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摘      要 
 

本論文發展了一個新的方法學去探討具時間延遲之藕合神經網路系統

的全局與局部動態行為。特別地，我們將這個方法實際運用到幾個神經

網路模型上。其中所討論的全局動態行為包括了系統的全局同步化、抗

同步化與全局收斂性。藉著觀察一些一維非自治方程式的幾何意義，並

利用迭代推論來控制這些方程式；配合進一步的迭代討論進而確立以上

提到的那些全局動態行為。所開發的方法可以同時用來推導出與延遲時

間有關也可無關的結果。論文中所研究的局部動態行為包括了平衡點的

穩定性和Hopf-分岔分析。我們的研究建立了一套異於線性穩定方法與

李雅普諾夫函數方法的非典型方法來分析平衡點的穩定性；並且也可研

究平穩點的吸引盆。通過觀察線性系統之特徵方程式的幾何結構並搭配

Hopf-分岔理論，可推導出具體且容易驗證的條件來確保時間延遲所導

致之同步週期解或異步週期解的存在性。 我們選取了三種類型的神經

網路模型來實際應用這種方法學並以處理一些現有文獻中受到關心的

議題。第一個模型是一般形式的Hopfield-type 神經網路。我們確立此

類神經網路在擁有 個平衡點時的全局收斂性與平衡點的穩定性。我們

的方法建立了一套有系統的方式來解決具相加形式之神經網路的收斂

性與平衡點穩定性問題。而其餘兩個模型分別具最鄰近藕合形式的神經

網路與具兩個環狀結構子網路的藕合神經網路。對於這樣的兩個模型，

我們研究了系統的全局收斂性、全局同步化、平穩點的穩定性與延遲時

間誘發的振盪與非同步。其所得到的結果可以映證或呼應一些現有文獻

的數值模擬結果或推測。我們也在文中描敘幾個數值模擬，以佐證所獲

得之理論。 
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ABSTRACT 
 

We are interested in the collective dynamics for coupled systems with delays. To 
study global and local dynamics for some coupled systems, a new methodology is 
developed in this thesis. In particular, we implement this approach in several 
neural networks. Herein the global dynamics include global synchronization, 
anti-phase motion, global convergence (to single equilibrium or multiple equilibria) 
of the networks. Unfolded from the geometric structures of several associated 
non-autonomous scalar equations, an iteration scheme is designed to control the 
dynamics of these equations.  Further iteration arguments are then developed to 
establish previous mentioned global dynamics for the networks. The approach we 
develop can be used to derive both delay-dependent and delay-independent 
criteria.The local dynamics we investigate include stability of the equilibria and 
Hopf bifurcation. Our studies establish the stability of equilibria by a nonstandard 
approach, as compared to the linearization with computation of the characteristic 
roots, and the Lyapunov function approach. Moreover, the basins of attraction for 
the stable quilibria can be investigated.Via a geometrical observation on the 
characteristic equation of the linearized system, the delayed Hopf bifurcation 
theory is adopted to guarantee the existence of delay-induced synchronous or 
asynchronous oscillations. The present approach is general and can be applied to 
several neural network models. To respond to some research issues in the 
literature, we investigate three neural network models.The first model is a general 
Hopfield-type neural network with delays. We establish the convergent dynamics 
and stability of the equilibria for such a networks with $3^n$ equilibria. Our study 
provides a systematic approach to investigate multistability and convergence of 
dynamics for additive-type neural networks. The latter two ones are the network 
with nearest-neighbor coupling and the network comprising two sub-networks 
with loop structure. For such two models, we investigate the synchronization, 
delay-induced oscillations and delay-induced asynchrony, the convergence of 
dynamics and stability of equilibria. Moreover, our results for the latter two 
models provide theoretical support to some numerical findings, and answer or 
respond to some conjectures in the existing literature. A number of numerical    
simulations are presented to illustrate our theory.  
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Chapter 1

Introduction

There have been increasingly intensive studies on nervous systems and neuronal

models in the past few decades. Quantitative description on ion conduction and the

associated electrophysiology lead to the celebrated Hodgkin-Huxley model and the

reduced Morris-Lecar model which were largely employed to simulate neuronal activ-

ities at different levels of details (Ermentrout and Kopell 1998, Jirsa and McIntosh

2007, Gloveli et al. 2009).

The collective behavior for a population of neurons, not intrinsic to any indi-

vidual neuron, is very rich, engrossing and believed to play a key role in neural in-

formation processing. For example, coherent rhythms are ubiquitous in the nervous

systems. Such rhythms play important roles in various cognitive activities. In the

gamma range of frequencies in the cortex, the coherent rhythms are also important

in the creation of cell assemblies (Karbowski and Kopell 2000). The phenomenon of

collective synchronization is believed to be responsible for self-organization in nature

(Kuramoto 1984). It is a common and elementary phenomenon in many biological

and physical systems (Peskin 1975, Strogatz and Stewart 1993, Chang and Juang

2008). In many regions of brain, synchronization activity has been observed and

implicated as a correlate of behavior and cognition (White et al. 1998). It is known

that synchronization encourages the strengthening of mutual connections among

neurons. Synchronous oscillations have been observed in the visual cortex (Gray

et al. 1989). It is possible that synchronous behaviors can occur without rhythms.

However, in visual cortex, neurons with a distance apart synchronize their activity

only in presence of rhythms (Karbowski and Kopell 2000).

Due to propagation of action potentials along the axon, to be more realistic,

the neuronal systems should incorporate time delays. The introduction of delays
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into the models can lead to the emergence of completely new behaviour that is not

possible on the absence of delays. The coherent rhythms of neurons across distances

are able to synchronize under conduction delays. The question of how cells can

synchronize in spite of delays thus becomes an important issue (Ermentrout and

Kopell 1998, Kopell et al. 2000). There are situations that synchronization occurs

because of delay, especially when there are inhibitory synaptic connections in the

network (Wang and Buzsaki 1998, White et al. 1998). Crook et al. (1997) studied

a continuum model of the cortex, with excitatory coupling and distance dependent

delays, and found for small enough delay the synchronous oscillation is stable, but

for larger delays this oscillation loses stability to a travelling wave.

An artificial neural network, often just called a “neural network”, is an infor-

mation processing paradigm to mimic the way biological nervous systems process

information. It consists of an interconnected group of artificial neurons. The theories

for these networks were developed and applied considerably to various computational

tasks including memory storage and pattern recognition (Hopfield 1984, Chua 1998,

Zhou et al. 2004). One of the classical and best understood examples of neural

networks is the Hopfield-type neural network (Hopfield 1984), which is able to store

certain memories or patterns in a manner rather similar to the brain. In (Hopfield

1984), Hopfield has shown how an ensemble of simple processing units can have

fairly complex collective behavior. The Hopfield-type neural network with delays

was introduced by Marcus and Westervelt (1989). Later, more modelings in neural

network took delays into account (Buric and Todorovic 2003, Campbell 2006, Lu

et al. 2009, Roska and Chua 1992, Wu 2001). Thereafter, delayed neural networks

have been extensively studied, see for example (Campbell 2004, 2005, Faria 2000,

Guo 2005, Guo and Huang 2003, Huang and Wu 2003, Shih and Tseng 2008, Wu et

al. 1999). Indeed, delay can modify the collective dynamics for neural networks; for

example, it can induce oscillation or change the stability of the stationary solution

(Campbell 2006). Delay can also induce synchronization (Marti and Masoller 2003,

Fatihcan and Jurgen 2004), desynchrony (Campbell et al. 2006), stability (Hsu and

Yang 2007), and oscillation death (Atay 2003).

Recently, there were some investigations on coupled neural networks which

comprise sub-networks of neurons (Campbell 2004, Song et al. 2009-1 , Song et

al. 2009-2) The real network architecture can be extremely complicated. A large

neural network may consist of billions of neurons, and sub-collections of neurons

often assemble through inner connections. The rich dynamics arising from the in-
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teraction of simple networks have been a source of interest for scientists modeling

the collective behavior of real-life systems. Coupled neural networks can exhibit

a variety of interesting behaviors which are very different from their behaviors in

isolation qualitatively. For example, oscillations may arise as a result of the cou-

pling between sub-networks in a population of neurons. It was reported that certain

sub-networks interactions such as pathological synchronization is related to Parkin-

sons disease and epilepsy (Grosse et al. 2002). The investigation of the dynamics

under the properties within the sub-network and the connections among the sub-

networks is thus rather appealing. In a population of neurons, internal delays within

sub-networks and transmission delays among sub-networks may be of different time

scale and need to be modeled separately, as remarked in (Campbell et al. 2004,

Campbell 2006).

For neural network models, it is appealing to investigate how the collective

dynamics are determined by the connection strength, nonlinear coupling functions,

the size of the network and transmission delays. In this thesis, we shall perform

investigation in these directions on three neural network models; namely, Hopfield-

type neural network with delays, the network with nearest-neighbor coupling and the

network comprising two sub- networks with loop structure (The detailed description

of theses models are arranged in Chapter 2). Herein, the dynamics of the networks

we are interested in include global synchronization, anti-phase motion, convergent

dynamics for monostable or multistable networks, delayed-induced oscillations and

delay-induced asynchrony. Our study on the first model provides a systematic ap-

proach to investigate multistability and convergence of dynamics for additive-type

neural networks. Our results for the latter two models provide theoretical support to

some numerical findings, and answer or respond to some conjectures in the existing

literature.

For convergent dynamics of multistable neural networks, a common approach

is the monotone theory. By such a theory, it can be established that the system

admits generic quasiconvergence. Herein, generic quasiconvergence for a system is

referred to that almost every solution tends to the set of stationary solutions, not

to a single one. Moreover, the monotone theory can not be applied, if the system

fails to generate an eventually strongly monotone semiflow. The existing studies on

synchronization for delayed neural networks mostly adopted the approach of Lya-

punov function (Campbell 2006, Campbell et al. 2006). One of the conclusions

therein is that if the coupling strength is small enough, the system can achieve
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global synchronization in spite of delays. However, such a synchronization may

reduce to the situation that all components converge asymptotically to the same

synchronous equilibrium point. The majority of investigations on delayed-induced

oscillation, delayed-induced stability, oscillation death, and spatio-temporal patterns

are based on linearized stability analysis, Hopf-bifurcation theorem, and equivariant

(group-symmetric) bifurcation theory. In this thesis, we develop a new methodol-

ogy to study global and local dynamics for several forms of artificial neural networks

coupled with delays. By iteration arguments, we establish the dynamics of global

synchronization, anti-phase motion, convergence to single equilibrium and multiple

equilibria for the coupled networks. Via a geometrical observation on the character-

istic equation of the linearized system, criteria for the existence of synchronous or

asynchronous periodic solutions can be derived. Moreover, the stability of equilibria

and basins of attraction for the stable equilibria can also be investigated. The pre-

sented arguments for confirming stability of equilibria are nonstandard in delayed

equations, as compared to the ones of linearization with computing the character-

istic roots, and the Lyapunov function approach, employed in (Belair et al. 1996,

Campbell et al. 2004, Shayer et al. 2000, Song et al. 2005).

The thesis is organized as follows. In Chapter 2, we first introduce some re-

alistic neuronal models in Section 2.1. The description of three forms of (artificial)

neural networks considered in this thesis and their respective research motivation

and questions are given in Section 2.2. In Chapter 3, we study several scalar equa-

tions with time-dependent input, which provides a basis for investigating the global

collective dynamics of the coupled neural network. The derived results for three

neural network models are arranged in Chapter 4-6 respectively.
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Chapter 2

Mathematical Models on Neurons

and Neural Networks

We first introduce some biological neuronal models in Section 2.1. In Section 2.2,

we shall introduce three neural network models considered in this thesis and their

respective research motivation and questions.

2.1 Neuronal models

One of the most important and widely-used models of neurons is the Hodgkin-

Huxley model. Such a model was published in 1952 to describe the generation

of action potentials in the squid giant axon [27]. Therein the squid axon carries

three major current: voltage-gated persistent K+ current with four activation gates

(resulting in the term n4 in the equation below, where n is the activation variable

for K+); voltage-gated transient Na+ current with three activation gates and one

inactivation gate (the term m3h below); and Ohmic leak current IL, which is carried

mostly by Cl− ions.

CV̇ = I − gKn4(V − EK) − gNam
3h(V − ENa) − gL(V − EL)

ṁ = αm(V )(1 − m) − βm(V )m

ḣ = αh(V )(1 − h) − βh(V )h

ṅ = αn(V )(1 − n) − βn(V )n.

Here, V represents the membrance potential and each term in the first equation

represents a separate current; αm, αh and αn are voltage dependent steady-state

functions [38].
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A reduced model from Hodgkin-Huxley model were introduced by FitzHugh

and Nagumo in 1961 [26] and 1962 [56]. To describe “regenerative self-excitation”

by a nonlinear positive-feedback membrane voltage and recovery by a linear negative-

feedback gate voltage, they developed the model described by

dV

dt
= V − V 3 − w + Iext

τ
dw

dt
= V − a − bw

where V represents the membrane potential, and the variable w is a recovery variable

and Iext is the magnitude of stimulus current.

In 1981 Morris and Lecar combined Hodgkin-Huxley and FitzHugh-Nagumo

into a voltage-gated calcium channel model with a delayed-rectifier potassium chan-

nel, represented by [54]:

Cv̇ = I − gL(v − vL) − gCaβ(v)(v − vCa) − gKn(v − vK)

ṅ = τ(v)(α(v) − n),

where the functions α(v), β(v), τ(v) are given by

β(v) = (1/2)[1 + tanh(v − v1)/v2],

α(v) = (1/2)[1 + tanh(v − v3)/v4],

τ(v) = φ cosh((v − v3)/(2v4));

vK, vCa and vL are the reversal potentials of potassium, calcium and leakage currents

respectively; gK, gCa and gL are corresponding maximal specific conductance, and

C is the specific membrane capacitance; vi, i = 1, · · · , 4 are constants.

A network of n neurons is usually modelled by

ẋi(t) = Fi(xi(t)) + Σn
i=1fij(xi(t),xj(t)), i = 1, · · · , n. (2.1)

The variable xi represents all the variables describing the physical state of the

cell body of the ith neuron in the network, e.g., in Hodgkin-Huxley model, xi =

(Vi, mi, ni, hi). The function Fi represents the intrinsic dynamics of the ith neuron.

The function fij is the coupling function and represents the input to the ith neuron

from the jth neuron. If the jth neuron is connected to the ith via a chemical synapse,

then the coupling function is given by fij(xi(t),xj(t)) = cijh
pre
ij (xj(t))h

post
ij (xi(t)).

This is called synaptic coupling. Here hpre
ij is a sigmoidal function. hpost

ij is typically
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a linear function. If the neurons are connected via a gap junction, then the coupling

function is fij(xi(t),xj(t)) = Cij(xi(t)− xj(t)) , where Cij is the matrix of coupling

coefficients. This is called gap junctional or diffusive coupling.

If considering the effect of the action potential when it reaches the end of the

axon, then a common approach is to include a time delay in the coupling term.

Assume that τij > 0 represents the time taken for the action potential to propagate

along the axon connecting neuron j, then the general coupling term becomes

fij(xi(t),xj(t − τij)). (2.2)

The analysis of the behavior of coupled Hodgkin-Huxley neurons [44, 45], cou-

pled FitzHugh-Nagumo neurons [5, 6] and coupled Morris-Lecar neurons [40, 70]

have for some time past been the subjects of many papers.

In this thesis, we shall present our approach and results via three neural net-

work models. The first model is the Hopfield-type neural network with delays and

the second one is the neural network with nearest-neighbor coupling. Both of such

two forms are as (2.1) which comprise each xi being a scalar variable xi. The third

model is the network comprising two sub-networks with loop structure; namely,

as (2.1) with n = 2 and xi being a multi-dimensional variable. We expect the ap-

proach developed in this thesis can be applied to more realistic and general neuronal

models. We shall pursue this issue in future studies. Indeed, our approach can be

successfully applied to establish the synchronization of coupled FitzHugh-Nagumo

neuronal network (as the scale of the network is 2 or 3) in our latest research.

2.2 Neural networks

In the following three subsections, we introduce three neural network models con-

sidered in this thesis and their corresponding research motivation respectively. The

detailed results and justification for these models are arranged in Chapter 4-6.

2.2.1 Hopfield-type Network

In Chapter 4, we consider the Hopfield-type neural network with delays as follows:

ẋi(t) = −µixi(t) +
n

∑

j=1

αijgj(xj(t)) +
n

∑

j=1

βijgj(xj(t − τij(t))) + Ji, (2.3)
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where i = 1, 2, · · · , n, µi > 0; αij , βij ∈ R denote the instantaneous feedback

and delayed feedback connection strength from the ith to the jth unit; the time-

dependent lags τij(t) ≥ 0 are bounded continuous functions defined on [t0, +∞), for

some t0 ∈ R; Ji ∈ R correspond to the external bias; gi : R → R in the following

class:

Class A :

{

gi ∈ C2, limξ→+∞ gi(ξ) = vi ∈ R, limξ→−∞ gi(ξ) = ui ∈ R

∃ σi ∈ R, g
′

i(σi) > g
′

i(ξ) > 0, for ξ 6= σi, and g
′′

i (ξ) · ξ < 0, for ξ 6= σi.

These are bounded smooth sigmoidal functions and the commonly adopted ones are

gi(ξ) = tanh ξ, and gi(ξ) = 1/[1 + e−ξ/εi] with εi > 0. Without loss of generality, we

set σi = 0, for all i, throughout this thesis. We denote the bounds for the activation

functions, the slopes of the activation functions and the time lags by

ρi := max{|ui|, |vi|}, Li := g′
i(0) ≥ g′

i(ξ), for all ξ ∈ R (2.4)

τ := max
1≤i,j≤n

{τij}, τij(t) ≤ τij , for all t ∈ [t0, +∞). (2.5)

“Multistability”, a notion to describe coexistence of multiple stable equilibria or cy-

cles, is essential in several applications of neural networks, including pattern recogni-

tion and associative memory storage [35, 18, 25, 33]. Recently, a systematic method-

ology on existence of multiple stationary solutions for the Hopfield neural network

with or without delays has been reported in [15]. More precisely, the structure

of single-neuron equation is employed to construct the existence of 3n equilibria,

2n positively invariant sets and basins of attraction for 2n, among these 3n, stable

equilibria. However, there was no theoretical methodology to capture behaviors for

solutions lying outside or crossing these basins, hence the global dynamical picture.

In this thesis, we develop a new treatment to conclude the convergence of dynamics

for (2.3). Under this formulation, certain componentwise dynamical properties are

derived and a subsequent iteration scheme is designed to confirm that every solu-

tion of the system converges to one of the equilibria as time tends to infinity. With

this formulation, we justify that there exist exactly 2n stable equilibria and exactly

(3n − 2n) unstable equilibria for (2.3). The conclusion for this existence of exact

number of stable and unstable equilibria is new due to distinct treatment. The pre-

sented arguments for confirming stability of equilibria are nonstandard in delayed

equations, as compared to the linearization with computation of the characteristic

roots, and the Lyapunov function approach, employed in [2, 7, 60, 63].
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2.2.2 Neural network with nearest-neighbor coupling

In Chapter 5, we consider a special form of (2.3), which comprises a ring of identical

elements with nearest-neighbor coupling, under a transmission delay. The individ-

ual element is determined by a scalar equation with a linear decay and nonlinear

delayed feedback. This network is then modelled by the system of nonlinear delayed

differential equations

ẋi(t) = −µxi(t) + αgI(xi(t − τI)) + β[gT (xi−1(t − τT )) + gT (xi+1(t − τT ))], (2.6)

where i (mod N); N is the scale of the coupled network; µ ≥ 0 means self-decay

rate; α and β are respectively the synaptic strength of self-feedback and (nearest-

neighbor) coupling with corresponding delays τI ≥ 0 and τT ≥ 0; gI and gT are the

activation functions of class A with g(0) = 0. We say that the self-feedback (resp.

coupling) is inhibitory if α < 0 (resp. β < 0) and excitatory if α > 0 (resp. β > 0),

and the self-feedback (resp. coupling) strength is strong/weak if the magnitude of

α (resp. β) is large/small. To simplify the presentation, we shall consider system

(2.6) with gI = gT =: g, −1 < g(ξ) < 1 and g′(0) = 1. We can also treat the case

of gI 6= gT ; basically there is no qualitative difference between the cases gI = gT

and gI 6= gT . We shall focus on the effect from scale of the network (N), self-

decay (µ), self-feedback strength (α), coupling strength (β), delays (τI , τT ), and the

characteristic of g upon synchrony, convergent dynamics and oscillation of (2.6).

Herein, setting τmax := {τI , τT}, we say that the coupled network (2.6) at-

tains global synchronization (in-phase) if all components of the network tend to be

identical, namely

xi(t) − xi+1(t) → 0, as t → ∞, for all i = 1, · · · , N − 1,

for solution (x1(t), · · · , xN(t)) of (2.6), starting from arbitrary initial condition φ ∈

C([−τmax, 0], RN) at t = t0. We denote by (2.6)0 system (2.6) with odd activation

functions g in class A, ie., g also satisfies g(−ξ) = −g(ξ), for all ξ ∈ R. As an

evidence of asynchrony, we also consider solutions in the form of standing wave for

system (2.6)0; for example, if N = 3, the solutions (x1(t), x2(t), x3(t)), with two of

the components in opposite sign, and the other equal to zero; i.e.,

xi(t) = −xj(t), xk(t) ≡ 0,

and (i, j, k) = (1, 2, 3) or its permutation, cf. [3].
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There is a large amount of literature on synchronization in artificial neural

networks. Some of these works consider systems with time delays [8, 73, 75, 78, 79].

One of the conclusions therein is that if the coupling strength is small enough,

the system can achieve global synchronization in spite of delays. However, such a

synchronization may reduce to the situation that every solution converges asymp-

totically to the same synchronous equilibrium point. A common approach for such a

conclusion is the method of Lyapunov function. To elucidate the coherent rhythms

in a neural network, it is important to explore the existence of nontrivial oscilla-

tion when the network is globally synchronized as well as asynchronous oscillation

which are induced by delays or scale of the network [14]. Existence of nontrivial

oscillations induced by delays has been reported for network models similar to (2.6)

[9, 8, 31, 32, 37]. The common approach adopted in these works is the bifurcation

theory. Most of these results focus on the emergence and the stability of spatio-

temporal patterns or oscillations bifurcated from the trivial solution. However,

from the criteria derived therein, the effect of self-feedback and coupling strength

upon emergence of synchronous or asynchronous oscillation induced by delays is not

apparent. In this thesis, via a geometrical observation on the characteristic equation

of the linearized system, certain criteria for the existence of synchronous periodic

solutions and standing wave solutions are derived. The criteria illuminate the de-

pendence of the synchronous or asynchronous oscillations induced by τI or τT on

parameters α and β.

There are some conjectures on synchrony of (2.6) under delay-dependent or

scale-dependent criteria. Campbell et al. [8] considered system (2.6) with µ = 1

and N = 3 and conjectured that if |β| < |1 − α| and 0 ≤ τI < τ
(1)
S for some τ

(1)
S , or

|β| < |1 − α|/2 and 0 ≤ τI < τ
(2)
S for some τ

(2)
S , then (2.6) can be synchronized for

all τT ≥ 0. In [75], it was conjectured that when the scale of the network N is odd,

(2.6) can be synchronized if |α|+2| cos((N − 1)π/N)||β| < 1. We shall respond and

provide evidence to these conjectures.

Recently, some new analytical methodologies have been developed to study

multistability in Hopfield-tpe neural networks [10, 15, 16, 17, 61, 76]. Most of these

studies on “Multistability” are associated with the multistability induced by strong

excitatory self-feedback. The investigations therein can be extended to establish

the coexistence of 3n synchronous and asynchronous equilibria with 2n among them

being stable for system (2.6), if the self-feedback is excitatory and its strength α is

sufficiently stronger than the coupling strength β. On the other hand, there exists a
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different type of multistability which comprises 3 synchronous equilibria for network

(2.6) and neural networks of similar type [31, 60, 73]. Let us call this the second

type of multistability for system (2.6). To conclude the convergent dynamics for

the networks admitting the second type of multistability, a common approach is the

monotone dynamics theory. For example, applying such a theory, [31] established

the “generic” convergence to 3 synchronous equilibria for a unidirectional excitatory

ring of four identical neurons. Therein, the “excitatory coupling” is crucial for the

network to generate an eventually strongly monotone semiflow. Wu et al. [73]

conjectured that the generic dynamics for system (2.6) with N = 3, µ = 1 and

τI = τT are convergence to two stable synchronous equilibria if |α − β| < 1 and

α + 2β > 1. This conjecture was not resolved if α < 0 or β < 0, due to that the

standard ordering in that region is invalid. In this thesis, an iteration approach is

developed to overcome the restriction from the monotone dynamics approach and

establishes the “global” convergence for the network which admits the multistability

of the second type. According to our results, roughly speaking, the second type of

multistability for system (2.6) can be generated by “strong excitatory coupling”.

Motivated by the above-mentioned unsolved problems in the literature and an

attempt to elucidate more complete dynamical scenario for system (2.6), the aims

of Chapter 5 for (2.6) are to

(i) derive criteria (may depend on µ, α, β, τI , τT , N , g) for synchronization of system

(2.6),

(ii) describe and distinguish the differences between synchrony induced by various

combinations of α and β,

(iii) distinguish the differences between synchrony for (2.6) with and without delays,

(iv) establish the convergence of dynamics for (2.6) which admits multistability

induced by “strong excitatory coupling”; and distinguish the difference between the

multistability induced by “strong excitatory self-feedback” and the one by“strong

excitatory coupling”,

(v) establish the existence of nontrivial oscillation and asynchrony induced by delays,

and illustrate the asynchrony induced by the network scale via numerical evidence.
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2.2.3 System comprising two sub- networks with loop struc-

ture

In Chapter 6, we consider a neural network that consists of a pair of one-way loops

each with K neurons and two-way coupling between a single neuron of each loop.

Each loop has the form:

ẋi(t) = −µixi(t) + αig(xi−1(t − τI)), i = 1, 2, · · · , K (mod K). (2.7)

Herein, xi represents the normalized voltage of neuron i; τI ≥ 0 is the internal time

delay; g is an activation function of class A with g(0) = 0. The coupled K-loops

considered is of the following form:















ẋi(t) = −µixi(t) + αig(xi−1(t − τI)), i = 1, 2 · · · , K − 1 (mod K),
ẋK(t) = −µKxK(t) + αKg(xK−1(t − τI)) + cg(yK(t − τT )),
ẏi(t) = −µiyi(t) + αig(yi−1(t − τI)), i = 1, 2 · · · , K − 1 (mod K),
ẏK(t) = −µKyK(t) + αKg(yK−1(t − τI)) + cg(xK(t − τT )),

(2.8)

where τT ≥ 0 is transmission time delay between two coupled loops. We also set

τmax := max{τI , τT}. The interaction between two loops is inhibitory if c < 0, and

excitatory if c > 0. For simplicity of presentation, we set µi = 1, αi = 1 for all i,

−1 < g(ξ) < 1 and focus on the effect of dynamics for (2.8) from the gain of response

function (L), the coupling strength between two loops (c), the internal delay (τI)

and the transmission delay (τT ).

The work of Campbell et al. [7] studied a neural network with two coupled

loops, each with three neurons. The model considered therein, while similar to (2.8),

allows asymmetric coupling between two loops, but is without internal delay. The

investigation therein focusses on the existence of equilibria and their stability for

the isolated loop and coupled loops, as well as bifurcations at the trivial equilib-

rium. Song et al. [64] studied a neural network which consists of two sub-networks

each with two neurons. The system is again similar to (2.8), but with internal delay

identical to transmission delay. Song et al. [65] considered bidirectional coupling be-

tween two sub-networks but without internal delays. These two works studied Hopf

bifurcation at the trivial solution (the origin) in some parameter region and that

when the coupling delay increases the spatio-temporal patterns of bifurcating peri-

odic solutions alternate from in-phase to anti-phase for positive coupling strength.

The results in these works basically adopt local analysis and depict local behaviors

for the system. Our approach can also be adapted to treat these models.
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In Chapter 6, we consider global dynamics for the coupled system (2.8). We

say that the two coupled loops attain global synchronization (in-phase) if the cor-

responding components of two loops tend to be identical, namely

xi(t) − yi(t) → 0, as t → ∞, for all i = 1, · · · , K,

for solution (x1(t), · · · , xK(t), y1(t), · · · , yK(t)) of (2.8), starting from arbitrary ini-

tial condition φ ∈ C([−τmax, 0], R2K) at t = t0. We also consider anti-phase for the

two loops, which means

xi(t) + yi(t) → 0, as t → ∞, for all i = 1, · · · , K,

for every solution (x1(t), · · · , xK(t), y1(t), · · · , yK(t)) of (2.8). Via the methodology

developed in this thesis, we establish the dynamics of global synchronization, anti-

phase motion, convergence to single equilibrium and multiple equilibria for coupled

network (2.8); that is, various synchronous and asymptotic phases can be concluded

with our treatments. The approach we develop can be used to derive both delay-

dependent and delay-independent criteria. Our studies also extend to stability and

basins of attraction for the nontrivial equilibria. In addition, we establish the criteria

for Hopf bifurcation so that under these criteria and the conditions for synchroniza-

tion, system (2.8) admits synchronous periodic solutions. While the internal delay

plays the role of inducing oscillation, the magnitude of transmission delay affects

synchronization. Our computation on the existence of bifurcated periodic orbits in-

dicates the parameter range for oscillation and thus illuminates the delineation for

the whole dynamical scenario. With this approach, we are able to provide theoretical

support to some numerical findings in [7].
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Chapter 3

Preliminaries

In this chapter, we shall consider two types of scalar equations in Section 3.1 and

3.2 respectively. The first one is in the form of difference equations deduced from

(2.6) or (2.8) in considering synchronization, and the second one is for consideration

of convergent dynamics, for the multi-dimensional system (2.3), (2.6) or (2.8) .

3.1 Scalar equation for synchronization

In this section, we introduce the scalar equation associated with the synchronization

for (2.8). Let x(t) and y(t) be C1 scalar functions which are eventually attracted

by some closed and bounded interval Q; namely, x(t) and y(t) remain in Q, for all

time t ≥ t̃0, for some t̃0 ≥ t0. Let w(t) be a bounded continuous function defined

for t ≥ t0. Assume that z(t) = x(t) − y(t) satisfies the following scalar function:

ż(t) = −z(t) − β[g(x(t − τ)) − g(y(t− τ))] + w(t), t ≥ t0, (3.1)

where β ∈ R, τ ≥ 0, and g is an activation of class A with −1 < g(ξ) < 1, g(0) = 0,

g′(ξ) ≤ L := g′(0). We set

Ľ := min{g
′

(ξ) : ξ ∈ Q}. (3.2)

We present the basic formations and propositions in Section 3.1.1. Some extensions

form (3.1) to other scalar equations are given in Section 3.1.2. The proofs for the

lemma and theorems in the Section 3.1.1 and 3.1.2 are given in Section 3.1.3.

3.1.1 Formulations and properties

The main result (Theorem 3.1.4) in Section 3.1.1 asserts that there exist a bounded

and closed interval containing zero to which every solution of (3.1) converges, un-
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der some τ -dependent conditions. A variant of this formulation leads to the same

conclusion under a τ -independent condition. First, let us introduce the τ -dependent

result. Below, we shall, iteratively, define two kinds of scalar functions which depict

the upper and lower bounds for the dynamics of (3.1) respectively as time proceeds.

Such iterative construction aims at capturing the asymptotical behaviors for the so-

lutions of (3.1). The construction of upper and lower functions depends on the sign

of β. We shall demonstrate the formulation for the τ -dependent result and β > 0

case to present our main idea, and provide the results for the other cases without

detailed proofs.

For T ≥ t0, we denote

|w|max(T ) := sup{|w(t)| : t ≥ T}.

We then define

ĥ(ξ) :=

{

−ξ + 2β + |w|max(t0) if ξ ≥ 0,
−(1 + βL)ξ + 2β + |w|max(t0) if ξ < 0,

ȟ(ξ) :=

{

−(1 + βL)ξ − 2β − |w|max(t0) if ξ ≥ 0,
−ξ − 2β − |w|max(t0) if ξ < 0.

It can be seen that ĥ(ξ) > ȟ(ξ) and ĥ(ξ) = −ȟ(−ξ). The decreasing and piecewise

linear functions ĥ and ȟ have unique zeros at Âh and Ǎh respectively, where Âh =

2β + |w|max(t0) ≥ 0 and Ǎh = −Âh ≤ 0, cf. Fig. 3.1. Notably, ĥ and ȟ depict

preliminary upper and lower bounds respectively, for the dynamics of (3.1) with

β > 0. That is,

ȟ(z(t)) < ż(t) < ĥ(z(t)), for all t ≥ t0, (3.3)

for arbitrary solution z(t) of (3.1). This leads to the following proposition. Herein,

Q and t̃0 have to be provided a priori as introducing the scalar equation (3.1).

Proposition 3.1.1 Assume that β > 0, If z(t) satisfies (3.1), then (3.3) holds.

Subsequently, there exists some Tx,y ≥ t̃0 + τ such that z(t) belongs to [Ǎh, Âh] for

all t ≥ Tx,y − τ . Moreover,

ȟ(Âh) < ż(t) < ĥ(Ǎh), for all t ≥ Tx,y − τ.

Remark 3.1.1 Note that if β > 0, then 0 ≥ ȟ(Âh) = −(2+βL)(2β+|w|max(t0)), (2+

βL)(2β + |w|max(t0)) = ĥ(Ǎh) ≥ 0; in addition, x(t) and y(t) lie in Q for all t ≥

Tx,y − τ , where Tx,y is given in Proposition 3.1.1.
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Figure 3.1: Configurations of functions ĥ, ȟ, ĥ(0)(·, T ) and ȟ(0)(·, T )

Now, for each T ≥ t0, we introduce the following functions:

ĥ(0)(ξ, T ) =

{

−(1 + βĽ)ξ + τβLĥ(Ǎh) + |w|max(T ), for ξ ≥ 0,

−(1 + βL)ξ + τβLĥ(Ǎh) + |w|max(T ), for ξ < 0,

ȟ(0)(ξ, T ) =

{

−(1 + βL)ξ + τβLȟ(Âh) − |w|max(T ), for ξ ≥ 0,

−(1 + βĽ)ξ + τβLȟ(Âh) − |w|max(T ), for ξ < 0,

where Ľ is defined in (3.2). The idea for formulation of ȟ(0)(·, T ) and ĥ(0)(·, T ) will

be revealed in the following discussions. Notably, ȟ(0)(ξ, T ) = −ĥ(0)(−ξ, T ). We

consider the following condition for (3.1).

Condition (H1a): β > 0 and τ < 2/[L(2 + βL)(2β + |w|max(t0))].

Under condition (H1a), a direct computation yields that, for T ≥ t0,

ȟ(ξ) < ȟ(0)(ξ, T ) < ĥ(0)(ξ, T ) < ĥ(ξ), for all ξ ∈ R. (3.4)

Herein, ȟ(0)(·, T ) and ĥ(0)(·, T ) depict the lower and upper bounds for the dynamics of

(3.1), which are more precise than ȟ(·) and ĥ(·) respectively as time gets larger. Let

m̌(0)(T ) (resp. m̂(0)(T )) be the unique solution of ȟ(0)(·, T ) = 0 (resp. ĥ(0)(·, T ) = 0)

lying in interval [Ǎh, Âh], as depicted in Fig. 3.1. Notably, m̌(0)(T ) = −m̂(0)(T ) ≤ 0.

It follows from Proposition 3.1.1 and Remark 3.1.1 that if β > 0, for each

T ≥ Tx,y,

ȟ(0)(z(t), T ) < ż(t) < ĥ(0)(z(t), T ), for all t ≥ T. (3.5)
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Let us verify (3.5) and explain the formulation of ȟ(0), ĥ(0). First, x(t − τ) and

y(t − τ) ∈ Q for all t ≥ T ≥ Tx,y; therefore, for t ≥ T ≥ Tx,y, ż(t) = −z(t) −

βg
′

(ζ)z(t − τ) + w(t) = −z(t) − βg
′

(ζ)[z(t) − ż(s)τ ] + w(t), for some ζ ∈ Q and

s ≥ t − τ ≥ Tx,y − τ . Notice that ȟ(Âh) < ż(s) < ĥ(Ǎh), ȟ(Âh) ≤ 0 and ĥ(Ǎh) ≥ 0.

If z(t) ≥ 0, then ż(t) < −z(t) − βĽz(t) + τβLĥ(Ǎh) + |w|max(T ) =: ĥ(0)(z(t), T ).

If z(t) < 0, then ż(t) < −z(t) − βLz(t) + τβLĥ(Ǎh) + |w|max(T ) =: ĥ(0)(z(t), T ).

Hence, the right-hand inequality of (3.5) is verified. The left-hand inequality can

be treated similarly. We thus derive the following proposition.

Proposition 3.1.2. For T ≥ Tx,y, inequality (3.5) holds under condition (H1a).

Consequently, z(t) eventually enters and stays afterward in [m̌(0)(T ), m̂(0)(T )] =

[−m̂(0)(T ), m̂(0)(T )].

Similar to the construction of ȟ(0)(·, T ) and ĥ(0)(·, T ), we shall define the fol-

lowing functions iteratively. For k ∈ N and T ≥ t0

ĥ(k)(ξ, T ) :=

{

−(1 + βĽ)ξ + τβLĥ(k−1)(m̌(k−1)(T ), T ) + |w|max(T ), for ξ ≥ 0,

−(1 + βL)ξ + τβLĥ(k−1)(m̌(k−1)(T ), T ) + |w|max(T ), for ξ < 0,

ȟ(k)(ξ, T ) :=

{

−(1 + βL)ξ + τβLȟ(k−1)(m̌(k−1)(T ), T ) − |w|max(T ), for ξ ≥ 0,

−(1 + βĽ)ξ + τβLȟ(k−1)(m̌(k−1)(T ), T ) − |w|max(T ), for ξ < 0,

where m̌(k)(T ) (resp. m̂(k)(T )) is the unique solution of ȟ(k)(·, T ) = 0 (resp. ĥ(k)(·, T ) =

0). Notice that ȟ(k)(ξ, T ) = −ĥ(k)(−ξ, T ) and m̌(k)(T ) = −m̂(k)(T ) ≤ 0. Let us de-

fine

|w|max(∞) := lim
T→∞

|w|max(T ).

It shall be shown that the successively defined ĥ(k) and ĥ(k) control the dynamics

of (3.1) more precisely as k and T increase. We summarize the properties for the

above-defined terms in the following lemma and theorems. Their proofs will be

deferred until Section 3.1.3.

Lemma 3.1.3. Assume that condition (H1a) holds. Then, for each T ≥ t0, the

sequences {m̌(k)(T )}k≥0, {m̂
(k)(T )}k≥0 can be defined iteratively. Moreover, (i) for

any fixed k ∈ N ∪ {0}, m̂(k)(T ) is decreasing and m̌(k)(T ) is increasing with respect

to T ≥ t0; (ii) for any T ≥ t0, there exists m(T ) ≥ 0, such that m̂(k)(T ) → m(T )

decreasingly, and m̌(k)(T ) → −m(T ) increasingly, as k → ∞; (iii) there exists mp ≥

0, such that m(T ) → mp decreasingly, as T → ∞; (iv) 0 ≤ m(T ) = |w|max(T )/[(1 +
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βĽ) − τβL(2 + βL + βĽ)], for any T ≥ t0; (v) ∩T≥t0 [−m(T ), m(T )] = [−mp, mp],

and

0 ≤ mp ≤
|w|max(∞)

(1 + βĽ) − τβL(2 + βL + βĽ)
. (3.6)

Following Lemma 3.1.3, it can be shown that if z(t) satisfies (3.1), then for each

T ≥ Tx,y and k ∈ N, z(t) converges to [−m̂(k)(T ), m̂(k)(T )] as t → ∞. Moreover,

[−m̂(k)(T ), m̂(k)(T )] shrinks to [−mp, mp], as k → ∞, T → ∞. Accordingly, z(t)

converges to interval [−mp, mp], as t → ∞.

Theorem 3.1.4. If z(t) satisfies (3.1), then z(t) converges to interval [−mp, mp],

as t → ∞, under condition (H1a).

For the case of β < 0, we can also derive analogous result.

Theorem 3.1.5. If z(t) satisfies (3.1), then z(t) converges to an interval [−mq, mq]

under condition (H2a): −1/L < β < 0, τ < 2(1+βL)/[L(2+βL)(2|β|+ |w|max(t0))];

moreover,

0 ≤ mq ≤ |w|max(∞)/{(1 + βL) + τβL(2 + βL + βĽ)}.

The assumptions and conclusions in the previous two theorems are both τ -dependent.

Indeed, via similar arguments, we can derive a τ -independent conclusion as follows:

Theorem 3.1.6. If z(t) satisfies (3.1), then z(t) converges to an interval [−mr, mr],

as t → ∞, under condition (H3a): |β| < 1/L − |w|max(t0)/2; moreover,

0 ≤ mr ≤ |w|max(∞)/(1 − |β|L).

All results in this subsection can be extended to the following more general

scalar equation:

ż(t) = −z(t) − β[g(x(t − τ) − g(y(t − τ)))] + w(t) + v(t), (3.7)

where v is a continuous function with v(t) → 0, as t → ∞. The form of (3.7)

includes the following special one

ẋ(t) = −x(t) − βg(x(t − τ)) + w(t) + v(t), (3.8)

where x(t) remains in Q, for all time after some t̃0 ≥ t0. Notably, (3.8) is like y = 0 in

(3.7). Since the results in Theorems 3.1.4-3.1.6 concern the asymptotical behavior of

all solutions to the equation, it is straightforward to conclude the following corollary.
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Corollary 3.1.7. Every solution of (3.7) or (3.8) converges to [−mp, mp] (resp.

[−mq, mq], [−mr, mr]) under condition (H1a) (resp. (H2a), (H3a)).

Let us also consider the following equation:

ẋ(t) = −x(t) + w(t), (3.9)

which is a special form of (3.8) with β = 0, and v(t) = 0, for t ≥ t0. The following

corollary is obvious.

Corollary 3.1.8. Every solution of (3.9) converges to an interval [−ms, ms]; more-

over,

0 ≤ ms ≤ |w|max(∞).

3.1.2 Some extensions

The arguments for (3.1) can be extended to the form as follows, which is associated

with the synchronization for (2.6). Let x(t) and y(t) be C1 scalar functions which

are eventually attracted by some closed and bounded interval Q; namely, x(t) and

y(t) remain in Q, for all time t ≥ t̃0, for some t̃0 ≥ t0. Let w(t) be a bounded

continuous function defined for t ≥ t0. Assume that z(t) = x(t) − y(t) satisfies the

following scalar function:

ż(t) = −µz(t) − Σ2
i=1γi[g(x(t − τi)) − g(y(t− τi))] + w(t), t ≥ t0, (3.10)

where µ > 0, γ1, γ2 ∈ R, τ1, τ2 ≥ 0, and g is an activation function in class A with

−1 < g(ξ) < 1, g(0) = 0, g′(ξ) ≤ L := g′(0) = 1. We denote

τ := max{τ1, τ2}. (3.11)

Now, let us introduce some notations. For γ ∈ R, set

γ̂ :=

{

γ, γ ≥ 0,
γĽ, γ < 0,

γ̌ :=

{

γĽ, γ ≥ 0,
γ, γ < 0.

(3.12)

Obviously, ˆ(−γ) = −γ̌, ˇ(−γ) = −γ̂, and γ̂ ≥ γ̌, as we have assumed L = 1.

Theorem 3.1.9. If z(t) satisfies (3.10), then z(t) converges to interval [−np, np],

as t → ∞, under condition (H1b): Σ2
i=1γ̌i ≥ 0, Σ2

i=1(τi|γi|) ≤ 2Σ2
i=1|γi|/[(2 +

Σ2
i=1γ̂i/µ)(2Σ2

i=1|γi| + |w|max(t0))]; moreover,

0 ≤ np ≤
|w|max(∞)

µ + Σ2
i=1γ̌i − Σ2

i=1(τi|γi|)(2µ + Σ2
i=1γ̂i + Σ2

i=1γ̌i)
.
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Theorem 3.1.10. If z(t) satisfies (3.10), then z(t) converges to an interval [−nq, nq],

as t → ∞ under condition (H2b): γ1 ≥ 0 and τ1γ1(2+γ1/µ)(2Σ2
i=1|γi|+|w|max(t0)) ≤

2Σ2
i=1|γi|(1 − |γ2|/µ) − |γ2||w|max(t0)/µ; moreover,

0 ≤ nq ≤
|w|max(∞)

µ + γ1Ľ − |γ2| − τ1γ1(2µ + γ1 + γ1Ľ)
.

Theorem 3.1.11. If z(t) satisfies (3.10), then z(t) converges to an interval [−nr, nr],

as t → ∞, under condition (H3b): Σ2
i=1|γi| < µ − |w|max(t0)/2; moreover,

0 ≤ nr ≤ |w|max(∞)/(µ − Σ2
i=1|γi|).

3.1.3 Proofs for lemma and theorems

We provide the proofs for Lemma 3.1.3, Theorems 3.1.4-3.1.6, 3.19-3.1.11 in this

subsection.

Proof of Lemma 3.1.3. The labelling in the proof corresponds to the one in the

statement of Lemma 3.1.3.

(i) Let us show that for any T ≥ t0, m̌(k)(T ) and m̂(k)(T ) are well-defined for

all k ∈ N ∪ {0}. First, let us claim that the following inequalities

ȟ(k−1)(ξ, T ) ≤ ȟ(k)(ξ, T ) ≤ ĥ(k)(ξ, T ) ≤ ĥ(k−1)(ξ, T ), (3.13)

hold for all ξ ∈ R, k ∈ N. To justify that (3.13) holds as k = 1, by the definitions

of ȟ(0), ȟ(1), ĥ(1) and ĥ(0), it suffices to verify the following three inequalities:

ĥ(Ǎh) ≥ ĥ(0)(m̌(0)(T ), T ),

ĥ(0)(m̌(0)(T ), T ) ≥ ȟ(0)(m̂(0)(T ), T ),

ȟ(0)(m̂(0)(T ), T ) ≥ ȟ(Âh).

It is obvious that all these three inequalities hold under condition (H1a), cf. Fig.

3.1. Assume that (3.13) holds for k = 1, · · · , j − 1, where j ∈ N. To show that it

also holds for k = j, by definitions of ȟ(j−1), ȟ(j), ĥ(j) and ĥ(j−1), it suffices to justify

the following three inequalities:

ĥ(j−2)(m̌(j−2)(T ), T ) ≥ ĥ(j−1)(m̌(j−1)(T ), T ),

ĥ(j−1)(m̌(j−1)(T ), T ) ≥ ȟ(j−1)(m̂(j−1)(T ), T ),

ȟ(j−1)(m̂(j−1)(T ), T ) ≥ ȟ(j−2)(m̂(j−2)(T ), T ).
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Figure 3.2: Configurations for functions ȟ(j−1)(·, T ), ȟ(j−2)(·, T ), ĥ(j−2)(·, T ) and
ĥ(j−1)(·, T ) for fixed T ≥ t0.

Note that ȟ(j−2)(ξ, T ) ≤ ȟ(j−1)(ξ, T ) ≤ ĥ(j−1)(ξ, T ) ≤ ĥ(j−2)(ξ, T ) for ξ ∈ R, since

(3.13) holds for k = j − 1. It is obvious that all these three inequalities hold, cf.

Fig. 3.2. Hence (3.13) hold for all k ∈ N; subsequently, ȟ(0)(ξ, T ) ≤ ȟ(k)(ξ, T ) ≤

ĥ(k)(ξ, T ) ≤ ĥ(0)(ξ, T ) for all ξ ∈ R, and k ∈ N ∪ {0}. Note that ȟ(k)(ξ, T ) and

ĥ(k)(ξ, T ) are vertical shift of ȟ(0)(ξ, T ) and ĥ(0)(ξ, T ) respectively. Accordingly, both

m̌(k)(T ) and m̂(k)(T ) are well defined for all k ∈ N ∪ {0} under condition (H1a).

Moreover, it is a straightforward result that m̂(j)(T1) ≤ m̂(j)(T2) and m̌(j)(T1) ≥

m̌(j)(T2), for any T1 > T2 ≥ t0, since that ĥ(j)(·, T1) ≤ ĥ(j)(·, T2) and ȟ(j)(·, T1) ≥

ȟ(j)(·, T2). Thus, for each k ∈ N ∪ {0}, m̌(k)(T ) increases and m̂(k)(T ) decreases,

with respect to T .

(ii) By (3.13), it can be shown that, for each T ≥ t0,

m̂(k+1)(T ) ≤ m̂(k)(T ), m̌(k+1)(T ) ≥ m̌(k)(T ), for all k ≥ 0.

Moreover, m̂(k)(T ) ≥ 0 and m̌(k)(T ) = −m̂(k)(T ), for i ∈ N. It follows that, for any

T ≥ t0, there exist some m(T ) ≥ 0 such that limk→∞ m̂(k)(T ) = m(T ) ≥ 0, and

limk→∞ m̌(k)(T ) = −m(T ) ≤ 0.

(iii) For each k ∈ N∪{0}, it has been shown that m̂(k)(T2) ≥ m̂(k)(T1), if T1 >

T2 ≥ t0; subsequently, limk→∞ m̂(k)(T2) ≥ limk→∞ m̂(k)(T1), i.e. m(T2) ≥ m(T1).

Therefore, there exists some mp ∈ R such that m(T ) → mp decreasingly as T → ∞,

since m(T ) is bounded below for all T ≥ t0.

(iv) It is obvious that for all T ≥ t0, m(T ) ≥ 0. Next, we justify that m(T ) ≤
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|w|max(T )/[(1 + βĽ) − τβL(2 + βL + βĽ)], for any T ≥ t0. For any fixed T ≥ t0,

it is not difficult to observe that {ĥ(k)(·, T )|[Ǎh,Âh]}k≥0 are uniformly bounded and

equicontinuous. Moreover ĥ(k)(ξ, T ) decreases with respect to k. By Ascoli-Azela

Theorem, for any fixed T ≥ t0, there exists some continuous function ĥ(∞)(·, T )

defined on [Ǎh, Âh] such that

ĥ(k)(·, T ) ↓ ĥ(∞)(·, T ) uniformly on [Ǎh, Âh], as k → ∞.

Recall that ȟ(k)(ξ, T ) = −ĥ(k)(−ξ, T ). It follows that

ȟ(k)(·, T ) ↑ ȟ(∞)(·, T ) uniformly on [Ǎh, Âh],

where ȟ(∞)(ξ, T ) = −ĥ(∞)(−ξ, T ). It is obvious that, for any fixed T ≥ t0

ȟ(∞)(ξ, T ) ≤ ĥ(∞)(ξ, T ), for all ξ ∈ [Ǎh, Âh].

We summarize the properties of ȟ(∞)(·, T ) and ĥ(∞)(·, T ) as follows:

(P1): ĥ(k)(m̂(k)(T ), T ) → ĥ(∞)(m(T ), T ), ĥ(k)(m̌(k)(T ), T ) → ĥ(∞)(−m(T ), T ) as

k → ∞,

(P2): ĥ(∞)(ξ, T ) =

{

−(1 + βĽ)ξ + τβLĥ(∞)(−m(T ), T ) + |w|max(T ), for ξ ≥ 0,

−(1 + βL)ξ + τβLĥ(∞)(−m(T ), T ) + |w|max(T ), for ξ < 0,

(P3): ĥ(∞)(m(T ), T ) = 0.

Below, let us justify these properties one by one. The first result in (P1) holds since

|ĥ(k)(m̂(k)(T ), T ) − ĥ(∞)(m(T ), T )|

≤ |ĥ(k)(m̂(k)(T ), T ) − ĥ(∞)(m̂(k)(T ), T )| + |ĥ(∞)(m̂(k)(T ), T ) − ĥ(∞)(m(T ), T )|,

and both |ĥ(k)(m̂(k)(T ), T )−ĥ(∞)(m̂(k)(T ), T )| and |ĥ(∞)(m̂(k)(T ), T )−ĥ(∞)(m(T ), T )|

converge to 0 as k → ∞. The remaining part in (P1) can be justified similarly. If

ξ ≥ 0, then

ĥ(∞)(ξ, T ) = lim
k→∞

ĥ(k)(ξ, T )

= lim
k→∞

{−(1 + βĽ)ξ + τβLĥ(k−1)(m̌(k−1)(T ), T ) + |w|max(T )}

= −(1 + βĽ)ξ + τβL lim
k→∞

{ĥ(k−1)(m̌(k−1)(T ), T )} + |w|max(T )

= −(1 + βĽ)ξ + τβLĥ(∞)(−m(T ), T ) + |w|max(T ).

Similar argument can be applied to the case ξ < 0. Hence, property (P2) follows.

Next, (P3) follows from property (P1) since ĥ(k)(m̂(k)(T ), T ) = 0. Due to properties
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(P2) and (P3), for each T , ĥ(∞)(·, T ) is a strictly decreasing function and has a

unique zero at m(T ). As ȟ(∞)(ξ, T ) = −ĥ(∞)(−ξ, T ), −m(T ) is the unique zero of

ȟ(∞)(·, T ) = 0. Since ĥ(∞)(−m(T ), T ) = (1 + βL)m(T ) + τβLĥ(∞)(−m(T ), T ) +

|w|max(T ), we derive

0 ≤ ĥ(∞)(−m(T ), T ) =
(1 + βL)m(T ) + |w|max(T )

1 − τβL
.

Consequently, for ξ ≥ 0,

ĥ(∞)(ξ, T ) = −(1 + βĽ)ξ +
τβL[(1 + βL)m(T ) + |w|max(T )]

1 − τβL
+ |w|max(T ). (3.14)

With the help of (3.14) and ĥ(∞)(m(T ), T ) = 0, it can be derived that

m(T ) = |w|max(T )/[(1 + βĽ) − τβL(2 + βL + βĽ)]. (3.15)

(v) It is obvious that ∩T≥t0 [−m(T ), m(T )] = [−mp, mp]. In addition, mp ≤

m(T ) for any T ≥ t0. With m(T ) given in (3.15), we thus obtain

0 ≤ mp ≤ |w|max(∞)/{(1 + βĽ) − τβL(2 + βL + βĽ)}.

Proof of Theorem 3.1.4. Let z(t) be a solution to (3.1). The following claim

will lead to that for each T ≥ Tx,y, z(t) converges to [−m(T ), m(T )] as t → ∞.

Subsequently z(t) converges to [−mp, mp] as t → ∞. To complete the proof, it

suffices to prove the claim.

Claim: For arbitrarily fixed T ≥ Tx,y, and any fixed n ∈ N, there exist some

increasing sequence {Tk}
n
k=0 with Tk+1 ≥ Tk + τ , for k = 0, 1, · · · , n − 1 and T0 ≥

T + τ , such that

{

ȟ(k)(z(t), T ) < ż(t) < ĥ(k)(z(t), T ), for t ≥ Tk + τ, k = 0, 1, · · · , n − 1;
z(t) ∈ [m̌(k)(T ), m̂(k)(T )], for t ≥ Tk+1, k = 0, 1, · · · , n − 1.

(3.16)

Let us justify the claim. First, it is easy to show that ȟ(0)(z(t), T ) < ż(t) <

ĥ(0)(z(t), T ) for all t ≥ T0 + τ := (T + τ) + τ > T due to Proposition 3.1.2. Accord-

ingly, there exists some T1 ≥ T0+τ , such that z(t) ∈ [m̌(0)(T ), m̂(0)(T )] for all t ≥ T1.

Thus, (3.16) holds for n = 1. Now, we assume that (3.16) holds for n = ℓ−1 ≥ 1. We

shall show that (3.16) holds for n = ℓ. For any t ≥ Tℓ−1+τ , g(x(t−τ))−g(y(t−τ)) =

g
′

(ζ)z(t−τ), for some ζ ∈ Q. z(t−τ) = z(t)−ż(s)τ for some s ∈ (t−τ, t). Therefore,

ż(t) = −z(t) − βg
′

(ζ)z(t − τ) + w(t) = −z(t) − βg
′

(ζ)[z(t) − ż(s)τ ] + w(t). Notice
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that ȟ(ℓ−2)(m̂(ℓ−2)(T ), T ) < ż(s) < ĥ(ℓ−2)(m̌(ℓ−2)(T ), T ); ȟ(ℓ−2)(m̂(ℓ−2)(T ), T ) ≤ 0

and ĥ(ℓ−2)(m̌(ℓ−2)(T ), T ) ≥ 0 since that s ≥ Tℓ−1 ≥ Tℓ−2 + τ . If z(t) ≥ 0, then ż(t) <

−z(t) − βĽz(t) + τβLĥ(ℓ−2)(m̌(ℓ−2)(T ), T ) + |w|max(T ) = ĥ(ℓ−1)(z(t), T ). If z(t) < 0,

then ż(t) < −z(t)− βLz(t) + τβLĥ(ℓ−2)(m̌(ℓ−2)(T ), T )+ |w|max(T ) = ĥ(ℓ−1)(z(t), T ).

Similarly, we can show that ż(t) > ȟ(ℓ−1)(z(t), T ). Accordingly, there exists some

Tℓ ≥ Tℓ−1 + τ such that z(t) ∈ [m̌(ℓ−1)(T ), m̂(ℓ−1)(T )], for t ≥ Tℓ. The claim is thus

justified.

Proof of Theorem 3.1.5. We recompose the upper and lower functions in the

formulation for the case of β > 0 as follows:

ĥ(ξ) :=

{

−(1 + βL)ξ + 2|β| + |w|max(t0), if ξ ≥ 0,
−ξ + 2|β| + |w|max(t0), if ξ < 0;

ĥ(0)(ξ, T ) :=

{

−(1 + βL)ξ − τβLĥ(Ǎh) + |w|max(T ), for ξ ≥ 0,

−(1 + βĽ)ξ − τβLĥ(Ǎh) + |w|max(T ), for ξ < 0;

ĥ(k)(ξ, T ) :=

{

−(1 + βL)ξ − τβLĥ(k−1)(m̌(k−1)T ), T ) + |w|max(T ), for ξ ≥ 0,

−(1 + βĽ)ξ − τβLĥ(k−1)(m̌(k−1)(T ), T ) + |w|max(T ), for ξ < 0;

ȟ(ξ) := −ĥ(−ξ), ȟ(0)(ξ, T ) := −ĥ(0)(−ξ, T ), ȟ(k)(ξ, T ) := −ĥ(k)(−ξ, T ).

Then the proof of the theorem is similar to the one for Theorem 3.1.4.

Proof of Theorem 3.1.6. We recompose the upper and lower functions in the

formulation for Theorem 3.1.4 as follows:

ĥ(ξ) := −ξ + 2|β| + |w|max(t0),

ĥ(0)(ξ, T ) := −ξ + |β|LÂh + |w|max(T ),

ĥ(k)(ξ, T ) := −ξ + |β|Lm̂(k−1)(T ) + |w|max(T ),

ȟ(ξ) := −ĥ(−ξ), ȟ(0)(ξ, T ) := −ĥ(0)(−ξ, T ), ȟ(k)(ξ, T ) := −ĥ(k)(−ξ, T ).

Then the proof follows from similar process as Theorem 3.1.4.

Proof of Theorem 3.1.9. The proof resembles the one for Theorem 3.1.4 by
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recomposing the upper and lower formulation:

ĥ(ξ) :=

{

−µξ + 2Σ2
i=1|γi| + |w|max(t0) if ξ ≥ 0,

−(µ + Σ2
i=1γ̂i)ξ + 2Σ2

i=1|γi| + |w|max(t0) if ξ < 0,

ĥ(0)(ξ, T ) :=

{

−(µ + Σ2
i=1γ̌i)ξ + Σ2

i=1(τi|γi|)ĥ(Ǎh) + |w|max(T ), for ξ ≥ 0,

−(µ + Σ2
i=1γ̂i)ξ + Σ2

i=1(τi|γi|)ĥ(Ǎh) + |w|max(T ), for ξ < 0,

ĥ(k)(ξ, T ) :=

{

−(µ + Σ2
i=1γ̌i)ξ + Σ2

i=1(τi|γi|)ĥ
(k−1)(m̌(k−1)(T ), T ) + |w|max(T ), ξ ≥ 0,

−(µ + Σ2
i=1γ̂i)ξ + Σ2

i=1(τi|γi|)ĥ
(k−1)(m̌(k−1)(T ), T ) + |w|max(T ), ξ < 0.

ȟ(ξ) := −ĥ(−ξ), ȟ(0)(ξ, T ) := −ĥ(0)(−ξ, T ), ȟ(k)(ξ, T ) := −ĥ(k)(−ξ, T ).

Proof of Theorem 3.1.10. The proof resembles the one for Theorem 3.1.4 by

recomposing the upper and lower formulation:

ĥ(ξ) :=

{

−µξ + 2Σ2
i=1|γi| + |w|max(t0) ξ ≥ 0,

−(µ + γ1)ξ + 2Σ2
i=1|γi| + |w|max(t0) ξ < 0;

ĥ(0)(ξ, T ) :=

{

−(µ + γ1Ľ)ξ + τ1γ1ĥ(Ǎh) + |γ2|Â
h + |w|max(T ), ξ ≥ 0,

−(µ + γ1)ξ + τ1γ1ĥ(Ǎh) + |γ2|Â
h + |w|max(T ), ξ < 0;

ĥ(k)(ξ, T ) :=

{

−(µ + γ1Ľ)ξ + τ1γ1ĥ
(k−1)(m̌(k−1)(T ), T ) + |γ2|m̂

(k−1)(T ) + |w|max(T ), ξ ≥ 0,

−(µ + γ1)ξ + τ1γ1ĥ
(k−1)(m̌(k−1)(T ), T ) + |γ2|m̂

(k−1)(T ) + |w|max(T ), ξ < 0;

ȟ(ξ) := −ĥ(−ξ), ȟ(0)(ξ, T ) := −ĥ(0)(−ξ, T ), ȟ(k)(ξ, T ) := −ĥ(k)(−ξ, T ).

Proof of Theorem 3.1.11. The proof resembles the one for Theorem 3.1.4 by

recomposing the formulation for upper and lower functions:

ĥ(ξ) := −µξ + 2Σ2
i=1|γi| + |w|max(t0),

ĥ(0)(ξ, T ) := −µξ + Σ2
i=1|γi|Â

h + |w|max(T ),

ĥ(k)(ξ, T ) := −µξ + Σ2
i=1|γi|m̂

(k−1)(T ) + |w|max(T ),

ȟ(ξ) := −ĥ(−ξ), ȟ(0)(ξ, T ) := −ĥ(0)(−ξ, T ), f̌ (k)(ξ, T ) := −ĥ(k)(−ξ, T ).

3.2 Scalar equation for convergence

In this section, we introduce the scalar equation associated with the convergence

for (2.3). We consider the following scalar equation with time-dependent external

input w(t):

ẋ(t) = −µx(t) + αg(x(t)) + βg(x(t − τ1(t)) + w(t), (3.17)

where µ > 0, α > 0 and β ∈ R; τ1(t) is a continuous function with 0 ≤ τ1(t) ≤ τ ∈ R,

for all t ≥ t0; w(t) is a bounded continuous function defined for t ≥ t0; g is an
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activation function of class A with u < g(ξ) < v, g′(ξ) ≤ L := g′(0) = max{g′(η) :

η ∈ R}, for all ξ ∈ R. Let ρ = max{|u|, |v|}. We present the basic formations and

propositions in Section 3.2.1. Some extensions form (3.17) to other scalar equations

are given in Section 3.2.2. The proofs for the lemma, propositions and theorems in

Section 3.2.1 and 3.2.2 are given in Section 3.2.3.

3.2.1 Formulations and properties

The main result (Theorem 3.2.4) in this subsection asserts that there exist three

disjoint, bounded and closed intervals to which every solution of (3.17) converges,

under certain parameter conditions. Adopting the arguments parallel to the ones

in previous section (Section 3.1), we shall, iteratively, define sequences of upper

and lower functions for the dynamics of (3.17) as time proceeds, to capture the

asymptotical behavior of (3.17).

The first two conditions we impose on activation function g and parameters

are

Condition (A1c): L > 2µ/α > 0,

Condition (A2c): L < µ/|β|.

Let us define f(ξ) := −µξ + αg(ξ), where g is the same as in (3.17). Then,

f̃ ′(ξ) = −µ + αg′(ξ), for any vertical shift f̃ of f . If condition (A1c) holds, there

exist exactly two points p̄, q̄ with p̄ < 0 < q̄ such that f̃ ′(p̄) = f̃ ′(q̄) = 0; f̃ ′(ξ) > 0

for ξ ∈ (p̄, q̄); and f̃ ′(ξ) < 0 for ξ ∈ R − [p̄, q̄]. Restated, if g′(0) > µ/α, then p̄

and q̄ are the only two critical points of f̃ , and g′(p̄) = g′(q̄) = µ/α, cf. Fig. 3.3.

In addition, conditions (A1c), (A2c) imply 0 < (µ − L|β|)/(α + |β|) < µ/α. Thus,

there always exist two points p̃ and q̃, where p̃ < p̄ < q̄ < q̃ such that

g
′

(p̃) = g
′

(q̃) =
µ − L|β|

α + |β|
.

We shall formulate the desired configuration and properties for equation (3.17)

through the following quantities and functions. For T ≥ t0, let

wmin(T ) := inf{w(t) | t ≥ T}, wmax(T ) := sup{w(t) | t ≥ T},

f̂ (0)(ξ, T ) := −µξ + αg(ξ) + |β|ρ + wmax(T ),

f̌ (0)(ξ, T ) := −µξ + αg(ξ)− |β|ρ + wmin(T ).

For convenience of later uses, we denote

f̂(ξ) := f̂ (0)(ξ, t0), f̌(ξ) := f̌ (0)(ξ, t0). (3.18)
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Figure 3.3: (a) The graph of activation function g of class A. (b) The configurations
for functions f̃ , f with their critical points p, q, and the points p̃, q̃ at which g has
designated slopes.
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Notably, f̂ and f̌ are also vertical shifts of f . Let us introduce the third condition.

Condition (A3c): f̌(q̃) > 0, f̂(p̃) < 0.

Under conditions (A1c), (A2c), (A3c), there exist three solutions l̂, m̂ and r̂ (resp.

ľ, m̌ and ř) of f̂(ξ) = 0 (resp. f̌(ξ) = 0). Moreover, ľ < l̂ < p̃ < p̄ < m̂ < m̌ < q̄ <

q̃ < ř < r̂. We further impose a slope condition on the middle part of the activation

function. This condition actually covers (A1c).

Condition (A4c): g
′

(ξ) > 2µ/α, for all ξ ∈ [m̂, m̌].

Let ǎ(0)(T ) (resp. b̌(0)(T ), č(0)(T )) be the unique solution of f̌ (0)(·, T ) = 0

lying in interval [ľ, l̂] (resp. [m̂, m̌], [ř, r̂]), and â(0)(T ) (resp. b̂(0)(T ), ĉ(0)(T )) be the

unique solution of f̂ (0)(·, T ) = 0 lying in [ľ, l̂] (resp. [m̂, m̌], [ř, r̂]), cf. Fig. 3.4. The

following functions can be defined iteratively for each fixed T ≥ t0: for k ∈ N,

f̂
(k)
l (ξ, T ) :=

{

−µξ + αg(ξ) + βg(â(k−1)(T )) + wmax(T ), for β ≥ 0,
−µξ + αg(ξ) + βg(ǎ(k−1)(T )) + wmax(T ), for β < 0,

f̌
(k)
l (ξ, T ) :=

{

−µξ + αg(ξ) + βg(ǎ(k−1)(T )) + wmin(T ), for β ≥ 0,
−µξ + αg(ξ) + βg(â(k−1)(T )) + wmin(T ), for β < 0,

f̂ (k)
m (ξ, T ) :=

{

−µξ + αg(ξ) + βg(b̌(k−1)(T )) + wmax(T ), for β ≥ 0,

−µξ + αg(ξ) + βg(b̂(k−1)(T )) + wmax(T ), for β < 0,

f̌ (k)
m (ξ, T ) :=

{

−µξ + αg(ξ) + βg(b̂(k−1)(T )) + wmin(T ), for β ≥ 0,

−µξ + αg(ξ) + βg(b̌(k−1)(T )) + wmin(T ), for β < 0,

f̂ (k)
r (ξ, T ) :=

{

−µξ + αg(ξ) + βg(ĉ(k−1)(T )) + wmax(T ), for β ≥ 0,
−µξ + αg(ξ) + βg(č(k−1)(T )) + wmax(T ), for β < 0,

f̌ (k)
r (ξ, T ) :=

{

−µξ + αg(ξ) + βg(č(k−1)(T )) + wmin(T ), for β ≥ 0,
−µξ + αg(ξ) + βg(ĉ(k−1)(T )) + wmin(T ), for β < 0.

These functions are all vertical shifts of f for each fixed T . Herein, ǎ(k)(T )

(resp. b̌(k)(T ), č(k)(T )) is the unique solution of f̌
(k)
l (·, T ) = 0 (resp. f̌

(k)
m (·, T ) =

0, f̌
(k)
r (·, T ) = 0) lying in interval [ľ, l̂] (resp. [m̂, m̌], [ř, r̂]), and â(k)(T ) (resp.

b̂(k)(T ), ĉ(k)(T )) is the unique solution of f̂
(k)
l (·, T ) = 0 (resp. f̂

(k)
m (·, T ) = 0,

f̂
(k)
r (ξ, T ) = 0) lying in [ľ, l̂] (resp. [m̂, m̌], [ř, r̂]). We also define wmin(∞) :=

limT→∞ wmin(T ), wmax(∞) := limT→∞ wmax(T ).

The following lemma summarizes the properties for zeros of the above-defined

sequences of single-variable functions.
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Figure 3.4: Configurations of functions f̂ , f̂ (0), f̌ (0), and f̌ , for fixed T ≥ t0.

Lemma 3.2.1. Assume that conditions (A2c)-(A4c) hold. Then, for each T ≥ t0,

the sequences {b̌(k)(T )}k≥0, {b̂(k)(T )}k≥0 {ǎ(k)(T )}k≥0, {â(k)(T )}k≥0, {č(k)(T )}k≥0,

{ĉ(k)(T )}k≥0 can be defined iteratively. Moreover,

(i) for any fixed k ∈ N ∪ {0}, each of b̂(k)(T ), ǎ(k)(T ) and č(k)(T ) is increasing, and

each of b̌(k)(T ), â(k)(T ), and ĉ(k)(T ) is decreasing with respect to T ≥ t0;

(ii) for any T ≥ t0, there exist b(T ), b(T ), a(T ), a(T ), c(T ), c(T ) ∈ R such that

b̂(k)(T ) → b(T ), ǎ(k)(T ) → a(T ), and č(k)(T ) → c(T ) increasingly, and b̌(k)(T ) →

b(T ), â(k)(T ) → a(T ), and ĉ(k)(T ) → c(T ) decreasingly, as k → ∞;

(iii) there exist b, b, a, a, c, c ∈ R, such that b(T ) → b, a(T ) → a, c(T ) → c increas-

ingly and b(T ) → b, a(T ) → a, c(T ) → c decreasingly, as T → ∞;

(iv) ∩T≥t0 [b(T ), b(T )] = [b, b], ∩T≥t0 [a(T ), a(T )] = [a, a], ∩T≥t0 [c(T ), c(T )] = [c, c];

(v) 0 ≤ b(T )−b(T ) ≤ [wmax(T )−wmin(T )]/(µ−|β|L), 0 ≤ a(T )−a(T ), c(T )−c(T ) ≤

[wmax(T ) − wmin(T )]/(|β|L), for any T ≥ t0, moreover

0 ≤ db := b − b ≤
wmax(∞) − wmin(∞)

µ − |β|L
,

0 ≤ da := a − a, dc := c − c ≤
wmax(∞) − wmin(∞)

|β|L
.

In the following discussions, for an initial value φ ∈ C([−τ, 0], R), we denote

by x(t) = x(t; t0; φ) the solution of (3.17) with x(t0 + θ; t0; φ) = φ(θ), for θ ∈ [−τ, 0].
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Definition 3.2.1. A solution x(t) of (3.17) is said to satisfy Property M, L, R, if,

respectively,

for each k ∈ N ∪ {0}, T ≥ t0, x(t) ∈ [̂bk(T ), b̌k(T )], for all t ≥ T + kτ ,

there exists s ≥ t0 such that x(s) ∈ [ľ, l̂],

there exists s ≥ t0 such that x(s) ∈ [ř, r̂].

Proposition 3.2.2. Assume that conditions (A2c)-(A4c) hold.

(i) If x(t) is a solution of (3.17) and for any fixed T ≥ t0, k ∈ N, x(t) ∈ [̂bk−1(T ), b̌k−1(T )]

for all t ≥ T + (k − 1)τ , then x(t) ∈ [̂bk(T ), b̌k(T )], for all t ≥ T + kτ ;

(ii) If x(t) is a solution of (3.17) and x(s) > b̌(0)(T ) (resp. x(s) < b̂(0)(T )), for some

s ≥ T ≥ t0, then x(t) satisfies Property R (resp. L);

(iii) If the solution x(t) of (3.17) satisfies Property M, then x(t) → [b(T ), b(T )] as

t → ∞, for any T ≥ t0; subsequently, x(t) → [b, b] as t → ∞.

(iv) Each of [ľ, l̂] and [ř, r̂] is a positively invariant interval for (3.17). Moreover, if

x(t) is a solution of (3.17), which satisfies Property R (resp. L), then x(t) → [c, c]

(resp. [a, a]), as t → ∞.

Proposition 3.2.3. Assume that conditions (A2c)-(A4c) hold. Every solution x(t)

of (3.17) satisfies one of Properties M, L, R.

Proof. Let x(t) be a solution of (3.17) which does not satisfy Property M. Then

there exist k ∈ N ∪ {0}, T ≥ t0, such that

x(t) ∈ R − [̂bk(T ), b̌k(T )], for some t ≥ T + kτ. (3.19)

Set K := {(k, T ) : k ∈ N∪{0}, T ≥ t0, and (3.19) holds}, k0 := min{k : there exists

T ≥ t0 such that (k, T ) ∈ K}. There are two possibilities: k0 ≥ 1 and k0 = 0.

Case (i): If k0 ≥ 1, then for any T ≥ t0,

x(t) ∈ [̂bk0−1(T ), b̌k0−1(T )], for all t ≥ T + (k0 − 1)τ.

It follows from Proposition 3.2.2 (i) that x(t) ∈ [̂bk0(T ), b̌k0(T )], for all t ≥ T + k0τ ,

which is a contradiction to the definition of k0.

Case (ii): If k0 = 0, then there exist T ≥ t0 and t ≥ T such that x(t) ∈

R − [̂b(0)(T ), b̌(0)(T )]. x(t) then satisfies Property L or R, according to Proposition

3.2.2 (ii). �

Combining Proposition 3.2.2(iii), (iv), and Proposition 3.2.3, we conclude the

main result in this section.
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Theorem 3.2.4. Assume that conditions (A2c)-(A4c) hold. Let x(t) be a solution

of (3.17). Then x(t) → [a, a], or [b, b], or [c, c], as t → ∞; moreover,

0 ≤ db := b − b ≤
wmax(∞) − wmin(∞)

µ − |β|L
,

0 ≤ da := a − a, dc := c − c ≤
wmax(∞) − wmin(∞)

|β|L
.

3.2.2 Some extensions

For convergent dynamics of (2.8), we consider the following scalar equation with

time-dependent external inputs w(t) and E(t):

ẋ(t) = −x(t) − βg(x(t − τ)) + w(t) + E(t), (3.20)

where w(t) and E(t) are bounded continuous functions defined for t ≥ t0, and

E(t) → 0 as t → ∞; g is an activation function of class A with −1 < g(ξ) < 1,

g′(ξ) ≤ L := g′(0) = max{g′(η) : η ∈ R}, for all ξ ∈ R.

Recall that Theorem 3.2.4 addresses convergence to three intervals for scalar

equation (3.20). Such a delay independent result therein strongly relies on positive-

ness of α, hence can not be applied to (3.20) directly. However, by adopting the idea

of controlling the delay effect upon the motion of the equation in Section 3.1, we

can still derive similar results for (3.20). Let us recompose some setting in Section

3.2.1 and introduce the conditions imposed in the following. We define

f̂(ξ) := −ξ − βg(ξ) − βLτ [4|β| + wmax(t0) − wmin(t0)] + wmax(t0),

f̌(ξ) := −ξ − βg(ξ) + βLτ [4|β| + wmax(t0) − wmin(t0)] + wmin(t0).

We consider the condition:

Condition (A1a): L > 1/(−β) > 0, τ ≤ 1/[L(4|β| + wmax(t0) − wmin(t0))].

Let λ be a fixed number in interval (0, 1). Under condition (A1a), β < 0, there exist

two points p̃λ and q̃λ, where p̃λ < p̄ < q̄ < q̃λ such that

g
′

(p̃λ) = g
′

(q̃λ) = (1 − λ)/(−β). (3.21)

We introduce the following conditions:

Condition (A2a)λ: f̌(q̃λ) > 0, f̂(p̃λ) < 0,
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Condition (A3a)λ: g′(ξ) > (1 + λ)/(−β), ξ ∈ [m̂, m̌].

Under conditions (A1a) and (A2a)λ, there exist three zeros l̂, m̂ and r̂ (resp. ľ, m̌

and ř) of f̂ (resp. f̌). Condition (A3a)λ prefers larger slope for the middle part of

the activation function g. Now, let us introduce the result of a trichotomy for the

dynamics of (3.20).

Theorem 3.2.5. Assume that conditions (A1a), (A2a)λ and (A3a)λ hold for some

λ ∈ (0, 1). There exist three disjoint compact intervals [a, ā], [b, b̄], [c, c̄] and every

solution of (3.20) converges to one of these intervals. Moreover

0 ≤ da := a − a, db := b − b, dc := c − c ≤
wmax(∞) − wmin(∞)

(1 − 2|β|Lτ)λ
.

At last, for convergent dynamics of (2.6), we consider the following scalar

equation with time-dependent external input E(t):

ẋ(t) = −µx(t) + Σ2
i=1γig(x(t − τi)) + E(t), (3.22)

where µ > 0, γ1, γ2 ∈ R; τ1, τ2 ≥ 0; where w(t) and E(t) are bounded continuous

functions defined for t ≥ t0, and E(t) → 0 as t → ∞; g is an activation function of

class A with −1 < g(ξ) < 1, g′(ξ) ≤ 1 = g′(0) = max{g′(η) : η ∈ R}, for all ξ ∈ R.

We denote τ := max{τ1, τ2}. By similar arguments to Section 3.2, we can conclude

that there exist three points and every solution of (3.22) converges to one of them

under the following condition:

Condition (Ab): Σ2
i=1γi > µ, Σ2

i=1|γi|τi < min{1/4, [Σ2
i=1γig(q̄γ)−µq̄γ ]/(4Σ2

i=1|γi|),

[µp̄γ − Σ2
i=1γig(p̄γ)]/(4Σ2

i=1|γi|)}. where

g′(p̄γ) = g′(q̄γ) = µ/Σ2
i=1γi. (3.23)

Theorem 3.2.6. Assume that condition (Ab) holds. Let x(t) be a solution of

(3.22). Then there exist some a < 0 and c > 0 such that x(t) → a, or 0 or c as

t → ∞.

Notably, by modifying the formulation for Theorem 3.2.6, we can also derive

τ1-independent or τ2-independent results.

Remark 3.2.1. The condition Σ2
i=1γi > µ in Theorem 3.2.6 plays the dominant

role for the convergence to multiple equilibrium points of (3.22). Indeed, if Σ2
i=1γi is

32



small (smaller than µ basically) instead, then (3.22) will admit convergence to the

origin.

3.2.3 Proofs of lemma, propositions and theorems

We provide the proofs for Lemma 3.2.1, Proposition 3.2.2, 3.2.3, Theorems 3.2.4-

3.2.6 in this subsection. We only prove the case of β > 0 for Lemma 3.2.1, Proposi-

tion 3.2.2, 3.2.3 and Theorems 3.2.4; the case of γi > 0, i = 1, 2, for Theorem 3.2.6,

as the arguments for the other cases are similar.

Proof of Lemma 3.2.1. The labelling in the proof corresponds to the one in the

statement of Lemma 3.2.1.

(i) Let us show that for any T ≥ t0, b̌(k)(T ) and b̂(k)(T ) are well-defined for all

k ∈ N∪ {0}. Assume that b̂(j−1)(T ), b̌(j−1)(T ) have been defined, for a fixed T ≥ t0.

Notably,

f̂ (j)
m (ξ, T ) = −µξ + αg(ξ) + βg(b̌(j−1)(T )) + wmax(T )

≤ −µξ + αg(ξ) + βρ + wmax(t0) = f̂(ξ),

f̌ (j)
m (ξ, T ) = −µξ + αg(ξ)− βg(b̂(j−1)(T )) + wmin(T )

≥ −µξ + βg(ξ)− βρ + wmin(t0) = f̌(ξ).

It follows that f̌(ξ) ≤ f̌
(j)
m (ξ, T ) ≤ f̂

(j)
m (ξ, T ) ≤ f̂(ξ), for all ξ ∈ R. In addition, p̄ and

q are two critical points of f̌(·), f̂(·), f̂
(j)
m (·, T ), and f̌

(j)
m (·, T ), and g′(p̄) = g′(q̄) =

µ/α, due to condition (A1c). There exists exactly one solution for each of f̂
(j)
m (·, T ) =

0 and f̌
(j)
m (·, T ) = 0 in interval (m̂, m̌). Accordingly, both b̌(j)(T ) and b̂(j)(T ) are

well defined. Moreover, it is straightforward to observe that b̂(j)(T1) ≥ b̂(j)(T2) and

b̌(j)(T1) ≤ b̌(j)(T2), due to f̂
(j)
m (·, T1) ≤ f̂

(j)
m (·, T2) and f̌

(j)
m (·, T1) ≥ f̌

(j)
m (·, T2), for any

T1 ≥ T2 ≥ t0. Thus, for each k ∈ N ∪ {0}, b̂(k)(T ) increases and b̌(k)(T ) decreases,

with respect to T . The arguments for ǎ(k)(T ), â(k)(T ), č(k)(T ), ĉ(k)(T ) are similar.

(ii) Let us show that for each T ≥ t0,

b̂(k+1)(T ) ≥ b̂(k)(T ); b̌(k+1)(T ) ≤ b̌(k)(T ), for all k ≥ 0. (3.24)

Assume that (3.24) holds for some k = j − 1. Notably, b̂(j+1)(T ) and b̂(j)(T ) satisfy

f̂
(j+1)
m (·, T ) = 0 and f̂

(j)
m (·, T ) = 0 respectively; i.e.,

−µb̂(j+1)(T ) + αg(b̂(j+1)(T )) + βg(b̌(j)(T )) + wmax(T ) = 0, (3.25)

−µb̂(j)(T ) + αg(b̂(j)(T )) + βg(b̌(j−1)(T )) + wmax(T ) = 0. (3.26)
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The difference of (3.25) and (3.26) is

µ[̂b(j+1)(T )−b̂(j)(T )]−αg′(ξ)[̂b(j+1)(T )−b̂(j)(T )] = βg′(ζ)[̌b(j)(T )−b̌(j−1)(T )], (3.27)

where ξ (resp. ζ) is a number between b̂(j+1)(T ) and b̂(j)(T ) (resp. b̂(j)(T ) and

b̂(j−1)(T )). (3.27) then yields

b̂(j+1)(T ) − b̂(j)(T ) =
βg′(ζ)[̌b(j)(T ) − b̌(j−1)(T )]

µ − αg′(ξ)
≥ 0,

due to that g′(ξ) > µ/α for ξ between b̂(j+1)(T ) and b̂(j)(T ). Thus, the first part

of (3.24) holds for k = j. The second part can be proved similarly. It follows

that for any T ≥ t0, limk→∞ b̂(k)(T ) = b(T ) ∈ R, and limk→∞ b̌(k)(T ) = b(T ) ∈ R

respectively, since both of b̌(k)(T ) and b̂(k)(T ) are bounded monotone sequences. The

situations for ǎ(k)(T ), â(k)(T ), and č(k)(T ), ĉ(k)(T ) are similar.

(iii) For each k ∈ N ∪ {0}, it has been shown in (i) that b̂(k)(T2) ≤ b̂(k)(T1),

if T1 > T2 ≥ t0. Thus, limk→∞ b̂(k)(T2) ≤ limk→∞ b̂(k)(T1), i.e. b(T2) ≤ b(T1).

Therefore, b(T ) → b ∈ R increasingly as T → ∞, since b(T ) is bounded above for

all T ≥ t0. Similarly, b(T ) → b ∈ R decreasingly as T → ∞. Similar proofs apply

to a(T ) → a, a(T ) → a, c(T ) → c, and c(T ) → c.

(iv) It is straightforward to see that ∩T≥t0 [b(T ), b(T )] = [b, b], ∩T≥t0 [a(T ), a(T )] =

[a, a], ∩T≥t0 [c(T ), c(T )] = [c, c].

(v) It is obvious that b(T ) − b(T ) ≥ 0, since b̌(k)(T ) > b̂(k)(T ) for any k ∈ N ∪

{0}, and any T ≥ t0. Next, we justify that b(T )− b(T ) ≤ [wmax(T )−wmax(T )]/(µ−

|β|L), for any T ≥ t0. For such an assertion, we shall construct a mapping ΓT : HT →

HT , for each T ≥ t0, where HT := [̂b(0)(T ), b̌(0)(T )]× [̂b(0)(T ), b̌(0)(T )]∩{(y1, y2)|y1 ≤

y2} ⊂ R2 and such a mapping is a contraction, mainly due to g′ > 2µ/α, on

[̂b(0)(T ), b̌(0)(T )]. The map ΓT thus admits an unique fixed point (b(T ), b(T )). The

difference of b(T ) and b(T ) can then be estimated to yield the assertion. Let us

elaborate. For each T ≥ t0, we define the following functions:

hmax
T (ξ, γ) := −µξ + αg(ξ) + βg(γ) + wmax(T ),

hmin
T (ξ, γ) := −µξ + αg(ξ) + βg(γ) + wmin(T ).

Notably, f̌
(1)
m (ξ, T ) ≤ hmin

T (ξ, γ1) ≤ hmax
T (ξ, γ2) ≤ f̂

(1)
m (ξ, T ), if b̂(0)(T ) ≤ γ1 ≤ γ2 ≤

b̌(0)(T ). For (ξ, γ) ∈ HT , we define ΓT (ξ, γ) = (ξs, γs), where ξs (resp. γs) is the

unique point lying in [̂b(0)(T ), b̌(0)(T )] satisfying hmax
T (ξs, γ) = 0 (resp. hmin

T (γs, ξ) =
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0). Suppose hmax
T (ξs, γ) = 0, hmax

T (ξ′s, γ
′) = 0, then we derive

µ(ξ′s − ξs) − αg
′

(η)(ξ′s − ξs) + β[g(γ) − g(γ′)] = 0,

where η is between ξ′s and ξs. Subsequently, |ξ′s − ξs| ≤ |β|L|γ′−γ|/[α(2µ/α)−µ] =

|β|L|γ′−γ|/µ, thanks to g′(η) > 2µ/α, for η ∈ [̂b(0)(T ), b̌(0)(T )] ⊂ [̂b(0)(t0), b̌
(0)(t0)] =

[m̂, m̌]. Similarly, we can prove that |γ′
s − γs| ≤ |β|L|ξ − ξ′|/µ, if hmin

T (γs, ξ) = 0,

hmin
T (γ′

s, ξ
′) = 0. We thus establish

‖ΓT (ξ, γ) − ΓT (ξ′, γ′)‖∞ = ‖(ξs, γs) − (ξ′s, γ
′
s)‖∞ ≤

|β|L

µ
‖(ξ, γ) − (ξ′, γ′)‖∞.

ΓT is thus a contracting mapping under our condition (A2c): L < µ/|β|. Thus,

there exists an unique fixed point of ΓT in HT . Observe that Γk
T (b̂(0)(T ), b̌(0)(T )) =

(b̂(k)(T ), b̌(k)(T )), which converges to (b(T ), b(T )) as k → ∞. Thus (b(T ), b(T )) ∈ HT

is the fixed point of ΓT and

−µb(T ) + αg(b(T )) + βg(b(T )) + wmax(T ) = 0,

−µb(T ) + αg(b(T )) + βg(b(T )) + wmin(T ) = 0.

Therefore,

b(T ) − b(T ) = [wmax(T ) − wmin(T )]/[αg′(ξ) − |β|g′(ξ) − µ]

≤ [wmax(T ) − wmin(T )]/[µ − |β|g′(ξ)]

≤ [wmax(T ) − wmin(T )]/[µ − |β|L],

due to condition (A4c): g′(ξ) ≥ 2µ/α for ξ ∈ [b(T ), b(T )] ⊂ [̂b(0)(T ), b̌(0)(T )] ⊂

[m̂, m̌], condition (A2c): µ − |β|L > 0, and g′(ξ) ≤ L, for all ξ. Moreover, b − b ≤

b(T ) − b(T ) ≤ [wmax(T ) − wmin(T )]/[µ − |β|L], for any T ≥ t0. We thus establish

0 ≤ db := b − b ≤ [wmax(∞) − wmin(∞)]/[µ − |β|L].

The estimate for c(T ) − c(T ) follows from

µ[c(T )− c(T )]−αg′(ξ)[c(T )− c(T )]−βg′(ξ)[c(T )− c(T )]+wmax(T )−wmin(T ) = 0,

for some ξ ∈ [č(0)(T ), ĉ(0)(T )], and

c(T ) − c(T ) ≤
wmax(T ) − wmin(T )

µ − (α + |β|)g′(q̃)
=

wmax(T ) − wmin(T )

|β|L
.

35



The estimate for a(T ) − a(T ) is similar. The bounds for a − a, and c − c can then

be derived.

Proof of Proposition 3.2.2.

(i) Assume that x(t) ∈ [̂b(k−1)(T ), b̌(k−1)(T )], for all t ≥ T +(k−1)τ . Then it is

not difficult to derive that f̌
(k)
m (x(t), T ) ≤ ẋ(t) ≤ f̂

(k)
m (x(t), T ) for t ≥ T +kτ . There-

fore, if the assertion does not hold, x(t) eventually leaves [b̂(k−1)(T ), b̌(k−1)(T )] after

t = T + kτ , and yields a contradiction, cf. Fig. 3.5. For a detailed proof, let us sup-

pose the assertion does not hold, then there exists some s ≥ T +kτ such that x(s) ∈

[̂b(k−1)(T ), b̌(k−1)(T )]− [̂b(k)(T ), b̌(k)(T )]. Suppose that x(s) ∈ (b̌(k)(T ), b̌(k−1)(T )] 6= ∅

(the case x(s) ∈ (b̂(k−1)(T ), b̂(k)(T )] 6= ∅ can be similarly discussed). Notably,

f̌
(k)
m (ξ, T ) := −µξ + αg(ξ) + βg(b̂(k−1)(T )) + wmin(T ) ≥ f̌

(k)
m (x(s), T ) =: h1 > 0,

for all ξ ∈ [x(s), b̌(k−1)(T )], in respecting the definition of f̌
(k)
m (ξ, T ), cf. Fig. 3.5. In

addition,

ẋ(s) = −µx(s) + αg(x(s)) + βg(x(s − τ1(s))) + w(s)

≥ −µx(s) + αg(x(s)) + βg(b̂(k−1)(T )) + wmin(T )

= f̌ (k)
m (x(s), T ) = h1 > 0,

due to s − τ1(s) ≥ T + (k − 1)τ . Therefore, x(t) enters into (x(s), b̌k−1(T )] after

t = s, and will never go back into (−∞, x(s)] again. Indeed, if there exists a time

s1 > s, such that x(t) ∈ (x(s), b̌(k−1)(T )) for all t ∈ (s, s1), and x(s1) = x(s), then,

x(s1) − x(s) = ẋ(s̃)(s1 − s)

= [−µx(s̃) + αg(x(s̃)) + βg(x(s̃ − τ1(s̃))) + w(s̃)](s1 − s)

≥ [−µx(s̃) + αg(x(s̃)) + βg(b̂(k−1)(T )) + wmin(T )](s1 − s)

= [f̌ (k)
m (x(s̃), T )](s1 − s) ≥ h1 · (s1 − s) > 0,

for some s̃ ∈ (s, s1), which is a contradiction. Thus, x(t) stays in [x(s), b̌k−1(T )]

for all t ≥ s with ẋ(t) ≥ h1 > 0. This is impossible and we conclude that x(t) ∈

[̂b(k)(T ), b̌(k)(T )] for all t ≥ T + kτ .

(ii) We only prove the R case. This property holds mainly due to f̌ (0)(x(t), T ) ≤

ẋ(t) ≤ f̂ (0)(x(t), T ), for t ≥ T . Therefore, if x(s) ∈ (b̌(0)(T ),∞) (resp. (−∞, b̂(0)(T )))

for some s ≥ T , then x(t) eventually enters into [ř, r̂] (resp. [ľ, l̂]), cf. Fig 3.4. Let us

give detailed arguments. If x(s) ∈ (b̌(0)(T ), ř), then h0 := min{f̌ (0)(x(s), s), f̌ (0)(ř, s)} >

0, and f̌ (0)(ξ, s) ≥ h0, for ξ ∈ [x(s), ř], as observed from the graph of f̌ (0)(·, s) in
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Figure 3.5: Configuration for the proof of Proposition 3.2.2 (i), for some T ≥ t0.

Fig. 3.6. In addition,

ẋ(s) = −µx(s) + αg(x(s)) + βg(x(s − τ1(s))) + w(s),

≥ −µx(s) + αg(x(s)) − βρ + wmin(s),

= f̌ (0)(x(s), s) ≥ h0.

Thus, x(t) is increasing with a positive rate should it remain in (b̌(0)(T ), ř). On the

other hand, if x(s) > r̂ (Fig. 3.6),

ẋ(s) = −µx(s) + αg(x(s)) + βg(x(s − τ1(s))) + w(s)

≤ −µx(s) + αg(x(s)) + βρ + wmax(s)

= f̂ (0)(x(s), s) < 0.

Thus, x(t) eventually enters into [ř, r̂].

(iii) Let us show that x(t) → [b(T ), b(T )], for any T ≥ t0. Assume otherwise

that x(t) does not converge to [b(T ), b(T )] as t → ∞, for some T ≥ t0. Then, there

exist ε > 0 and an increasing time sequence {tn} tending to +∞, such that x(tn)

does not belong to [b(T ) − ε, b(T ) + ε] for all n. This contradicts to that for each

k ∈ N ∪ {0}, T > t0, x(t) ∈ [̂bk(T ), b̌k(T )] for all t ≥ T + kτ , by the assumption

(Property M), and that b̂k(T ) converges to b(T ) increasingly, b̌k(T ) converges to

b(T ) decreasingly, as k → ∞. Moreover, since b(T ) tends to b increasingly and b(T )

tends to b decreasingly, as T → ∞, we conclude that x(t) → [b, b], as t → ∞.

(iv) First, both [ľ, l̂] and [ř, r̂] are positively invariant sets for system (3.17)

mainly because that f̌(x(t)) ≤ ẋ(t) ≤ f̂(x(t)) for all t ≥ t0, cf. Fig. 3.4. More
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Figure 3.6: Configuration for the proof of Proposition 3.2.2 (ii), for some s ≥ T .

precisely, assume that there exists s ≥ t0 such that x(t) ∈ [ř, r̂] for t0 ≤ t ≤ s

and x(t1) /∈ [ř, r̂] for some t1 > s. Let s1 be the first time after time s such that

x(s1) = ř, and x(t) leaves [ř, r̂] after time s1 and enters into (−∞, ř), without loss

of generality. Then there exists s2 > s1 such that m̌ < x(t) < ř for t ∈ (s1, s2). A

contradiction then arises as

x(s2) − x(s1) = ẋ(s3)(s2 − s1)

= [−µx(s3) + αg(x(s3)) + βg(x(s3 − τ1(s3))) + w(s3)](s2 − s1)

≥ f̌(x(s3))(s2 − s1) > 0,

for some s3 ∈ (s1, s2). Similar contradiction occurs if we consider x(s1) = r̂ and x(t)

enters into (r̂,∞). The proof for positive invariance of [ľ, l̂] is similar.

Next, we assume that x(t) satisfies Property R, namely, there exists s ≥ t0

such that x(s) ∈ [ř, r̂]. We assert that for each T ≥ t0,

x(t) → [č(k)(T ), ĉ(k)(T )], as t → ∞, for all k ≥ 0. (3.28)

We justify (3.28) by induction. Let sT := max{s, T}. It can be concluded that

if x(t1) ∈ [č(0)(T ), ĉ(0)(T )] for some t1 ≥ sT , then x(t) ∈ [č(0)(T ), ĉ(0)(T )] for all

t ≥ t1, by arguments similar to the previous ones for proving that [ř, r̂] is positively

invariant. If x(t) ∈ [ř, č(0)(T )), for all t ≥ sT , then

ẋ(t) = −µx(t) + αg(x(t)) + βg(x(t − τ1(t))) + w(t)

≥ −µx(t) + αg(x(t)) − βρ + wmin(T )

= f̌ (0)(x(t), T ) > 0,

and yields a contradiction. Similarly, it can not hold that x(t) ∈ (ĉ(k)(T ), r̂], for

all t ≥ sT . Hence, (3.28) holds for k = 0. Now, we assume that (3.28) holds
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for k = j − 1, i.e., x(t) → [č(j−1)(T ), ĉ(j−1)(T )], as t → ∞. Let us illustrate that

it also holds for k = j. Consider a point xU arbitrarily close to [č(j)(T ), ĉ(j)(T )],

and assume xU ≤ č(j)(T ); there exists a function, say fU , which is a vertical-shift

of f̂
(0)
r (·, T ) and fU has an unique zero at xU , cf. Fig. 3.7. It can be derived that

ẋ(t) ≥ fU(x(t)), as t is large enough. Subsequently, it follows that x(t) must become

closer to [č(j)(T ), ĉ(j)(T )] than to xU , as t → ∞. (3.28) thus holds for k = j. The

arguments for xU ≥ ĉ(j)(T ) and ẋ(t) ≤ fU (x(t)) are similar. Let us give detailed

arguments. Assume that x(t) does not converge to [č(j)(T ), ĉ(j)(T )]. Then, without

loss of generality, there exist an ε > 0 and a time sequence {tn} with tn ≥ sT and

tn → ∞, as n → ∞, such that

x(tn) ∈ [ř, č(j)(T ) − ε); (3.29)

moreover, č(j)(T ) > č(j−1)(T ). Notably, č(j)(T ) is the unique solution of the equation

−µξ + αg(ξ) + βg(č(j−1)(T )) + wmin(T ) = 0, which lies in [ř, r̂]. Thus, there exist

δε > 0 and xU ∈ [č(j)(T ) − ε
2
, č(j)(T ) + ε

2
] such that xU is the unique solution of

fU(ξ) := −µξ + αg(ξ) + βg(cU) + wmin(T ) = 0, where cU := min{ξ : ξ ∈ U},

U := [č(j−1)(T ) − δε, č
(j−1)(T ) + δε] ∩ [ř, r̂], by continuity, cf. Fig. 3.7. On the

other hand, there exists t̃ large enough such that x(t) ≥ cU , for all t ≥ t̃, since x(t)

converges to [č(j−1)(T ), ĉ(j−1)(T )]. It follows that

ẋ(tN) = −µx(tN ) + αg(x(tN)) + βg(x(tN − τ1(tN))) + w(tN)

≥ −µx(tN ) + αg(x(tN)) + βg(cU) + wmin(T ) > 0,

for some tN ≥ t̃ + τ , since x(tN) < č(j)(T ) − ε < xU . Moreover,

ẋ(t) = −µx(t) + αg(x(t)) + βg(x(t − τ1(t))) + w(t)

≥ −µx(t) + αg(x(t)) + βg(cU) + wmin(T ) = fU(x(t)) > 0,

if t ≥ tN and x(t) ∈ (x(tN ), xU). Therefore, x(t) is increasing until it reaches xU and

never goes back into [ř, č(j)(T ) − ε). This yields a contradiction to (3.29). We have

therefore justified that (3.28) holds. Consequently, x(t) converges to [c(T ), c(T )] for

all T ≥ t0, and thus converges to [c, c], as t → ∞. The proof for x(t) satisfying

Property L and converging to [a, a] is similar.

Proof of Theorem 3.2.5. We recompose the upper and lower functions in the
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Figure 3.7: Configuration for the proof of Proposition 3.2.2 (iv), with fixed T .

formulation for Theorem 3.2.4 as follows:

f̂ (0)(ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̌(Âf ) + wmax(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̂(Ǎf ) + wmax(T ), for β < 0,

f̌ (0)(ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̂(Ǎf ) + wmin(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̌(Âf ) + wmin(T ), for β < 0,

f̂
(k)
l (ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̌
(k−1)
l (â(k−1)(T ), T ) + wmax(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̂
(k−1)
l (ǎ(k−1)(T ), T ) + wmax(T ), for β < 0,

f̌
(k)
l (ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̂
(k−1)
l (ǎ(k−1)(T ), T ) + wmin(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̌
(k−1)
l (â(k−1)(T ), T ) + wmin(T ), for β < 0,

f̂ (k)
m (ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̌
(k−1)
m (b̂(k−1)(T ), T ) + wmax(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̂
(k−1)
m (b̌(k−1)(T ), T ) + wmax(T ), for β < 0,

f̌ (k)
m (ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̂
(k−1)
m (b̌(k−1)(T ), T ) + wmin(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̌
(k−1)
m (b̂(k−1)(T ), T ) + wmin(T ), for β < 0,

f̂ (k)
r (ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̌
(k−1)
r (ĉ(k−1)(T ), T ) + wmax(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̂
(k−1)
r (č(k−1)(T ), T ) + wmax(T ), for β < 0,

f̌ (k)
r (ξ, T ) :=

{

−µξ + (α + β)g(ξ)− βLτf̂
(k−1)
r (č(k−1)(T ), T ) + wmin(T ), for β ≥ 0;

−µξ + (α + β)g(ξ)− βLτf̌
(k−1)
r (ĉ(k−1)(T ), T ) + wmin(T ), for β < 0,

where Âf (resp. Ǎf ) is zero to f̂ (resp. f̌). Then the proof follows from similar

process as Theorem 3.2.4.
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Proof of Theorem 3.2.6. We recompose the upper and lower functions in the

formulation for Theorem 3.2.4 as follows:

f̂(ξ) := −µξ + 2Σ2
i=1|γi|, f̌(ξ) := −µξ − 2Σ2

i=1|γi|.

f̂ (0)(ξ) := −µξ + Σ2
i=1γig(ξ) + (Σ2

i=1|γi|τi)(4Σ2
i=1|γi|),

f̌ (0)(ξ) := −µξ + Σ2
i=1γig(ξ) − (Σ2

i=1|γi|τi)(4Σ2
i=1|γi|).

f̂
(k)
l (ξ) := −µξ + Σ2

i=1γig(ξ) − (Σ2
i=1γiτi)f̌

(k−1)
l (â(k−1)),

f̌
(k)
l (ξ) := −µξ + Σ2

i=1γig(ξ) − (Σ2
i=1γiτi)f̂

(k−1)
l (ǎ(k−1)),

f̂ (k)
m (ξ) := −µξ + Σ2

i=1γig(ξ) − (Σ2
i=1γiτi)f̌

(k−1)
m (b̂(k−1)),

f̌ (k)
m (ξ) := −µξ + Σ2

i=1γig(ξ) − (Σ2
i=1γiτi)f̂

(k−1)
m (b̌(k−1)),

f̂ (k)
r (ξ) := −µξ + Σ2

i=1γig(ξ) − (Σ2
i=1γiτi)f̌

(k−1)
r (ĉ(k−1)),

f̌ (k)
r (ξ) := −µξ + Σ2

i=1γig(ξ) − (Σ2
i=1γiτi)f̂

(k−1)
r (č(k−1)).

Then the proof follows from similar process as Theorem 3.2.4.
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Chapter 4

Multistability for Hopfield-type

Network

Most of the materials in this chapter has been published in [61]. In this chapter, we

consider system (2.3):

ẋi(t) = −µixi(t) +
n

∑

j=1

αijgj(xj(t)) +
n

∑

j=1

βijgj(xj(t − τij(t))) + Ji,

where i = 1, 2, · · · , n; gi is the activation function of class A. We establish the

existence of 3n equilibria for system (2.3) in Section 4.1. The main theorems of

convergence of dynamics and stability of equilibria for system (2.3) are presented in

Section 4.2 and 4.3 respectively. We demonstrate the theory by a numerical example

in Section 4.4.

4.1 Existence of multiple equilibria

Let us introduce the following upper and lower bounds for each component of system

(2.3):

F̂i(ξ) := −µiξ + αiigi(ξ) +
∑

j 6=i

|αij|ρj +
n

∑

j=1

|βij|ρj + Ji,

F̌i(ξ) := −µiξ + αiigi(ξ) −
∑

j 6=i

|αij |ρj −
n

∑

j=1

|βij |ρj + Ji,

where ρi are the bounds for activation functions gi, defined in (2.4).

Recall that Li is the largest slope of activation function gi at its inflection

point, as defined in (2.4). We consider the following conditions which are the multi-

dimensional versions of conditions (A1c),(A2c).
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Condition (C1c): Li > 2µi/αii > 0, for i = 1, 2, · · · , n,

Condition (C2c): µi > µi − Li|βii| >
∑

j 6=i Lj |αij| +
∑

j 6=i Lj |βij |, for i =

1, 2, · · · , n.

Notably, condition (C1c) implies αii > 0, and the first inequality in condition

(C2c) is equivalent to βii 6= 0, for all i. The discussions on critical points of f , f̂

and f̌ and their vertical shifts in Section 3.2.1 are valid for F̂i, F̌i, i = 1, 2, · · · , n, as

well as their vertical shifts. Accordingly, under condition (C1c), there exist critical

points p̄i and q̄i of F̂i, F̌i, which satisfy g′
i(p̄i) = g′

i(q̄i) = µi/αii. In addition, F̂i and

F̌i are strictly increasing in (−∞, p̄i), (q̄i,∞), and strictly decreasing in (p̄i, q̄i), for

i = 1, 2, · · · , n. On the other hand,

0 < [µi − (
∑

j 6=i

Lj |αij | +
n

∑

j=1

Lj |βij|)]/(αii + |βii|) < µi/(αii + |βii|), (4.1)

under conditions (C2c). Hence, there always exist exactly two points p̃i and q̃i with

p̃i < p̄i < q̄i < q̃i such that

g′
i(p̃i) = g′

i(q̃i) = [µi − (
∑

j 6=i

Lj |αij| +
n

∑

j=1

Lj |βij|)]/(αii + |βii|), (4.2)

for i = 1, 2, · · · , n. Next, we introduce

Condition (C3c): F̌i(q̃i) > 0 and F̂i(p̃i) < 0, for all i = 1, 2, · · · , n.

Under condition (C3c), there exist three solutions l̂Fi , m̂F
i , and r̂F

i (resp. ľFi ,

m̌F
i and řF

i ) to F̂i(·) = 0 (resp. F̌i(·) = 0), for each i = 1, 2, · · · , n. Moreover,

ľFi < l̂Fi < p̃i < m̂F
i < m̌F

i < q̃i < řF
i < r̂F

i . The following condition is the

multi-dimensional version of condition (A4c).

Condition (C4c): g
′

i(ξ) > 2µi/αii for all ξ ∈ [m̂F
i , m̌F

i ], i = 1, 2, · · · , n.

Let us introduce the following sets in R
n

Ωλ1λ2···λn
= Ωλ1

1 × Ωλ2
2 × · · · × Ωλn

n , λi ∈ {l, m, r}, i = 1, 2, · · · , n,

Ω̃λ1λ2···λn
= Ω̃λ1

1 × Ω̃λ2
2 × · · · × Ω̃λn

n , λi ∈ {l, m, r}, i = 1, 2, · · · , n,

which are defined through the following intervals

Ωl
i = [ľFi , l̂Fi ], Ωm

i = [m̂F
i , m̌F

i ], Ωr
i = [řF

i , r̂F
i ],

Ω̃l
i = (−∞, m̂F

i ), Ω̃m
i = Ωm

i , Ω̃r
i = (m̌F

i ,∞).
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Herein, “l”, “m”, “r” represent respectively left, middle, and right. Through apply-

ing the contraction mapping principle, we derive the existence of 3n equilibria for

system (2.3).

Theorem 4.1.1. There exist exactly 3n equilibria for system (2.3) under conditions

(C2c)-(C4c). Each region Ωλ1λ2···λn
contains exactly one of these 3n equilibria.

Proof. We will show that there exists exactly one equilibrium point in each

Ωλ1λ2···λn
. Consider a fixed Ω = Ωλ1λ2···λn

. Set fi(ξ) := −µiξ + αiigi(ξ). For a

given y = (y1, y2, · · · , yn) ∈ Ω, we define

hi(ξ) := −µiξ + αiigi(ξ) +

n
∑

j=1,j 6=i

αijgj(yj) +

n
∑

j=1

βijgj(yj) + Ji,

for ξ ∈ R, i = 1, 2, · · · , n. Note that F̌i(ξ) ≤ hi(ξ) ≤ F̂i(ξ), and all functions F̌i,

hi, F̂i are vertical-shifts of fi. Thus, there exists an unique solution y∗
i to equation

hi(·) = 0, lying in Ωλi

i . We define a mapping GΩ : Ω → Ω by GΩ(y) = y∗, where

y∗ = (y∗
1, y

∗
2, · · · , y∗

n). Then GΩ is continuous and we shall illustrate that it is a

contraction map. Assume that GΩ(y) = y∗, GΩ(x) = x∗, i.e., for each i = 1, 2, · · · , n

−µiy
∗
i + αiigi(y

∗
i ) +

n
∑

j=1,j 6=i

αijgj(yj) +

n
∑

j=1

βijgj(yj) + Ji = 0,

−µix
∗
i + αiigi(x

∗
i ) +

n
∑

j=1,j 6=i

αijgj(xj) +
n

∑

j=1

βijgj(xj) + Ji = 0.

Then

(x∗
i − y∗

i )[µi −αiig
′
i(ξ

∗
i )]−

n
∑

j=1,j 6=i

αijg
′
j(η

∗
j )[xj − yj]−

n
∑

j=1

βijg
′
j(η

∗
j )[xj − yj] = 0, (4.3)

where ξ∗i is some number between x∗
i and y∗

i ; η∗
j is some number between xj and yj .

(i) If λi =“m”, then x∗
i , y

∗
i , ξ

∗
i ∈ [m̂F

i , m̌F
i ], and g′

i(ξ
∗
i ) > 2µi/αii, by condition

(C4c). Hence

|x∗
i − y∗

i | = |
n

∑

j=1,j 6=i

αijg
′
j(η

∗
j )(xj − yj) +

n
∑

j=1

βijg
′
j(η

∗
j )(xj − yj)|/|αiig

′
i(ξ

∗
i ) − µi|

≤ {[
n

∑

j=1,j 6=i

Lj |αij| +
n

∑

j=1

Lj|βij |]/µi}‖x − y‖∞

=: γ̃i‖x − y‖∞,
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and 0 < γ̃i < 1, owing to condition (C2c).

(ii) If λi =“r”, then x∗
i , y

∗
i ∈ [řF

i , r̂F
i ], and ξ∗i > q̃i (for q̃i < řF

i ). Thus,

0 ≤ g
′

i(ξ
∗
i ) < [µi − (

∑

j 6=i Lj|αij |+
∑n

j=1 Lj |βij|)]/[αii + |βii|] < µi/αii, as mentioned

in (4.1). It follows that

|αiig
′
i(ξ

∗
i ) − µi| = µi − αiig

′
i(ξ

∗
i )

> µi − αii[µi − (
n

∑

j=1,j 6=i

Lj |αij| +
n

∑

j=1

Lj |βij |)]/(αii + |βii|)

≥
n

∑

j=1,j 6=i

Lj |αij | +
n

∑

j=1

Lj |βij|.

Subsequently, from (4.3)

|x∗
i − y∗

i | ≤ {[
n

∑

j=1,j 6=i

Lj |αij| +
n

∑

j=1

Lj |βij |]/|αiig
′
i(ξ

∗
i ) − µi|}‖x − y‖∞

=: γi‖x − y‖∞,

and γi < 1. The situation for λi =“l” is similar. Therefore, GΩ is a contraction

map and there exists an unique fixed point x = (x1, x2, · · · , xn) of GΩ, lying in Ω.

Restated, for each i = 1, 2, · · ·n,

−µixi + αiigi(xi) +
n

∑

j=1,j 6=i

αijgj(xj) +
n

∑

j=1

βijgj(xj) + Ji = 0. (4.4)

Thus, x is an unique equilibrium point of (2.3) lying in Ω.

On the other hand, if x = (x1, x2, · · · , xn) is an equilibrium of (2.3), then (4.4)

holds. Hence, xi lies in one of Ωl
i, Ω

m
i , Ωr

i, for each i, and thus x coincides with the

unique equilibrium lying in Ωλ1λ2···λn
, λi ∈ {l, m, r}. System (2.3) therefore admits

exactly 3n equilibria. �

4.2 Convergence

In the following discussions, we consider a fixed initial value φ ∈ C([−τ, 0], Rn), and

the solution x(t) = x(t; t0; φ) = (x1(t; t0; φ), x2(t; t0; φ), · · · , xn(t; t0; φ)) to system

(2.3), which is evolved from φ at t = t0. For each i = 1, 2, · · · , n, we write the ith

component of system (2.3) in the following form:

ξ̇(t) = −µiξ(t) + αiigi(ξ(t)) + βiigi(ξ(t − τii(t))) + wi(t), (4.5)
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where wi(t) = wi(t; t0; φ) := Σn
j=1,j 6=i[αijgj(xj(t)) + βijgj(xj(t − τij(t)))] + Ji is re-

garded as a bounded function of t. The notations, Lemma 3.2.1, Propositions

3.2.2, 3.2.3, and Theorem 3.2.4 can all be adapted to (4.5). In particular, for

i = 1, 2, · · · , n, we define

f̂i(ξ) = −µiξ + αiigi(ξ) + |βii|ρi + wmax
i (t0),

f̌i(ξ) = −µiξ + αiigi(ξ) − |βii|ρi + wmin
i (t0).

Under conditions (C1c), (C2c), f̂i, f̌i admit similar properties as f̂ , f̌ in Section

3.2.1. In particular, there exist l̂fi , m̂f
i , r̂f

i , ľfi , m̌f
i , řf

i which are the zeros of f̂i, f̌i

respectively, and p̄i, q̄i which are both the critical points of f̂i and f̌i. Notice that

F̂i, F̌i, and f̂i, f̌i share the same critical points p̄i, q̄i. According to our setting,

F̌i(ξ) ≤ f̌i(ξ) ≤ f̂i(ξ) ≤ F̂i(ξ), for all ξ ∈ R.

Therefore, condition (C3c) implies that f̌i(q̃i) ≥ F̌i(q̃i) > 0 and f̂i(p̃i) ≤ F̂i(p̃i) < 0;

in addition, p̄i < m̂F
i < m̂f

i < m̌f
i < m̌F

i < q̄i, ľFi < ľfi < l̂fi < l̂Fi < p̃i, and

q̃i < řF
i < řf

i < r̂f
i < r̂F

i , where p̃i, q̃i are defined in (4.2), cf. Fig. 4.1. Moreover,

we note that condition (C4c): g′
i(ξ) > 2µi/αii on [m̂F

i , m̌F
i ] yields g′

i(ξ) > 2µi/αii on

[m̂f
i , m̌

f
i ] since [m̂f

i , m̌
f
i ] ⊂ [m̂F

i , m̌F
i ].

According to Theorem 3.2.4, for each i = 1, 2, · · · , n, there exist three disjoint,

closed and bounded intervals [ai, ai], [bi, bi] and [ci, ci] and the ith component xi(t) of

the solution converges to one of them. Moreover, by Lemma 3.2.1, we can estimate

the lengths of these intervals. Restated, xi(t) = xi(t; t0; φ), the i-th component of

solution starting from φ ∈ C([−τ, 0], Rn), converges to an interval Ii of length di,

and

di ≤ [wmax
i (∞) − wmin

i (∞)]/ηi, (4.6)

where ηi := min{µi − Li|βii|, Li|βii|}, wmax
i (∞) = limT→∞ wmax

i (T ), wmin
i (∞) =

limT→∞ wmin
i (T ), wmax

i (T ) := sup{wi(t) | t ≥ T}, and wmin
i (T ) := inf{wi(t) | t ≥ T}.

Notably, in (4.6), the magnitude of di depends on the difference between wmax
i (∞)

and wmin
i (∞) which are terms involving non-i components of the solution and can

not be measured without further elaboration. In the following, we employ an upper

bound for wmax
i (∞) and a lower bound for wmin

i (∞), which are definite terms, and

derive a rough estimate on di. From this estimate, we compute more precise upper

(resp. lower) bounds for wmax
i (∞) (resp. wmin

i (∞)) through an iterative process.

This idea for estimating the magnitude of di is illustrated and implemented in the

following proposition.
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Figure 4.1: Configurations for functions F̂i, f̂i, f̌i, F̌i.

Proposition 4.2.1. Assume that conditions (C2c)-(C4c) hold. For each i =

1, 2, · · · , n, there exists a sequence of intervals {I
(k)
i }∞k=0 such that for each k, the ith

component xi(t) of every solution x(t) to system (2.3) converges to I
(k)
i as t → ∞,

and the length d
(k)
i of I

(k)
i satisfies

d
(k)
i ≤ {

i−1
∑

j=1

(|αij | + |βij |)Ljd
(k)
j +

n
∑

j=i+1

(|αij| + |βij|)Ljd
(k−1)
j }/ηi. (4.7)

Proof. We prove the case of βii > 0. Let us define d
(0)
i :=2ρi/Li, for i = 1, 2, · · · , n.

First, we illustrate that the assertion holds for k = 1 and i = 1. Set

W̌
(1)
1 (∞) := −

n
∑

j=2

(|α1j| + |β1j|)ρj + J1, Ŵ
(1)
1 (∞) :=

n
∑

j=2

(|α1j | + |β1j|)ρj + J1.

Notable, W̌
(1)
1 (∞) ≤ wmin

1 (∞) ≤ wmax
1 (∞) ≤ Ŵ

(1)
1 (∞). Recall ηi := min{µi −

Li|βii|, Li|βii|}. We have shown that x1(t) converges to interval I1 of length d1, and

d1 ≤ [wmax
1 (∞) − wmin

1 (∞)]/η1

≤ [Ŵ
(1)
1 (∞) − W̌

(1)
1 (∞)]/η1

= [
n

∑

j=2

|α1j | +
n

∑

j=2

|β1j |]Ljd
(0)
j /η1.
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We may say that x1(t) converges to a closed and bounded interval I
(1)
1 ⊃ I1, whose

length d
(1)
1 satisfies d

(1)
1 ≤ [Σn

j=2|α1j |+Σn
j=2|β1j |]Ljd

(0)
j /η1. Assume that the assertion

holds for k = 1, i = 1, 2, · · · , ℓ − 1, 1 < ℓ ≤ n and xi(t) converges to a closed and

bounded interval I
(1)
i ⊃ Ii of length d

(1)
i ≤ {Σi−1

j=1(|αij|+ |βij|)Ljd
(1)
j + Σn

j=i+1(|αij|+

|βij |)Ljd
(0)
j }/ηi. Let us justify that the assertion also holds for k = 1 and i = ℓ as

follows. Set

W̌
(1)
ℓ (∞) :=

ℓ−1
∑

j=1

min
ξ,η∈I

(1)
j

{αℓjgj(ξ) + βℓjgj(η)} −
n

∑

j=ℓ+1

(|αℓj| + |βℓj|)ρj + Jℓ,

Ŵ
(1)
ℓ (∞) :=

ℓ−1
∑

j=1

max
ξ,η∈I

(1)
j

{αℓjgj(ξ) + βℓjgj(η)} +

n
∑

j=ℓ+1

(|αℓj| + |βℓj|)ρj + Jℓ.

It follows that xℓ(t) converges to an interval I
(1)
ℓ whose length d

(1)
ℓ satisfies

d
(1)
ℓ ≤ [wmax

ℓ (∞) − wmin
ℓ (∞)]/ηℓ

≤ [Ŵ
(1)
ℓ (∞) − W̌

(1)
ℓ (∞)]/ηℓ

= {Σℓ−1
j=1(|αℓj| + |βℓj|)Ljd

(1)
j + Σn

j=ℓ+1(|αℓj| + |βℓj|)Ljd
(0)
j }/ηℓ.

Next, assume that the assertion holds for some (k − 1) and all i = 1, 2, · · · , n.

Namely, xi(t) converges to a closed and bounded interval I
(k−1)
i , whose length satis-

fies d
(k−1)
i ≤ {Σi−1

j=1(|αij|+ |βij|)Ljd
(k−1)
j + Σn

j=i+1(|αij|+ |βij|)Ljd
(k−2)
j }/ηi. Now, let

us verify that the assertion holds for k and i = 1 as well. Set

W̌
(k)
1 (∞) :=

n
∑

j=2

min
ξ,η∈I

(k−1)
j

{α1jgj(ξ) + β1jgj(η)} + J1,

Ŵ
(k)
1 (∞) :=

n
∑

j=2

max
ξ,η∈I

(k−1)
j

{α1jgj(ξ) + β1jgj(η)} + J1.

Thus, x1(t) converges to an interval I
(k)
1 whose length d

(k)
1 satisfies

d
(k)
1 ≤ [wmax

1 (∞) − wmin
1 (∞)]/η1

≤ [Ŵ
(k)
1 (∞) − W̌

(k)
1 (∞)]/η1

= [Σn
j=2|α1j| + Σn

j=2|β1j |]Ljd
(k−1)
j /η1.

By continuing the above process, we can prove that for each i = 2, · · · , n, xi(t)

converges to an interval I
(k)
i whose length is d

(k)
i ≤ {Σi−1

j=1(|αij | + |βij|)Ljd
(k)
j +

Σn
j=i+1(|αij | + |βij |)Ljd

(k−1)
j }/ηi. �
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To establish further dynamical properties for system (2.3), we need the follow-

ing condition which is stronger than condition (C2c).

Condition (C2c)∗: ηi := min{µi−Li|βii|, Li|βii|} >
∑

j 6=i Lj |αij|+
∑

j 6=i Lj |βij|,

for i = 1, 2, · · · , n.

So far, we have considered a single solution to system (2.3), which is evolved

from a given φ at t = t0. From our previous derivations, it can be shown that

every component of the solution converges to a sequence of closed intervals whose

lengths d
(k)
i , i = 1, 2, · · · , n, can be controlled by iterative formula (4.7). Next,

it will be examined that for each i, d
(k)
i converges to zero, as k → ∞, via the

Guass-Seidal iteration approach. Thus, the intervals to which each component of

the solution converges degenerate into a single point. Hence the solution converges

to a singleton.

Theorem 4.2.2. Assume that conditions (C2c)∗, (C3c) and (C4c) hold. Then the

solution x(t) := x(t; t0; φ) of (2.3) evolved from any initial value φ ∈ C([−τ, 0], Rn)

converges to one of the 3n equilibria of the system.

Proof. By Proposition 4.2.1, for each i = 1, 2, · · · , n, we can find an interval

sequence {I
(k)
i }∞k=0 so that xi(t) converges to I

(k)
i whose length satisfies (4.7), for

each k. Below, we shall show that for all i = 1, 2, · · · , n, d
(k)
i converges to zero as k

tends to infinity. Set z
(0)
i := d

(0)
i , and for i = 1, 2, · · · , n,

z
(k)
i := {Σi−1

j=1(|αij| + |βij|)Ljz
(k)
j + Σn

j=i+1(|αij| + |βij|)Ljz
(k−1)
j }/ηi, k ∈ N,

z(k) := (z
(k)
1 , z

(k)
2 , · · · , z(k)

n ), k ∈ N ∪ {0}.

We observe that {z
(k)
i | i = 1, 2, · · · , n} are just the Gauss-Seidal iterations for

solving the linear system

(ML + E)y = 0, (4.8)

M := [mij ]1≤i,j≤n, mii = 0, mij = −|αij | − |βij|, for i 6= j,

L := diag(L1, L2, · · · , Ln),E := diag(η1, η2, · · · , ηn).

Notably, ML + E is strictly diagonal-dominant [4, 74]; indeed, ηi −
∑

j 6=i(|αij| +

|βij |)Lj > 0, for all i = 1, 2, · · · , n, by condition (C2c)∗. Accordingly, z(k) converges

to the unique solution of (4.8), which is zero, as k → ∞.
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Below, let us justify the following inequality:

0 ≤ d
(k)
i ≤ z

(k)
i , for i = 1, 2, · · · , n, k ∈ N ∪ {0}. (4.9)

It is obvious that for i = 1, 2, · · · , n, 0 ≤ d
(k)
i , for k ∈ N ∪ {0} and (4.9) holds for

k = 0. In addition, (4.9) holds for i = 1 and k = 1 since d
(1)
1 ≤ {

∑n
j=2(|α1j | +

|β1j |)Ljd
(0)
j }/η1 ≤ {

∑n
j=2(|α1j | + |β1j |)Ljz

(0)
j }/η1 = z

(1)
1 . We can continue to prove

that (4.9) holds for i = 2, 3 · · · , n and k = 1. Assume that (4.9) holds for all

i = 1, 2, · · · , n and k = ℓ, for some ℓ ≥ 1, then (4.9) also holds for i = 1, k = ℓ + 1

due to that d
(ℓ+1)
1 ≤ {

∑n
j=2(|αℓj|+|βℓj|)Ljd

(ℓ)
j }/η1 ≤ {

∑n
j=2(|αℓj|+|βℓj|)Ljz

(ℓ)
j }/η1 =

z
(ℓ+1)
1 . Assume that (4.9) holds for 0 ≤ k0 − 1 and all i = 1, 2, · · · , n, and k = k0,

i = 1, · · · , (ℓ − 1), then

d
(k0)
ℓ ≤ {Σℓ−1

j=1(|αℓj| + |βℓj|)Ljd
(k0)
j + Σn

j=ℓ+1(|αℓj| + |βℓj|)Ljd
(k0−1)
j }/ηℓ

≤ {Σℓ−1
j=1(|αℓj| + |βℓj|)Ljz

(k0)
j + Σn

j=ℓ+1(|αℓj| + |βℓj|)Ljz
(k0−1)
j }/ηℓ

= z
(k0)
ℓ .

Hence, for each i = 1, 2, · · · , n, d
(k)
i converges to zero as k tends to infinity. There-

fore, each xi(t) converges to a singe point and x(t) converges to a constant which is

an equilibrium, as time tends to infinity. �

4.3 Stability of equilibria

Let us denote by xλ1λ2···λn
the equilibrium lying in Ωλ1λ2···λn

, λi ∈ {l, m, r}. The

stability of all the 3n equilibria of (2.3) can be concluded in the following theorem.

Theorem 4.3.1. Assume that conditions (C2c)∗, (C3c) and (C4c) hold. Then, (i)

every equilibrium xλ1λ2···λn
with λi = “l”, “r”, for all i = 1, 2, · · · , n, is asymptotically

stable; (ii) the equilibrium xm···m is unstable; (iii) every equilibrium xλ1λ2···λn
with

λi = “m” for some i and λj = “l”, “r” for some j, is unstable.

Proof. It can be referred to Fig. 4.2 for the proof of Theorem 4.3.1.

(i) Consider an exterior region Ωλ1λ2···λn
, λi = “l” or “r”, i = 1, 2, · · · , n. We

show that the equilibrium x := (x1, x2, · · · , xn) in Ωλ1λ2···λn
is stable. Note that

for each i, either xi ∈ [řF
i , r̂F

i ] or xi ∈ [ľFi , l̂Fi ]. There exists εi > 0 such that

řF
i − εi > q̃i and ľFi + εi < p̃i, due to that řF

i > q̃i and ľFi < p̃i. We shall illustrate

that for any ε > 0, there exists δ > 0 such that ‖xt − x‖ ≤ ε for all t ≥ t0, for any
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Figure 4.2: Configuration for the proof of Theorem 4.3.1.

φ ∈ C([−τ, 0], Rn) with ‖φ−x‖ ≤ δ. For an ε > 0, we set δ := min{ε, ε1, ε2, · · · , εn}.

For an initial condition φ ∈ C([−τ, 0], Rn) with ‖φ − x‖ ≤ δ, the solution satisfies

xi(s) > q̃i if λi = “r”, and xi(s) < p̃i, if λi = “l”, for all s ∈ [t0 − τ, t0]. It follows

from similar argument as the proof of Proposition 3.2.2 (ii) that xi(t) > q̃i for all

t ∈ [t0 − τ,∞) or xi(t) < p̃i, for all t ∈ [t0 − τ,∞). We define zi(t) := xi(t)− xi, for

i = 1, 2, · · · , n. It follows from (2.3) that

żi(t) = −µizi(t) +

n
∑

j=1

αijg
′
j(ξj(t))zj(t) +

n
∑

j=1

βijg
′
j(ηij(t))zj(t − τij(t))

where ξj(t) is between xj(t) and xj , ηij(t) is between xj(t − τij(t)) and xj , i, j =

1, 2, · · · , n. It can be computed that

Dr|zi(t)| ≤ −µi|zi(t)| +
n

∑

j=1

|αij|g
′
j(ξj(t))|zj(t)| +

n
∑

j=1

|βij|g
′
j(ηij(t))|zj(t − τij(t))|,

for t ≥ t0, where Dr denotes the right-hand derivative. Define N(t) := ‖zt‖ =

max1≤i≤n{maxs∈[t−τ,t] |zi(s)|}. We shall show below that

DrN(t) := lim
h→0+

N(t + h) − N(t)

h
≤ 0, for all t ≥ t0. (4.10)
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For t ≥ t0, let Ĩ(t) := {i : |zi(t)| ≥ |zj(t)|, for all j = 1, 2, · · · , n}, and i(t) :=

min{i ∈ Ĩ(t) : Dr|zi(t)| ≥ Dr|zj(t)|, for all j ∈ Ĩ(t)}. Consider a fixed t > t0, and

denote i(t) by k. If N(t) = |zk(t)| > |zj(t − τ)| for all j = 1, 2, · · · , n, then either

N(t) > |zj(s)| for all j = 1, 2, · · · , n and all s ∈ [t−τ, t) or N(t) = |zi(s)(s)| for some

s ∈ (t − τ, t). For the former case, it can be derived that

Dr|zk(t)| ≤ −µk|zk(t)| +
n

∑

j=1

|αkj|g
′
j(ξj(t))|zj(t)| +

n
∑

j=1

|βkj|g
′
j(ηkj(t))|zj(t − τkj(t))|

≤ [−µk + αkkg
′
k(ξk(t)) +

∑

j 6=k

|αkj|g
′
j(ξj(t)) +

n
∑

j=1

|βkj|g
′
j(ηkj(t))]N(t)

< [−µk + αkkg
′
k(γk) +

∑

j 6=k

|αkj|Lj +

n
∑

j=1

|βkj|Lj ]N(t)

≤ 0,

for all t ≥ t0, where γk = p̃k or q̃k, recalling that

g′
k(p̃k) = g′

k(q̃k) = [µk − (
∑

j 6=i

Lj|αkj| +
n

∑

j=1

Lj|βkj|)]/(αkk + |βkk|).

Thus,

DrN(t) = lim
h→0+

N(t + h) − N(t)

h

= lim
h→0+

|zk(t + h)| − |zk(t)|

h
= Dr|zk(t)| ≤ 0.

For the latter case,

DrN(t) = lim
h→0+

N(t + h) − N(t)

h

= lim
h→0+

N(t) − N(t)

h
= 0.

For the other cases: N(t) = |zi(t − τ)| for some i ∈ {1, 2, · · · , n}; N(t) = |zi(s)|

for some i ∈ {1, 2, · · · , n} and some s ∈ (t − τ, t) with N(t) > |zj(t − τ)| and

N(t) > |zj(t)| for all j = 1, 2, · · · , n, (4.10) can also be justified. Hence, N(t) =

‖zt‖ = ‖xt − x‖ ≤ N(t0) = ‖zt0‖ = ‖xt0 − x‖ = ‖φ− x‖ for all t ≥ t0. Therefore, x

is stable, hence asymptotically stable, in respecting Theorem 4.2.2.

(ii) We shall show that x := x̄mm···m is unstable. We choose an initial value

which is close to the equilibrium x. Then the solution must move away from x =

52



(x̄1, · · · , x̄n). Such an assertion holds mainly because if the ith component xi(t) of

solution remains close to x̄i for all i = 1, , 2, · · · , n, then the magnitude of g′
i(xi(t))

will remain large and yield a contradiction. Notably, for i = 1, 2, · · · , n, g′
i(ξ) >

2µi/αii, for all ξ ∈ [m̂F
i , m̌F

i ], thus there exist κ̂i and κ̌i such that g′(κ̌i) = g′(κ̂i) =

2µi/αii, where κ̌i < m̂F
i < m̌F

i < κ̂i, for all i = 1, 2, · · · , n. Set εi := min{κ̂
i
−

m̌F
i , m̂F

i −κ̌i}, ε := min1≤i≤n{εi}/2. For any δ ∈ (0, ε), we choose the initial condition

φ = (φ1, φ2, · · · , φn) with ‖φ− x‖ < δ, φ(s) ∈ Ω̃mm···m, for all s ∈ [−τ, 0], ‖φ−x‖ =

|φi(0)−xi| for some i ∈ {1, 2, · · · , n} and ‖φ−x‖ > |φj(s)−xj|, for all j = 1, 2, · · · , n,

s ∈ [−τ, 0). Now, let us show that there exist j ∈ {1, 2, · · · , n}, and t1 > t0 such

that xj(t1) > κ̂j or xj(t1) < κ̌j. Assume otherwise that

κ̌i ≤ xi(t) ≤ κ̂i, for all t ≥ t0 − τ, i = 1, 2, · · · , n. (4.11)

Notice that, under the assumption above, g
′

i(xi(t)) ≥ 2µi/αii for all t ≥ t0 − τ and

all i = 1, 2, · · · , n. Let zi(t) = xi(t) − xi, and

B(t) := max
1≤i≤n

{ max
t0−τ≤s≤t

|zi(s)|}. (4.12)

Then B(t0) = max1≤i≤n{|zi(t0)|} > 0 and B(t) > 0 for all t ≥ t0. Let us show that

B(t) = max
1≤i≤n

{|zi(t)|}, for all t ≥ t0, (4.13)

i.e., at least one component of (|z1(s)|, |z2(s)|, · · · , |zn(s)|) will reach the value of

B(t) at time t. If otherwise, there is a t > t0 so that B(t) = |zk(t2)|, for some

k ∈ {1, 2, · · · , n} and some t2 ∈ [t0, t), then either B(t) = zk(t2) or B(t) = −zk(t2).

For the former case,

żk(t2) = −µkzk(t2) +
n

∑

j=1

αkjg
′
j(ξj(t2))zj(t2) +

n
∑

j=1

βkjg
′
j(ηkj(t2))zj(t2 − τkj(t2))

≥ −µkzk(t2) + αkk[2µk/αkk]zk(t2) −
∑

j 6=k

|αkj|g
′
j(ξj(t2))|zj(t2)|

−
n

∑

j=1

|βkj|g
′
j(ηkj(t2))|zj(t2 − τkj(t2))|

≥ [µk −
∑

j 6=k

|αkj|Lj −
n

∑

j=1

|βkj|Lj ]B(t) > 0,

owing to condition (C2c). For the latter case, we can also show that d(−zk)
dt

(t2) ≥

[µk −
∑

j 6=k |αkj|Lj −
∑n

j=1 |βkj|Lj ]B(t) > 0. A contradiction to B(t) = |zk(t2)| with
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t2 ∈ [t0, t) then arises. Thus, (4.13) holds. For any t ≥ t0, we define k(t) := min{j :

|zj(t)| = B(t)}, then

DrB(t) ≥ Dr|zk(t)(t)|

≥ [µk(t) −
∑

j 6=k(t)

|αk(t)j |Lj +
n

∑

j=1

|βk(t)j |Lj ]B(t)

≥ min
1≤i≤n

{µi −
∑

j 6=i

|αij |Lj +
n

∑

j=1

|βij|Lj}B(t).

It follows that B(t) grows unboundedly as t tends to infinity, which yields a contra-

diction to (4.11). We thus conclude that xmm···m is unstable.

(iii) Consider a mixed region Ωλ1λ2···λn
, where I := {i : λi = “m”} 6= ∅ and

E := {i : λi = “l” or “r”} 6= ∅. It will be shown that the equilibrium x :=

(x1, x2, · · · , xn) in Ωλ1λ2···λn
is unstable. We shall choose an initial value which is

close to equilibrium x, then the evolved solution must move away from x. This is due

to that if the ith component remains close to x̄i for all i ∈ I, then the magnitude of

g
′

i(xi(t)) will remain large for all i ∈ I. Moreover, it can be seen that the magnitude

of g
′

j(xj(t)) keeps small for all j ∈ E . In such a situation, there exists some k ∈ I

such that xk(t) will move away from xk; subsequently a contradiction arises. To be

more precise, let us define εi := min{κ̂i − m̌F
i , m̂F

i − κ̌i}, for i ∈ I, and εj := xj − q̃j

if λj = “r”, εj := p̃j − xj if λj = “l”, for j ∈ E , and set ε := min1≤i≤n{εi}/2. For

δ ∈ (0, ε), we choose an initial condition φ satisfying: ‖φ − x‖ < δ, and φj(s) 6= xj ,

for some j ∈ I and some s ∈ [−τ, 0], ‖φ − x‖ = |φk(0) − xk|, for some k ∈ I and

‖φ − x‖ > |φi(s) − xi|, for all i ∈ E and all s ∈ [−τ, 0]. Below, let us claim that

there exist j ∈ I, and some t > t0 such that xj(t) > κ̂j or xj(t) < κ̌j . Assume

otherwise that κ̌i ≤ xi(t) ≤ κ̂i, for all i ∈ I and t ≥ t0 − τ . Note that then

g′
i(xi(t)) ≥ 2µi/αii, for all t ≥ t0 − τ and all i ∈ I. Define B(t) as (4.12) and

J(t) := {j ∈ I : |zj(t)| ≥ |zi(t)|, for all i ∈ I}, j(t) := min{ℓ ∈ J(t) : Dr|zℓ(t)| ≥

Dr|zj(t)|, for all j ∈ J(t)}. There are two possibilities: |zj(t)(t)| ≥ |zi(t)|, for all

t ≥ t0, for all i ∈ E , and |zk(t3)| > |zj(t3)(t3)|, for some t3 > t0, and some k ∈ E . For

the first one, B(t) := maxi∈I{maxt0−τ≤s≤t |zi(s)|}, for all t ≥ t0. Similar to previous

discussion in (ii), we can also show that B(t) = maxi∈I{|zi(t)|}. Subsequently,

B(t) will blow up and yield a contradiction. For the later situation, there exists

s1 ∈ (t0, t3) such that |zj(s)(s)| ≥ |zj(s)| for all j ∈ E and all s ∈ [t0, s1), and

there exists k ∈ E such that |zk(s1)| = |zj(s1)(s1)|, and Dr|zk(s1)| ≥ Dr|zj(s1)(s1)|.

Thereafter, it can be shown that B(s) := maxi∈I{|zi(s)|}, for all s ∈ [t0, s1] as before.
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Let us fix s1 and denote j(s1) by ℓ. There are four possible subcases: subcase (a):

B(s1) = zℓ(s1) = zk(s1) > 0; subcase (b): B(s1) = zk(s1) = −zℓ(s1) > 0; subcase

(c): B(s1) = −zℓ(s1) = −zk(s1) > 0; subcase (d): B(s1) = zℓ(s1) = −zk(s1) > 0.

Let us consider subcase (a). Note that xℓ(t) ∈ [κ̌ℓ, κ̂ℓ], for all t ≥ t0 − τ , and either

xk(t) > q̃k or xk(t) < p̃k, for all t ≥ t0 − τ . We compute that

Dr|zℓ(s1)| − Dr|zk(s1)|

≥ (µk − µℓ)B(s1) + [αℓℓg
′
ℓ(ξℓ(s1)) − αkkg

′

k(ξk(s1))]B(s1) −
∑

j 6=ℓ

|αℓj|LjB(s1)

−
∑

j 6=k

|αkj|LjB(s1) −
n

∑

j=1

[|βℓj|LjB(s1) + |βkj|LjB(s1)]

≥ {(µk − µℓ) + αℓℓ
2µℓ

αℓℓ

− αkk

µk − (
∑

j 6=k |αkj|Lj +
∑n

j=1 |βkj|Lj)

αkk + |βkk|

−[
∑

j 6=ℓ

|αℓj|Lj +
∑

j 6=k

|αkj|Lj)] −
n

∑

j=1

[|βℓj|Lj + |βkj|Lj ]}B(s1)

≥ [µℓ −
∑

j 6=ℓ

|αℓj|Lj −
∑

j=1

|βℓj|Lj ]B(s1) > 0,

which yields a contradiction. Other subcases can be similarly discussed. Hence,

there exist k ∈ I, and t3 > t0 such that xk(t3) > κ̂i or xk(t3) < κ̌i and |xk(t3)−xk| ≥

min{κ̂i−m̌F
i , m̂F

i −κ̌i} > ε. Therefore, there exists ε > 0 such that for any δ ∈ (0, ε),

there is an φ ∈ C([−τ, 0], Rn) with ‖φ−x‖ < δ and ‖xt3 −x‖ > ε, for some t3 > t0.

Thereafter, x is unstable. �

4.4 Numerical examples

We give a numerical example to illustrate the present theory.

Example 4.5.1. Consider the following two-dimensional system with activation

functions g1(ξ) = g2(ξ) = tanh(ξ).

dx1(t)

dt
= −x1(t) + 7g1(x1(t)) + 0.1g2(x2(t)) − 0.5g1(x1(t − 1)) + 0.1g2(x2(t − 1)) − 0.1

dx2(t)

dt
= −x2(t) − 0.2g1(x1(t)) + 8g2(x2(t)) + 0.1g1(x1(t − 1)) + 0.6g2(x2(t − 1)).

Then F̂1(ξ) = −ξ + 7g(ξ) + 0.6, F̌1(ξ) = −ξ + 7g(ξ) − 0.8, F̂2(ξ) = −ξ + 8g(ξ) +

0.9, F̌2(ξ) = −ξ + 8g(ξ) − 0.9; p̃1 = −2.292431670, q̃1 = 2.292431670, p̃2 =

−2.917401094, q̃2 = 2.917401094; m̌F
1 = −0.10003918992, m̌F

1 = 0.1342679254,

55



−10 −5 0 5 10

−10

−5

0

5

10

x
1

x 2

Figure 4.3: Numerical simulation for Example 4.5.1, with solutions evolved from
initial functions at various locations.

m̂F
2 = −0.1293911878, m̂F

2 = 0.1293911878; κ̌1 = −1.238944365, κ̂1 = 1.238944365,

κ̌2 = −1.316957897, κ̂2 = 1.316957897. Herein, κ̌1 and κ̂1 are solutions of g′
1(·) =

2µ1/α11 = 2/7; κ̌2 and κ̂2 are solutions of g′
2(·) = 2µ2/α22 = 2/8. It can be justified

that conditions (C2c)∗, (C3c) and (C4c) hold as follows: condition (C2c)∗ holds

since min{µ1 − L1|β11|, L1|β11|} = 0.5 > L2|α12| + L2|β12| = 0.2 and min{µ2 −

L2|β22|, L2|β22|} = 0.4 > L1|α21| + L1|β21| = 0.3; condition (C3c) holds since

F̌1(q̃1) = 3.766139610 > 0, F̂1(p̃1) = −3.966139610 < 0, F̌2(q̃2) = 4.135951278 > 0

and F̂2(p̃2) = −4.135951278 < 0; condition (C4c) holds since [m̂F
1 , m̌F

1 ] ⊂ [κ̌1, κ̂1]

and [m̂F
2 , m̂F

2 ] ⊂ [κ̌2, κ̌2]; subsequently g′
1(ξ) > 2µ1/α11 for ξ ∈ [m̂F

1 , m̌F
1 ] and

g′
2(ξ) > 2µ2/α22 for ξ ∈ [m̂F

2 , m̌F
2 ]. The Numerical simulation depicted in Fig. 4.3

demonstrates the convergence to four stable equilibria for solutions evolved from

various initial conditions at different locations.
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Chapter 5

Neural Network with

Nearest-neighbor Coupling

In this chapter, we consider system (2.6):

ẋi(t) = −µxi(t) + αgI(xi(t − τI)) + β[gT (xi−1(t − τT )) + gT (xi+1(t − τT ))],

where i (mod N); gI = gT = g are the activation functions of class A with

−1 < g(ξ) < 1, g(0) = 0, g′(ξ) ≤ g′(0) = 1. We shall focus on the effect from scale

of the network (N), self-decay (µ), self-feedback strength (α), coupling strength

(β), delays (τI , τT ), and the characteristic of g upon upon synchrony, convergent

dynamics and oscillation of (2.6). The presentation of this chapter is organized as

follows. In section 5.1, we give a description of the dynamical scenarios extracted

from the present investigations and compare with the existing results. The detailed

arguments for establishing these scenarios are arranged in Sections 5.2 and 5.3. In

Section 5.2, we focus on (2.6) of scale N = 3. Therein, global synchronization

and convergence to three equilibria of (2.6) are investigated in Sections 5.2.1 and

5.2.2 respectively. Hopf bifurcation induced by the transmission delay at the trivial

equilibrium is studied in Section 5.2.3. The investigations in Section 5.2 (including

synchronization, convergence and delay-induced synchronous and asynchronous os-

cillations) can be carried over to system (2.3) of scale N > 3 by our approach. In

particular, in Section 5.3, via a Guass-Seidal argument, we modify the approach in

Section 5.2 to establish global synchronization for (2.3) of scale N ≥ 3. We present

some numerical illustrations in Section 5.4.
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5.1 Description of dynamical scenarios

System (2.6) exhibits rich and a variety of dynamics corresponding to scale of the

network, self-decay rate, self-feedback strength, coupling strength, delays, and char-

acteristics of the activation function. We thus present a descriptive summary on the

dynamical scenarios extracted from our investigation in this section. Some existing

results and conjectures will also be reviewed.

First, we note that small scale may be advantageous for global synchronization

of network (2.6) . In particular, network (2.6) of scale N = 3 has favorable structure

than those of N > 3 in synchronization. Such a phenomenon is related to the

coupling topology of (2.6) (each element of the network is coupled to the nearest

ones). Theorems 5.2.1, 5.3.1 and Remark 5.3.1 depict such a result; in particular,

Theorem 5.3.1 provides a criterion of synchronization for system (2.6), which favors

small N . It is illustrated in Example 5.4.3 that (2.6) attains global synchronization

under parameters satisfying the criterion of Theorem 5.3.1, as N = 3, but not for

N > 3. However, it is generally nontrivial to find examples to show that a network of

scale N1 > 3 is apter to synchronize than another network of scale N2 with N2 > N1.

Nevertheless, there is a conjecture in [75]: when the scale of the network N is odd,

(2.6) can be synchronized if |α| + 2| cos((N − 1)π/N)||β| < 1. This inequality is

obviously stricter for larger N and is thus consistent with our contention. Notably,

while this conjecture provides a delay-independent criterion for synchronization of

network (2.6) of odd scale, both delay-dependent and delay-independent criteria for

synchronization of (2.6) of general scale are derived in our Theorem 5.3.1.

In the following, we focus on (2.6) with N = 3 to demonstrate our results

and answer the conjectures mentioned in Section 2.2. The synchronization for (2.6)

with N > 3 will be addressed in Section 5.3. Let us now summarize the synchrony,

asynchrony, convergence, and oscillations for (2.6) respectively.

Synchrony.

The self-decay of (2.6) can promote synchronization of the network. Indeed, system

(2.6) can be synchronized globally in spite of delays (τI , τT ) if both self-feedback

strength α and coupling strength β are weak and dominated by self-decay rate µ,

cf. Fig. 5.1(d). For α, β in other regions, the magnitude of delays play an impor-

tant role for synchronization of (2.6). If the self-feedback (resp. coupling) strength

is dominated by the self-decay but the coupling (resp. self-feedback) strength is

strong, then the excitatory coupling (resp. inhibitory self-feedback) is advantageous
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for synchronization of system (2.6) under small delay τT (resp. τI), cf. Figs. 5.1(b),

(c). Once self-feedback and coupling strength are both strong, system (2.6) can be

synchronized if the self-feedback is inhibitory, the coupling is excitatory, and both

delays τI and τT are small, cf. Fig. 5.1(a). Detailed arguments of these results are

stated in Theorem 5.2.1 and Remark 5.2.1. Notably, Figs. 5.1(a)-(d) are depicted

from the sufficient (parameter) conditions in Theorem 5.2.1. Since Fig. 5.1(d) de-

scribes delay-independent result, the precise way to read delay-dependent results

in Figs. 5.1(b), (c), is to subtract the region in Fig. 5.1(d) from those regions in

Figs. 5.1(b), (c).

As mentioned previously, system (2.6) can be synchronized if the self-feedback

is inhibitory and strong with small τI , or the coupling is excitatory and strong with

small τT . However, there is a qualitative difference between these two synchrony.

The first synchrony is actually global convergence to the origin, whereas the second

one is global convergence to multiple synchronous equilibria. The precise statement

is given in Remark 5.2.3.

If τI = τT is considered, then stronger results can be obtained. Namely, system

(2.6) can be synchronized if |α−β| < µ in spite of delay or β−α ≥ µ and τI is small.

These parameter regions are depicted in Figs. 5.2(a), (b); notice that union of these

regions are larger than union of the ones in Figs. 5.1(a)-(d). The detailed statements

are summarized in Theorem 5.2.2. These results indicate that system (2.6) without

delays (τI = τT = 0) can be synchronized if β − α > −µ. This can be interpreted

as sufficiently strong inhibitory self-feedback or excitatory coupling can synchronize

system (2.6) without delays. It is then natural to ask whether if sufficiently strong

inhibitory self-feedback or excitatory coupling can also synchronize system (2.3)

with delays. We shall see from Theorem 5.2.8 and Remark 5.2.4 that this depends

on the delay size. Indeed, once the self-feedback strength α (resp. coupling strength

β) is sufficiently stronger than coupling strength (resp. self-feedback strength), then

synchrony for network (2.6)0 with nonzero delays (τI and τT may be distinct) can be

lost and nontrivial asynchronous oscillations are bifurcated from the origin at delay

magnitude τI (resp. τT ) near bifurcation values (there are infinitely many such

values). This highlights the difference between the effects from the self-feedback

or coupling upon synchronization of the coupled network with delays and without

delays.

Now, let us recall the conjecture in [8] (µ = 1 therein): If |β| < |1 − α|

and 0 ≤ τI < τ
(1)
S for some τ

(1)
S , or |β| < (|1 − α|)/2 and 0 ≤ τI < τ

(2)
S for
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Figure 5.1: (a) The region of (α, β) that admits synchronization while τT and τT are
small. (b) The region of (α, β) that admits synchronization in spite of τT while τI

is small. (c) The region of (α, β) that admits synchronization in spite of τI while τT

is small. (d) The region of (α, β) that admits synchronization in spite of τI and τT .

some τ
(2)
S , then (2.6) can be synchronized for all τT ≥ 0. Roughly speaking, these

conditions require that |α| is relatively larger than |β| and τI is small enough; i.e., the

synchronization can be determined merely by the magnitude of coupling (not the sign

of the coupling). This is incompatible with our result that “inhibitory” self-feedback

strength (α < 0, |α| large) is crucial for synchrony of system (2.6). In an example

with parameters satisfying the condition of the conjecture and α > 0 in Section

5.4, we illustrate that there exists a solution which converges to an asynchronous

equilibrium. However, the conjecture may be positive under additional condition

that α < µ (µ = 1 therein). We show in Theorem 5.2.1 that the conjecture holds

for the parameter region in Fig. 5.1(b) with small τI (the smallness restriction on τI

does not correspond to the one in [8]). As the self-feedback strength is strong but τI

is not small, that τI can induce asynchrony provides an evidence to demonstrate that

the magnitude of τI does matter for synchronization of system (2.6), for parameters

in this range.

Convergence and stability.
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Figure 5.2: System (2.6) with τI = τT attains synchronization if (α, β) lies in shaded
region in (a) and τI = τT is small, (b) in spite of delays.

System (2.6) of scale N = 3, with µ = 1 and τI = τT is considered [73]. Therein,

the following results are concluded or addressed.

(i) the system achieves synchronization in spite of delay if |α − β| < 1, cf.

Fig. 5.2(b).

(ii) The system has three equilibria (0, 0, 0), x+ := (u+, u+, u+) and x− :=

(u−, u−, u−) if (α, β) ∈ D1 ∪ D2, where

D1 := {(α, β) : α − β ≤ −1 and α + 2β > 1}, (5.1)

D2 := {(α, β) : |α − β| < 1 and α + 2β > 1}, (5.2)

cf. Figs. 5.3(a), (b); moreover, the trivial equilibrium is unstable and the others are

stable if (α, β) ∈ D2.

(iii) It was conjectured that the generic dynamics for system (2.6) is the con-

vergence to x±, if (α, β) ∈ D2.

With 1 replaced by µ in (5.1), (5.2), we derive the following results including

the unsolved in [73]:

(si) In addition to the above (i), the system achieves global synchronization if

α − β ≤ −µ, as the time lag is small, cf. Fig. 5.2(a).

(sii) x± are stable in spite of delays as (α, β) ∈ D1 and α ≥ 0, β ≥ 0;

(siii) The system achieves global convergence to the equilibria if (α, β) ∈ D1 ∪

D2 and the time lag is small, cf. Fig. 5.4(b).

These results are stated in Theorems 5.2.2, 5.2.3, and 5.2.5 respectively. Fur-

thermore, parallel results to (si), (sii), (siii) can also be derived for system (2.3)
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with τI 6= τT , cf. Theorems 5.2.1, 5.2.3, and 5.2.4 respectively. There is a distinction

between multistability of (2.6) induced from strong excitatory coupling and strong

excitatory self-feedback. An extension of the investigations in [15, 16, 61] or Chapter

4 leads to the convergence to 3n synchronous and asynchronous equilibria if the self-

feedback strength is excitatory and sufficiently stronger than the coupling strength.

Thus, we may say that “strong excitatory self-feedback”-induced multistability of

(2.6) comprises coexistence of synchronous and asynchronous equilibria. On the

other hand, “strong excitatory coupling”-induced multistability of (2.6) consists of

multiple synchronous equilibria.

Oscillation and asynchrony induced by delays.

In the previous description, some criteria for synchrony and convergence of system

(2.6) are dependent on delays (small size is favorable) and some are not. It is natural

to ask how delays affect the dynamics of the system. We shall use the existence of

standing wave as an evidence of asynchrony for system (2.6)0. Roughly speaking,

once the self-feedback (resp. coupling) strength is sufficiently strong, there exist

synchronous and asynchronous nontrivial oscillations bifurcated from the origin as

the corresponding delay τI (resp. τT ) is near certain values (there are infinitely

many such values). Notably, the bifurcation scenario reveals that along the way of

increasing |β| (resp. |α|), synchronous oscillations (resp. asynchronous oscillations)

first appear at delay τT of magnitude (resp. τI) near bifurcation values; after |β|

(resp. |α|) passes certain value, both synchronous and asynchronous oscillations

take place at delay τT (resp. τI) of magnitude near bifurcation values. Detailed

descriptions for these finding are stated in Theorem 5.2.8 and Remark 5.2.4.

Now, let us summarize some coarse-grained description on the collective dy-

namics for (2.6).

1. Small scale of the network, large self-decay, inhibitory self-feedback (resp. excita-

tory coupling) is advantageous for synchronization of (2.6), and the corresponding

delay τI (resp. τT ) is required to be small if |α| (resp. |β|) is large.

2. Inhibitory self-feedback and excitatory coupling lead to distinct synchronous

phases. Namely, strong inhibitory self-feedback promotes the convergence to the

origin, while strong excitatory coupling advances the convergence to nontrivial syn-

chronous equilibria, as delays are small.

3. Sufficiently strong inhibitory self-feedback or excitatory coupling can always

synchronize (2.6) if the network is without delays, but may fail to synchronize if the
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Figure 5.3: System (2.6) with parameters in regions (a) and (b), admits exactly
three synchronous equilibria.

Figure 5.4: System (2.6) with parameters in shaded region in (a) and delays τI and
τT are small, in (b) and τI = τT is small, admits convergence to multiple equilibria.
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network is with delays of substantial magnitude.

4. “Strong excitatory self-feedback”-induced multistability admits coexistence of

synchronous and asynchronous equilibria, whereas “strong excitatory coupling”-

induced multistability admits existence of synchronous equilibria.

5. The delay τI (resp. τT ) can lead to the emergence of synchronous or asynchronous

nontrivial oscillation if the self-feedback strength (resp. coupling) is strong. The

occurrence of synchronous and asynchronous oscillations are in order as the strength

|β| or |α| increases, cf. Remark 5.2.4.

6. The synchronization of network (2.6) may also depend on scale of the network.

There exists a notable distinction in synchronization between systems (2.6) of scale

N = 3 and N > 3.

5.2 Dynamics of the network with N=3

In this section, we focus on (2.6) of scale N = 3 to establish the synchronization

and convergence to multiple synchronous equilibria of the network. Moreover, de-

layed Hopf bifurcation theory is employed to conclude the existence of nontrivial

synchronous and asynchronous oscillations (standing waves) induced by transmis-

sion delay τT . Notably, system (2.6) is a dissipative system, hence solution evolved

from any initial condition φ ∈ C([−τmax, 0], R3) exists for all time t ≥ t0.

5.2.1 Global synchronization

We shall derive criteria for the global synchronization of (2.6); namely,

xi(t) − xi+1(t) → 0, as t → ∞, i = 1, 2,

for every solution (x1(t), x2(t), x3(t)) of (2.6). To this end, we consider the following

difference system obtained from subtracting xi+1-component from xi-component in

(2.6):

żi(t) = −µzi(t)+α[g(xi(t−τI))−g(xi+1(t−τI))]−β[g(xi(t−τT ))−g(xi+1(t−τT ))],

(5.3)

where zi(t) := xi(t) − xi+1(t), i = 1, 2. Obviously, each component of (5.3) satisfies

(3.10) with γ1 = −α, γ2 = β, τ1 = τI , τ2 = τT and w(t) = 0. Moreover, xi(t) and

xi+1(t) are eventually attracted by [−(|α|+2|β|)/µ, (|α|+2|β|)/µ], as seen from the
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equation for xi and xi+1 in (2.6). We denote

α̂ :=

{

α, α ≥ 0,

αL̃, α < 0,
α̌ :=

{

αL̃, α ≥ 0,
α, α < 0,

(5.4)

β̂ :=

{

β, β ≥ 0,

βL̃, β < 0,
β̌ :=

{

βL̃, β ≥ 0,
β, β < 0,

(5.5)

where

L̃ := min{g′(ξ) : ξ ∈ [−(|α| + 2|β|)/µ, (|α|+ 2|β|)/µ]}. (5.6)

Now, let us introduce four different conditions for synchronization of network (2.6).

Condition (S1b): −α̂ + β̌ ≥ 0, τI |α| + τT |β| ≤ µ/(2µ − α̌ + β̂);

restated,






β ≥ (1/L̃)α and τI |α| + τT |β| ≤ µ/(2µ − αL̃ + β, ) if α ≥ 0, β ≥ 0,
τI |α| + τT |β| ≤ µ/(2µ − α + β), if α ≤ 0, β ≥ 0,

β ≥ L̃α and τI |α| + τT |β| ≤ µ/(2µ − α + βL̃), if α ≤ 0, β ≤ 0;

Condition (S2b): α = 0, |β| ≤ µ; or α < 0, |β| ≤ µ, τI ≤ (µ−|β|)/[α(α−2µ)];

Condition (S3b): β = 0, |α| ≤ µ; or β > 0, |α| ≤ µ, τT ≤ (µ−|α|)/[β(β+2µ)];

Condition (S4b): |α| + |β| < µ.

It can be verified that each ith component of (5.3) satisfies condition (H1b) (resp.

(H2b), (H3b)) under condition (S1b) (resp. (S2b), (S4b)), i = 1, 2. According to

Theorem 3.1.9 (resp. Theorem 3.1.10, 3.1.11) with w(t) = 0, we conclude that

zi(t) → 0, as t → ∞, for every zi satisfying (5.3), i = 1, 2. Therefore, network (2.6)

can be synchronized under one of conditions (S1b), (S2b) and (S4b). On the other

hand, each ith component of (5.3) can also be regarded in the form as (3.10) with

γ1 = β, γ2 = −α, τ1 = τT , τ2 = τI and w(t) = 0. Then every ith component system

of (5.3) satisfies condition (H2b) under condition (S3b); hence zi(t) → 0, as t → ∞,

for every zi satisfying (5.3). Accordingly, (2.6) can be synchronized under condition

(S3b). We thus conclude the following result.

Theorem 5.2.1. System (2.6) with N = 3 achieves global synchronization under

one of conditions (S1b)-(S4b).

Notably, (S1b)-(S4b) are all sufficient conditions for synchronization of sys-

tem (2.6). Observe that condition (S4b) is delay-independent; condition (S3b) is
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Figure 5.5: (a) Ω1 = {(α, β) : α ≥ 0, β ≥ 0 and β ≥ (1/L̃)α}; Ω2 = {(α, β) : α ≤
0, β ≤ 0 and β ≥ L̃α}, as g(ξ) = tanh(ξ) and µ = 1.

τI -independent or delay-independent on α-axis with |α| < µ; condition (S2b) is

τT -independent or delay-independent on β-axis with |β| < µ; (S1b) is (τI , τT )-

dependent. In conditions (S1b)-(S3b), the inequalities involving delays τI , τT all hold

if τI and/or τT are small enough. The parameters (α, β) which satisfy the inequali-

ties uninvolved with delays in conditions (S1b)-(S4b) are depicted in Figs. 5.1(a)-(d)

respectively. In particular, let us interpret the region in Fig. 5.1(a) First, notice that

the term L̃ in condition (S1b) actually depends on µ, α, β, cf. (5.6). The parameter

(α, β) satisfying condition (S1b) may lie in the first, second or third quadrants of

(α, β)-plane. Indeed, condition (S1b) is always satisfied if β is positive and α is nega-

tive, i.e., the second quadrant of (α, β)-plane. However, in general, those parameters

(α, β) satisfying condition (S1b) and lying in the first (resp. third) quadrant actu-

ally also lie in the parameter region depicted in Figs. 5.1(c) (resp. (b)), cf. Fig. 5.5.

Note that Fig. 5.1(b) (resp. 5.1(c)) corresponds to condition (S2b) (resp. (S3b))

which provides τT -independent (resp. τI-independent) result. Therefore, precise

reading of the parameter region for the (τI , τT )-dependent result under condition

(S1b) is to subtract the parameter regions satisfying condition (S2b) or (S3b) from

the second quadrant of (α, β)-plane; as depicted in Fig. 5.1(a).

Remark 5.2.1. (i) These parameter regimes indicate that if the self-feedback

(resp.coupling) strength is strong, then the self-feedback has to be inhibitory for

synchronization of system (2.6); on the other hand, if the coupling strength is strong,

then the coupling has to be excitatory for synchronization of system (2.6). (ii) Ex-

tracting from the results of Theorem 5.2.1, it can be observed roughly that large

self-decay, inhibitory self-feedback and excitatory coupling are advantageous for (2.6)

to be synchronized, while τI (resp. τT ) is required to be small if |α| (resp. |β|) is
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large. (iii) It will be shown that as |α| or |β| gets larger, delay τI or τT can generate

asynchrony, cf. Theorem 5.2.8 and Remark 5.2.4, and a numerical illustration in

Example 5.4.2.

If we consider in particular τI = τT for (2.6), then each ith component of (5.3)

satisfies (3.10) with γ1 = −(α − β), τ1 = τI , γ2 = 0 and w(t) = 0. We thus derive

the following result.

Theorem 5.2.2. System (2.6) with N = 3 and τI = τT attains global synchroniza-

tion under one of the following conditions:

(i) α − β ≤ −µ and τI = τT ≤ µ/[(β − α)(2µ − α + β)];

(ii) |α − β| < µ.

Remark 5.2.2. (i) The parameter conditions in Theorem 5.2.2 are depicted in

Figs. 5.2(a), (b) respectively. (ii) If we consider (2.6) without delays, i.e., τI = τT =

0, then by Theorem 5.2.2(i), sufficiently small α (resp. large β) yields synchroniza-

tion of the system. It indicates that strong inhibitory self-feedback or excitatory

coupling can synchronize (2.6) without delays.

5.2.2 Global convergence to multiple equilibria

In this subsection, we first investigate the stability of nontrivial synchronous equi-

libria x± as (α, β) ∈ D1, then we derive criteria for global convergence to these

synchronous equilibria for (2.6) with (α, β) ∈ D1 ∪ D2, where

D1 := {(α, β) : α − β ≤ −µ and α + 2β > µ},

D2 := {(α, β) : |α − β| < µ and α + 2β > µ}.

Theorem 5.2.3. System (2.6) with N = 3 has exactly three equilibria (0, 0, 0),

x+ := (u+, u+, u+) and x− := (u−, u−, u−) with u+ > 0 and u− < 0, if (α, β) ∈

D1 ∪D2. If (α, β) ∈ D1 and α ≥ 0, β ≥ 0, or (α, β) ∈ D2, then x± is stable in spite

of delays.

Proof. The existence of equilibria for (α, β) ∈ D1 ∪ D2 and the stability of x± for

(α, β) ∈ D2 can be established by similar arguments as in [73]. It remains to verify

the stability of x± for (α, β) ∈ D1, and α ≥ 0 and β ≥ 0. The linearization of (2.6)

about x± is given by
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v̇i(t) = −µvi(t) + αg′(u+)vi(t− τI) + βg′(u+)[vi−1(t− τT ) + vi+1(t− τT )], i = 1, 2, 3.

(5.7)

Thus the characteristic equation for (5.7) is

∆1(λ)∆2
2(λ) = 0,

∆1(λ) := µ + λ − αg′(u+)e−λτI − 2βg′(u+)e−λτT ,

∆2(λ) := µ + λ − αg′(u+)e−λτI + βg′(u+)e−λτT .

We substitute λ = ν + iw with w > 0 into ∆1(λ) = 0, and collect the real and

imaginary parts and obtain

ν + µ = g′(u+)[αe−ντI cos(τIw) + 2βe−ντT cos(τT w)],

w = g′(u+)[−αe−ντI sin(τIw) − 2βe−ντT sin(τT w)].

Summing up the square of the equations gives

I1(ν) = I2(ν), (5.8)

where I1(ν) = (ν+µ)2+w2, I2(ν) = [g′(u+)]2[α2e−2ντI +4β2e−2ντT +4αβe−ν(τI+τT ) cos((τI−

τT )w)]. Note that u+ satisfies the stationary equation: −µx + (α + 2β)g(x) = 0

which admits exactly three zeros e1, e2 and 0, where e1 < p∗ < 0, 0 < q∗ < e2, and

g′(p∗) = g′(q∗) = µ/(α + 2β). (5.9)

Obviously, u+ = e2; hence g′(u+) < µ/(α + 2β). If ν ≥ 0, then a contradiction to

(5.8) occurs since I2(ν) < [µ/(α + 2β)]2[α2 + 4β2 + 4αβ] = µ2 ≤ I2(ν). Therefore,

ν < 0. If we substitute λ = ν + iw with w > 0 into ∆2(λ) = 0, it can also be verified

that ν < 0 by similar arguments. The proof is thus completed. �

Theorem 5.2.4. System (2.6) with N = 3 admits exactly three equilibria (0, 0, 0),

x+ := (u+, u+, u+), x− := (u−, u−, u−), and every solution of the system converges

to one of these equilibria, under one of the following conditions:

(i) α ≤ 0, β ≥ 0, α+2β > µ, |α|τI + |β|τT < µ/(2µ−α+β) and |α|τI +2|β|τT < τ ∗,

(ii) β > 0, |α| ≤ µ, α + 2β > µ, τT ≤ (µ− |α|)/[β(β + 2µ)] and |α|τI + 2|β|τT < τ ∗,

where

τ ∗ := min{1/4, [(α+2β)g(q∗)−µq∗]/[4(|α|+2|β|)], [µp∗−(α+2β)g(p∗)]/[4(|α|+2|β|)]}.
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Proof. We only prove the first case, since the others can be treated similarly. We

arrange (2.6) in the form

ẋi(t) = −µxi(t) + αf(xi(t − τI)) + 2βg(xi(t − τT )) + Ei(t), (5.10)

where Ei(t) = β[g(xi−1(t− τT )) + g(xi+1(t− τT ))− 2g(xi(t− τT ))]. Owing to α ≤ 0,

β ≥ 0 and α + 2β > µ, (2.6) has exactly three equilibria (0, 0, 0), x+ and x−, by

Theorem 5.2.3. Moreover, since α ≤ 0, β ≥ 0 and |α|τI + |β|τT < µ/(2µ − α + β),

the system achieves global synchronization according to Theorem 5.2.1. Therefore,

Ei(t) → 0, as t → ∞. Obviously, each component of (5.10) satisfies (3.22) with

γ1 = α, γ2 = 2β, τ1 = τI , and τ2 = τT . Note that p̄γ = p∗, q̄γ = q∗, as γ1 = α,

γ2 = 2β. Under the assumption of this theorem, every ith component of (5.10)

satisfies condition (Ab). According to Theorem 3.2.6, every ith component xi(t)

satisfying (5.10) converges to an element of {u+, 0, u−}. Hence the assertion is

verified. �

If τI = τT in (2.6) is considered in particular, we can modify the convergent

criteria for (2.6) with multiple synchronous equilibria. We give the result without

proof, as it is similar to the one for Theorem 5.2.4.

Theorem 5.2.5. System (2.6) with τI = τT admits exactly three equilibria (0, 0, 0),

x+ := (u+, u+, u+) and x− := (u−, u−, u−) and all solutions of the system converge

to one of these equilibria if (i) (α, β) ∈ D1 and τI = τT < {τ̃ , µ/[(β−α)(2µ−α+β)]},

or (ii) (α, β) ∈ D2 and τI = τT < τ̃ , where

τ̃ :=
min{1/4, [(α + 2β)g(p∗) − µp∗]/[4(α + 2β)], [µq∗ − (α + 2β)g(q∗)]/[4(α + 2β)]}

α + 2β
.

The regions of (α, β) which admit convergence to multiple equilibria in Theo-

rems 5.2.3, 5.2.4 are depicted in Fig. 5.4(a), (b) respectively.

Remark 5.2.3. (i) In Theorem 5.2.3 and 5.2.4, α + 2β > µ and other conditions

yield the existence of multiple equilibria for (2.6). Indeed, if α + 2β is sufficiently

small instead, we can modify Theorem 5.2.3 and 5.2.4 to conclude that the system

achieve global convergence to zero if delays τI and τT are small, cf. Remark 3.2.1.

(ii) As mentioned in Remark 5.2.1(ii) and Remark 5.2.2(ii), inhibitory self-feedback

or excitatory coupling is advantageous for (2.6) to be synchronized. However, there

exist qualitative difference between the situations of strong inhibitory self-back and
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strong excitatory coupling. Roughly speaking, if the self-feedback is inhibitory (resp.

coupling is excitatory) and sufficiently strong, then α + 2β is small (resp. large);

consequently system (2.6) achieves global convergence to single equilibrium (resp.

multiple equilibria) when delays are small.

5.2.3 Synchronous and asynchronous oscillations

In this subsection, we shall present the existence of nontrivial synchronous and

asynchronous periodic solutions for (2.6) induced by transmission delay τT . Similar

discussions can be performed for bifurcation induced by self-feedback delay τI . To

focus on the effect of parameters α and β upon the oscillations induced by delays,

we set the parameter µ = 1 in this subsection. Moreover, we shall seek for the

existence of the standing wave solutions to serve as an evidence for asynchrony of

(2.6). Due to the coupling topology of system (2.6),

S := {(y, y, y) : y ∈ C([−τmax, 0]; R}

is positively invariant under the flow generated by system (2.6). On the other hand,

S and Aσ are both positively invariant under the flow generated by system (2.6)0,

where

Aσ := {(y1, y2, y3) : yi = 0, yj = −yk ∈ C([−τmax, 0]; R), (i, j, k) = σ(1, 2, 3)},

and σ(1, 2, 3) is a permutation of index (1, 2, 3). Hence, it allows us to consider

system (2.6)+ (resp. (2.6)σ
−) which is a restriction of (2.6) on S (resp. (2.6)0 on

Aσ) and consider only evolutions from points in S (resp. Aσ). First, let us focus on

system (2.6)+. Every component of (2.6)+ satisfies

ẏ(t) = −y(t) + αg(y(t− τI)) + 2βg(y(t− τT )). (5.11)

The linearized system at the origin of (5.11) is

v̇(t) = −v(t) + αv(t − τI) + 2βv(t − τT ). (5.12)

Thus the characteristic equation for (5.12) is

∆+(λ) := (1 + λ − αe−λτI − 2βe−λτT ) = 0. (5.13)

We substitute λ = iw with w > 0 into ∆+(λ) = 0 and collect the real and imaginary

parts to yield
{

2β cos(τT w) = 1 − α cos(τIw),
2β sin(τT w) = −w − α sin(τIw).

(5.14)
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Summing up squares of these equations (5.14) gives

Q(w) = 4β2, (5.15)

where Q(w) := w2 + 2α sin(τIw)w − 2α cos(τIw) + α2 + 1. Obviously, for all w ≥ 0,

Q(w) ≤ Q̃(w),

where Q̃(w) := w2+2|α|w+(1+|α|)2 is increasing for all w ≥ 0. Direct computation

gives Q
′

(w) = [2 + 2τIα cos(τIw)]w + 2α(1 + τI) sin(τIw). Then,

Q
′

(w) ≥ P (w), for all w ≥ 0, (5.16)

where P (w) = (2 − 2τI |α|)w − 2|α|(1 + τI). Obviously, if τI |α| < 1, P (w) > 0 for

all w ≥ w̃ := |α|(1 + τI)/(1 − τI |α|) ≥ 0. Therefore, Q(w) is increasing on [w̃,∞)

thanks to (5.16). Now, let us introduce the condition to guarantee the existence of

purely imaginary roots of ∆+(λ) = 0.

Condition (B1b)+: τI |α| < 1 and Q̃(w̃) < 4β2;

i.e.,

4β2 > (1 + |α|)2 + |α|2[(
1 + τI

1 − τI |α|
)2 + 2(

1 + τI

1 − τI |α|
)].

Notice that Q(w) ≤ Q̃(w) for all w ≥ 0; Q̃(w) is increasing for all w ≥ 0; and Q(w)

is increasing on [w̃,∞). Subsequently, (5.15) admits exactly one positive zero, say

ω∗
+, under condition (B1b)+. We thus conclude that

Lemma 5.2.6. There exists exactly one pair of purely imaginary roots, say ±iω∗
+,

for characteristic equation (5.13) under condition (B1b)+. Herein, ω∗
+ is the unique

positive zero to (5.15).

On the other hand, every nontrivial component of (2.6)σ
− satisfies

ẏ(t) = −y(t) + αg(y(t− τI)) − βg(y(t − τT )). (5.17)

The linearized system at the origin of (5.17) is

v̇(t) = −v(t) + αv(t − τI) − βv(t − τT ). (5.18)

Then the characteristic equation for (5.18) is

∆−(λ) := (1 + λ − αe−λτI + βe−λτT ) = 0. (5.19)
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We substitute λ = iw with w > 0 into ∆−(λ) = 0 and collect the real and imaginary

parts and obtain
{

−β cos(τT w) = 1 − α cos(τIw),
−β sin(τT w) = −w − α sin(τIw).

(5.20)

Summing up the square of equations (5.20), we get

Q(w) = β2. (5.21)

Now, let us introduce the condition to guarantee the existence of purely imaginary

roots for ∆−(λ) = 0.

Condition (B1b)−: τI |α| < 1 and Q̃(w̃) < β2;

i.e.,

β2 > (1 + |α|)2 + |α|2[(
1 + τI

1 − τI |α|
)2 + 2(

1 + τI

1 − τI |α|
)].

Lemma 5.2.7. There exists exactly one pair of purely imaginary roots, say ±iω−,

for characteristic equation (5.19) under condition (B1b)−. Herein, ω∗
− is the unique

positive zero to (5.21).

To find the value of τT such that ±iω∗
± are the purely imaginary roots of

∆±(λ) = 0, we divide the second equation by the first of (5.14) or (5.20). Then

tan(τT w) = S(w)/C(w),

S(w) := −w − α sin(τIw),

C(w) := 1 − α cos(τIw).

Let us define

η±
k :=

1

ω∗
±















3π/2 + 2(k − 1)π, if C(ω∗
±) = 0, S(ω∗

±) < 0,
π/2 + 2(k − 1)π, if C(ω∗

±) = 0, S(ω∗
±) > 0,

tan−1(S(ω∗
±)/C(ω∗

±)) + 2kπ, if C(ω∗
±) > 0,

tan−1(S(ω∗
±)/C(ω∗

±)) + (2k − 1)π, if C(ω∗
±) < 0.

(5.22)

Herein, η±
k is positive and ∆±(λ) = 0 has exactly one pair of purely imaginary roots

±ω∗
± at the bifurcation value τT = η±

k . To apply the Hopf bifurcation theory, it

suffices to verify the transversality condition:

Condition (B2b)±: [R(ω∗
±, η±

k )]2 + [I(ω∗
±, η±

k )]2 6= 0, and Λ(ω∗
±) 6= 0,
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where

R(ω, τT ) := 1 + τT + α(τI − τT ) cos(τIw),

I(ω, τT ) := τT w − α(τI − τT ) sin(τIw),

Λ(ω) := [1 + ατI cos(τIω)]ω2 + α(1 + τI) sin(τIω)ω.

Theorem 5.2.8. Assume that conditions (B1b)+ and (B2b)+ (resp. (B1b)− and

(B2b)−) hold for some fixed k ∈ N. The Hopf bifurcation occurs at τT = η+
k (resp.

τT = η−
k ), and a nontrivial synchronous periodic solution (resp. standing wave

solution) is bifurcated from the zero solution of (2.6) (resp. (2.6)0).

Proof. We only prove the first case. The others can be verified similarly. First, we

derive that

∂

∂λ
∆+(λ)|λ=iω∗

+,τT =η+
k

= {1 + ατIe
−λτI + 2βτT e−λτT }|λ=iω∗

+,τT =η+
k

= {1 + ατIe
−λτI + τT (1 + λ − αe−λτI )}|λ=iω∗

+,τI=η+
k

= R(ω∗
+, η+

k ) + iI(ω∗
+, η+

k ).

Thus, ∂
∂λ

∆+(λ)|λ=iω∗

+,τT =η+
k

6= 0, under condition (B2)+; hence there exists some

δ > 0 and a smooth function λ : (η+
k − δ, η+

k + δ) → C such that ∆+(λ(τT )) = 0 and

λ(η+
k ) = iω∗

+. Differentiating ∆+(λ(τT )) = 0 with respective to τT at τT = η+
k , we

obtain

λ′(η+
k ) =

−2βe−λτT λ

1 + ατIe−λτI + 2βτT e−λτT
|λ=iω∗

+,τT =η+
k

=
Q1 + iQ2

W1 + iW2
,

where Q1 = (ω∗
+)2 + α sin(τIω

∗
+)ω∗

+, Q2 = −ω∗
+ + α cos(τIω

∗
+)ω∗

+, W1 = 1 + η+
k +

α(τI − η+
k ) cos(τIω

∗
+) and W2 = η+

k ω∗
+ − α(τI − η+

k ) sin(τIω
∗
+). Therefore,

Reλ′(η+
k )

= {Q1W1 + Q2W2}/(W 2
1 + W 2

2 )

= {[1 + ατI cos(τIω
∗
+)](ω∗

+)2 + α(1 + τI) sin(τIω
∗
+)ω∗

+}/(W 2
1 + W 2

2 )

6= 0,

under condition (B2)+. �

Remark 5.2.4. (i) In Theorem 5.2.8, condition (B1b)± plays the dominant ones,

since condition (B2b)± is apter to be met. Basically, condition (B1b)± requires
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that τI is small and |β| is relatively larger than |α|. Notably, the restriction on

magnitude of τI can be relaxed. Observe that the function Q(w) in (5.15) and (5.21)

is dominated by the leading term w2, as w is large. Therefore, if |β| is sufficiently

large, there exist exactly one positive zero for (5.15) and (5.21) given arbitrarily

fixed τI and α. Accordingly, large |β| is advantageous for Hopf bifurcation to take

place, hence synchronous or asynchronous oscillations induced by transmission delay

τT . (ii) Obviously, (B1b)+ is weaker than (B1b)−. We thus see that the τT -induced

synchronous oscillations appear ahead of the asynchronous oscillations along the

way of increasing |β|. (iii) Similar formulations and arguments show that large

|α| is advantageous to the occurrence of synchronous or asynchronous oscillations

induced by transmission delay τI . In contrast to (ii), the synchronous oscillations

appear behind the asynchronous oscillations, along the way of increasing |α|.

If system (2.6) of scale N > 3 is considered, the treatments in this section are

still valid. Indeed, Hopf bifurcation for synchronous periodic solution of system (2.6)

with general scale N can be analyzed through the reduced system (2.6)+. On the

other hand, bifurcation analysis for anti-phase motion can be performed for system

(2.6) of even scale through the reduced system (2.6)σ
−.

5.3 Extension to N ≥ 3

In this subsection, we shall discuss the synchronization for system (2.6) of general

scale N ≥ 3. The difference between the synchrony of system (2.6) of scale N = 3

and N > 3 will be addressed in Remark 5.3.1(ii). Notably, by arguments similar to

the ones in Section 5.2, the convergence to multiple synchronous equilibria for (2.3)

of scale N ≥ 3 can also be established.

First, let us introduce the following conditions for global synchronization.

These conditions can be regarded as the N -scale version of conditions (S1b)-(S4b)

in Section 5.2, respectively.

Condition (S1b)∗: −α̂ + β̌ ≥ 0, µ − α̂ + β̌ > (N − 3)|β|, τI |α| + τT |β| < τ
(1)
N ;

more precisely,











β ≥ (1/L̃)α, µ − α + βL̃ − (N − 3)|β| > 0 and τI |α| + τT |β| < τ
(1)
N if α ≥ 0, β ≥ 0,

µ − αL̃ + βL̃ − (N − 3)|β| > 0 and τI |α| + τT |β| < τ
(1)
N , if α ≤ 0, β ≥ 0,

β ≥ L̃α, µ − αL̃ + β − (N − 3)|β| > 0 and τI |α| + τT |β| < τ
(1)
N , if α ≤ 0, β ≤ 0,
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where

τ
(1)
N := min{

(|α| + |β|)µ

(2µ − α̌ + β̂)[|α| + (N − 2)|β|]
,
µ − α̂ + β̌ − (N − 3)|β|

2µ − α̌ − α̂ + β̂ + β̌
}.

Condition (S2b)∗: α < 0, µ − αL̃ > 2|β| and τI < τ
(2)
N , where

τ
(2)
N := min{

µ

(2µ − α)(|α| + 2|β|)
,

µ − αL̃ − 2|β|

α(α + αL̃ − 2µ)
}.

Condition (S3b)∗: β > 0, (|α| + |β|)(µ − |α|) > (N − 3)|αβ|, µ + βL̃ − |α| >

(N − 3)|β| and τT < τ
(3)
N , where

τ
(3)
N := min{

(|α| + |β|)(µ − |α|) − (N − 3)|αβ|

β(2µ + β)[|α| + (N − 2)|β|]
,
µ + βL̃ − |α| − (N − 3)|β|

β(β + βL̃ + 2µ)
}.

Condition (S4b)∗: |α| + 2|β| < µ.

Theorem 5.3.1. System (2.6) of scale N ≥ 3 achieves global synchronization under

one of conditions (S1b)∗-(S4b)∗.

Proof. The arguments for the τT -dependent results under condition (S1b)∗ or (S3b)∗

are different from the ones for the τT -independent results under condition (S2b)∗ or

(S4b)∗. First, let us consider that case that condition (S1b)∗ holds. The difference

system of (2.6) can be written as follows:

żi(t) = −µzi(t) + α[g(xi(t − τI)) − g(xi+1(t − τI))] − β[g(xi(t − τT )) − g(xi+1(t − τT ))]

+wi(t), i = 1, · · · , N, (5.23)

where zi(t) := xi(t)−xi+1(t), wi(t) = −βΣj∈Ji
[g(xj(t−τT ))−g(xj+1(t−τT ))], where

Ji := {1, · · · , N} \ {i, i − 1, i + 1 (mod N)}. Then each ith equation of (5.23) is of

the form in (3.10) with γ1 = −α, γ2 = β, τ1 = τI , τ2 = τT , and satisfies condition

(H1b). According to Theorem 3.1.9, every ith component zi(t) of (5.23) converges

to some interval [−ρi, ρi] =: Ii, as t → ∞; moreover,

0 ≤ ρi ≤ |wi|
max(∞)/η,

where

η := µ − α̂ + β̌ − (τI |α| + τT |β|)(2µ − α̌ − α̂ + β̂ + β̌),
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and α̂, α̌, β̂, β̌ are as defined in (5.4), (5.5) for real numbers α, β. We shall show that

all ρi are equal to zero; consequently, zi(t) converges to a singleton and the assertion

thus follows. Now let us illustrate that for each i, there exists a sequence {ρ
(k)
i }∞k=0

with ρ
(k)
i ≥ ρi for all k and zi(t) converges to [−ρ

(k)
i , ρ

(k)
i ] as t → ∞, for each k. We

shall construct ρ
(k)
i to satisfy

ρ
(0)
i := 2(N − 3)|β|/η, i = 1, · · · , N,

and for k ≥ 1,































ρ
(k)
1 = ΣN−1

j=3 |β|ρ
(k−1)
j /η,

...

ρ
(k)
i = (Σi−2

j=1|β|ρ
(k)
j + ΣN

j=i+2|β|ρ
(k−1)
j )/η,

...

ρ
(k)
N = ΣN−2

j=2 |β|ρ
(k)
j /η.

The construction is similar to Proposition 4.2.1 and is sketched as follows. If such

ρ
(k)
i , for k = 1, · · · , n − 1, i = 1, · · · , N and k = n, i = 1, · · · , ℓ − 1 < N have been

defined, then |wℓ(t)| = |−βΣj∈Jℓ
[g(xj(t−τT ))−g(xj+1(t−τT ))]| ≤ βΣj∈Jℓ

|zj(t−τT )|.

Hence,

0 ≤ ρℓ ≤ |wℓ|
max(∞)/η ≤ (Σℓ−2

j=1|β|ρ
(n)
j + ΣN

j=ℓ+2|β|ρ
(n−1)
j )/η.

We observe that {ρ
(k)
i | i = 1, 2, · · · , n} are exactly the Gauss-Seidal iteration for

solving the linear system

Mx = 0, (5.24)

where M := ηIN + circ(0, 0,−|β|, · · · ,−|β|, 0). Herein,

circ(ξ0, ξ1, · · · , ξn−1) =











ξ0 ξ1 · · · ξn−1

ξn−1 ξ0 · · · ξn−2
...

...
...

...
ξ1 ξn−1 · · · ξ0











,

where ξj is a real number, j = 0, 1, · · · , n − 1. Notably, M is strictly diagonal

dominant, cf. [4, 74] under condition (S1b)∗; hence η− (N −3)|β| > 0. Accordingly,

(ρ
(k)
1 , · · · , ρ

(k)
N ) converges to the unique solution of (5.24), which is zero, as k → ∞.

Thus for each i, sequence {ρ
(k)
i } converge to zero as k → ∞. Consequently, every

component of the solution to (5.23), hence the solution itself, converges to zero.
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For the case that condition (S3b)∗ holds, each component of (5.23) satisfies

(3.10) with γ1 = β, γ2 = −α, τ1 = τT , τ2 = τI and satisfies condition (H2b). The

assertion then follows from Theorem 3.1.10.

Now, let us justify the case of condition (S2b)∗. Note that the difference system

derived from (2.6) can be regarded as another form different from (5.23) as follows:

żi(t) = −zi(t) + α[g(xi(t − τI)) − g(xi+1(t − τI))] + wi(t), i = 1, · · · , N, (5.25)

where wi(t) = β[g(xi−1(t − τT )) − g(xi(t − τT )) + g(xi+1(t − τT )) − g(xi+2(t − τT ))].

Then (5.25) satisfies (3.10) with γ1 = −α, γ2 = 0, τ1 = τI and satisfies condition

(H2b) under condition (S2b)∗. According to Theorem 3.1.10, every zi of (5.25)

converges to interval some [−ρ̃i, ρ̃i]; moreover,

0 ≤ ρ̃i ≤ |wi|
max(∞)/η̃,

where

η̃ := 1 − αL̃ + τIα(2 − α − αL̃).

The proof then follows process parallel to the first case of condition (S1b)∗, hence is

omitted.

For the case of condition (S4b)∗, each zi of (5.25) can be regarded as in the

form (3.10) with γ1 = −α, γ2 = 0, τ1 = τT and satisfies condition (H3b). The

assertion holds by Theorem 3.1.11. �

Remark 5.3.1. (i) If N is large, then large µ and negative α of large magnitude

are advantageous for conditions (S1b)∗-(S3b)∗. By Theorem 5.3.1, it turns out that

system (2.6) can be synchronized if both magnitude of α and β are small enough.

Otherwise, strong inhibitory self-feedback play an important factor for synchroniza-

tion of (2.6) if delays are small. (ii) If N = 3, the difference equation derived from

(2.6) is nearly a decoupled system, cf. (5.3). If N > 3, the difference equation derived

from (2.6) is a coupled system, cf. (5.23) or (5.25). Such a distinction between the

structure of difference equations is the major reason for the disparity of synchrony

for (2.6) of scale N = 3 and N > 3. In fact, Example 5.4.3 illustrates that under the

same parameters, (2.6) can be synchronized globally as N = 3, but not as N > 3.

5.4 Numerical examples

We present four examples in this section. In Example 5.4.1, we illustrate the dy-

namics of synchronous oscillation. Example 5.4.2 demonstrates a transition from
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convergence of multiple synchronous equilibria to asynchronous oscillation as trans-

mission delay τT increases. Example 5.4.3 shows that (2.6) of scale N = 3 with

certain parameters is synchronous, but (2.6) of scale N = 4 with the same parame-

ters is asynchronous. In Example 5.4.4, for some parameters satisfying the condition

of the conjecture in [8] and α > 0, we illustrate that there exists a solution which

converges to an asynchronous equilibrium.

Example 5.4.1. Consider (2.6) with µ = 1, α = −0.1, β = −0.9, τI = 0.001,

τT = 8.2, N = 3. The parameter (α, β) = (−0.1,−0.9) lies in Fig. 5.1(b), and

condition (S2b) is met for τI = 0.001; hence the system can be synchronized in spite

of transmission delay τT , according to Theorem 5.2.1. In addition, the parameters

and delays satisfy condition of Theorem 5.2.8; therefore, there exist a nontrivial

synchronous periodic solution induced by τT near τT = 8.178. Fig. 5.6 illustrates

that the solution of (2.6) tends to a synchronous periodic orbit as t → ∞; in the

panels, three different colors represent the evolutions of three components x1, x2, x3.
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Figure 5.6: An orbit of (2.6) with µ = 1, α = −0.1, β = −0.9, τI = 0.001, τT = 8.2,
which is evolved from φ(t) = (0.8,−0.9, 1). There exists a synchronous limit cycle.

Example 5.4.2. Consider (2.6) with µ = 1, N = 3, α = 0.9, β = 2, τI =

0.001, τT = 0.001 or 1.3. If τT = 0.01, the system satisfies condition (S3b), hence

achieves global synchronization. Moreover, the system satisfies the assumptions of

Theorem 5.2.3 and 5.2.4 (ii), hence the system achieves global convergence to three

synchronous equilibria where the nontrivial ones are stable. Fig. 5.7(a) illustrates

that the solutions plotted in blue converge to nontrivial stable equilibria; and the

solution plotted in red converges to zero. Evolution for each component of the
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solution which converges to zero is illustrated in Fig. 5.7(b). If considering τT = 1.3

instead, by Theorems 5.2.3 and 5.2.8, the nontrivial equilibria remain stable, but an

asynchronous periodic solution is bifurcated from the origin. Fig. 5.7(c) illustrates

that coexistence of asynchronous periodic oscillation plotted in red and two stable

synchronous equilibria. Evolution of each component of this oscillation is illustrated

in Fig. 5.7(d).
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Figure 5.7: Consider µ = 1, α = 0.9, β = −2, τI = 0.001. (a) Solutions of
(2.6) with τT = 0.001 evolved from various initial values converges to one of the
three equilibria. (b) Evolution of three components of the solution plotted in red
in (a). (c) Coexistence of asynchronous periodic oscillation plotted in red and two
stable synchronous equilibria for (2.6) with τT = 1.3. (d) The evolution of three
components of the oscillation plotted in red in (c).

Example 5.4.3. Consider (2.6) with µ = 1, α = 0, β = 1, τI = 0.01, τT = 10. Such

a system satisfies condition (S2b), hence can be synchronized as N = 3, according

to Theorem 5.2.1. In addition, the synchronous phase contains at least two stable
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equilibria, according to Theorem 5.2.3, since this (α, β) lies in region D1. However,

Fig. 5.8 illustrates that as N = 4, there exists an asynchronous limit cycle.

Example 5.4.4. Consider system (2.6) with parameters µ = 1, α = 6, β = −2,

and delays τI = 0, τT = 5. These parameters and delays satisfy the condition of

the conjecture in [8], but there exists a solution which converges to an asynchronous

equilibrium, cf. Fig. 5.9
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Figure 5.8: Asynchronous limit cycle of (2.6) with µ = 1, α = 0, β = 1, τI = 0.01,
τT = 10 and N = 4. The orbit is evolved from (0.8,−0.9, 0.1, 0.34).
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Figure 5.9: The orbit evolved from (0.8,−0.9, 1) converges to an asynchronous equi-
librium of system (2.6) with parameters µ = 1, α = 6, β = −2, and delays τI = 0,
τT = 5.
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Chapter 6

Synchronization and Oscillation

for a System Comprising Two

Subnetworks with Loop Structure

In this chapter, we consider system (2.8):















ẋi(t) = −µixi(t) + αig(xi−1(t − τI)), i = 1, 2 · · · , K − 1 (mod K),
ẋK(t) = −µKxK(t) + αKg(xK−1(t − τI)) + cg(yK(t − τT )),
ẏi(t) = −µiyi(t) + αig(yi−1(t − τI)), i = 1, 2 · · · , K − 1 (mod K),
ẏK(t) = −µKyK(t) + αKg(yK−1(t − τI)) + cg(xK(t − τT )),

where g is an activation function of class A with g(0) = 0. We set µi = 1, αi = 1

for all i, −1 < g(ξ) < 1 and focus on the effect of dynamics for (2.8) from the

gain of response function (L), the coupling strength between two loops (c), the

internal delay (τI) and the transmission delay (τT ). The presentation of this chapter

is organized as follows. Global synchronization, anti-phase motion, convergence to

trivial equilibrium are presented in Sections 6.1, 6.2, 6.3 respectively. Stability of

nontrivial equilibria, their basins of attraction and convergence to multiple equilibria

are summarized in Section 6.4. Hopf bifurcation induced by the internal delay at

the trivial equilibrium is studied in Section 6.5. In Section 6.6, we summarize

the dynamic scenarios corresponding to various coupling strength and delays. We

present some numerical illustrations in Section 6.7.
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6.1 Global synchronization for the coupled K-loops

In this section, we shall derive both transmission τT -dependent and τT -independent

criteria for (2.8) to attain global synchronization; that is

xi(t) − yi(t) → 0, as t → ∞, for all i = 1, · · · , K

for solution (x1(t), · · · , xK(t), y1(t), · · · , yK(t)) of (2.8), starting from arbitrary ini-

tial condition. For this purpose, we shall consider the following difference system of

(2.8):
{

żi(t) = −zi(t) + wi(t), i = 1, · · · , K − 1,
żK(t) = −zK(t) − c[g(xK(t − τT )) − g(yK(t − τT ))] + wK(t).

(6.1)

where zi(t) = xi(t) − yi(t), i = 1, · · · , K; wi(t) = g(xi−1(t − τI)) − g(yi−1(t − τI)),

i = 1, · · · , K (mod K). Notice that both xK(t) and yK(t) are eventually attracted

by [−1 − |c|, 1 + |c|], as seen from the equation for xK and yK in (2.8) (with αi, ρ

set to one). We denote

L̃c := min{g
′

(ξ) : ξ ∈ [−1 − |c|, 1 + |c|]}.

Obviously, every component of (6.1) is of the form (3.1). More precisely, the first

K − 1 components are in the form of (3.9) and the Kth component is in the form

of (3.1) with β = c. Now, we introduce the following τT -dependent condition for

global synchronization of (2.8):

Condition (S1a): c > 0, τT ≤ 1/[L(2 + cL)(1 + c)], and 1 + cL̃c − τT cL(2 +

cL + cL̃c) > LK .

The second inequality in condition (S1a) matches the second inequality in condi-

tion (H1a) with |wi|
max(t0) ≤ 2, for all i. The third inequality in condition (S1a)

is needed for contraction of sequence of intervals in the following Theorem 6.1.2.

Obviously, under condition (S1a), the Kth component of (6.1) satisfies condition

(H1a). By Theorem 3.1.4 and Corollary 3.1.8, there exist K intervals Ii := [−ai, ai],

i = 1, · · · , K, to which zi(t) converges respectively. Moreover,
{

ai ≤ |wi|
max(∞), i = 1, 2 · · · , K − 1,

aK ≤ |wK |max(∞)/[1 + cL̃c − τT cL(2 + cL + cL̃c)].
(6.2)

By the similar arguments for Proposition 4.2.1 or Theorem 5.3.1, we can derive more

precise estimates on ai through an iterative process. We thus give the following

proposition without the proof.
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Proposition 6.1.1. Assume that condition (S1a) holds. Then for any i = 1, · · · , K,

there exists a sequence of intervals {a
(k)
i }∞k=1 such that for each k, the ith component

zi(t) of every solution to (6.1) converges to I
(k)
i := [−a

(k)
i , a

(k)
i ] as t → ∞, and a

(k)
i

satisfies










0 ≤ a
(k)
1 = La

(k−1)
K ,

0 ≤ a
(k)
i = La

(k)
i−1, i = 2, · · · , K − 1,

0 ≤ a
(k)
K = La

(k)
K−1/[1 + cL̃c − τT cL(2 + cL + cL̃c)],

(6.3)

where a
(0)
K := 2/L.

So far, we have shown that every component of arbitrary solution to system

(6.1) converges to a sequence of closed intervals whose lengths 2a
(k)
i can be controlled

by iterative formula (6.3). Next, it will be examined that for each i, a
(k)
i converges to

zero as k → ∞. Thus the interval to which each component of the solution converges

degenerates into a single point. One can then conclude that system (6.1) achieves

global convergence to zero; accordingly system (2.8) attains global synchronization.

Such arguments are implemented in the following theorem.

Theorem 6.1.2. The coupled K-loops (2.8) attain global synchronization under

condition (S1a).

Proof. Under condition (S1a), a
(k)
1 are decreasing with respective to k, since a

(j+1)
1 =

La
(j)
K = L2a

(j)
K−1/[1+cL̃c−τT cL(2+cL+cL̃c)] = LKa

(j)
1 /[1+cL̃c−τT cL(2+cL+cL̃c)] <

a
(j)
1 . By similar arguments, it can also be shown that a

(k)
i are decreasing with

respective to k for i = 2, · · · , K. Suppose a
(k)
i → ãi, as k → ∞, for i = 1, · · · , K.

By (6.3), it follows that






0 ≤ ã1 = LãK ,
0 ≤ ãi = Lãi−1, i = 2, · · · , K − 1,

0 ≤ ãK = LãK−1/[1 + cL̃c − τT cL(2 + cL + cL̃c)].
(6.4)

Subsequently, 0 ≤ ã1 = LK ã1/[1 + cL̃c − τT cL(2 + cL + cL̃c)], and it yields that

ã1 = ã2 = · · · = ãK = 0 under condition (S1a). This completes the proof.

Applying the same treatment as Theorem 6.1.2 and using Theorems 3.1.5,

3.1.6, we can derive criteria which are τT -dependent as c < 0 and τT -independent

respectively, for synchronization of (2.8); namely

Condition (S2a): −1/L < c < 0, τT ≤ (1 + cL)/[L(2 + cL)(1 + |c|)] and

1 + cL + τT cL(2 + cL + cL̃c) > LK .
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Condition (S3a): 0 < L < 1 and |c| ≤ 1/L − 1.

Theorem 6.1.3. The coupled K-loops (2.8) attains global synchronization under

condition (S2a) or (S3a).

It is necessary that L < 1 for condition (S2a), but not for condition (S1a).

Therefore, if L > 1, synchronization for (2.8) is apt to occur for excitatory coupling

(c > 0). On the other hand, in Section 6.2, it will be seen that anti-phase motion

for (2.8) is apt to take place under inhibitory coupling (c < 0), if L > 1. If L < 1,

then the sign of c is not that deterministic in these conditions.

Conditions (S1a) and (S2a) are dependent on τT and favor small τT , but are

independent of τI . In Section 6.5, we shall show that, under condition (S1a) and

some additional conditions, there exists nontrivial synchronous periodic solution

induced by τI . In addition, it will be shown that (2.8) actually achieves global

convergence to the trivial equilibria under condition (S3a).

Notably, the third inequality in conditions (S1a), (S2a) become more difficult

to hold if L > 1 and K (the subnetwork size) is large. Thus, it is well possible that

synchronization may be lost, when the sub-network size is too large.

6.2 Anti-phase motion for the coupled K-loops

In this section, we denote by (2.8)0 system (2.8) with odd activation functions g in

class A, ie., g also satisfies g(−ξ) = −g(ξ), for all ξ ∈ R. We shall derive criteria

for (2.8)0 to admit global anti-phase motion; that is,

xi(t) + yi(t) → 0, as t → ∞, for all i = 1, · · · , K,

for solution (x1(t), · · · , xK(t), y1(t), · · · , yK(t)) of (2.8), starting from any initial

condition. We set ỹi(t) = −yi(t), then from (2.8), we obtain















ẋi(t) = −xi(t) + g(xi−1(t − τI)), i = 1, 2 · · · , K − 1 (mod K),
ẋK(t) = −xK(t) + g(xK−1(t − τI)) − cg(ỹK(t − τT )),
˙̃yi(t) = −ỹi(t) + g(ỹi−1(t − τI)), i = 1, 2 · · · , K − 1 (mod K),
˙̃yK(t) = −ỹK(t) + g(ỹK−1(t − τI)) − cg(xK(t − τT )).

(6.5)

Showing that (2.8)0 achieves global anti-phase motion amounts to justifying that

(6.5) achieve global synchronization. By employing similar treatment in Section

6.1, we can conclude the following result.
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Theorem 6.2.1. The coupled K-loops (2.8)0 attains global anti-phase motion under

condition (S3a) or (AP1) or (AP2), where

Condition (AP1): c < 0, τT ≤ 1/[L(2 − cL)(1 − c)] and 1 − cL̃c + τT cL(2 −

cL − cL̃c) > LK ,

Condition (AP2): 1/L > c > 0, τT ≤ (1 − cL)/[L(2 − cL)(1 + |c|)] and

1 − cL − τT cL(2 − cL − cL̃c) > LK .

6.3 Global convergence to trivial equilibrium

In this section, we shall derive both τT -independent and τT -dependent criteria for

system (2.8) to admit global convergence to trivial equilibrium. For this purpose,

we rewrite (2.8) as follows:















ẋi(t) = −xi(t) + wi(t), i = 1, 2 · · · , K − 1 (mod K),
ẋK(t) = −xK(t) + cg(xK(t − τT )) + wK(t) + vK(t),
ẏi(t) = −yi(t) + w̃i(t), i = 1, 2 · · · , K − 1 (mod K),
ẏK(t) = −yK(t) + cg(yK(t − τT )) + w̃K(t) + ṽK(t).

(6.6)

where wi(t) = g(xi−1(t − τI)), w̃i(t) = g(yi−1(t − τI)), i = 1, 2 · · · , K; vK(t) =

c[g(yK(t − τT )) − g(xK(t − τT ))], and ṽK(t) = c[g(xK(t − τT )) − g(yK(t − τT ))]. We

impose the following condition:

Condition (Ca):







0 < |c| < 1/L,
τT ≤ min{1/[L(2 + |c|L)(1 + |c|)], (1 − |c|L)/[(1 + |c|)(2 − |c|L)L]},
min{1 + |c|L̃c − τT |c|L(2 + |c|L + |c|L̃c), 1 − |c|L − τT |c|L(2 − |c|L − |c|L̃c)} > LK .

Theorem 6.3.1. Every solution of the coupled K-loops (2.8) converges to the

trivial equilibrium as t → ∞, under condition (Ca).

Proof. We merely prove the case of c > 0. The situation for c < 0 can be treated

similarly. Notably, the latter two inequalities in condition (Ca) yield condition

(S1a). By Theorem 6.1.2, (2.8) achieves global synchronization under condition

(Ca), hence each of the first K − 1 components (resp. the Kth component) of (6.6)

is of the form (3.9) (resp. (3.8) with β = −c). Moreover, the Kth component

satisfies condition (H2a) under condition (Ca). Notice that both xK(t) and yK(t)

are eventually attracted by [−1−|c|, 1+ |c|]. By Corollary 3.1.7 and Corollary 3.1.8,
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there exist K intervals [−ai, ai], i = 1, · · · , K, to which xi(t) converges respectively.

Furthermore,

{

ai ≤ |wi|
max(∞), i = 1, 2 · · · , K − 1,

aK ≤ |wK |max(∞)/[1 − cL − τT cL(2 − cL − cL̃c)].
(6.7)

Similar to Proposition 6.1.1, there exists a sequence of intervals {a
(k)
i }∞k=1 such that

for each k, the ith component xi(t) of every solution x(t) to (6.6) converges to

I
(k)
i := [−a

(k)
i , a

(k)
i ] as t → ∞, and a

(k)
i satisfies











0 ≤ a
(k)
1 = La

(k−1)
K ,

0 ≤ a
(k)
i = La

(k)
i−1, i = 2, · · · , K − 1,

0 ≤ a
(k)
K = La

(k)
K−1/[1 − cL − τT cL(2 − cL − cL̃c)],

(6.8)

where a
(0)
K := 2/L. Due to the last inequality in condition (Ca), {a

(k)
i } are decreasing

with respective to k for i = 1, · · · , K, since a
(j+1)
i = LKa

(j)
i /[1− cL− τT cL(2− cL−

cL̃c)] < a
(j)
i . Suppose {a

(k)
i } converges to ãi, for i = 1, · · · , K. It follows from (6.8)

that






0 ≤ ã1 = LãK ,
0 ≤ ãi = Lãi−1, i = 2, · · · , K − 1,

0 ≤ ãK = LãK−1/[1 − cL − τT cL(2 − cL − cL̃c)].

Subsequently, 0 ≤ ã1 = LK ã1/[1 + cL̃c − τT cL(2 + cL + cL̃c)]. Hence, it yields that

ã1 = ã2 = · · · = ãK = 0, thanks to the last inequality in condition (Ca). Therefore,

every xi(t) converges to zero as t → ∞. By similar arguments, we can show that

every yi(t) converges to zero. This completes the proof.

By using the same techniques as Theorem 6.3.1, we can also derive the following

theorem under τT -independent condition (S3a).

Theorem 6.3.2. Every solution of the coupled K-loops (2.8) converges to the

trivial equilibrium as t → ∞, under condition (S3a).

This theorem indicates that synchronization under τT -independent condition

(S3a) is exactly convergence to trivial equilibrium. Several works in the literature

obtained such kind of result by Lyapunov function technique. In [7], globally asymp-

totical stability (global convergence) of the origin for the coupled 3-loops without

internal delay τI was addressed under condition independent of τT .
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Figure 6.1: Configurations for (a) F̂ , F̌ , ΛK, (b) I(ξ).

6.4 Global convergence to multiple equilibria

In this section, we shall establish the convergence to multiple synchronous equilibria

for (2.8). In addition, the existence and stability of nontrivial equilibrium and basins

of attraction for stable synchronous equilibria will be derived.

Let us consider the convergence of dynamics for (2.8). First, we define

F̂ (ξ) = −ξ + cg(ξ) + 2τT c(1 + 2c)L + 1,

F̌ (ξ) = −ξ + cg(ξ) − 2τT c(1 + 2c)L − 1.

For 0 < λ < 1, we impose the following conditions:

Condition (C1a)λ: L > 1/c > 0, τT < 1/[2L(1 + 2c)], λ(1 − 2cτT L) > LK .

Condition (C2a)λ: F̌ (q̃λ) > 0, F̂ (p̃λ) < 0.

Condition (C3a)λ: g
′

(ξ) > (1 + λ)/c, for all ξ ∈ [m̂F , m̌F ].

Condition (C1a)λ is a multi-dimensional version of condition (A1a). Notably, p̃λ and

q̃λ were defined in (3.21) where −β is replaced by c. Under conditions (C1a)λ and

(C2a)λ, there exist exactly three zeros l̂F , m̂F and r̂F (respectively ľF , m̌F and řF )

of F̂ (ξ) = 0 (resp. F̌ (ξ) = 0). Moreover, ľF < l̂F < p̃λ < m̂F < m̌F < q̃λ < řF < r̂F ,

cf. Fig. 6.1(a).

Let us introduce three sets in R2K as follows:

Ωl := Ω̃l × Ω̃l, Ωm := Ω̃m × Ω̃m, Ωr := Ω̃r × Ω̃r,

where Ω̃l = [−1, 1]K−1 × [ľF , l̂F ], Ω̃m = [−1, 1]K−1 × [m̂F , m̌F ], Ω̃r = [−1, 1]K−1 ×

[řF , r̂F ]. We can then derive the convergence to multiple synchronous equilibria for
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(2.8). We say that an equilibrium (x1, · · · , xK , y1, · · · , yK) of (2.8) is synchronous

if xi = yi, for all i = 1, · · · , K.

Theorem 6.4.1. Assume that conditions (S1a), (C1a)λ-(C3a)λ hold for some fixed

λ ∈ (0, 1), then (2.8) achieves global convergence to synchronous equilibria; if in

addition, 0 < L < 1 and λ ∈ (L, 1), then (2.8) admits exactly three synchronous

equilibria. Each of regions Ωl, Ωm, Ωr contains one of these equilibria .

Proof. Recall that (2.8) can be rewritten into (6.6). Obviously, for i = 1, · · · , K −

1, the ith component of (6.6) is of the form as (3.9); hence, xi(t) converges to

[wmin
i (∞), wmax

i (∞)], as t → ∞, as observed from the equation for xi. Restated, for

i = 1, · · · , K−1, xi(t) converges to some compact interval Ii whose length di satisfies

di ≤ wmax
i (∞)−wmin

i (∞). The Kth component of (6.6) has the form as (3.20) under

condition (S1a) and satisfies conditions (A1a), (A2a)λ and (A3a)λ, under condition

(C1a)λ, (C2a)λ and (C3a)λ. By Theorem 3.2.5, xK(t) converges to some compact

interval whose length dK satisfies dK ≤ [wmax
K (∞) − wmin

K (∞)]/[λ(1 − 2τT cL)]. By

similar arguments as the ones for Theorem 4.2.2 or 6.3.1, we can show that each

xi(t) actually converges to some singleton, for i = 1, · · · , K. Similar arguments can

apply to yi(t), for i = 1, · · · , K.

Finding synchronous equilibrium for (2.8) amounts to solving

{

−xi + g(xi−1) = 0, i = 1, · · · , K − 1, (mod K)
−xK + g(xK−1) + cg(xK) = 0.

(6.9)

Note that under condition (S1a), all equilibria for (2.8) must be synchronous. Con-

sider a fixed Ω ∈ {Ω̃l, Ω̃m, Ω̃r}. For a given (η1, · · · , ηK) ∈ Ω, we define

{

Λi(ξ) = −ξ + g(ηi−1), i = 1, · · · , K − 1, (mod K),
ΛK(ξ) = −ξ + cg(ξ) + g(ηK−1).

Note that |g(·)| < 1 and F̌ (ξ) ≤ ΛK(ξ) ≤ F̂ (ξ). Thus, there exists a unique

point (η∗
1, · · · , η∗

K) ∈ Ω such that η∗
i is the solution of equation Λi(·) = 0 for all

i = 1, · · · , K, under conditions (C1a)λ, (C2a)λ, cf. Fig. 6.1 (a). Consequently, we

can define a mapping GΩ : Ω → Ω by GΩ(η1, · · · , ηK) = (η∗
1, · · · , η∗

K) ∈ Ω. Thanks

to conditions (C1a)λ-(C3a)λ and L < 1, by using arguments similar to Theorem

4.1.1, we can show that GΩ is a contraction mapping and there exists a unique

fixed point x = (x1, · · · , xK) of GΩ, lying in Ω. Restated, x satisfies (6.9). Thus,

(x1, · · · , xK , x1, · · · , xK) is the unique equilibrium point of (2.8) lying in Ω × Ω. �
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Remark 6.4.1. (i) Let us observe what parameters satisfy conditions (S1a) and

(C1a)λ-(C3a)λ. It can be seen that L < 1, sufficiently large c, and sufficiently small

τT are apt to meet these conditions. (ii) The existence of equilibrium for (2.8) should

have nothing to do with delay. In respecting the conditions (S1a) and (C1a)λ-(C3a)λ

involving delay, one can just take delay τT = 0 in these inequalities, if existence

of equilibrium is the only issue of concern. (iii) Notably, the third inequality in

condition (C1a)λ becomes more difficult to hold if L > 1 and K (the sub-network

size) is large. (iv) Obviously, the equilibrium point lying in Ωm is the trivial and the

others are nontrivial.

To discuss the stability of nontrivial equilibria in Theorem 6.4.1 and basins of

attraction for the stable equilibria, some additional conditions are needed. First, we

define

I(ξ) :=

{

−ξ + 2cg(ξ)− 1 − c, if ξ ≥ 0,
−ξ + 2cg(ξ) + 1 + c, if ξ < 0.

There exist two values pc < 0 and qc > 0 such that g
′

(pc) = g
′

(qc) = 1/(2c) if

L > 1/(2c) > 0. The first additional condition is

Condition (C4a): L > 1/(2c) > 0, I(qc) > 0, I(pc) < 0.

Under condition(C4a), there exit exactly two zeros of function I, say κ̌ and κ̂, in

intervals (pc, 0) and (0, qc) respectively, cf. Fig. 6.1(b). Next, we impose

Condition (C5a)λ: g
′

(κ̌) ≥ (1 − λ)/c, g
′

(κ̂) ≥ (1 − λ)/c.

Let us define the following two sets in C([−τmax, 0]; R6):

Ω+ := {φ : φ ∈ C([−τmax, 0]; R6), φi(θ) ≥ κ̂, θ ∈ [−τT , 0], for i = K, 2K},

Ω− := {φ : φ ∈ C([−τmax, 0]; R6), φi(θ) ≤ κ̌, θ ∈ [−τT , 0], for i = K, 2K}.

Theorem 6.4.2. Under the conditions for the existence of nontrivial equilibria in

Theorem 6.4.1, if in addition, (C4a) and (C5a)λ hold, then the nontrivial equilibria

are asymptotically stable. Moreover, Ω+ (resp. Ω−) is contained in the basin of

attraction for the equilibrium in Ωr (resp. Ωl).

Proof. It can be justified that Ω+ and Ω− are invariant under (2.8). We merely

discuss the former case. We define the function Ĩ(ξ) : (−∞, κ̌] ∪ [κ̂,∞) → R as
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follows:

Ĩ(ξ) :=

{

−ξ + cg(ξ) + cg(κ̂) − 1 − c, if ξ ≥ κ̂,
−ξ + cg(ξ) + cg(κ̌) + 1 + c, if ξ ≤ κ̌.

We shall show that, for all t ≥ t0,

ẋK(t) > Ĩ(xK(t)), ẏK(t) > Ĩ(yK(t)). (6.10)

If (6.10) holds, then both xK(t), yK(t) remain in [κ̂,∞) for all t ≥ t0, due to

Ĩ(κ̂) = I(κ̂) = 0 and Ĩ(κ̌) = I(κ̌) = 0. The invariance of Ω+ will then be justified.

Let us now confirm (6.10). From (2.8), it can be seen that xK(t) satisfies, for t ≥ t0,

ẋK(t) = −xK(t) + cg(xK(t)) + g(xK−1(t − τI)) + c[g(yK(t − τT )) − g(xK(t))].

The assertion holds for t = t0. Indeed, ẋK(t0) > −xK(t0) + cg(xK(t0)) − 1 − c[1 −

g(κ̂)] = Ĩ(xK(t0)), since yK(t0 − τT ) ≥ κ̂ and xK(t0) ≥ κ̂ . By similar arguments,

we can also verify that ẏK(t0) > Ĩ(yK(t0)). Assume (6.10) holds for t ∈ [t0, t̃) but

does not at some t̃ > t0. One of the possibilities is that ẋK(t̃) = Ĩ(xK(t̃)), and

ẋK(t) > Ĩ(xK(t)), ẏK(t) > Ĩ(yK(t)) for all t ∈ [t0, t̃). In this situation, xK(t) and

yK(t) remain in (κ̂,∞), for t ∈ [t0, t̃). Then, ẋK(t̃) > −xK(t̃)+ cg(xK(t̃))−1− c[1−

g(κ̂)] = Ĩ(xK(t̃)) and yields a contradiction. The other possibilities can also be ruled

out, by similar arguments. Therefore (6.10) is valid. The remaining arguments are

similar to Theorem 4.3.1. We merely sketch the idea. Note that the two nontrivial

equilibria lie in Ω+, Ω− respectively. Thus, the solution starting near the nontrivial

equilibrium remains in the invariant set Ω+ or Ω−. Hence, we have the slope control

on the coupling terms, namely cg′(xi(t)) < 1 for i = K, 2K, and g′(xi(t)) < 1, for

i 6= K, 2K, for all t ≥ t0, and so that the solution of (2.8) evolved near the nontrivial

equilibrium is dominated by the degradation term −xi(t) in (2.8). Solutions starting

near the equilibrium thus converge to the equilibrium.

According to Theorem 6.4.1 and the invariance, we conclude that Ω+ (resp.

Ω−) is contained in the basin of attraction for the equilibrium lying in Ωr (resp. Ωl).

�

Remark 6.4.2. (i) Although conditions (C4a), (C5a)λ seem complicated, it can be

observed that they are apt to be satisfied for large c. (ii) In fact, it is not difficult to

observe that the nontrivial equilibria are stable under the conditions on the existence

of exactly three equilibria (Remark 6.4.1), and conditions (C4a), (C5a)λ. These

conditions are independent of delays and are easy to satisfy if 0 < L < 1 and c is

sufficiently large.
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6.5 Bifurcation and oscillations

In Theorem 6.1.2, we have shown that if the transmission delay τT is small enough,

(2.8) can attain global synchronization in spite of the magnitude of internal delay

τI . In this section, via bifurcation analysis, we shall show that there exist nontrivial

synchronous periodic solutions for (2.8) induced by internal delay τI . To simplify

the presentation, we consider (2.8) with K = 3 in this section. Moreover, most

of arguments in this section are similar to the ones in Section 5.2.3. Hence, we

merely sketch the main process and adopt the same symbols for some settings used

in Section 5.2.3.

First, let us consider a circle block matrix circ(A0, A1, · · · , An−1) where Aj ,

j = 0, 1, · · · , n − 1, is a k × k matrix. Let vj = e
2πj

n
i, and define a function of

matrices G(x) = A0 + xA1 + · · · + xn−1An−1. In [77], it is shown that

det(λIkn − circ(A0, A1, · · · , An−1)) = Πn
j=1 det(λIk − G(vj)), (6.11)

where Ik is the k × k identity matrix. The linearization of (2.8) at the trivial

equilibrium (0, 0, 0, 0, 0, 0) is given by






























u̇1(t) = −u1(t) + Lu3(t − τI),
u̇2(t) = −u2(t) + Lu1(t − τI),
u̇3(t) = −u3(t) + Lu2(t − τI) + cLu6(t − τT ),
u̇4(t) = −u4(t) + Lu6(t − τI),
u̇5(t) = −u5(t) + Lu4(t − τI),
u̇6(t) = −u6(t) + Lu5(t − τI) + cLu3(t − τT ).

(6.12)

For convenience, we set

d := cL.

Then the characteristic equation for (6.12) (cf. [34], [72]) is

∆(λ) := det

















1 + λ 0 −Le−λτI 0 0 0
−Le−λτI 1 + λ 0 0 0 0

0 −Le−λτI 1 + λ 0 0 −de−λτT

0 0 0 1 + λ 0 −Le−λτI

0 0 0 −Le−λτI 1 + λ 0
0 0 −de−λτT 0 −Le−λτI 1 + λ

















= 0.

Thanks to (6.11), the characteristic equation can be factored as

∆+(λ)∆−(λ) = 0,

∆±(λ) := (1 + λ)2(1 + λ ∓ de−λτT ) − L3e−3λτI .
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We substitute λ = iw with w > 0 into ∆±(λ) = 0 and collect the real and

imaginary parts to yield
{

L3 sin(3τIw) = (w3 − 3w) ± (w2 − 1)d sin(τT w) ± 2d cos(τT w)w,
L3 cos(3τIw) = (1 − 3w2) ∓ (1 − w2)d cos(τT w) ∓ 2d sin(τT w)w.

(6.13)

Summing up the square of equations (6.13) gives

Q±(w) = L6, (6.14)

where Q±(w) := Q1(w) ± Q2(w) and Q1(w) := w6 + (3 + d2)w4 + (3 + 2d2)w2 +

d2 +1 and Q2(w) := d[2 sin(τT w)w5−2 cos(τT w)w4 +4 sin(τT w)w3−4 cos(τT w)w2 +

2 sin(τT w)w − 2 cos(τT w)]. Therefore the positive solution of (6.14) corresponds to

the purely imaginary roots of ∆±(w) = 0.

Now let us introduce some settings and the condition imposed for purely imag-

inary roots of ∆±(w) = 0 as follows:

Define P (w) := (6−2|d|τT )w5−|d|(10+2τT )w4 +(12+4d2−|d||8−4τT |)w
3−

|d|(12 + 4τT )w2 + (6 + 4d2 − |d||8− 2τT |)w − |d|(2 + 2τT ). As P is a polynomial, we

set

w̃ := the largest zero of P (w). (6.15)

Condition (B1a)±: 6 − 2|d|τT > 0, min{Q∓(w) : w ∈ [0, w̃]} > L6, and

max{Q±(w) : w ∈ [0, w̃]} < L6,

By similar arguments to Lemma 5.2.6, we can derive the following lemma.

Lemma 6.5.1. Under condition (B1a)+ (resp. (B1a)−), there exist exactly one

pair of purely imaginary roots, say ±iω∗
+ (resp. ±iω∗

−), for characteristic equation

∆(λ) = 0. In particular, ±iω∗
+ (resp. ±iω∗

−) are the roots of ∆+(λ) = 0 (resp.

∆−(λ) = 0).

Remark 6.5.1. (i) Note that Q+(0) = (1 − d)2 and Q−(0) = (1 + d)2. Therefore

(1 − d)2 < L6 < (1 + d)2 (resp. (1 + d)2 < L6 < (1 − d)2) (6.16)

is a necessary condition for (B1a)+ (resp. (B1a)−) to hold. Moreover, d = cL 6= 0

is necessary, as seen from the inequality (6.16); in particular, c = d/L > 0 (resp.

c = d/L < 0) is necessary for condition (B1a)+ (resp. (B1a)−). (ii) The following

weaker condition

L6 > (1 − d)2 ( resp. L6 > (1 + d)2) (6.17)
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can also provide the existence of zero to Q+(w) = 0 (resp. Q−(w) = 0), but the

uniqueness of positive zero can not be guaranteed. However, the situation of multiple

zeros can be ruled out with assistance of numerical computation. Basically, from

(6.17), it can be observed that larger L is advantageous to the occurrence of Hopf

bifurcation, hence oscillation.

To find the value of τI such that ±iω∗
+ (resp. ±iω∗

−) are the purely imaginary

roots of ∆+(λ) = 0 (resp. ∆−(λ) = 0), we divide the first equation of (6.13) by the

second one and obtain

tan(3τIw) = S±(w)/C±(w),

S±(w) := (w3 − 3w) ± (w2 − 1)d sin(τT w) ± 2d cos(τT w)w,

C±(w) := (1 − 3w2) ∓ (1 − w2)d cos(τT w) ∓ 2d sin(τT w)w.

Let us define η±
k , k ∈ N, as follows:

η±
k :=

1

3ω∗
±















3π/2 + 2(k − 1)π, if C±(ω∗
±) = 0, S±(ω∗

±) < 0;
π/2 + 2(k − 1)π, if C±(ω∗

±) = 0, S±(ω∗
±) > 0;

tan−1(S±(ω∗
±)/C±(ω∗

±)) + 2kπ, if C±(ω∗
±) > 0;

tan−1(S±(ω∗
±)/C±(ω∗

±)) + (2k − 1)π, if C±(ω∗
±) < 0.

(6.18)

Herein, η+
k (resp. η−

k ) is positive and the critical value of bifurcation parameter with

respect to τI , at which ∆(λ) = 0 has exactly one pair of purely imaginary roots

±iω∗
+ (resp. ±iω∗

−). To apply the Hopf bifurcation theory, it remains to verify the

transversality condition:

Condition (B2a)±: [R±(ω∗
±, η±

k )]2 + [I±(ω∗
±, η±

k )]2 6= 0, and Λ±(ω∗
±) 6= 0,

where

R±(ω, τI) := [−3 − 9τI ± 3dτI cos(τT ω) ∓ dτT cos(τT ω)]ω2

±(2 + 6τI + 2τT )d sin(τT ω)ω + 3 + 3τI ± (−2 − 3τI + τT )d cos(τT ω)

I±(ω, τI) := −3τIω
3 ± (τT − 3τI)d sin(τT ω)ω2

+[6 + 9τI ± (−2 − 6τI + 2τT )d cos(τT ω)]ω ± (2 + 3τI − τT )d sin(τT ω)

Λ±(ω) := [9 ± 3τT d cos(τT ω)]ω4 ± (15 + 3τT )d sin(τT ω)ω3

+[9 + 6d2 ± (−12 + 3τT )d cos(τT ω)]ω2 + (3 + 3τT )d sin(τT ω)ω.

Proposition 6.5.2. Assume that conditions (B1a)+ and (B2a)+ (respectively,

(B1a)− and (B2a)−) hold for some fixed k ∈ N. The Hopf bifurcation occurs at

τI = η+
k (resp. η−

k ), and a periodic orbit is bifurcated from the zero solution of (2.8).
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The proof of Proposition 6.5.2 is similar to the one of Theorem 5.2.8; hence

omitted.

Let us recall Theorems 6.1.2 and 6.1.3 in which (2.8) attains synchronization

under condition (S1a) or (S2a) or (S3a). As mentioned in Remark 6.5.1, (1−d)2 < L6

and c > 0 are necessary for condition (B1a)+. It can be observed that (1 − d)2 <

L6 and c > 0 is compatible only with condition (S1a), but not (S2a) and (S3a).

From this view point, positive coupling strength c (with other conditions) leads to

synchronous oscillation. On the other hand, similarly, we observe that negative

coupling strength c leads to anti-phase oscillation. Motivated by these observations,

Theorems 6.1.2, 6.1.3, 6.2.1 and Proposition 6.5.2, we draw the following conclusion.

Theorem 6.5.3. Assume that conditions (S1a) (resp. (AP1)), (B1a)+, and (B2a)+

(resp. (B1a)−, and (B2a)−) hold for some fixed k ∈ N. Then there exists a syn-

chronous (respectively, anti-phase) periodic solution bifurcated from the trivial equi-

librium, at internal delay τI = η+
k (resp. τI = η−

k ) for the coupled K-loops (2.8)

(resp. (2.8)0).

6.6 Description of dynamical scenarios

As mentioned earlier, coupled network system can exhibit a variety of interesting

behaviors. We plan to depict the dynamical scenario for the coupled K-loops (2.8)

under the influence of coupling strength, the gain of the activation function, the

internal delay, and the transmission delay. Let us first mention some properties of

the single K-loop (2.7). Notably, the dynamics of (2.7) without internal delay τI

has been studied extensively in [7]. By similar approach as Lemma 2 in [31] and

Lemma 4.1 in [72]), it can be shown that the trivial equilibrium of (2.7) is stable

for all τI ≥ 0 if L ≤ 1. On the other hand, there exist periodic solutions bifurcated

from the zero solution, at suitable τI for (2.7) if L > 1. Therefore, the dynamical

scenarios for cases L ∈ (0, 1) and L ∈ (1,∞) are rather different. Below we shall

discuss the two cases: L ∈ (0, 1) and L ∈ (1,∞), for the coupled loops separately.

Notice that the trivial equilibrium for the coupled loops (2.8) can become unstable

as there exist periodic solutions bifurcated from the equilibrium, cf. Theorem 6.5.3.

This already shows an effect from the coupling between these two loops.

Notably, what we have derived for global synchronization, global convergence

to the origin are theories with sufficient conditions. When we say that (2.8) does
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not admit certain dynamics (such as synchronization), we may need computer sim-

ulations to support the arguments. In addition, caution must be used if saying that

a system can not be synchronized merely through numerical simulation. It is not

assured how long a simulation should be run to exclude the possibility of synchro-

nization. On the other hand, anti-phase is an evidence of desynchrony that one can

assure from analysis or numerical simulation. Our approach can establish anti-phase

oscillations bifurcated from the zero solution at certain values of internal delay, and

can also be extended to analyze bifurcation with respect to transmission delay.

Effect of coupling strength. Let us first consider the case that L ∈ (0, 1),

c ≥ 0. It can be seen from Theorem 6.3.2 that if c, the coupling strength between

two loops, is sufficiently small so that

c ≤ 1/L − 1, (6.19)

then the coupled loops (2.8) attain global convergence to the trivial equilibrium

(hence global synchronization) in spite of delay magnitude of τI and τT . In addition,

if c is larger so that (6.19) fails to hold, the coupled loops (2.8) can attain global

synchronization if τT is small enough. Such an observation follows from that for

arbitrarily large c > 0, condition (S1a) for Theorem 6.1.2 holds if τT is small enough.

On the other hand, Theorem 6.5.3 concludes the birth of nontrivial synchronous

periodic solutions, under certain criteria. It can be seen that the dominant condition

(B1a)+ can not hold if c = 0 or is too small, cf. Remark 6.5.1. On the other hand, for

some suitable magnitude of c (not too large) such that (B1a)+ holds, the nontrivial

synchronous periodic solutions of coupled loops can be induced by internal delays.

Now, it is natural to ask what will occur if magnitude of c is quite large. Theorem

6.4.1 has shown that system (2.8) with sufficiently large c achieves global convergence

to nontrivial synchronous equilibria (hence globally synchronized) in spite of internal

lag (τI) if transmission lag (τT ) is small enough. This result has justified the the

numerical finding in [7].

Accordingly, we summarize a dynamical scenario for (2.8) as c increases from
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zero to ∞:

global convergence to zero

→ global synchronization (τT small)

→ global synchronization with synchronous oscillation

(induced by internal delays) (τT small)

→ global convergence to nontrivial synchronous stable equilibria (τT small).

Notice that the effect of positive coupling strength on synchronization and

negative coupling strength on anti-phase motion are counterparts to each other for

the coupled loops. Indeed, if L ∈ (0, 1), as c varies from 0 to −∞, (2.8)0 goes through

global convergence to zero → birth of anti-phase oscillation (induced by internal

delays) → global convergence to nontrivial stable antisynchronous equilibria.

Roughly speaking, it is easier for the coupled loops (2.8) to attain global syn-

chronization for the case L ∈ (0, 1) than L ∈ (1,∞).

In the case that L ∈ (1,∞), the single loop (2.7) has at least three equilibria,

and thus the decoupled system (2.8) with c = 0 can not be synchronized. In fact,

we can observe that wether if the coupled loops (2.8) can attain synchronization

strongly relies on the interaction between two coupled loops. Observe condition

(S1a) in Theorem 6.1.2, it can be seen that coupling strength c is necessary (can

not be zero), and τT must be small enough. It has been illustrated in Example

6.7.2 that (2.8) fails to be synchronized if coupling strength is too small, and can

be synchronized if coupling strength is suitably large. However, we found that

large magnitude of c does not always favor condition (S1a); it also depends on

the nonlinearity of activation function g, and the magnitude of transmission delay.

Similar observation was reported in [50] and [48]. In our numerical computation in

Example 6.7.2, for some situation as transmission delay is too large, large coupling

strength c still can not synchronize the oscillators.

Effect of delays. As previous arguments, in some parameter regions of L and

c, it is necessary that transmission delay is small enough for (2.8) to be synchronized.

Example 6.7.2 has illustrated that the coupled loops (2.8) can be synchronized as

transmission lag τT is small enough, and (2.8) can not be synchronized if τT is too

large. Notice that from our numerical evidence, if (2.8) becomes asynchronous in-

duced by large transmission delay, stronger coupling strength c does not promote

96



the system to regain synchronization. In fact, the coupled loops can become asyn-

chronous in the form of anti-phase oscillation. This can be confirmed by performing

the bifurcation analysis as in Section 6.5, but with τT as bifurcation parameter. Then

at a large coupling strength, there exists anti-phase periodic solution for certain τT .

Under our formulation, whether if the coupled loops (2.8) can be synchronized does

not depend on internal delays, cf. Theorems 6.1.2, 6.1.3. But transmission delay

plays a role in synchronization. It is then natural to ask how the internal delay

affect the dynamics in (2.8). Following our result in Theorem 6.5.3, it can be seen

that oscillation is generated by internal delay of certain magnitudes.

6.7 Numerical examples

We provide two numerical examples to illustrate the present theory.

Example 6.7.1. Consider the coupled 3-loops (2.8) with g(ξ) = tanh(0.999ξ),

τI = 11.2, τT = 0.001, and c = 400/999. Then (2.8) satisfies condition (S1a). By

Theorem 6.1.2, (2.8) attains global synchronization. It can be verified that condition

(B1a)+ and (B2a)+, k = 1, 2, holds by direct computation. By Theorem 6.5.3, there

exists a synchronous periodic solution bifurcated from the zero solution of (2.8).

Fig. 6.2 illustrates that the solution of (2.8) tends to a synchronous periodic orbit

as t → ∞. Fig. 6.3 provides the the dynamics for each component of the solution in

Fig. 6.2; in the panels, six different colors represent the evolutions of six components.

Example 6.7.2. Consider the coupled 3-loops (2.8) with L = 1.02. As c = 0.5

τI = 2 and τT = 0.01, it can be checked that (2.8) satisfies condition (S1a).

In such a situation, Fig. 6.4 illustrates that the solution of (2.8), evolved from

(1.6 + 0.1 sin t,−1.6 + 0.1t, 1.6 + 0.1 sin t · cos t,−1.6 + 0.1 sin t,−1.6 + 0.1t,−1.6 +

0.1 sin t · cos t) is synchronized. If we consider (2.8) with smaller c = 0.001 instead,

which does not satisfy condition (S1a), Fig. 6.5 illustrates that the solution of (2.8)

converges to some asynchronous equilibrium point. If we consider (2.8) with the

same parameters but with larger τT = 100 instead, which does not satisfy condition

(S1a), Fig. 6.6 illustrates that the solution of (2.8) appears to be anti-phase, hence

not synchronized. If we increase the coupling strength to c = 20 and still hold

τT = 100, the system still exhibits anti-phase, hence not synchronized, as shown in

Fig. 6.7.
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Figure 6.2: An orbit of (2.8) with g(ξ) = tanh(0.999ξ), τI = 11.2, τT = 0.001, and
c = 400/999, which is evolved from φ(t) = (sin t, cos t, t, t sin t,−t, sin t ·cos t). There
exists a synchronous limit cycle.
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Figure 6.3: The dynamics for the corresponding component of solution in Fig. 6.2.
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Figure 6.4: Evolutions of components (xi(t), yi(t)) for the solution of (2.8) with
g(ξ) = tanh(1.02ξ), τI = 2, τT = 0.01, and c = 0.5, starting from φ(t) = (1.6 +
0.1 sin t,−1.6+0.1t, 1.6+0.1 sin t · cos t,−1.6+0.1 sin t,−1.6+0.1t,−1.6+0.1 sin t ·
cos t). It appears to be synchronized.
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Figure 6.5: Evolutions of components (xi(t), yi(t)) for the solution of (2.8) with
g(ξ) = tanh(1.02ξ), τI = 2, τT = 0.01, and c = 0.001, starting from φ(t) = (1.6 +
0.1 sin t,−1.6+0.1t, 1.6+0.1 sin t · cos t,−1.6+0.1 sin t,−1.6+0.1t,−1.6+0.1 sin t ·
cos t). The solution converges to asynchronous steady state.
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Figure 6.6: Evolutions of components (xi(t), yi(t)) for the solution of (2.8) with
g(ξ) = tanh(1.02ξ), τI = 2, τT = 100, and c = 0.5, starting from φ(t) = (1.6 +
0.1 sin t,−1.6+0.1t, 1.6+0.1 sin t · cos t,−1.6+0.1 sin t,−1.6+0.1t,−1.6+0.1 sin t ·
cos t). The system tends to an anti-phase motion.
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Figure 6.7: Evolutions of components (xi(t), yi(t)) for the solution of (2.8) with
g(ξ) = tanh(1.02ξ), τI = 2, τT = 100, and c = 20, starting from φ(t) = (1.6 +
0.1 sin t,−1.6+0.1t, 1.6+0.1 sin t · cos t,−1.6+0.1 sin t,−1.6+0.1t,−1.6+0.1 sin t ·
cos t). The system retains an anti-phase motion, even with larger coupling strength
c.
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