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多維度的細胞分化在數學上的研究 

 

學生：劉兆涵                         指導老師：石至文 教授 

 

國立交通大學應用數學系(研究所)碩士班 

 

摘         要 

 

    我們分析並總結在文獻裡提到的三個細胞分化模型的數學特

性。這些數學模型描述細胞分化過程中ㄧ些相關蛋白質與基因表現控

制網路中多重開關之動態。這些系統是可由多個對抗性分部所組成，

在基因控制中，每一分部各以全有或無之方式引導細胞分化成特定之

形式。 

 

 

 



Mathematical Studies on Multi-dimensional
Cellular Differentiation Models

Student : Chao-Han Liu Advisor : Chih-Wen Shih
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Hsinchu, Taiwan, R.O.C.

December 2008

Abstract

We summarize mathematical properties for three cellular differentiation
models proposed in the literatures. These mathematical models are used
to describe basic multi-switching dynamics in generic master regulatory net-
works. These systems consist of arbitrary number of antagonistic components
which direct differentiation in an all-or-none fashion to a specific cell-type
chosen in gene regulation.
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1 Introduction

Cellular differentiation is the process by which a less specialized cell becomes a more

specialized cell type. Differentiation occurs numerous times during the development

of a multicellular organism as the organism changes from a single zygote to a complex

system of tissues and cell types. How the differentiation proceeds is the context of

gene regulation and is rather complex. Several mathematical models have been

proposed to depict and analyze the process. There were some reports on bistable

switches for systems with two variables, for example, in [3], [7]. From experimental

evidence, switching involving more than two variables and outcomes also deserves

investigations.

In this report, we study three models proposed by Olivier and Demongeot [4].

The model consists of arbitrary number of components. Each of them represents the

intracellular concentration of a differentiation factor, called switch element. Each of

these components promotes itself and represses all others. Each of these variables

can be regarded as a protein which corresponds to an antagonistic factor in the cell

differentiation, for example, in hematopoiesis. These models aim at characterizing

multi-dimensional switches in the cellular differentiation. In particular, the phases of

co-expressed components and some up-regulating, some down-regulating are desired

dynamic features in the models.

In the following, we discuss the properties of these models. The presentation

is organized as follow. Section 2 addresses the model with mutual inhibition and

autocatalysis. Each switch element is supposed to undergo non-regulated degra-

dation (modelled as exponential decay, with an arbitrary speed 1), and transcrip-

tion/translation with a relative speed σ. Each element positively auto-regulates

itself, and represses expression of others, with a cooperativity c. Calling xi the

concentration of each switch element, the corresponding equations are

ẋi = −xi +
σxc

i

1 +
∑n

j=1 xc
j

, 1 ≤ i ≤ n.

Section 3 addresses the model with mutual inhibition, autocatalysis and leak.

The model is the same as previously, except that each element has a ”leaky” ex-

pression, modelled as a constant production term α. The equations become

ẋi = −xi +
σxc

i

1 +
∑n

j=1 xc
j

+ α, 1 ≤ i ≤ n.
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Section 4 addresses a model for bHLH proteins. Each switch bHLH protein is

supposed to bind to a common activator according to the law of mass action, with

a binding constant Kc, and a total quantity of activator at.

ẋi = −xi +
σ( atxi

1+
Pn

j=1 xj
)c

Kc + ( atxi

1+
Pn

j=1 xj
)c

, 1 ≤ i ≤ n.

Throughout the presentation, we consider the system on the cone

{(x1, x2, · · · , xn) : xj ≥ 0, j = 1, 2, · · · , n},

and we consider the following five kinds of equilibria for the three model systems:

(i) the origin

(0, 0, · · · , 0) ∈ Rn; (1.1)

(ii) One switch on and (n−1) off, i.e., the equilibrium (x̄1, x̄2, · · · , x̄n) with x̄i = a 6=
0 for some i ∈ {1, 2, · · · , n} and x̄j = 0 for all others j. Without loss of generality,

we set it as

(a, 0, 0, · · · , 0) ∈ Rn; (1.2)

(iii) k switches on with identical components (k > 1), and (n − k) off (zero), i.e.,

the equilibrium (x̄1, x̄2, · · · , x̄n) with k’s i ∈ {1, 2, · · · , n} such that x̄i = a 6= 0 and

x̄j = 0 for all others j. Without loss of generality, we set it as

(a, a, · · · , a, 0, 0, · · · , 0) ∈ Rn; (1.3)

(iv) all switches on with identical components, i.e., the equilibrium (x̄1, x̄2, · · · , x̄n)

with x̄i = a 6= 0 for all i ∈ {1, 2, · · · , n},

(a, a, · · · , a) ∈ Rn; (1.4)

(v) k switches on with identical components, and (n − k) off with identical com-

ponents, i.e., the equilibrium (x̄1, x̄2, · · · , x̄n) with k’s x̄i = a 6= 0, and (n − k)’s

x̄j = b 6= 0 for i, j ∈ {1, 2, · · · , n} where k > 1 and (n− k) > 1 and a > b. Without

loss of generality, we set it as

(a, a, · · · , a, b, b, · · · , b) ∈ Rn. (1.5)

We shall analyze the existence of those equilibria. In addition, we study the

stability of these equilibria through linearization at these equilibria; namely, if all
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eigenvalues have negative real parts, then the equilibrium is stable; if one of the

eigenvalues has positive real part, then the equilibrium is unstable. As the first two

models are gradient systems, we also justify that the global convergence for these

systems.

In this report, propositions 2.1, 3.1, 3.2, 3.4, and 3.5 are completed in this

study, while the others are recasted from [4], with more details.

2 Model with mutual inhibition and autocatalysis

In the section, we consider the equations

ẋi = −xi +
σxc

i

1 +
∑n

j=1 xc
j

, 1 ≤ i ≤ n (2.1)

where xi > 0 is the concentration of each switch element, σ > 1 is transcription/

translation with a relative speed, and c is cooperativity. Clearly, the origin is an

equilibrium for every c > 0. In addition, if c ≥ 1, then the i-component of an

equilibrium is either zero or satisfies

σxc−1
i

1+
Pn

j=1 xc
j

= 1

⇔ 1 +
∑n

j=1 xc
j = σxc−1

i .

Next, we consider three cases for c, i.e. c = 0, c = 1, and c > 1. If c = 0, then (2.1)

becomes

ẋi = −xi +
σ

1 + n
, 1 ≤ i ≤ n.

Let the right hand side of (2.1) be fi, Jij = ∂fi/∂xj. Then

Ji,i = −1 +
(1 +

∑n
j 6=i x

c
j)(σcxc−1

i )

(1 +
∑n

j=1 xc
j)

2
, (2.2)

Ji,j =
−σcxc

ix
c−1
j

(1 +
∑n

j=1 xc
j)

2
for j 6= i.

Proposition 2.1. For c = 0, there exists a stable equilibrium with all switches on,

whose components are identically σ/(1 + n).

Proof: Consider the existence of the equilibrium with all switches on, whose com-

ponents are identical. We have (σ/(1 + n), σ/(1 + n), · · · , σ/(1 + n)) ∈ Rn is an
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equilibrium. Next, consider the local stability of the equilibrium. Note that the

linearization at (σ/(1 + n), σ/(1 + n), · · · , σ/(1 + n)) is




−1 0 · · · 0

0 −1
...

...
... · · · . . . 0
0 · · · 0 −1


 .

We have all eigenvalues are negative. Thus, the equilibrium is stable. The assertion

follows.

Example 2.1: In proposition 2.1, if n = 2 and σ = 2, i.e., the system is

{
ẋ1 = −x1 + 2

1+2

ẋ2 = −x2 + 2
1+2

,

then (2/3, 2/3) is a stable equilibrium for the above system (see figure 1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1: (2/3, 2/3) is a stable equilibrium (in example 2.1).

Next, consider c = 1 (no cooperativity), then (2.1) becomes

ẋi = −xi +
σxi

1 +
∑n

j=1 xj

, 1 ≤ i ≤ n.

Suppose σ > 1. If xi 6= 0 for some i, then 1 +
∑n

j=1 xj = σ. Note that the set

{(x1, x2, · · · , xn)|1 +
n∑

j=1

xj = σ} (2.3)
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is a hyperplane of equilibria. In addition, (2.2) becomes

Ji,i = −1 +
σ(1 +

∑n
j 6=i xj)

(1 +
∑n

j=1 xj)2
, (2.4)

Ji,j =
−σxi

(1 +
∑n

j=1 xj)2
for j 6= i.

The result of proposition 2.2. is only stated in [4]. We provide a detailed proof

herein.

Proposition 2.2. ([4]) For c = 1 and σ > 1, the hyperplane of equilibria (2.3) is

stable and the origin is an unstable equilibrium.

Proof: With (2.4), the origin is unstable since −1 + σ > 0 is the only eigenvalue.

Consider the distance from the point (x1(t), x2(t), · · · , xn(t)) to the hyperplane

y1 + y2 + · · ·+ yn = σ − 1.

Set the square of distance of a point (x1, x2, · · · , xn) to the plane as

D(x1, x2, · · · , xn) =
(x1 + x2 + · · ·+ xn − σ + 1)2

n
.

Then

Ḋ(x) =
dD

dt
(x1(t), x2(t), · · · , xn(t))

=
∂D

∂x1

ẋ1(t) +
∂D

∂x2

ẋ2(t) + · · ·+ ∂D

∂xn

ẋn(t)

= − 2

n

s · (s− σ + 1)2

1 + s
≤ 0,

where s = x1 + x2 + · · · + xn. Therefore, D is a Lyapunov function. Moreover,

Ḋ(x) = 0 if and only if s = σ − 1 or s = 0, i.e., the hyperplane of equilibria or the

origin. Thus, the manifold of equilibria are stable. So, the assertion follows.

Example 2.2 : In proposition 2.2, if n = 2 and σ = 2, i.e, the system is

{
ẋ1 = −x1 + 2x1

1+x1+x2

ẋ2 = −x2 + 2x2

1+x1+x2

,

5
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Figure 2: (0, 0) is unstable and and {(x1, x2)|x1 + x2 = 1} are stable manifold of
equilibria (in example 2.2).

then (0, 0) is unstable equilibrium and {(x1, x2)|x1 + x2 = 1} are stable manifold of

equilibria (see Figure 2).

We need the following lemma in the subsequent propositions.

Lemma 2.1: The eigenvalues of n× n matrix

A =




a b · · · b

b a
...

...
... · · · . . . b
b · · · b a


 ,

are (a− b) and a + (n− 1)b. In addition, the number of (a− b) is (n− 1).

Proof. Clearly, a− b is an eigenvalue of A. We have

A− (a− b)I =




b b · · · b

b b
...

...
... · · · . . . b
b · · · b b


 ,

rank(A − (a − b)I) = 1, and dimKer(A − (a − b)I) = n − 1. By the dimension

theorem [6], (n− 1)(a− b) + λ = na ⇔ λ = a + (n− 1)b. So, the result follows.

These results of proposition 2.3 are sketched in [4]. We recast them with more

details.
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Proposition 2.3. ([4]) Let c > 1.

(i) If (σ/c)c((c− 1)/k)c−1 ≥ 1, then there exist equilibria with k switches on with

identical components, and (n − k) off (zero), for 1 ≤ k ≤ n. In addition, the

equilibrium with one switch-on (k = 1), and n− 1 off (zero) exists if σ ≥ 2.

(ii) The equilibrium with one switch-on of value a and (n− 1) off (zero) is stable,

if a > (c/σ)
1

c−1 , and unstable if a < (c/σ)
1

c−1 .

(iii) The above equilibria with k switch-on for 1 < k ≤ n are unstable.

Proof: (i) A steady state solution of the form (a, a, · · · , a, 0, 0, · · · , 0) satisfies

−a +
σac

1 + kac
= 0 or 1 + kac = σac−1 if a 6= 0. (2.5)

Set g(ξ) = kξc−σξc−1, then g′(ξ) = kcξc−1−σ(c−1)ξc−2 = 0. Thus ξ = σ(c−1)/kc is

a critical point of g, and g(σ(c−1)/kc) = −(σ/c)c((c−1)/k)c−1. Since g(ξ) →∞ as

ξ →∞, and g(ξ) passes point (0, 0), g attains its minimum at −(σ/c)c((c−1)/k)c−1.

If −(σ/c)c((c−1)/k)c−1 ≤ −1, then there exists solution of (2.5). In addition, when

k = 1, the above equation becomes

σc > c(
c

c− 1
)c−1 ⇔ ln σ >

ln c + ln( c
c−1

)c−1

c
. (2.6)

Let

h(c) =
ln c + ln( c

c−1
)c−1

c
.

We compute

h′(c) =
− ln(c− 1)

c2
= 0 ⇔ c = 2.

In addition, ln(c − 1) < 0 if 1 < c < 2 and ln(c − 1) > 0 if c > 2. Hence, the

right-hand side of (2.6) has a maximum for c = 2, matched by σ = 2. So, σ ≥ 2,

there exist solutions of (2.5).

(ii) From (2.2), the linearization at (a, 0, · · · , 0) is

J =




−1 + c
σac−1 0 · · · 0

0 −1
...

...
... · · · . . . 0
0 · · · 0 −1


 .
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Thus, −1 and −1 + c/σac−1 are the eigenvalues of J . If

−1 +
c

σac−1
< 0 ⇔ a > (c/σ)

1
c−1 ,

then the equilibrium is stable. In addition, it is unstable if a < (c/σ)
1

c−1 .

(iii) When 1 < k < n, the linearization at (a, a, · · · , a, 0, 0, · · · , 0) is




−1 + σc(1+(k−1)ac)ac−1

(1+kac)2
− σca2c−1

(1+kac)2

. . .

− σca2c−1

(1+kac)2
−1 + σc(1+(k−1)ac)ac−1

(1+kac)2

0

0

−1 0
. . .

0 −1




By Lemma 1, the eigenvalues are −1, and

λ1 = −1 +
σc(1 + (k − 1)ac)ac−1

(1 + kac)2
+

σca2c−1

(1 + kac)2
, and (2.7)

λ2 = −1 +
σc(1 + (k − 1)ac)ac−1

(1 + kac)2
− (k − 1)σca2c−1

(1 + kac)2
< λ1.

Note that λ1 > 0 if and only if c > 1. Indeed,

−(1 + kac)2 + σc(1 + (k − 1)ac)ac−1 + σca2c−1 ≤ 0

⇔ σc(1 + (k − 1)ac) + σcac ≤ σ2ac−1

⇔ 1 + kac ≤ σ

c
ac−1

⇔ c ≤ 1.

Thus, the equilibrium unstable.

In addition, when k = n, then the linearization at (a, a, · · · , a) is




−1 + σc(1+(n−1)ac)ac−1

(1+nac)2
− σca2c−1

(1+nac)2
· · · − σca2c−1

(1+nac)2

− σca2c−1

(1+nac)2
−1 + σc(1+(n−1)ac)ac−1

(1+nac)2
...

...
... · · · . . . − σca2c−1

(1+nac)2

− σca2c−1

(1+nac)2
· · · − σca2c−1

(1+nac)2
−1 + σc(1+(n−1)ac)ac−1

(1+nac)2




.

The analysis of eigenvalues is as the case 1 < k < n. The assertion then follows.

The result of proposition 2.4 is sketched in [4]. We recast it with more details.
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Proposition 2.4.([4]) : For c ≥ 1/2, every solution of systems (2.1) tends to an

equilibrium as time tends to infinity.

Proof: Let yi =
√

xi. Then ẏi = ẋi/2yi, i.e.,

ẏi =
−xi +

σxc
i

1+
Pn

j=1 xc
j

2yi

=
−y2

i +
σy2c

i

1+
Pn

j=1 y2c
j

2yi

=
1

2
(−yi +

σy2c−1
i

1 +
∑n

j=1 y2c
j

)

= −∂V

∂yi

,

where

V (y) =
1

4

n∑
j=1

y2
j −

σ

4c
log(1 +

n∑
j=1

y2c
j ).

Thus ẏi = ẋi/2yi is a gradient system. Moreover,

−2
∂V

∂yi

= yi − σy2c−1
i

1 +
∑n

j=1 y2c
j

= 0 ⇔ 1 =
σy2c−2

i

1 +
∑n

j=1 y2c
j

,

i.e.,

1 +
n∑

j=1

xc
j = σxc−1

i .

By the Lasalle’s invariant principle [1], thus, every solution of the system converges

to one of the equilibria as time tends to infinity. The assertion follows.

Example 2.3 : In proposition 2.3, first consider n = 2, c = 2 and σ = 2, i.e., the

system is {
ẋ1 = −x1 +

2x2
1

1+x2
1+x2

2

ẋ2 = −x2 +
2x2

2

1+x2
1+x2

2

,

then (0, 0) is stable equilibrium and (1, 0), (0, 1) are saddle points since 1 = (c/σ)
1

c−1 .

Next, consider n = 2, c = 2 and σ = 3. i.e., the system is
{

ẋ1 = −x1 +
3x2

1

1+x2
1+x2

2

ẋ2 = −x2 +
3x2

2

1+x2
1+x2

2

, (2.8)

then there exist seven equilibria: three stable equilibria are (0, 0), (2.618, 0), (0, 2.618),

since it satisfies (3 +
√

5)/2 ≈ 2.618 > (c/σ)
1

c−1 = 2
3
, and four unstable equi-

libria are (1, 1), (0.5, 0.5), (0.382, 0), (0, 0.382). The reasons are first two satisfy
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(σ/c)c((c − 1)/2)c−1 = 9/8 > 1 and the last two satisfy (3 − √
5)/2 ≈ 0.382 <

(c/σ)
1

c−1 = 2/3.

If consider yi =
√

xi, then the above system become

{
ẏ1 = 1

2
(−y1 +

3y3
1

1+y4
1+y4

2
)

ẏ2 = 1
2
(−y2 +

3y3
2

1+y4
1+y4

2
)

, (2.9)

then there exist seven equilibria: three stable equilibria are (0, 0), (1.618, 0), (0, 1.618),

and four unstable equilibria are (1, 1), (0.707, 0.707), (0.618, 0), (0, 0.618). We see

that same dynamical behavior in systems (2.8) and (2.9) (see figure 3).

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1
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1.4

1.6

1.8

2
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1.6

1.8

2

Figure 3: In figure (a), (0, 0) is stable equilibrium and (1, 0), (0, 1) are saddle
points. (b) is for ẋi(t) system, it has seven equilibria: three stable equilibria
are (0, 0), (2.168, 0), (0, 2.168), and four unstable equilibria are (1, 1), (0.5, 0.5),
(0.382, 0), (0, 0.382). (c) is for ẏi(t) system, ut has seven equilibria: three stable
equilibria are (0, 0), (1.618, 0), (0, 1.618), and four unstable equilibria are (1, 1),
(0.707, 0.707), (0.618, 0), (0, 0.618) (in example 2.3).
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In this section, for c = 0, there exists a stable equilibrium with all switches

on, whose components are identically σ/(1 + n). For c = 1 and σ > 1, the manifold

of equilibria (2.3) is stable and the origin is an unstable equilibrium.

Let c > 1.

(i) If (σ/c)c((c− 1)/k)c−1 ≥ 1, then there exist equilibria with k switches on with

identical components, and (n − k) off (zero), for 1 ≤ k ≤ n. In addition, the

equilibrium with one switch-on (k = 1), and n− 1 off (zero) exists if σ ≥ 2.

(ii) The equilibrium with one switch-on of value a and (n− 1) off (zero) is stable,

if a > (c/σ)
1

c−1 , and unstable if a < (c/σ)
1

c−1 .

(iii) The above equilibria with k switch-on for 1 < k ≤ n are unstable.

Finally, the model is a gradient system, we also justify that for c ≥ 1/2, every

solution of systems (2.1) tends to an equilibrium as time tends to infinity. .

3 Model with mutual inhibition, autocatalysis, and

leak

In this section, we add leak α > 0 to the equations (2.1), i.e.,

ẋi = −xi +
σxc

i

1 +
∑n

j=1 xc
j

+ α, 1 ≤ i ≤ n. (3.1)

If one component of the equilibrium is zero, then it contradicts the assumption

α > 0. Thus, (0, 0, · · · , 0), (a, 0, 0, · · · , 0), (a, a, · · · , a, 0, 0, · · · , 0) can not satisfy

the above equations. We have the origin, one switch on and (n− 1) off, k switches

on with identical components (k > 1) and (n− k) off (zero) are not equilibria.

By the numerical illustrations, we guess that if the leak is small, then it does

not have a major effect on the systems, except when the cooperativity is close to 1.

To give an instance: when n = 2, c = 2, σ = 3, α = 0.01, i.e., the system is
{

ẋ1 = −x1 +
3x2

1

1+x2
1+x2

2
+ 0.01

ẋ2 = −x2 +
3x2

2

1+x2
1+x2

2
+ 0.01

,

then there exist seven equilibria (0,2.631), (2.631,0), (0.010,0.010), (0,0.368), (0.368,0),

(0.471,0.471), (1.029,1.029). The first three are stable; the last four are unstable.

The dynamical behavior in figure 4 is similar to (b) in figure 3.

11
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Figure 4: If the leak is small, it does not have a major effect on the system. In
addition, it has seven equilibria.

Moreover, we compare the system

{
ẋ1 = −x1 +

3x1.1
1

1+x1.1
1 +x1.1

2

ẋ2 = −x2 +
3x1.1

2

1+x1.1
1 +x1.1

2

(3.2)

with {
ẋ1 = −x1 +

3x1.1
1

1+x1.1
1 +x1.1

2
+ 0.01

ẋ2 = −x2 +
3x1.1

2

1+x1.1
1 +x1.1

2
+ 0.01

. (3.3)

In system (3.2), it has seven equilibria: (0,0), (0,2.070) and (2.070,0) are stable;

(1,1), (0.00002,0.00002), (0,0.00002) and (0.00002,0) are unstable. In system (3.3),

it has three equilibria: (0,2.085) and (2.085,0) are stable; (1.016,1.016) is unstable.

The numbers of equilibria is clearly different. Thus, when the leak is small and the

cooperativity is close to 1, it has a substantial effect on the systems (see figure 5).

Next, we consider three cases for c, i.e. c = 0, c = 1, and c > 1. If c = 0, then

(3.1) becomes

ẋi = −xi +
σ

1 + n
+ α, 1 ≤ i ≤ n.

Proposition 3.1 : For c = 0, there exists a stable equilibrium with all switches on,

whose components are identically α + σ/(1 + n).

Proof: Consider the existence of the equilibrium with all switches on, whose com-

ponents are identical. Then (α + σ/(1 + n), α + σ/(1 + n), · · · , α + σ/(1 + n)) ∈ Rn

is an equilibrium. Next, consider the local stability of the equilibrium. Since α is

12
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Figure 5: The leak is small and the cooperativity is close to 1, it has a substantial
effect on the system. Figure (a) depicts the dynamics of system (3.2). (b) is a
zoom-in of (a) near the origin by scale 105. (c) is for system (3.3).

constant, it does not affect the linearization at the equilibrium. The result is similar

to proposition 2.1. Hence, the equilibrium is stable. The assertion follows.

Next, consider c = 1, then (3.1) become

dxi

dt
= −xi +

σxi

1 +
∑n

j=1 xj

+ α, 1 ≤ i ≤ n.

Proposition 3.2 : For c = 1, there exists a stable equilibrium with all switches on,

whose components are identically [−1 + nα + σ +
√

(1− nα− σ)2 + 4nα]/2n.
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Proof: A steady state solution of the form (a, a, · · · , a) satisfies

−a +
σa

1 + na
+ α = 0 or na2 + (1− nα− σ)a− α = 0,

and the solution of above equation is [−1 + nα + σ +
√

(1− nα− σ)2 + 4nα]/2n.

Since α is constant, it does not affect the linearization at the equilibrium. From

(2.2), the linearation at (a, a, · · · , a) is




−1 + σ(1+(n−1)a)
(1+na)2

−σa
(1+na)2

· · · −σa
(1+na)2

−σa
(1+na)2

−1 + σ(1+(n−1)a)
(1+na)2

...
...

... · · · . . . −σa
(1+na)2

−σa
(1+na)2

· · · −σa
(1+na)2

−1 + σ(1+(n−1)a)
(1+na)2




.

The eigenvalues for this matrix are

λ1 = −1 +
σ(1 + (n− 1)a)

(1 + na)2
+

σa

(1 + na)2
,

λ2 = −1 +
σ(1 + (n− 1)a)

(1 + na)2
− (n− 1)σa

(1 + na)2
.

Note that

λ1 < 0 ⇔ σ(1 + na) < (1 + na)2 ⇔ σ < 1 + na. (3.4)

From the steady state equation, then 1 + na = σa/(a − α). With it to substitute

for the inequality (3.4). We have σ < 1 + na = σa/(a− α), i.e., σα > 0. Hence, for

c = 1, in any condition (since σ > 0 and α > 0), then (a, a, · · · , a) is stable. Thus,

the assertion follows.

Example 3.1 : In proposition 3.2, if n = 2, σ = 2, and α = 1, i.e., the system is

{
ẋ1 = −x1 + 2x1

1+x1+x2
+ 1

ẋ2 = −x2 + 2x2

1+x1+x2
+ 1

,

then (1.781,1.781) is a stable equilibrium since σα = 2 > 0 (see figure 6).

We consider c > 1 in the following discussions . There exist two kinds of

stable equilibria. In proposition 3.3, we discuss the equilibrium with all switches on,

whose components are identically less than cα/(c − 1). The other one is that the

components consists of two different values. In proposition 3.4, we restrict to the

14
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Figure 6: (1.781,1.781) is a stable equilibrium (in example 3.1).

case with dimension n = 2, 3; in proposition 3.5, we consider the case for dimension

n ≥ 4.

The result of proposition 3.3 is sketched in [4]. We recast it with more details.

Proposition 3.3 : For c > 1, there exist stable equilibrium with all switches on,

whose components are identically a with a < cα/(c− 1).

Proof: A steady state solution of the form (a, a, · · · , a) satisfies

−a +
σac

1 + nac
+ α = 0

or nac+1− (σ +nα)ac +a = α. Set h(ζ) = nζc+1− (σ +nα)ζc + ζ. We compute that

h′(ζ) = n(c + 1)ζc − c(σ + nα)ζc−1 + 1

h′′(ζ) = nc(c + 1)ζc−1 − c(σ + nα)(c− 1)ζc−2.

Therefore, ζ = (σ + nα)(c − 1)/n(c + 1) is the reflection point. And h(ζ) → ∞ as

ζ →∞, and h(ζ) passes point (0, 0), We have the curve of the function h(ζ) is down

in the left side of the reflective point and is upper in the other. Further, there is

intersection of h(ζ) and horizontal line α. Thus, it there is one solution.

Next, consider the local stability of (a, a, · · · , a). Since α is constant, it does

not affect the linearization at the equilibrium. From (2.7), we have the greatest

eigenvalue is −1+σcac−1/(1+nac). And with the above steady state equation, then

1+nac = σac/(a−α). If the greatest eigenvalue is negative, then σcac−1 < 1+nac.

We substitute 1 + nac for σac/(a−α) in the above inequality. Thus, (a, a, · · · , a) is

stable if a < cα/(c− 1). The assertion follows.
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We consider n = 2 and there exists an equilibrium (a, b) where a > b. Then

(a, b) satisfies
{

ac+1 − (α + σ)ac + (1 + bc)a− α(1 + bc) = 0
bc+1 − (α + σ)bc + (1 + ac)b− α(1 + ac) = 0

,

and n = 3 and there exists equilibrium (a, a, b) where a > b. Then (a, a, b) satisfies
{

2ac+1 − (2α + σ)ac + (1 + bc)a− α(1 + bc) = 0
bc+1 − (α + σ)bc + (1 + 2ac)b− α(1 + 2ac) = 0

,

Proposition 3.4 : Let c > 1.

(i) If n = 2 and the equilibrium (a, b) exists. Then it is stable if σ2c2a2c−1b2c−1 <

(−(1 + ac + bc)2 + σc(1 + bc)ac−1)(−(1 + ac + bc)2 + σc(1 + ac)bc−1), with one

switch-on with value a, and one off with value b.

(ii) If n = 3, σcac−1 < 1 + 2ac + bc and the equilibrium (a, a, b) exists. Then it is

stable if 2σ2c2a2c−1b2c−1 < (−(1 + 2ac + bc)2 + σc(1 + 2ac)bc−1)(−(1 + 2ac +

bc)2 + σc(1 + bc)ac−1), with two switches-on with value a identically, and one

off with value b. In addition, if a change for b, then we have the condition of

the stability for the equilibrium with one switch-on with value a, and two off

with value b identically.

Proof: We analysis the stability for these equilibria.

(i) From (2.2), the linearization at (a, b) is
(
−1 + σc(1+pbc)ac−1

(1+ac+bc)2
−σcacbc−1

(1+ac+bc)2

−σcac−1bc

(1+ac+bc)2
−1 + σc(1+kac)bc−1

(1+ac+bc)2

)
let
=

(
d u
v m

)
.

We have two eigenvalues are [d+m+
√

(d−m)2 + 4uv]/2 and [d+m−
√

(d−m)2 + 4uv]/2.

If the larger is negative, i.e.,

σ2c2a2c−1b2c−1 < (−(1 + ac + bc)2 + σc(1 + bc)ac−1)(−(1 + ac + bc)2 + σc(1 + ac)bc−1),

then all eigenvalues are negative, i.e., (a, b) and (b, a) are stable.

(ii) From (2.2), the linearization at (a, a, b) is


−1 + σc(1+ac+bc)ac−1

(1+2ac+bc)2
−σca2c−1

(1+2ac+bc)2
−σcacbc−1

(1+2ac+bc)2

−σca2c−1

(1+2ac+bc)2
−1 + σc(1+ac+bc)ac−1

(1+2ac+bc)2
−σcacbc−1

(1+2ac+bc)2

−σcbcac−1

(1+2ac+bc)2
−σcbcac−1

(1+2ac+bc)2
−1 + σc(1+2ac)bc−1

(1+2ac+bc)2




let
=




d r u
r d u
v v m


 .
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We have three eigenvalues are d − r, [d + r + m +
√

(d + r −m)2 + 8uv]/2 and

[d + r + m −
√

(d + r −m)2 + 8uv]/2. If d − r < 0 and 2uv < m(d + r), i.e.,

σcac−1 < 1 + 2ac + bc and

2σ2c2a2c−1b2c−1 < (−(1+2ac+bc)2+σc(1+2ac)bc−1)(−(1+2ac+bc)2+σc(1+bc)ac−1),

then all eigenvalues are negative. Thus, (a, a, b), (a, b, a) and (b, a, a) are stable. In

addition, if a change for b, then we have the condition of the stability for the equi-

librium with one switch-on with value a, and two off with value b identically. Thus,

the assertion follows.

Let p = n − k. The steady state solution of the form (a, a, · · · , a, b, b, · · · , b)

with k′s a and p′s b satisfies

{
kac+1 − (αk + σ)ac + (1 + pbc)a− α(1 + pbc) = 0
pbc+1 − (αp + σ)bc + (1 + kac)b− α(1 + kac) = 0

,

We assume such equilibrium exist.

The following characteristic polynomial has been mentioned in [4] without

computing eigenvalues for system (3.5). We provide linear stability analysis for

these equilibrium in the following proposition 3.5.

Proposition 3.5 :For c > 1, n ≥ 4, k > 1, and the equilibrium (a, a, · · · , a, b, b, · · · , b)

with k′s a and p′s b exists. Then it is stable if σcac−1 < 1 + kac + (n− k)bc with k

switches-on with value a identically, and (n− k) off with value b identically.

Proof: From(2.2), the linearization at (a, a, · · · , a, b, b, · · · , b) is




d r · · · r u · · · · · · u

r d
...

...
...

...
...

...
... · · · . . . r

...
...

...
...

r · · · r d u · · · · · · u
v · · · · · · v m s · · · s
...

...
...

... s m
...

...
...

...
...

...
... · · · . . . s

v · · · · · · v s · · · s m




(3.5)
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where

d = −1 +
σc(1 + (k − 1)ac + pbc)ac−1

(1 + kac + pbc)2
,

m = −1 +
σc(1 + kac + (p− 1)bc)bc−1

(1 + kac + pbc)2
,

r =
−σca2c−1

(1 + kac + pbc)2
,

s =
−σcb2c−1

(1 + kac + pbc)2
,

u =
−σcacbc−1

(1 + kac + pbc)2
,

v =
−σcac−1bc

(1 + kac + pbc)2
.

We do row operations and column operations.




d r · · · r u 0 · · · 0

r d
...

...
...

...
...

...
... · · · . . . r

...
...

...
...

r · · · r d u 0 · · · 0
v · · · · · · v m s−m · · · s−m
...

...
...

... s m− s 0
...

...
...

...
...

. . .

v · · · · · · v s 0 m− s




→




d− r 0 r − d 0 0 · · · 0
. . .

...
...

...
...

...

0 d− r r − d 0
...

...
...

r · · · r d u 0 · · · 0
v · · · · · · v m s−m · · · s−m
...

...
...

... s m− s 0
...

...
...

...
...

. . .

v · · · · · · v s 0 m− s




→
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


d− r 0 r − d 0 0 · · · 0
. . .

...
...

...
...

...

0 d− r r − d 0
...

...
...

r · · · r d u 0 · · · 0
pv · · · · · · pv m + (p− 1)s 0 · · · 0
v · · · · · · v s m− s 0
...

...
...

...
...

. . .

v · · · · · · v s 0 m− s




→




d− r 0 0 0 0 · · · 0
. . .

...
...

...
...

...

0 d− r 0 0
...

...
...

r · · · r d + (k − 1)r u 0 · · · 0
pv · · · pv kpv m + (p− 1)s 0 · · · 0
v · · · v kv s m− s 0
...

...
...

...
...

. . .

v · · · v kv s 0 m− s




.

The characteristic polynomial of the matrix is

(m − s − x)p−1(d − r − x)k−1((d + (k − 1)r − x)(m + (p − 1)s − x) − kpuv) =

(m− s− x)p−1(d− r− x)k−1(x2− (d + m + (k− 1)r + (p− 1)s)x + dm + (p− 1)sd +

(k − 1)mr + (k − 1)(p− 1)rs− kpuv).

We have two eigenvalues are

d− r = −1 +
σcac−1

1 + kac + pbc
,

m− s = −1 +
σcbc−1

1 + kac + pbc
.

If the larger is negative, then σcac−1 < 1 + kac + pbc. The others satisfy

λ1 + λ2 = d + m + (k − 1)r + (p− 1)s

= (d− r) + (m− s) + kr + ps < 0, and

λ1λ2 = (p− 1)sd + (k − 1)mr + (k − 1)(p− 1)rs + dm− kpuv

= ps(d− r) + kr(m− s) + (s−m)(r − d) > 0.

So, if σcac−1 < 1 + kac + pbc, then all eigenvalues are negative, i.e., the equilibrium

is stable. The assertion follows.
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In proposition 3.6, the main result is proposed from [4], but we recast it with

more details.

Proposition 3.6. ([4]) : For c ≥ 1/2, every solution of systems (2.1) tends to an

equilibrium as time tends to infinity.

Proof: Let yi =
√

xi. Then ẏi = ẋi/2yi, i.e.,

ẏi =
−xi +

σxc
i

1+
Pn

j=1 xc
j
+ α

2yi

=
−y2

i +
σy2c

i

1+
Pn

j=1 y2c
j

+ α

2yi

=
1

2
(−yi +

σy2c−1
i

1 +
∑n

j=1 y2c
j

+
α

yi

)

= −∂V

∂yi

,

where

V (yi) =
1

4

n∑
j=1

y2
j −

σ

4c
log(1 +

n∑
j=1

y2c
j )− 1

2
log(

n∏
j=1

yα
j ).

Thus ẏi = ẋi/2yi is a gradient system. Moreover

−yi +
σy2c−1

i

1 +
∑n

j=1 y2c
j

+
α

yi

= 0 ⇔ −xi +
σxc

i

1 +
∑n

j=1 xc
j

+ α = 0.

By the Lasalle’s invariant principle [1], thus, every solution of the system converges

to one of the equilibria as time tends to infinity. The assertion follows.

Example 3.2 : In proposition 3.3 and 3.4, if n = 2, c = 2, σ = 2 and α = 0.1, i.e.,

the system is {
ẋ1 = −x1 +

2x2
1

1+x2
1+x2

2
+ 0.1

ẋ2 = −x2 +
2x2

2

1+x2
1+x2

2
+ 0.1

. (3.6)

First, consider (a, a) is an equilibrium, we have

−a +
2a2

1 + 2a2
+ 0.1 = 0,

or 20a3 − 22a2 + 10a − 1 = 0, it only exists a real root. Thus, (0.135, 0.135) is a

stable equilibrium since a = 0.135 < 0.2 = cα/(c − 1). Next, consider (a, b), and

(b, a) are equilibria, we have
{
−a + 2a2

1+a2+b2
+ 0.1 = 0

−b + 2b2

1+a2+b2
+ 0.1 = 0

.
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By calculating, we have 100b4−22b3+121b2−20b+2 = 0, the solutions only have two

real roots. Thus, there exist four equilibria: (0.107, 1.458), (1.458, 0.107), (0.122,

0.557), and (0.557, 0.122). The first two are stable and the last two are unstable

since they satisfy the condition in proposition 3.4.

If consider yi =
√

xi, then the above system become

{
ẏ1 = 1

2
(−y1 +

2y3
1

1+y4
1+y4

2
+ 0.1

y1
)

ẏ2 = 1
2
(−y2 +

3y3
2

1+y4
1+y4

2
+ 0.1

y2
)

. (3.7)

We see that the two systems (3.6) and (3.7) have same dynamical behavior (see

figure 7).
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Figure 7: (a) is for ẋi(t) system and (b) is for ẏi(t). They have same dynamical
behavior.

In this section, for any c, the origin, one switch on and (n− 1) off, k switches

on with identical components k > 1 and (n − k) off (zero) are not equilibria. The

result is different to section 2. For c = 0, there exists a stable equilibrium with all

switches on, whose components are identically α + σ/(1 + n).

For c = 1, there exists a stable equilibrium with all switches on, whose com-

ponents are identically [−1 + nα + σ +
√

(1− nα− σ)2 + 4nα]/2n.

For c > 1, there exist stable equilibrium with all switches on, whose compo-

nents are identically lower than cα/(c − 1). It is also different to proposition 2.3.

Moreover,
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(i) If n = 2 and the equilibrium (a, b) exists. Then it is stable if σ2c2a2c−1b2c−1 <

(−(1 + ac + bc)2 + σc(1 + bc)ac−1)(−(1 + ac + bc)2 + σc(1 + ac)bc−1), with one

switch-on with value a, and one off with value b.

(ii) If n = 3, σcac−1 < 1 + 2ac + bc and the equilibrium (a, a, b) exists. Then it is

stable if 2σ2c2a2c−1b2c−1 < (−(1 + 2ac + bc)2 + σc(1 + 2ac)bc−1)(−(1 + 2ac +

bc)2 + σc(1 + bc)ac−1), with two switches-on with value a identically, and one

off with value b. In addition, if a change for b, then we have the condition of

the stability for the equilibrium with one switch-on with value a, and two off

with value b identically.

Finally, the model is a gradient system, we also justify that the global conver-

gence for the system.

4 A model for bHLH proteins

In this section, consider the bHLH proteins model

ẋi = −xi +
σ( atxi

1+
Pn

j=1 xj
)c

Kc + ( atxi

1+
Pn

j=1 xj
)c

, 1 ≤ i ≤ n

where Kc = αac
t is binding constant and at is a total quantity of activator. Set

D = 1 +
∑n

j=1 xj, the above equations become

ẋi = −xi +
σxc

i

αDc + xc
i

, 1 ≤ i ≤ n (4.1)

where α = Kc

ac
t
∈ R+ is a measure of the harshness of the competition between

switches. In the following, consider two cases for c, i.e. c = 1 and c = 2. When

c = 1, then (4.1) become

ẋi = xi(−1 +
σ

α(1 +
∑n

j=1 xj) + xi

), 1 ≤ i ≤ n. (4.2)

Note that the Jacobian matrix of the vector field is J = [Jij] with

Ji,i = −1 +
σα(1 +

∑n
j 6=i xj)

(α(1 +
∑n

j=1 xj) + xi)2
, (4.3)

Ji,j =
−σαxi

(α(1 +
∑n

j=1 xj) + xi)2
for j 6= i.
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In proposition 4.1, the result of (i) is new. In addition, the results of (ii) and

(iii) are stated in [4], but we recast them with more details.

Proposition 4.1 : Let c = 1.

(i) If σ < α, then the origin is stable.

(ii) If σ > α and 1 ≤ k < n, then there exist unstable equilibria with k switches

on, whose components are identically (σ−α)/(αk + 1), and (n− k) off (zero).

(iii) There exists a stable equilibrium with all switches on, whose components are

identically (σ − α)/(αn + 1).

Proof: (i) The linearizaation at the origin is




−1 + σ
α

0 · · · 0

0 −1 + σ
α

...
...

... · · · . . . 0
0 · · · 0 −1 + σ

α


 .

If −1 + σ
α

< 0 or σ < α, then the origin is stable. The result follows.

(ii) The steady state equation for the (a, a, · · · , a, 0, 0, · · · , 0), a 6= 0 is an equilibrium

if and only if

−a +
σa

α(1 + ka) + a
= 0,

i.e. a = (σ − α)/(αk + 1) > 0. Thus, σ > α is the condition of existence. From

(4.3), the linearization at (a, a, · · · , a, 0, 0, · · · , 0) is




−1 + σα(1+(k−1)a)
(α(1+ka)+a)2

−σαa
(α(1+ka)+a)2

. . .
−σαa

(α(1+ka)+a)2
−1 + σα(1+(k−1)a)

(α(1+ka)+a)2

−σαa
(α(1+ka)+a)2

0

−1 + σ
α(1+ka)

0
. . .

0 −1 + σ
α(1+ka)




.

So, −1 + σ/α(1 + ka) is a eigenvalue. To substitute a for (σ − α)/(αk + 1).

Thus, the above eigenvalue becomes −1 + (σαk + σ)/(σαk + α). It always posi-

tive. Moreover, when k = 1, the above result also holds. Thus, (a, 0, 0, · · · , 0) and

(a, a, · · · , a, 0, 0, · · · , 0) are unstable equilibria. The result follows.
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(iii) The steady state equation for the (a, a, · · · , a), a 6= 0 is an equilibrium if and

only if

−a +
σa

α(1 + na) + a
= 0,

i.e., a = (σ − α)/(αn + 1) > 0. Thus, σ > α is the condition of existence. From

(4.3), the linearization at (a, a, · · · , a) is



−1 + σα(1+(n−1)a)
(α(1+na)+a)2

−σαa
(α(1+na)+a)2

· · · −σαa
(α(1+na)+a)2

−σαa
(α(1+na)+a)2

−1 + σα(1+(n−1)a)
(α(1+na)+a)2

...
...

... · · · . . . −σαa
(α(1+na)+a)2

−σαa
(α(1+na)+a)2

· · · −σαa
(α(1+na)+a)2

−1 + σα(1+(n−1)a)
(α(1+na)+a)2




.

By Lemma 2.1, the eigenvalues are

λ1 = −1 +
σα(1 + na)

(α(1 + na) + a)2
, and

λ2 = −1 +
σα

(α(1 + na) + a)2
< λ1.

If λ1 is negative, then

σα(1 + na) < (α(1 + na) + a)2.

To substitute a(αn + 1) for (σ−α), the above inequality becomes σα(1 + na) < σ2.

i.e., a < (σ − α)/αn. It always holds since a = (σ − α)/(αn + 1). Hence, we have

(a, a, · · · , a) is stable. The assertion follows.

Example 4.1 : In proposition 4.1, if n = 2, σ = 2 and α = 3, i.e., the system is
{

ẋ1 = −x1 + 2x1

3(1+x1+x2)+x1

ẋ2 = −x2 + 2x2

3(1+x1+x2)+x2

,

then (0, 0) is stable equilibrium, since it satisfies σ < α.

Next, if n = 2, σ = 3 and α = 2, i.e., the system is
{

ẋ1 = −x1 + 3x1

2(1+x1+x2)+x1

ẋ2 = −x2 + 3x2

2(1+x1+x2)+x2

,

then there exist four equilibria: (0.2, 0.2) is stable; moreover, (0, 0), (1/3, 0), (0, 1/3)

are unstable (see figure 8).
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Figure 8: In figure (a), (0, 0) is stable. In (b), (0.2, 0.2) is stable; moreover, (0, 0),
(1/3, 0), (0, 1/3) are unstable (Example 4.1).

In the following, it is assumed that transcriptional activation occurs with co-

operativity c = 2. The systems (4.1) become

ẋi = −xi +
σx2

i

αD2 + x2
i

(4.4)

where D = 1 +
∑n

j=1 xj, and α = K2

a2
t
. The steady state equation is

xi =
σx2

i

αD2 + x2
i

or αD2 + x2
i = σxi if xi 6= 0. Note that

Ji,i = −1 + 2σαxi
D(D − xi)

(αD2 + x2
i )

2
= 1− 2

σ
(xi + αD) if xi 6= 0, (4.5)

Ji,j =
−2αDσx2

i

(αD2 + x2
i )

2
=
−2αD

σ
if xi 6= 0 for all j 6= i.

Clearly, the origin is a stable equilibrium, since the linearization at the origin is




−1 0 · · · 0

0 −1
...

...
... · · · . . . 0
0 · · · 0 −1


 .

Thus, all eigenvalues are -1.
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In proposition 4.2, the results are stated in [4]. We provide detailed proof

herein.

Proposition 4.2. ([4]) Let c = 2, and 1 ≤ k ≤ n.

(i) If 4α(kσ + 1)/σ2 ≤ 1, then there exist equilibria with k switches on, whose

components are identically [σ − 2αk +
√

σ2 − 4α(kσ + 1)]/2(1 + αk2) or [σ −
2αk −

√
σ2 − 4α(kσ + 1)]/2(1 + αk2), and (n − k) off (zero). In short, the

condition of existence is α < 1/k2.

(ii) When k = 1, if the non-zero components are larger than (σ − 2α)/2(1 + α),

then the above equilibria are stable.

(iii) When 1 < k ≤ n, if the non-zero components are larger than α/2, then

the above equilibria are stable. In short, the condition of stability is σ >

2
√

α/(1− k
√

α).

Proof: (i) The steady state equation for (a, a, · · · , a, 0, 0, · · · , 0), a 6= 0 is an equi-

librium if and only if

−a +
σa2

α(1 + ka)2 + a2
= 0

i.e.,

a2(1 + αk2) + a(2αk − σ) + α = 0 if a 6= 0.

The solutions are

a =
σ − 2αk ±

√
σ2 − 4α(kσ + 1)

2(1 + αk2)
.

A sufficient and necessary condition for the existence is 4α(kσ+1)/σ2 ≤ 1. However,

from (4.4), we have

a2 − σa + αD2 = 0.

The only solution is a = (σ +
√

σ2 − 4αD2)/2, where D ≤ σ/2
√

α. Note that

D − 1 = n(
σ +

√
σ2 − 4αD2

2
),

it can rearranged to

2 + nσ + n
√

σ2 − 4αD2 ≤ σ√
α

.
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It follows that nσ < σ/
√

α, or α < 1/n2. Since α < 1/n2 < 1/k2. In short, the

condition of existence is α < 1/k2.

(ii) From (4.5), the linearization at (a, 0, 0, · · · , 0) is




1− 2
σ
(a + α(1 + a)) −2α(1+a)

σ

0

−1 0
. . .

0 −1


 .

If 1 − 2(a + α(1 + a))/σ is negative, then all eigenvalues are negative. Thus, if

a > (σ − 2α)/2(1 + α), then this equilibrium is stable.

(iii) First, consider k = n, from (4.5), the linearization at (a, a, · · · , a) is




1− 2
σ
(a + α(1 + na)) −2α(1+na)

σ
· · · −2α(1+na)

σ
−2α(1+na)

σ
1− 2

σ
(a + α(1 + na))

...
...

... · · · . . . −2α(1+na)
σ−2α(1+na)

σ
· · · −2α(1+na)

σ
2
σ
(a + α(1 + na))




.

By Lemma 2.1, the eigenvalues are

λ1 = 1− 2a

σ
, and

λ2 = 1− 2a + 2αn(1 + na)

σ
< λ1.

If λ1 < 0, i.e., a > σ/2, then (a, a, · · · , a) is stable. To replace with the solution, we

have

σ − 2αn +
√

σ2 − 4α(nσ + 1) > σ + n2ασ.

The solution of the equation

(1− n4α2)σ2 − (4αn + 4n3α2)σ − 4α− 4n2α2 > 0

are σ > 2
√

α/(1− n
√

α).

Next, consider 1 < k < n, the linearization at (a, a, · · · , a, 0, 0, · · · 0) is




1− 2(a+α(1+ka))
σ

−2α(1+ka)
σ

. . .
−2α(1+ka)

σ
1− 2(a+α(1+ka))

σ

−2α(1+ka)
σ

0

−1 0
. . .

0 −1



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Since σ > 2
√

α/(1 − n
√

α) > 2
√

α/(1 − k
√

α), then (a, a, · · · , a, 0, 0, · · · 0) is also

stable. The assertion follows.

In proposition 4.3, the results are stated in [4]. We provide detailed proof

herein.

Proposition 4.3. ([4]) For c = 2, n ≥ 4, and k > 1, there exist unstable equilibria

with k switches on with value a identically, and (n− k) off with value b identically.

Proof: Without loss of generality, assume a > b. By the steady state equation,

a2 − σa = b2 − σb

or (a − b)(a + b − σ) = 0, we have a + b = σ. Let p = n − k, from (4.5), the

linearization at (a, a, · · · , a, b, b, · · · , b) is




σ−2(a+α(1+ka+pb))
σ

−2α(1+ka+pb)
σ

. . .
−2α(1+ka+pb)

σ
σ−2(a+α(1+ka+pb))

σ

−2α(1+ka+pb)
σ

−2α(1+ka+pb)
σ

σ−2(b+α(1+ka+pb))
σ

−2α(1+ka+pb)
σ

. . .
−2α(1+ka+pb)

σ
σ−2(b+α(1+ka+pb))

σ




By Lemma 2.1, we have 1 − 2b/σ is a eigenvalue. If it is negative, then b > σ/2

which contradicts the assumption. Thus, the assertion follows.

Example 4.2 : In proposition 4.2 and 4.3, if n = 2, σ = 3 and α = 0.1, i.e., the

system is {
ẋ1 = −x1 +

3x2
1

0.1(1+x1+x2)2+x2
1

ẋ2 = −x2 +
3x2

2

0.1(1+x1+x2)2+x2
2

,

then there exist nine equilibria: four equilibria are stable and five are unstable. We

have (0, 0) is stable. (2.509, 0) and (0, 2.509) are stable since (14 +
√

185)/11 ≈
2.509 > (σ − 2α)/2(1 + α) ≈ 1.727. (1.853, 1.853) is also stable since it satisfies

σ = 3 > 2α/(1 − √
α) ≈ 1.721. These equilibria (2.475, 0.525), (0.525, 2.475),

(0.652, 0.652), (0.036, 0), (0, 0.036) are unstable (see figure 9).

In this section, for c = 1.
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Figure 9: Figure (b) is a zoom-in of (a) near the origin. There exist nine equi-
libria: four equilibria are stable and five are unstable. We have (0, 0), (2.509, 0),
(0, 2.509) and (1.853, 1.853) are stable. These equilibria (2.475, 0.525), (0.525, 2.475),
(0.652, 0.652), (0.036, 0), (0, 0.036) are unstable.

(i) If σ < α, then the origin is stable.

(ii) If σ > α and 1 ≤ k < n, then there exist unstable equilibria with k switches

on, whose components are identically (σ−α)/(αk + 1), and (n− k) off (zero).

(iii) There exists a stable equilibrium with all switches on, whose components are

identically (σ − α)/(αn + 1).

For c = 2, and 1 ≤ k ≤ n.

(i) If 4α(kσ + 1)/σ2 ≤ 1, then there exist equilibria with k switches on, whose

components are identically [σ − 2αk +
√

σ2 − 4α(kσ + 1)]/2(1 + αk2) or [σ −
2αk −

√
σ2 − 4α(kσ + 1)]/2(1 + αk2), and (n − k) off (zero). In short, the

condition of existence is α < 1/k2.

(ii) When k = 1, if the non-zero components are larger than (σ − 2α)/2(1 + α),

then the above equilibria are stable.

(iii) When 1 < k ≤ n, if the non-zero components are larger than α/2, then

the above equilibria are stable. In short, the condition of stability is σ >

2
√

α/(1− k
√

α).

In addition, when c = 2, n ≥ 4, and k > 1, there exist unstable equilibria with k

switches on with value a identically, and (n− k) off with value b identically.
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