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Abstract

We summarize mathematical properties for three cellular differentiation
models proposed in the literatures. These mathematical models are used
to describe basic multi-switching dynamics,in generic master regulatory net-
works. These systems consist of arbitrary. number of antagonistic components
which direct differentiaticn in -an all-or-none fashion to a specific cell-type
chosen in gene regulation:
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1 Introduction

Cellular differentiation is the process by which a less specialized cell becomes a more
specialized cell type. Differentiation occurs numerous times during the development
of a multicellular organism as the organism changes from a single zygote to a complex
system of tissues and cell types. How the differentiation proceeds is the context of
gene regulation and is rather complex. Several mathematical models have been
proposed to depict and analyze the process. There were some reports on bistable
switches for systems with two variables, for example, in [3], [7]. From experimental
evidence, switching involving more than two variables and outcomes also deserves
investigations.

In this report, we study three models proposed by Olivier and Demongeot [4].
The model consists of arbitrary number of components. Each of them represents the
intracellular concentration of a differentiation factor, called switch element. Each of
these components promotes itself and represses all others. Each of these variables
can be regarded as a protein which corresponds to an antagonistic factor in the cell
differentiation, for example, in hematopoiesis. These models aim at characterizing
multi-dimensional switches in the cellular differentiation. In particular, the phases of
co-expressed components and séme upsregulating, some down-regulating are desired
dynamic features in the models.

In the following, we diseuss the properties of these models. The presentation
is organized as follow. Section 2 addresses the model with mutual inhibition and
autocatalysis. Each switch element:is supposed to undergo non-regulated degra-
dation (modelled as exponential decay, with an arbitrary speed 1), and transcrip-
tion/translation with a relative speed o. Each element positively auto-regulates
itself, and represses expression of others, with a cooperativity c¢. Calling z; the
concentration of each switch element, the corresponding equations are

. ox; .
T, =—T,+ ——7——, 1 <1< n.

L+ 25 2§
Section 3 addresses the model with mutual inhibition, autocatalysis and leak.

The model is the same as previously, except that each element has a "leaky” ex-

pression, modelled as a constant production term «. The equations become

o .
7 ta, 1<i<n.
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Section 4 addresses a model for bHLH proteins. Each switch bHLH protein is
supposed to bind to a common activator according to the law of mass action, with

a binding constant K., and a total quantity of activator a;.
Ly
1+ ?:1 T )C

Kc + (ﬁ%)c,

j=1%j

o
1< <n.

Throughout the presentation, we consider the system on the cone
{(x1, 29, ,2n) 1 2; >0, =1,2,--- ,n},

and we consider the following five kinds of equilibria for the three model systems:
(i) the origin

(0,0,---,0) € R™; (1.1)
(ii) One switch on and (n—1) off, i.e., the equilibrium (Zy, Zo, - -+ , &) With z; = a #
0 for some i € {1,2,--- ,n} and z; = 0 for all others j. Without loss of generality,

we set it as
(a,0,0,---,0) € R™ (1.2)

(iii) k£ switches on with identicalieomponents (k£ > 1), and (n — k) off (zero), i.e.,
the equilibrium (Z1, Za, - - - , Z;) with k'S 2 € {1,2;- -+ ,n} such that z; = a # 0 and

z; = 0 for all others j. Without loss of generality,"we set it as

(@, ay=: *5a;0;0;+- ,0) € R, (1.3)

(iv) all switches on with identical components, i.e., the equilibrium (zy,Za, -, Z,)
with 7; =a # 0 for all i € {1,2,--+ n},

(a,a,---,a) € R (1.4)

(v) k switches on with identical components, and (n — k) off with identical com-
ponents, i.e., the equilibrium (Z1,Zs, -+ ,&,) with k’s Z; = a # 0, and (n — k)’s
zj=b#0fori,j€{1,2,--- ,n} where k > 1 and (n — k) > 1 and a > b. Without

loss of generality, we set it as
(a,a, - ,a,b,b,--- ,b) € R". (1.5)

We shall analyze the existence of those equilibria. In addition, we study the

stability of these equilibria through linearization at these equilibria; namely, if all
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eigenvalues have negative real parts, then the equilibrium is stable; if one of the
eigenvalues has positive real part, then the equilibrium is unstable. As the first two
models are gradient systems, we also justify that the global convergence for these
systems.

In this report, propositions 2.1, 3.1, 3.2, 3.4, and 3.5 are completed in this

study, while the others are recasted from [4], with more details.

2 Model with mutual inhibition and autocatalysis

In the section, we consider the equations

e —mt— 2% ci<n (2.1)

1+> i1 T
where x; > 0 is the concentration of each switch element, o > 1 is transcription/
translation with a relative speed, and c is cooperativity. Clearly, the origin is an
equilibrium for every ¢ > 0. In addition, if ¢ > 1, then the i-component of an

equilibrium is either zero or satisfies

—1

‘:a

S|~

1F =1

|25

[

& T Z?=1 . = agutt.

Next, we consider three cases for ¢, ite. ¢=70,.¢= 1, and ¢ > 1. If ¢ = 0, then (2.1)
becomes

g
T = -1, +——, 1 <i<n.
1+n

Let the right hand side of (2.1) be f;, J;; = 0f;/0x;. Then

(1437 ) (oca™)

Ji,i =—-1+ ) c , (22)
G+ y, o)
—ch;?x;_l o
Jij = > for j £ 1.

(1+ Z?:l z5)

Proposition 2.1. For ¢ = 0, there exists a stable equilibrium with all switches on,

whose components are identically o /(1 + n).

Proof: Consider the existence of the equilibrium with all switches on, whose com-

ponents are identical. We have (¢/(1 4+ n),o/(1 +n),---,0/(1 +n)) € R" is an

3



equilibrium. Next, consider the local stability of the equilibrium. Note that the
linearization at (o/(1+n),0/(1+mn), -+ ,0/(1+n)) is

-1 0 --- 0

We have all eigenvalues are negative. Thus, the equilibrium is stable. The assertion

follows.

Example 2.1: In proposition 2.1, if n = 2 and o = 2, i.e., the system is

: 2
T =-11+ 15
: E Y
Ty = —T2+ 15

then (2/3,2/3) is a stable equilibrium for the above system (see figure 1).

Figure 1: (2/3,2/3) is a stable equilibrium (in example 2.1).

Next, consider ¢ = 1 (no cooperativity), then (2.1) becomes

ox;
n Y
1+ Zj:l L

Suppose o > 1. If x; # 0 for some 7, then 1 + 2?21 x; = 0. Note that the set

{(x1, 29, - ,xn)|1—|—ij =0} (2.3)

4



is a hyperplane of equilibria. In addition, (2.2) becomes

o(1+ 2 5. 75)

Jii = — - , (2.4)
(1+ Zj:l ;)
Jij = i for 5 # 1.
o1+ Zj:l zj)?

The result of proposition 2.2. is only stated in [4]. We provide a detailed proof

herein.

Proposition 2.2. ([4]) For ¢ = 1 and o > 1, the hyperplane of equilibria (2.3) is

stable and the origin is an unstable equilibrium.

Proof: With (2.4), the origin is unstable since —1 + ¢ > 0 is the only eigenvalue.
Consider the distance from the point (xy(¢), z2(t), - ,2,(t)) to the hyperplane

Yit+Y+- - F+yp=0—1

Set the square of distance of a point (%22, - - ,z,) to the plane as
— 1)?
D<$1,$2,"',$n>:(xl+x2+ —f‘In o+ ) .
n
Then
. dD.
D) = ) rar)d )
oD oD oD
= d () + ——da(t) + - Lt
axlxl( )+ 8x2x2( )+ axnﬂﬁ (t)
 2s-(s—o+1)
B n 1+s
< 0,

where s = x1 + 29 + -+ + x,. Therefore, D is a Lyapunov function. Moreover,
D(x) = 0 if and only if s = ¢ — 1 or s = 0, i.e., the hyperplane of equilibria or the

origin. Thus, the manifold of equilibria are stable. So, the assertion follows.

Example 2.2 : In proposition 2.2, if n = 2 and 0 = 2, i.e, the system is

o 211

{ 1= —1+ 1+%1+5E2
: T2 )
Ty = —Ty+ 1+x1+x2
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Figure 2: (0,0) is unstable and and {(x,z2)|x; + x2 = 1} are stable manifold of
equilibria (in example 2.2).

then (0, 0) is unstable equilibrium and {(x1,x2)|z; + x9 = 1} are stable manifold of

equilibria (see Figure 2).

We need the following lemma in the subsequent propositions.

Lemma 2.1: The eigenvalues of'n X n matrix

a=b b

- b a : ; ,
. 1BoG Y o)
h ... %

are (a —b) and a + (n — 1)b. In addition, the number of (a —b) is (n — 1).

Proof. Clearly, a — b is an eigenvalue of A. We have

A—(a—b) = b b N ’
P

rank(A — (a — b)I) = 1, and dimKer(A — (a — b)I) = n — 1. By the dimension
theorem [6], (n —1)(a —b) + A =na < XA =a+ (n — 1)b. So, the result follows.

These results of proposition 2.3 are sketched in [4]. We recast them with more
details.



Proposition 2.3. ([4]) Let ¢ > 1.

(i) If (o/c)¢((c—1)/k)"! > 1, then there exist equilibria with & switches on with
identical components, and (n — k) off (zero), for 1 < k < n. In addition, the

equilibrium with one switch-on (k = 1), and n — 1 off (zero) exists if o > 2.

(ii) The equilibrium with one switch-on of value a and (n — 1) off (zero) is stable,
if a > (c/a)c%l, and unstable if a < (c/a)c%l.

(iii) The above equilibria with &k switch-on for 1 < & < n are unstable.

Proof: (i) A steady state solution of the form (a,a,---,a,0,0,---,0) satisfies

oa’

1+ kac
Set g(€) = k&¢—o&¢ !, then ¢'(§) = ke —o(c—1)£2 = 0. Thus € = o(c—1)/kcis
a critical point of g, and g(o(c—1)/kc) = —(c/c)((c—1)/k)*". Since g(£) — oo as
¢ — oo, and g(€) passes point (0,0), g attains its minimum at —(o/c)*((c—1)/k)<~ .
If —(c/c)((c—1)/k)! < —1, then'thereexists solution of (2.5). In addition, when

k =1, the above equation becomes

—a+

=0or 1+ ka®=ca"if a#0. (2.5)

Ine+ In(c5)“!

o > c(m)‘:_l <dno > . (2.6)
Let
Inc+ ln(ﬁ)“l
(c) = :
c
We compute
—In(c—1
h/(c):#:()@c:Z.

c
In addition, In(c — 1) < 0if 1 < ¢ < 2 and In(c — 1) > 0 if ¢ > 2. Hence, the
right-hand side of (2.6) has a maximum for ¢ = 2, matched by ¢ = 2. So, 0 > 2,
there exist solutions of (2.5).

(ii) From (2.2), the linearization at (a,0,---,0) is

—14+=—=-5 0 --- 0

J = 0 -1
-
0 0 —1



Thus, —1 and —1 + ¢/oa“"! are the eigenvalues of J. If

4 —— <0sa> (/o)

oac~1

then the equilibrium is stable. In addition, it is unstable if a < (¢/ J)?ll.

(iii) When 1 < k < n, the linearization at (a,a,---,a,0,0,---,0) is
oc(1+(k—1)a)a?! oca?c1
— L+ =g ~(tha 2
0
ogca?c1 oc(1+(k—1)a)a""
~ (14kac)? —1+ (1+kac)?
-1 0
0
0 —1

By Lemma 1, the eigenvalues are —1, and

oc(1+ (k—1)a%)a“! oca*1

A =-—1 d 2.7
T T T A ke T Ut ke ™ (2.7)
N = -1+ oc(l+ (k—1)a%a! (k= 1oca* ! <
(1. +1kas)? (1 + kac)?
Note that A; > 0 if and only ifie¢ > 1., Indeed,
—(1 4 ka%)? +oe(l £ (k — 1)a‘3;)ac’1 +oca* ' <0
& oc(l+ (k =1)a%)Foea”< ga“
& 1+ kat < Za¥h
c
& <1
Thus, the equilibrium unstable.
In addition, when k& = n, then the linearization at (a,a,--- ,a) is
oc(1+(n—1)a)ac" ! oca?c! oca?"1
—1+ (14+nac)? " (14nac)? T " (14nac)?
oca?c1 00(1"‘(”_1)“6)‘1671 .
 (I4+nac)? —1+ (1+nac)?
. o.ca2c—1
2c—1 2¢c—1 _((]%Izlaj)lz) C) c—1
" (14nac)? e T (1+nac)? —1+ (14+nac)?

The analysis of eigenvalues is as the case 1 < k < n. The assertion then follows.

The result of proposition 2.4 is sketched in [4]. We recast it with more details.
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Proposition 2.4.([4]) : For ¢ > 1/2, every solution of systems (2.1) tends to an

equilibrium as time tends to infinity.

Proof: Let y; = \/x;. Then y; = &,/2y;, i.e.,

c 2c
A o e N I
v= 2y; B 2y;
oyt
= (v 1+Z] v — =)
B oV
- _ayi’

where
1< 2 O - 2
~ 3 st + 30
j=1 j=1
Thus y; = &;/2y; is a gradient system. Moreover,

OV oyt oyt
4o =Y — o
‘ 1+Z] 1?/] 1+Z] 1%2

ie.,
n
14 _S_ x; = .
=1

By the Lasalle’s invariant principle [1], thus, every solution of the system converges

to one of the equilibria as time tends-tornfinity., The assertion follows.

Example 2.3 : In proposition 2.3, first consider n = 2, ¢ = 2 and ¢ = 2, i.e., the

system is

22 ’
1’2 = —X2 + 2

2
{ .Z' —I1 + 1+:v2+m2
1+x2+a:2

1

then (0, 0) is stable equilibrium and (1, 0), (0, 1) are saddle points since 1 = (¢/g) 1

Next, consider n = 2, ¢ = 2 and o = 3. i.e., the system is

2
Il - + 1+x +x2 (2 8)
. 312 ’ :
Ty = —Z2+ i

then there exist seven equilibria: three stable equilibria are (0,0), (2.618,0), (0,2.618),
since it satisfies (3 + v/5)/2 ~ 2.618 > (c/a)ﬁ = 2, and four unstable equi-
libria are (1,1), (0.5,0.5), (0.382,0), (0,0.382). The reasons are first two satisfy

9



(/c)((c — 1)/2)*' = 9/8 > 1 and the last two satisfy (3 — /5)/2 ~ 0.382 <
(c/o)=T =2/3.
If consider y; = /7;, then the above system become

. 3y3

1= 5(=y + ﬁfﬁr—yéﬁ

. l i 3yg Y (2'9>
Yo = 5(—v2 + m)

then there exist seven equilibria: three stable equilibria are (0,0), (1.618,0), (0,1.618),
and four unstable equilibria are (1,1), (0.707,0.707), (0.618,0), (0,0.618). We see
that same dynamical behavior in systems (2.8) and (2.9) (see figure 3).

(a)

(c)

Figure 3: In figure (a), (0,0) is stable equilibrium and (1,0), (0,1) are saddle
points. (b) is for @;(¢) system, it has seven equilibria: three stable equilibria
are (0,0), (2.168,0), (0,2.168), and four unstable equilibria are (1,1), (0.5,0.5),
(0.382,0), (0,0.382). (c) is for y;(t) system, ut has seven equilibria: three stable
equilibria are (0,0), (1.618,0), (0,1.618), and four unstable equilibria are (1,1),
(0.707,0.707), (0.618,0), (0,0.618) (in example 2.3).

10



In this section, for ¢ = 0, there exists a stable equilibrium with all switches
on, whose components are identically o/(1 +n). For ¢ =1 and ¢ > 1, the manifold
of equilibria (2.3) is stable and the origin is an unstable equilibrium.

Let ¢ > 1.

(i) If (¢/c)¢((c—1)/k)™t > 1, then there exist equilibria with & switches on with
identical components, and (n — k) off (zero), for 1 < k < n. In addition, the

equilibrium with one switch-on (k = 1), and n — 1 off (zero) exists if o > 2.

(ii) The equilibrium with one switch-on of value a and (n — 1) off (zero) is stable,
if a > (C/U)ﬁ, and unstable if a < (C/o‘)i'

(iii) The above equilibria with & switch-on for 1 < k < n are unstable.

Finally, the model is a gradient system, we also justify that for ¢ > 1/2, every

solution of systems (2.1) tends to an equilibrium as time tends to infinity. .

3 Model with mutual inhibition, autocatalysis, and
leak

In this section, we add leak >0 to the equations (2.1), i.e.,

ozt

el Y, 1 <i<n. (3.1)
L5 0, 25

If one component of the equilibrium is ‘zero, then it contradicts the assumption
a > 0. Thus, (0,0,---,0), (a,0,0,---,0), (a,a,---,a,0,0,---,0) can not satisfy

the above equations. We have the origin, one switch on and (n — 1) off, k switches

T; = — Tk

on with identical components (k > 1) and (n — k) off (zero) are not equilibria.
By the numerical illustrations, we guess that if the leak is small, then it does
not have a major effect on the systems, except when the cooperativity is close to 1.

To give an instance: when n =2, ¢ =2, 0 = 3, a = 0.01, i.e., the system is

. 3:2:%
. 312 )
Tog = —To + m + 0.01

then there exist seven equilibria (0,2.631), (2.631,0), (0.010,0.010), (0,0.368), (0.368,0),
(0.471,0.471), (1.029,1.029). The first three are stable; the last four are unstable.

The dynamical behavior in figure 4 is similar to (b) in figure 3.

11
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Figure 4: If the leak is small, it does not have a major effect on the system. In
addition, it has seven equilibria.

Moreover, we compare the system

. 3z}l

Ty = =01 F ariggrT 5
. 3,1;%'1 (3 )
P2 = T T

with e
{ 95:1 1, & ”“ﬁfw +0.01 33)
To= —Toy + W + 0.01
In system (3.2), it has sevenzequilibria: (0;0), (0,2.070) and (2.070,0) are stable;
(1,1), (0.00002,0.00002), (0,0.00002)"and (0.00002,0) are unstable. In system (3.3),
it has three equilibria: (0,2.085) and (2:085,0) are stable; (1.016,1.016) is unstable.
The numbers of equilibria is clearly different. Thus, when the leak is small and the
cooperativity is close to 1, it has a substantial effect on the systems (see figure 5).
Next, we consider three cases for ¢, i.e. ¢=0,c=1, and ¢ > 1. If ¢ =0, then

(3.1) becomes

T, = —x; + +a, 1<1<n.

1+n

Proposition 3.1 : For ¢ = 0, there exists a stable equilibrium with all switches on,

whose components are identically o+ o /(1 4 n).

Proof: Consider the existence of the equilibrium with all switches on, whose com-
ponents are identical. Then (« +o/(1+n),a+0c/(1+n), -+ ,a+c/(1+n)) € R"

is an equilibrium. Next, consider the local stability of the equilibrium. Since « is

12



1

Figure 5: The leak is small and the cooperativity is close to 1, it has a substantial
effect on the system. Figure™(a) ‘depiets-the dynamics of system (3.2). (b) is a
zoom-in of (a) near the origin by seale 10°. (¢)'is for system (3.3).

constant, it does not affect the linearization at the equilibrium. The result is similar

to proposition 2.1. Hence, the equilibrium is stable. The assertion follows.

Next, consider ¢ = 1, then (3.1) become

dzx; ox;

— — e +a, 1<i<n
dt T+ 0 @

Proposition 3.2 : For ¢ = 1, there exists a stable equilibrium with all switches on,

whose components are identically [—1 + na + o + /(1 — na — 0)2 + 4na]/2n.

13



Proof: A steady state solution of the form (a,a,--- ,a) satisfies

—a+ +a=0orna*+ (1 —na—o)a—a=0,

1+ na

and the solution of above equation is [~1 + na + o + /(1 — na — 0)% + 4na]/2n.

Since « is constant, it does not affect the linearization at the equilibrium. From

(2.2), the linearation at (a,a,--- ,a) is
-1+ _U(Hg;)?a) (TFna)? e (Tna)?
S R (e '
(1122)2 T ﬁ —1+ U(HJEZ)IQ)G)
The eigenvalues for this matrix are
o(l+ (n—1)a) oa

(14 na)? N (1+na)?’

., o0+ (r—-1a) (n—1oa
A2 =—1+ (1 + na)? (14 na)?

Note that
M <0 ofl+ne)<(l4na)?eo<1+na (3.4)

From the steady state equation, then.I'4 na = gu/(a — «). With it to substitute
for the inequality (3.4). We have oo <'I-%=na =o0a/(a — ), i.e., oo > 0. Hence, for
¢ =1, in any condition (since o > 0@:and «>.0), then (a,a,--- ,a) is stable. Thus,

the assertion follows.

Example 3.1 : In proposition 3.2, if n =2, 0 = 2, and a = 1, i.e., the system is

1+z1+x2

S 2xo )
Ty = —T2+ 1+z1+x2 +1

{fl:—x1+ ISR |

then (1.781,1.781) is a stable equilibrium since caw = 2 > 0 (see figure 6).

We consider ¢ > 1 in the following discussions . There exist two kinds of
stable equilibria. In proposition 3.3, we discuss the equilibrium with all switches on,
whose components are identically less than ca/(c — 1). The other one is that the

components consists of two different values. In proposition 3.4, we restrict to the

14
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Figure 6: (1.781,1.781) is a stable equilibrium (in example 3.1).

case with dimension n = 2, 3; in proposition 3.5, we consider the case for dimension
n > 4.
The result of proposition 3.3 is sketched in [4]. We recast it with more details.

Proposition 3.3 : For ¢ > 1, there exist stable equilibrium with all switches on,

whose components are identically a with a < ca/(c —1).

Proof: A steady state solution.of the form.(a.@, - -- ,a) satisfies

C

1 + nac
or na®™t — (o +na)a’ +a = o Set W(C)=mcs = (0 +na)(¢+¢. We compute that

e s 0

W(Q) = n(e DI — clg@na)c + 1
R'(¢) = ne(c+ 1) — (o + na)(c — 1)¢2.

Therefore, ( = (0 + na)(c — 1)/n(c+ 1) is the reflection point. And h(¢) — oo as
¢ — oo, and h(() passes point (0,0), We have the curve of the function i(() is down
in the left side of the reflective point and is upper in the other. Further, there is
intersection of h({) and horizontal line a. Thus, it there is one solution.

Next, consider the local stability of (a,a,--- ,a). Since « is constant, it does
not affect the linearization at the equilibrium. From (2.7), we have the greatest
eigenvalue is —1+oca® ! /(1+na®). And with the above steady state equation, then
1+na® = oa®/(a— ). If the greatest eigenvalue is negative, then oca®! < 1+ na.
We substitute 1 + na® for 0a®/(a — «) in the above inequality. Thus, (a,a,--- ,a) is

stable if a < ca/(c — 1). The assertion follows.
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We consider n = 2 and there exists an equilibrium (a,b) where a > b. Then
(a, b) satisfies

at — (a+0)a® + (1 +b)a —a(l +1°) =0
bt —(a+o)b+(1+a)b—a(l+a)=0"

and n = 3 and there exists equilibrium (a, a, b) where a > b. Then (a, a, b) satisfies

20Tt — 2a+0)a*+ (1 +b%)a — a(1 4+ 6% =0
bt — (a+0)b° + (14 2a°)b — a(l +2a°) =0’

Proposition 3.4 : Let ¢ > 1.

(i) If n = 2 and the equilibrium (a, b) exists. Then it is stable if o%c?a?*~ 19?71 <
(—(1+a®+ b2+ oc(1 +b%)a 1) (= (1 + a® + v°)* + oc(1 + a®)b“ 1), with one
switch-on with value a, and one off with value b.

(i) If n = 3, oca®! < 1+ 2a° + b¢ and the equilibrium (a, a,b) exists. Then it is
stable if 202c2a® 10?7 < (—(1 4 2a° + b°)? + oc(1 + 2a€)b 1) (—(1 + 2a° +
b°)% + oc(1 + b%)a"t), with two switches-on with value a identically, and one
off with value b. In addition, if @ change for b, then we have the condition of
the stability for the equilibrium with onesswitch-on with value a, and two off

with value b identically.

Proof: We analysis the stability for thesé equilibria.
(i) From (2.2), the linearization af (a, b) is

. oc(1+pb®ac~! —ocathe”!
1 + (1+ac+bc)2 (1+ac+bc)2 lc;t d u
—gcat 1 —1+ oc(1+kac)be—1 - vom :
(14-ac+bc)? (14-ac+bc)?

We have two eigenvalues are [d+m+-/(d — m)? + 4uv]/2 and [d+m—+/(d — m)? + 4uv]/2.
If the larger is negative, i.e.,

o?Pa® T < (= (14 a®+ 0% + oc(14b6)a" 1) (= (14 a® + b°)* + oc(1 +a®)b" ),

then all eigenvalues are negative, i.e., (a,b) and (b, a) are stable.

(ii) From (2.2), the linearization at (a,a,b) is

1+ oc(14+a°4b)ac"! —ogca®c~1 —oca®he!
(T+2a°+b°)? (T+2ac+b°)? et (1+2ac+b°)? o d r u
_oca2e—1 . oc(l+a+b%)ac~ —ogcache1 et
(1+2ac+bc)? L+ (142ac+b°)2 (142ac+b°)? o rod u
—O‘Cbca671 —O’Cbca671 _1 + O'C(1+2ac)b"'71 v v m
(1+2ac+bc)2 (1+2ac+bc)? (1+2ac+b°)?
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We have three eigenvalues are d — 7, [d +r +m + +/(d+r —m)%+ 8uv]/2 and
d+7r+m—/(d+r—m)?+8uw]/2. Ifd—r < 0 and 2uv < m(d+r), ie.,
ocat < 1+ 2a°+ b and

2022a* 1?7 < (—(142a°+0°)? +oe(14+2a°)b ) (= (142a°+6°)? +oe(1+b%)a“ ),

then all eigenvalues are negative. Thus, (a,a,b), (a,b,a) and (b, a,a) are stable. In

addition, if a change for b, then we have the condition of the stability for the equi-
librium with one switch-on with value a, and two off with value b identically. Thus,

the assertion follows.

Let p = n — k. The steady state solution of the form (a,a,--- ,a,b,b,--- ,b)
with k’'s a and p's b satisfies

ka“™' — (ak + o)a® + (1 + pb®)a — a1 + pb®) =0
pbtt — (ap+ )b + (1 4 ka®)b — a(l + ka®) =0’

We assume such equilibrium exist.
The following characteristic polynomial has been mentioned in [4] without

computing eigenvalues for system (3.5). We provide linear stability analysis for

these equilibrium in the following, proposition,3.5.

Proposition 3.5 :For ¢ > 1, n.> 4,k > Ly and.the equilibrium (a, a,- -+ ,a,b,b,--- ,b)
with &'s a and p's b exists. Then it is stable if cca“' < 1 + ka® + (n — k)b with k

switches-on with value a identicallyy and-(n= k) off with value b identically.

Proof: From(2.2), the linearization' at (a,a,-" - ,a,b,b, - ,b) is

d T ) ’r‘ u ) .« .. u
r d
roo :
r r d u U
(3.5)
v om 8 s
S8 m
: S
v v S s m
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where

oc(1+ (k—1)a® + pb)ac?
(14 ka® + pbe)?
oc(l + ka® + (p — 1)b°)be!
(1 + kac + pbe)?
—oca?!
(1+ kac + pbe)?’
_0_cb20—1
(1 + kac® + pbe)?’
cbc—l

d=-1+

Y

m=—1

)

S =

—oca
(1 + kac + pbe)?’

—ocat1pe
(14 kac + pbe)?

v =

We do row operations and column operations.

d r - r wu 0 0
. d . . . . .
r
r r oAdu 0 0
v VM S=an s S—m
: T LA e 0
v Yook 0 m— S
d—r 0 r—d"0 0 0
0 d—r r—d 0
T T d U 0 0
’l] PR ... ’l] m S—m PR S—m
s m-—s 0
v v S 0 m— S
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0 d—r r—d 0
r T d U 0 0 R
pv pv m+ (p—1)s 0 0
v v S m— s 0
v v S 0 m— S
d—r 0 0 0 0 0
d—r 0 0
r r d+(k—1)r u 0 0
pv pv kpv m+(p—1)s 0 0
v v kv S m— S 0
) ) kv s 0 m—s

The characteristic polynomial of the matrix is

(m—s—2)Pd—-r—2) " MWdt+(k—Dr =z)(m + (p — 1)s — ) — kpuv) =
(m—s—a)P Y d—r—a) (22 =ldt+m+(k=10+(p—1)s)z+dm+ (p—1)sd +
(k —V)mr + (k—1)(p — 1)rs= kpuw):

We have two eigenvalues are

c—1

oca
PN 1
" + 1+ kac + pbe’
. ochet
m—-s=—14+-—
1+ ka® + pbe

If the larger is negative, then oca®! < 1+ ka®+ pb°. The others satisfy
M+X = d+m+(k—1r+(p—1)s
= (d=7r)+(m—s)+kr+ps <0, and
MAr = (p—1Dsd+ (k—1)mr+ (k—1)(p — 1)rs + dm — kpuv
= ps(d—r)+kr(m—s)+(s—m)(r—d) > 0.

So, if oca’™! < 14 ka® + pb°, then all eigenvalues are negative, i.e., the equilibrium

is stable. The assertion follows.
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In proposition 3.6, the main result is proposed from [4], but we recast it with

more details.

Proposition 3.6. ([4]) : For ¢ > 1/2, every solution of systems (2.1) tends to an

equilibrium as time tends to infinity.

Proof: Let y; = \/z;. Then 3j; = ;132-/23/2-, ie.,

—; + B — + o —yf—l——%—l—a
o 1+ j= 1x 1+ j=1Y;
vi= 2y; 2y;
= —(~y yfc ' 3)
2 1—}—2] 1yj
oV
= o

where
1 & o "L 1 =
Vi) =7 vy — - los(1+ Y _ui) — S loa([ [ o).
j=1 j=1 j=1

Thus y; = #;/2y; is a gradient system. Moreover

2c—1 c
aY; a oxs
Yi F + —O<:) =+ ———i—— +a=0.
1+Z]1 Y; 1"‘2;‘:137]'

By the Lasalle’s invariant prineiple [1], thus; every. solution of the system converges

to one of the equilibria as time tends to'infinity. The assertion follows.

Example 3.2 : In proposition 3.3 and 3.4, if n =2, ¢c=2,0 =2 and a = 0.1, i.e,,
the system is

(3.6)

2:(:

First, consider (a,a) is an equilibrium, we have
2
1+ 2a?
or 20a® — 22a* 4+ 10a — 1 = 0, it only exists a real root. Thus, (0.135, 0.135) is a

stable equilibrium since a = 0.135 < 0.2 = ca/(c — 1). Next, consider (a,b), and

—a+

+0.1=0,

(b, a) are equilibria, we have

{ a+1+2+b2+01_0

b 01 =0
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By calculating, we have 100b* —220%+121b% —20b+2 = 0, the solutions only have two
real roots. Thus, there exist four equilibria: (0.107, 1.458), (1.458, 0.107), (0.122,
0.557), and (0.557, 0.122). The first two are stable and the last two are unstable
since they satisfy the condition in proposition 3.4.

If consider y; = |/x;, then the above system become

Y1 =
Yo =

We see that the two systems (3.6) and (3.7) have same dynamical behavior (see
figure 7).

2
(—y1 + 1+yy1+y4 + 24
y .
(_y2 + 1+yyiy4 + & 1)

(3.7)

N= N

- e
. N L .
% S
12 // /
1 J /
08 [ /%/ "//// A

—>ﬁ | |

| ¥

04 ° er o
= 7 |

02 -

Figure 7: (a) is for ;(t) system‘and.(b).is for y;(t). They have same dynamical
behavior.

In this section, for any ¢, the origin, one switch on and (n — 1) off, k switches
on with identical components & > 1 and (n — k) off (zero) are not equilibria. The
result is different to section 2. For ¢ = 0, there exists a stable equilibrium with all
switches on, whose components are identically a 4+ /(1 4 n).

For ¢ = 1, there exists a stable equilibrium with all switches on, whose com-
ponents are identically [—1 + na + o + /(1 — na — 0)? + 4naj/2n.

For ¢ > 1, there exist stable equilibrium with all switches on, whose compo-
nents are identically lower than ca/(c — 1). It is also different to proposition 2.3.

Moreover,
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(i) If n = 2 and the equilibrium (a, b) exists. Then it is stable if o%c?a?*~ 19?71 <
(—(1+a®+ b2+ oc(1 4+ b%)a 1) (= (1 + a® + v°)* + oc(1 + a®)b“ 1), with one

switch-on with value a, and one off with value b.

(ii) If n = 3, oca®! < 1+ 2a°+ b° and the equilibrium (a,a,b) exists. Then it is
stable if 202c2a? 10?7 < (—(1 4 2a° + b°)? + oc(1 + 2a9)b 1) (—(1 + 2a° +
b°)? + oc(1 + b°)a“"!), with two switches-on with value a identically, and one
off with value b. In addition, if a change for b, then we have the condition of
the stability for the equilibrium with one switch-on with value a, and two off

with value b identically.

Finally, the model is a gradient system, we also justify that the global conver-

gence for the system.

4 A model for bHLH proteins

In this section, consider the bHLH proteins model

U(ﬁ%)c
Z; -+ g - 5 1
KC+( Ty )C

i ?:1 T

where K, = aaf is binding eonstant<and a, is a total quantity of activator. Set

D=1+ 2?21 xj, the above equations become

(&

ox;

i=—x+———, 1<i<n 4.1
! ! aDe + xf - (4.1)
where a = % € R* is a measure of the harshness of the competition between

t
switches. In the following, consider two cases for ¢, i.e. ¢ = 1 and ¢ = 2. When

¢ =1, then (4.1) become

o

1<i<n. 4.2
(1+Z?:1%‘)+$i)7 == (4.2)

Note that the Jacobian matrix of the vector field is J = [J;;] with

oa(l+ 37, 7))
(14320 @) + @)

_oad for j #£1
(T + 320 7)) + 33)? '
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In proposition 4.1, the result of (i) is new. In addition, the results of (ii) and

(iii) are stated in [4], but we recast them with more details.
Proposition 4.1 : Let ¢ = 1.

(i) If 0 < a, then the origin is stable.

(ii) If o > a and 1 < k < n, then there exist unstable equilibria with k switches

on, whose components are identically (o — «)/(ak + 1), and (n — k) off (zero).

(iii) There exists a stable equilibrium with all switches on, whose components are
identically (o — «)/(an + 1).

Proof: (i) The linearizaation at the origin is

—1+2 0 - 0
0 -1+ 2 :
: .0
0 0 —1+¢

If =1+ 2 <0oro<aq, then the origimis:stable, The result follows.
(i) The steady state equation for the (a;a;: :+ ,a,0,0,--- ,0), a # 0 is an equilibrium

if and only if
oa

A1+ ka) +a -
ie. a = (0 —a)/(ak+1) > 0. Thus; /@ > « is the condition of existence. From
(4.3), the linearization at (a,a, - ,a,0,0,---,0) is

=a.+ 0,

ca(l+(k—1)a) —oaa
-1+ (a(l+ka)+a)? (a(l+ka)+a)?
' (@(Ltka) 1a)?
—ooa _1 + 0’CM(1+(1{?—1)(L)
(a(l+ka)+a)? a(1+ka)+a)?
—1+ a(l+ka) 0
0 -
0 —1+ a(lika)

So, =1 + o/a(l + ka) is a eigenvalue. To substitute a for (o — a)/(ak + 1).
Thus, the above eigenvalue becomes —1 + (cak + 0)/(cak + a). It always posi-
tive. Moreover, when k = 1, the above result also holds. Thus, (a,0,0,---,0) and

(a,a,---,a,0,0,---,0) are unstable equilibria. The result follows.
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(iii) The steady state equation for the (a,a,--- ,a), a # 0 is an equilibrium if and

only if
b=
_a prmg
a(l+na)+a
ie,a=(c—a)/(an+1) > 0. Thus, 0 > « is the condition of existence. From
(4.3), the linearization at (a,a,--- ,a) is
ga(l+(n—1)a) —oaa . —oaa
—1+ (a(1+na)+a)? (a(1+na)+a)? (a(1+na)+a)?
___—oaa_ ga(l+(n—1)a) ;
(a(l4+na)+a)? —1+ (a(14na)+a)?
(a(l—T—ZZC)a—I—aP
—oaa L —caa 14+ ca(l+(n—1)a)
(a(14+na)+a)? (a(1+na)+a)? (a(14+na)+a)?

By Lemma 2.1, the eigenvalues are

oa(l + na)
o= —1 d
! * (a(1+na)+a)?’ o
o= —1+ e <A

(a(l+ na)+ a)?

If A\ is negative, then
oca(l £na) < (a(I'¥na) + a)’.

To substitute a(an + 1) for (&=, the abéve imequality becomes ca(l + na) < 2.
e, a < (0 —a)/an. It always holds-since ¢ = (¢ — «)/(an + 1). Hence, we have

(a,a,--- ,a) is stable. The assertion follows:

Example 4.1 : In proposition 4.1, if n = 2, 0 = 2 and a = 3, i.e., the system is

o 211

L1 = L1 + 3(1+$12+1‘2)+$1
= — ____awp
Ty = —T2+ 3(14+z1+z2)+a2

then (0, 0) is stable equilibrium, since it satisfies o < a.

Next, if n =2, 0 = 3 and a = 2, i.e., the system is

o 3x1

Ty = —r;+ 2(1+a:13+x2)+az1

o = — ____ o2
Ty = —Ty+ 2(14x1+x2)+xz2

then there exist four equilibria: (0.2,0.2) is stable; moreover, (0,0), (1/3,0), (0,1/3)

are unstable (see figure 8).
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Figure 8: In figure (a), (0,0) is stable. In (b), (0.2,0.2) is stable; moreover, (0,0),
(1/3,0), (0,1/3) are unstable (Example 4.1).

In the following, it is assumed that transcriptional activation occurs with co-
operativity ¢ = 2. The systems (4.1) become

0'!23'2

T; =2+ m (4.4)

where D =1+ Z?Zl xj, and a = % The steady-state equation is
t 1

2

ox;
b TERS B
aD? + 1?2
or aD? + z? = ox; if 7; # 0. Note that
D(D — x;) 2 .
—2aDox?  —2aD

Ji if x; # 0 for all j # 4.

T (aD2+ a3

Clearly, the origin is a stable equilibrium, since the linearization at the origin is

Thus, all eigenvalues are -1.
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In proposition 4.2, the results are stated in [4]. We provide detailed proof

herein.
Proposition 4.2. ([4]) Let c=2, and 1 <k < n.

(i) If 4a(ko + 1)/0? < 1, then there exist equilibria with k& switches on, whose
components are identically [0 — 2ak + /02 — da(ko + 1)]/2(1 + ak?) or [0 —
20k — \/0? — da(ko 4+ 1)]/2(1 + ak?), and (n — k) off (zero). In short, the

condition of existence is o < 1/k?.

(ii)) When k£ = 1, if the non-zero components are larger than (o — 2«)/2(1 + «),

then the above equilibria are stable.

(iii)) When 1 < k < n, if the non-zero components are larger than «/2, then

the above equilibria are stable. In short, the condition of stability is ¢ >

2Va/(1 = kv/a).

Proof: (i) The steady state equation for (a,a,---,a,0,0,---,0), a # 0 is an equi-

librium if and only if

oa?

_ —0
a+a(1+ka)2+a2

ie.,

a®(1+ ak?®)+ al2ak=7) +a = 0 if a # 0.

The solutions are

Y o —2ak + /0?2 — da(ko + 1)

2(1 + ak?) '
A sufficient and necessary condition for the existence is 4a(ko+1)/0? < 1. However,
from (4.4), we have

a’ —oa+aD?=0.

The only solution is a = (0 + Vo? — 4aD?)/2, where D < o/2y/a. Note that

o+ Vo2 —4aD?

D —1=n( 5

)7

it can rearranged to

2+ no+nvo?—4aD? < %.
«
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It follows that no < o/\/a, or a < 1/n% Since a < 1/n? < 1/k* In short, the
condition of existence is v < 1/k?.
(ii) From (4.5), the linearization at (a,0,0,---,0) is

1-2(a+a(l+a)| 20

a

-1 0

0 "
0 -1
If 1 —2(a+ a(l + a))/o is negative, then all eigenvalues are negative. Thus, if

a > (0 —2a)/2(1 + «), then this equilibrium is stable.

(iii) First, consider k = n, from (4.5), the linearization at (a,a,--- ,a) is

1-— %(a + a(l + na)) —20(l4na) o —2a(1+na)

o [ea

M 1—2(a+ a(l+na)) :
—2a(1+na)

By Lemma 2.1, the eigenvalues are

2
A =d— —a, and
a
2 2 1
N = a=t2an(l +na) <
o
If \; <0, ie., a>0c/2, then (a,a, :¥-Fayisgstable. To replace with the solution, we

have

o — 2an + /02 =4a(no + 1) > 0 + n*ao.

The solution of the equation
(1 —n*a?)o? — (4an + 4n*a?)o — da — 4n*a® > 0

are 0 > 2y/a /(1 — ny/a).

Next, consider 1 < k < n, the linearization at (a,a,---,a,0,0,---0) is
| _ 2ata(i+ha) —20(1+ka)
—2a(1+ka)
“a(tka) | _ 2ete(tk) 7
i i ] 0
0
0 -1
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Since o > 2\/a/(1 — ny/a) > 2y/a/(1 — ky/a), then (a,a,--- ,a,0,0,---0) is also

stable. The assertion follows.

In proposition 4.3, the results are stated in [4]. We provide detailed proof

herein.

Proposition 4.3. ([4]) For ¢ =2, n > 4, and k > 1, there exist unstable equilibria

with k switches on with value a identically, and (n — k) off with value b identically.
Proof: Without loss of generality, assume a > b. By the steady state equation,
a’> —oa="b*—ob

or (a—>b)(a+b—o0) =0, we have a + b = 0. Let p = n — k, from (4.5), the

linearization at (a,a,--- ,a,b,b,--- ,b) is

o—2(a+a(1+ka+pbd)) —2a(14+ka+pb)
o c
—2a(14+-ka+pb)
: o
—2a(14+-ka+pb) o—2(a+o(1+ka+pb))
a a
o—2(b+a(1+ka+pDd)) —2a(1+ka+pb)
o c
—2a(14+-ka+pb)
p .
—2a(14+-ka+pb) o—2(b+a(14+ka+pb))
o o

By Lemma 2.1, we have 1 — 2b/o.is @ eigenvalue. If it is negative, then b > o/2

which contradicts the assumption. Thus, the assertion follows.

Example 4.2 : In proposition 4.2 and 4.3, if n = 2, 0 = 3 and a = 0.1, i.e., the

system is
. 3:2%
Ty =21+ 0.1(1+z1+2)2+23
Ty = —To + 323 ’
2= 2 0.1(14z1+x2)2+x3

then there exist nine equilibria: four equilibria are stable and five are unstable. We
have (0,0) is stable. (2.509,0) and (0,2.509) are stable since (14 + v/185)/11 ~
2.509 > (0 — 2a)/2(1 + ) =~ 1.727. (1.853,1.853) is also stable since it satisfies
o =3>2a/(1 —+/a) = 1.721. These equilibria (2.475,0.525), (0.525,2.475),
(0.652,0.652), (0.036,0), (0,0.036) are unstable (see figure 9).

In this section, for ¢ = 1.
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Figure 9: Figure (b) is a zoom-in of (a) near the origin. There exist nine equi-
libria: four equilibria are stable and five are unstable. We have (0,0), (2.509,0),
(0,2.509) and (1.853, 1.853) are stable. These equilibria (2.475,0.525), (0.525,2.475),
(0.652,0.652), (0.036,0), (0,0.036) are unstable.

(i) If 0 < a, then the origin is stable.

(ii) If o > e and 1 < k < n, then thererexist unstable equilibria with k& switches

on, whose components arefidentically (o =.«)/(ak + 1), and (n — k) off (zero).
(iii) There exists a stable equilibrium with allswitches on, whose components are
identically (o — «)/(an= 1).
Forc=2,and 1 <k <n.
(i) If 4a(ko + 1)/o* < 1, then there exist equilibria with k switches on, whose
components are identically [0 — 2ak + /02 — 4a(ko + 1)]/2(1 + ak?) or [0 —
20k — \/0? — 4a(ko 4+ 1)]/2(1 + ak?), and (n — k) off (zero). In short, the

condition of existence is o < 1/k?.

(ii) When k£ = 1, if the non-zero components are larger than (o — 2«)/2(1 + «),

then the above equilibria are stable.

(iii)) When 1 < k < n, if the non-zero components are larger than «/2, then

the above equilibria are stable. In short, the condition of stability is ¢ >
2,/a/(1 - ky/a).
In addition, when ¢ = 2, n > 4, and k > 1, there exist unstable equilibria with &

switches on with value a identically, and (n — k) off with value b identically.
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