國 立 交 通 大 學

應用數學系

碩 士 論 文

在 **m** 乘 **n** 陣列裡的橫截

Ş

1896.

Transversals in m × n Arrays

研 究 生:李張圳 指導教授:傅恆霖 教授

中 華 民 國 九 十 六 年 六 月

在 **m** 乘 **n** 陣列裡的橫截

Transversals in $m \times n$ Arrays

研 究 生:李張圳 Student:Chang-Chun Lee

指導教授:傅恆霖 Advisor:Hung-Lin Fu

國 立 交 通 大 學

應 用 數 學 系

碩 士 論 文

A Thesis Submitted to Department of Applied Mathematics College of Science National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of **Master** in Applied Mathematics June 2006 Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 六 月

謝誌

 首先誠摯的感謝我的指導教授傅恆霖老師,在傅老師的悉心指導 下,使我對組合數學可以有更深一層的了解,老師也教導我做研究應有 的態度與方向,在寫論文上,老師也給我很多寫作上的意見,使我能完 成我的碩士論文,老師不僅在課業上幫助良多,有時也會教導我們一些 做人處事的道理,這兩年從老師身邊學到很多,真的很感謝老師,讓我 可以開心收穫良多的順利畢業。

在學校的這兩年,不僅傅老師對我幫助甚多,還要感謝黃大原老師、 翁志文老師以及陳秋媛老師,這三位老師在課業上的指導,讓我對組合 數學更加有興趣。

896

 另外我還要感謝我研究所的同學,肌肉澍仁、老闆國安、美女RE、 嘴砲老吳、帥哥柏澍、歌王宜庭、文強、妙妙、強者皜文、威雄、帥哥 怡中、好友老謝以及所有的學長姐跟學弟妹讓我在交大的這兩年生活可 以更多彩多姿更加的開心,也希望大家畢業後要記得保持聯絡喔!

最後,謹以此文獻給我愛的雙親。

在 **m** 乘 **n** 陣列裡的橫截

研究生:李張圳 指導老師:傅恆霖 教授

國立交通大學

應用數學系

摘 要

當2≤m≤n,一個m乘n的陣列是由m個列和n個行組成的mn個格子。在m乘n的陣列裡 的一個部分橫截是收集m個格子的集合,這些格子是來自不同行不同列。在m乘n的 陣列裡的一個橫截是一個部分橫截,這個部分橫截裡的m個符號都是不一樣的。定 義L(m,n)是一個最大的整數使得如果每一個符號在m乘n的陣列裡出現最多L(m,n) 次,則這個陣列一定會有一個橫截。在本篇論文,我們把找拉丁方陣的橫截的研究 延伸到找m乘n陣列的橫截的研究。大體上,我們對於對某些正整數m和n的L(m,n)值 感到興趣。

中華民國九十六年六月

Transversals in $m \times n$ Arrays

Student: Chang-Chun Lee Advisor: Hung-Lin Fu

Department of Applied Mathematics National Chiao Tung University Hsinchu, Taiwan 30050

Abstract

An m by n array consists of mn cells in m rows and n columns, where $2 \leq m \leq n$. A partial transversal in an m by n array is a set of m cells, one from each row and no two from the same column. A transversal in an m by n array is a partial transversal which m symbols are distinct. Define $L(m, n)$ as the largest integer such that if each symbol in an m by n array appears at most $L(m, n)$ times, then the array must have a transversal. In this thesis, we extend the study of finding transversals in a Latin square to find transversals in $m \times n$ arrays. Mainly, we are interested in determining the value $L(m, n)$ for certain pairs of positive integers m and n .

Contents

1 Introduction and Preliminaries

1.1 Introduction

A Latin square M of order n based on an n-set S is an $n \times n$ array such that each symbol of S occurs in each row and each column exactly once. For convenience, we may use $S = \{1, 2, 3, ..., n\}$ and the symbol appears in the *i*-th row and *j*-th column is called the (i, j) -entry of the Latin square, denoted by $M(i, j)$. Then, the following figures are examples of a Latin square of order 4 and a Latin square of order 5 respectively.

A transversal T of a Latin square is a set of n cells such that no two are in the same row and the same column and the symbols occur in T are distinct. It is not difficult to see that the above squares have transversals respectively. For examples, $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$ and $\{(1, 1), (2, 3), (3, 5), (4, 2), (5, 4)\}$. These two sets are the transversals of M_1 and M_2 respectively. But, not every Latin square has a transversal. For example,

It is easy to check that M_3 has no transversal. Therefore, to determine whether a Latin square has a transversal or not is an interesting problem. More than 250 years

ago, Euler conjectured that there do not exist two orthogonal Latin squares of order $4k + 2$ for each positive integer k. It is believed that the idea is mainly originated from the fact that there exists a Latin square of order $4k + 2$ which does not have a transversal. This is easy to see from M_3 .

Now, we known that a pair of orthogonal Latin squares of order $4k+2$, $k \geq 2$, does not exist [9]. But, for a given Latin square, to determine whether a transversal exists is still an open problem. Toward solving this problem, in 1967, Ryser [7] conjectured that every Latin square of odd order has a transversal, and the number of transversals of a Latin square has the same parity as the order of the square. But, Parker pointed out that many Latin square of order 7 have an even number of transversals in 1989. Balasubramanian [2] proved that a Latin square of even order has an even number of transversals in 1990. \Box

Unfortunately, the above results do not provide any assistance in determining whether there exists a transversal in a given Latin square or not. An intuitive approach is to find as many distinct elements from distinct rows and columns as possible. A *partial transversal* of a Latin square is a set of *n* cells from distinct rows and columns. The size of a partial transversal is the number of distinct symbols which appears in the partial transversal. For example, $P_1 = \{(1, 1), (2, 3), (3, 2), (4, 4)\}$ is a partial transversal of M_1 of size 2. $P_2 = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}$ is a partial transversal of M_2 of size 1. It is easy to see that we can always find a partial transversal of size at least $n/2$ in a Latin square of order n. (Pick any cell in the first row, then a cell in the second row with a different symbol, and so on.) But, for larger size, it takes a while to get to the best known result today. First, in 1969, Koksma [6] showed that the length of a partial transversal in a Latin square is at least $n-(1/3)n$. Later Drake [3] showed that the lower bound is $n-(1/4)n$ in 1977. Then,

by using the idea of matchings in the bipartite graph $K_{n,n}$, Woolbright [11] improved this lower bound to $n -$ √ \overline{n} in 1978. Four years later, 1982, Shor [10] gave a better bound $n - (5.53)(\ln n)^2$. Finally, by using a careful calculation in Shor's technique, Fu et al. [5] improved this the lower bound to $n - (5.518)(\ln n)^2$ in 2002.

Recently, the notion "transversals in Latin square" has been converted to that of arrays where we allow common symbols in both rows and columns. For positive integers m and n, where $2 \le m \le n$, an m by n array contains m rows and n columns. An *m* by *n* array *A* consists of *mn* cells and each cell contains one symbol and for $1 \leq i \leq m$ and $1 \leq j \leq n$, we use $A(i, j)$ to denote the symbol which appears in the row i and column j. A partial transversal in an m by n array is a set of m cells such that no two are in the same row and the same column. A partial transversal of size k contains exactly k distinct symbols which appears in the partial transversal. A transversal is a partial transversal of size m. Let $L(m, n)$ be the largest integer such that if each symbol in an m by n array appears at most $L(m, n)$ times, then the array must have a transversal. For example, e.c.

Then A and B are 3 by 4 arrays. Each symbol in A appears at most 4 times. Each symbol in B appears at most 4 times. $T = \{(1, 1), (2, 2), (3, 3)\}$ is a transversal of A. $P = \{(1,1), (2,2), (3,3)\}\$ is a partial transversal of B of size 2. It is easy to check that B has no transversal. By the array $B, L(3,4) < 4$. In 1991, P. Erdős and J. Spencer $[4]$ showed that an array of order n in which each symbol appears at most $(n-1)/16$ times has a transversal. This implies $L(n,n) \geq \lfloor (n-1)/16 \rfloor$. Recently, S. Akbari. et al. [1] proved that $L(m, n) = \lfloor (mn - 1)/(m - 1) \rfloor$ for $m \ge 2$ and $n \geq 2m^3 - 6m^2 + 6m - 1$. In this thesis, we study the value $L(m, n)$ for certain pairs of positive integers m and n .

1.2 Preliminaries

1.2.1 Probabilistic method: Lovász Local Lemma

Let $A_1, A_2, ..., A_n$ be events in an arbitrary probability space. Let \overline{A}_i denote the complement of event A_i . Then the probability of A_1 given A_2 is $Pr(A_1|A_2)$ = $Pr(A_1 \cap A_2)$ $Pr(A_2)$. If $Pr(A_1|A_2) = Pr(A_1)$, we say that A_1 and A_2 are mutually independent. Let S be a set of events. In general, A_i is mutually independent of S if $Pr(A_i | \bigcap_{A_j \in T} A_j) = Pr(A_i)$ for all $T \subseteq \{A_j | A_j \in S \text{ or } \overline{A_j} \in S\}.$

Definition 1.1. Let $A_1, A_2, ..., A_n$ be events in an arbitrary probability space. A graph $G = (V, E)$ on the set of vertices $V = \{1, 2, ..., n\}$ is called a lopsidependency graph for the events $A_1, A_2, ..., A_n$ if $Pr(A_i | \bigcap_{j \in S} \overline{A}_j) \leq Pr(A_i)$ for each $i \in V$ and each $S \subseteq V \setminus N_G[i]$.

Definition 1.2. Let $A_1, A_2, ..., A_n$ be events in an arbitrary probability space. A directed graph $D = (V, E)$ on the set of vertices $V = \{1, 2, ..., n\}$ is called a dependency digraph for the events $A_1, A_2, ..., A_n$ if for each $i, 1 \leq i \leq n$, the event A_i is mutually independent of all the events $\{A_j : (i,j) \notin E\}.$

Theorem 1.3. [Lopsided Lovász Local Lemma] Let $A_1, A_2,...,A_n$ be events with lopsidependency graph G and suppose all the events have probability at most p and that each $i \in G$ has degree at most d. Assume $4pd \leq 1$. Then $Pr(\bigcap_{i=1}^{n} \bar{A}_i) > 0$.

The following lemma, first proved in Erdős and Lovász in 1975, is an extremely powerful tool.

Theorem 1.4. [Lovász Local Lemma; General Case] Let $A_1, A_2, ..., A_n$ be events in an arbitrary probability space. Suppose that $D = (V, E)$ is a dependency digraph for the above events and suppose there are real numbers $x_1, x_2, ..., x_n$ such that $0 \leq x_i < 1$ and $Pr(A_i) \leq x_i \prod_{(i,j) \in E} (1-x_i)$ for all $1 \leq i \leq n$. Then $Pr(\bigcap_{i=1}^n \bar{A}_i) \geq \prod_{i=1}^n (1-x_i)$. In particular, with positive probability for no event A_i holds.

Theorem 1.5. [Lovász Local Lemma; Symmetric Case] Let $A_1, A_2, ..., A_n$ be events in an arbitrary probability space. Suppose that each event A_i is mutually independent of a set of all the other events A_j but at most d, and that $Pr(A_i) \leq p$ for all $1 \leq i \leq n$. If $ep(d+1) \leq 1$ then $Pr(\bigcap_{i=1}^{n} \bar{A}_i) > 0$.

In 1985, Shearer proved that the constant "e" is the best possible constant in the above lemma. In Lovász Local Lemma of general case, we can replace the two assumptions that each " A_i is mutually independent of $\{A_j : (i,j) \notin E\}$ " and that $T^*Pr(A_i) \leq x_i \prod_{(i,j)\in E} (1-x_i)$ " by the weaker assumption that "for each i and each" $S \subset \{1, 2, ..., n\} \setminus \{j : (i, j) \in E\}, Pr(A_i | \bigcap_{j \in S} \bar{A}_j) \leq x_i \prod_{(i,j) \in E} (1 - x_i)$ ".

1.2.2 Ideas in direct argument

Besides probabilistic method, we also use a direct argument to find the lower bound of $L(m, n)$. The idea is based on the following fact which is easy to see.

1896

Proposition 1.6. Let A be an m by n array such that A has a transversal. Then, the new array A' obtained by the following three operations also has a transversal.

- 1. a permutation of rows
- 2. a permutation of columns
- 3. a permutation of symbols

So, without loss of generality, we may assume the transversal of an m by n array A lies on the following set of cells: $\{(1,1),(2,2),...,(m,m)\}.$ For convenience, we also use $A(1,1), A(2,2),..., A(m,m)$ to denote the transversal of A .

Thus, we are ready to introduce several known results.

2 Known Results

For completeness, we also include their proofs.

Theorem 2.1. [4] Given an $n \times n$ array A. Let $k \leq (n-1)/16$ and suppose that no entry of A appears more than k times. Then A has a transversal.

Proof. We use Lopsided Lovász Local Lemma. Let S_n be a set of permutations on an *n*-set. Let $V = \{(s, t, u, v) | s < u, t \neq v \text{ and } A(s, t) = A(u, v)\}.$ For each $(s, t, u, v) \in T$, let $A_{stuv} = \{\sigma \mid \sigma \in S_n, \sigma(s) = t \text{ and } \sigma(u) = v\}.$ Then A has a transversal if and only if $Pr(\bigcap_{(s,t,u,v)\in V} \bar{A}_{stuv}) \neq 0$. Hence we will show that شققه . $Pr(\bigcap_{(s,t,u,v)\in V} \bar{A}_{stuv}) \neq 0.$

Note that $Pr(A_{stuv}) = (n-2)!/n! = 1/n(n-1)$.

Define a graph G with vertex set V and (s, t, u, v) adjacent to (x, y, z, w) if and only if $\{s, u\} \cap \{x, z\} \neq \emptyset$ or $\{t, v\} \cap \{y, w\} \neq \emptyset$. Then we can count the maximal degree of G. Given $(s, t, u, v) \in V$, there are at most 4n choices of (x, y) with either $x \in \{s, u\}$ or $y \in \{t, v\}$ and k choices for (z, w) with $A(x, y) = A(z, w)$. Either (x, y, z, w) adjacent to (s, t, u, v) or (z, w, x, y) adjacent to (s, t, u, v) . Thus G has maximal degree at most $4nk$. Then $4 \cdot 4nk \cdot (1/n(n-1)) \leq 1$.

To show G is a lopsidependency graph. By symmetric, it suffices to show

$$
Pr(A_{1122} | \bigcap_{(s,t,u,v) \in S} \bar{A}_{stuv}) \leq 1/n(n-1)
$$
 where $s, t, u, v \neq 1, 2$.

Let
$$
N_{ij} = \{\sigma | \sigma(1) = i, \sigma(2) = j \text{ and } \sigma \in \bigcap_{(s,t,u,v) \in S} \bar{A}_{stuv}\}
$$

Claim: $|N_{12}| \leq |N_{ij}|$ for all $i \neq j$.

subpf: If $i, j > 2$. Let $\sigma \in N_{12}$. There exist a, b with $\sigma(a) = i, \sigma(b) = j$. Define σ^* by $\sigma^*(1) = i$, $\sigma^*(2) = j$, $\sigma^*(a) = 1$, $\sigma^*(b) = 2$, and $\sigma^*(x) = \sigma(x)$ for all $x \neq 1, 2, a, b$. Since $(1, i)$, $(2, j)$, $(a, 1)$, $(b, 2)$ are not part of any element in S, σ^* is in N_{ij} . Then $f: N_{12} \to N_{ij}$ is injective. Thus $|N_{12}| \leq |N_{ij}|$. The case $\{1,2\} \cap \{i,j\} \neq \emptyset$ is similar. Hence,

$$
Pr(A_{1122}|\bigcap_{(s,t,u,v)\in S} \bar{A}_{stuv}) = |N_{12}|/\sum_{i\neq j} |N_{ij}| \leq |N_{12}|/\sum_{i\neq j} |N_{12}| = 1/n(n-1).
$$

By Lopsided Lovász Local Lemma, $Pr(\bigcap_{(s,t,u,v)\in V} \bar{A}_{stuv}) \neq 0$. So A has a transversal.

The followings are direct proofs

Lemma 2.2. [8] (1) $L(m+1,n) \le L(m,n)$ and (2) $L(m,n) \le L(m,n+1)$.

Proof. (1) Suppose that $L(m + 1, n) = k$. Consider an m by n array A in which each symbols appears at most k times. Without loss of generality, the symbols in A are positive integers. Then we add a row to get an $(m+1) \times n$ array B and the symbols in that row are negative integers and each symbol in that row appears at most k times. Hence B has a transversal. This implies that A must have a transversal.

(2) Suppose that $L(m, n) = k$. Consider an m by $(n + 1)$ array A in which each symbols appears at most k times. Deleting the first column, then we get an $m \times n$ array B. Hence B has a transversal. This implies that A must have a transversal.

Theorem 2.3. [8] If $n \leq 2m-2$, then $L(m, n) \leq n-1$.

Proof. We illustrated for the cases when $(m, n) = (3, 3)$, and $(m, n) = (3, 4)$:

It is easy to check that the above arrays have no tranversals.

Theorem 2.4. [8] $L(m, n) < mn/(m - 1)$.

Proof. If only $m-1$ distinct symbols appear in an $m \times n$ array, the array has no transversal. Hence, if each of $(m-1)$ symbols appears at most $mn/(m-1)$ times, the symbols can fill all the cells. \blacksquare Theorem 2.5. [8] $L(2, n) = 2n - 1$ for $n \ge 3$.

Proof. Consider a 2 by n array A in which each symbol appears at most $2n - 1$ times. Suppose A has no transversal. Then A is equivalent to the following array:

It is easy to check that a, b stand for 1.

Then 1 appears $2n$ times, a contradiction.

Lemma 2.6. [8] Assume that in a 3 by n array, $n \geq 4$, some symbol occurs at most three times. Then, if there is no transversal some symbol occurs at least $2n-2$ times, hence at least $3n/2$ times.

 \blacksquare

Proof. There are 10 inequivalent cases when one symbol appears at most three times. We list the 10 cases.

We illustrate the case when 1 appears one time. Then we have the following array:

It is easy to check that a and b stand for 2. Hence the symbol 2 appears at least $2n-2$ times. The other cases are similar. r

Theorem 2.7. [8] (a) $L(3,3) = 2$ and $L(3,4) = 3$. (b) For $n \geq 5$, $L(3,n) =$ $\lfloor (3n - 1)/2 \rfloor$.

Proof. Exhaustive computer calculations shows that

 $L(3,3) = 2, \quad L(3,4) = 3, \quad L(3,5) = 7.$

By induction on n . Assume that the induction holds for a particular odd n . i.e. $L(3, n) = (3n - 1)/2$. We will show that it holds for $n + 1$, that is, $L(3, n + 1) =$ والمقتلان $(3n + 1)/2$.

Consider a 3 by $n+1$ array A in which each symbol appears at most $(3n+1)/2$ times. If each symbol appears at most $(3n-1)/2$ times, then deleting one column to obtain a 3 by n array. By induction hypothesis, the 3 by n array has a transversal. Hence A has a transversal.

Suppose there is at least one symbol appears at least $(3n+1)/2$ times. If there are two such symbols, they appear at least $3n + 1$ times. Hence some symbol appears at most three times. By Lemma 2.6, if there is no transversal, then some symbol occurs at least $3(n+1)/2$ times. So A has a transversal.

Hence there is only one symbol that appears at least $(3n + 1)/2$ times. There must be a column in which it appears at least twice. Deleting that column, we get a 3 by *n* array in which each symbol appears at most $(3n - 1)/2$ times. By induction hypothesis, the 3 by n array has a transversal. Hence A has a transversal. Thus $L(3, n + 1) \ge (3n + 1)/2$. By Theorem 2.4, $L(3, n + 1) < (3n + 3)/2$. So, $L(3, n + 1) = (3n + 1)/2$. When *n* is even, the argument is similar. Г

Theorem 2.8. [8] $L(m, n) \ge n - m + 1$.

Proof. We use induction on m to prove the assertion.

The theorem is true for $m = 2$ or $m = 3$. Assume that it is true for $m - 1$. We will show that it holds for m.

Assume that $L(m-1,n) \geq n-m+2$. Consider an m by n array A in which each symbol appears at most $n - m + 1$ times. Deleting the last row of A, we get an $m-1$ by n array. The $m-1$ by n array has a transversal. Suppose that A has no transversal. Then A is equivalent to the following array:

			a ₁	a	\boldsymbol{a}	\boldsymbol{a}	.
2							.
	3						\cdots
							\cdots
		$m-1$					
			\overline{a}	\overline{a}	\boldsymbol{a}	$\it a$	

An a stands for $1, 2, ..., m-1$. Then there are at least $2(n-m)+2$ cells containing a or 1. Since 1 appears at most $n - m + 1$ times in A and $2(n - m) + 2 > n - m + 1$, there must be an element in $\{2, 3, ..., m-1\}$ occuring in some cells marked a. Without loss of generality, we take the symbol to be 2. Then we have the following array:

Then there are at least $3(n-m) + 3$ cells containing a, 1 or 2. Since 1 and 2 appear at most $2n - 2m + 2$ times inA and $3(n - m) + 3 > 2n - 2m + 2$, there be an element in $\{3, ..., m-1\}$ occuring in some cells marked a. Without loss of generality, we take the symbol to be 3.

Continuing the analysis, the symbols $1, 2, ..., m - 1$ appear at least $(m - 1)(n - 1)$ $m) + m$ times. But, $(m-1)(n-m) + m > (m-1)(n-m+1)$, a contradiction. This concludes the proof. \blacksquare

3 Main Result

Theorem 2.1 implies $L(n, n) \geq \lfloor (n - 1)/16 \rfloor$. We improve this lower bound.

Theorem 3.1. $L(n, n) \geq \lfloor (n + 4e)/4e \rfloor$.

Proof. Let $k = \lfloor (n + 4e)/4e \rfloor$.

Consider an n by n array A in which each symbol appears at most k times. We use Lovász Local Lemma. Let S_n be a set of permutations on an n-set. Let $V = \{(s, t, u, v) | s < u, t \neq v \text{ and } A(s, t) = A(u, v)\}.$ For each $(s, t, u, v) \in T$, let $A_{stuv} = \{\sigma \mid \sigma \in S_n, \sigma(s) = t \text{ and } \sigma(u) = v\}.$ Then A has a transversal if and only if $Pr(\bigcap_{(s,t,u,v)\in V} \bar{A}_{stuv}) \neq 0.$ Hence we will show that $Pr(\bigcap_{(s,t,u,v)\in V} \bar{A}_{stuv}) \neq 0.$

Note that $Pr(A_{stuv}) = (n-2)!/n! = 1/n(n-1)$.

Define a graph G with vertex set V and (s, t, u, v) adjacent to (x, y, z, w) if and only if $\{s, u\} \cap \{x, z\} \neq \emptyset$ or $\{t, v\} \cap \{y, w\} \neq \emptyset$. Then we can count the maximal degree of G. Given $(s, t, u, v) \in V$, there are at most $4n - 4$ choices of (x, y) with either $x \in \{s, u\}$ or $y \in \{t, v\}$ and $k-1$ choices for (z, w) with $A(x, y) = A(z, w)$. Either (x, y, z, w) adjacent to (s, t, u, v) or (z, w, x, y) adjacent to (s, t, u, v) . Thus G has maximal degree at most $(4n-4)(k-1) - 1$. Then $e \cdot ((4n-4)(k-1) - 1 + 1)$. $(1/n(n-1)) \leq e \cdot 4(n-1)(n/4e) \cdot (1/n(n-1)) = 1.$

To show G is a lopsidependency graph. By symmetric, it suffices to show

$$
Pr(A_{1122} | \bigcap_{(s,t,u,v) \in S} \bar{A}_{stuv}) \leq 1/n(n-1)
$$
 where $s, t, u, v \neq 1, 2$.

Let $N_{ij} = \{ \sigma | \sigma(1) = i, \sigma(2) = j \text{ and } \sigma \in \bigcap_{(s,t,u,v) \in S} \bar{A}_{stuv} \}$

Claim: $|N_{12}| \leq |N_{ij}|$ for all $i \neq j$.

subpf: If $i, j > 2$. Let $\sigma \in N_{12}$. There exist a, b with $\sigma(a) = i, \sigma(b) = j$. Define σ^* by $\sigma^*(1) = i$, $\sigma^*(2) = j$, $\sigma^*(a) = 1$, $\sigma^*(b) = 2$, and $\sigma^*(x) = \sigma(x)$ for all $x \neq 1, 2, a, b$. Since $(1, i)$, $(2, j)$, $(a, 1)$, $(b, 2)$ are not part of any element in S, σ^* is in N_{ij} . Then $f: N_{12} \to N_{ij}$ is injective. Thus $|N_{12}| \leq |N_{ij}|$. The case $\{1,2\} \cap \{i,j\} \neq \emptyset$ is similar. Hence,

$$
Pr(A_{1122}|\bigcap_{(s,t,u,v)\in S} \bar{A}_{stuv}) = |N_{12}|/\sum_{i\neq j} |N_{ij}| \leq |N_{12}|/\sum_{i\neq j} |N_{12}| = 1/n(n-1).
$$

By Lovász Local Lemma, $Pr(\bigcap_{(s,t,u,v)\in V} \bar{A}_{stuv}) \neq 0$. So A has a transversal. \blacksquare

The following results obtain from direct argument.

Lemma 3.2. $L(m, n) \leq |(mn - 1)/(m - 1)|$

Proof. Suppose $mn = k(m-1) + r$ where $k, r \in \mathbb{Z}$, $0 \le r < m-1$. If $r = 0$. By Theorem 2.4, $L(m, n) < mn/(m-1) = k$. Then $L(m, n) \leq k-1 = \lfloor (mn-1)/(m-1) \rfloor$. If $1 \leq r < m-1$, $L(m, n) < mn/(m-1) = k + r/(m-1) < k+1$. Then $L(m, n) \leq k = \lfloor (mn - 1)/(m - 1) \rfloor.$

By above Lemma, if we can show that $L(m, n) \geq \lfloor (mn - 1)/(m - 1) \rfloor$, then $L(m, n) = \lfloor (mn - 1)/(m - 1) \rfloor$. The following results use the idea.

Theorem 3.3. For $n \geq 43$, $L(4, n) = \lfloor (4n - 1)/3 \rfloor$.

Proof. Consider a 4 by n array A in which each symbol appears at most $\lfloor (4n-1)/3 \rfloor$ times. Since $L(3, n) = \lfloor (3n - 1)/2 \rfloor \ge \lfloor (4n - 1)/3 \rfloor$, the 3 by n array consisting of the first three rows of A has a transversal. Suppose that A has no transversal. Then A is equivalent to the following array:

where $x_i \in \{1,2,3\}$, for all $1 \le i \le 2n - 8$.

Then there are at least $2(n-4) + 2$ cells containing x_i or 1. Since 1 appears at most $\lfloor (4n - 1)/3 \rfloor$ times in A and $2(n - 4) + 2 > \lfloor (4n - 1)/3 \rfloor$, there must be a 2 or 3 in some cells marked x_i . Without loss of generality, we take x_1 to be 2. Then we have the following array:

where $x_i, y_j \in \{1, 2, 3\}$, for all $2 \le i \le 2n - 8$ and $1 \le j \le n - 4$.

Then there are at least $3(n-4) + 3$ cells containing x_i , y_j , 1, or 2. Since 1 and 2 appear at most 2[$(4n - 1)/3$] times in A and 3 $(n - 4) + 3 > 2$ [$(4n - 1)/3$], there must be a 3 in some cell marked x_i or y_j . There are 5 inequivalent cases, $x_2 = 3$, $x_{n-3} = 3, x_{n-2} = 3, y_1 = 3 \text{ or } y_2 = 3.$

If $x_2 = 3$, then we have the following array:

				x_3			$\begin{array}{ c c c c c c c c } \hline \begin{array}{ c c c c c c } \hline x_4 & x_5 & \dots & x_{n-4} \ \hline \end{array} \end{array}$
			y_2	y_3	$\pm y_4$	y_5 - \cdots	y_{n-4}
\overline{z}_1				z_3	z_4		z_5 z_{n-4}
							$\ x_{n-3}\ x_{n-2}\ x_{n-1}\ x_n\ x_{n+1}\ \ x_{2n-8}\ $

where $x_i, y_j, z_k \in \{1,2,3\}$, for all $3 \leq i \leq 2n-8$ and $1 \leq j \leq n-4$ and $1 \leq k \leq n-4$. Deleting the first six columns and deleting the last row we get a 3 by $n - 6$ array B in which each symbol appears at most $\lfloor (4n - 1)/3 \rfloor - 2$ times. Since $\lfloor (3(n-6) - 1/2 \rfloor \ge \lfloor (4n-1)/3 \rfloor - 2$, B has a transversal T. Note that the symbols occur in T are 1, 2, 3. Hence $A(4, 1), A(4, 2), A(4, 3) \in \{1, 2, 3\}$. Otherwise, A has a transversal. Similarly, all cells contain $1, 2, 3$. Then the symbols $1, 2, 3$ appear $4n$ times. But $4n > 3[(4n-1)/3]$, a contradiction. Then A has a transversal. Since the argument of the other cases are similar, we omit the details. In fact, no matter which case, we can get an 4 by $n-6$ array consisting of the last $n-6$ columns of A in which symbols in the array are 1, 2, 3.

Thus, $L(4, n) \geq \lfloor (4n - 1)/3 \rfloor$. By Lemma 3.2, $L(4, n) \leq \lfloor (4n - 1)/3 \rfloor$. So, $L(4, n) = |(4n - 1)/3|.$ \blacksquare

We can use the same technique for general case.

Theorem 3.4. For $m \ge 2$ and $n \ge 2m^3 - 8m^2 + 12m - 5$, $L(m, n) = |(mn - 1)/(m - 1)|.$

Proof. We use induction on m to prove the assertion.

If $m = 2$. Then $n \geq 3$. By Theorem 2.5, $L(2, n) = 2n - 1$. Assume that it is true for $m - 1$. That is $L(m - 1, n) = \lfloor ((m - 1)n - 1)/(m - 2) \rfloor$ for $n \ge$ $2(m-1)^3 - 8(m-1)^2 + 12(m-1) - 5 = 2m^3 - 14m^2 + 34m - 27$. To show it holds that for $n \ge 2m^3 - 8m^2 + 12m - 5$, $L(m, n) = \lfloor (mn - 1)/(m - 1) \rfloor$.

For $n \ge 2m^3 - 8m^2 + 12m - 5$, consider an m by n array A in which each symbol appears at most $\lfloor (mn - 1)/(m - 1) \rfloor$ times. Since $2m^3 - 8m^2 + 12m - 5 \ge$ $2m^3 - 14m^2 + 34m - 27$ and $\lfloor ((m-1)n-1)/(m-2) \rfloor \ge \lfloor (mn-1)/(m-1) \rfloor$, then the $m-1$ by n array consisting of the first $m-1$ rows of A has a transversal. Suppose that A has no transversal. Then \overline{A} is equivalent to the following array:

where an a stands for $1, 2, ..., m - 1$.

There are at least $2(n - m) + 2$ cells containing a or 1. Since 1 appears at most $\lfloor (mn - 1)/(m - 1) \rfloor$ times and $2(n - m) + 2 > \lfloor (mn - 1)/(m - 1) \rfloor$, there must be an element in $\{2, 3, ..., m-1\}$ occuring in some cells marked a. Without loss of generality, we take the symbol to be 2. Then A is equivalent to the following array:

where an a stands for $1, 2, ..., m - 1$.

If $k(n-m)+k > (k-1)\lfloor (mn-1)/(m-1) \rfloor$ for $2 \le k \le m-1$, then we can continue the argument. It is enough to show $k(m-1)(n-m) + k(m-1) > (k-1)(mn-1)$. $k(m - 1)(n - m) + k(m - 1) - (k - 1)(mn - 1) = (m - k)n - km² + 2km - 1.$ Since $m - k \ge 1$, it is enough to show that $n > km^2 - 2km + 1 = m(m - 2)k + 1$. When k is getting larger, $m(m-2)k+1$ is getting larger. It is enough to show that $n > (m-1)m^2 - 2(m-1)m+1$. Since $2m^3 - 8m^2 + 12m - 5 > (m-1)m^2 - 2(m-1)m + 1$, then $n > (m-1)m^2 - 2(m-1)m + 1$. Hence, we can continue the argument. Then we can get an m by $n - (2m - 2)$ array B consisting of the last $n - (2m - 2)$ columns of A. The symbols in B are $1, 2, ..., m-1$. And each symbol in B appears at most $\lfloor (mn - 1)/(m - 1) \rfloor - 2$ times. Since $\lfloor ((m - 1)(n - 2m + 2) - 1)/(m - 2) \rfloor$ ≥ $\lfloor (mn-1)/(m-1) \rfloor - 2$, the array obtained from deleting any row in B has a transversal T. Note that the symbols occur in T are $1, 2, ..., m-1$. Then all cells contain 1, 2, ..., $m-1$. Otherwise, A has a transversal. Therefore, in total 1, 2, ..., $m-1$ appear mn times. But, $mn > (m-1)(mn-1)/(m-1)$, a contradiction. Thus, A has a transversal. Hence $L(m, n) \geq \lfloor (mn - 1)/(m - 1) \rfloor$.

By Lemma 3.2, $L(m, n) \leq \lfloor (mn - 1)/(m - 1) \rfloor$, we conclude the proof.

4 Conclusion

From the study of the "transversal problem" of an m by n array, we notice that the most difficult part remains in the situation when m is not that far from n . That is why the transversal problem of a Latin square is still one of the most difficult problem in combinatorial designs. So, for future study, we should focus on determining $L(n, n)$ or $L(m, n)$ where m is a linear function of n instead the bound we obtain in this thesis which is in cubic order.

References

- [1] S. Akbari, O. Etesami, H. Mahini, M. Mahmoody, A. Sharifi, Transversals in long retangular arrays, Discrete Math. 306 (2006) 3011-3013.
- [2] K. Balasubramanian, On transversals of latin squares, Linear algebra Appl. 131 (1990) 125-129.
- [3] D. A. Drake, Maximal sets of latin squares and partial transversal, J. Statist. Plann. Inference 1 (1977) 143-149.
- [4] P. Erdős, J. Spencer, Lopsided Lováz local lemma and latin transversals, Discrete Appl. Math. 30 (1991) 151-154.
- [5] H.-L. Fu, S.-C. Lin, C.-M. Fu, The length of a partial transversal in a latin square, J. Combin. Math. Combin. Comput. 43 (2002) 57-64.
- [6] K. K. Koksma, A lower bound for the order of a partial transversal in a latin square, J. Combin. Theory Ser. A 7 (1969) 94-95.
- [7] H. J. Ryser, Neuere Problem in der Kombinatorik, in Vorträge über Kombinatorik, Oberwohlfach, (1967) 69-61.
- [8] S. K. Stein, S. Szabó, The number of distinct symbols in sections of retangular arrays, Discrete Math. 306 (2006) 254-261.
- [9] D. R. Stinson, Combinatorial Designs Constructions and Analysis, New York, Springer, 2004.
- [10] P. W. Shor, A lower bound of the length of a partial transversal in a latin square, J. Combin. Theory Ser. A 33 (1982) 1-8.

[11] D. E. Woolbright, An n by n latin square has a transversal with at least \overline{n} − √ \overline{n} , J. Combin. Theory Ser. A 24 (1978) 235-237.

