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摘  要 

全體對全體私人化交換溝通（all-to-all personalized exchange communication）出現在

許多平行與分散式處理系統之應用。在文獻［12］中，Yang 以及 Wang 運用拉丁方

陣的技巧，針對了具有 unique-path 以及 self-routable 性質的多級式連接網路，提出

了時間複雜度為 )(NO 的最佳全體對全體私人化交換演算法。所有在文獻［12］中被

討論到的網路（包括 shuffle-exchange 網路），皆滿足 12nN += （ N 表示多級式網路的

輸入及輸出端的個數， 1n + 是多級式網路的階級數）。值得注意的是，Yang 以及 Wang
的演算法要求多級式網路中的每一階級裡的所有交換器的狀態都必須相同；換句話

說，Yang 以及 Wang 的演算法使用階級控制技術。在文獻［7］中，Padmanabham
提出了廣義的 shuffle-exchange 網路；在廣義的 shuffle-exchange 網路中，

122 +≤< nn N ，不再要求 12nN += 。由於廣義的 shuffle-exchange 網路不一定具有

unique-path 性質，因此無法使用 Yang 以及 Wang 的演算法。本論文的目的即在於：

針對廣義的 shuffle-exchange 網路，提出兩個最佳全體對全體私人化交換演算法。和

Yang 以及 Wang 的演算法不同的是，我們的演算法沒有使用拉丁方陣，也不要求網

路要具有 unique-path 性質。我們的第一個演算法使用階級控制技術，而且適用於任

何的 N ；我們證明了：當要求使用階級控制技術、而且 11 222 +− ≤≤+ nnn N 時，此演

算法是最佳的。我們的第二個演算法不使用階級控制技術、而且只適用於 22 += nN
時；我們證明了，此演算法是最佳的。 

關鍵詞：多級式網路，平行與交換式計算，全體對全體溝通，全體對全體私人化交

換。 
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Optimal All-to-All Personalized Exchange
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Student: Richard B. Chen Advisor: Chiuyuan Chen
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Abstract

All-to-all personalized exchange communication has been widely applied in many
parallel and distributed processing applications. In [14], by the Latin square method,
Yang and Wang proposed an optimal all-to-all personalized exchange algorithm for
the unique-path, self-routable multistage interconnection networks (MINs). All the
networks considered in [14], including the famous shuffle-exchange networks, satisfy
N = 2n+1, in which N is the number of inputs (outputs) and n + 1 is the number
of stages of the network. Do notice that Yang and Wang’s algorithm requires the
states of all the switches of a stage to be identical; i.e., the stage control technique is
used. In [9], Padmanabham proposed the general shuffle-exchange network (GSEN)
with 2n < N ≤ 2n+1. Since a GSEN is not necessarily a unique-path MIN, Yang
and Wang’s algorithm may not apply. The purpose of this paper is to propose two
optimal all-to-all personalized exchange algorithms for GSENs. Unlike Yang and
Wang’s algorithm, we abandon the Latin square method and the requirement on
the unique-path property. The first algorithm uses the stage control technique and
works for arbitrary N . We will prove it is optimal when the stage control technique
is assumed for 2n−1 + 2n ≤ N ≤ 2n+1. On the contrary, the second algorithm does
not use the stage control technique and works only for N = 2n + 2. We will prove
that it is optimal.

Keywords: multistage interconnection network, parallel and distributed com-

puting, all-to-all communication, all-to-all personalized exchange.
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1 Introduction

Processors in a parallel and distributed processing system often need to communicate

with other processors. The communication among these processors could be one-to-one,

one-to-many, or all-to-all. In particular, all-to-all communication can be further classified

into all-to-all broadcast and all-to-all personalized exchange. In all-to-all broadcast, each

processor sends the same message to all other processors; while in all-to-all personalized

exchange, each processor sends a specific message to every other processor. This paper

focuses on all-to-all personalized exchange.

All-to-all personalized exchange occurs in many important applications (for exam-

ple, matrix transposition and fast Fourier transform (FFT)) in parallel and distributed

computing. Since a processor can send only one message in each time unit, the time to

complete all-to-all personalized exchange is Ω(N), where N is the number of processors

in the given network. The all-to-all personalized exchange problem has been extensively

studied for hypercubes, meshes, and tori; see [8, 14] for details. As was mentioned in [14],

although the algorithm for a hypercube achieves optimal time complexity, a hypercube

suffers from unbounded node degrees and therefore has poor scalability. On the other

hand, although a mesh or torus has a constant node degree and better scalability, its

algorithm has a higher time complexity [14]. An MIN (defined later) is considered to

be a better choice for implementing all-to-all personalized exchange due to its shorter

communication delay and better scalability.

Given N processors P0, P1, · · · , PN−1, an N × N multistage interconnection network

(MIN) can be used for communication among these processors as shown in Figure 1, where

N × N means N inputs and N outputs. Figure 2 shows an example of a 10 × 10 MIN.

A column in an MIN is called a stage and the nodes in an MIN are called switches (or

switching elements or crossbars). Throughout this paper, an MIN means an N ×N MINs

and each switch of an MIN is assumed to be of size 2 × 2 (hence N is even); see also
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[1, 2, 3, 5, 7] for switches of other sizes. It is well known that a 2× 2 switch has only two

possible states: straight or cross, as shown in Figure 3.

N x N

MIN

P0

P1

PN-1

I0

I1

IN-1

O0

O1

ON-1

… …

…

Figure 1: Communications among processors using an MIN.
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Figure 2: A 10× 10 MIN which is also a 10× 10 GSEN.

Obviously, it is meaningless to consider a network that does not have a path between

an arbitrary pair of input and output. An MIN is unique-path if there is a unique path

between each pair of input and output. An MIN is self-routable if the routing decision at

a switch depends only on the addresses of the source and the destination. In [14], Yang

and Wang proposed an optimal all-to-all personalized exchange algorithm for a class of

unique-path, self-routable MINs.

Yang and Wang’s algorithm [14] uses stage control (see [10]), which is a commonly used

technique to reduce the cost of the network setting for all-to-all personalized exchange

2



crossstraight

i0

i1

i0

i1

o0

o1

o0

o1

Figure 3: The states of a 2× 2 swtich.

communication. Stage control means that the states of all the switches of a stage have

to be identical. With stage control, a single control bit (0 for straight and 1 for cross),

or in other words, one electronic driver circuit, can be used to control all the switches of

a stage. Thus the number of expensive electronic driver circuits needed is significantly

lower than that of individual switch control.

Throughout this paper, N denotes the number of processors in a given MIN and

n + 1 is the number of stages in a given MIN. Since each switch is of size 2 × 2, N is an

even integer. All the networks considered in [14], including the famous shuffle-exchange

networks, satisfy N = 2n+1. Shuffle-exchange networks have been proposed as a popular

architecture for MINs; see [4, 5, 6, 9, 11]. In [9], Padmanabhan proposed the general

shuffle-exchange network (GSEN) with 2n < N ≤ 2n+1. The N terminals in an N × N

GSEN are numbered 0, 1, · · · , N − 1 and the shuffle-exchange operation on N terminals

is the permutation π defined by

π(i) = (2i +

⌊
2i

N

⌋
) mod N, 0 ≤ i ≤ N − 1.

See Figure 2 for an example. In the remaining part of this paper, we will simply use a

GSEN to denote an N ×N GSEN. Notice that in a shuffle-exchange network, N = 2n+1,

while in a GSEN, 2n < N ≤ 2n+1.

Although Yang and Wang’s algorithm [14] is optimal, it works only for unique-path

MINs. Since a GSEN is not necessarily a unique-path MIN, Yang and Wang’s algorithm

may not apply. Besides, Yang and Wang’s algorithm requires constructing a Latin square
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in advance and allocating memory for storing the Latin square. In [14], the time for

constructing the Latin square is not counted in the optimal O(N) communication delay.

The purpose of this paper is to propose two optimal all-to-all personalized exchange

algorithms for GSENs. Unlike Yang and Wang’s algorithm, we abandon the Latin square

method and the requirement on the unique-path property. The first algorithm uses the

stage control technique and works for arbitrary N . We will prove it is optimal when the

stage control technique is assumed for 2n−1 +2n ≤ N ≤ 2n+1. On the contrary, the second

algorithm does not use the stage control technique and works only for N = 2n + 2. We

will prove that it is optimal.

This paper is organized as follows: Section 2 gives some preliminaries. Section 3

is our first all-to-all personalized exchange algorithm. Section 4 is our second all-to-all

personalized exchange algorithm. Concluding remarks are given in the final section.

2 Some preliminaries

In a GSEN, the switches are aligned in n + 1 stages: stage 0, stage 1, · · · , stage n.

Each stage ` consists of N/2 switches denoted as s`
0, s

`
1, · · · , s`

N/2−1 and s`
(i+1) mod N is

considered to be the successive switch of s`
i .

The network configuration of an MIN is defined by the states of its switches. Since a

GSEN has N
2
× (n+1) switches, the network configuration of a GSEN can be represented

by an N
2
× (n + 1) matrix in which each entry is defined by the state of its corresponding

switch. And, when the stage control technique is used, the network configuration of a

GSEN can be represented by a number between 0 and 2n+1−1. For example, the network

configuration of the GSEN in Figure 2 can be represented by the matrix in Figure 4 or

by the number 10, which is (1010)2.

A permutation of an MIN is one-to-one mapping between the inputs and outputs.

For an MIN, if there is a permutation that maps input i to output p(i), where p(i) ∈

4






1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0




Figure 4: The network configuration of the GSEN in Figure 2.

{0, 1, · · · , N − 1} for i = 0, 1, · · · , N − 1, then we will use

(
0 1 · · · N − 1

p(0) p(1) · · · p(N − 1)

)

or simply use

p(0) p(1) · · · p(N − 1)

to denote the the permutation. Given a network configuration of an MIN, a permutation

can be obtained. For example, the network configuration shown in Figure 2 maps input 0

to output 1, input 1 to output 4, input 2 to output 6, · · · , and input 9 to output 8; this

configuration obtains the permutation

1 4 6 0 7 2 9 3 5 8.

Permutations realizable by an MIN are called admissible permutations. Not all of the

N ! permutations are realizable by an MIN. For example, the identity permutation is not

realizable by the MIN in Figure 2.

An N×N Latin square is an N×N matrix A = (ai,j) , i, j = 0, 1, · · · , N−1, such that

entries ai,j are in the set {0, 1, · · · , N − 1} and no two entries in a row or a column are

identical. In [14], Yang and Wang found that: to realize all-to-all personalized exchange

for a unique-path, self-routable MIN, one only needs to arrange N network configurations

so that their corresponding admissible permutations form an N×N Latin square. By using

this Latin square method, Yang and Wang [14] proposed an optimal all-to-all personalized

exchange algorithm for a class of unique-path, self-routable MINs; see also [7, 8, 12, 13, 15].
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In this paper, ⊕ denotes the XOR operation. As a reference,

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0.

3 All-to-all personalized exchange in GSENs with

stage control

In a GSEN, the messages are transmitted in a pipelining pattern. In the following, a

round means a process to transmit all the messages of the current stage to the next stage.

Before proposing our first all-to-all personalized exchange algorithm for GSENs, we will

prove that when 2n + 2n−1 ≤ N ≤ 2n+1 and the stage control technique is used, at least

2n+1 +n rounds are required to complete all-to-all personalized exchange in a GSEN. The

following lemma plays an important role in the remaining proofs.

Lemma 1. If the network configuration x maps input 0 to output j, then the network

configuration (x + 2n) mod 2n+1 maps input N/2 to the same output j. Moreover, x and

(x + 2n) mod 2n+1 differ only in the setting of stage 0.

Proof. Since the shuffle pattern makes input 0 and input N/2 link to the same switch

of the stage 0, we have the lemma.

See Figure 2 for an illustration of this lemma. It is not difficult to see that the network

configuration 10 maps input 0 to output 1 and the network configuration (10+8) mod 16,

which equals 2, maps input 5 to the same output 1. Before going further, we introduce a

definition. Output j is called a unique-path output of input i if the path between them is

unique.

Lemma 2. If j is a unique-output of input 0, then j is also a unique-path output of input

N/2.

6



Proof. Suppose to the contrary that the path between input N/2 and output j is not

unique. Then by Lemma 1, the path between input 0 and output j will not be unique.

Lemma 3. Input 0 has exactly 2N − 2n+1 unique-path outputs; these unique-path outputs

are consecutive and they are 2n+1 −N, 2n+1 −N + 1, · · · , N − 1.

Proof. Since the path between 0 and the switch sn
i is unique for 2n − N

2
≤ i ≤ N

2
− 1,

we have this lemma.

The following lemma is obvious and its proof is omitted.

Lemma 4. Suppose j is a unique-path output of input 0. Then when the stage control

technique is used, the network configuration that maps 0 to j is exactly j.

Corollary 5. Suppose j is a unique-path output of input 0. Then when the stage control

technique is used, the network configuration that maps N/2 to j is exactly (j + 2n) mod

2n+1 .

Proof. This corollary follows directly from Lemma 1, Lemma 2, and Lemma 4.

We now derive a lower bound on the number of rounds required to complete all-to-all

personalized exchange in a GSEN.

Theorem 6. When 2n + 2n−1 ≤ N ≤ 2n+1 and the stage control technique is used, at

least 2n+1 +n rounds are required to complete all-to-all personalized exchange in a GSEN.

Proof. By Lemma 3, U = {2n+1−N, 2n+1−N +1, · · · , N−1} is the set of unique-path

outputs of input 0. When 2n +2n−1 ≤ N ≤ 2n+1, we have S = {2n−1, 2n−1 +1, · · · , 2n−1 +

2n − 1} ⊆ U . Note that |S| = 2n. Let

S1 = {2n−1, 2n−1 + 1, · · · , 2n−1 + 2n − 1}

7



and

S2 = {2n−1 + 2n, 2n−1 + 2n + 1, · · · , 2n+1 − 1, 0, 1, · · · , 2n−1 − 1}.

By Lemma 4, the 2n network configurations in S1 are required for input 0 to get to all the

outputs in S. By Corollary 5, the 2n network configurations in S2 are required for input

N/2 to get to all the outputs in S. Since

S1 ∪ S2 = {0, 1, · · · , 2n+1 − 1},

when the stage control technique is used, at least 2n+1 network configurations are required

to complete all-to-all personalized exchange. Since at least 2n+1 network configurations

are required and it takes n + 1 rounds for a message to travel through a GSEN, we have

this theorem.

We are now ready to propose our first all-to-all personalized exchange algorithm for

GSENs. This algorithm uses the stage control technique and has two phases. The first

phase is the message preparing phase and in this phase, personalized messages that need

to be sent out from each processor are inserted into the message queue of that processor.

The second phase is the message sending phase and in this phase, personalized messages

are sent out from the message queue of each processor.

Algorithm GSEN-ATA-with-Stage-Control.

Phase 1: The message preparing phase.

• The (n+1)-digit binary representations xnxn−1 · · · x0 of numbers 0, 1, · · · , 2n+1−1

are sequentially generated and the labels of every input of the GSEN (the label

of input 0 is 0, the label of input 1 is 1, etc) are equipped with the current

binary representation xnxn−1 · · · x0.

• Before a label enters switch sj
i , sj

i is set to straight if xn−j = 0 and set to cross if

xn−j = 1.

8



• When a label reaches an output, a personalized message is prepared; in particular,

if label s reaches output t, then a personalized message that processor s wants

to send to processor t is prepared and is inserted into the message queue of

processor s.

Phase 2: The message sending phase.

• The (n+1)-digit binary representations xnxn−1 · · · x0 of numbers 0, 1, · · · , 2n+1−1

are sequentially generated and the personalized messages in the message queue

of every input of the GSEN are equipped with the current binary representation

xnxn−1 · · ·x0.

• Before a message enters switch sj
i , sj

i is set according to the rules used in phase

1.

• When a message reaches an output, that output receives a personalized message

for it.

End of the algorithm.

Theorem 7. Algorithm GSEN-ATA-with-Stage-Control is correct and takes 2(2n+1 + n)

rounds.

Proof. To prove the correctness of this algorithm, it is sufficient to prove that for an

arbitrary pair of input i and output j, i can get to j. Since the stage control technique is

used, there are only 2n+1 possible network configurations. The network configuration for i

to get to j is therefore a number in 0, 1, · · · , 2n+1− 1. Since Algorithm GSEN-ATA-with-

Stage-Control uses every number in 0, 1, · · · , 2n+1−1 as one of its network configurations,

i can get to j. It is obvious that the above algorithm takes 2(2n+1 + n) rounds.

Corollary 8. When 2n + 2n−1 ≤ N ≤ 2n+1 and the stage control technique is used,

Algorithm GSEN-ATA-with-Stage-Control is optimal.

9



Proof. By Theorem 7, Algorithm GSEN-ATA-with-Stage-Control takes O(2n+1 + n)

rounds. By Theorem 6, when the stage control technique is used, the number of rounds

required to complete all-to-all personalized exchange in a GSEN is Ω(2n+1 + n). We now

have this corollary.

4 All-to-all personalized exchange in GSENs with

N = 2n + 2

In this section, we will propose our second all-to-all personalized exchange algorithm

for GSENs and we will assume that the given GSEN has exactly N = 2n + 2 nodes. The

differences between our two algorithms are: The first algorithm uses the stage control

technique and each phase of the algorithm requires 2n+1 + n rounds (notice that 2n <

N ≤ 2n+1). On the contrary, each phase of the second algorithm requires only N + n

rounds and only the first 2n (note that N = 2n+2) rounds use the stage control technique.

The following is the second algorithm; it also has two phases: the message preparing phase

and the message sending phase.

Algorithm GSEN-ATA-2.

Phase 1: The message preparing phase.

• The (n+1)-digit binary representations xnxn−1 · · · x0 of numbers 0, 1, · · · , 2n−1,

2n + 2n−1, and 2n + 2n−1 + 1 are sequentially generated and the labels of every

input of the GSEN (the label of input 0 is 0, the label of input 1 is 1, etc) are

equipped with the current binary representation xnxn−1 · · ·x0.

• Before a label enters switch sj
i , sj

i is set according to the number x with which

the label is equipped.

10



If x is neither 2n + 2n−1 nor 2n + 2n−1 + 1, then:

sj
i is set to straight if xn−j = 0 and set to cross if xn−j = 1.

If x is 2n + 2n−1 or 2n + 2n−1 + 1, then:

if j = 0 or j = n, then sj
i is set to straight if xn−j = 0 and set to cross if

xn−j = 1; otherwise, sj
i is set to straight if i⊕ xn−j = 0 and set to cross if

i⊕ xn−j = 1.

• When a label reaches an output, a personalized message is prepared; in particular,

if label s reaches output t, then a personalized message that processor s wants

to send to processor t is prepared and is inserted into the message queue of

processor s.

Phase 2: The message sending phase.

• The (n+1)-digit binary representations xnxn−1 · · · x0 of numbers 0, 1, · · · , 2n−1,

2n + 2n−1, and 2n + 2n−1 + 1 are sequentially generated and the personalized

messages in the message queue of every input of the GSEN are equipped with

the current binary representation xnxn−1 · · ·x0.

• Before a message enters switch sj
i , the switch is set according to the rules used in

phase 1.

• When a message reaches an output, that output receives a personalized message

for it.

End of the algorithm.

Phase 2 of Algorithm GSEN-ATA-2 is similar to phase 1 of Algorithm GSEN-ATA-2

except that a personalized message (instead of the label i) is sent from input i. So we

only give an example for phase 1; see Figures 5 and 6. In these two figures, each 0-1 string

is the binary representation of the number x with which a label is equipped. From these
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two figures, the labels arriving at the outputs are as follows.

for output 0 : 0 4 8 5 7 6 1 3 2 9
for output 1 : 4 0 5 8 6 7 3 1 9 2
for output 2 : 8 3 0 2 1 5 7 9 6 4
for output 3 : 3 8 2 0 5 1 9 7 4 6
for output 4 : 7 2 6 3 0 9 4 5 1 8
for output 5 : 2 7 3 6 9 0 5 4 8 1
for output 6 : 6 1 7 9 4 8 0 2 5 3
for output 7 : 1 6 9 7 8 4 2 0 3 5
for output 8 : 5 9 4 1 3 2 6 8 0 7
for output 9 : 9 5 1 4 2 3 8 6 7 0

It is not difficult to see that Algorithm GSEN-ATA-2 completes all-to-all personalized

exchange for a GSEN with N = 10 nodes.

In the remaining part of this section, we will prove that Algorithm GSEN-ATA-2 is

correct and optimal. Recall that the switches of stage ` are s`
0, s`

1, · · · , s`
N/2−1 and s`

0

is considered to be the successive switch of s`
N/2−1. The following two observations are

based on the assumption that the setting of every switch of stage 0 is straight:

Observation 1. At stage 1, only one switch is reachable from input i. At stage 2, exactly

2 switches are reachable from input i and these switches are consecutive. In general,

at stage `, 0 ≤ ` ≤ n, exactly 2`−1 switches are reachable from input i and these

switches are consecutive. At stage n (i.e., the last stage), exactly 2n−1 switches are

reachable from input i and these switches are consecutive.

Since the switches of stage ` that are reachable from input i are consecutive, we only need

to know the first one; suppose s`
C`

is this switch. Then we have the following observation.

Observation 2.

C` =

{
i mod N/2 if ` = 0 ,
2`−1(2i + b 2i

N
c) mod N/2 if 1 ≤ ` ≤ n.

We now use the above two observations to prove a lemma.

Lemma 9. If i ≤ N/2−1, then for each phase of Algorithm GSEN-ATA-2, after perform-

ing the first N + n− 2 rounds, only one switch of stage n (the last stage) is not reachable

from input i. Moreover, if this unique switch is sn
qi
, then qi = (2n−1 − 2i) mod N/2.

12



Proof. When the stage control technique is used and the setting of every switch of stage

0 is straight, there are only 2n possible network configurations: 0, 1, · · · , 2n− 1. For each

phase of Algorithm GSEN-ATA-2, its first 2n rounds use the stage control technique and

the switches are set according to the (n + 1)-digit binary representations xnxn−1 · · · x0 of

the numbers 0, 1, · · · , 2n − 1. So by Observation 1, for each phase of Algorithm GSEN-

ATA-2, after performing the first 2n + n = N + n − 2 rounds, the number of switches

of stage n that are reachable from input i is 2n−1. Since each stage consists of 2n−1 + 1

switches, only one switch of stage n is not reachable from i. By Observation 2, if this

unique switch is sn
qi
, then qi = (Cn + 2n−1) mod N/2, i.e., qi = (2n−1 − 2i) mod N/2.

The following corollary follows directly from Lemma 9.

Corollary 10. q0 = 2n−1 and qi = (qi−1 − 2) mod N/2 for i = 1, 2, · · · , N/2− 1.

The proof of the following lemma is similar to that of Lemma 9 and is omitted here.

Lemma 11. If i ≥ N/2, then for each phase of Algorithm GSEN-ATA-2, after performing

the first N +n−2 rounds, only one switch of stage n (the last stage) is not reachable from

input i. Moreover, if this unique switch is sn
qi
, then qi = (2n−1 − 2i− 1) mod N/2.

The following corollary follows directly from Lemma 11.

Corollary 12. qN/2 = 2n−1 − 1 and qi = (qi−1 − 2) mod N/2 for i = N/2 + 1, N/2 +

2, · · · , N − 1.

Let M1 (M2), an N
2
× (n + 1) 0-1 matrix, be the network configuration defined as

follows. For each 0 ≤ ` ≤ n, column ` ofM1 (M2) contains the setting of switches of stage

` at round 2n + ` + 1 (2n + ` + 2). When we do not want to specify which one of M1 and

M2 is used, we will simply use M to denote either M1 or M2. From Algorithm GSEN-

ATA-2, M1 and M2 are defined by the (n + 1)-digit binary representations xnxn−1 · · ·x0

13



of 2n +1 and 2n +2, respectively. Since 2n +1 = (1100 · · · 00)2 and 2n +2 = (1100 · · · 01)2,

the first n columns of M1 and M2 are identical and

(i) each entry in column 0 of M is 1,

(ii) 1 and 0 appear alternatively in column 1 of M,

(iii) 0 and 1 appear alternatively in column 2, column 3, · · · , column n− 1 of M,

(iv) each entry in column n of M1 (M2) is 0 (1).

See the following for an illustration.

M1 =




1 1 0 0 · · · 0 0 0
1 0 1 1 · · · 1 1 0
1 1 0 0 · · · 0 0 0
1 0 1 1 · · · 1 1 0
... · · ·
1 0 1 1 · · · 1 1 0
1 1 0 0 · · · 0 0 0
1 0 1 1 · · · 1 1 0




M2 =




1 1 0 0 · · · 0 0 1
1 0 1 1 · · · 1 1 1
1 1 0 0 · · · 0 0 1
1 0 1 1 · · · 1 1 1
... · · ·
1 0 1 1 · · · 1 1 1
1 1 0 0 · · · 0 0 1
1 0 1 1 · · · 1 1 1




For convenience, denote the two subports on the left-hand (right-hand) side of a 2× 2

switch i0 and i1 (o0 and o1); see Figure 3. In a GSEN, the right-hand side of every stage

has exactly N ports: port 0, port 1, · · · , port N − 1. For convenience, let p`
i denote the

label of the port on the right-hand side of stage ` that is reachable from input i. When

the network configuration M is used, the following two properties hold.

Property A. If i ≤ N/2− 1 and 1 ≤ ` < n, then port p`
i is an o0-subport.

Property B. If i ≥ N/2 and 1 ≤ ` < n, then port p`
i is an o1-subport.

The following two lemmas will be used to prove that input i can reach switch sn
qi

by

using the network configuration M.

Lemma 13. If i ≤ N/2 − 1, then input i can reach switch sn
qi

by using the network

configuration M. Moreover, input i can get to outputs 2qi and 2qi + 1 (the two outputs

connecting to sn
qi
) by using M1 and M2, respectively.
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Proof. Let sn
ti

be the switch of stage n (the last stage) that is reachable from input i

when the network configuration M is used. First consider the case that i = 0. Clearly,

input 0 reaches switch s0
0 via i0-subport. Since input 0 reaches s0

0 via i0-subport and the

setting of s0
0 is cross, input 0 reaches switch s1

2·0+1 (i.e., s1
1) via i0-subport. Since input 0

reaches s1
1 via i0-subport and the setting of s1

1 is straight, input 0 reaches switch s1
2·1+0 (i.e.,

s2
2) via i0-subport. For ` = 2, 3, · · · , n− 1, since input 0 reaches s`

2`−1 via i0-subport and

the setting of s`
2`−1 is straight, input 0 reaches switch s`+1

2·2`−1+0
(i.e., s`+1

2` ) via i0-subport.

In particular, when ` = n−1, input 0 reaches switch sn
2n−1 , which is switch sn

q0
. So t0 = q0.

Next consider the case that 0 < i ≤ N/2 − 1. By Corollary 10, to prove this lemma,

it remains to prove that

ti = (ti−1 − 2) mod N/2 for i = 1, 2, · · · , N/2− 1.

To prove the above statement, it suffices to prove that

pn−1
i = (pn−1

i−1 − 2) mod N for i = 1, 2, · · · , N/2− 1.

Again, to prove this statement, it suffices to prove that

(∗) p`
i = (p`

i−1 + 2`+1) mod N for 1 ≤ ` ≤ n− 1.

We will prove (*) by induction on `. It is not difficult to see that (*) holds when ` = 1

or 2. Suppose ` ≥ 3 and (*) holds for `− 1. Note that p`−1
i = (p`−1

i−1 + 2`) mod N . Since

Property A holds, p`
i = 2p`−1

i mod N and p`
i−1 = 2p`−1

i−1 mod N . So

p`
i = 2p`−1

i mod N = 2(p`−1
i−1 + 2`) mod N = (p`

i−1 + 2`+1) mod N

and (*) holds.

In the above discussion, we have proven that input i can reach switch sn
qi

by using M1

or M2. Since the two outputs connecting to sn
qi

are 2qi and 2qi + 1 and sn
qi

is set to be

straight by M1 and cross by M2, input i can get to outputs 2qi and 2qi + 1 by using M1

and M2, respectively.
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Lemma 14. If i ≥ N/2, then input i can reach switch sn
qi

by using the network configura-

tion M. Moreover, input i can get to outputs 2qi and 2qi + 1 (the two outputs connecting

to sn
qi
) by using M1 and M2, respectively.

Proof. The proof of this lemma is similar to that of the previous lemma except that

Property B is used instead of Property A; hence the proof is omitted here.

Theorem 15. Algorithm GSEN-ATA-2 is correct and takes 2(N + n) rounds.

Proof. By Lemmas 9, 11, 13, and 14, each input i reaches each output j and hence

Algorithm GSEN-ATA-2 is correct. It is obvious that each phase of Algorithm GSEN-

ATA-2 takes N + n and the whole algorithm takes 2(N + n) rounds.

Corollary 16. Algorithm GSEN-ATA-2 is optimal.

Proof. By Theorem 15, Algorithm GSEN-ATA-2 takes O(N) rounds. Since the number

of rounds required to complete all-to-all personalized exchange in a GSEN is Ω(N), we

have this corollary.

5 Concluding remarks

In [14], Yang and Wang proposed an optimal all-to-all personalized exchange algo-

rithm, called ATAPE, for a class of unique-path, self-routable multistage interconnection

networks (MINs). The MINs considered in [14] include the famous shuffle-exchange net-

works. Algorithm ATAPE works only for unique-path MINs and requires constructing a

Latin square in advance and allocating memory for storing the Latin square. Yang and

Wang thought that the Latin square construction needs to be run only once at the time a

network is built. Thus the Latin square associated with the network can be viewed as one

of the system parameters and the time for constructing the Latin square is not counted

in their communication delay analysis.
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In this paper, we consider the general shuffle-exchange networks (GSENs). A GSEN is

not necessarily a unique-path MIN and hence Algorithm ATAPE may not apply. We have

proposed two optimal all-to-all personalized exchange algorithms for GSENs. Each of the

two algorithms consists of two phases: the message preparing phase and the message

sending phase. Algorithm ATAPE also consists of two (main) steps: Steps 1 and 2, which

correspond to the message preparing phase and message sending phase of our algorithms,

respectively. Unlike Algorithm ATAPE, we abandon the Latin square method and the

requirement on the unique-path property.

Our first algorithm uses the stage control technique and works for arbitrary N . We

have proven that it is optimal when the stage control technique is assumed for 2n−1+2n ≤

N ≤ 2n+1. However, an output may receive more than one (identical) message from the

same input when the algorithm is executed. These overhead can be avoided and we do not

discuss on this topic in this paper. Our second algorithm does not use the stage control

technique and works only for N = 2n + 2. We have also proven that it is optimal.
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Figure 6: An example of phase 1 of Algorithm GSEN-ATA-2 (continued).
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