lies on the following set of cells: {(1,1),(2,2), ..., (m, m)}. For convenience, we also
use A(1,1), A(2,2), ..., A(m,m) to denote the transversal of A.

Thus, we are ready to introduce several known results.



2 Known Results

For completeness, we also include their proofs.

Theorem 2.1. [}/ Given an n xn array A. Let k < (n—1)/16 and suppose that no

entry of A appears more than k times. Then A has a transversal.

Proof. We use Lopsided Lovasz Local Lemma. Let S, be a set of permutations
on an n-set. Let V = {(s,t,u,v)| s < u, t # v and A(s,t) = A(u,v)}. For
each (s,t,u,v) € T, let Agpy = {0| 0 € Sy, 0(s) =t and o(u) = v}. Then A

has a transversal if and only if Pr(ﬂ( Asuw) # 0. Hence we will show that

Pr(ﬂ(sﬂf,mv)ev Astuv) 7& 0.

Note that Pr(Asu) = (n—2)!/nl=1/n(n —1).

$,t,u,v)EV

Define a graph G with vertex set V' and (s,t,u,v) adjacent to (z,y, z,w) if and
only if {s,u} N{x, 2z} # @ or {t,v} N {y,w} # &. Then we can count the maximal
degree of G. Given (s,t,u,v) € V, there are at most 4n choices of (x,y) with either
x € {s,u} or y € {t,v} and k choices for (z,w) with A(z,y) = A(z,w). Either
(x,y, z,w) adjacent to (s,t,u,v) or (z,w,z,y) adjacent to (s,t,u,v). Thus G has
maximal degree at most 4nk. Then 4 - 4nk - (1/n(n —1)) < 1.

To show G is a lopsidependency graph. By symmetric, it suffices to show
Pr(Anzel N iuwwes Agpuw) < 1/n(n — 1) where s,t,u,v # 1,2.

Let Nij = {o] o(1) =i, 0(2) = j and 0 € (4 yuyes Astun}

Claim: |Nyq| < |N;;| for all i # j.

subpf: If i,j > 2. Let 0 € Nj5. There exist a,b with o(a) = i, o(b) = j. Define o*
by 0*(1) =i, 0*(2) = j, 0"(a) = 1, 0*(b) = 2, and 0*(z) = o(z) for all z # 1,2, a,b.
Since (1,1), (2,7), (a,1), (b,2) are not part of any element in S, ¢* is in N;;. Then

[+ Nig — Njj is injective. Thus |Nja| < |N;;|. The case {1,2}N{i, j} # @ is similar.n



Hence,

Pr(Augs| [ Asw) = [Niol/ D INg| < [Nia|/ Y [Nia| = 1/n(n = 1).

(s,t,u,v)€S 1#£j 1]

By Lopsided Lovdsz Local Lemma, Pr ()

stuw)eV Agiww) # 0. So A has a transversal.u

The followings are direct proofs
Lemma 2.2. [8/ (1) L(m + 1,n) < L(m,n) and (2) L(m,n) < L(m,n + 1).

Proof. (1) Suppose that L(m + 1,n) = k. Consider an m by n array A in which
each symbols appears at most k times. Without loss of generality, the symbols in
A are positive integers. Then we add a row to get an (m + 1) x n array B and the
symbols in that row are negative integers and each symbol in that row appears at most
k times. Hence B has a transversal. This implies that A must have a transversal.
(2) Suppose that L(m,n) = k. Consider an m by (n+ 1) array A in which each
symbols appears at most k times. Deleting the first column; then we get an m x n

array B. Hence B has a transversal. This implies that A must have a transversal. m

Theorem 2.3. [8] If n < 2m — 2, then L(m,n) <n — 1.

Proof. We illustrated for the cases when (m,n) = (3,3), and (m,n) = (3,4):

111 111 3
211 2 111
313 313 2

It is easy to check that the above arrays have no tranversals.
Theorem 2.4. [8] L(m,n) < mn/(m —1).

Proof. If only m — 1 distinct symbols appear in an m x n array, the array has no
transversal. Hence, if each of (m — 1) symbols appears at most mn/(m — 1) times,

the symbols can fill all the cells. [



Theorem 2.5. [8/ L(2,n) =2n —1 forn > 3.

Proof. Consider a 2 by n array A in which each symbol appears at most 2n — 1

times. Suppose A has no transversal. Then A is equivalent to the following array:

It is easy to check that a, b stand for 1.

Then 1 appears 2n times, a contradiction. [

Lemma 2.6. [8] Assume that in a 3 by n array, n.> 4, some symbol occurs at most
three times. Then, if there is no transversal some symbol occurs at least 2n — 2 times,

hence at least 3n/2 times.

Proof. There are 10 inequivalent cases when one symbol appears at most three

times. We list the 10 cases.

1 1]1 1 1 ¥l | 1111 111
1 1
111 1 1 1
1 1 1 1
1 1 1

We illustrate the case when 1 appears one time. Then we have the following ar-

ray:




It is easy to check that a and b stand for 2. Hence the symbol 2 appears at least

2n — 2 times. The other cases are similar. (]

Theorem 2.7. [8] (a) L(3,3) = 2 and L(3,4) = 3. (b) Forn > 5, L(3,n) =

|(3n —1)/2].

Proof. Exhaustive computer calculations shows that
L(3,3) =2, L(3,4)=3, L(3,5)=T.

By induction on n. Assume that the induction holds for a particular odd n. i.e.
L(3,n) = (3n — 1)/2. We will show that it holds for n + 1, that is, L(3,n + 1) =
(3n+1)/2.

Consider a 3 by n + 1 array A in which each symbol appears at most (3n + 1)/2
times. If each symbol appears at most (3n — 1)/2 times, then deleting one column to
obtain a 3 by n array. By induction hypothesis, the 3 by n array has a transversal.
Hence A has a transversal.

Suppose there is at least one symbol appears at least (3n+1)/2 times. If there are
two such symbols, they appear at least 3n + 1 times. Hence some symbol appears at
most three times. By Lemma 2.6, if there is no transversal, then some symbol occurs
at least 3(n + 1)/2 times. So A has a transversal.

Hence there is only one symbol that appears at least (3n + 1)/2 times. There
must be a column in which it appears at least twice. Deleting that column, we
get a 3 by n array in which each symbol appears at most (3n — 1)/2 times. By
induction hypothesis, the 3 by n array has a transversal. Hence A has a transversal.
Thus L(3,n + 1) > (3n + 1)/2. By Theorem 2.4, L(3,n+ 1) < (3n + 3)/2. So,

L(3,n+1) = (3n+ 1)/2. When n is even, the argument is similar. ]

Theorem 2.8. [8/ L(m,n) >n—m+ 1.

10



Proof. We use induction on m to prove the assertion.

The theorem is true for m = 2 or m = 3. Assume that it is true for m — 1. We
will show that it holds for m.

Assume that L(m — 1,n) > n —m + 2. Consider an m by n array A in which
each symbol appears at most n — m + 1 times. Deleting the last row of A, we get an
m — 1 by n array. The m — 1 by n array has a transversal. Suppose that A has no

transversal. Then A is equivalent to the following array:

An a stands for 1,2, ...,m— 1. Then there are at least 2(n—m)+2 cells containing
a or 1. Since 1 appears at most n —m + 1 times in A and 2(n—m)+2 >n—m+1,
there must be an element in {2, 3, ..., m—1} occuring in some cells marked a. Without

loss of generality, we take the symbol to be 2. - Then we have the following array:

1 2lalala
al 2 alala
3
m—1
llalalala

Then there are at least 3(n — m) + 3 cells containing a, 1 or 2. Since 1 and 2
appear at most 2n — 2m + 2 times inA and 3(n —m) + 3 > 2n — 2m + 2, there be an
element in {3, ...,m — 1} occuring in some cells marked a. Without loss of generality,

we take the symbol to be 3.

11



Continuing the analysis, the symbols 1,2,...,m — 1 appear at least (m — 1)(n —
m) +m times. But, (m—1)(n—m)+m > (m —1)(n —m+1), a contradiction. This

concludes the proof. [

12



3 Main Result

Theorem 2.1 implies L(n,n) > [(n — 1)/16]. We improve this lower bound.
Theorem 3.1. L(n,n) > |(n + 4e)/4e].

Proof. Let k= [(n+4e)/4e].

Consider an n by n array A in which each symbol appears at most & times.
We use Lovasz Local Lemma. Let S, be a set of permutations on an n-set. Let
V= {(s,t,u,v)| s < u, t # v and A(s,t) = A(u,v)}. For each (s,t,u,v) € T, let
Aguy ={0| 0 € S,, 0(s) =t and o(u) = v}. Then A has a transversal if and only if
Pr(ﬂ(&t’w)ev Agus) # 0. Hence we will show that Pr(ﬂ(s7t7u7v)ev Agus) 7 0.

Note that Pr(Asuw) = (n—2)!/nl=1/n(n —1).

Define a graph G with vertex set V' and (s,t,u,v) adjacent to (x,y, z,w) if and
only if {s,u} N{x, 2z} # @ or {t,v} N{y,w} # &. Then we can count the maximal
degree of G. Given (s,t,u,v) € V, there are at most 4n —4 choices of (x,y) with
either © € {s,u} or'y € {t,v} and k —1 choices for (z,w) with A(z,y) = A(z,w).
Either (z,y, z,w) adjacent to (s,t, u,v) or (z,w,z,y) adjacent to (s,t,u,v). Thus G
has maximal degree at most (4n —4)(k—1)—1. Thene- ((dn—4)(k—1)—1+1)-
(1/n(n—1)) <e-4(n—1)(n/de)- (1/n(n—1)) = 1.

To show G is a lopsidependency graph. By symmetric, it suffices to show
Pr(Anzel N iuwwes Agiuw) < 1/n(n — 1) where s,t,u,v # 1,2.

Let Ny ={o| o(1) =4, 0(2) =j and 0 € (V54 ,0)es Agtun}

Claim: |Nio| < |N;;| for all i # j.
subpf: If i,j > 2. Let 0 € Nj5. There exist a,b with o(a) = i, o(b) = j. Define o*
by 0*(1) =i, 0*(2) = j, 0*(a) = 1, 0*(b) = 2, and 0*(z) = o(z) for all z # 1,2, a,b.

Since (1,1), (2,7), (a,1), (b,2) are not part of any element in S, ¢* is in N;;. Then

13



[+ N1 — Njj is injective. Thus |Ny2| < |N;j|. The case {1,2}N {4, j} # @ is similar.m

Hence,

Pr(Aus| [ Asww) = [Niol/ D INy| < [Nia|/ Y [ Nio| = 1/n(n = 1).
(s,t,u,v)ES i#£j i#£]

By Lovész Local Lemma, Pr(ﬂ( Agtuw) # 0. So A has a transversal. [

st u,v)EV

The following results obtain from direct argument.
Lemma 3.2. L(m,n) < |[(mn—1)/(m—1)]

Proof. Suppose mn = k(m — 1) +r where k,r € Z,0 <r <m —1. If r =0. By
Theorem 2.4, L(m,n) < mn/(m—1) = k. Then L(m,n) < k—1 = [(mn—1)/(m—1)].
If1<r<m-=1, Limmn) < mn/(m—1) = k+r/(m—1) < k+ 1. Then

L(im,n) <k=|(mn—=1)/(m—1)]. ]

By above Lemma, if we can show that L(m,n) > [(mn — 1)/(m — 1)|, then

L(m,n) = |(mn — 1)/(m — 1)]. The following results use the idea.
Theorem 3.3. For n'> 43, L(4,n) = |(4n—1)/3].

Proof. Consider a 4 by n array A in which each symbol appears at most | (4n—1)/3]
times. Since L(3,n) = [(3n —1)/2] > [(4n — 1)/3], the 3 by n array consisting of
the first three rows of A has a transversal. Suppose that A has no transversal. Then

A is equivalent to the following array:

1 Tn—3 | Tpn-2 | Tpn—1 | Tn | Tptl | coeeer Ton—8

where z; € {1,2,3}, for all 1 <1 < 2n — 8.

14



Then there are at least 2(n — 4) + 2 cells containing z; or 1. Since 1 appears at
most |(4n — 1)/3] times in A and 2(n —4) +2 > [(4n — 1)/3], there must be a 2 or
3 in some cells marked x;. Without loss of generality, we take x; to be 2. Then we

have the following array:

1 2 i) XT3 T4 Ty | enenn Tp—4

Y 2 Y2 Ys | Ya | Y5 | e Yn—a
3 L e

1 Tpn—3 | Tpn—2 | Tn-1| Tn | Tntl | ------ Ton—8

where z;,y; € {1,2,3}, forall 2 <i<2n—8and 1 <j <n—4.

Then there are at least 3(n — 4) + 3 cells containing w;, y;, 1, or 2. Since 1 and
2 appear at most 2| (4n — 1)/3] times in A and 3(n = 4) +3 > 2| (4n — 1)/3], there
must be a 3 in some cell marked z; or y;. There are 5 inequivalent cases, x5 = 3,
Tp 3 =3, Tp_o=3, Y1 =3 or ys = 3.

If x5 = 3, then we have the following array:

1 2 3 I3 Ty Ty Afreeeees Tp—4
Y 2 Y2 Tl | e Yn—1
21 3 29 z3 Z4 25 | eeeees Zn—4

1 | Zp3 | Tnoo| Tpo1 | T | Tng1 | -oee- Ton—8

where z;,y;,2, € {1,23}, forall 3 < i < 2n -8 and 1 < j < n —4 and
1 <k <n—4. Deleting the first six columns and deleting the last row we get a 3 by
n — 6 array B in which each symbol appears at most |(4n — 1)/3] — 2 times. Since
|(3(n—6) —1/2| > [(4n —1)/3] — 2, B has a transversal 7. Note that the symbols
occur in T are 1,2,3. Hence A(4,1),A(4,2),A(4,3) € {1,2,3}. Otherwise, A has
a transversal. Similarly, all cells contain 1,2,3. Then the symbols 1,2,3 appear 4n
times. But 4n > 3|(4n — 1)/3], a contradiction. Then A has a transversal. Since

the argument of the other cases are similar, we omit the details. In fact, no matter
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which case, we can get an 4 by n — 6 array consisting of the last n — 6 columns of A
in which symbols in the array are 1,2, 3.
Thus, L(4,n) > [(4n — 1)/3]. By Lemma 3.2, L(4,n) < [(4n — 1)/3]. So,

L(4,n) = [(4n — 1)/3]. .

We can use the same technique for general case.

Theorem 3.4. For m > 2 and n > 2m> — 8m? + 12m — 5,

L(m,n) = |(mn—1)/(m—1)].

Proof. We use induction on m to prove the assertion.

If m = 2. Then n > 3. By Theorem 2.5; L(2,n) = 2n — 1. Assume that
it is true for m — 1. That is L(m — 1,n) = [((m —1)n — 1)/(m — 2)| for n >
2(m—1)3 —8(m—1)2+12(m — 1) = 5 = 2m?> — 14m? + 34m — 27. To show it holds
that for n > 2m3 —8m? + 12m — 5, L(m,n) = |(mn —1)/(m — 1)].

For n > 2m3 — 8m? + 12m — 5, considet an m by n array A in which each sym-
bol appears at most |[(mn — 1)/(m — 1)] times. Since 2m?* — 8m? + 12m — 5 >
2m?3 —14m? +34m — 27 and [ ((m=1)n—1)/(m—2)] > [(mn—1)/(m —1)], then the
m — 1 by n array consisting of the first m — 1 rows of A has a transversal. Suppose

that A has no transversal. Then A is equivalent to the following array:

where an a stands for 1,2,...,m — 1.
There are at least 2(n — m) + 2 cells containing a or 1. Since 1 appears at most

|(mn — 1)/(m — 1)] times and 2(n — m) +2 > |[(mn — 1)/(m — 1)], there must
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be an element in {2,3,...,m — 1} occuring in some cells marked a. Without loss of

generality, we take the symbol to be 2. Then A is equivalent to the following array:

1 2lalalal ... a

al 2 alalal... a
m—1

llalalalal..... a

where an a stands for 1,2, ....m — 1.

If k(n—m)+k > (k—1)[(mn—1)/(m—1)] for 2 < k < m—1, then we can continue
the argument. It is enough to show k(m — 1)(n —m) + k(m —1) > (k — 1)(mn — 1).
k(m — 1)(n —m) + k(m — 1) = (k = 1)(mn — 1) = (m — k)n — km? + 2km — 1.
Since m — k > 1, it is enough to show that n > km?* —2km + 1 = m(m — 2)k + 1.
When £k is getting larger, m(m — 2)k 41 is-getting larger. It is enough to show that
n > (m—1)m?—2(m—1)m+1. Since 2m>—8m?2+12m—>5 > (m—1)m*—2(m—1)m-+1,
then n > (m — 1)m? — 2(m — 1)m + 1. Hence, we can continue the argument. Then
we can get an m by n — (2m = 2)-array B-consisting of the last n — (2m — 2)
columns of A. The symbols in B are 1,2,....,m — 1. And each symbol in B appears
at most | (mn—1)/(m —1)] —2 times. Since [((m—=1)(n—2m+2)—1)/(m—2)] >
| (mn—1)/(m—1)]—2, the array obtained from deleting any row in B has a transversal
T. Note that the symbols occur in T are 1,2,...,mm — 1. Then all cells contain
1,2,...,m — 1. Otherwise, A has a transversal. Therefore, in total 1,2,....m — 1
appear mn times. But, mn > (m — 1)|(mn — 1)/(m — 1)], a contradiction. Thus, A
has a transversal. Hence L(m,n) > [(mn —1)/(m —1)].

By Lemma 3.2, L(m,n) < |(mn —1)/(m — 1), we conclude the proof.
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4 Conclusion

From the study of the "transversal problem” of an m by n array, we notice that
the most difficult part remains in the situation when m is not that far from n. That is
why the transversal problem of a Latin square is still one of the most difficult problem
in combinatorial designs. So, for future study, we should focus on determining L(n, n)
or L(m,n) where m is a linear function of n instead the bound we obtain in this thesis

which is in cubic order.
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