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Collective Dynamics for Neural Networks Coupled with Delays

Student : Jui-Pin Tseng Advisor : Dr. Chih-Wen Shih

Department of Applied Mathematics
National Chiao Tung University

ABSTRACT

We are interested in the collective dynamics for coupled systems with delays. To
study global and local dynamics for some coupled systems, a new methodology is
developed in this thesis. In particular, we implement this approach in several
neural networks. Herein the “global dynamics -include global synchronization,
anti-phase motion, global convergence (to single equilibrium or multiple equilibria)
of the networks. Unfolded from the jgeometric  structures  of several associated
non-autonomous scalar equations,-an iteration scheme is designed to control the
dynamics of these equations. -Further iteration arguments are then developed to
establish previous mentioned global dynamics for the networks. The approach we
develop can be used to derive both delay-dependent and delay-independent
criteria.The local dynamics we investigate include stability of the equilibria and
Hopf bifurcation. Our studies establish the stability of equilibria by a nonstandard
approach, as compared to the linearization with-computation of the characteristic
roots, and the Lyapunov function approach. Moreover, the basins of attraction for
the stable quilibria can be .investigated.Via a geometrical observation on the
characteristic equation of the linearized system, the delayed Hopf bifurcation
theory is adopted to guarantee the.existence of delay-induced synchronous or
asynchronous oscillations. The present approach is general and can be applied to
several neural network models. To respond to some research issues in the
literature, we investigate three neural network models.The first model is a general
Hopfield-type neural network with delays. We establish the convergent dynamics
and stability of the equilibria for such a networks with $3*n$ equilibria. Our study
provides a systematic approach to investigate multistability and convergence of
dynamics for additive-type neural networks. The latter two ones are the network
with nearest-neighbor coupling and the network comprising two sub-networks
with loop structure. For such two models, we investigate the synchronization,
delay-induced oscillations and delay-induced asynchrony, the convergence of
dynamics and stability of equilibria. Moreover, our results for the latter two
models provide theoretical support to some numerical findings, and answer or
respond to some conjectures in the existing literature. A number of numerical
simulations are presented to illustrate our theory.
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Chapter 1

Introduction

There have been increasingly intensive studies on nervous systems and neuronal
models in the past few decades. Quantitative description on ion conduction and the
associated electrophysiology lead to the celebrated Hodgkin-Huxley model and the
reduced Morris-Lecar model which were largely employed to simulate neuronal activ-
ities at different levels of details«(Ermentrout and Kopell 1998, Jirsa and McIntosh
2007, Gloveli et al. 2009).

The collective behavior for a population of neuromns; not intrinsic to any indi-
vidual neuron, is very rich, engrossing and believed to play a key role in neural in-
formation processing. For example;-coherent rhythms are ubiquitous in the nervous
systems. Such rhythms play important roles in various cognitive activities. In the
gamma range of frequencies in the cortex, the coherent rhythms are also important
in the creation of cell assemblies (Karbowski and Kopell 2000). The phenomenon of
collective synchronization is believed to be responsible for self-organization in nature
(Kuramoto 1984). It is a common and elementary phenomenon in many biological
and physical systems (Peskin 1975, Strogatz and Stewart 1993, Chang and Juang
2008). In many regions of brain; synchronization activity has been observed and
implicated as a correlate of behavior and-cognition (White et al. 1998). It is known
that synchronization encourages the strengthening of mutual connections among
neurons. Synchronous oscillations have been observed in the visual cortex (Gray
et al. 1989). It is possible that synchronous behaviors can occur without rhythms.
However, in visual cortex, neurons with a distance apart synchronize their activity
only in presence of rhythms (Karbowski and Kopell 2000).

Due to propagation of action potentials along the axon, to be more realistic,

the neuronal systems should incorporate time delays. The introduction of delays



into the models can lead to the emergence of completely new behaviour that is not
possible on the absence of delays. The coherent rhythms of neurons across distances
are able to synchronize under conduction delays. The question of how cells can
synchronize in spite of delays thus becomes an important issue (Ermentrout and
Kopell 1998, Kopell et al. 2000). There are situations that synchronization occurs
because of delay, especially when there are inhibitory synaptic connections in the
network (Wang and Buzsaki 1998, White et al. 1998). Crook et al. (1997) studied
a continuum model of the cortex, with excitatory coupling and distance dependent
delays, and found for small enough delay the synchronous oscillation is stable, but
for larger delays this oscillation loses stability to a travelling wave.

An artificial neural network, often just called a “neural network”, is an infor-
mation processing paradigm to mimic the way biological nervous systems process
information. It consists of an interconnected group of artificial neurons. The theories
for these networks were developed and applied considerably to various computational
tasks including memory storage and patternrecognition (Hopfield 1984, Chua 1998,
Zhou et al. 2004). One of.the classical-and best understood examples of neural
networks is the Hopfield-type neural network (Hopfield 1984), which is able to store
certain memories or patterns in a manner rather similar to the brain. In (Hopfield
1984), Hopfield has‘shown how an ensemble.of simple processing units can have
fairly complex collective behavior.The Hopfield-type neural network with delays
was introduced by'Marcus and Westervelt (1989): Later, more modelings in neural
network took delays into account (Burie and Todorovic 2003, Campbell 2006, Lu
et al. 2009, Roska'and Chua 1992, Wu.2001). Thereafter, delayed neural networks
have been extensively studied, see for example (Campbell 2004, 2005, Faria 2000,
Guo 2005, Guo and Huang 2003, Huang and Wu 2003, Shih and Tseng 2008, Wu et
al. 1999). Indeed, delay‘can modify the collective dymamics for neural networks; for
example, it can induce oscillation or change the stability of the stationary solution
(Campbell 2006). Delay can also induce synchronization (Marti and Masoller 2003,
Fatihcan and Jurgen 2004), desynchrony (Campbell et al. 2006), stability (Hsu and
Yang 2007), and oscillation death (Atay 2003).

Recently, there were some investigations on coupled neural networks which
comprise sub-networks of neurons (Campbell 2004, Song et al. 2009-1 , Song et
al. 2009-2) The real network architecture can be extremely complicated. A large
neural network may consist of billions of neurons, and sub-collections of neurons

often assemble through inner connections. The rich dynamics arising from the in-



teraction of simple networks have been a source of interest for scientists modeling
the collective behavior of real-life systems. Coupled neural networks can exhibit
a variety of interesting behaviors which are very different from their behaviors in
isolation qualitatively. For example, oscillations may arise as a result of the cou-
pling between sub-networks in a population of neurons. It was reported that certain
sub-networks interactions such as pathological synchronization is related to Parkin-
sons disease and epilepsy (Grosse et al. 2002). The investigation of the dynamics
under the properties within the sub-network and the connections among the sub-
networks is thus rather appealing. In a population of neurons, internal delays within
sub-networks and transmission delays among sub-networks may be of different time
scale and need to be modeled separately, as remarked in (Campbell et al. 2004,
Campbell 2006).

For neural network models, it is appealing to investigate how the collective
dynamics are determined by the connection strength, nonlinear coupling functions,
the size of the network and transmission delays. In this thesis, we shall perform
investigation in these directions on three neural network models; namely, Hopfield-
type neural network with.delays, the network with nearest-neighbor coupling and the
network comprising two sub- networks with loop structure (The detailed description
of theses models are‘arranged in-Chapter 2).«Herein, the dynamics of the networks
we are interested in include global synchronization, anti-phase motion, convergent
dynamics for moneostable or multistable networks; delayed-induced oscillations and
delay-induced asynchrony. Our study on the first model provides a systematic ap-
proach to investigate multistability ‘and convergence of dynamies for additive-type
neural networks. Ourresults for the latter two models provide theoretical support to
some numerical findings, and answer or respond to some conjectures in the existing
literature.

For convergent dynamics of multistable neural networks, a common approach
is the monotone theory. By such a theory, it can be established that the system
admits generic quasiconvergence. Herein, generic quasiconvergence for a system is
referred to that almost every solution tends to the set of stationary solutions, not
to a single one. Moreover, the monotone theory can not be applied, if the system
fails to generate an eventually strongly monotone semiflow. The existing studies on
synchronization for delayed neural networks mostly adopted the approach of Lya-
punov function (Campbell 2006, Campbell et al. 2006). One of the conclusions

therein is that if the coupling strength is small enough, the system can achieve



global synchronization in spite of delays. However, such a synchronization may
reduce to the situation that all components converge asymptotically to the same
synchronous equilibrium point. The majority of investigations on delayed-induced
oscillation, delayed-induced stability, oscillation death, and spatio-temporal patterns
are based on linearized stability analysis, Hopf-bifurcation theorem, and equivariant
(group-symmetric) bifurcation theory. In this thesis, we develop a new methodol-
ogy to study global and local dynamics for several forms of artificial neural networks
coupled with delays. By iteration arguments, we establish the dynamics of global
synchronization, anti-phase motion, convergence to single equilibrium and multiple
equilibria for the coupled networks. Via a geometrical observation on the character-
istic equation of the linearized system, criteria for the existence of synchronous or
asynchronous periodic solutions can be derived. Moreover, the stability of equilibria
and basins of attraction for the stable equilibria can also be investigated. The pre-
sented arguments for confirming stability of equilibria are nonstandard in delayed
equations, as compared to the ones of linearization with computing the character-
istic roots, and the Lyapunov: function-approach; employed in (Belair et al. 1996,
Campbell et al. 2004, Shayer et al. 2000, Song et al:2005).

The thesis is organized as follows. In Chapter 2, we first introduce some re-
alistic neuronal models in Section 2.1. The description of three forms of (artificial)
neural networks considered in-this-thesis and their respective research motivation
and questions are given in Section 2.2. In Chapter 3, we study several scalar equa-
tions with time-dependent input, which provides a basis for investigating the global
collective dynamics of the coupled neural network. The derived results for three

neural network models are arranged in Chapter 4-6.respectively.



Chapter 2

Mathematical Models on Neurons
and Neural Networks

We first introduce some biological neuronal models in Section 2.1. In Section 2.2,
we shall introduce three neural network models considered in this thesis and their

respective research motivation and.questions.

2.1 Neuronal‘models

One of the most impertant and widely=used. models of neurons is the Hodgkin-
Huxley model. Such a model-was- published in 1952 to describe the generation
of action potentialstin the squid giant axon [27]c Therein the squid axon carries
three major current: voltage-gated persistent K current with four activation gates
(resulting in the téerm n' in the equation below, where n is/the activation variable
for KT); voltage-gated transient Na®™ current with-three activation gates and one
inactivation gate (the termn®h below); and Ohmic leak current I, which is carried

mostly by CI™ ions.

CV  =1-gxn* (V= Eg) = gxam®h(V'= Exa) — gu(V — EL)
i = ap(V)(1—m) = Bn(V)m
i = an(V)(1— h)— BV
= a,(V)(1 —n) = B.(V)n.

n

Here, V represents the membrance potential and each term in the first equation
represents a separate current; «,,, a; and «, are voltage dependent steady-state

functions [38].



A reduced model from Hodgkin-Huxley model were introduced by FitzHugh
and Nagumo in 1961 [26] and 1962 [56]. To describe “regenerative self-excitation”
by a nonlinear positive-feedback membrane voltage and recovery by a linear negative-

feedback gate voltage, they developed the model described by

dV

E:V_Vg_w_‘_lext
d

Td—Q:—V—a—bw

where V represents the membrane potential, and the variable w is a recovery variable
and I is the magnitude of stimulus current.

In 1981 Morris and Lecar combined Hodgkin-Huxley and FitzHugh-Nagumo
into a voltage-gated calcium channel model with a delayed-rectifier potassium chan-

nel, represented by [54]:

Cio=1-gL(v—r1r) — gcaf(v)(v — vca) — grn(v — Vi)

n=7(v)(a(v)=—n),

where the functions a(v),8(v), 7(v) are given by

B(v)=+1/2)[1+ tanh(
a(v)=-(1/2)[1 + tanh(
T(v) = ¢ cosh((v — v3)/(2v4));

),
at

v—)/v
/v

v —v3)

VK, Uca and vy, are the reversal potentials of potassium, calcium and leakage currents
respectively; gk, gca-and g, are corresponding maximal specific conductance, and
C' is the specific membrane capacitance; v;, i =1,-++ 4 are constants.

A network of n neurons is usually modelled by

The variable x; represents all the variables describing the physical state of the
cell body of the ith neuron in the network, e.g., in Hodgkin-Huxley model, x; =
(Vi, mi,m;, hy). The function F; represents the intrinsic dynamics of the ith neuron.
The function f;; is the coupling function and represents the input to the ith neuron
from the jth neuron. If the jth neuron is connected to the ¢th via a chemical synapse,
then the coupling function is given by fi;(x;(t),x;(t)) = cijhy; (x;(t ))hp]f’St(xi(t)).

This is called synaptic coupling. Here h;;° is a sigmoidal function. hpost is typically



a linear function. If the neurons are connected via a gap junction, then the coupling
function is £;;(x;(t), x;(t)) = Ci;(x:(t) — x;(t)) , where C;; is the matrix of coupling
coefficients. This is called gap junctional or diffusive coupling.

If considering the effect of the action potential when it reaches the end of the
axon, then a common approach is to include a time delay in the coupling term.
Assume that 7;; > 0 represents the time taken for the action potential to propagate

along the axon connecting neuron j, then the general coupling term becomes

£y (xi(t), x;(t — 735))- (2.2)

The analysis of the behavior of coupled Hodgkin-Huxley neurons [44, 45], cou-
pled FitzHugh-Nagumo neurons [5, 6] and coupled Morris-Lecar neurons [40, 70]
have for some time past been the subjects of many papers.

In this thesis, we shall present our approach and results via three neural net-
work models. The first model is the Hopfield-type neural network with delays and
the second one is the neural network with nearest-neighbor coupling. Both of such
two forms are as (2.1) which comprise each x; being ascalar variable x;. The third
model is the network comprising two sub-networks with loop structure; namely,
as (2.1) with n = 2 and x; being-a-multi-dimensional variable. We expect the ap-
proach developed in this thesis canbe applied to more realistic and general neuronal
models. We shall pursue:this issue-in future studies. Indeed, our approach can be
successfully applied to establish the synchronization of coupled FitzHugh-Nagumo

neuronal network (as the scale of the network is 2 or 3) in our latest research.

2.2 Neural networks

In the following three subsections, we introduce three meural network models con-
sidered in this thesis and their corresponding research motivation respectively. The

detailed results and justification for these models are arranged in Chapter 4-6.

2.2.1 Hopfield-type Network

In Chapter 4, we consider the Hopfield-type neural network with delays as follows:

Ti(t) = —pzi(t) + Z @i g;(z;(t)) + Z Bijg;(xi(t — 7i5(1))) + Ji (2.3)



where ¢ = 1,2,--- ,n, p; > 0; a4, B;; € R denote the instantaneous feedback
and delayed feedback connection strength from the ith to the jth unit; the time-
dependent lags 7;;(t) > 0 are bounded continuous functions defined on [ty, +00), for
some ty € R; J; € R correspond to the external bias; g; : R — R in the following
class:

gi € C?, lime_ 4 o0 gi(§) = v € R, lime,_ gi(§) =u; €R

Class A { Jo; €R,g,(0;) > g;(€) > 0, for £ # 0y, and g; (€) - € < 0, for & # o;.

These are bounded smooth sigmoidal functions and the commonly adopted ones are
gi(€) = tanh ¢, and g;(€) = 1/[1 + e~¢/5] with &; > 0. Without loss of generality, we
set g; = 0, for all 7, throughout this thesis. We denote the bounds for the activation

functions, the slopes of the activation functions and the time lags by

pi = max{|ug, [vil},  Li:= gi(0) > gi(§), for all § € R (2.4)
7= max {m;}, 7)) <7y, forallt € [ty, +00). (2.5)
xL,jSn

“Multistability”, a notion to.describe coexistence of multiple stable equilibria or cy-
cles, is essential in several applications of neural networks, including pattern recogni-
tion and associative memory storage [35, 18, 25, 33]. Recently, a systematic method-
ology on existence of multiple stationary solutions for the Hopfield neural network
with or without delays has been-reported in [15]. More precisely, the structure
of single-neuron equation is employed to construct the existence of 3" equilibria,
2™ positively invariant sets and basins of attraction for 2, among these 3", stable
equilibria. However, there was no _theoretical methodology to capture behaviors for
solutions lying outside or crossing these basins, hence the global dynamical picture.
In this thesis, we develop a new treatment to conclude the convergence of dynamics
for (2.3). Under this formulation, certain componentwise dynamical properties are
derived and a subsequent iteration scheme is designed to confirm that every solu-
tion of the system converges to one of the equilibria as time tends to infinity. With
this formulation, we justify that there exist exactly 2" stable equilibria and exactly
(3" — 2™) unstable equilibria for (2.3). The conclusion for this existence of exact
number of stable and unstable equilibria is new due to distinct treatment. The pre-
sented arguments for confirming stability of equilibria are nonstandard in delayed
equations, as compared to the linearization with computation of the characteristic

roots, and the Lyapunov function approach, employed in [2, 7, 60, 63].



2.2.2 Neural network with nearest-neighbor coupling

In Chapter 5, we consider a special form of (2.3), which comprises a ring of identical
elements with nearest-neighbor coupling, under a transmission delay. The individ-
ual element is determined by a scalar equation with a linear decay and nonlinear
delayed feedback. This network is then modelled by the system of nonlinear delayed

differential equations

Ti(t) = —pai(t) + agr(xi(t — 71)) + Blgr(zii(t — 7)) + gr(zia (t — 77))],  (2.6)

where i (mod N); N is the scale of the coupled network; p > 0 means self-decay
rate; « and (3 are respectively the synaptic strength of self-feedback and (nearest-
neighbor) coupling with corresponding delays 7; > 0 and 70 > 0; g7 and gr are the
activation functions of class A with g(0) = 0. We say that the self-feedback (resp.
coupling) is inhibitory if & < 0 (resp. B < 0) and excitatory if o > 0 (resp. 5 > 0),
and the self-feedback (resp. coupling) strength is strong/weak if the magnitude of
a (resp. [3) is large/small. To simplify the presentation, we shall consider system
(2.6) with g = gr =: g, =1 < g(€) < 1 and ¢'(0)'= 1. We can also treat the case
of gr # gr; basically there is no qualitative difference between the cases g; = gr
and gr # gr. We shall focus on the effect from scale of the network (INV), self-
decay (u), self-feedback strength (), coupling strength (3), delays (7, 7r), and the
characteristic of g upon synchrony, convergent dynamics and oscillation of (2.6).
Herein, setting Tma.x := {77, 71}, we say that the coupled network (2.6) at-
tains global synchronization (in-phase) if-all compenents of the network tend to be

identical, namely
zi(t) — zga(t)— 0, as t — oo, for all o+ =14 N — 1,

for solution (x(t),- - -, xy(t)) of (2.6);starting from arbitrary initial condition ¢ €
C([—Tmax, 0], RY) at t = t;. We denote by (2.6)g system (2.6) with odd activation
functions ¢ in class A, ie., g also satisfies g(—¢§) = —g(&), for all £ € R. As an
evidence of asynchrony, we also consider solutions in the form of standing wave for
system (2.6)o; for example, if N = 3, the solutions (z(t), za(t), x3(t)), with two of

the components in opposite sign, and the other equal to zero; i.e.,
zi(t) = —x;(t), z(t) =0,
and (i, j, k) = (1,2, 3) or its permutation, cf. [3].

9



There is a large amount of literature on synchronization in artificial neural
networks. Some of these works consider systems with time delays [8, 73, 75, 78, 79].
One of the conclusions therein is that if the coupling strength is small enough,
the system can achieve global synchronization in spite of delays. However, such a
synchronization may reduce to the situation that every solution converges asymp-
totically to the same synchronous equilibrium point. A common approach for such a
conclusion is the method of Lyapunov function. To elucidate the coherent rhythms
in a neural network, it is important to explore the existence of nontrivial oscilla-
tion when the network is globally synchronized as well as asynchronous oscillation
which are induced by delays or scale of the network [14]. Existence of nontrivial
oscillations induced by delays has been reported for network models similar to (2.6)
9, 8, 31, 32, 37]. The common approach adopted in these works is the bifurcation
theory. Most of these results focus on the emergence and the stability of spatio-
temporal patterns or oscillations bifurcated from the trivial solution. However,
from the criteria derived therein, the effect of self-feedback and coupling strength
upon emergence of synchronous or-asynchronous oscillation induced by delays is not
apparent. In this thesis, via a geometrical observation.on the characteristic equation
of the linearized system, certain criteria for the existence of synchronous periodic
solutions and standing wave solutions are derived. The criteria illuminate the de-
pendence of the synchronous or-asynchronous oscillations induced by 7; or 70 on
parameters o and /8.

There are some conjectures on synchrony of (2.6) under delay-dependent or
scale-dependent criteria. Campbell et al. [8] considered system' (2.6) with p = 1

and N = 3 and conjectured that if |8| < |1 —al.and 0 < 77 < TS) for some Tél), or

18] < |1 —«a|/2 and 0 < 77 < TéZ) for some Téz), then (2.6) can be synchronized for
all 70 > 0. In [75], it was conjectured that when thescale of the network N is odd,
(2.6) can be synchronized if | +2[ cos(N-=1)7/N)||G] < 1. We shall respond and
provide evidence to these conjectures.

Recently, some new analytical methodologies have been developed to study
multistability in Hopfield-tpe neural networks [10, 15, 16, 17, 61, 76]. Most of these
studies on “Multistability” are associated with the multistability induced by strong
excitatory self-feedback. The investigations therein can be extended to establish
the coexistence of 3" synchronous and asynchronous equilibria with 2" among them
being stable for system (2.6), if the self-feedback is excitatory and its strength « is

sufficiently stronger than the coupling strength 3. On the other hand, there exists a
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different type of multistability which comprises 3 synchronous equilibria for network
(2.6) and neural networks of similar type [31, 60, 73]. Let us call this the second
type of multistability for system (2.6). To conclude the convergent dynamics for
the networks admitting the second type of multistability, a common approach is the
monotone dynamics theory. For example, applying such a theory, [31] established
the “generic” convergence to 3 synchronous equilibria for a unidirectional excitatory
ring of four identical neurons. Therein, the “excitatory coupling” is crucial for the
network to generate an eventually strongly monotone semiflow. Wu et al. [73]
conjectured that the generic dynamics for system (2.6) with N = 3, u = 1 and
Tr = Tr are convergence to two stable synchronous equilibria if |« — 5] < 1 and
a + 23 > 1. This conjecture was not resolved if &« < 0 or 3 < 0, due to that the
standard ordering in that region is invalid. In this thesis, an iteration approach is
developed to overcome the restriction from the monotone dynamics approach and
establishes the “global” convergence for the network which admits the multistability
of the second type. According to our results, roughly speaking, the second type of
multistability for system (2.6) can-be generated by “strong excitatory coupling”.
Motivated by the above-mentioned unsolved preblems in the literature and an
attempt to elucidate more complete dynamical scenario for system (2.6), the aims
of Chapter 5 for (2.6).are to
(i) derive criteria (may depend on-pis-av, B, 77,70, N5 g) for synchronization of system
(2.6),
(ii) describe and distinguish the differences between synchrony.induced by various
combinations of « ‘and [,
(i) distinguish the differences between synchrony for (2.6) with.and without delays,
(iv) establish the convergence of dynamies for (2.6) which admits multistability
induced by “strong excitatory coupling”; and distinguish the difference between the
multistability induced by “strong.excitatory self-feedback” and the one by “strong
excitatory coupling”,
(v) establish the existence of nontrivial oscillation and asynchrony induced by delays,

and illustrate the asynchrony induced by the network scale via numerical evidence.
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2.2.3 System comprising two sub- networks with loop struc-
ture

In Chapter 6, we consider a neural network that consists of a pair of one-way loops
each with K neurons and two-way coupling between a single neuron of each loop.

Each loop has the form:

Herein, x; represents the normalized voltage of neuron i; 7; > 0 is the internal time
delay; ¢ is an activation function of class A with ¢g(0) = 0. The coupled K-loops

considered is of the following form:

() = —pii(t) + aug(wi1(t — 77)), i=1,2--- | K — 1 (mod K),

i (t) = —pxrr(t) + axg(rr-1(t — 1)) + cg(yx(t — 7)), (2.8)
yl(t) = —,ulyl(t) + ozig(yi_l(t — T[)), 1= 1,2 s ,K —1 (IIlOd K), )
Ur(t) = —uxyr(t) + axg(yx 1t —71)) + cg(@r(t — 7)),

where 7 > 0 is transmission” time delay-between two.coupled loops. We also set
Tmax := max{77, 7r}. The interaction between two loops isiinhibitory if ¢ < 0, and
excitatory if ¢ > 0. For simplicity of presentation, we set u; = 1, a; = 1 for all 7,
—1 < g(&) < 1 and focus on theeffect of dynamics for (2.8) from the gain of response
function (L), the coupling strength-between two doops (c), the.internal delay (7;)
and the transmission delay (77).

The work of Campbell et al. [7] studied a neural network with two coupled
loops, each with three neurons: Themodel considered therein, while similar to (2.8),
allows asymmetric coupling between two loops, -but-is without.internal delay. The
investigation therein focusses on the existence of equilibria.and their stability for
the isolated loop and coupledloops, as well as bifurcations at the trivial equilib-
rium. Song et al. [64] studied @ neural'network which consists of two sub-networks
each with two neurons. The system is again similar to (2.8), but with internal delay
identical to transmission delay. Song et al. [65] considered bidirectional coupling be-
tween two sub-networks but without internal delays. These two works studied Hopf
bifurcation at the trivial solution (the origin) in some parameter region and that
when the coupling delay increases the spatio-temporal patterns of bifurcating peri-
odic solutions alternate from in-phase to anti-phase for positive coupling strength.
The results in these works basically adopt local analysis and depict local behaviors

for the system. Our approach can also be adapted to treat these models.
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In Chapter 6, we consider global dynamics for the coupled system (2.8). We
say that the two coupled loops attain global synchronization (in-phase) if the cor-

responding components of two loops tend to be identical, namely
z;i(t) —yi(t) = 0, ast — oo, foralli=1,--- K,

for solution (z1(t), -+ ,xx(t),y1(t), -+ ,yx(t)) of (2.8), starting from arbitrary ini-
tial condition ¢ € C([—Tmax, 0], R?X) at t = ¢;. We also consider anti-phase for the

two loops, which means
xi(t) +yi(t) = 0, ast — oo, foralli=1,--- K,

for every solution (xy(t), - ,xx(t),y1(t), -+ ,yx(t)) of (2.8). Via the methodology
developed in this thesis, we establish the dynamics of global synchronization, anti-
phase motion, convergence to single equilibrium and multiple equilibria for coupled
network (2.8); that is, various synchronous and asymptotic phases can be concluded
with our treatments. The approach we develop can be used to derive both delay-
dependent and delay-independent criteria. Our studies also extend to stability and
basins of attraction forthe nontrivial equilibria. In addition, we establish the criteria
for Hopf bifurcation so that under these criteria and the conditions for synchroniza-
tion, system (2.8) admits synchronous periodic solutions. While the internal delay
plays the role of inducing oscillation, the magnitude of transmission delay affects
synchronization. Qur computation on the existence of bifurcated periodic orbits in-
dicates the parameter range for oscillation and thus illuminates the delineation for
the whole dynamical scenario.. With this approach; we are able to provide theoretical

support to some numerical findings in [7].
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Chapter 3

Preliminaries

In this chapter, we shall consider two types of scalar equations in Section 3.1 and
3.2 respectively. The first one is in the form of difference equations deduced from
(2.6) or (2.8) in considering synchronization, and the second one is for consideration

of convergent dynamics, for the multi-dimensional system (2.3), (2.6) or (2.8) .

3.1 Scalar equation for synchronization

In this section, we introduce thescalar equation associated with the synchronization
for (2.8). Let z(t) and () be C* scalar functions which are eventually attracted
by some closed and bounded. interval Q; namely; x(f) and y(¢) remain in Q, for all
time t > f,, for some #, > tq. Let w(t) be-a bounded continuous function defined

for t > to. Assumethat z(t) = x(t) — y(t) satisfies the following scalar function:

2(t) ==2(f) — Plg(e(t =m)=glylt=m))] + w(z), t > to, (3.1)

where § € R, 7 > 0, and g is an activation of class A with =1 < g(¢) < 1, g(0) =0,
g'(&) < L:=g'(0). We set

L :=min{g (¢): € € Q}. (3.2)
We present the basic formations and propositions in Section 3.1.1. Some extensions
form (3.1) to other scalar equations are given in Section 3.1.2. The proofs for the
lemma and theorems in the Section 3.1.1 and 3.1.2 are given in Section 3.1.3.

3.1.1 Formulations and properties

The main result (Theorem 3.1.4) in Section 3.1.1 asserts that there exist a bounded

and closed interval containing zero to which every solution of (3.1) converges, un-
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der some 7-dependent conditions. A variant of this formulation leads to the same
conclusion under a 7-independent condition. First, let us introduce the 7-dependent
result. Below, we shall, iteratively, define two kinds of scalar functions which depict
the upper and lower bounds for the dynamics of (3.1) respectively as time proceeds.
Such iterative construction aims at capturing the asymptotical behaviors for the so-
lutions of (3.1). The construction of upper and lower functions depends on the sign
of 3. We shall demonstrate the formulation for the 7-dependent result and 5 > 0
case to present our main idea, and provide the results for the other cases without
detailed proofs.
For T > ty, we denote

|w|™™(T) := sup{lw(t)| : t = T}

We then define
h(e) ::{ —&+ 20 + |w|™(t,) . it £ >0,
—(L+PL)§ + 26 # |w|™™(to) if £ <0,
h(f) = { _(1 + ﬁL)f _rzaﬁx_ ’wlmax(tO) 1f€ >0,
—§= 20 — [w[™™(to) if £ <0.
It can be seen that h(&) > h(€)-andh(€) = —h(—E). The decreasing and piecewise
linear functions i and /i have unique zeros at AP and A" respectively, where Al =
26 + |w|™(t,) > 0rand Al = =A" < 0, cf. Fig. 3.1.. Notably, i and & depict
preliminary upper.and lower bounds respectively, for the dynamics of (3.1) with
G > 0. That is,
hz(t)) /< 2(8) < h(z(1)), for all t > g, (3.3)

for arbitrary solutioniz(t) of (8.1): This leads to the following proposition. Herein,

Q and f, have to be provided.a priori as introducing the'scalar equation (3.1).

Proposition 3.1.1 Assume that B> 0, If z(f) satisfies (3.1), then (3.3) holds.
Subsequently, there exists some T}, > %, + 7 such that z(t) belongs to [A", A"] for

all ¢ > T, , — 7. Moreover,

h(AM) < 2(t) < h(A), for all t > T, — 7.

Remark 3.1.1 Note that if 3 > 0, then 0 > h(A") = —(2+BL)(28+|w|™(t,)), (2+
BLY(28 + |w|™>(ty)) = h(A") > 0; in addition, 2(t) and y(t) lie in Q for all ¢ >

T,, — 7, where T} , is given in Proposition 3.1.1.
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Figure 3.1: Configurations of functions k, i, hO(-,T) and A© (-, T)

Now, for each T' > ty, we introduce the following functions:

WOET) = {—(1+ﬂi)£+rﬁL@<Ah>+|w|ma°<<T>, for & > 0,
’ (1% BL)E +apLi(A") & |wP(T), for £ <0,
KO T) = {—<1+ﬂL>f+TﬂLh(4h>—|w|maX<T), for & > 0,
TR = (1 +8L)E + rBLACAY) —|w|max(T)y for € < 0,

where L is defined’in (3.2). The idea for formulation of A9 (-, 7Y and h©)(-, T will
be revealed in the following discussions: Notably, 2 (¢, T) = —h©(—£,T). We

consider the following condition for(3.1).
Condition (Hla): 8> 0 and. 7 < 2/[L(2 4+ BL)(20 + |w]™*(ty))].
Under condition (Hla), a direct.computation yields-that, for 7" > ¢,
h(E) < KO (E/T) < HOET) < h(€), for all € € R. (3.4)

Herein, A (-, T') and h(© (-, T) depict the lower and upper bounds for the dynamics of
(3.1), which are more precise than k(-) and h(-) respectively as time gets larger. Let
mO(T) (resp. m©(T)) be the unique solution of A (-, T) = 0 (resp. h®(-,T) = 0)
lying in interval [A", A"], as depicted in Fig. 3.1. Notably, m©(T) = —n©(T) < 0.

It follows from Proposition 3.1.1 and Remark 3.1.1 that if 3 > 0, for each
T>T,

7y7

PO (2(t),T) < 2(t) < k9 (2(t),T), for all t > T. (3.5)
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Let us verify (3.5) and explain the formulation of A A, First, z(t — 7) and
y(t —7) € Qforallt > T > T, ,; therefore, for t > T > T, ,, 2(t) = —z(t) —
Bg' (Q)z(t — 1) +w(t) = —2(t) — Bg (O)[z(t) — 2(s)7] + w(t), for some ¢ € Q and
s>t—71>T,,—7. Notice that h(A") < (s) < h(A"), h(A") < 0 and h(A") > 0.
If z(t) > 0, then 2(t) < —z(t) — BLz(t) + TBLA(A") + |w|™>(T) =: hO(2(t),T).
If 2(t) < 0, then 2(t) < —z(t) — BLz(t) + TBLA(AM) + |w|™>(T) =: hO(2(t),T).
Hence, the right-hand inequality of (3.5) is verified. The left-hand inequality can

be treated similarly. We thus derive the following proposition.

Proposition 3.1.2. For T' > T, . inequality (3.5) holds under condition (Hla).
Consequently, z(t) eventually enters and stays afterward in [1©)(T), m®(T)] =
[ O(T), m(T)].

Similar to the construction of 2 (-, T) and h®)(-,T), we shall define the fol-
lowing functions iteratively. For k € N and 7" > ¢,

W9 T) { —(1+ BL)E RILMEDGEDT),T) + Ju]"(T),  for € >0,
’ —(1 + BL)EAFBLA*1( (D), Ty |w|™>(T), for £ <0,

{ — (14 BL)E + TBLA*=D @i D(T), T) —Jw|™<(T), for £ >0,

—( ) ( (1), 1) (T)

)
(&) - .
h(E,T) 1o BL1)EErATHE=D) (=D < fw|™=>(T), for £ <0,

where m®) (T (respeim®)(T)) is the unique solution of A% (-, T)= 0 (resp. h*) (-, T)
0). Notice that h®(&,T) = —h®)(—¢,T) and ¥ (T) = —mD(T) < 0. Let us de-
fine

[w[**(e0) := Tim Jw™™(T).

It shall be shown that the successively defined h®)-and ~® control the dynamics
of (3.1) more precisely as k and T' increase. We summarize the properties for the
above-defined terms in the following lemma and theorems. Their proofs will be
deferred until Section 3.1.3.

Lemma 3.1.3. Assume that condition (Hla) holds. Then, for each T" > tq, the
sequences {Mm®™) (T)} >0, {M*(T)}r>0 can be defined iteratively. Moreover, (i) for
any fixed k € NU {0}, m®(T) is decreasing and m* (T) is increasing with respect
to T' > to; (ii) for any T > to, there exists m(T') > 0, such that m®)(T) — m(T)
decreasingly, and m®)(T) — —m(T) increasingly, as k — oo; (iii) there exists m,, >
0, such that m(7T") — m, decreasingly, as T — oo; (iv) 0 < m(T) = |w|™>(T)/[(1 +
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BL) — 7BL(2 4 BL + BL)], for any T > to; (v) Nysio[—m(T), m(T)] = [—m,, my)],
and i
0<m < [w|™*(00)

"= (14 pBL)—78L(2+ L+ BL) (36)

Following Lemma 3.1.3, it can be shown that if z(¢) satisfies (3.1), then for each
T > T,, and k € N, z(t) converges to [—m®)(T),m*)(T)] as t — oo. Moreover,
[—m®)(T), m*)(T)] shrinks to [—m,,m,], as k — oo, T — oo. Accordingly, z(t)

converges to interval [—m,, m,]|, as t — oo.

Theorem 3.1.4. If z(¢) satisfies (3.1), then z(t) converges to interval [—m,, m,)],

as t — oo, under condition (Hla).
For the case of # < 0, we can also derive analogous result.

Theorem 3.1.5. If z(t) satisfies (3.1), then z(¢) converges to an interval [—m,, m]
under condition (H2a): —1/L < < 0,7 < 2(1+8L)/[L(2+6L)(2|5|+ |w|™(ty))];
moreover,

0 < my <quw|™(c0)/{(1+ BL) + TBLER+BL + L)},

The assumptions and con¢lusionsin the previous two theorems are both 7-dependent.

Indeed, via similar arguments, we-can derive a 7-independent conclusion as follows:

Theorem 3.1.6. [f z(t) satisfies (3.1), then z(¢) converges to an interval [—m,., m,],

as t — oo, under condition (H3a): |B] < 1/L — |w|™**(ty)/2; moreover,
0 < 'y < Jw|**(o0)/ (1=={B| L).

All results in this subsection can be extended to the following more general

scalar equation:

(t) = —2(t) = Bl = 7) = g(ylt = 7))l + w(t) + v(?), (3.7)

where v is a continuous function with v(f) — 0, as ¢ — oo. The form of (3.7)

includes the following special one
#(t) = —x(t) = Bg(z(t — 7)) + w(t) + v(t), (3.8)

where z(t) remains in Q, for all time after some o > t,. Notably, (3.8) is like y = 0 in
(3.7). Since the results in Theorems 3.1.4-3.1.6 concern the asymptotical behavior of

all solutions to the equation, it is straightforward to conclude the following corollary.

18



Corollary 3.1.7. Every solution of (3.7) or (3.8) converges to [—m,, m,| (resp.
[—mg, mgy|, [=m,, m,]) under condition (Hla) (resp. (H2a), (H3a)).

Let us also consider the following equation:
z(t) = —x(t) + w(t), (3.9)

which is a special form of (3.8) with 5 = 0, and v(t) = 0, for t > t,. The following

corollary is obvious.

Corollary 3.1.8. Every solution of (3.9) converges to an interval [—my, mg|; more-
over,

0 <my < |w|™*(c0).

3.1.2 Some extensions

The arguments for (3.1) can be extended to the form as follows, which is associated
with the synchronization for (2.6): Let @(t) andy(t) be C' scalar functions which
are eventually attracted by some closed and bounded interval Q; namely, x(¢) and
y(t) remain in Q, for all.time ¢t > f,, for some g >ty Let w(t) be a bounded
continuous function defined fort->t5. Assume that 2(¢) = @(t) — y(t) satisfies the

following scalar function:

4(t) = —pz(th= Binulg(@(t = 7)) = glglt =7)] + w(t)st > to, (3.10)

where 1 > 0, 71,7 € R, 71,75 > 0, and ¢ is an activation function in class A with
—1<g(§) <1,9(0)=0, ¢'(§) < L:=14'(0) = 1. We denote

7 := max{7, T2 }. (3.11)

Now, let us introduce some notations. For v € R, set

- 5L b WE, >0,
7'_{7L, 7<0,7'_{% v <0. (3.12)

Obviously, (—Aﬂy) = —%, (—) = =%, and 4 > ¥, as we have assumed L = 1.
Theorem 3.1.9. If z(¢) satisfies (3.10), then z(t) converges to interval [—n,, n,),
as t — oo, under condition (H1b): 2,4, > 0, ¥2_,(rilwl) < 2ZZ|wl/[(2 +
Si17i/ 1) (253 il + [w[™*(to))]; moreover,

0<n < [w|™*(00)
=T p+ 3 — SR () e + B9 + B )
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Theorem 3.1.10. If z(¢) satisfies (3.10), then z(¢) converges to an interval [—ng, n,],
as t — oo under condition (H2b): 71 > 0 and 7171 (2471 /1) (252 [yi |+ |w[™ (o)) <
251 il (1 = |2l /1) — Dl |w[™™(t0) / p; moreover,

|w]™*(o0)

0< < - —.
p+ 1L — |y =@+ +mnL)

= Ny

Theorem 3.1.11. If 2(¢) satisfies (3.10), then z(¢) converges to an interval [—n,., n,],

as t — oo, under condition (H3b): 32, |v;| < p — |w|™*(ty)/2; moreover,

0 < ny < Jw[™(00) /(1 — By Jil).

3.1.3 Proofs for lemma and theorems

We provide the proofs for Lemma 3.1.3, Theorems 3.1.4-3.1.6, 3.19-3.1.11 in this
subsection.
Proof of Lemma 3.1.3. The labelling in the proof corresponds to the one in the
statement of Lemma 3.1.3.

(i) Let us show thatfor any T > t,, 1) (T and 1) (T') are well-defined for
all k € NU{0}. First,det us claim that the following inequalities

ROED(ET) < RET) < WO, T) <R V(D). (3-13)

hold for all £ € R,k € N. To justify that (3:13)holds as k£ = 1, by the definitions
of hO, B, h® and E(O), it suffices to verify the following three inequalities:

It is obvious that all these three inequalities hold under condition (Hla), cf. Fig.
3.1. Assume that (3.13) holds for £k = 1,---,j — 1, where 7 € N. To show that it
also holds for k = j, by definitions of A=, 40, h) and R it suffices to justify

the following three inequalities:

v
>

hU=2 (mU=2(T), T)
=D (mU=(T), T)
RU=D (n=(T), T)

VD@ (T), T),
U @(T), 1),
AU (=2(T), T).

o>
Vv
>«

v
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Figure 3.2: Configurations for functions hU~D(-,T), AU=2(- T), hU=2(..T) and
hU-D(..T) for fixed T > t,.

Note that AU=2(&,T) < AU-D(¢, T).<hli (e, T) < hU=2(£,T) for € € R, since
(3.13) holds for k = j — 1. _It is ebvious-that all these three inequalities hold, cf.
Fig. 3.2. Hence (3.13) hold for all & € N; subsequently, 2 (¢, T) < A®)(¢,T) <

B (e, T) < hO(, T)%or all ¢ € R, and k € NU {0}: Note that h*)(¢,T) and

(k) (¢, T) are verticalshift of A&, T) and A (&,T) respectively. Accordingly, both
m*)(T) and m® () are well defined for all-k € N U {0} under condition (Hla).
Moreover, it is a straightforward result that mW(T}) < mY(T) and mU)(T}) >
mU)(Ty), for any Ty > Ty > t, since that hf)( T)) < 52 (+,15) and h() (-, 17) >
hW (-, Ty). Thus, for each & € N U{0}, m®™(T) increases and %) (T) decreases,
with respect to T'.

(ii) By (3.13), it can be shown that, for each T"> tg,

m(k+1)(T) < (k)(T), m(k+1)(T) > il (T) for all £ > 0.

Moreover, m®) (T) > 0 and m® (T) = =m®(T), for i € N. It follows that, for any
T > ty, there exist some m(7T) > 0 such that limy_. m®(T) = m(T) > 0, and
limy,_, 0o ™ (T) = —m(T) < 0.

(iii) For each k € NU {0}, it has been shown that m®)(Ty) > m®)(Ty), if Ty >
Ty > to; subsequently, limg .o 1" (Ty) > limy_o m®™(T7), ie. m(T) > m(Th).
Therefore, there exists some m, € R such that m(7") — m, decreasingly as T — oo,
since m(T') is bounded below for all T' > t,.

(iv) It is obvious that for all T' > ¢y, m(T") > 0. Next, we justify that m(7) <
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lw|™>(T)/[(1 + BL) — TBL(2 + BL + BL)], for any T > t,. For any fixed T > to,
it is not difficult to observe that {A®)(-, T)| an _an tr>o0 are uniformly bounded and
equicontinuous. Moreover hk) (&, T) decreases with respect to k. By Ascoli-Azela

Theorem, for any fixed T" > tj, there exists some continuous function iz(oo)(-,T)
defined on [A", A"] such that

AW (., T) | B (-, T) uniformly on [A", A", as k — co.
Recall that A% (&, T) = —h® (—¢, T). Tt follows that
AW (., T) 1 (-, T) uniformly on [A" A",
where () (&, T) = —h(®)(=¢, T). Tt is obvious that, for any fixed T > t,
A (€, T) < A (€,T), for all € € [A", A"
We summarize the properties of 2 (-, T") and () (-, T') as follows:

~

(P1): AR (m®(T),T) — D @(D)sT),-h®a® (1), T) — he)(—m(T),T) as

k — o0,

.7 (00) _J = +ﬁi)€+TﬁL@(°°’(—m(T)7T) 4 lw|™™(T), for £ >0,
(P2): WENET) = { — (14 pL)E+=TALA) (—m(T), T) % [w)>(T), for £ <0,
(P3): h)(m(T),T) = 0.

Below, let us justify.these properties one by one. The first resultsin (P1) holds since
(RO ® (PRI — 1) (m(T), 1)
< (AW (T T) — WOV (T), L)+ 2> 6™ (T), Py ) (m(T), T)],

and both [2® (7 ®) (T, )=k (@GE(TY, T and |A© (BT, T)—h) (m(T), T)|
converge to 0 as k — 00. Thewemaining part in (P1) can be justified similarly. If
¢ >0, then

BET) = lim A9, T)
= Jim {~(1+BL)E + rBLACD (D), T) + ful™(D))
= —(1+ BL)E + 7BL Jim (A% D D(T), T)} + Jw|™(T)
= —(1+ BL)¢ + 7BLA (=m(T), T) + |w|™(T).

Similar argument can be applied to the case £ < 0. Hence, property (P2) follows.
Next, (P3) follows from property (P1) since h®) (®)(T), T) = 0. Due to properties
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(P2) and (P3), for each T, h)(-,T) is a strictly decreasing function and has a
unique zero at m(T). As h)(&,T) = —h()(=£,T), —m(T) is the unique zero of
h)(.. T) = 0. Since h(®)(—m(T),T) = (1 + BLYM(T) + 78LA (—m(T),T) +

|w[™*(T"), we derive

1+ BL)m(T) 4 |[w|[™™(T)
1—78L '

0 < ) (=m(T),T) = (

Consequently, for £ > 0,

TBL[(1 + BL)m(T) + |w|™™(T)]
1—706L

W, T) = —(1+ BL)E + + |w|™X(T).  (3.14)

With the help of (3.14) and A (m(T),T) = 0, it can be derived that
m(T) = |w|[™(T)/[(1+ BL) — 7BL(2 + BL + BL)]. (3.15)

(v) It is obvious that Ny [—m(T),m(T)] = [-m,, my]. In addition, m, <
m(T') for any T > to. With m(T") given in (3:15), we thus obtain

0 < my, <Jwf™ (o) /{(1 + SL) — TAL(2 +BL+ BL)}.

Proof of Theorem:3.1.4. Let z(t) be a solution to (3.1).«The following claim
will lead to that for each T >-T, ., z(t) converges to [—m(T),m(T)] as t — oo.
Subsequently z(t) ‘converges to [—my, m,| as't = oo. To complete the proof, it
suffices to prove the claim.

Claim: For arbitrarily fixed 7"> .15 ,, and any fixed n € N, there exist some
increasing sequence {7y }y_o, with T4y > T+ 7, for k = 0,13--- ,n — 1 and T >
T + 7, such that

{ R (2(1), T) < (t) < A% (2(t), T), for t > T+ k=0,1,--- ,n—1;
z(t) € [m®(T), m*(T)], fort-= Lppry b= 0,1,--- n— 1.

(3.16)
Let us justify the claim. First, it is easy to show that A0 (z(t),T) < 2(t) <
RO (2(¢),T) for all t > Ty +7 := (T'+7) 47 > T due to Proposition 3.1.2. Accord-
ingly, there exists some Ty > Ty+7, such that z(t) € [mO(T), m©(T)] for all t > T7.
Thus, (3.16) holds for n = 1. Now, we assume that (3.16) holds forn = /—1 > 1. We
shall show that (3.16) holds for n = ¢. For any t > Ty_1+7, g(x(t—7))—g(y(t—7)) =
g (O)z(t—7), forsome ¢ € Q. z(t—7) = 2(t)—2(s)7 for some s € (t—7,t). Therefore,

A(t) = —2(t) = By (Qz(t — 7) +w(t) = —=(t) — By (Q)[=(t) — £(s)7] + w(t). Notice
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that A=2(m=(T),T) < (s) < A (mED(T), T); b2 (mE=2(T), T) < 0
and h(=2 (;E2(T), T) > 0 since that s > Ty_y > Ty_o+7. If 2(t) > 0, then 2(t) <
—2(t) = BL2(t) + 7BLA2 (i A(T), T) + |w]™(T) = h*D(=(t), T). If 2(t) <0,
then 2(t) < —z(t) — BL2(t) + TBLAD (1 2(T), T) + |w|™(T) = bV (2(t), T).
Similarly, we can show that (t) > A=Y (2(t),T). Accordingly, there exists some
Ty > Ty_1 + 7 such that z(¢) € [m=D(T), mEY(T)], for t > T,. The claim is thus
justified.

Proof of Theorem 3.1.5. We recompose the upper and lower functions in the

formulation for the case of § > 0 as follows:

il(ﬁ) ) =+ BL)E +2|B] + [w[™*(t), if £ >0,
L 208] + [w]m(t), if £ <0;

0 | —(1+BL)E — TALR(AM) + |w|™(T), for £ >0,

GEY '_{ (14 BL) —TﬂLh(Ah)+\w|max( ) for € <0
Sk (14 BL)E — TALAYEIERF VT, T) + |w|™(T),  for £ >0,
WOET) _{ (1+BL) —TﬁLh(k 1 (g 1>(T> ) + [w[™(T), for & < 0;
(&) == —h(=¢), hOUET) = —hO (¢, T), hE D) = —h™®) (=€, T).

Then the proof of the theorem is similar to the one for Theorem 3.1.4.

Proof of Theorem 3.1.6. We recompose the upper and lower functions in the

formulation for Theorem 3.1.4 as follows:

h(€) = =& 21B] + |w|"*™(t3).

°><, T) ==& + | B| A" € |w]™(T),
®(¢

) =

:w :w

§,1) ==~ [B|Ln* V(T + Jw[™(T),

h(€) = —h(=¢€), BNE D)= —hO (-, D) ¥, T) .= —h(—¢, 7).

Then the proof follows from similar process as Theorem 3.1.4.

Proof of Theorem 3.1.9. The proof resembles the one for Theorem 3.1.4 by
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recomposing the upper and lower formulation:

{ € + 257 [y + |w|™>(to) if £€>0,
—(p 4 22 9)E + 287 || + Jw|™>(te) if € <O,

P
~—~
o
SN—

I

e ) = { U S

YA(A") + Jw|™™(T), for € >0,
—(+ B9 + B (Tl (A (1)

)h

)

)
) h)+|w|maXT, for £ <0,

h® (€,T) -:{ —(p+ SE 1%)£+2 V(T AED D), T) + Jw[™(T), € > 0,

Tl =+ SR 90)€ 4 B2 (lDAEY (DT, T) + [w[m(T), € < 0.

h(€) == —h(=¢), AV, T) == — < &,T), AW T) = —h® (=€, T).

h
h

T
T

Proof of Theorem 3.1.10. The proof resembles the one for Theorem 3.1.4 by
recomposing the upper and lower formulation:
(€)= { € + 25, |yl + | (ko) £>0,
— ()& + 252 [yl + |w[™(to) € <O;

hO(E,T) = { —(u+mnL)é+ Tw}h@h) + |72A|Ah + [w|™(T), £ >0,
’ —(p + )& £rinih(A") + [alA” + |w[™(T), £ < 0;
2 (k) —f —(p L) RV REED), T) + |y (T) + |w|™(T), £ >0,
h (57 T) T 7 (k=1) ()3 (k—1) (k—1) max .
— ()€ + i h D (E TR T) & [yo| i —D(T) + Jw|™>(T), £ <0;

h(g) = _E(_€)> B(O)(§>T) = _E(O)(_gaT% k(k (gvT) = _h(k (_SaT)

Proof of Theorem 3.1.11. ‘The proof resembles the one for Theorem 3.1.4 by

recomposing the formulation for upper and lower functions:

h(€) = — i€+ 252 |y + Jw|™ % (tg),

hO(E, T) == pg + eyl A w225

W) (&, T) = <l S [l a0 (D)ofan| ™ (7).

h(g) = —h(=&)FPONET) := —hO (¢, T), FOUET) := —h®) (=€, T).

3.2 Scalar equation for convergence

In this section, we introduce the scalar equation associated with the convergence
for (2.3). We consider the following scalar equation with time-dependent external
input w(t):

(1) = —pa(t) + ag(z(t)) + Bg(x(t = n(t) + w(t), (3.17)
where ¢ > 0, > 0 and 3 € R; 74 (t) is a continuous function with 0 < 7 (t) < 7 € R,

for all t > to; w(t) is a bounded continuous function defined for ¢ > ty; ¢ is an
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activation function of class A with u < ¢(§) < v, ¢'(§) < L := ¢'(0) = max{g'(n) :
n € R}, for all £ € R. Let p = max{|ul, |v|}. We present the basic formations and
propositions in Section 3.2.1. Some extensions form (3.17) to other scalar equations
are given in Section 3.2.2. The proofs for the lemma, propositions and theorems in

Section 3.2.1 and 3.2.2 are given in Section 3.2.3.

3.2.1 Formulations and properties

The main result (Theorem 3.2.4) in this subsection asserts that there exist three
disjoint, bounded and closed intervals to which every solution of (3.17) converges,
under certain parameter conditions. Adopting the arguments parallel to the ones
in previous section (Section 3.1), we shall, iteratively, define sequences of upper
and lower functions for the dynamics of (3.17) as time proceeds, to capture the
asymptotical behavior of (3.17).

The first two conditions we impose on activation function g and parameters
are

Condition (Alc): L >2u/a >0,

Condition (A2¢): L.<< u/|5|.

Let us define f(§) i= —p&+ag(£), where g is the same-as in (3.17). Then,
f’(f) = —u + ag'(§), for any vertical shift f of f. Ifcondition (Alc) holds, there
exist exactly two points p, ¢ with p < 0 < ¢ such that f'(p) = f4(q) = 0; f'(¢£) > 0
for € € (p,q); and f/(€) < 0 for € € R < [Dyq]. Restated, if ¢"(0) > p/a, then p
and § are the only-two critical point§ of f, and g(p) = ¢'(q) =p/a, cf. Fig. 3.3.
In addition, conditions (Alc); (A2¢)imply 0 < (u—L|3|)/(a+|5]) < p/a. Thus,
there always exist two points p and ¢, where p < p < ¢ < ¢ such that

e 1o = LIf]
g(p)—g(q)—iaﬂm-

We shall formulate the desired configuration and properties for equation (3.17)
through the following quantities and functions. For T > %, let
w™™(T) == inf{w(t) |t > T}, w™(T) :=sup{w(t) |t > T},
FOET) = =& + ag(&) + |Blp + w™™>(T),
FOET) == —pé + ag(€) — |Blp + w™(T).
For convenience of later uses, we denote

F&) = fOE t), (&) = FOE o). (3.18)
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Figure 3.3: (a) The grap

for functions f, f with their

designated slopes.
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Notably, f and f are also vertical shifts of f. Let us introduce the third condition.
Condition (A3c): f(§) >0, f(§) <0

Under conditions (Alc), (A2c), (A3c), there exist three solutions I, 1 and 7 (resp.
[, m and 7) of f(€) =0 (resp. f(£) =0). Moreover, [ <l <p<p<m<im<q<
q <7 < 7. We further impose a slope condition on the middle part of the activation

function. This condition actually covers (Alc).
Condition (Adc): ¢'(¢) > 2u/a, for all £ € [in,m].

Let a©(T) (resp. bO(T),&%(T)) be the unique solution of fO(-,T) = 0
lying in interval [I,1] (resp. [, ], [, 7]), and a©@(T) (resp. b©@(T), & (T)) be the
unique solution of f© (., T) = 0 lying in [, 1] (resp. [rn, ], [F,7]), cf. Fig. 3.4. The
following functions can be defined iteratively for each fixed T" > ty: for k € N,

W) = { —p€ + ag(§) - Bg(a" TV (1)) + w™™(T), for >0,
b ' — € Aag(Ey+ Bgla =N (I) )4 w™>(T), for 3 <0,
ey = | aeAen(E) + f(@" ) (THGEZT), for 520,
LS —pE+ ag(€) HBg(a (D)) +w™(T), for 5 <0,
f0ET) = { =+ agl&) + Pg (0" V(D)) + w™X(T), for 5 >0,
w 6T = o L +ag@) oD (1)) +mX T for 6 <0,
F0 (e, T { —E + ag(€) + Bg(B*= (L)) + @™ (T)senfor 5 > 0,
o — & +ag(€) + Bg®"D(T)) + wit(T)yfor 5 <0,
f9e 1) — € + ag(€)+ Bg(e* (D)) + wm (1), for 5> 0,
t =18 £ ag§) + 89 (T)) 4 WX (T for § <0,
F®(e,T) { — 6 +ag(&) + Bg (e V(1)) + wHNL), for § >0,
Y “pE et agle) + Gg(e V(1) + ), for 5 < 0.

These functions are all vertical-shifts.off for each fixed 7. Herein, a*)(T)
(resp. DX)(T), ¢®)(T)) is the unique solution of ﬂ(k)(~,T) = 0 (resp. féf)(~,T) =
0, fr(k)(-,T) = 0) lying in interval [[,1] (vesp. [, 1], [F,7]), and a®(T) (resp.
b™(T), ¢®(T)) is the unique solution of fl(k)(-,T) = 0 (resp. ﬁ(f)(-,T) = 0,

(k)(g,T) = 0) lying in [[,]] (vesp. [m,m], [F,7]). We also define w™"(c0) :=
limy oo w™(T), W™ (00) := limg_, o w™™(T).

The following lemma summarizes the properties for zeros of the above-defined

sequences of single-variable functions.
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éO(T)

Figure 3.4: Configurations of functions f f , fOand f, for fixed T > t,.

Lemma 3.2.1. Assume that conditions (A2¢)=(A4¢) hold. Then, for each T' > ¢,
the sequences {b*)(T) Hiso, 0™ (T)}ezo {a®™ (T)}kz0, {a%)(T) a0, {6*1(T) a0,
{e®)(T)}r>0 can be defined iteratively. Moreover,

(i) for any fixed k € NU {0}, each-of 8¥)(T7), a*)(T) and ¢®(T) is increasing, and
each of b®)(T), a*W(T), and *)(T) is decreasing with respect to'T > t;

(ii) for any T > tg, there exist b(T),b(T),a(T),a(T),c(T),e(T) € R such that
b8 (T) — b(T), a®WT) — a(T), and ¢® (T) — ¢(T) increasingly, and b (T) —
WT), a®(T) — a(T
(iii) there exist b, b,
ingly and b(T") — b,

and ¢*)(T)<5 &(T') decreasingly, as k'~ 00;

6 ¢ € R such that b(1)—b, a(T) — a, ¢(T) — c increas-
( ) —.a, ¢(T) — ¢ decreasingly, as T = oc;

(1v) N7y [B(T), B(T)] = [bgbls g [a(T), A(T)] = JasGls 1o [e(T), &(T)] = [c, T;
(v) 0 < B(T)—=b(T) < [wm(T) (TG {AE), 0 < a(T)—a(T),o(T) —c(T) <
[w™a(T) — w™(T)]/(|B|L), for any T > #y, moreover

_ ,wmax(oo) _ wmin(oo)
0<dy:=0—-0< ,
T —18IL
_ wmax(oo) _ wmin(oo>
0<d,:=a—a, d.:=C—c<
B 1BIL

In the following discussions, for an initial value ¢ € C([—7,0],R), we denote
by x(t) = z(t; to; @) the solution of (3.17) with z(to + 0;to; ¢) = ¢(0), for 6 € [—7,0].
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Definition 3.2.1. A solution x(t) of (3.17) is said to satisfy Property M, L, R, if,
respectively,
for each k € NU {0}, T > to, z(t) €
there exists s > t, such that z(s) € [I,1

[0%(T), 0F(T)], for all t > T + kr,
],
there exists s > ¢, such that z(s) € [r, 7].

Proposition 3.2.2. Assume that conditions (A2c)-(A4c) hold.

(i) If () is a solution of (3.17) and for any fixed T > to, k € N, z(t) € [DF=1(T), b~ 1(T)]
for all t > T + (k — 1)7, then (t) € [0*(T),0%(T)], for all t > T + kr;

(i) If 2(t) is a solution of (3.17) and z(s) > b (T) (resp. z(s) < b (T)), for some

s > T > tg, then z(t) satisfies Property R (resp. L);

(iii) If the solution z(¢) of (3.17) satisfies Property M, then z(t) — [b(T),b(T)] as

t — oo, for any T > to; subsequently, x(t) — [b,b] as t — oo.

(iv) Each of [[,1] and [#,#] is a positively invariant interval for (3.17). Moreover, if
x(t) is a solution of (3.17), which satisfies Property R (resp. L), then z(t) — [c,¢]

(resp. [a,al), as t — 0.

Proposition 3.2.3. Assume that conditions (A2c)-(Ade)hold. Every solution x(t)
of (3.17) satisfies onesof Properties-M, L, R.

Proof. Let z(t) be a solution of (3.17) which does not satisfy Property M. Then
there exist k € NU{0}, T > to, such that

z(t) € R — [BE(T), b5(T)), for some ¢t >T + k. (3.19)

Set IC:= {(k,T) : ke NU{0},7" > 1y, and (3.19) holds}, kg :=min{k : there exists
T >ty such that (k,T) € K} There are two-possibilities: kg > 1 and ko = 0.
Case (i): If kg >, then for any T > t,,

z(t) € [BOUT) 0N T)), forall 6> T + (ko — 1)7.

It follows from Proposition 3.2.2 (i) that z(t) € [b¥(T), 0¥ (T)], for all t > T + kqr,
which is a contradiction to the definition of kg.

Case (ii): If kg = 0, then there exist T > ty and ¢ > T such that z(t) €
R — [0O(T), 5O (T)]. z(t) then satisfies Property £ or R, according to Proposition
3.2.2 (ii). O

Combining Proposition 3.2.2(iii), (iv), and Proposition 3.2.3, we conclude the

main result in this section.

30



Theorem 3.2.4. Assume that conditions (A2c)-(A4c) hold. Let z(t) be a solution

of (3.17). Then z(t) — [a, @], or [b,b], or [c, ], as t — oo; moreover,

— ,wmax(oo) _wmin(oo)
0<dy:=0—-0< ’
- T = 1BIL |
0<d,:=a—a, dc;zg_ggw (OO)_UJ (OO)

|6IL

3.2.2 Some extensions

For convergent dynamics of (2.8), we consider the following scalar equation with

time-dependent external inputs w(t) and E(t):
(t) = —x(t) — Bg(x(t — 7)) + w(t) + E(t), (3.20)

where w(t) and E(t) are bounded continuous functions defined for ¢ > t;, and
E(t) — 0 as t — o0; g is an activation function of class A with —1 < ¢(§) < 1,
g'(€) < L:=¢'(0) =max{g(n) € R}, for all £ eR.

Recall that Theorem: 3.2.4 addresses convergence to three intervals for scalar
equation (3.20). Such a delay independent, result therein strongly relies on positive-
ness of «, hence can not-he applied-to (3.20) directly. However, by adopting the idea
of controlling the delay: effect upon the 'motion of the equation in Section 3.1, we
can still derive similar results for (3.20). Let us recompose some setting in Section

3.2.1 and introduce the conditions imposed in the following. We define
F(€) =6 By (€) BLAMB| +w™ (k) — w™(t0)]+ w™™(to),
F(&) = —€ =By (&) + BLT[AIB] + 0" (tg) = w¥(Lo)] + w™™ (to).
We consider the condition:
Condition (Ala): L > 1/(=3) > 0,7 < 1/[L(4]8] + w™>(ty) — w™"(ty))].

Let A be a fixed number in interval (0, 1). Under condition (Ala), 8 < 0, there exist
two points py and ¢y, where py < p < ¢ < ¢, such that

/

9 (Bx) =g (@) = (1= A)/(=0). (3.21)

We introduce the following conditions:

~

Condition (A2a)*: f(§\) > 0, f(py) <0,
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Condition (A3a)*: ¢'(&) > (1 +\)/(—=B), & € [m,m].

Under conditions (Ala) and (A2a)*, there exist three zeros [, /i and 7 (resp. [, i
and 7) of f (resp. f). Condition (A3a)* prefers larger slope for the middle part of
the activation function g. Now, let us introduce the result of a trichotomy for the
dynamics of (3.20).

Theorem 3.2.5. Assume that conditions (Ala), (A2a)* and (A3a)* hold for some
A € (0,1). There exist three disjoint compact intervals [a,al, [b,b], [c, ] and every
solution of (3.20) converges to one of these intervals. Moreover

wmax(oo) _ wmin(oo>

(1 =2|B|LT)A

0<d,=a—a,dy:=b—0b,d, . =¢—c<

At last, for convergent dynamics of (2.6), we consider the following scalar

equation with time-dependent external input E(t):
#(t) = —pa () =B gt < 7)) + E(t), (3.22)

where > 0,71,7% € Ry, 7 > 0; where w(t) and E(t) are bounded continuous
functions defined for &> ty, and-E(t)— 0 as t — o0; g is an-activation function of
class A with —1 < g(§) < 1, g"(€) < 1 = ¢'(0) = max{g¢'(n) : n € R}, for all £ € R.
We denote 7 := max{m, 7} By similar arguments to Section 3:2, we can conclude
that there exist three points and every solutionof (3.22) converges to one of them

under the following condition:

Condition (Ab): X%, vi > i, Sy Ralm < min{1 74, 3 39 (@) —na, ]/ (45 i),
1Dy — X179 (Dy)]/ (% il) ) where

9 ()= 9'(3y) = /i (3.23)

Theorem 3.2.6. Assume that condition (Ab) holds. Let x(¢) be a solution of
(3.22). Then there exist some a < 0 and ¢ > 0 such that x(f) — a, or 0 or ¢ as
t — o0.

Notably, by modifying the formulation for Theorem 3.2.6, we can also derive

Ti-independent or my-independent results.

Remark 3.2.1. The condition X2 _,v; > p in Theorem 3.2.6 plays the dominant

role for the convergence to multiple equilibrium points of (3.22). Indeed, if ¥2_,; is
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small (smaller than p basically) instead, then (3.22) will admit convergence to the

origin.

3.2.3 Proofs of lemma, propositions and theorems

We provide the proofs for Lemma 3.2.1, Proposition 3.2.2, 3.2.3, Theorems 3.2.4-
3.2.6 in this subsection. We only prove the case of § > 0 for Lemma 3.2.1, Proposi-
tion 3.2.2, 3.2.3 and Theorems 3.2.4; the case of v; > 0, 7 = 1,2, for Theorem 3.2.6,

as the arguments for the other cases are similar.

Proof of Lemma 3.2.1. The labelling in the proof corresponds to the one in the
statement of Lemma 3.2.1.

(i) Let us show that for any T' > to, b*)(T") and b®(T') are well-defined for all
k € NU{0}. Assume that bU=1(T), 5= (T) have been defined, for a fixed T > t.
Notably,

FET) = <€ +agle)+ Bg®Y " (T)) + w™™(T)
< € + ag(§) + Bp + (o) = f(£).

FET) =" —ut+ag(€) - Bg®U Y (T)) + w™™(T)
> —pEEg(5) —8p +wr™ (k) = F9).

It follows that f(£) < frglj)(f, T) < £ (&, T) < f(€)sfor all¢ & R..In addition, p and
g are two critical points of f(-), f(-), Ag)(~,T), and f,gf)(~,T), and ¢'(p) = ¢'(q) =
i/, due to condition (Alc). There existsexactly one solution for.each of £ (,T) =
0 and f(-,T) = 0'in interval (myzin)e Accordingly; both 69(T) and bY)(T) are
well defined. Moreover, it'is straightforward o observe that 8% (T}) > bW (T3) and
b (Ty) < bY9)(Ty), due to 2, T1) < (. To) and fIC 1) > 9, ), for any
Ty > Ty > to. Thus, for each k€ NU {0}, b(k) (1")-increases and b*)(T) decreases,
with respect to T'. The arguments for a®(T), ¢ (T), ¢*)(T), ¢*)(T) are similar.
(i) Let us show that for each T' > t,

b (T) > 0®(T); p*F+D(T) < ) (T), for all k > 0. (3.24)

Assume that (3.24) holds for some k = j — 1. Notably, b0+ (T") and b9 (T)) satisfy
Ag+1)(~,T) =0 and fg)(~,T) = 0 respectively; i.e.,

—ub(T) + ag(BUHO(T)) + B0 (7)) +w™(T) = 0, (325)
—pb(T) + ag(b0)(T)) + B9 (T)) +w™(T) = 0. (3:26)
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The difference of (3.25) and (3.26) is

ulbI (T b9 ()] —ag/(€) B0+ (1) ~B9(T)] = By (O)IV(T)~bU~1(T)], (3.27)

where € (resp. () is a number between bUt)(T) and b9 (T) (resp. b9 (T) and
pU=1(T)). (3.27) then yields

pU(T) — b9(T) = 59’(4)[BZ)ETozgj(g;j_l)(T>] >0,

due to that ¢'(€) > p/a for & between bU+tD(T) and b9 (T). Thus, the first part
of (3.24) holds for k£ = j. The second part can be proved similarly. It follows
that for any T > to, limy_e 8% (T) = b(T) € R, and limy,_, b*)(T) = b(T) € R
respectively, since both of 5*) (T') and b®(T') are bounded monotone sequences. The
situations for a®) (T, a™(T), and ¢*)(T'), é¥)(T) are similar.

(iii) For each k € N'U {0}, it has been shown in (i) that b®)(Ty) < b®)(Ty),
if Ty, > Ty > ty. Thus, limy_od®(T) < limyo, 0¥ (T1), ie. b(Ty) < b(TY).
Therefore, b(T) — b € R increasingly as T —o0, since b(7) is bounded above for
all T > to. Similarly, b(T) —b € R decreasingly as T. —60. Similar proofs apply
to a(T) — a, a(T) —a, ¢(T)—-crand ¢(1) — €.

(iv) It is straightforward toseethat Ngse, [0(T); b(T)] = [b,b], N> [a(T), a(T)] =
2, 3], Nz [e(T), AT)] = lexel.

(v) It is obvious that b(T) — b(T) > 0, since b*N(T) > H¥)(T) for any k € NU
{0}, and any T > tg= Next, we justify that 6(T) —b(T) < [w"®(T) — w™>(T)] /(1 —
|B|L), for any T' > ty. For such'an assertion, we shall construct amapping I'r : Hy —
Hry, for each T > to whete Hy = [0 (T, bO(T)] < [bO (1) 6T N { (41, y2) [y1 <
Yo} C R? and such a‘mapping is a contraction, mainly due to ¢’ > 2u/a, on
(6O (T, 59(T)]. The map T thus admits an uniqué fixed point (b(T),b(T)). The
difference of b(T') and b(T) can then be estimated to yield the assertion. Let us

elaborate. For each T > ty, we define the following functions:

hp™(&,y) = —p&+ag(&)+ Bg(y) +w™™(T),
RWENE, ) = —pé+ ag(€) + Bg(y) + w™™(T).

Notably, fu (€, T) < HE™(€,m) < WE™(E72) < fu (€,7), i BO(T) < < 7 <
bO(T). For (£,7) € Hy, we define T'p(€,7) = (&,7,), where & (resp. 7,) is the
unique point lying in [b©@(T), 5O (T)] satisfying h*(£,,~) = 0 (resp. hm"(v,, &) =
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0). Suppose hp* (&, v) = 0, hP* (&L, ~") = 0, then we derive

w(E — &) —ag ()& — &) + Bla(v) — g(v)] =0,

where 7 is between & and . Subsequently, |&. —&,| < |B|L|Y — 7|/[ (2u/a) )
|BILIY =1/, thanks to ¢'(n) > 2p/a, for n € [O(T),6O(T)] € B (t), 5 (t)]
[, m]. Similarly, we can prove that |y, — .| < [B|LI — &'|/u, if KR (q,, &) =
hin (2 €Y = 0. We thus establish

o||

IﬁIL||

IT7(&,7) = T (€, 7 ) oo = 116 75) — (€5 7)o < T (&7) = (€57 oo

I'r is thus a contracting mapping under our condition (A2c¢): L < u/|B|. Thus,
there exists an unique fixed point of I'y in Hy. Observe that T (6@ (T)), 5O(T)) =
(b®(T), B*)(T)), which converges to (b(T),b(T)) as k — oo. Thus (b(T),b(T)) € Hy
is the fixed point of I'r and

—ub(T) + ag(b(T)) +B9(b(T)) + w>(T) = 0,
—ub(T).+ag(b(T)) + Bg(b(T)) +w™(T), = 0.

Therefore,
W(T) = (D) = [w(T) =w™™T)] /ey (€) — 10lg'(€) — 4]
< ™ (T = w™ND)]/ [ =16)g' (§)]
< [w"(T) = WD)/ — 18] L,

due to condition (Ade): ¢'(&) = 2ufa for & e [b(T),b(T)] @ [bO(T),bO(T)]
[, 77], condition (A2¢): u=|B|L >0, and ¢'(€) < L, for/all.£. Moreover, b — b <
b(T) — b(T) < [w™(T) —aw™™(T)]/[n — | 3|L)], for any T > t,. We thus establish
0 < dy:=b—b < w(o0) = w™(c0)]/[1 — |B|L].
The estimate for ¢(T") — ¢(T') follows from

pe(T) = c(T)] = ag () [E(T) — (1)) = By (§)[E(T) — c(T)] +w™™(T) — w™™(T) = 0,
for some & € [¢O(T), ¢©(T)], and

m(T) — w(T) (L) — w"(T)

p—(a+|8))g(@) 6] L

&T) — o(T) <
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The estimate for @(T") — a(T) is similar. The bounds for @ — a, and ¢ — ¢ can then
be derived.

Proof of Proposition 3.2.2.

(i) Assume that z(t) € [p*=D(T), b=1(T)], for allt > T+ (k—1)7. Then it is
not difficult to derive that f{ (x(t),T) < z(t) < Fi ( (t),T) for t > T+ k7. There-
fore, if the assertion does not hold, z(t) eventually leaves [b*~D(T'), b= (T)] after
t =T + k7, and yields a contradiction, cf. Fig. 3.5. For a detailed proof, let us sup-
pose the assertion does not hold, then there exists some s > T'+ k7 such that z(s) €

~

&= (T, b= (T)] — [b*)(T), 5% (T)]. Suppose that z(s) € (5% (T), b*=1(T)] £ 0
(the case x(s) € (b D(T),b*)(T)] # O can be similarly discussed). Notably,

b (6T) = N ag(é) + Bg(@*(T)) + w™™(T) = fi(a(s),T) = by > 0,
for all £ € [z(s), b*~D(T)], in respecting the definition of fr(f) (&,T), cf. Fig. 3.5. In
addition,

i(s) = —pa(s) + ag(a(s)) + By(@(s — 71(s))) + w(s)

v

(s) +
—pit(s) £ ag(x(s) + Bgd*UT)) + w™™(T)
F®) (2 (s), T) =rhy>-0,

due to s — 7y(s) > T 4 (k — L)7.—Therefore, x(t) enters into (x(s), b*"1(T)] after
t = s, and will never go back into (—o0, z(s)] again. Indeed, if there exists a time
s1 > s, such that z(t) € (z(s), b*=(T)) forall t € (s, 1), and z(s,) = x(s), then,

2(s1) — a(s) ¥= & (3)(s—5)

[=px(3) 4 ag(z(s)) +8g(x(5 = 71(3))) + w($)](s1 — )
[—pe(3) + ag(z(3)) + Bg(0* V(@) Fw™™(T)](s1 — s)
[0 @@ (51 — ) > ha(s18) > 0,

vV _ i

for some § € (s,s;), which is a contradiction.. Thus, z(t) stays in [z(s), 0¥ *(T)]
for all t > s with &(¢f) > hy; > 0. This is impossible and we conclude that z(t) €
&) (1), B%)(T)] for all ¢ > T + kr.
(ii) We only prove the R case. This property holds mainly due to f© (z(t), T') <

i(t) < fO(x(t),T), fort > T. Therefore, if z(s) € (0O (T), 00) (resp. (—o0, b (T)))
for some s > T, then x(t) eventually enters into [, 7] (vesp. [I,1]), cf. Fig 3.4. Let us
give detailed arguments. If z(s) € (b (T),7), then hg := min{ f© (x(s), s), fO(7,s)} >
0, and fO(&,5) > hy, for € € [2(s), 7], as observed from the graph of f©)(-,s) in
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Figure 3.5: Configuration for the proof of Proposition 3.2.2 (i), for some T > t,.

Fig. 3.6. In addition,

i(s) = —pa(s)+ag(x(s))+8g(z(s —1(s))) +w(s),
> —pa(s) + aglzls))=0Bp+w(s),
= f(o)(:v(s),s) > hy.

Thus, x(t) is increasing with a positive rate should it remain in (6 (T'), 7). On the
other hand, if z(s) > (Fig. 3.6),

#(s) = —pa(s) + ag(x(s)) +Hg(z(s = (s))) £ w(s)
< | —pa(s) +agla(s)) & Bp + w™(s)

= O (2(8)55) <0

Thus, z(t) eventually enters into [, 7].

(iii) Let us show that z(#).— [b(T),b(T)], for.any T > t,. Assume otherwise
that x(t) does not converge to [b(T),b(T)]'as t — oo, for some T > t,. Then, there
exist € > 0 and an increasing time sequence {#,} tending to +oo, such that z(¢,)
does not belong to [b(T) — €,b(T) + €] for all n. This contradicts to that for each
ke NU{0}, T > to, z(t) € [bF(T),0%(T)] for all t > T + k7, by the assumption
(Property M), and that b*(T") converges to b(T) increasingly, b*(T) converges to
b(T) decreasingly, as k — oo. Moreover, since b(7T') tends to b increasingly and b(T)
tends to b decreasingly, as T — oo, we conclude that z(t) — [b,b], as t — oc.

(iv) First, both [I,1] and [7, 7] are positively invariant sets for system (3.17)
mainly because that f(z(t)) < @(t) < f(x(t)) for all t > t,, cf. Fig. 3.4. More
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Figure 3.6: Configuration for the proof of Proposition 3.2.2 (ii), for some s > T.

precisely, assume that there exists s > t; such that z(t) € [r,7] for tg <t < s
and x(t) ¢ [, 7] for some t; > s. Let s; be the first time after time s such that
x(s1) = 7, and z(t) leaves [F, 7] after time s; and enters into (—oo, ), without loss
of generality. Then there exists s, > s1 such that m < z(t) < 7 for t € (s1,52). A

contradiction then arises as

x(s2) —a(s1) = @(s3)(s2=51)
= [—pz(s3)+ ag(x(s3)) + Bg(z(ss'= Tuls3))) + w(s3)](s2 — s1)

> f(a(s3))(sa="=s1) >0,

for some s3 € (s1, $2). Similar contradiction occurs.if we consider x(s,) = 7 and x(¢)
enters into (7, 00).»The proof for positive invariance of [I, 1] is similar.

Next, we assume that x(t) satisfies Property R, namely, there exists s > ¢,
such that z(s) € [fy#]. We assert that for each T > t,

z(t) = [ (@), é®(T)], as £ — oo, for all k> 0. (3.28)
We justify (3.28) by induction. Let s := max{s, T'}.< It can be concluded that
if 2(t;) € [¢O(T), e (T)] for somenty. > spethen a(t) € [¢O(T),&O(T)] for all

t > t1, by arguments similar to the previous ones for proving that [, 7] is positively
invariant. If z(t) € [7,¢0(T)), for all t > sp, then

p(t) = —pa(t) +ag(zt) + Be(z(t — n1(t))) + w(t)
—px(t) + ag(z(t) — Bp + w™™(T)
FO@(t),T) >0,

and yields a contradiction. Similarly, it can not hold that x(t) € (¢%)(T),#], for
all ¢ > sp. Hence, (3.28) holds for £ = 0. Now, we assume that (3.28) holds

+ ag
+ ag

v

38



for k = j — 1, ie., (t) — [cU=(T),eU=(T)], as t — oo. Let us illustrate that
it also holds for k = j. Consider a point zy arbitrarily close to [¢U)(T), W) (T)],
and assume zy < ¢U)(T); there exists a function, say fy, which is a vertical-shift
of fr(o)(-, T) and fy has an unique zero at zy, cf. Fig. 3.7. It can be derived that
(t) > fu(x(t)), as t is large enough. Subsequently, it follows that x(¢) must become
closer to [¢9)(T),eVU)(T)] than to zy, as t — oo. (3.28) thus holds for k = j. The
arguments for zp; > ¢9)(T) and #(t) < fy(x(t)) are similar. Let us give detailed
arguments. Assume that z(¢) does not converge to [¢Y)(T), ) (T)]. Then, without
loss of generality, there exist an € > 0 and a time sequence {t,} with ¢, > sy and

t, — 00, as n — 00, such that
2(tn) € [, é9(T) — e); (3.29)

moreover, ¢V)(T') > ¢U=Y(T). Notably, ¢9)(T) is the unique solution of the equation
—ué + ag(€) + Bg(eV=(T)) + w™™(T) = 0, which lies in [#,7]. Thus, there exist
6. > 0 and zy € [¢U(T) — £,¢UNT) + £] suchithat zy is the unique solution of
fu(&) == —p& + ag(é) + pglcy) +w™™(T) =0, where ¢y = min{¢ : £ € U},
U = [U=)(T) — 6., c9=(TY + 6] N [, 7], by continuity, cf. Fig. 3.7. On the
other hand, there exists f large-enough such that z(t) > ¢y, for all t > ¢, since x(t)
converges to [¢U~D (T, ¢V =D (T)].-1t follows that

i(ty) =" —paty) + agz(ty)) £ Bg(a(ty = m(ty)))+ w(ty)
2 —pa(ty) +ag(e(ty)) 4 Bgley) + w™ (T) >0,

for some ty > + 7, since z(ty) < E9(T) =& < &p. Moreover,

#(t) = —pr(t)+Hag(r(t) + B (x(t — m () Fwlt)
> —pa(t) ¥ aglz).+ Sg(cu) +W™(T) = fu(a(t) >0,

ift >ty and z(t) € (x(tn), xy). Therefore, z(t) is increasing until it reaches zy and
never goes back into [, ¢U)(T) — ¢). This yields a contradiction to (3.29). We have
therefore justified that (3.28) holds. Consequently, x(t) converges to [c(T),¢(T")] for
all T > to, and thus converges to [c, ¢, as t — oo. The proof for x(t) satisfying

Property £ and converging to [a, @] is similar.

Proof of Theorem 3.2.5. We recompose the upper and lower functions in the
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Figure 3.7: Configuration for the proof of Proposition 3.2.2 (iv), with fixed 7.

formulation for Theorem 3.2.4 as follows:

FO T { —E + @ B)g(€) — LT AL % o™(T), for 5 > 0;

T~ (et B)g(€) — BLTF(AL) Fwm(T), for 3 <0,

FO e, T) = { —Ji A (o =B3)9(E) = BLr (AT 4 w™(D),  for 5> 0;

— [+ (a $£8)g&) —BL7F(AF) + wm(TY), ., for § <0,
J9 (e 7) o o FA@EB)GE) = BLrfy TR (@I DT, T) + ™ (T), for 2 0;
PO et + (o B)gl€) = BLr (@D, Byt wh(T), for B <0,
96 7)o LemE + (0 3 B)g(E) ZBLAf (@D (1) Byt wh™(T), for 2 0;
OS2l e+ (o 8) (€)= B ft =@l =) (1), T + w™™(T), for 8 <0,
F® (e, T) = —p§ + (a4 B)g(E) = 5L7fr%k_l)(3(k_1)(T), T)+ w™>(T), for > 0;
MO —pgd (. 8)g(€) — BLTFYTY (BT, T) + wm(T), for <0,
e )= ] THET (a4 Bg(e)=BL7 )(130“ N(T),T) + w™™(T), for > 0;
T et (ot 9)9(€) = BLa TV (OEO(T),T) + whN(T), for 5 <0,
F® (e, T) = —pé + (a+ 3)g(§) — 5L7Jfr(k_1)(é(k_l)(T), T) + w™(T), for 3> 0;
CUTT L s (at B)g(©) = ALV (D), T) + w(T), for <0,
e ) o | THEH Lt Bg(€) = BLT(E (D). T) 4 w(T), for 2 0
—p& + (a+ B)g(€) — BLT AV (@HD(T), T) + w™™(T), for 3 <0,

where Af (vesp. A7) is zero to f (resp. f). Then the proof follows from similar

process as Theorem 3.2.4.

40



Proof of Theorem 3.2.6. We recompose the upper and lower functions in the

formulation for Theorem 3.2.4 as follows:

~ ~

F(&) = —p& + 257 |vl, (€)= —p& — 25, |vil.
FOE) = —pé + L 1%ig(&) + (SLylvilm) (A5 [l),
FOE) = —p& + S7179(8) — (S 1alm) (454 i)
A€ = =g + DL imig(6) — (BLyyim) F V@4,
FU(€) = —pg + 32 mig(6) - (Zf:nm) D@,
() = =€ + S1mi9(€) — (Syim) V(00 Y),
W) = =€ + ST 17i9(€) — (SLyim) D (00 Y),
() = =€ + ST 17i9(€) — (SFyyim) fF 0 (@4Y),
FIE) 1= —p€ + B2 17i9(8) — (B2 yyim) D% D).
Then the proof follows from similar ess_as Theorem 3.2.4.
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Chapter 4

Multistability for Hopfield-type
Network

Most of the materials in this chapter has been published in [61]. In this chapter, we

consider system (2.3):
#i(t) = =iz (t) + D, Ay (O Y+ DT Brigs(a; (t — 73(t))) + Ji,
j=1 Jj=1

where ¢ = 1,2, ,n;.g; is the activation function of class. A. We establish the
existence of 3" equilibria for system (2.3) in Section 4.1. The main theorems of
convergence of dynamics and stability of'equilibria for.system (2:3) are presented in
Section 4.2 and 4.3 respectively. We demonstrate the theory by a numerical example

in Section 4.4.

4.1 Existence of multiple equilibria

Let us introduce the following upper and lower bounds for each component of system
(2.3):

Ei(&) = —pil + angil€) D] lailo; + > 18105 + i,

j#i =1
EFi(&) = —pé + augi(§) — Z |cijlp; — Z |Bijlps + Ji,
i =1

where p; are the bounds for activation functions g;, defined in (2.4).
Recall that L; is the largest slope of activation function g; at its inflection
point, as defined in (2.4). We consider the following conditions which are the multi-

dimensional versions of conditions (Alc),(A2c).
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Condition (Clc): L; > 2u;/ay; >0, for i =1,2,--+ ,n
Condition (C2¢): p; > pi — LilBul > >, Lilau| + 32,2 LilBijl, for i =

Notably, condition (Clc) implies ay; > 0, and the first inequality in condition
(C2c) is equivalent to 3; # 0, for all . The discussions on critical points of f, f
and f and their vertical shifts in Section 3.2.1 are valid for Fi, F,i=1,2,---,n,as
well as their vertical shifts. Accordingly, under condition (Clc), there exist critical
points §; and g of F;, I}, which satisfy ¢/(p;) = ¢/(G;) = pi/ . In addition, F; and
F; are strictly increasing in (—oo, p;), (i, 00), and strictly decreasing in (f;, G;), for
t=1,2,---,n. On the other hand,

ZL |O‘w‘ + ZL Iﬂu (i + 1Bal) < pa/ (s + 1 Biil), (4.1)
J#i

under conditions (C2c). Hence, there always exist exactly two points p; and ¢; with

Di < pi < @; < ¢; such that

9:(pi) = 9i(qi) = Z Ljlos| + ZL Bl )l (i + 1Bil), (4.2)
J#i
fori=1,2,---,n. Next, we introduce

Condition (C3¢): Fi(@) > 0 and Fi(p;) <0, for alli=1,2, -

Under condition (C3c), there exist three solutions IF, mFpand #F (resp. IF,

mF and 7F) to Fj(-) = 0 (resp. £4(-)"=0), for each i =/1,2,--,n. Moreover,

F o F 5 = F E

< Zf < p <y <l < @ < 1y < 1. ‘The following condition is the

multi-dimensional version of condition (A4c).
Condition (C4c): g;(€) > 2uifay for all € md, ml],i=1,2,--- ,n.
Let us introduce the following sets in R"
Dgern = O X2 x o x QN € {lm,1}, i=1,2,---,n,
Danger, = M2 x - x W N e{lmr}), i=1,2,---,n,
which are defined through the following intervals

0 = [IF, 1), o = [l k), 0 = 7, ¢7),

107 K3 Z’Z

Q) = (—oo,m]), O = QF, O = (M, 00).

43



“177 14 7 [{3%}]

Herein, m”, “r” represent respectively left, middle, and right. Through apply-
ing the contraction mapping principle, we derive the existence of 3" equilibria for

system (2.3).

Theorem 4.1.1. There exist exactly 3™ equilibria for system (2.3) under conditions

(C2c)-(C4c). Each region 2y, ,...\, contains exactly one of these 3" equilibria.

Proof. We will show that there exists exactly one equilibrium point in each
Qoapen, - Consider a fixed Q = Qy a0, Set fi(§) == —wé + @;9:(§). For a
given y = (ylay27 e 7yn) S Qv we define

hi(§) = —pi€ + @iigi(§) + Z @595 (y;) + Zﬁijgj(yj) + Ji,
i=1j#i j=1
for ¢ € R, i =1,2,---,n. Note that F;(&) < hi(§) < Fi(€), and all functions £},
h;, E; are vertical-shifts of fi- Thus, there exists an unique solution y; to equation
hi(-) = 0, lying in Q. We defineta mapping Gg :Q — Q by Go(y) = y*, where
y' = (yf,v5,- -+ ,vy:). Then Gg is-eontinuous-and we shall illustrate that it is a

contraction map. Assumethat Go(y) = y*, Go(x).= x*, ie., foreachi =1,2,--- |n

n n
— sy 09 ()Y i dp(my) + D) 89i() + Ji = 0,

j—l,js«éi j—l
,uﬂ? +azzgz Z azjg] €z +Zﬂzggj l’] —|—J =0.
J=1,j7#i
Then
n
(@7 =y s — gl (GNP =D g ()] Zﬂugj nij)lz; —y;l =0, (4.3)
J=1,j7#i

where & is some number between z} and y;;-);is some number between x; and y;.
(i) If \; =“m”, then x},y;, & € [ml Ml and g¢/(£) > 2u;/ay, by condition
(C4c). Hence

2r =yl o= | Y augi) (@ — )+ Bud ) (@ — )|/ |uigi(§) — il
j=1,j#0 =t
< ALY Lilagl+ ) LilBy 1/ midIx = vl
j=Lii i=1
= Fillx = ¥lloo;
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and 0 < 4; < 1, owing to condition (C2c).
(i) If A, =7, then z},y; € [fF,7F], and & > ¢ (for ¢ < 7F). Thus,

0 < g;(&) < [mi— (Zj;éi Lilevs + 37751 Ll Big )]/ lei + |8il] < pif s, as mentioned
n (4.1). It follows that

liigi(§) — il = i — ugi(§)
> _azz s Z L |azy| +ZL ‘61) Oé“‘—i— |ﬂzz‘)

Jj= 1#2
n

> Y Lylayl+ ZLJWM-

j=1,j#i j=1

Subsequently, from (4.3)

|27 —yi] < Z L, \%HZL 185511/ |viigi(§5) — pal HIx = ¥l
J=1,j#i
= Yilx = ¥,

and v; < 1. The situation for A;"="1" is similar... Therefore, G is a contraction
map and there exists an unique fixed point.X.= (%, Ty - - 4T,) of G, lying in Q.
Restated, for each 1 =1,2,--n

— s F Qg @YY @)+ > Big(E;) + Ji = 0. (4.4)
=L, =1
Thus, X is an unique equilibrium point of (2.3) lying in ).

On the other hand, if X = (T, &gy + =+ @) isan-equilibrium of (2.3), then (4.4)
holds. Hence, T; lies in one of O, O QF for each i, and thus X coincides with the
unique equilibrium lyingdn @y, r,..x,, A € {l,m,r}. System (2.3) therefore admits
exactly 3" equilibria. [J

4.2 Convergence

In the following discussions, we consider a fixed initial value ¢ € C([—7, 0], R"™), and
the solution x(t) = x(t;to;¢) = (21(¢;t0; @), 22(t;t0; @), -+, Tult; o; @) to system
(2.3), which is evolved from ¢ at t = ty. For each ¢ = 1,2,---  n, we write the ith

component of system (2.3) in the following form:
E(t) = = (1) + agi(€(1)) + Biagi (€( — (1)) + wi(?), (4.5)
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where w;(t) = wi(t; to; @) = Xy jilon;g;(2; (1) + B39 (x;(E — 735(2)))] + J; 1s re-
garded as a bounded function of t. The notations, Lemma 3.2.1, Propositions
3.2.2, 3.2.3, and Theorem 3.2.4 can all be adapted to (4.5). In particular, for

1=1,2,---,n, we define

Fi©) = —w€ + iugi(€) + |Balpi + wi™(ty),
Fil©) = =l + 0ugi(€) — |Bul pi + wi™(to).

Under conditions (Clc), (C2c), fi, f; admit similar properties as f, f in Section
Sl [l

3.2.1. In particular, there exist i/, mf, #/, I/ !, #/ which are the zeros of f;, f;
respectively, and p;, ¢; which are both the critical points of ﬁ and f;. Notice that

Fi, F,, and fi, f; share the same critical points ;, ;. According to our setting,

Fi(€) < fi€) < fil&) < E(€), for all € € R.

Therefore, condition (C3c) implies that fi(G) > F;(G;) > 0 and fi(p;) < Fy(p;) < 0;
F ! I <mf< g IF <l </ <IF < p;, and

I < ¢l < #F

7 ) P

in addition, p; < m; < m; < m

G <7rf <7 where p;, ¢; are defined in/(4.2), cf. Fig. 4.1. Moreover,

£ k] yields g/(€) > 2u; /s on

we note that condition (Cde): gi(€) > 2u;/a;; on [1h

[m{,m{] since [m{,m{] c [m ml].

According to Theorem 3.2.4--for each ¢ = 1,2, -+ n, there exist three disjoint,
closed and bounded intervals [a;; @], [b;, b:] and [c;, &) and the ith component z;(¢) of
the solution converges to one of them. Moreover, by Lemma 3.2:1, we can estimate
the lengths of these intervals. Restated, @;(t) = z;(¢; to; ¢), the i-th component of
solution starting from ¢ € C([—7,0];R™), converges to an interval /; of length d;,

and
d; < [wi*™(00) — wi*™(c0)] /n;, (4.6)

7

where 1; := min{u; — Li|BulsLi| i}, w™(o0) ="limgp_ o w*(T), w"(c0) =

limy_ oo WM (T), wi™(T) := sup{w; () |+ > T}, and w™™(T) := inf{w;(t) | t > T}.
Notably, in (4.6), the magnitude of d; depends on the difference between w}***(c0)

and w™(co0) which are terms involving non-i components of the solution and can

not be measured without further elaboration. In the following, we employ an upper

min
i

max
3

bound for w***(c0) and a lower bound for w™"(c0), which are definite terms, and

derive a rough estimate on d;. From this estimate, we compute more precise upper
(resp. lower) bounds for w®(co0) (resp. w™(cc)) through an iterative process.
This idea for estimating the magnitude of d; is illustrated and implemented in the

following proposition.
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Figure 4.1: Configurations for functions Fi, fi, fi, F;.

Proposition 4.2.1. Assume that conditions (€2c)-(C4c). hold. For each i =
1,2,---,n, there exists a sequence-of intervals {Ii(k)},;";o such that for each k, the ith
component z;(t) ofevery solution x(t) to system (2.3) converges to Iz-(k) as t — oo,
and the length d(-k) of I, *) satisfies

a < ZI%H\@J d(’“+2 (Jos; + |51 Esd% DY s (47)

Jj=i+1

Proof. We prove the'case of §;; > 0. Let us define d§°) :=2p;/L;, fori=1,2,--- |n
First, we illustrate that the assertion holds for £k = Land 7 = 1. Set

n n

Wi (00) = — (o] + 1Bil)s Ay WA (00):= Y (e | + 1B )ps + Ju.

Jj=2 Jj=2

Notable, Wl(l)(oo) < wiit(oo) < wi™(oo) < Wl(l)(oo). Recall n; := min{u; —
L;i|Biil, Li| Bii| }- We have shown that z;(¢) converges to interval I; of length d;, and

d < [P (o0) — wi(00)]/m
< [ (00) — W (00)]/my

= > Jagl + D18 1LY .
=2 =2
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We may say that x;(t) converges to a closed and bounded interval I 1(1) D I, whose
length dgl) satisfies dgl) < [Z?:2|a1j|+Z?:2|ﬁlj|]Ljd§0)/n1. Assume that the assertion
holds for kK =1,i=1,2,--- .,/ —1, 1 < { < n and z;(t) converges to a closed and
bounded interval I > I; of length d{" < {24 (Jay| + 8, ) Lid" + 57,1 (Jaws| +
| /6,-]-|)Ljd§»0)} /m;. Let us justify that the assertion also holds for £k = 1 and i = £ as

follows. Set

-1 n

Wi (00) = 3 min {aeg;(€) + Bugs(m)} = D (lowsl + |5 oy + e
j=1&nel; j=t+1

. -1 n

Wil(oo) = 3 max {aug;(€) + Bugim} + > (el + 8s)p; + e
j=1 &< j=t+1

It follows that x,(t) converges to an interval [ él) whose length dél) satisfies

di) < [wp™(o0) — wp™(c0)]/mi
< W (c0) — Wi ©8)) e
{(Z0 (a8} + Zimpmallads o 100 Lid } e
Next, assume that the assertion holds for some (k — 1) and all i« = 1,2,--- ,n.

Namely, z;(t) converges to a clesed-and bounded interval ]Z-(k_l), whose length satis-
k-1 i k=1 A k—2
fies d}* ™ < (S ag | 18D T 3L (sl 19, ) Egd ™} /mi. Now, let

us verify that the assertion holds for £ and = 1l as well. Set

WiER) = 2 i lanai ) 0o, (EF,
j=2 &nel;

Wi (co) = max {a;9;(E) + Biggilmy + Ji.
j=2 &nel;

Thus, z(t) converges to an interval Il(k) whose length dgk) satisfies

di < [ (00) — wi™(c0)]/m
2 (k 5 (k
< Y (00) = WY (00))/m
n n k—1
= [Zfoslan] + S Byl Lid ™ /m
By continuing the above process, we can prove that for each ¢ = 2,---  n, x;(t)

converges to an interval Ii(k) whose length is dgk) < {ZiZi (Jag;] + |ﬁij\)Ljd§-k) +
" k-1
i (levgl + B Ly} i O
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To establish further dynamical properties for system (2.3), we need the follow-

ing condition which is stronger than condition (C2c).

fori=1,2,---,n.

So far, we have considered a single solution to system (2.3), which is evolved
from a given ¢ at ¢ = t;. From our previous derivations, it can be shown that
every component of the solution converges to a sequence of closed intervals whose
lengths dgk), i = 1,2,--- ,n, can be controlled by iterative formula (4.7). Next,
it will be examined that for each 1, dgk) converges to zero, as k — 00, via the
Guass-Seidal iteration approach. Thus, the intervals to which each component of
the solution converges degenerate into a single point. Hence the solution converges

to a singleton.

Theorem 4.2.2. Assume that conditions (€C2¢)*, (C3c) and (C4c) hold. Then the
solution x(t) := x(t; to; @) of (2.3)-evolved from any initial value ¢ € C([—7,0],R")

converges to one of the 3" equilibria of the system.

Proof. By Proposition 4.2.1, for each ¢ = 1,2,-:+ ,n, we can find an interval
sequence {Ii(k)}zozo so that z;(¢)-converges to IZ-(k) whose length satisfies (4.7), for
each k. Below, we shall show that for all : = 1,2, .« ' n, dz(-k) converges to zero as k
tends to infinity. Set z§°) = dz(-o), and for 4= 1,2,--- 'n,

k i— k k—1
A9 = (S (el + 1840 L2 £ = (o) + |85 L=y VY /mi, k€N,
z® = (P AN Y ke NU {03

)TN

We observe that {zl(k) 'io= 1,2, --- ,n} are just.the Gauss-Seidal iterations for

solving the linear system

(ML +E)y =0, (4.8)
M := [mijli<ijcn, mi = 0,mi; = —[og;| =531, for i # j,
L :=diag(Ly, Lo, -+, L,), E:=diag(n, m2, - -+ , 7).
Notably, ML + E is strictly diagonal-dominant [4, 74]; indeed, n; — >~ (ai;| +
|Bi;)L; >0, for all i = 1,2,--- ,n, by condition (C2¢)*. Accordingly, z¥) converges

to the unique solution of (4.8), which is zero, as k — oo.
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Below, let us justify the following inequality:
0<d® <™ fori=1,2,--- nkeNU{0} (4.9)

It is obvious that for i = 1,2,--- ,n, 0 < dz(-k), for k € NU {0} and (4.9) holds for
k = 0. In addition, (4.9) holds for ¢ = 1 and k = 1 since dgl) < {3 (el +
Bul) LidS} < {20l + 18u1) L=} /m = 2. We can continue to prove
that (4.9) holds for i = 2,3--- ,n and k& = 1. Assume that (4.9) holds for all
i=1,2,--- ,nand k = ¢, for some ¢ > 1, then (4.9) also holds for i =1, k = ¢+ 1
due to that di ™ < {37, (lag | +[8y) Lids"} /m < Lo (e | +185) L2} fm =
A Assume that (4.9) holds for 0 < kg — 1 and all ¢ = 1,2, -+, n, and k = ko,
i=1,---,({—1), then

k _ k n ko—1
df” < S o+ 1B DLy + S5 (o] + 18 ) LS} e
_ k n ko—1
< (=0 lag] + 186D Lz + S| + 18D Liz" ™} /e
_ (ko)
= 2z, .
Hence, for each 1 = 1,2, ,n, dgk) converges to zero as k tends to infinity. There-
fore, each x;(t) converges to a singe point and x(t) converges to a constant which is

an equilibrium, as time tends to-infinity.-[]

4.3 Stability of equilibria

Let us denote by Xx,a,.-», the equilibrium lying in Q) ..., A € {l,m,r}. The
stability of all the 3™ equilibria of (2.3) can be concluded in the following theorem.

Theorem 4.3.1. Assume that conditions (C2c)*, (C3¢) and (C4c) hold. Then, (i)
every equilibrium Xy, »,..  with Xp= “17, “1” for all4 =1,2, - - - | n, is asymptotically
stable; (ii) the equilibrium X,.4 1S unstable; (iii) every equilibrium Xy, ,...n, with
“177’ 13

Ai = “m” for some ¢ and \; = r” for some 7, is unstable.

Proof. It can be referred to Fig. 4.2 for the proof of Theorem 4.3.1.

(i) Consider an exterior region Q,x,..a,, A = 17 or ‘0”7, i =1,2,--- ,n. We
show that the equilibrium X := (T1,T2, -+ ,T,) In Q) a,..n, s stable. Note that
for each i, either 7; € [/, #F] or T; € [IF,IF]. There exists &; > 0 such that

7P —e; > ¢ and I + ¢; < Py, due to that 7 > § and [F' < p;. We shall illustrate
that for any € > 0, there exists 6 > 0 such that ||x; —X|| < ¢ for all ¢ > t,, for any

50



~

FoosF 5 = - o
[y lf P1 fil???-‘f m‘f K1 qiry

Figure 4.2: Configuration for the proof of Theorem 4.3.1.

¢ € C([—,0],R"™) with ||¢ —X||-<-0- For an e > 0, we set ¢ :=min{e,e1,€9, -+ , &}
For an initial condition ¢ € C([=7,0],R™) with ||¢ —X]|} <0, the solution satisfies
zi(s) > g if \; = f27, and xi(s) < pi, if \j =" for all s & [tg= 7,t0]. It follows
from similar argument as the proof of Propesition 3.2.2(ii) that z;(¢) > ¢, for all
t € [to — 7,00) or m(t) < p;, for all t€ [ty — 7,00). We define 2i(t) := x;(t) — T;, for
i=1,2,---,n. It follows from (2.3) that

Zi(t) = —pizi(t) + Z @i59;(&; ()2 (t) + Z Big @i (mig(t)) 2 (t — 7i;(t))

where §;(t) is between xz,(t) and Z;, n;;(t)is between z,(t — 7;;(t)) and 7;, i,j =
1,2,--- ,n. It can be computed that
Dylzi(t)] < —palza®)] + Y |aislgi (&) 25 ()] + D 185195 (05 (D)5 — 735 (1)),
=1 j=1
for t > ty, where D, denotes the right-hand derivative. Define N(t) := ||z]| =
maxX;<j<p{MaXscp—rq |2(s)|}. We shall show below that

N(t+h) — N(t)
h

D,N(t) := lim

< f 1t>1. 4.1
Jim <0, forall t >t (4.10)
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For t > to, let 1(t) := {i : |z(t)] > |2(t)|, for all j = 1,2,--- ,n}, and i(t) :=
min{i € I(t) : D.|zi(t)| > D,|z;(t)], for all j € I(t)}. Consider a fixed t > t;, and
denote i(t) by k. If N(t) = |z(t)] > |2;(t — 7)| for all j = 1,2,--- ,n, then either
N(t) > |z(s)| forall j =1,2,--- ;nand all s € [t —7,t) or N(t) = |2 (s)| for some

€ (t — 7,t). For the former case, it can be derived that

Doz < =l ze(O] + Y leuglgi (&) 1250+ D 183l (s (6)) 25 (8 — 75 (1))]

j=1 i=1
< [t agh (G (0) + > longlg(&(8) + Z |8l g (g (£))]N ()
J#k
< =+ amgh(n) + D Loyl Ly + Z | B | LN (£)
poms j=1
S 07

for all t > ty, where v, = px or g, recalling that

9o (®k) = 9i(G) = lx = = Tjlev| +ZL |83 1))/ (cer + | Bree])-
J#i
Thus,
N =V
DN() = him 2 W)
h—0F h
_ i PEEEA)] = ()]
h—0+ h
= Dr|z(t)] <0.
For the latter case,
DN, = lim N(t+ h) — N(t)
h—0+ h
2y LM
h—0+ h
For the other cases: N(t) = |z;(t — 7)| for some i € {1,2,--- ,n}; N(t) = |z(s)|
for some i € {1,2,--- ,n} and some s € (t — 7,t) with N(t) > |2;(t — 7)| and
N(t) > |z(t)] for all j = 1,2,---,n, (4.10) can also be justified. Hence, N(t) =
|lz:]] = ||x: — X|| < N(to) = ||zt || = ||%¢, — X|| = ||¢ — X|| for all t > ty. Therefore, X

is stable, hence asymptotically stable, in respecting Theorem 4.2.2.
(ii)) We shall show that X := Xym...m is unstable. We choose an initial value

which is close to the equilibrium X. Then the solution must move away from X =
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(Z1,- -+ ,@y). Such an assertion holds mainly because if the ith component z;(t) of
solution remains close to z; for all i = 1,,2,- -+, n, then the magnitude of g}(z;(t))
will remain large and yield a contradiction. Notably, for ¢ = 1,2,--- n, gi(§) >
2415 /vy, for all € € [mf ml], thus there exist #; and &; such that ¢'(%;) = ¢'(k;) =

21 /i, where &; < mf < ml < &y, for all i = 1,2,--- ,n. Set g; := min{#, —
mi mi'—k;}, € == minj<;<,{e;}/2. For any 6 € (0,¢), we choose the initial condition
¢ = (G1, Pa, -+, dp) With ||¢ — X|| < 8, ¢(5) € Qmeomn, for all s € [—7,0], ||¢ — K| =
|9:(0)—7;| for some i € {1,2,--- ,n}and ||¢—X| > |¢p;(s)—7;|, forall j =1,2,--- n,
s € [-7,0). Now, let us show that there exist j € {1,2,---,n}, and t; > ty such

that z;(t1) > k; or z;(t1) < k;. Assume otherwise that

I%Z' <Z’Z(t) SI%Z, for aﬂtzt()—’T, 221,2, , n. (411)

Notice that, under the assumption above, g;(x;(t)) > 2u;/ay; for all t >ty — 7 and
alli=1,2,---,n. Let z(t) = z;(t) — T;, and

B(t) = max{ max. |z(s)|}. (4.12)

1<i<n “tg—71<s<t

Then B(ty) = maxi<;<,{|2i(to)|} > 0 and B(t) > 0 forall't > ty. Let us show that

B(t) —11218%}{{|z,( )|}~ dorall &> ¢, (4.13)
i.e., at least one component of (|z1(s),|z2(s)]s** 4 ]2n(8)]) will reach the value of

B(t) at time t. If'otherwise, there is a t >4y so that ‘B(f) ="|z(t2)|, for some
ke {1,2,---,n} and some ty € [to, 1), then either B(t) = z(ta).or B(t) = —z(t2).

For the former case,

Z(t2) = —przk(ta)+ Z ;95 (65(t2)) 2 (t2) + Z BrjgiCim; (t2)) 2 (t2 — Th;(t2))

& >,
> —pran(t) + o2k Grlzrlla) =) lawslg) (€(t2) |2 (t2)]
ik
- Z |Brl g5 (g (t2)) |2 (ta — Tj(t2))]
=1
> e — Y lawil Ly = Y 1Byl Ly]B() > 0
pors =1

owing to condition (C2¢). For the latter case, we can also show that & Zk)(tg) >
[k = D 5ozl | Ly = 325y |Bkj| L] B(t) > 0. A contradiction to B(t) = |2(t)| with
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ty € [to,t) then arises. Thus, (4.13) holds. For any t > to, we define k() := min{j :
25()] = B(1)}, then

D,B(t) > D]z (t)]

ey = Y lewslLi + > 1Brasl L1 B(t)
JR) i

v

> min { — Y laylL; + Y [85L,;}B(?).

e j#i =1
It follows that B(t) grows unboundedly as ¢ tends to infinity, which yields a contra-
diction to (4.11). We thus conclude that Xym,... is unstable.
L, where Z := {i : \; = “m”} # 0 and
E={i: N =1 or “} # 0. It will be shown that the equilibrium X :=

(T1,Tay -+ ,Tp) In Dy ay.n, is unstable. We shall choose an initial value which is

(iii) Consider a mixed region 2),x,..x

close to equilibrium X, then the evolved solution must move away from X. This is due
to that if the ith component remainsiclose to Z; for all © € 7, then the magnitude of
g;(z;(t)) will remain large for all i € Z.-Moreover, it ¢an be seen that the magnitude
of g;(x;(t)) keeps small for all’j € £. In such a situation, there exists some k € T
such that zx(¢) will move away from Zj; subsequently a contradiction arises. To be
more precise, let us define ¢; :==min{k; ~m! m! = i}, fori €7, and ¢; .= 7T, — §;
if \j =17, ¢ := py—T; if \;j=""1" for j € €, and set ¢ := min,<,<,{¢;}/2. For
d € (0,¢), we choose an initial condition ¢ safistying: ||¢ — X|| <9, and ¢,(s) # 7,
for some j € 7 andssome s € [—7,0], [|¢ —X|| = [¢x(0) =T/, for some k € Z and
lo —X|| > |¢i(s) — T4, for all i'e€& and all s € [=7,0]. Below, let us claim that
there exist j € Z, and some t > ¢y such that =,(¢) > <j or @;(t) < &;. Assume
otherwise that &; < zi(t) < Ry forall i € T and t > #5— 7. Note that then
gi(x;(t)) > 2u;/ay;, fortall &>ty — 7 and all i € Z." Define B(t) as (4.12) and
J(t) :={j € T:|z(t)] > |z)|, for allie T}, 4(t) := min{l € J(t) : D,|z(t)| >
D,|zi(t)|, for all j € J(t)}. There are two possibilities: |z (t)] > |2(¢)|, for all
t > tg, forall i € £, and |2;(t3)| > |2j(14)(ts3)], for some t3 > to, and some k € €. For
the first one, B(t) := max;ez{maxy, ,<s<¢ |2:(s)|}, for all ¢ > t,. Similar to previous
discussion in (ii), we can also show that B(t) = max;ez{|z:(t)|}. Subsequently,
B(t) will blow up and yield a contradiction. For the later situation, there exists
s1 € (to,t3) such that |z (s)] > |z;(s)| for all j € £ and all s € [ty,s1), and
there exists k € £ such that |z;(s1)| = [2j(s;)(51)], and Dy|zi(s1)] > Dy |zjes,)(51)]-

Thereafter, it can be shown that B(s) := max;ez{|zi(s)|}, for all s € [tg, s1] as before.
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Let us fix s; and denote j(s;) by ¢. There are four possible subcases: subcase (a):
B(s1) = zi(s1) = zk(s1) > 0; subcase (b): B(s1) = zi(s1) = —=zi(s1) > 0; subcase
(¢): B(s1) = —zu(s1) = —zx(s1) > 0; subcase (d): B(s1) = z¢(s1) = —2zx(s1) > 0.
Let us consider subcase (a). Note that x(t) € ke, /|, for all £ >ty — 7, and either
xk(t) > @ or xx(t) < pg, for all t > to — 7. We compute that

Dy [ze(s1)] — Dy|2(s1)]
> (i — po)B(s1) + [oueg)(€els1)) — arngyo(G(s1))]B(s1) = Y lagi|LiB(s1)

o,
= o[ LiB(s1) = > (1B L B(s1) + 8k L B(s1)]
pors =1
2 — o Ly 3" | Bril Ly
> {(,Uk—,ue)“'aéeﬂ —Oékkuk (Z];Ak| kil Ly Zj_1| il Lj)
Qup ke + | B
) e Ly + ) e[ L) = > [18ul L + 1B L]} B(s1)
i#t i#k i=1
> [ — Y lag| Ly — D18 LBs1)->.0,
por j=1

which yields a contradietion. Other subcases can be similarly discussed. Hence,
there exist k € Z, and itz > to such-that xy(t3)> ~; or xy(ts) < &; and |zx(t3) —Tk| >
min{&; —mi" ml"—k;} > . Therefore, there exists& > 0 such that for any ¢ € (0, ¢),
there is an ¢ € C([—7,0], R") with ||¢ —X|| <0 and ||x;, —X|| > ¢, for some t3 > t,.

Thereafter, X is unstable. []

4.4 Numerical examples

We give a numerical example to illustrate the present theory.

Example 4.5.1. Consider the following.two-dimensional system with activation
functions ¢;(£) = g2(§) = tanh(¢).

da:;t(t) = —xy(t) + Tg1(21(t)) + 0.1g2(2a(t)) — 0.5g1 (w1 (t — 1)) + 0.1ga(wo(t — 1)) — 0.1
da:;t(t) —25(t) — 0.2g1 (21 (t)) + 8ga(22(t)) + 0.1g1 (1 (t — 1)) + 0.6g2(22(t — 1)).

Then Fy(§) = =€+ Tg(€) + 0.6, F1(§) = =€ + Tg(€) — 0.8, F3(§) = = +89(&) +
0.9, Fy(¢) = —& + 8¢(£) — 0.9; py = —2.292431670, G, = 2.292431670, p, =
—2.917401094, ¢o = 2.917401094; ! = —0.10003918992, ¥ = 0.1342679254,
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Figure 4.3: Numerical simulation for Example 4.5.1, with solutions evolved from
initial functions at various locations.

mi = —0.1293911878, ank ="0.1293911878; &y = =1.238944365, £, = 1.238944365,
ko = —1.316957897, ke = 1.316957897. Herein, £y and & are solutions of ¢|(:) =
21/ = 2/7; Ry and Ry are solutions of gh(+) = 2uy /e = 2/8: It can be justified
that conditions (C2¢)%, (C3¢) and (C4c) hold as follows:condition (C2c)* holds
since min{u; — LilBul, L1|fril} = 0.5 > Lojags| + Lo|f12| =0.2 and min{uy —
Ly|Baal, La|Baal} = 0.4 > Ly|ogy| +L1|Ba1] = 0.3; condition (C3c) holds since
Fi(d1) = 3.766139610 .0, F{(pr) = —3.966139610.<.0, Fy(ds) = 4.135951278 > 0
and Fy(p,) = —4.135951278 < 0. condition (C4c) holds since [, m!] C [ky, i1]
and [md,ml] C [ke,Rol; subsequently g¢i(&) > 2uifaqy for € € [mf,mi] and
gh(€&) > 2pa /gy for € € [mb, Ml The Numerical simulation depicted in Fig. 4.3
demonstrates the convergence to four stable equilibria for solutions evolved from

various initial conditions at different locations.
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Chapter 5

Neural Network with
Nearest-neighbor Coupling

In this chapter, we consider system (2.6):

Ti(t) = —pws(t) + agr(zi(t — 71)) +Blgp(zi-1(t — 7)) + gr(Ti1 (t — 71))],

where ¢ (mod N); g; =.gp = ¢ are the activation functions of class A with
—1<g(¢) <1, g(0) =.0,¢(&) < ¢(0).=1. We shall focus on the effect from scale
of the network (IV),‘self-decay (i), self-feedback strength (@), coupling strength
(6), delays (77, 7r)s-and the characteristic of g upon upon syanchrony, convergent
dynamics and oscillationtof (2.6). The presentation of this chapter is organized as
follows. In section 5.1, we give a description of the dynamical scenarios extracted
from the present investigations and compare with the existing results. The detailed
arguments for establishing these scenarios are arranged in Sections 5.2 and 5.3. In
Section 5.2, we focus.on (2.6) of scale N = 3. Therein, global synchronization
and convergence to three equilibria of (2.6) are investigated in Sections 5.2.1 and
5.2.2 respectively. Hopf bifurcation induced by thetransmission delay at the trivial
equilibrium is studied in Section 5.2.3: The investigations in Section 5.2 (including
synchronization, convergence and delay-induced synchronous and asynchronous os-
cillations) can be carried over to system (2.3) of scale N > 3 by our approach. In
particular, in Section 5.3, via a Guass-Seidal argument, we modify the approach in
Section 5.2 to establish global synchronization for (2.3) of scale N > 3. We present

some numerical illustrations in Section 5.4.
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5.1 Description of dynamical scenarios

System (2.6) exhibits rich and a variety of dynamics corresponding to scale of the
network, self-decay rate, self-feedback strength, coupling strength, delays, and char-
acteristics of the activation function. We thus present a descriptive summary on the
dynamical scenarios extracted from our investigation in this section. Some existing
results and conjectures will also be reviewed.

First, we note that small scale may be advantageous for global synchronization
of network (2.6) . In particular, network (2.6) of scale N = 3 has favorable structure
than those of N > 3 in synchronization. Such a phenomenon is related to the
coupling topology of (2.6) (each element of the network is coupled to the nearest
ones). Theorems 5.2.1, 5.3.1 and Remark 5.3.1 depict such a result; in particular,
Theorem 5.3.1 provides a criterion of synchronization for system (2.6), which favors
small N. It is illustrated in Example 5.4.3 that (2.6) attains global synchronization
under parameters satisfying the criterion_of Theorem 5.3.1, as N = 3, but not for
N > 3. However, it is generally nontrivial to find examples to show that a network of
scale N7 > 3 is apter to synchronize than another network of scale Ny with Ny > Nj.
Nevertheless, there is a.conjecture in [75]: when the scale of the network N is odd,
(2.6) can be synchronized if |al+2|cos((V — 1)a/N)||F] < 1. This inequality is
obviously stricter forilarger N and-is thus consistent with our contention. Notably,
while this conjecture provides a delay-independent criterion for synchronization of
network (2.6) of odd scale, both delay-dependent and delay-independent criteria for
synchronization of (2.6) of general scale are derived in our Theorem 5.3.1.

In the following, we focus on(2:6) with N-= 3 to demonstrate our results
and answer the conjeetures mentioned in Seetion 2.2. The synchronization for (2.6)
with N > 3 will be addressed.in Section 5.3. Let us new summarize the synchrony,

asynchrony, convergence, and oscillations for (2.6) respectively.

Synchrony.

The self-decay of (2.6) can promote synchronization of the network. Indeed, system
(2.6) can be synchronized globally in spite of delays (77, 7r) if both self-feedback
strength o and coupling strength § are weak and dominated by self-decay rate p,
cf. Fig. 5.1(d). For a,( in other regions, the magnitude of delays play an impor-
tant role for synchronization of (2.6). If the self-feedback (resp. coupling) strength
is dominated by the self-decay but the coupling (resp. self-feedback) strength is

strong, then the excitatory coupling (resp. inhibitory self-feedback) is advantageous
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for synchronization of system (2.6) under small delay 7r (resp. 77), cf. Figs. 5.1(b),
(¢). Once self-feedback and coupling strength are both strong, system (2.6) can be
synchronized if the self-feedback is inhibitory, the coupling is excitatory, and both
delays 77 and 7r are small, cf. Fig. 5.1(a). Detailed arguments of these results are
stated in Theorem 5.2.1 and Remark 5.2.1. Notably, Figs. 5.1(a)-(d) are depicted
from the sufficient (parameter) conditions in Theorem 5.2.1. Since Fig. 5.1(d) de-
scribes delay-independent result, the precise way to read delay-dependent results
in Figs. 5.1(b), (c), is to subtract the region in Fig. 5.1(d) from those regions in
Figs. 5.1(b), (c).

As mentioned previously, system (2.6) can be synchronized if the self-feedback
is inhibitory and strong with small 77, or the coupling is excitatory and strong with
small 7. However, there is a qualitative difference between these two synchrony.
The first synchrony is actually global convergence to the origin, whereas the second
one is global convergence to multiple synchronous equilibria. The precise statement
is given in Remark 5.2.3.

If 71 = 77 is considered, thenstronger results can be obtained. Namely, system
(2.6) can be synchronized if jae=/| < p in spite of delay or #—a > p and 77 is small.
These parameter regions-are depicted in Figs. 5.2(a), (b); notice that union of these
regions are larger than.union of the-ones in Figs. 5.1(a)=(d). The detailed statements
are summarized in Theorem 5.2.2.-These results indicate that system (2.6) without
delays (7; = 70 ='0) can be synchronized if § —a > —p. This ean be interpreted
as sufficiently strong inhibitory self-feedback or excitatory coupling can synchronize
system (2.6) without delays. It is then.natural to ask whether if'sufficiently strong
inhibitory self-feedback or execitatory coupling can- also synchronize system (2.3)
with delays. We shall see from Theorem 5.2.8 and Remark 5.2.4 that this depends
on the delay size. Indeed, oncethe self-feedback strength @ (resp. coupling strength
3) is sufficiently stronger thancoupling strength (resp. self-feedback strength), then
synchrony for network (2.6), with nonzero delays (7; and 7r may be distinct) can be
lost and nontrivial asynchronous oscillations are bifurcated from the origin at delay
magnitude 7; (resp. 7r) near bifurcation values (there are infinitely many such
values). This highlights the difference between the effects from the self-feedback
or coupling upon synchronization of the coupled network with delays and without
delays.

Now, let us recall the conjecture in [8] (@ = 1 therein): If |5] < |1 — «f
and 0 < 77 < Tél) for some Tél), or |B] < (|1 —al)/2 and 0 < 771 < Téz) for
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Figure 5.1: (a) The region of («,) that admits synchronization while 7 and 7 are
small. (b) The region of (a5 3) that-admits synchrenization in spite of 7 while 7;
is small. (c) The region of (e, #) that admits synchronization in spite of 7; while 7
is small. (d) The regionof (o, 5) that admits synchronization in spite of 77 and 7r.

some TéQ), then (2.6) can be synchronized for all 7 > 0.-Roughly speaking, these
conditions require that |«| is relatively larger than | 5| and 7y is small enough; i.e., the
synchronization can be determined merely by the magnitude of coupling (not the sign
of the coupling). This is incompatible with our result that “inhibitory” self-feedback
strength (o < 0, || large) is crucial for synchrony ‘of system (2.6). In an example
with parameters satisfying the condition of the conjecture and o > 0 in Section
5.4, we illustrate that there exists.a solution which converges to an asynchronous
equilibrium. However, the conjecture may be positive under additional condition
that @ < g (u = 1 therein). We show in Theorem 5.2.1 that the conjecture holds
for the parameter region in Fig. 5.1(b) with small 7; (the smallness restriction on 7;
does not correspond to the one in [8]). As the self-feedback strength is strong but 7;
is not small, that 7; can induce asynchrony provides an evidence to demonstrate that
the magnitude of 7; does matter for synchronization of system (2.6), for parameters

in this range.
Convergence and stability.
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Figure 5.2: System (2.6) with 7; = 7 attains synchronization if («, ) lies in shaded
region in (a) and 7; = 77 is small, (b) in spite of delays.

System (2.6) of scale N = 3, with p = 1 and 7; = 7p is considered [73]. Therein,
the following results are concluded.or addressed.

(i) the system achieves synchronization.in spite of delay if |a — 3] < 1, cf.
Fig. 5.2(b).

(ii) The system.has three equilibria (0,0,0), x* = (uf,u",u™) and x= =

(u™,u",u”) if (o, B) € Dy U Dy, -where

Dy ={(a,f):a—F < —1and a+25 > 1}, (5.1)
Dy = {(a,B) : | = | <1 and o + 20 > 1}, (5.2)

cf. Figs. 5.3(a), (b); moreovery the trivial equilibrium is unstable and the others are
stable if («a, 5) € Do

(iii) It was conjectured that the generic dynamics for system (2.6) is the con-
vergence to x*, if (a, 3)°€ Ds.

With 1 replaced by p'in/(5.1),.(5:2);we derive the following results including
the unsolved in [73]:

(si) In addition to the above (i), the system achieves global synchronization if
a — [ < —p, as the time lag is small, cf. Fig. 5.2(a).

(sii) x* are stable in spite of delays as («, 3) € Dy and a > 0, 3 > 0;

(siii) The system achieves global convergence to the equilibria if («, 3) € D U
Dy and the time lag is small, cf. Fig. 5.4(b).

These results are stated in Theorems 5.2.2; 5.2.3, and 5.2.5 respectively. Fur-

thermore, parallel results to (si), (sii), (siii) can also be derived for system (2.3)
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with 77 2 7p, cf. Theorems 5.2.1, 5.2.3, and 5.2.4 respectively. There is a distinction
between multistability of (2.6) induced from strong excitatory coupling and strong
excitatory self-feedback. An extension of the investigations in [15, 16, 61] or Chapter
4 leads to the convergence to 3" synchronous and asynchronous equilibria if the self-
feedback strength is excitatory and sufficiently stronger than the coupling strength.
Thus, we may say that “strong excitatory self-feedback”-induced multistability of
(2.6) comprises coexistence of synchronous and asynchronous equilibria. On the
other hand, “strong excitatory coupling”-induced multistability of (2.6) consists of

multiple synchronous equilibria.

Oscillation and asynchrony induced by delays.

In the previous description, some criteria for synchrony and convergence of system
(2.6) are dependent on delays (small size is favorable) and some are not. It is natural
to ask how delays affect the dynamics of the system. We shall use the existence of
standing wave as an evidence of asynchrony for system (2.6). Roughly speaking,
once the self-feedback (resp. coupling) strength is sufficiently strong, there exist
synchronous and asynchronous nontrivial oscillations bifurcated from the origin as
the corresponding delay 77 (resp. 7r).is.near certain.values (there are infinitely
many such values). Notably, the bifurcation scenario reveals that along the way of
increasing |3| (respirjer|), synchronous oseillations (resp. asynehronous oscillations)
first appear at delay 7 ‘of magnitude (resp. 77) near bifurcation values; after ||
(resp. |a]) passesrecertain value, both synchrenous and asynchronous oscillations
take place at delay 7 (resp. 77) of magnitude near bifurcation values. Detailed

descriptions for these finding are stated in T'heorem 5.2.8 and Remark 5.2.4.

Now, let us summarize some coarse-grained description on the collective dy-
namics for (2.6).
1. Small scale of the network, large self-decay, inhibitory self-feedback (resp. excita-
tory coupling) is advantageous for synchronization of (2.6), and the corresponding
delay 77 (resp. 7r) is required to be small if |a| (resp. |3]) is large.
2. Inhibitory self-feedback and excitatory coupling lead to distinct synchronous
phases. Namely, strong inhibitory self-feedback promotes the convergence to the
origin, while strong excitatory coupling advances the convergence to nontrivial syn-
chronous equilibria, as delays are small.
3. Sufficiently strong inhibitory self-feedback or excitatory coupling can always

synchronize (2.6) if the network is without delays, but may fail to synchronize if the
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Figure 5.3: System (2.6) with parameters in regions (a) and (b), admits exactly
three synchronous equilibria.
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Figure 5.4: System (2.6) with parameters in shaded region in (a) and delays 7; and
7r are small, in (b) and 7; = 77 is small, admits convergence to multiple equilibria.
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network is with delays of substantial magnitude.

4. “Strong excitatory self-feedback”-induced multistability admits coexistence of
synchronous and asynchronous equilibria, whereas “strong excitatory coupling”-
induced multistability admits existence of synchronous equilibria.

5. The delay 77 (resp. 7r) can lead to the emergence of synchronous or asynchronous
nontrivial oscillation if the self-feedback strength (resp. coupling) is strong. The
occurrence of synchronous and asynchronous oscillations are in order as the strength
|B] or |a| increases, cf. Remark 5.2.4.

6. The synchronization of network (2.6) may also depend on scale of the network.
There exists a notable distinction in synchronization between systems (2.6) of scale
N =3 and N > 3.

5.2 Dynamics of the network with N=3

In this section, we focus on (2.6) of scale N = 3 to establish the synchronization
and convergence to multiple synchronous equilibria of the network. Moreover, de-
layed Hopf bifurcation theory is employed to conclude the existence of nontrivial
synchronous and asynchronous oscillations (standing waves) induced by transmis-
sion delay 7. Notably, system(2:6) is a-dissipative system, hence solution evolved

from any initial condition ¢ € C([=Tmax;0], R?) exists for all time ¢ > .

5.2.1 Global synchronization

We shall derive criteria for the global synchronization of (2,6); namely,
zi(t) — T (t) = 0, ast =00, i =12,

for every solution (xy(t), 22(¢), w3(t)).of (2.6). Tothisend, we consider the following
difference system obtained from subtracting x;.-component from z;-component in
(2.6):

Zi(t) = —pzi(t) +alg(wi(t — 1)) = g(wipa (t=71)] = Blg(zi(t = 7r)) — g (@i (t = 77))];

(5.3)
where z;(t) := x;(t) — x;41(¢t), i = 1,2. Obviously, each component of (5.3) satisfies
(3.10) with v, = —«, 2 = 3, 1 = 77, T2 = 70 and w(t) = 0. Moreover, z;(t) and
x;+1(t) are eventually attracted by [—(|a| +2|8|)/p, (|a|+2|5])/ 1], as seen from the
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equation for z; and z;41 in (2.6). We denote

. a, a>0, = [ aL «a>0,
:{az, a<0,a_{a, a <0, (5:4)
A /Ba ﬁzoa 2. ﬁ£7 5207
6'_{@, ﬁ<0,6’_{ﬂ, 8 <0, (5:5)
where
L:=min{g'(¢) : € € [=(|al +2(8])/p, (|a] + 218])/p]}- (5.6)

Now, let us introduce four different conditions for synchronization of network (2.6).

Condition (S1b): —& + (> 0, 77|a| + 77|6] < p/ (20 — & + 3);
restated,
B> (1/L)a and 17|a| + 7|8 < p/(2u — oL+ 3,) ifa>0,8>0,

milal + 77|B] < p/(2p — a + B), ) if a <0,8>0,
B > La and 77|al + 77| 6] < p/(20 — o + BL), if  <0,8<0;

Condition (S2b): a =0, [B] < pyor @< 0, |8].< ps 71 < (1 —|6])/[a(a—2p)];
Condition (S3b):46.=0, |a| < u;or B >0 {a| < 1y 7 < (u—|a|)/[B(64+ 2u)];
Condition (S4b): |a| + |B}-<-p.

It can be verified that each ith component of (5.3) satisfies condition (H1b) (resp.
(H2b), (H3b)) under condition (S1b) (resp.(S2b), (S4b)), i« =1,2. According to
Theorem 3.1.9 (resp. Theorem 3.1:1043.1.11) with w(¢) = 0, we conclude that
zi(t) — 0, as t — oo, for every z; satisfying (5.3), ¢ = 1, 2. Therefore, network (2.6)
can be synchronized under.one of conditions (S1b),; (S2b) and (S4b). On the other
hand, each ith component of (5.3) can also be regarded in the form as (3.10) with
M =0, 7% =—qa, 11 = Tr, To = Tpandaw(t).-=0. Then every ith component system
of (5.3) satisfies condition (H2b) under condition (S3b); hence z;(t) — 0, as t — oo,
for every z; satisfying (5.3). Accordingly, (2.6) can be synchronized under condition
(S3b). We thus conclude the following result.

Theorem 5.2.1. System (2.6) with N = 3 achieves global synchronization under
one of conditions (S1b)-(S4b).

Notably, (S1b)-(S4b) are all sufficient conditions for synchronization of sys-
tem (2.6). Observe that condition (S4b) is delay-independent; condition (S3b) is
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(a) (b)

Figure 5.5: (a) @ = {(a,8) @ > 0,8 > 0 and § > (1/L)a}; Qy = {(a,p) : a <
0,8 <0and > La}, as g(¢§) = tanh(§) and pu = 1.

7r-independent or delay-independent on «a-axis with |a| < p; condition (S2b) is
rr-independent or delay-independent on (-axis with |3| < wu; (S1b) is (77, 7r)-
dependent. In conditions (S1b)-(S3b), the inequalities involving delays 7, 7 all hold
if 77 and/or 7 are small enough. The parameters («, ) which satisfy the inequali-
ties uninvolved with delays in conditions (S1b)-(S4b) are depicted in Figs. 5.1(a)-(d)
respectively. In particular, let usinterpret the region in Fig. 5.1(a) First, notice that
the term L in condition {(S1b) actually depends on: i, @, B4 ¢f. (5.6). The parameter
(o, B) satisfying condition (Sib) may lie in the first, second or third quadrants of
(o, B)-plane. Indeed, condition-(S1b) is always satisfied if 5 is positive and « is nega-
tive, i.e., the second ‘quadrant of (a; 3)-plane. However, in general, those parameters
(o, B) satistying condition (S1b) and lying in the first (resp. third) quadrant actu-
ally also lie in the parameter region depicted in Figs. 5.1(¢) (resp. (b)), cf. Fig. 5.5.
Note that Fig. 5.1(b) (resp. /5.1(¢)) corresponds to condition(S2b) (resp. (S3b))
which provides 7r-independent (resp. 7;-independent) result.” Therefore, precise
reading of the parameter region for the (77, 7r)-dependent result under condition
(S1b) is to subtract the parameter regions satisfying eondition (S2b) or (S3b) from
the second quadrant of («, )-plane; as depicted in Fig. 5.1(a).

Remark 5.2.1. (i) These parameter regimes indicate that if the self-feedback
(resp.coupling) strength is strong, then the self-feedback has to be inhibitory for
synchronization of system (2.6); on the other hand, if the coupling strength is strong,
then the coupling has to be excitatory for synchronization of system (2.6). (ii) Ex-
tracting from the results of Theorem 5.2.1, it can be observed roughly that large
self-decay, inhibitory self-feedback and excitatory coupling are advantageous for (2.6)

to be synchronized, while 7; (resp. 7r) is required to be small if |a| (resp. |3]) is

66



large. (iii) It will be shown that as |«| or || gets larger, delay 7; or 7p can generate
asynchrony, cf. Theorem 5.2.8 and Remark 5.2.4, and a numerical illustration in
Example 5.4.2.

If we consider in particular 7; = 77 for (2.6), then each ith component of (5.3)
satisfies (3.10) with v, = —(a — 3), 71 = 77, 72 = 0 and w(t) = 0. We thus derive

the following result.

Theorem 5.2.2. System (2.6) with N = 3 and 7; = 7 attains global synchroniza-
tion under one of the following conditions:

() a =B <—pand 77 =70 < p/[(B—a)(2u—a+ )

(ii) Jor = B < .

Remark 5.2.2. (i) The parameter conditions in Theorem 5.2.2 are depicted in
Figs. 5.2(a), (b) respectively. (ii) If we consider (2.6) without delays, i.e., 71 = 70 =
0, then by Theorem 5.2.2(i), sufficiently small,« (resp. large /3) yields synchroniza-
tion of the system. It indicates that strong inhibitory self-feedback or excitatory

coupling can synchronize (2.6) without delays.

5.2.2 Global convergence to.multiple equilibria

In this subsection, we first-investigate the stability of nontrivial synchronous equi-
libria x* as (o, 3) € D;, then we derive criteria for global convergence to these
synchronous equilibria for (2.6) with (a, 5) € Dy U D, where

Dy = {(o,B)ia— 0 < —panda+ 26 >u},
Dy=A{(a,8): |a =B < pand a +28 > pu}.

Theorem 5.2.3. System (2:6) with V.= 3 has exactly three equilibria (0,0, 0),
xT = (v, uT,ut) and x7 := (v ,u",u”) with u™ > 0 and v~ < 0, if (o, ) €
DyUD,. If (a,3) € Dy and a > 0, 3 > 0, or (a, 3) € Dy, then x* is stable in spite
of delays.

Proof. The existence of equilibria for (o, 8) € D; U Dy and the stability of x* for
(cr, B) € Dy can be established by similar arguments as in [73]. It remains to verify
the stability of x* for (a, 3) € Dy, and o > 0 and 3 > 0. The linearization of (2.6)

about x is given by
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i (t) = —pv;(t) + ag'(u" )it — 17) + Bg (uF) Vi1 (t = 70) + v (t —717)], i = 1,2,3.
(5.7)

Thus the characteristic equation for (5.7) is

A1(N) == p 4 A —ag'(@h)e ™™ = 208¢ (uh)e N,
As(N) i= p+ X — ag (uM)e™™ + B¢/ (u)e .

We substitute A = v + iw with w > 0 into A;(A) = 0, and collect the real and

imaginary parts and obtain

v+p = ¢ (uh)|ae cos(trw) + 2B8e T cos(trw)],

w = ¢ (u")[—ae " sin(rw) — 28e” " sin(rrw)).
Summing up the square of the equations gives
]1(1/) :]2(7/)7 (58)

where I, (v) = (v+p)?+w?, L)y =g (uH)[a?e 2T 4+45%e 2™ +4aBe T+ cos( (11—
rr)w)]. Note that wut satisfies-the-stationary equation:. —ux = (o + 20)g(x) = 0

which admits exactly three zeros ey, e; and 0, where e; < p* < 0,0 < ¢* < ey, and

9'(r") =9'(q") = p/la+20). (5.9)

Obviously, u™ = ey; hence ¢'(u®) < /(e +28). If v > 0, then a contradiction to
(5.8) occurs since Ip(¥) < [p/(a+28)P[a? +45% +4al) = i* < I(v). Therefore,
v < 0. If we substitute X'= ¥ +iw with w > 0 into Ag(A) =0, it can also be verified
that v < 0 by similar arguments; The-proof.is-thus completed. o

Theorem 5.2.4. System (2.6) with NV =3 admits exactly three equilibria (0,0, 0),
xT = (uT,ut,ut), x7 = (u,u",u"), and every solution of the system converges
to one of these equilibria, under one of the following conditions:

) a<0,8>0,a+20>p, |ajm+ |87 < u/(2u—a+F) and |a|mr 42|87 < 7%,
(ii) 8> 0, [af < p, a+20> p, 70 < (p—|])/[B(6 4 2p)] and ||y + 2|l < 77,

where

7" o= min{1/4, [(a+20)g(¢") —pq"]/ Al +2[B)]; [up*—(a+28)g(p")]/[4(lal+2] 5])]}-
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Proof. We only prove the first case, since the others can be treated similarly. We

arrange (2.6) in the form
Zi(t) = —pxi(t) + aof (xi(t — 77)) + 2Bg(xi(t — 7)) + Ei(t), (5.10)

where E;(t) = Blg(xi—1(t —7r)) + g(zi41(t — 1)) — 29(x;(t — 71))]. Owing to a <0,
B >0 and o+ 20 > p, (2.6) has exactly three equilibria (0,0,0), x™ and x~, by
Theorem 5.2.3. Moreover, since o < 0, > 0 and |«a|77 + |07 < 1/ (2p — o + ),
the system achieves global synchronization according to Theorem 5.2.1. Therefore,
Ei(t) — 0, as t — oo. Obviously, each component of (5.10) satisfies (3.22) with
M =aq, v =208 1n =17, and » = 7. Note that p, = p*, ¢, = ¢*, as 11 = ¢,
72 = 2(. Under the assumption of this theorem, every ith component of (5.10)
satisfies condition (Ab). According to Theorem 3.2.6, every ith component x;(t)
satisfying (5.10) converges to an element of {u*,0,u~}. Hence the assertion is

verified. o

If 77 = 7r in (2.6) is comsidered in particular, we can modify the convergent
criteria for (2.6) with multiple synchronous equilibria. We give the result without

proof, as it is similar to the one for Theorem 5.2:4.

Theorem 5.2.5. System (2.6)-with 7; =7 admits exactly three equilibria (0,0, 0),
xT = (u, v, u") and x7u= (u yu yu~ ) and all solutions of the system converge
to one of these equilibria if (1) (e, 8) € Dy and 7= 71 < {7, 1o/ [(B—a) 2u—a+3)]},
or (ii) (o, B) € Dy'and 71 = 70 < 7, where

min{1/4, [(a +28)g(p*) = up’ ]/ [4(c=26)llpg = (a +28)g(q")]/[4(a + 20)]}
o+ 20 ’

The regions of («, 3) which admit convergenee t6 multiple equilibria in Theo-

rems 5.2.3, 5.2.4 are depicted in Fig. 5:4(a); (b) respectively.

Remark 5.2.3. (i) In Theorem 5.2.3 and 5.2.4, o + 23 > p and other conditions
yield the existence of multiple equilibria for (2.6). Indeed, if a4+ 20 is sufficiently
small instead, we can modify Theorem 5.2.3 and 5.2.4 to conclude that the system
achieve global convergence to zero if delays 7; and 7p are small, cf. Remark 3.2.1.
(ii) As mentioned in Remark 5.2.1(ii) and Remark 5.2.2(ii), inhibitory self-feedback
or excitatory coupling is advantageous for (2.6) to be synchronized. However, there

exist qualitative difference between the situations of strong inhibitory self-back and
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strong excitatory coupling. Roughly speaking, if the self-feedback is inhibitory (resp.
coupling is excitatory) and sufficiently strong, then a + 2 is small (resp. large);
consequently system (2.6) achieves global convergence to single equilibrium (resp.

multiple equilibria) when delays are small.

5.2.3 Synchronous and asynchronous oscillations

In this subsection, we shall present the existence of nontrivial synchronous and
asynchronous periodic solutions for (2.6) induced by transmission delay 7. Similar
discussions can be performed for bifurcation induced by self-feedback delay 7;. To
focus on the effect of parameters a and # upon the oscillations induced by delays,
we set the parameter y = 1 in this subsection. Moreover, we shall seek for the
existence of the standing wave solutions to serve as an evidence for asynchrony of

(2.6). Due to the coupling topology of system (2.6),

S ={(.y.y): ¥ € C([~Tmax, O]; R}

is positively invariant under«the flow generated by system (2.6). On the other hand,
S and A, are both positively invariant under the flow generated by system (2.6)o,

where

Ag = {(y1, 2, ¥8)t ¥i = 0,55=—vk € C[=Tmaxy O R), (4, gik) = 0(1,2,3)},

and o(1,2,3) is a"permutation of index (1,2,3): Hence, it allows us to consider
system (2.6), (resps (2.6)7) which is a restriction of (2.6) on.S (resp. (2.6)y on
A,) and consider only evolutigns from_ points in S (resp. A,). First, let us focus on

system (2.6),. Everycomponent of (2.6), satisfics
() ==ylt) + ag(y(t — ) + 209 (ylt= 7). (5.11)
The linearized system at the origin of«(5.11)-is
0(t) = —v(t) + avlt’'= 11) + 260(t — 7). (5.12)
Thus the characteristic equation for (5.12) is
Ay(A) = (1+ X —ae™™ —28e277) = 0. (5.13)

We substitute A = iw with w > 0 into A, (A) = 0 and collect the real and imaginary
parts to yield

{ 28 cos(trw) = 1 — a cos(Trw), (5.14)

2@ sin(rrw) = —w — acsin(Tw).
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Summing up squares of these equations (5.14) gives

Q(w) = 457, (5.15)

where Q(w) := w? + 2asin(77w)w — 2a cos(T7w) + o + 1. Obviously, for all w > 0,
Q(w) < Q(w),

where Q(w) := w?+2|ajw+ (1+|a])? is increasing for all w > 0. Direct computation
gives Q' (w) = [2 + 277 cos(Trw)|w + 2a(1 + 77) sin(77w). Then,

Q' (w) > P(w), for all w >0, (5.16)

where P(w) = (2 — 277|a|)w — 2|a|(1 4+ 77). Obviously, if 7/|la] < 1, P(w) > 0 for
all w > w = |a|(1 + 77)/(1 — 77|e|) > 0. Therefore, Q(w) is increasing on [, c0)
thanks to (5.16). Now, let us introduce the condition to guarantee the existence of

purely imaginary roots of Ay (\) = 0.
Condition (B1b),: 7/|a| < 1 and Q)< 452

ie.,

1+7']

147
467 >, (1 + o)+ |a|2[(1 :

1 Tz|a|) + 2<1—771|O4>]'

Notice that Q(w) < Q(w) for alltw > 0; Q(w) s increasing for all w > 0; and Q(w)
is increasing on [wyeo). Subsequently, (5.15) admits exactly one positive zero, say
w?, under condition (B1b),. We thus conclude that

Lemma 5.2.6. There exists exactly one pair.of purely imaginary roots, say +iwy,
for characteristic equation (5.13) under condition (B1b), . Herein, w¥ is the unique

positive zero to (5.15):
On the other hand, every nontrivial component of (2.6)7 satisfies
y(t) = —y(t) + ag(y(t — 1)) — By(y(t — 7r)). (5.17)
The linearized system at the origin of (5.17) is
0(t) = —v(t) + av(t — 77) — Bo(t — 7). (5.18)
Then the characteristic equation for (5.18) is
A_(N) = (14X —ae™ ™™ 4 Be™>T) = 0. (5.19)
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We substitute A = iw with w > 0 into A_(\) = 0 and collect the real and imaginary

parts and obtain

—B cos(rrw) = 1 — acos(Tw), (5.20)
—Gsin(rrw) = —w — asin(Tw). '
Summing up the square of equations (5.20), we get
Q(w) = 2. (5.21)

Now, let us introduce the condition to guarantee the existence of purely imaginary
roots for A_(\) = 0.

Condition (B1b)_: 77]a| < 1 and Q(w) < (%

ie.,
1 + Tr

1 “‘7’[

2 2 2
> (1 _
67> (1+ |a])® + |o| [(1 = /0]

TM)2 +2( )]-

Lemma 5.2.7. There exists exactly one pair of purely imaginary roots, say +iw_,

*

for characteristic equation (5.19).under condition'(B1b)_. Herein, w* is the unique

positive zero to (5.21).

To find the value of 7 such that +iw?i are the purely imaginary roots of
AL (A) =0, we divide the second equation by.the first of (5.14) or (5.20). Then

tan(rrw) = S(w)/C(w),
S(w) := —w —asin(Tw),

Clw) =1 — acos(rjw).

Let us define

37/2 +2(k =1, if Gwh) =0, S(w?) <0,
+ 1 ) m/24+2(k =), if C(wh) =0, S(wi) >0,
T 0 tan (S (wh) J O W) 2k if C(w?) > 0,
tan1(S(wh)/C(wi)) ¥ 2k =17, if C(wh) < 0.
(5.22)

Herein, nki is positive and AL (\) = 0 has exactly one pair of purely imaginary roots
+w?i at the bifurcation value 7p = néc. To apply the Hopf bifurcation theory, it

suffices to verify the transversality condition:

Condition (B2b)y: [R(wi,n)]? + [L(wi,ni)]? # 0, and A(wh) # 0,
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where

R(w,7r) = 1410+ a(r — ) cos(rrw),
LHw,7r) = 7w — a(r; — 77) sin(myw),
Aw) = [1+ arcos(iw)|w? + a(1 + 1) sin(1w)w.

Theorem 5.2.8. Assume that conditions (B1b), and (B2b), (resp. (Blb)_ and
(B2b)_) hold for some fixed & € N. The Hopf bifurcation occurs at 7 = n;" (resp.
Tr = 1, ), and a nontrivial synchronous periodic solution (resp. standing wave

solution) is bifurcated from the zero solution of (2.6) (resp. (2.6)o).

Proof. We only prove the first case. The others can be verified similarly. First, we
derive that

0
AL

= {1+ are 4 257—T6_)\TT}|)\:iwi,TT=mj
= {1+ ame Ml (T X=ae )},
= R + (Wi, ).

|)\:iw1,TT:nk+,
Tr=ni

Thus, %A ()

§ > 0 and a smooth function A\=(n — 8,7, +6) —= C such that A (\(77)) = 0 and

A(ni) = iw?. Differentiating Ay (A(7p)) = 0 with respective to 77 at 70 = 1, , we

| e # 0.~under ‘condition (B2),; hence there exists some

obtain
ot —208e 270 Qut i1Q;
An) = > e O o T
14+ arre A 4+ 20mpe=AT0 ;i k Wi+ iWy
where Q1 = (w})? +@sin(rwi)w;, Q2 = —wi +acos(mwiws, Wi = 1+ +

ot — n) cos(mw?) and Wo'= nfwi — a1y — ;) sin(rzw}). Therefore,

ReX' ()
= {QiW1 + QuWo}/ (WE + W5)
= {1 + a7y cos(rw?)|(wi)? + (1 + 77) sin(rrw? )wi } (W + W)
£ 0,

under condition (B2),. g

Remark 5.2.4. (i) In Theorem 5.2.8, condition (B1b). plays the dominant ones,

since condition (B2b). is apter to be met. Basically, condition (B1b)L requires
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that 7; is small and || is relatively larger than |a|. Notably, the restriction on
magnitude of 7; can be relaxed. Observe that the function Q(w) in (5.15) and (5.21)
is dominated by the leading term w?, as w is large. Therefore, if |3| is sufficiently
large, there exist exactly one positive zero for (5.15) and (5.21) given arbitrarily
fixed 7; and «. Accordingly, large || is advantageous for Hopf bifurcation to take
place, hence synchronous or asynchronous oscillations induced by transmission delay
7r. (ii) Obviously, (B1b), is weaker than (B1b)_. We thus see that the 7r-induced
synchronous oscillations appear ahead of the asynchronous oscillations along the
way of increasing |3|. (iii) Similar formulations and arguments show that large
|| is advantageous to the occurrence of synchronous or asynchronous oscillations
induced by transmission delay 7;. In contrast to (ii), the synchronous oscillations

appear behind the asynchronous oscillations, along the way of increasing |a/.

If system (2.6) of scale N > 3 is considered, the treatments in this section are
still valid. Indeed, Hopf bifurcation for synchronous periodic solution of system (2.6)
with general scale N can be analyzed through the reduced system (2.6),. On the
other hand, bifurcation analysis for anti-phase motion can be performed for system

(2.6) of even scale through the reduced system (2:6)7 .

5.3 Extension to N> 3

In this subsectionywe shall discuss the synchronization for system (2.6) of general
scale N > 3. The difference between the synchrony of system (2.6) of scale N = 3
and N > 3 will be addressed in Remark 5.3.1(ii).- Notably, by arguments similar to
the ones in Section 5.2; the convergence to multiple synchronous equilibria for (2.3)
of scale N > 3 can also be established.

First, let us introduce thefollowing conditions for global synchronization.
These conditions can be regarded as the NV-scale version of conditions (S1b)-(S4b)

in Section 5.2, respectively.

Condition (S1b)*: —a+ 3 >0, p—a+ 3> (N —3)|8], 7ilal + 7|8 < 7{;

more precisely,

B> (1/L)a,p—a+BL— (N —3)|5] > 0 and 7|a| + 7|8 < 74 if a >0,8>0,
pw—aL+ L — (N —3)|3| > 0and 77]a| + 77|3| < 7‘](\,1), if « <0,8>0,
B> La,pu—aL+F— (N —3)|3 >0 and 7|a| + 7|3 <7'](V1), if a <0,0<0,
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where

M .— 1min (ol + 16D# podtp— (N -
(2p =+ p)llol + (N=2)8l) 2u—a—-a+5+5

Condition (S2b)*: @ < 0, u — oL > 2|3| and 7, < 7'](5), where

p p—al —2|g]
2p = a)(lal +2(8]) a(a+ oL —2u) "

7'](\?) := min{

Condition (S3b)*: 8> 0, (Ja| + |8]) (1 — |al) > (N = 3)|af], p+ BL — |a| >
(N —3)|8| and 7 < T](V?’), where

20— g 1ol 18D —la]) — (N = 3)lag] i+ 6L~ Ja] — (N )3
v 3Cu+Allel+(N =21~ BB+ sL+2n)

}.

Condition (S4b)*: |a| + 2|8| € .

Theorem 5.3.1. System (2.6) of scale N > 3 achieves global synchronization under
one of conditions (S1b)*=(S4b)*.

Proof. The arguments for the rp-dependent results under condition (S1b)* or (S3b)*
are different from the oneés for the 7p-independent resultsunder condition (S2b)* or
(S4b)*. First, let usrconsider that case that condition (S1b)* holds. The difference

system of (2.6) can be written as follows:

Zi(t) = —pzi(t) +alg(e(t — 7)) = 9@t —70))f = Blg(zi(t— 1)) — g(wipa(t — 77))]
Fw(t), i = BANN, (5.23)

where z;(t) 1= x;(t) — xi11 (1), wi(t). ==BLjenlg(zi(t —7r)) — 9(z;41(t —7r))], where
Ji=A{1,--- N} \ {i,i— 1,7+ 1 (mod N)}. Then each ith equation of (5.23) is of
the form in (3.10) with vy = —a, v = 3, 1 = 77, T2 = 7r, and satisfies condition
(H1b). According to Theorem 3.1.9, every ith component z;(t) of (5.23) converges

to some interval [—p;, p;] =: I;, as t — oo; moreover,
0 < pi < [w]™*(00)/m,

where
ni=p—a+0— (11]cv] +TT\5|)(2M—54—07+5+6)7
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and &, &, 3, 3 are as defined in (5.4), (5.5) for real numbers «, 5. We shall show that
all p; are equal to zero; consequently, z;(t) converges to a singleton and the assertion
thus follows. Now let us illustrate that for each i, there exists a sequence {pl(-k)}zozo

with pgk) > p; for all k and z;(t) converges to [—pgk), pz(-k)] as t — oo, for each k. We

(k)

shall construct p;” to satisfy
(0).:2N_3 i =1.--- . N
pi ( )|ﬁ|/777 ¢ ) ) )
and for k£ > 1,

k _ k—
(o =S80 i,

. . A k—1
ol = (BZA181AY + T8l

. k _ k
L oW = SY21810% /.

The construction is similar to Proposition 4.2.1 ‘and is sketched as follows. If such
pgk), fork=1,--- n—1,i=1+--yNand k' =n,4=1,--- ,/—1 < N have been
defined, then |wy(t)| = | =B, [9(x;j(t—71r)) — 9(zj1(E=7r))]| < BE e, |2 (t—7r)].
Hence,

0 < pr < Jwl™™(coy/m< (E21810 + 2%, L 10005 ) /n.

We observe that {pgk) | i =1,2,--- ,n} are exactly the Gauss-Seidal iteration for

solving the linear system
Mx =0, (5.24)
where M := nly + circ(0,0, =[5} -+ -, —|B],0). Herein,

50 51 gn—l
circ(&o, &1, -, 6nt) = 577/'—1 §0 gn:_2

5'1 gn'—l : " ' £.0

where &; is a real number, j = 0,1,---,n — 1. Notably, M is strictly diagonal
dominant, cf. [4, 74] under condition (S1b)*; hence n — (N —3)|3| > 0. Accordingly,
(pgk), e ,pg\];)) converges to the unique solution of (5.24), which is zero, as k — oo.
Thus for each i, sequence {pgk)} converge to zero as k — oo. Consequently, every

component of the solution to (5.23), hence the solution itself, converges to zero.
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For the case that condition (S3b)* holds, each component of (5.23) satisfies
(3.10) with v, = 3, 72 = —a, 11 = 71, 72 = 77 and satisfies condition (H2b). The
assertion then follows from Theorem 3.1.10.

Now, let us justify the case of condition (S2b)*. Note that the difference system

derived from (2.6) can be regarded as another form different from (5.23) as follows:
Zi(t) = —zi(t) + alg(@it — 1)) — g(wip(t — 7)) +wi(t), i =1,---, N, (5.25)

where w;(t) = Blg(zi—1(t — 7r)) — g(xi(t — 71)) + g(@it1(t — 71)) — g(@isa(t — 71))].
Then (5.25) satisfies (3.10) with 74 = —a, 72 = 0, 1 = 77 and satisfies condition
(H2b) under condition (S2b)*. According to Theorem 3.1.10, every z; of (5.25)

converges to interval some [—p;, ;|; moreover,
0 < pi < Jwi| " (00) /0,

where
i:=1—al+ma2—a—al).
The proof then follows process:parallelto the fixst case of condition (S1b)*, hence is
omitted.
For the case of condition (S4b)*} each zyof (5.25) can be regarded as in the
form (3.10) with y1.= =, %-=-0, 7y = 77 and satisfies condition (H3b). The
assertion holds by Theorem 3.1:-11-n

Remark 5.3.1. (i) If N is large, then large -and negative a of large magnitude
are advantageous for conditions (S1b)*<(S3b)*. By Theorem 5.3:1; it turns out that
system (2.6) can be synchronized if both magnitude of o and § are small enough.
Otherwise, strong inhibitory self-feedback play an important factor for synchroniza-
tion of (2.6) if delays are small. /(i) If N = 3, the difference equation derived from
(2.6) is nearly a decoupled.system, cf. (5.3). If N > 3{ the difference equation derived
from (2.6) is a coupled system, ¢f. (5:23) or (5:25). Such a distinction between the
structure of difference equations is the'major reason for the disparity of synchrony
for (2.6) of scale N = 3 and N > 3. In fact, Example 5.4.3 illustrates that under the
same parameters, (2.6) can be synchronized globally as N = 3, but not as N > 3.

5.4 Numerical examples

We present four examples in this section. In Example 5.4.1, we illustrate the dy-

namics of synchronous oscillation. Example 5.4.2 demonstrates a transition from
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convergence of multiple synchronous equilibria to asynchronous oscillation as trans-
mission delay 77 increases. Example 5.4.3 shows that (2.6) of scale N = 3 with
certain parameters is synchronous, but (2.6) of scale N = 4 with the same parame-
ters is asynchronous. In Example 5.4.4, for some parameters satisfying the condition
of the conjecture in [8] and a > 0, we illustrate that there exists a solution which
converges to an asynchronous equilibrium.

Example 5.4.1. Consider (2.6) with p = 1, « = —0.1, § = —0.9, 7, = 0.001,
mr = 8.2, N = 3. The parameter (a,3) = (—0.1,—0.9) lies in Fig. 5.1(b), and
condition (S2b) is met for 7; = 0.001; hence the system can be synchronized in spite
of transmission delay 7r, according to Theorem 5.2.1. In addition, the parameters
and delays satisfy condition of Theorem 5.2.8; therefore, there exist a nontrivial
synchronous periodic solution induced by 7 near 7p = 8.178. Fig. 5.6 illustrates
that the solution of (2.6) tends to a synchronous periodic orbit as ¢ — oo; in the

panels, three different colors represent the evolutions of three components x4, xs, 3.

(1)
xz(() H
f\ X0

05 Plocpe]d

solution XXy Xg
o

70.5—“”\\~\\

i i i
0 50 100 150 200

Figure 5.6: An orbit of (2.6) with =1, a = —0.1, 8 = <0.9;. 77 = 0.001, 77 = 8.2,
which is evolved from ¢(t) =.(0.8,—0.9,1). There exists a synchronous limit cycle.

Example 5.4.2. Consider (2.6) with p = 1, N = 3, a =09, 8 = 2, 77 =
0.001, 7 = 0.001 or 1.3. If 7 = 0.01, the system satisfies condition (S3b), hence
achieves global synchronization. Moreover, the system satisfies the assumptions of
Theorem 5.2.3 and 5.2.4 (ii), hence the system achieves global convergence to three
synchronous equilibria where the nontrivial ones are stable. Fig. 5.7(a) illustrates
that the solutions plotted in blue converge to nontrivial stable equilibria; and the

solution plotted in red converges to zero. Evolution for each component of the
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solution which converges to zero is illustrated in Fig. 5.7(b). If considering 7 = 1.3
instead, by Theorems 5.2.3 and 5.2.8, the nontrivial equilibria remain stable, but an
asynchronous periodic solution is bifurcated from the origin. Fig. 5.7(c) illustrates
that coexistence of asynchronous periodic oscillation plotted in red and two stable
synchronous equilibria. Evolution of each component of this oscillation is illustrated
in Fig. 5.7(d).

x, (0

%0 |

0 20 40 60 80 100

(8)

&
x

0 20 40 60 80 100
time t

(c) (d)

Figure 5.7: Consider pu = 1pa = 0.9, f = =2, _77.= 0.001. (a) Solutions of
(2.6) with 70 = 0.001 evolyved from.various initial values converges to one of the
three equilibria. (b) Evolution ©of three components of the solution plotted in red
in (a). (c) Coexistence of asynchronous periodic oscillation plotted in red and two
stable synchronous equilibria for (2.6) with 70 = 1.3. (d) The evolution of three
components of the oscillation plotted in red in (c).

Example 5.4.3. Consider (2.6) withy=1,a=0,5 =1, 7, = 0.01, 7 = 10. Such
a system satisfies condition (S2b), hence can be synchronized as N = 3, according

to Theorem 5.2.1. In addition, the synchronous phase contains at least two stable
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equilibria, according to Theorem 5.2.3, since this («, ) lies in region D;. However,

Fig. 5.8 illustrates that as N = 4, there exists an asynchronous limit cycle.

Example 5.4.4. Consider system (2.6) with parameters y =1, a = 6, § = —2,
and delays 7; = 0, 70 = 5. These parameters and delays satisfy the condition of
the conjecture in [8], but there exists a solution which converges to an asynchronous

equilibrium, cf. Fig. 5.9

x, (0
xz(t) H
x5(t)
1t x, H

[
0.5f

=)

|
o
o

solution Xy X Xg X,

!
N

|
s
o

!
N

i i .
50 100 150 200
time t

o

Figure 5.8: Asynchronous limit cycle of (2.6) with = 1ya =0, 3 =1, 77 = 0.01,
77 = 10 and N = 4. The orbit is evolved from (0.8,-—0.9,0.1,0.34).

%0
%,
*,00/]

o N & o ®

solution x,,x,.X,
U
~

i i i i
20 40 60 80 100
time t

Figure 5.9: The orbit evolved from (0.8, —0.9, 1) converges to an asynchronous equi-
librium of system (2.6) with parameters p = 1, a = 6, § = —2, and delays 7; = 0,
T = 9.
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Chapter 6

Synchronization and Oscillation
for a System Comprising Two
Subnetworks with Loop Structure

In this chapter, we consider system (2.8):

Ti(t) = —pii(t) + @ig(@i(t="11));o=1,2-4 | K — 1 (mod K),
ix(t) = —prrr(t) Farg(zx -1 (t —11)) + eglyx (b— 7)),
yz(t) = —uzyl(t) ® ozig(yi_l(t - 7'[)), E= 1, 2. ,K —1 (mod K),
Uk (t) = —puxyr(t) +axglyx 1t —7r) + eglrx (t = 72)),

where ¢ is an activation function-of class A with-g(0) = 0. Weset pu; =1, oy = 1
for all i, —1 < ¢g(€) < 1 and focus on the effect of dynamics for (2.8) from the
gain of response function (L), the coupling strength between two loops (c), the
internal delay (7;) and the transmission‘delay (77). The presentation of this chapter
is organized as follows. Global synchronization,-anti-phase motion, convergence to
trivial equilibrium are_presented in Sections 6.1, 6.2, 6.3 respectively. Stability of
nontrivial equilibria, their basins of attraction and convergence to multiple equilibria
are summarized in Section 6.4. Hopf bifureation induced by the internal delay at
the trivial equilibrium is studied in Section 6.5. In Section 6.6, we summarize
the dynamic scenarios corresponding to various coupling strength and delays. We

present some numerical illustrations in Section 6.7.
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6.1 Global synchronization for the coupled K-loops

In this section, we shall derive both transmission 7p-dependent and 7p-independent

criteria for (2.8) to attain global synchronization; that is
xi(t) —yi(t) = 0, ast — oo, foralli=1,--- | K

for solution (z1(t), -+ ,xx(t),y1(t), -+ ,yx(t)) of (2.8), starting from arbitrary ini-
tial condition. For this purpose, we shall consider the following difference system of
(2.8):

{ Z'i(t)__zz(t) wz( )7 =1, 7K_17 (6 1)
ik (t) = =2k (t) — clg(ex (t —11)) = glyx (t — 71))] + Wk (F). '

where z(t) = 2i(t) —wi(t), i = 1,---, I wi(t) = g(wia(t —71)) — 9(yia(t — 71)),
i=1,---,K (mod K). Notice that both xx(t) and yx(t) are eventually attracted
by [—1 — |¢|, 1 + |c|], as seen from the equation for zx and yx in (2.8) (with ay, p

set to one). We denote
L, := min{g () 7€ € [=T=]el; 14 |c[]}.

Obviously, every component of (6.1) is-of the form (3.1). More precisely, the first
K — 1 components are in the form-of (3.9) and the Kth component is in the form
of (3.1) with § = e.-Now, we-introduce the following 7r-dependent condition for

global synchronization of (2.8):

Condition (S1a): ¢ > 0, 7p < LAL2% eL)(1 + ¢)]; and 1+ cL, — 7peL(2 +
cL +cL.) > L¥.

The second inequality in condition (Sla) matches the second inequality in condi-
tion (Hla) with |w;|™(to) <.2, for all <. The third4dnequality in condition (Sla)
is needed for contraction of sequence.of intervals.in the following Theorem 6.1.2.
Obviously, under condition (S1a), the Kth component of (6.1) satisfies condition
(Hla). By Theorem 3.1.4 and Corollary 3.1.8, there exist K intervals I; := [—a;, a;],

i=1,---, K, to which z(t) converges respectively. Moreover,

a; S |wi|maX(OO), 1= 1,2~ N ,K — ]_, ~ (6 2)
ag < |wg|™*(c0)/[1 + cL. — 7rcL(2 + cL + cL.)]. '

By the similar arguments for Proposition 4.2.1 or Theorem 5.3.1, we can derive more
precise estimates on a; through an iterative process. We thus give the following

proposition without the proof.
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Proposition 6.1.1. Assume that condition (Sla) holds. Then foranyi=1,---, K,

there exists a sequence of intervals {aE’“}gO:l such that for each k, the ith component

2;(t) of every solution to (6.1) converges to Il-(k) = [—agk) a(k)] as t — 00, and agk)

satisfies " o)
0<a;’ =Lay ~,
0<a” =ra", i=2-.. K-1, (6.3)

0< a(Kk) = La(Kk)_l [1+4 ¢L. — 7peL(2 + cL + cL.)],
where aﬁ?) :=2/L.

So far, we have shown that every component of arbitrary solution to system
(k)

)

can be controlled
(k)

7

(6.1) converges to a sequence of closed intervals whose lengths 2a
by iterative formula (6.3). Next, it will be examined that for each i, a;,” converges to
zero as k — oo. Thus the interval to which each component of the solution converges
degenerates into a single point. One can then conclude that system (6.1) achieves
global convergence to zero; accordingly system (2.8) attains global synchronization.

Such arguments are implemented in the following theorem.

Theorem 6.1.2. The coupled K-loops (2.8) attain.global synchronization under
condition (Sla).

Proof. Under condition (Sla), agk) are decreasing with-respective to £, since agj =

La&? = Lzagf{')_1 [14+cL,—7peL(2+cL+cL,)] = LKagj)/[1+CEC—TTCL(2+CL—|—C[~/C)] <
() (k)
ay”’.

By similar arguments, it can also be shown that a,” are decreasing with

(k)

respective to k for .= 2,---, K. Suppose a; ' — a;, as k = o0, fori =1,--- K.

By (6.3), it follows that

0 <@, = Lag,
Ogdi:Lai_l, Z:2a~>K_17 N (64)
0 < ELK = LdK_l/[l + CLC — TTCL(2 4+ el + CLC)].

Subsequently, 0 < a; = L¥a;/[1+ cL, — mpcL(2 + cL + CEC)], and it yields that

a; = ap = -+ = axg = 0 under condition (Sla). This completes the proof.

Applying the same treatment as Theorem 6.1.2 and using Theorems 3.1.5,
3.1.6, we can derive criteria which are 7p-dependent as ¢ < 0 and 7p-independent

respectively, for synchronization of (2.8); namely

Condition (S2a): —1/L < ¢ < 0, 77 < (1 4+ ¢L)/[L(2 + cL)(1 + |c|)] and
1+ cL + 7reL(2 + cL + cL,) > L¥.
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Condition (S3a): 0 < L <1l and |¢| <1/L—1.

Theorem 6.1.3. The coupled K-loops (2.8) attains global synchronization under
condition (S2a) or (S3a).

It is necessary that L < 1 for condition (S2a), but not for condition (Sla).
Therefore, if L > 1, synchronization for (2.8) is apt to occur for excitatory coupling
(¢ > 0). On the other hand, in Section 6.2, it will be seen that anti-phase motion
for (2.8) is apt to take place under inhibitory coupling (¢ < 0), if L > 1. If L < 1,
then the sign of ¢ is not that deterministic in these conditions.

Conditions (Sla) and (S2a) are dependent on 7p and favor small 77, but are
independent of 7;. In Section 6.5, we shall show that, under condition (Sla) and
some additional conditions, there exists nontrivial synchronous periodic solution
induced by 7;. In addition, it will be shown that (2.8) actually achieves global
convergence to the trivial equilibria under condition (S3a).

Notably, the third inequalitytin conditions (Sla), (S2a) become more difficult
to hold if L > 1 and K (the'subnetwork size) is-large. Thus, it is well possible that

synchronization may belost, when the sub-network size is too large.

6.2 Anti-phase motion for the coupled K-loops

In this section, we denote by (2.8)¢ system (2.8) with odd activation functions g in
class A, ie., g alsorsatisfies g(—§) = —g(&); for all £ € R. We shall derive criteria
for (2.8)g to admit global anti-phase motion; that is,

x;(t)+y(t) = 05 as t — o0, foralli =1, K,

for solution (z1(t), -, zx(t),sa(t)y- - -, yx(t)) of (2:8), starting from any initial
condition. We set g;(t) = —y;(t), then from (2.8), we obtain

.Z’Z(t) = —I‘Z(t) —|—g($2_1(t - T[)), 1= 1,2 s ,K —1 (I'IlOd K),
ik (t) = —wx(t) + glex—1(t — 11)) — cg(Ux(t — 1)),
gl(t) = —gz(t) + g(ﬂi_l(t — T[)), 1 = 1, 2 cee ,K — 1 (IIlOd K),

: (6.5)
yr(t) = =gk () + 9(Gx 1t = 71)) = cg(wx(t = r)).

Showing that (2.8)y achieves global anti-phase motion amounts to justifying that
(6.5) achieve global synchronization. By employing similar treatment in Section

6.1, we can conclude the following result.
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Theorem 6.2.1. The coupled K-loops (2.8), attains global anti-phase motion under
condition (S3a) or (AP1) or (AP2), where

Condition (AP1): ¢ < 0, 7p < 1/[L(2 — ¢L)(1 — ¢)] and 1 — ¢L, + 7peL(2 —
cL —cL.) > L*,

Condition (AP2): 1/L > ¢ > 0, 70 < (1 — cL)/[L(2 — c¢L)(1 + |c|)] and
1 —¢L — mpeL(2 — ¢L — cL) > LX.

6.3 Global convergence to trivial equilibrium

In this section, we shall derive both 7p-independent and 7p-dependent criteria for
system (2.8) to admit global convergence to trivial equilibrium. For this purpose,

we rewrite (2.8) as follows:

() = —s(t) + wi(t), i=1,2--- K —1 (mod K),
i (t) = —zg(t) + cg(rr(t — TT)) wr(t) + vk (t), (6.6)
Ui (t) = —y;(t) —l—ﬁ}i(t), =152+ - K — 1 (mod K), ’
Ur(t) = —yx (t) + cg(yr(t = 7)) + Wie(t) + Uk (t).

where w;(t) = g(x;1(t=17)), Wi(t) = g(yi1(t — 7))y d = 1,2+ | K; vg(t) =
clg(yr(t — 1)) — g(zae(t =7r))]-and 0k (t) = clg(zx(t —7n))= 9(yx(t — 71))]. We
impose the following eondition:

Condition (Ca):

0<l|el <1/L,
7 < min{1/[L(2 3 [e| L) (14 [c)], =1el L) {1+ |c])(2 = [elL) L]},
min{1 + |¢|L. — 7ple|L(2 + [e| L& |e|L.), 1~ || L= 7 |c|If2— |c|L — |¢|L.)} > LK.

Theorem 6.3.1. Every solution of the coupled K-loops (2.8) converges to the

trivial equilibrium as ¢ — oo, under condition (Ca).

Proof. We merely prove the case of ¢ > 0. The situation for ¢ < 0 can be treated
similarly. Notably, the latter two inequalities in condition (Ca) yield condition
(Sla). By Theorem 6.1.2, (2.8) achieves global synchronization under condition
(Ca), hence each of the first K — 1 components (resp. the Kth component) of (6.6)
is of the form (3.9) (resp. (3.8) with § = —c¢). Moreover, the Kth component
satisfies condition (H2a) under condition (Ca). Notice that both zx(t) and yg(t)
are eventually attracted by [—1—|c|,1+|c|]. By Corollary 3.1.7 and Corollary 3.1.8,
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there exist K intervals [—a;, a;], t = 1,--- | K, to which z;(t) converges respectively.

Furthermore,

. < .| nax ) =1.2--- K_l
{ A; > |w2| (00)7 ? ) 9 ) (67)

ar < |wg|™(00)/[1 — ¢L — 7peL(2 — ¢L — cL,)).

Similar to Proposition 6.1.1, there exists a sequence of intervals {ag’“)},;“;l such that

for each k, the ith component z;(t) of every solution x(t) to (6.6) converges to

]Z-(k) = [—agk), az(-k)] as t — oo, and agk) satisfies
0< agk) = La(Kk_l),
0<a® =ra®, i=2-.. K—-1, (6.8)
0< ay;) = Lagl;)_l [1—cL —mpeL(2 — ¢L — cL.)],
where agg) := 2/L. Due to the last inequality in condition (Ca), {al(-k)} are decreasing
with respective to k for i =1, -+, K, since " = LEaY /[1 — cL — 7p¢L(2 — cL —
cL.)] < az(-j). Suppose {agk)} converges toa;;for i =1,--- , K. It follows from (6.8)
that

0 < a; =Lag,

0<a;=La; 1, i=2,--- , K—1 )

0 <@g = Lag=r/{l—+cL — 7pcL(2 — cD—clL.)).
Subsequently, 0 < agp=L%a, /[T cl, — rel(2 + el 4 cic)]. Hence, it yields that
a; = as = --- = axg = 0, thanks to the last inequality in-condition (Ca). Therefore,
every x;(t) converges to zero as t — 00. By similar arguments; we can show that

every y;(t) converges to zero. This completes the proof.

By using the same techniques‘as Theorem 6:3.1; we can alsoderive the following

theorem under 7r-independent condition (S3a).

Theorem 6.3.2. Every solution of-the coupled K-loops (2.8) converges to the

trivial equilibrium as ¢ — oo, under condition (S3a).

This theorem indicates that synchronization under 7p-independent condition
(S3a) is exactly convergence to trivial equilibrium. Several works in the literature
obtained such kind of result by Lyapunov function technique. In [7], globally asymp-
totical stability (global convergence) of the origin for the coupled 3-loops without

internal delay 7; was addressed under condition independent of 7r.
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Figure 6.1: Configurations for (a) F, F, Ax, (b) I(£).

6.4 (Global convergence to multiple equilibria

In this section, we shall establish the convergence to multiple synchronous equilibria
for (2.8). In addition, the existence and stability of nontrivial equilibrium and basins
of attraction for stable synchroneus equilibria will be derived.

Let us consider the convergence of dynamies for (2.8). First, we define

F&) = —&+cg(é) +2mre(l + 20) L+ 1,
BE) = —ereg(ey 2mc(l - 2c) L% &

For 0 < A < 1, we impose the following conditions:

Condition (Cla)X: L > 1/¢ > 0, 74 < A/[2L(1 + 2¢)}; A(1 =2c7pL) > LK.

Condition (C2a)": F(gr)> 04 F(px) < 0.

Condition (C3a)?: g (€) > (1 A) /e, for all € € [l
Condition (Cla)? is a multi-dimensional version of condition (Ala). Notably, py and
g were defined in (3.21) where —@.is replaced by ¢ Under conditions (Cla)* and
(C2a)*, there exist exactly three zeros I¥; mFand 7' (respectively ¥, mFand #F )
of F(€) = 0 (resp. F(€) = 0). Moreover, I[F < [F < py < mF <mF < g, < i#F <t
cf. Fig. 6.1(a).

Let us introduce three sets in R2%X as follows:

D=0 xQ, Q= O X Oy = Q) x O,

where ) = [—1, 1K1 x [IF,1F], Qu = [=1, 151 x [mF,mf], Q = [-1,1]5 ! x

[#1", #T']. We can then derive the convergence to multiple synchronous equilibria for
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(2.8). We say that an equilibrium (Zy, -+ , Tk, ¥y, -, Yx) of (2.8) is synchronous
ifr, =7y, foralli=1,--- K.

Theorem 6.4.1. Assume that conditions (Sla), (Cla)*-(C3a)* hold for some fixed
A € (0,1), then (2.8) achieves global convergence to synchronous equilibria; if in
addition, 0 < L < 1 and A € (L, 1), then (2.8) admits exactly three synchronous

equilibria. Each of regions 2, €2, €2, contains one of these equilibria .

Proof. Recall that (2.8) can be rewritten into (6.6). Obviously, for i =1,--- | K —
1, the ith component of (6.6) is of the form as (3.9); hence, x;(t) converges to

min
7

max

maX(00)], as t — 00, as observed from the equation for z;. Restated, for

[wi™ (00), w
i=1,---, K—1, x;(t) converges to some compact interval I; whose length d; satisfies
d; < wP*(00) —w™"(00). The Kth component of (6.6) has the form as (3.20) under
condition (Sla) and satisfies conditions (Ala), (A2a)* and (A3a)*, under condition
(Cla)?, (C2a)* and (C3a)*. By Theorem 3.2.5, zx(t) converges to some compact
interval whose length dg satisfies dpr < [WE(o0) — wi™(c0)]/[A(1 — 277cL)]. By
similar arguments as the ones for Theorem 4.2.2 or 6.3.1, we can show that each
x;(t) actually converges to some singleton, for ¢ =1, -+ [ K. Similar arguments can
apply to y;(t), for i =1, | K.

Finding synchronous equilibrium for (2.8) amounts to solving

{—:vi—l-g(:vi_l):(),izl,---,K—l, (mod K) (6.9)

=xx + g(rr_1) + cg(rx) =0

Note that under condition (Sla); all equilibria for (2.8) must be synchronous. Con-
sider a fixed Q € {Q s, Q.. Fora given (1, -« k) € N, we define

{ Az(g) g —f+9(771—1)> 1= ]-9' T aK — 1’ (IIlOd K)v
Ak (&) = =€ +c9(8) + g(nr—1).

Note that |g(-)] < 1 and F(¢) € Ag(€) < F(£). Thus, there exists a unique
point (9}, -+ ,m%) € Q such that nf is the solution of equation A;(-) = 0 for all
i=1,---,K, under conditions (Cla)*, (C2a)*, cf. Fig. 6.1 (a). Consequently, we
can define a mapping G : Q — Q by Go(m, -+ ,nx) = (0}, ,nx) € Q. Thanks
to conditions (Cla)*-(C3a)* and L < 1, by using arguments similar to Theorem
4.1.1, we can show that G is a contraction mapping and there exists a unique
fixed point X = (Zy, - ,Tk) of Gg, lying in Q. Restated, X satisfies (6.9). Thus,

(ZTy,++ , Tk, T1, ++ ,ZTk) is the unique equilibrium point of (2.8) lying in Q x Q. g
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Remark 6.4.1. (i) Let us observe what parameters satisfy conditions (Sla) and
(Cla)*-(C3a)*. It can be seen that L < 1, sufficiently large ¢, and sufficiently small
7r are apt to meet these conditions. (ii) The existence of equilibrium for (2.8) should
have nothing to do with delay. In respecting the conditions (Sla) and (Cla)*-(C3a)*
involving delay, one can just take delay 70 = 0 in these inequalities, if existence
of equilibrium is the only issue of concern. (iii) Notably, the third inequality in
condition (Cla)* becomes more difficult to hold if L > 1 and K (the sub-network
size) is large. (iv) Obviously, the equilibrium point lying in €2y, is the trivial and the

others are nontrivial.

To discuss the stability of nontrivial equilibria in Theorem 6.4.1 and basins of

attraction for the stable equilibria, some additional conditions are needed. First, we
define

HeY —&+2cg(§) —1—¢, it&>0,
(€) = —&+4+2c9(§) +14¢, if&<O.

There exist two values p, < 0 and g,> 0-such that.g'(p.) = ¢'(¢.) = 1/(2¢) if
L > 1/(2¢) > 0. The first additional condition is

Condition (C4a): L'> 1/(2¢)> 0, I(g.) > 0, I(p.) <O.

Under condition(C4a), there exit exactly two zeros of function'7, say /& and &, in

intervals (p,, 0) and (0, q.) respectively, cf. Fig. 6.1(b). Next, we impose
Condition (C5a)*: (&) > (1 — AV /e g(k) = (1 = \)/c.
Let us define the following two sets in € ([=7max, 0]; RY):

—{cb ¢ € Cllzmman 0L RY), ¢i(0) 2 &,
<K,

R%), ¢ [=77,0],for i = K, 2K},
- {¢ ¢€ C([ Triax ] RG); ¢z(‘9)

[—77,0],for i = K,2K}.

Theorem 6.4.2. Under the conditions for the existence of nontrivial equilibria in
Theorem 6.4.1, if in addition, (C4a) and (C5a)* hold, then the nontrivial equilibria
are asymptotically stable. Moreover, QF (resp. €7) is contained in the basin of

attraction for the equilibrium in Q, (resp. ().

Proof. It can be justified that QF and 2~ are invariant under (2.8). We merely

discuss the former case. We define the function I(€) : (—oo,&] U [#,00) — R as
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follows:
' —&+cg(&)+cg(k)+1+¢ if€<k.
We shall show that, for all t > g,

Ere(t) > Hww (), gr(t) > I(yx(t)). (6.10)

If (6.10) holds, then both xk(t), yx(t) remain in [f,00) for all ¢ > ty, due to
I(#) = I(#) = 0 and I(k) = I(&) = 0. The invariance of Q* will then be justified.
Let us now confirm (6.10). From (2.8), it can be seen that xx(t) satisfies, for t > t,

i (t) = —xx(t) + cg(zx(t) + g(vx—1(t — 71)) + clg(yr(t — 7)) — g(wK (1))].

The assertion holds for ¢ = to. Indeed, T (to) > —xk (to) + cg(zk(ty)) — 1 — ¢[1 —
g(®)] = I(zk(ty)), since yx(to — 7r) > & and zx(ty) > & . By similar arguments,
we can also verify that §x(to) > I(yx(to)). Assume (6.10) holds for t € [to, 1) but
does not at some ¢ > to. One of the possibilities is that @x(f) = I(xx(f)), and
i (t) > I(xg(t), gx(t) > I(yg(t)) for all t € [tosf). In this situation, zx(¢) and
Yy (t) Temain in (&, 00), fort € [to;t). Then, i (F)> <ag(t) +cg(rx(t) —1—c[l —
g(%)] = I(xk()) and yields a contradiction. The other possibilities can also be ruled
out, by similar arguments. Therefore (6.10) is valid. The remaining arguments are
similar to Theorem'4.3.1. We merely sketch the idea.-Note that the two nontrivial
equilibria lie in Q%, Q7 respectively. Thus, the solution starting near the nontrivial
equilibrium remainsiin the invariant set 9 or . Hence, we have the slope control
on the coupling terms, namely ¢g’(z;(t)) < 1 for i = K,2K, and ¢'(z;(t)) < 1, for
i # K,2K, for all t > ty, and so that the solution.of (2:8) evolved near the nontrivial
equilibrium is dominated by the degradation terim —z;(¢) in (2:8). Solutions starting
near the equilibrium thus eonverge to the equilibrium.

According to Theorem 6:4.1wand the invariance, we conclude that QF (resp.

(27) is contained in the basin of attraction for the equilibrium lying in €, (resp. ).

|

Remark 6.4.2. (i) Although conditions (C4a), (C5a)* seem complicated, it can be
observed that they are apt to be satisfied for large c. (ii) In fact, it is not difficult to
observe that the nontrivial equilibria are stable under the conditions on the existence
of exactly three equilibria (Remark 6.4.1), and conditions (C4a), (Cba)*. These
conditions are independent of delays and are easy to satisfy if 0 < L < 1 and ¢ is

sufficiently large.
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6.5 Bifurcation and oscillations

In Theorem 6.1.2, we have shown that if the transmission delay 77 is small enough,
(2.8) can attain global synchronization in spite of the magnitude of internal delay
77. In this section, via bifurcation analysis, we shall show that there exist nontrivial
synchronous periodic solutions for (2.8) induced by internal delay ;. To simplify
the presentation, we consider (2.8) with K = 3 in this section. Moreover, most
of arguments in this section are similar to the ones in Section 5.2.3. Hence, we
merely sketch the main process and adopt the same symbols for some settings used
in Section 5.2.3.

First, let us consider a circle block matrix circ(Ag, Ay, -, A,—1) where A;,

j=0,1---,n—-1,is a k x k matrix. Let v; = e , and define a function of

matrices G(z) = Ag+ xA; + -+ + 2" ' A,_;. In [77], it is shown that
det(Alg, — circ(Ag, Ay, -+, A1) = I, det (M — G(vy)), (6.11)

where [, is the k x k identity ‘matrix.  The linearization of (2.8) at the trivial

equilibrium (0,0, 0,0, 0, 0){s given by

( Ul(t) = —Ul(t) + LU3(t - T]),
Ug(t) = —Ug(t) == LU1 (t x T[),
U3(t) = —Ug(t) +LU2(t—Tj)+CLU6(t—TT), (6 12)
U4(t) = —U4(t) B LU6(t — 7']), '
’U5<t) = —U5(t) a4 LU4(t a8 7']),
(vt (t) = —ue(t) + Lus(t =71) + cLus(t'— mp):
For convenience, we set
d:= cl~
Then the characteristic equation for (6.12) (cf. [34], [72]) is
14+ A 0 —Tie=?T 0 0 0
—Le ™ 14X 0 0 0 0
. 0 —Le™™ 1+ 0 0 de=>m™
A(A) 1= det 0 0 0 1+ A 0  —Le 0
0 0 0 —Le ™ 14X 0
0 0 —de T 0 —Le ™ 14\

Thanks to (6.11), the characteristic equation can be factored as

Ar(N) = (1 4+ N1+ X FdeT) — L33V,
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We substitute A = 4w with w > 0 into AL(A\) = 0 and collect the real and

imaginary parts to yield

L3sin(3rw) = (w® — 3w) £ (w? — 1)d sin(rrw) £ 2d cos(trw)w, (6.13)
L3 cos(3rrw) = (1 — 3w?) F (1 — w?)d cos(rrw) F 2d sin(rrw)w. '
Summing up the square of equations (6.13) gives
Q+(w) = LS, (6.14)

where Qi (w) := Q1(w) + Qz(w) and Qy(w) = w® + (3 + d*)w* + (3 + 2d*)w?* +
d?>+1 and Qy(w) := d[2 sin(Trw)w® — 2 cos(Trw)w* + 4 sin(r7w)w? — 4 cos(rrw)w? +
2sin(mrw)w — 2 cos(mpw)]. Therefore the positive solution of (6.14) corresponds to
the purely imaginary roots of AL (w) = 0.

Now let us introduce some settings and the condition imposed for purely imag-
inary roots of Ay(w) =0 as follows:

Define P(w) := (6 —2|d|rr)w’ — |d|(10 4 277)w* + (12 + 4d? — |d||8 — 47r|)w® —
|d| (12 + 477)w? + (6 + 4d? — |d||8 = 27¢|)w — |d| (2 + 277). As P is a polynomial, we
set

w = the largest zero of P (w). (6.15)

Condition (Bla)s: 6 — 2|dlz > 0, min{Q=(w). : w €_[0,w]} > LY and
max{Q+(w) : w € [0yw] < L,

By similar arguments to Lemma 5.2.6, we can derive the following lemma.

Lemma 6.5.1. Under condition (Bla). (resp. (Bla)_), there exist exactly one
pair of purely imaginary roots, say £iw} (resp.~tiw® ), for characteristic equation
A(X) = 0. In particular, iw?} (resp. Fiw®) are the roots of AL (\) = 0 (resp.
A_(N\)=0).

Remark 6.5.1. (i) Note that Q,(0) = (1 —d)? and Q_(0) = (1 + d)?. Therefore
(1—d)? <L < (14d)?* (resp. (1+d)* < L° < (1 —d)? (6.16)

is a necessary condition for (Bla), (resp. (Bla)_) to hold. Moreover, d = cL # 0
is necessary, as seen from the inequality (6.16); in particular, ¢ = d/L > 0 (resp.
¢ =d/L < 0) is necessary for condition (Bla), (resp. (Bla)_). (ii) The following
weaker condition

L > (1 —d)? (resp. L° > (1 +d)?) (6.17)
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can also provide the existence of zero to Q4 (w) = 0 (resp. Q_(w) = 0), but the
uniqueness of positive zero can not be guaranteed. However, the situation of multiple
zeros can be ruled out with assistance of numerical computation. Basically, from
(6.17), it can be observed that larger L is advantageous to the occurrence of Hopf
bifurcation, hence oscillation.

To find the value of 7; such that +iw? (resp. +iw*) are the purely imaginary
roots of A (X)) =0 (resp. A_(A) =0), we divide the first equation of (6.13) by the

second one and obtain
tan(37;w) = Se(w)/Ce(w),
Si(w) = (w® — 3w) £ (w® — 1)dsin(rpw) & 2d cos(rrw)w,
Ci(w) == (1 = 3w?) F (1 — w?)d cos(rrw) F 2d sin(rpw)w.

Let us define nki, k € N, as follows:

3m/2 +2(k — 1), if CL(w}) =0, S4(wi) <0;

. 1 7r/2 + 2(k — 1)7r, if Ci(wft) =0, Si(wft) > 0;
Te =300 ) tan L (Sh(w))/CL(wh) )2k if C(w?) > 0;
tan_l(Si(wft)/C'i(ij)) + (2k — D)z, if Cy(w}) < 0.

(6.18)
Herein, n; (resp. n, )is positive-and-the critical value of bifurcation parameter with
respect to 77, at which ‘A(\) =-0-has exactly one pair of purely imaginary roots
+iw?y (resp. Fiw’ )onTo apply the Hopf bifurcation theory, it remains to verify the

transversality condition:

Condition (B2a)u: [Re(wi, no))? +Ie(wh, 7i)]? # 0, andA . (w?) # 0,

where
Ri(w,m7) = [-3 — 974 3dr cos(rrw) F drr cos(mpw)]w?
+(2 + 677 = 27mp)d sin(rrw)w +34 31 £.(—2 — 377 + 71)d cos(Trw)
Li(w,m7) = —37w*+ (77 —37)dsin(rrw)w?

+[6 + 977 £+ (=2 — 677 + 277)d cos(Trw)|w £ (2 + 317 — 7r)d sin(Trw)
Asr(w) = [9=37prdcos(rrw)|w® & (15 + 377)d sin(rrw)w?
+[9 + 6d* £ (—12 + 377)d cos(Trw)|w? + (3 + 377)d sin(mpw)w.

Proposition 6.5.2. Assume that conditions (Bla); and (B2a), (respectively,
(Bla)_ and (B2a)_) hold for some fixed k& € N. The Hopf bifurcation occurs at

1 = (vesp. n;, ), and a periodic orbit is bifurcated from the zero solution of (2.8).
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The proof of Proposition 6.5.2 is similar to the one of Theorem 5.2.8; hence

omitted.

Let us recall Theorems 6.1.2 and 6.1.3 in which (2.8) attains synchronization
under condition (Sla) or (S2a) or (S3a). As mentioned in Remark 6.5.1, (1—d)? < LS
and ¢ > 0 are necessary for condition (Bla),. It can be observed that (1 — d)? <
L% and ¢ > 0 is compatible only with condition (Sla), but not (S2a) and (S3a).
From this view point, positive coupling strength ¢ (with other conditions) leads to
synchronous oscillation. On the other hand, similarly, we observe that negative
coupling strength c leads to anti-phase oscillation. Motivated by these observations,

Theorems 6.1.2, 6.1.3, 6.2.1 and Proposition 6.5.2, we draw the following conclusion.

Theorem 6.5.3. Assume that conditions (Sla) (resp. (AP1)), (Bla),, and (B2a),
(resp. (Bla)_, and (B2a)_) hold for some fixed & € N. Then there exists a syn-
chronous (respectively, anti-phase) periodic solution bifurcated from the trivial equi-
librium, at internal delay 7; = 5,7 (fesp. 77 = my.) for the coupled K-loops (2.8)
(resp. (2.8)o).

6.6 Description of dynamical scenarios

As mentioned earlier, coupled network system can exhibit a variety of interesting
behaviors. We plan to depict the dynamical scenario for the coupled K-loops (2.8)
under the influence-of coupling strength, the gain of the activation function, the
internal delay, and the transmission delay. Let us first mention some properties of
the single K-loop (2:7). Notably, the dynamics of(2.7) without internal delay 7,
has been studied extensively in<[7]. By similar approach as Lemma 2 in [31] and
Lemma 4.1 in [72]), it can be shown that the trivial equilibrium of (2.7) is stable
for all 77 > 0 if L < 1. On the other hand, there exist periodic solutions bifurcated
from the zero solution, at suitable 7y for (2.7)if L > 1. Therefore, the dynamical
scenarios for cases L € (0,1) and L € (1,00) are rather different. Below we shall
discuss the two cases: L € (0,1) and L € (1,00), for the coupled loops separately.
Notice that the trivial equilibrium for the coupled loops (2.8) can become unstable
as there exist periodic solutions bifurcated from the equilibrium, cf. Theorem 6.5.3.
This already shows an effect from the coupling between these two loops.

Notably, what we have derived for global synchronization, global convergence

to the origin are theories with sufficient conditions. When we say that (2.8) does
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not admit certain dynamics (such as synchronization), we may need computer sim-
ulations to support the arguments. In addition, caution must be used if saying that
a system can not be synchronized merely through numerical simulation. It is not
assured how long a simulation should be run to exclude the possibility of synchro-
nization. On the other hand, anti-phase is an evidence of desynchrony that one can
assure from analysis or numerical simulation. Our approach can establish anti-phase
oscillations bifurcated from the zero solution at certain values of internal delay, and
can also be extended to analyze bifurcation with respect to transmission delay.
Effect of coupling strength. Let us first consider the case that L € (0,1),
¢ > 0. It can be seen from Theorem 6.3.2 that if ¢, the coupling strength between

two loops, is sufficiently small so that
c<1/L-1, (6.19)

then the coupled loops (2.8) attain global convergence to the trivial equilibrium
(hence global synchronization) in.spite of delay magnitude of 7; and 7. In addition,
if ¢ is larger so that (6.19) fails to-hold, the coupled loops (2.8) can attain global
synchronization if 77 is‘small enough. Such an observation follows from that for
arbitrarily large ¢ > 0y condition (Sta) for Theorem 6.1.2 holds'if 77 is small enough.
On the other hand, Theorem 6.5.3 concludes the birth of nontrivial synchronous
periodic solutions, under certain criteria. It-can be seen that the dominant condition
(Bla), can not hold if ¢ = 0'or is too small, ¢f. Remark 6.5.1. On the other hand, for
some suitable magnitude of ¢ (not toolarge) such that (Bla), hoelds, the nontrivial
synchronous periodie solutions of €oupled loops can be induced.by internal delays.
Now, it is natural to ask what will occur if magnitude of ¢ is quite large. Theorem
6.4.1 has shown that system (2.8) with sufficiently large ¢'achieves global convergence
to nontrivial synchronous equilibria (hence globallysynchronized) in spite of internal
lag (77) if transmission lag (77 ) is small enough. This result has justified the the
numerical finding in [7].

Accordingly, we summarize a dynamical scenario for (2.8) as ¢ increases from
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zero to oo:

global convergence to zero

— global synchronization (7 small)

— global synchronization with synchronous oscillation
(induced by internal delays) (7r small)

— global convergence to nontrivial synchronous stable equilibria (77 small).

Notice that the effect of positive coupling strength on synchronization and
negative coupling strength on anti-phase motion are counterparts to each other for
the coupled loops. Indeed, if L € (0, 1), as ¢ varies from 0 to —oo, (2.8)y goes through
global convergence to zero — birth of anti-phase oscillation (induced by internal

delays) — global convergence to nontrivial stable antisynchronous equilibria.

Roughly speaking, it is easier for the coupled loops (2.8) to attain global syn-
chronization for the case L € (0;1) than L€ (1, c0).

In the case that L €((1,00); the single loop (2.7) has at least three equilibria,
and thus the decoupled system (2.8) with: ¢ = 0-can not be'synchronized. In fact,
we can observe that wether if the coupled loops (2.8) can attain synchronization
strongly relies on the interaction-between two coupled loops: Observe condition
(Sla) in Theorem 6.1.2, it can be seen that coupling strength c is necessary (can
not be zero), and"# must be small enough. It has been illustrated in Example
6.7.2 that (2.8) fails to be synchronized. if coupling strength is.too small, and can
be synchronized if ‘coupling strength is suitably large. However, we found that
large magnitude of ¢ does not always favor condition (Sla); it also depends on
the nonlinearity of activation function g, and the magnitude of transmission delay.
Similar observation was reported in.[50] and [48}"In our numerical computation in
Example 6.7.2, for some situation as transmission delay is too large, large coupling
strength c still can not synchronize the oscillators.

Effect of delays. As previous arguments, in some parameter regions of L and
¢, it is necessary that transmission delay is small enough for (2.8) to be synchronized.
Example 6.7.2 has illustrated that the coupled loops (2.8) can be synchronized as
transmission lag 77 is small enough, and (2.8) can not be synchronized if 77 is too
large. Notice that from our numerical evidence, if (2.8) becomes asynchronous in-

duced by large transmission delay, stronger coupling strength ¢ does not promote
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the system to regain synchronization. In fact, the coupled loops can become asyn-
chronous in the form of anti-phase oscillation. This can be confirmed by performing
the bifurcation analysis as in Section 6.5, but with 71 as bifurcation parameter. Then
at a large coupling strength, there exists anti-phase periodic solution for certain 7.
Under our formulation, whether if the coupled loops (2.8) can be synchronized does
not depend on internal delays, cf. Theorems 6.1.2, 6.1.3. But transmission delay
plays a role in synchronization. It is then natural to ask how the internal delay
affect the dynamics in (2.8). Following our result in Theorem 6.5.3, it can be seen

that oscillation is generated by internal delay of certain magnitudes.

6.7 Numerical examples

We provide two numerical examples to illustrate the present theory.

Example 6.7.1. Consider the coupled 3-loops (2.8) with ¢(¢) = tanh(0.999¢),
71 = 11.2, 70 = 0.001, and ¢ = 400/999.-Then (2.8) satisfies condition (Sla). By
Theorem 6.1.2, (2.8) attains global synchronization. It-can be verified that condition
(Bla); and (B2a),, k =.1,2, holds by direct computation. By Theorem 6.5.3, there
exists a synchronous periodic solution bifurcated from the zero solution of (2.8).
Fig. 6.2 illustrates that the solution of (2.8).tends to a synchronous periodic orbit
as t — oo. Fig. 6.3 provides the the dynamics for each component of the solution in

Fig. 6.2; in the panels, six different colors represent the evolutionsof six components.

Example 6.7.2. Consider the coupled 3-loops (2.8) with L' = 1.02. As ¢ = 0.5
71 = 2 and 70 =¢0.01, it can be checked that (2.8) satisfies condition (Sla).
In such a situation, Fig. . 6.4 illustrates that the Solution of (2.8), evolved from
(1.6 +0.1sint, —1.6 +0.1¢,1.6 + 0.1sint - cost, —1.6 +0dsint, —1.6 + 0.1¢, —1.6 +
0.1sint - cost) is synchronized. If'we consider (2.8) with smaller ¢ = 0.001 instead,
which does not satisfy condition (S1a), Fig: 6.5 illustrates that the solution of (2.8)
converges to some asynchronous equilibrium point. If we consider (2.8) with the
same parameters but with larger 70 = 100 instead, which does not satisfy condition
(Sla), Fig. 6.6 illustrates that the solution of (2.8) appears to be anti-phase, hence
not synchronized. If we increase the coupling strength to ¢ = 20 and still hold

7r = 100, the system still exhibits anti-phase, hence not synchronized, as shown in
Fig. 6.7.
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Figure 6.2: An orbit of (2.8) with g(§) = tanh(0.999¢), 7, = 11.2, 7 = 0.001, and
¢ = 400/999, which is evolved from ¢(t) = (sint, cost,t, tsint, —t,sint-cost). There
exists a synchronous limit cycle.
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Figure 6.3: The dynamics for the corresponding component of solution in Fig. 6.2.
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