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Abstract

The shuffle-exchange network is a popular architecture for multistage intercon-
nection networks. The number of nodes in a shuffle-exchange network is usually a
power of k if each switching element in the network is of size k × k. In [10], Pad-
manbhan relaxed the restriction that the number of nodes must be a power of k and
proposed the general shuffle-exchange network (GSEN). Padmanbhan also proposed
an elegant tag-based routing algorithm for the GSEN. Later, in [2], Chen, Liu, and
Qui enhanced the GSEN with bidirectional links and they proposed a tag-based
routing algorithm for the backward network of the GSEN. Recently, Chen and Lou
[3] also proposed an tag-based routing algorithm for the backward network of the
GSEN. A multistage interconnection network enables processors to send their mes-
sages concurrently. When two routing requests occur simultaneously in the GSEN,
a conflict may occur. The purpose of this thesis is to analyze the performance of
the above three tag-based routing algorithms when there are two routing requests.

Keywords: multistage interconnection network, parallel and distributed com-

puting, shuffle-exchange network, routing algorithm, conflict.
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1 Introduction

The shuffle-exchange network has been proposed as a popular architecture for multi-

stage interconnection networks; see [4, 5, 8, 10, 12]. The number of nodes in a shuffle-

exchange network is usually a power of k if each switching element is of size k×k. Since it

is desirable to build a multistage interconnection network out of 2× 2 switching elements

instead of larger switching elements, throughout this thesis, we will assume that all the

switching elements are identical and are of size 2× 2.

It is well known that a 2× 2 switching element has only two possible states: straight

and cross, as shown in Figure 1. As can be seen from Figure 1, a 2× 2 switching element

has two upper and two lower sub ports. We will use sub port 0 (sub port 1) denote an

upper (a lower) sub port.

sub port 0

sub port 1

Figure 1: The states of a 2× 2 switching element and the sub ports.

In a multistage interconnection network, a path from an input to an output can be

described by a sequence of labels that label the successive edges on this path. Such a

sequence of labels is called a control tag [10] or tag [2] or path descriptor [6]. The control

tag may be used as a header for routing a message: each successive node uses the first

element of the sequence to route the message, and then discards it. For example, in Figure

2 (a), input 3 can get to output 4 by using the control tag 6 (0110), which means that

the routing is via sub port 0 at stage 0, sub port 1 at stage 1, sub port 1 at stage 2, and

sub port 0 at stage 3.

Recall that the number of nodes in a shuffle-exchange network is usually a power of 2

if each switching element is of size 2 × 2. The general shuffle-exchange network (GSEN)

was proposed by Padmanbhan in [10] to relax the restriction on the number of nodes in

a shuffle-exchange network. More precisely, an N ′ ×N ′ general shuffle-exchange network

is a multistage interconnection network with N ′ inputs and N ′ outputs and each stage
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Figure 2: A 10× 10 GSEN.

consists of the perfect shuffle operation (defined below) on N ′ terminals followed by N ′/2

switching elements. The perfect shuffle operation on N ′ terminals is the permutation π

defined by

π(i) = (2 · i +

⌊
2 · i
N ′

⌋
) mod N ′, 0 ≤ i ≤ N ′ − 1.

In other words, the perfect shuffle operation separates the top N ′/2 terminals from the

bottom N ′/2 terminals and precisely interleaves them, with the bottom terminals still

remaining at the bottom. See Figure 2 for an illustration.

Clearly, the number of stages in a GSEN is at least as large as log2 N ′. When it is

exactly log2 N ′, the GSEN is identical to the Omega network defined in [7] and the the

control tag depends only on the destination. If the number of stages in a GSEN is greater

than log2 N ′, the control tag will depend on both the source and the destination. An

elegant tag-based routing algorithm for the GSEN has been proposed by Padmanbhan

in [10]. In the remaining part of this thesis, we will call this algorithm P-algorithm for

convenience.

After the work of Padmanbhan [10], Chen et al. [2] enhanced the GSEN with bidi-

rectional links. Their reason for the enhancement is that although unidirectional links

are widely used, bidirectional links also have many applications as suggested in [4]. A

bidirectional GSEN can be divided into two dependent networks: the forward network

and the backward network. The forward network is from the left-hand side of the GSEN

to the right-side of the GSEN; thus a routing request in it is sent from left to right. On
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the other hand, the backward network is from the right-hand side of the network to the

left-hand side of the network; thus a routing request in it is sent from right to left. The

control tags used in the forward (backward) network are called the forward (backward)

control tags.

Obviously, P-algorithm can be applied on the forward network. As for the backward

network, Chen et al. [2] proposed a tag-based routing algorithm for it; this algorithm is

based on the idea of inversely using the forward control tag. More precisely, this algorithm

first runs P-algorithm to obtain the forward control tag; then, it runs another procedure

to convert the forward control tag to the backward control tag. In the remaining part

of this thesis, we will call the algorithm of Chen et al. CLQ-algorithm for convenience.

Recently, Chen and Lou [3] also proposed a tag-based routing algorithm for the backward

network. Unlike CLQ-algorithm, Chen and Lou’s algorithm does not run P-algorithm first

and is not based on the idea of inversely using the forward control tag. In the remaining

part of this thesis, we will call Chen and Lou’s algorithm CL-algorithm for convenience.

A multistage interconnection network enables processors to send their messages con-

currently. However, routing must be handled carefully so that there is no conflict when

messages are sending concurrently. There are two types of conflict-free routings in a mul-

tistage interconnection network: one is routing with link-disjoint paths and the other is

routing with node-disjoint paths. The former is used in an electronic network and the

latter, an optical network. Routing with link-disjoint paths means that no two differ-

ent messages have their paths share the same link in the network, while routing with

node-disjoint paths means that no two different messages have their paths share the same

switching element in the network.

The three known routing algorithms for the GSEN are P-algorithm, CLQ-algorithm,

and CL-algorithm. P-algorithm can be used to send a message in a GSEN or in the

forward network of a bidirectional GSEN. Both CLQ-algorithm and CL-algorithm can

be used to send a message in the backward network of a bidirectional GSEN. When

two routing requests occur simultaneously, a conflict may occur. Up to now, there is no
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analysis for the conflicts of routing requests in the GSEN. For some routing requests,

P-algorithm and CLQ-algorithm can provide two control tags, i.e., two paths that can

fulfill the routing request. On the other hand, for each routing request, CL-algorithm

provides only one control tag, i.e., only one path that can fulfill the routing request. It is

also not known which control tag should be used (when two tags are available) to reduce

the conflict. The purpose of this thesis is to analyze the performance of the above three

routing algorithms of the GSEN. We will focus on the case that there are two routing

requests.

This thesis is organized as follows: Section 2 gives some preliminaries and the idea of

our performance analysis. Sections 3, 4, and 5 give the analysis of P-algorithm, CLQ-

algorithm, and CL-algorithm, respectively. Concluding remarks are given in the final

section.

2 Preliminaries and the idea of our analysis

We first introduce some terminologies that will be used throughout this thesis. For

convenience, GSEN is also used to denote a bidirectional GSEN. N ′ is used to denote

the number of inputs and outputs of the given GSEN. Also, r and n + 1 are used to

denote the number of switching elements in a stage and the number of stages in a GSEN,

respectively. A GSEN is a multistage interconnection network with switches aligned in

n + 1 stages, labelled 0, 1, . . . , n. Each stage consists of r switching elements, labelled

with 0, 1, . . . , r − 1. Since every switching element is of size 2× 2, there are a total of

N ′ = 2× r

ports on each side of a stage, labelled 0, 1, · · · , N ′−1. The parameters N ′, r, and n satisfy

the following equation:

dlog2(2 · r)e = dlog2 N ′e = n + 1.

The following conventions are used in this thesis. Stage 0 is the leftmost stage even

if the network is the backward network of a GSEN. The switching elements in a stage
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are considered cyclic; that is, the switching element labelled 0 is considered to be the

successive switch element of the switching element labelled r − 1. Also, nodes i and i′ (j

and j′) are assumed to be on the left-hand (right-hand) side of the network. An (i, j)-

request denotes a request for sending a message from i to j (from j to i if the network

is a backward network). An (i, j)-path denotes a path between i and j. The terms

(i′, j′)-request and (i′, j′)-path are defined similarly.

Note that an (i, j)-request can be fulfilled by an (i, j)-path. Moreover, an (i, j)-path

can be characterized by its port sequence, which is the sequence of ports

(R−1, R0, R1, · · · , Rn)

passed by this path such that R−1 is defined to be

R−1 = i

and R` is the port to the right of the switching element at stage ` on this path. Clearly,

Rn = j.

Take Figure 2 (a) for an example. A (3, 4)-request can be fulfilled by using the (3, 4)-path

shown in this figure and this (3, 4)-path has the port sequence (3, 6, 3, 7, 4). The purpose

of this thesis is to analyze the performance of three existing algorithms of GSENs: P-

algorithm, CLQ-algorithm, and CL-algorithm. And we will focus on the case that two

routing requests occur simultaneously. In an electronic GSEN, two routing requests can

be sent simultaneously if their routing paths are link-disjoint, meaning that no two links

of these two paths are identical. On the other hand, in an optical GSEN, two routing

requests can be sent simultaneously if their routing paths are node-disjoint, meaning that

no two switching elements of these two paths are identical; this is to ensure that only

one signal passes through a switching element at a time and thus to avoid the crosstalk

problem (see also [16]).

Two routing paths are said to have a link-conflict (node-conflict) if they are not link-

disjoint (node-disjoint). The following two lemmas are obvious and their proofs are omit-

ted.
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Lemma 1. If two routing paths have a link-conflict, then they have a node-conflict.

Lemma 2. There are only three possible cases for two routing paths:

(i) they have no node-conflict (hence no link-conflict);

(ii) they have a node-conflict and have no link-conflict;

(iii) they have a link-conflict (hence a node-conflict).

Take Figure 2 (b) for an example. Suppose we have three routing requests: (3, 4)-

request, (0, 8)-request, and (9, 9)-request. Also suppose that these three requests are

routed along path P with port sequence (3, 6, 3, 7, 4), path Q with port sequence (0, 1, 2, 4,

8), and path U with port sequence (9, 8, 7, 4, 9). Then P and U have no node-conflict and

no link-conflict; P and Q have a node-conflict and have no link-conflict; U and Q have a

link-conflict and a node-conflict.

We now describe the idea used in our analysis. Suppose the two requests that occur

simultaneously are (i, j)-request and (i′, j′)-request. Also suppose that (i, j)-request is

routed along the (i, j)-path P with port sequence

(P−1,P0,P1, · · · ,Pn) (1)

and (i′, j′)-request are routed along the (i′, j′)-path Q with port sequence

(Q−1,Q0,Q1, · · · ,Qn). (2)

The following two lemmas describe how we detect a link-conflict or a node-conflict.

Lemma 3. P and Q have a link-conflict if and only if

Pk = Qk for some − 1 ≤ k ≤ n.

Proof. For each −1 ≤ k ≤ n, port Pk determines a link on P . Similarly, for each

−1 ≤ k ≤ n, port Qk determines a link on Q. Thus we have this lemma.

Lemma 4. P and Q have a have a node-conflict if and only if

bPk

2
c = bQk

2
c for some 0 ≤ k ≤ n.
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Proof. For each 0 ≤ k ≤ n, bPk

2
c determines a switching element on P . Similarly, for

each 0 ≤ k ≤ n, bQk

2
c determines a switching element on Q. Thus we have this lemma.

In the following sections, we will further assume that

i 6= i′ and j 6= j′.

This is because if i = i′ or j = j′ occur, then a link-conflict and also a node-conflict will

occur and it is definitely impossible to fulfill these two routing requests simultaneously.

3 The analysis of P-algorithm

In this section, we will analyze the performance of P-algorithm. This algorithm was

stated in a theorem in [10].

Theorem 5. [10] Any i, 0 ≤ i < N ′, in a GSEN can set up a path to a j, 0 ≤ j < N ′,

by using the control tag

T1 = (j + 2Mi) mod N ′.

In addition if T1 + N ′ < 2N , then a second control tag exists and is given by

T2 = T1 + N ′.

Using P-algorithm, each of the two requests (i, j)-request and (i′, j′)-request can be

fulfilled by using a T1 or a T2 control tag. Note that the second control tag T2 may not

exist. In this occurs, we will set T2 = T1. Thus there are four possible cases:

T1T1-case: Both requests are fulfilled by using their T1 tags.

T1T2-case: (i, j)-request is fulfilled by using its T1 tag and (i′, j′)-request, its T2 tag.

T2T1-case: (i, j)-request is fulfilled by using its T2 tag and (i′, j′)-request, its T1 tag.

T2T2-case: Both requests are fulfilled by using their T2 tags.
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We run computer programs to obtain the number of node-conflicts and the number of

link-conflicts. For convenience, let

x ∈ {T1T1, T1T2, T2T1, T2T2}. (3)

Let LCF(i, j, x) denote the number of (i′, j′)-requests that have a link-conflict with the

(i, j)-request when the x-case occurs. Let NCF(i, j, x) denote the number of (i′, j′)-

requests that have a node-conflict with the (i, j)-request when the x-case occurs. For

example, NCF(i, j, T1T2) denotes the number of (i′, j′)-requests that have a node-conflict

with the (i, j)-request when the T1T2-case occurs. To describe the results of our analysis,

we also define

TotalLCF(i, ∗, x) =
N ′−1∑
j=0

LCF(i, j, x),

TotalNCF(i, ∗, x) =
N ′−1∑
j=0

NCF(i, j, x),

TotalLCF(∗, j, x) =
N ′−1∑
i=0

LCF(i, j, x),

TotalNCF(∗, j, x) =
N ′−1∑
i=0

NCF(i, j, x).

For convenience, if a (i, j)-path is obtained from control tag T1, then we say it is a

T1-(i, j)-path and if it is obtained from control tag T2, then we say it is a T2-(i, j)-path.

We have two lemmas.

Lemma 6. If there is a T`-(i, j)-path with port sequence (i, R0, R1, R2, · · · , Rn−1, j), then

there is a T3−`-(N
′ − 1− i, N ′ − 1− j)-path with port sequence (N ′ − 1− i, N ′ − 1− R0,

N ′ − 1−R1, N
′ − 1−R2, · · · , N ′ − 1−Rn−1, N

′ − 1− j) for ` = 1, 2.

Proof. This lemma follows from the fact that if we fold a GSEN so that its upper

boundary coincides with its lower boundary, then a T`-(i, j)-path with port sequence

(i, R0, R1, R2, · · · , Rn−1, j) will coincide with a T3−`-(N
′−1− i, N ′−1−j)-path with port

sequence (N ′−1− i, N ′−1−R0, N
′−1−R1, N

′−1−R2, · · · , N ′−1−Rn−1, N
′−1− j).
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Lemma 7. If there is link-conflict between the T`-(i, j)-path and the Tm-(i′, j′)-path, then

there is link-conflict between the T3−`-(N
′ − 1 − i, N ′ − 1 − j)-path and the T3−m-(N ′ −

1− i′, N ′ − 1− j′)-path for ` = 1, 2 and m = 1, 2.

Proof. Let the port sequences of the T`-(i, j)-path P and the Tm-(i′, j′)-path Q be

(i,P0,P1,P2, · · · ,Pn−1, j) and (i′,Q0,Q1,Q2, · · · ,Qn−1, j
′), respectively. By Lemma 3,

there exists −1 ≤ k ≤ n such that Pk = Qk, which implies N ′ − 1 − Pk = N ′ − 1 −Qk.

This lemma now follows from Lemmas 3 and 6.

The above two lemmas lead to the following two corollaries.

Corollary 8.
(A) LCF(i, j, T1T1) = LCF(N ′ − 1− i, N ′ − 1− j, T2T2)
(B) NCF(i, j, T1T1) = NCF(N ′− 1− i, N ′− 1− j, T2T2)
(C) LCF(i, j, T1T2) = LCF(N ′ − 1− i, N ′ − 1− j, T2T1)
(D) NCF(i, j, T1T2) = NCF(N ′− 1− i, N ′− 1− j, T2T1)

Proof. The first statement of this corollary follows from Lemma 7. The other state-

ments of this corollary can be proven in a similar way and we omit their proofs.

Corollary 9.
(a) TotalLCF(i, ∗, T1T1) = TotalLCF(N ′ − 1− i, ∗, T2T2)
(b) TotalLCF(∗, j, T1T1) = TotalLCF(∗, N ′ − 1− j, T2T2)
(c) TotalNCF(i, ∗, T1T1) = TotalNCF(N ′ − 1− i, ∗, T2T2)
(d) TotalNCF(∗, j, T1T1) = TotalNCF(∗, N ′ − 1− j, T2T2)
(e) TotalLCF(i, ∗, T1T2) = TotalLCF(N ′ − 1− i, ∗, T2T1)
(f) TotalLCF(∗, j, T1T2) = TotalLCF(∗, N ′ − 1− j, T2T1)
(g) TotalNCF(i, ∗, T1T2) = TotalNCF(N ′ − 1− i, ∗, T2T1)
(h) TotalNCF(∗, j, T1T2) = TotalNCF(∗, N ′ − 1− j, T2T1)

Proof.

(a) holds since:

TotalLCF(i, ∗, T1T1) =
N ′−1∑
j=0

LCF(i, j, T1T1) (by definition)

=
N ′−1∑
j=0

LCF(N ′ − 1− i, N ′ − 1− j, T2T2) (by (A) of Corollary 8)

= TotalLCF(N ′ − 1− i, ∗, T2T2) (by definition).
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(b) holds since:

TotalLCF(∗, j, T1T1) =
N ′−1∑
i=0

LCF(i, j, T1T1) (by definition)

=
N ′−1∑
i=0

LCF(N ′ − 1− i, N ′ − 1− j, T2T2) (by (A) of Corollary 8)

= TotalLCF(∗, N ′ − 1− i, T2T2) (by definition).

(c) and (d) can be proven in a similar way except (B), instead of (A), of Corollary 8 is

used. (e) and (f) can be proven in a similar way except (C), instead of (A), of Corollary 8

is used. (g) and (h) can also be proven in a similar way except (D), instead of (A), of

Corollary 8 is used.

To obtain LCF(i, j, x) or NCF(i, j, x), we need to test (N ′ − 1) × (N ′ − 1) pairs of

(i′, j′)-requests. We have run computer programs for each N ′ = 4, 6, · · · , 46 and have

obtained the following values:

LCF(i, j, x) for all i, j, x; TotalLCF(i, ∗, x) for all i, x; TotalLCF(∗, j, x) for all j, x;

NCF(i, j, x) for all i, j, x; TotalNCF(i, ∗, x) for all i, x; TotalNCF(∗, j, x) for all j, x.

From our computer output, we have the following observations.

Observation 1. For each x ∈ {T1T1, T2T2, T1T2, T2T1},

LCF(i, j, x) = LCF(0, j + 2Mi, x),

NCF(i, j, x) = NCF(0, j + 2Mi, x).

Observation 2. For each x ∈ {T1T1, T2T2, T1T2, T2T1},

TotalLCF(i1, ∗, x) = TotalLCF(i2, ∗, x) = TotalLCF(∗, j1, x) = TotalLCF(∗, j2, x),

TotalNCF(i1, ∗, x) = TotalNCF(i2, ∗, x) = TotalNCF(∗, j1, x) = TotalNCF(∗, j2, x).

Observation 3. TotalLCF(i, ∗, T1T1) = TotalLCF(i, ∗, T1T2) whenever N ′ = 2n+1.

Observation 4. TotalNCF(i, ∗, T1T1) = TotalNCF(i, ∗, T1T2) whenever N ′ = 2n+1.

Observation 5. TotalLCF(i, ∗, T1T1) > TotalLCF(i, ∗, T1T2) whenever N ′ 6= 2n+1.
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Observation 6. TotalNCF(i, ∗, T1T1) > TotalNCF(i, ∗, T1T2) whenever N ′ 6= 2n+1 and

4|N ′.

Observation 7. TotalNCF(i, ∗, T1T1) < TotalNCF(i, ∗, T1T2) whenever N ′ 6= 2n+1 and

4 6 |N ′.

From the above, we also have the following equalities.

TotalLCF(i, ∗, T1T1) = TotalLCF(0, ∗, T1T1) (by Observation 2)

TotalLCF(∗, j, T1T1) = TotalLCF(0, ∗, T1T1) (by Observation 2)

TotalLCF(i, ∗, T2T2) = TotalLCF(0, ∗, T1T1) (by Observation 2 and Corollary 9)

TotalLCF(∗, j, T2T2) = TotalLCF(0, ∗, T1T1) (by Observation 2 and Corollary 9)

TotalNCF(i, ∗, T1T1) = TotalNCF(0, ∗, T1T1) (by Observation 2)

TotalNCF(∗, j, T1T1) = TotalNCF(0, ∗, T1T1) (by Observation 2)

TotalNCF(i, ∗, T2T2) = TotalNCF(0, ∗, T1T1) (by Observation 2 and Corollary 9)

TotalNCF(∗, j, T2T2) = TotalNCF(0, ∗, T1T1) (by Observation 2 and Corollary 9)

TotalLCF(i, ∗, T1T2) = TotalLCF(0, ∗, T1T2) (by Observation 2)

TotalLCF(∗, j, T1T2) = TotalLCF(0, ∗, T1T2) (by Observation 2)

TotalLCF(i, ∗, T2T1) = TotalLCF(0, ∗, T1T2) (by Observation 2 and Corollary 9)

TotalLCF(∗, j, T2T1) = TotalLCF(0, ∗, T1T2) (by Observation 2 and Corollary 9)

TotalNCF(i, ∗, T1T2) = TotalNCF(0, ∗, T1T2) (by Observation 2)

TotalNCF(∗, j, T1T2) = TotalNCF(0, ∗, T1T2) (by Observation 2)

TotalNCF(i, ∗, T2T1) = TotalNCF(0, ∗, T1T2) (by Observation 2 and Corollary 9)

TotalNCF(∗, j, T2T1) = TotalNCF(0, ∗, T1T2) (by Observation 2 and Corollary 9)

In the following, we list the computer output when N ′ = 18. The values of each

LCF(i, j, T1T1), LCF(i, j, T1T2), LCF(i, j, T2T1), LCF(i, j, T2T2), NCF(i, j, T1T1), NCF(i, j,

T1T2), NCF(i, j, T2T1), and NCF(i, j, T2T2) are listed in Tables 1 to 8, respectively.
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Table 1: Each (i, j)-entry in the table is LCF(i, j, T1T1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 27 27 29 29 31 31 29 29 27 27 29 29 27 27 25 25 25 25
1 31 31 29 29 27 27 29 29 27 27 25 25 25 25 27 27 29 29
2 27 27 29 29 27 27 25 25 25 25 27 27 29 29 31 31 29 29
3 27 27 25 25 25 25 27 27 29 29 31 31 29 29 27 27 29 29
4 25 25 27 27 29 29 31 31 29 29 27 27 29 29 27 27 25 25
5 29 29 31 31 29 29 27 27 29 29 27 27 25 25 25 25 27 27
6 29 29 27 27 29 29 27 27 25 25 25 25 27 27 29 29 31 31
7 29 29 27 27 25 25 25 25 27 27 29 29 31 31 29 29 27 27
8 25 25 25 25 27 27 29 29 31 31 29 29 27 27 29 29 27 27
9 27 27 29 29 31 31 29 29 27 27 29 29 27 27 25 25 25 25

10 31 31 29 29 27 27 29 29 27 27 25 25 25 25 27 27 29 29
11 27 27 29 29 27 27 25 25 25 25 27 27 29 29 31 31 29 29
12 27 27 25 25 25 25 27 27 29 29 31 31 29 29 27 27 29 29
13 25 25 27 27 29 29 31 31 29 29 27 27 29 29 27 27 25 25
14 29 29 31 31 29 29 27 27 29 29 27 27 25 25 25 25 27 27
15 29 29 27 27 29 29 27 27 25 25 25 25 27 27 29 29 31 31
16 29 29 27 27 25 25 25 25 27 27 29 29 31 31 29 29 27 27
17 25 25 25 25 27 27 29 29 31 31 29 29 27 27 29 29 27 27

Table 2: Each (i, j)-entry in the table is LCF(i, j, T1T2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 26 26 28 28 30 30 28 28 26 26 28 28 26 26 25 25 25 25
1 30 30 28 28 26 26 28 28 26 26 25 25 25 25 26 26 28 28
2 26 26 28 28 26 26 25 25 25 25 26 26 28 28 30 30 28 28
3 26 26 25 25 25 25 26 26 28 28 30 30 28 28 26 26 28 28
4 25 25 26 26 28 28 30 30 28 28 26 26 28 28 26 26 25 25
5 28 28 30 30 28 28 26 26 28 28 26 26 25 25 25 25 26 26
6 28 28 26 26 28 28 26 26 25 25 25 25 26 26 28 28 30 30
7 28 28 26 26 25 25 25 25 26 26 28 28 30 30 28 28 26 26
8 25 25 25 25 26 26 28 28 30 30 28 28 26 26 28 28 26 26
9 26 26 28 28 30 30 28 28 26 26 28 28 26 26 25 25 25 25

10 30 30 28 28 26 26 28 28 26 26 25 25 25 25 26 26 28 28
11 26 26 28 28 26 26 25 25 25 25 26 26 28 28 30 30 28 28
12 26 26 25 25 25 25 26 26 28 28 30 30 28 28 26 26 28 28
13 25 25 26 26 28 28 30 30 28 28 26 26 28 28 26 26 25 25
14 28 28 30 30 28 28 26 26 28 28 26 26 25 25 25 25 26 26
15 28 28 26 26 28 28 26 26 25 25 25 25 26 26 28 28 30 30
16 28 28 26 26 25 25 25 25 26 26 28 28 30 30 28 28 26 26
17 25 25 25 25 26 26 28 28 30 30 28 28 26 26 28 28 26 26
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Table 3: Each (i, j)-entry in the table is LCF(i, j, T2T1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 26 26 28 28 26 26 28 28 30 30 28 28 26 26 25 25 25 25
1 26 26 28 28 30 30 28 28 26 26 25 25 25 25 26 26 28 28
2 30 30 28 28 26 26 25 25 25 25 26 26 28 28 26 26 28 28
3 26 26 25 25 25 25 26 26 28 28 26 26 28 28 30 30 28 28
4 25 25 26 26 28 28 26 26 28 28 30 30 28 28 26 26 25 25
5 28 28 26 26 28 28 30 30 28 28 26 26 25 25 25 25 26 26
6 28 28 30 30 28 28 26 26 25 25 25 25 26 26 28 28 26 26
7 28 28 26 26 25 25 25 25 26 26 28 28 26 26 28 28 30 30
8 25 25 25 25 26 26 28 28 26 26 28 28 30 30 28 28 26 26
9 26 26 28 28 26 26 28 28 30 30 28 28 26 26 25 25 25 25

10 26 26 28 28 30 30 28 28 26 26 25 25 25 25 26 26 28 28
11 30 30 28 28 26 26 25 25 25 25 26 26 28 28 26 26 28 28
12 26 26 25 25 25 25 26 26 28 28 26 26 28 28 30 30 28 28
13 25 25 26 26 28 28 26 26 28 28 30 30 28 28 26 26 25 25
14 28 28 26 26 28 28 30 30 28 28 26 26 25 25 25 25 26 26
15 28 28 30 30 28 28 26 26 25 25 25 25 26 26 28 28 26 26
16 28 28 26 26 25 25 25 25 26 26 28 28 26 26 28 28 30 30
17 25 25 25 25 26 26 28 28 26 26 28 28 30 30 28 28 26 26

Table 4: Each (i, j)-entry in the table is LCF(i, j, T2T2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 27 27 29 29 27 27 29 29 31 31 29 29 27 27 25 25 25 25
1 27 27 29 29 31 31 29 29 27 27 25 25 25 25 27 27 29 29
2 31 31 29 29 27 27 25 25 25 25 27 27 29 29 27 27 29 29
3 27 27 25 25 25 25 27 27 29 29 27 27 29 29 31 31 29 29
4 25 25 27 27 29 29 27 27 29 29 31 31 29 29 27 27 25 25
5 29 29 27 27 29 29 31 31 29 29 27 27 25 25 25 25 27 27
6 29 29 31 31 29 29 27 27 25 25 25 25 27 27 29 29 27 27
7 29 29 27 27 25 25 25 25 27 27 29 29 27 27 29 29 31 31
8 25 25 25 25 27 27 29 29 27 27 29 29 31 31 29 29 27 27
9 27 27 29 29 27 27 29 29 31 31 29 29 27 27 25 25 25 25

10 27 27 29 29 31 31 29 29 27 27 25 25 25 25 27 27 29 29
11 31 31 29 29 27 27 25 25 25 25 27 27 29 29 27 27 29 29
12 27 27 25 25 25 25 27 27 29 29 27 27 29 29 31 31 29 29
13 25 25 27 27 29 29 27 27 29 29 31 31 29 29 27 27 25 25
14 29 29 27 27 29 29 31 31 29 29 27 27 25 25 25 25 27 27
15 29 29 31 31 29 29 27 27 25 25 25 25 27 27 29 29 27 27
16 29 29 27 27 25 25 25 25 27 27 29 29 27 27 29 29 31 31
17 25 25 25 25 27 27 29 29 27 27 29 29 31 31 29 29 27 27
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Table 5: Each (i, j)-entry in the table is NCF(i, j, T1T1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 53 53 57 57 57 57 61 61 57 57 61 61 61 61 65 65 81 81
1 57 57 61 61 57 57 61 61 61 61 65 65 81 81 53 53 57 57
2 57 57 61 61 61 61 65 65 81 81 53 53 57 57 57 57 61 61
3 61 61 65 65 81 81 53 53 57 57 57 57 61 61 57 57 61 61
4 81 81 53 53 57 57 57 57 61 61 57 57 61 61 61 61 65 65
5 57 57 57 57 61 61 57 57 61 61 61 61 65 65 81 81 53 53
6 61 61 57 57 61 61 61 61 65 65 81 81 53 53 57 57 57 57
7 61 61 61 61 65 65 81 81 53 53 57 57 57 57 61 61 57 57
8 65 65 81 81 53 53 57 57 57 57 61 61 57 57 61 61 61 61
9 53 53 57 57 57 57 61 61 57 57 61 61 61 61 65 65 81 81

10 57 57 61 61 57 57 61 61 61 61 65 65 81 81 53 53 57 57
11 57 57 61 61 61 61 65 65 81 81 53 53 57 57 57 57 61 61
12 61 61 65 65 81 81 53 53 57 57 57 57 61 61 57 57 61 61
13 81 81 53 53 57 57 57 57 61 61 57 57 61 61 61 61 65 65
14 57 57 57 57 61 61 57 57 61 61 61 61 65 65 81 81 53 53
15 61 61 57 57 61 61 61 61 65 65 81 81 53 53 57 57 57 57
16 61 61 61 61 65 65 81 81 53 53 57 57 57 57 61 61 57 57
17 65 65 81 81 53 53 57 57 57 57 61 61 57 57 61 61 61 61

Table 6: Each (i, j)-entry in the table is NCF(i, j, T1T2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 89 89 85 85 85 85 81 81 85 85 81 81 81 81 81 81 65 65
1 85 85 81 81 85 85 81 81 81 81 81 81 65 65 89 89 85 85
2 85 85 81 81 81 81 81 81 65 65 89 89 85 85 85 85 81 81
3 81 81 81 81 65 65 89 89 85 85 85 85 81 81 85 85 81 81
4 65 65 89 89 85 85 85 85 81 81 85 85 81 81 81 81 81 81
5 85 85 85 85 81 81 85 85 81 81 81 81 81 81 65 65 89 89
6 81 81 85 85 81 81 81 81 81 81 65 65 89 89 85 85 85 85
7 81 81 81 81 81 81 65 65 89 89 85 85 85 85 81 81 85 85
8 81 81 65 65 89 89 85 85 85 85 81 81 85 85 81 81 81 81
9 89 89 85 85 85 85 81 81 85 85 81 81 81 81 81 81 65 65

10 85 85 81 81 85 85 81 81 81 81 81 81 65 65 89 89 85 85
11 85 85 81 81 81 81 81 81 65 65 89 89 85 85 85 85 81 81
12 81 81 81 81 65 65 89 89 85 85 85 85 81 81 85 85 81 81
13 65 65 89 89 85 85 85 85 81 81 85 85 81 81 81 81 81 81
14 85 85 85 85 81 81 85 85 81 81 81 81 81 81 65 65 89 89
15 81 81 85 85 81 81 81 81 81 81 65 65 89 89 85 85 85 85
16 81 81 81 81 81 81 65 65 89 89 85 85 85 85 81 81 85 85
17 81 81 65 65 89 89 85 85 85 85 81 81 85 85 81 81 81 81
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Table 7: Each (i, j)-entry in the table is NCF(i, j, T2T1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 81 81 81 81 85 85 81 81 85 85 85 85 89 89 65 65 81 81
1 85 85 81 81 85 85 85 85 89 89 65 65 81 81 81 81 81 81
2 85 85 85 85 89 89 65 65 81 81 81 81 81 81 85 85 81 81
3 89 89 65 65 81 81 81 81 81 81 85 85 81 81 85 85 85 85
4 81 81 81 81 81 81 85 85 81 81 85 85 85 85 89 89 65 65
5 81 81 85 85 81 81 85 85 85 85 89 89 65 65 81 81 81 81
6 81 81 85 85 85 85 89 89 65 65 81 81 81 81 81 81 85 85
7 85 85 89 89 65 65 81 81 81 81 81 81 85 85 81 81 85 85
8 65 65 81 81 81 81 81 81 85 85 81 81 85 85 85 85 89 89
9 81 81 81 81 85 85 81 81 85 85 85 85 89 89 65 65 81 81

10 85 85 81 81 85 85 85 85 89 89 65 65 81 81 81 81 81 81
11 85 85 85 85 89 89 65 65 81 81 81 81 81 81 85 85 81 81
12 89 89 65 65 81 81 81 81 81 81 85 85 81 81 85 85 85 85
13 81 81 81 81 81 81 85 85 81 81 85 85 85 85 89 89 65 65
14 81 81 85 85 81 81 85 85 85 85 89 89 65 65 81 81 81 81
15 81 81 85 85 85 85 89 89 65 65 81 81 81 81 81 81 85 85
16 85 85 89 89 65 65 81 81 81 81 81 81 85 85 81 81 85 85
17 65 65 81 81 81 81 81 81 85 85 81 81 85 85 85 85 89 89

Table 8: Each (i, j)-entry in the table is NCF(i, j, T2T2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 61 61 61 61 57 57 61 61 57 57 57 57 53 53 81 81 65 65
1 57 57 61 61 57 57 57 57 53 53 81 81 65 65 61 61 61 61
2 57 57 57 57 53 53 81 81 65 65 61 61 61 61 57 57 61 61
3 53 53 81 81 65 65 61 61 61 61 57 57 61 61 57 57 57 57
4 65 65 61 61 61 61 57 57 61 61 57 57 57 57 53 53 81 81
5 61 61 57 57 61 61 57 57 57 57 53 53 81 81 65 65 61 61
6 61 61 57 57 57 57 53 53 81 81 65 65 61 61 61 61 57 57
7 57 57 53 53 81 81 65 65 61 61 61 61 57 57 61 61 57 57
8 81 81 65 65 61 61 61 61 57 57 61 61 57 57 57 57 53 53
9 61 61 61 61 57 57 61 61 57 57 57 57 53 53 81 81 65 65

10 57 57 61 61 57 57 57 57 53 53 81 81 65 65 61 61 61 61
11 57 57 57 57 53 53 81 81 65 65 61 61 61 61 57 57 61 61
12 53 53 81 81 65 65 61 61 61 61 57 57 61 61 57 57 57 57
13 65 65 61 61 61 61 57 57 61 61 57 57 57 57 53 53 81 81
14 61 61 57 57 61 61 57 57 57 57 53 53 81 81 65 65 61 61
15 61 61 57 57 57 57 53 53 81 81 65 65 61 61 61 61 57 57
16 57 57 53 53 81 81 65 65 61 61 61 61 57 57 61 61 57 57
17 81 81 65 65 61 61 61 61 57 57 61 61 57 57 57 57 53 53
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4 The analysis of CLQ-algorithm

In this section, we will analyze the performance of CLQ-algorithm. In [2], Chen et

al. proposed the CLQ-algorithm for computing the control tag of the backward network

of a GSEN. Suppose a request is to send a message from port j (on the right-hand side)

to port i (on the left-hand side). Then the input to CLQ-algorithm are i and j and the

output of this algorithm is the backward control tag S for sending a message from j to

i. CLQ-algorithm first computes the forward control tag T , which can be used to send

a message from i to j; then, it converts T into S. The following is CLQ-algorithm; note

that we assume k = 2.

BEGIN-of-CLQ-algorithm

Input: i on the left-hand side and j on the right-hand side of a bidirectional GSEN.

Output: The backward control tag S, which can be used to send a message from j to i.

1. Use P-algorithm to obtain a forward control tag T (t0t1t2 · · · tn−1tn).

2. Get the sequence R` (0 ≤ ` ≤ n) in the path based on tag T in forward direction by

the following formulae:

R` =

{
k · i mod N ′ + t0, ` = 0,

k · (R`−1) mod N ′ + t`, 1 ≤ ` ≤ n.
(4)

3. Use the sequence R` and tag T to get tag S by the following formulae:

s` =

{
b k·i

N ′ c, ` = 0,

bk·(R`−1)

N ′ c, 1 ≤ ` ≤ n.
(5)

END-of-CLQ-algorithm

We now analyze the performance of CLQ-algorithm. Suppose the two requests that

are sent simultaneously are the (i, j)-request and the (i′, j′)-request. For each of the two

requests, CLQ-algorithm first uses P-algorithm to obtain a forward control tag; then,

it converts the forward control tag into a backward control tag. Let T and T ′ be the
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forward control tags obtained by P-algorithm for the (i, j)-request and the (i′, j′)-request,

respectively. Also, let P and Q be the path corresponding to T and T ′, respectively. Since

CLQ-algorithm fulfills the (i, j)-request by using P reversely and fulfills the (i′, j′)-request

by using Q reversely, we have the following lemma.

Lemma 10. The reverse path of P and the reverse path of Q has a link-conflict (node-

conflict) if and only if P and Q have a link-conflict (node-conflict).

Proof. This lemma follows from the above discussion.

By Lemma 10, the analysis of P-algorithm can be used to obtain the analysis of CLQ-

algorithm. In particular, for N ′ = 4, 6, · · · , 46, Observations 1 to 7 and Tables 1 to 10

also hold for CLQ-algorithm.

5 The analysis of CL-algorithm

In this section, we will analyze the performance of CL-algorithm. In [3], Chen and

Lou proposed the CL-algorithm for computing the control tag of the backward network

of a GSEN. They showed that the backward network has a wonderful property: For each

destination i, there are two backward control tags associated with it such that every

source j can get to i by using one of the two tags.

In CL-algorithm, the switching elements are assumed to be of size k×k. CL-algorithm

is based on the following observations: At stage 0, only one switching element can get to

i. At stage 1, exactly k switching elements can get to i and these switching elements are

consecutive. At stage 2, exactly k2 switching elements can get to i and these switching

elements are consecutive. In general, at stage `, 0 ≤ ` ≤ n − 1, exactly k` switching

elements can get to i and these switching elements are consecutive. At stage n (the last

stage), all the switching elements can get to i. Since at stage ` the switching elements

that can get to i are consecutive, CL-algorithm only stores the label of the first one; let

C` denote the label. Chen and Lou have proven that C` = i × k` mod r and defined a
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critical value v(i) associated with i to be v(i) = Cn × k. The following is CL-algorithm;

note that we assume k = 2.

BEGIN-of-CL-algorithm

Input: i on the left-hand side of a bidirectional GSEN.

Output: The critical value v(i) and the two backward control tags s0 s1 · · · sn and

s′0 s′1 · · · s′n associated with i (here s` and s′` are used at stage `).

1. /* Compute C0, C1, · · · , Cn. */

for ` = 0 to n do C` ← (i× k`) mod r;

2. /* Compute the critical value v(i). */

v(i) ← Cn × k;

3. /* Compute F0, F1, · · · , Fn. */

if (r − Cn−1)× k ≥ r

then

begin

for ` = 0 to n− 1 do F` ← 0;

Fn ← 1;

end

else

for ` = 0 to n do if C` + k` > r then F` ← 1 else F` ← 0;

4. /* Compute the tag s′0 s′1 · · · s′n. */

s′0 ←
⌊

i
r

⌋
;

for ` = 1 to n do s′` ←
⌊

k×C`−1

r

⌋
;

5. /* Compute the tag s0 s1 · · · sn. */

for ` = 0 to n do s` ← (s′` + F`) mod k;

END-of-CL-algorithm
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Chen and Lou proved that:

Theorem 11. [3] If j < v(i), then j can get to i by using the control tag s0 s1 · · · sn; if

j ≥ v(i), then j can get to i by using the control tag s′0 s′1 · · · s′n (here s` and s′` are used

at stage `).

We now analyze the performance of CL-algorithm. Suppose the two requests that

are sent simultaneously are the (i, j)-request and the (i′, j′)-request. Also suppose the

(i, j)-request is fulfilled by using the control tag S and the (i′, j′)-request, the control tag

S ′. Let P and Q be the paths corresponding to S and S ′, respectively. We run computer

programs for N ′ = 4, 6, · · · , 46 and find that for these N ′, the result of using P is identical

to the result of using control tag T1 for the (i, j)-request in the forward network; also, the

result of using Q is identical to the result of using control tag T1 for the (i′, j′)-request in

the forward network. In particular, for N ′ = 4, 6, · · · , 46, Observations 1 and 2 (when x

is T1T1) and Tables 1 and 5 also hold for CL-algorithm.

6 Concluding remarks

A multistage interconnection network enables processors to send their messages con-

currently. When two routing requests occur simultaneously, a link-conflict or a node-

conflict may occur. In this thesis, we analyze the performance of three tag-based routing

algorithms of GSENs: P-algorithm, CLQ-algorithm, and CL-algorithm. P-algorithm can

be used in a GSEN and in the forward network of a GSEN; CLQ-algorithm and CL-

algorithm can be used in the backward network of a GSEN. In this thesis, we focus on

the case that two routing requests occur simultaneously and we consider the link-conflict

and the node-conflict.

We have run computer programs for N ′ = 4, 6, · · · , 46. From the computer output,

the following observations have been obtained for P-algorithm and CLQ-algorithm:

• TotalLCF(i, ∗, T1T1) > TotalLCF(i, ∗, T1T2) whenever N ′ 6= 2n+1.

19



• TotalNCF(i, ∗, T1T1) > TotalNCF(i, ∗, T1T2) whenever N ′ 6= 2n+1 and 4|N ′.

• TotalNCF(i, ∗, T1T1) < TotalNCF(i, ∗, T1T2) whenever N ′ 6= 2n+1 and 4 6 |N ′.

The above observations tell us that: When P-algorithm or CLQ-algorithm is used,

two requests have a higher probability to have

• a link-conflict if N ′ 6= 2n+1 and both requests are fulfilled by using the same type of

control tags (that is, if both of them are fulfilled by using their T1 or T2 control

tags);

• a node-conflict if N ′ 6= 2n+1 and 4|N ′ and both requests are fulfilled by using the

same type of control tags;

• a node-conflict if N ′ 6= 2n+1 and 4 6 |N ′ and both requests are fulfilled by using the

different types of control tags.

The following table has been obtained by Chen and Lou in [3].

the time required to CLQ-algorithm CL-algorithm

find a tag for a j to get to i O(n) O(n)

find the tags for every j to get to i O(N ′n) O(n)

construct the routing table O(N ′2n) O(N ′n)

This table tells us that: CL-algorithm is more efficient than CLQ-algorithm when we want

to construct a routing table or when more than one control tag to the same destination

needs to be found.

In this thesis, the following observations have been obtained for CL-algorithm: For

N ′ = 4, 6, · · · , 46, the result of using CL-algorithm is identical to the result of the T1T1-

case. The above observation suggests that: When there are two requests and

• when link-conflict is considered, CLQ-algorithm beats CL-algorithm if N ′ 6= 2n+1;

• when node-conflict is considered, CLQ-algorithm beats CL-algorithm if N ′ 6= 2n+1 and

4|N ′;
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• when node-conflict is considered, CL-algorithm beats CLQ-algorithm if N ′ 6= 2n+1 and

4 6 |N ′.

The percentage of link-conflicts and node-conflicts for N ′ = 4, 6, · · · , 46 are listed

in Tables 9 and 10; we also show these data in Figures 3 and 4. In Table 9 (Table 10),

T1T1 means that both the first and the second request are routed by using their T1 control

tags; T1T2 means that the first request is routed by using its T1 control tag and the second

request, its T2 control tags; ”arbitrary” means that only when all of the four types, T1T1,

T1T2, T2T1, and T2T2, fail to contribute two link-disjoint (node-disjoint) routing paths, we

will consider a conflict occurs.

Table 9: Percentage of link-conflicts. Table 10: Percentage of node-conflicts.

N ′ T1T1 T1T2 arbitrary

4 6.25 6.25 6.25

6 10.19 9.26 1.85

8 7.81 7.81 7.81

10 10.60 10.00 0.40

12 9.95 7.87 4.17

14 7.51 7.43 5.10

16 6.64 6.64 6.64

18 8.54 8.30 0.07

20 8.65 6.50 0.90

22 6.82 6.72 1.31

24 7.58 5.67 3.82

26 5.79 5.76 3.03

28 5.52 5.36 3.90

30 5.09 5.08 4.37

32 4.79 4.79 4.79

34 5.95 5.87 0.01

36 6.46 4.68 0.15

38 5.26 5.21 0.26

40 6.26 4.03 1.23

42 4.72 4.69 0.72

44 4.90 4.24 1.31

46 4.29 4.27 1.21

N ′ T1T1 T1T2 arbitrary

4 31.25 31.25 31.25

6 32.41 36.11 32.41

8 26.56 26.56 26.56

10 26.60 33.00 20.20

12 24.77 23.84 16.44

14 21.50 22.08 19.75

16 19.14 19.14 19.14

18 18.96 25.14 11.01

20 19.85 19.25 9.65

22 17.04 19.37 11.63

24 17.77 15.68 11.98

26 15.08 15.85 12.26

28 14.27 14.19 11.86

30 13.39 13.47 12.56

32 12.60 12.60 12.60

34 12.46 16.82 5.79

36 13.86 13.62 5.39

38 11.85 14.42 5.93

40 13.46 11.31 5.71

42 11.11 12.69 6.32

44 11.21 11.11 5.71

46 10.37 11.39 6.74
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Nodes

Figure 3: Percentage of link-conflicts.
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Figure 4: Percentage of node-conflicts.
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