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Abstract

We use memory kernel to study: the spontaneous emission of an atom in
a photonic crystal with the isotropic band and anisotropic band. Our studies
show that the long-time memory of the spontaneous emission in the photonic
crystal induces a fractal phenomenon. Therefore, the fractional calculus is a
natural mathematics to describe the fractal phenomenon. When the atomic
transition frequency lies within the allowed band, using the fractional calculus
we show that there is no multiple-valued problem and no fractionalized
steady-state inversion encountered in the previous studies [J. Mod. Opt. 41,
353 (1994)]. On the other hand.

We also consider an atom with finite size effect leading to multipole
contributions and yield the memory kernel with the same form as a point-like
atom. However, the memory kernel including finite-size effect has different

coupling constant.
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Chapter 1  Introduction

1-1 Background

Spontaneous emission is a fundamental concept in atomic physics. A new
generation of experiments reveals that spontaneous radiation from excited atoms can be
greatly suppressed or enhanced by placing the atoms between mirrors or in cavities [1].
This modification of spontaneous emission arises from the fact that a dielectric cavity acts
as a local resonance mode for electromagnetic wave propagation. There is a long lifetime
for radiation injected into the cavity and a perfect isolation of electromagnetic modes is
possible if a localized state of light.can-be formed. The extent of isolation of modes
inside the resonator from modes=outside s measured by the quality factor of the cavity.
We will expect very different dynamical-features of' spontaneous emission decay of an

atom in photonic crystals from that.in a high-Q mircocavity [2].

Photonic crystals (PhC) constitute a new class of dielectric materials, in which the
basic electromagnetic interaction is controllably altered over certain frequency and length
scales. In photonic crystals, the synergetic interplay between the microcavity resonances
of individual dielectric particles and the Bragg scattering resonances of the dielectric array
leads to the formation of a photonic band gap (PBG), a range of frequencies for which
electromagnetic wave propagation is classically forbidden [3]. The presence of the
photonic band gap in the dispersion relation of the electromagnetic field gives rise to new
phenomena in quantum optics, including the inhibition of the spontaneous [4] and strong
localization of light [5] leading to important technological applications. Therefore, when

an atom with a resonant transition within the frequency gap is placed in the photonic



band-gap material, it has been predicted that the excited atom forms a photon-atom bound
states [6], the optical analog of an electron-impurity level bound state in the gap of a
semiconductor. The dispersion relation of photon is significantly modified near a
photonic band edge, so the reservoir density of states becomes singular [7] and the
atom-field interaction becomes strong when it becomes zero below the band-edge

frequency.

More fundamentally, the correlation time of the electromagnetic vacuum fluctuation
near a band edge is no longer negligibly small on the time scale of the evolution of an
atomic system coupled to the electromagnetic (EM) field. In fact, the reservoir exhibits
long-range temporal correlations, making the temporal distinction between atomic system
and EM reservoir unclear. This renders ‘the, usual Born-Markov approximation [8]
scheme invalid for the band gapssystems.In such am interaction, the future of the atomic
system is entirely determined by the présent and not by the past. However, in the
photonic crystal the Markov approximation that the spontaneous-emission atom loses all

memory of its past is invalid and the atom-reservoir interaction becomes non-Markovian.

The time evolution of the probability amplitude of excited level of an atom is related
to the delay Green function or memory kernel G(t-t”) [7], which is a measure of the
reservoir memory on the excited atom. The resultant Green function depends very
strongly on the photon density of states of the relevant photon reservoir. In the free space,
the density of field modes as a function of frequency is broad and slowly varying, resulting
in a Green function (memory kernel) that exhibits Markovian behavior, G(t-t") = (7 /2) §
(t-t"), where 7 is the usual decay rate for spontaneous emission [9]. Studies of single
atom spontaneous emission near a photonic band edge in the isotropic model [10,11] have

shown that this non-Markovian system reservoir interaction gives rise to the time evolution



of the excited-state population such as decay and oscillatory behavior due to photon

localization. The density of states in the isotropic model has the same square-root

singularity-like has the form of p(w)«(w-o, )‘1/2, o>, and anisotropic model has the

c

form of p(a))oC(a)—a)C)l/ ’ w>wm,. The memory kernel in the isotropic and anisotropic

-2

model have the forms G(w) o (:—1)", t>¢' and G(w)oc(t—1')", t>1', respectively.

Recently, the long-time memory phenomena have also attracted a great attention in
statistical physics. There is no time scale to separate the microscopic levels from the
macroscopic levels. Our studies show that the long-time memory of the spontaneous
emission in the photonic crystal induces a fractal phenomenon. The fractional calculus
provides a bridge between purely deterministie’ processes and purely stochastic ones. The
fact is of interest in its own right because-chaos and-order in Nature coexist. Therefore,

the fractional calculus is a natural mathematics to describe the fractal phenomenon.

1-2 Motivation

Of late, the long-time memory phenomena have also attracted a great attention in
statistical physics. Such a long-time memory is intrinsic to all time scales of the phase
space of a system, provided that the number of divisions generating a fractal set tends to
infinity. The research of spontaneous emission of an atom in photonic crystals has been
developed for a long time. However, using the Laplace transform method to solve the
time evolution integral equation of the excited probability amplitude researched by John et
al. [11], there is an unphysical state of fractionalized atomic population in the excited state

when the resonant atomic frequency lies outside the band gap. In the thesis, we applied

-3



the fractional calculus to study the dynamics of the spontaneous emission of an atom in
photonic bandgap using singular and smoothed [12] density of states. In previous
approach [11,12], the radiating atom is taken as a point-like electric dipole. Actually, a
finite-size or an artificial atom and reservoir have stronger coupling, hence the finite-size
effect and higher allowed multiple contributions can’t be neglected. We will also use the

density of states with finite-size effect [13] to calculate the memory kernel.

1-3 Organization of the thesis

In this thesis, we divided the text into four chapters. We have narrated a brief
statement of spontaneous emission,to the background and our research motivations in this
chapter. In Chapter 2, we apply the time-dependent-Schrodiger equation to describe the
spontaneous emission in vacuum filedfrom_a single atom and present the dynamics of
spontaneous emission in photonic crystal with-iSotropic and anisotropic model. We also
derive the population of spontaneous emission of an atom including finite-size effect.
After that, we show our numerical results and discuss qualitatively possible processes in
Chapter 3. In the end, the final conclusion and future works will be presented in Chapter

4.



Chapter 2  Theory and Calculation Method

2-1 The dynamics of the spontaneous emission

In this section, we treat the atom-field interaction fully quantum mechanically,
proving a basic understanding of spontaneous emission. It is well known that an atom in
an excited state is not in a stationary state —it will eventually decay to the ground state by
spontaneously emitting a photon. The nature of this evolution is due to the coupling of
the atom to the electromagnetic vacuum field. Victor Weisskopt presented a method for
analyzing this interesting problem in his thesis work, together with his advisor Eugene

Wigner that is called Weisskopf-Wigner theory, [14].

We begin by investigation a system involving the interaction of one two-level atom

with all multi-modes filed. Initially thesatomris prepared in its excited state |2> and the

field is in vacuum state| {O}> . Weuse

w(0))=

2,{0}) 2.1)

to denote this initial state. Since this is not a stable state, the atom will decay to the

ground |1> state and give off a photon to one of the field modes (K,s). These state

vectors form a complete set for expanding the time-dependent state of the system:

y(©) = A [2,{0})+ £ B, (e ™

L{L3), (2.2)

where @2 is the atomic transition frequency and the initial condition is A(0)=1, By(0)=0.

The state vector

2, {0}> describes the atom in its excited state |2> with no photons in



all reservoir modes, and the state vector

1 {l,ﬁl}> represents the atom in its ground state

[1) and a single photon in the mode with frequency @i with wavevector k and

polarization S.

The total Hamiltonian for the coupled atom-reservoir system is Hior = Ha+ Hp+ Hiy

(see appendix A). Ha represents the Hamiltonian of the free atom can be written as

H, =hw, 0. (2.3)
Here o, = |z> < J | (i, j =1,2) are the atomic operators acting on level | _]> transforming it
to level |1> and o, = |l> <1| gives the population of level |z> , that is, the probability to

fine the atom in level |1> Hr stands for the energy of the quantized radiation field in

the absence of the atom (neglecting the zero-point energy). It is given by

. it
Hj = ;ha)ksaksaks : (2.4)
5

where a,, and a/ are the radiation field annihilation and creation operators with k and

s (=1,2) representing, respectively. Let us now concentrate on the interaction

Hamiltonian
H_ =-d-E. (2.5)

The dipole operator d = eF can be expressed as

d=d,6,+d, 6, (2.6)

where we have used the property that states |1> and |2> have opposite parity such that
<1|17|1> = <2|77|2> =0. And the quantized electric field is [15]

-6 -



12
n . ha) ik-r —ik-r
E:z%lizgok;:l e (a e —ale™"). (2.7)

Here e, is the unit vector of polarization for the reservoir mode (K,S), and &, is the

permittivity of free space. In the optical regime of the spectrum where photon
wavelengths are long compared to atomic dimensions ( A photon ~ 10°A and X giom ~ 1A4), it
is useful to make the electric dipole approximation (K «r ~ 0) in Eq. (2.7). Thus the

interaction Hamiltonian can be written as
_ o
H = lhzgks(% + 0, (a4, —a), (2.8)
k,s

where g, is the atom-field coupling constant

112
_ @y h e . 29
8 =3, {250%1/} o ta 29

Here d,, and u, are the absolute value and the unit vector of the atomic dipole moment,

V'is the sample volume. The interaction energy in Eq. (2.8) consists of four terms. The

terms a;.0,, describes the process in which the atom is taken from the upper state into

the lower state and a photon of mode (k,S) is created; the term a, 0, describes the

opposite process. The energy is conserved in both of the processes. The other two

terms violate energy conservation, therefore we invoke the rotation wave approximation

(RWA) to neglect the terms o,,a,, and o,a,,. The resulting simplified Hamiltonian is

H,, = ih;gks(azsalz —0,,4,) - (2.10)
)

We want to determine the state of the atom and the state of the radiation field at

some later time when the atom begins to emit photons and we do so in the



Weisskopf-Wigner approximation. From the Schrodinger equation

H|y(1))= ih%\y/(t)}, (2.11)

we get the equations of motion for the probability amplitudes A(t) and By(t) :

d —i
A =3, B (t)e Pl (2.12)
k,s
L (1) = g A1) 2.13
7 B = g Ae. (2.13)

where Qi = @ks-@2; 1S the detuning frequency of the radiation frequency wysto the
atomic transition frequency @»;. In order to get an equation that involves A(t) only, we

first integrate Eq. (2.13).
By (1) =&, [ AG)e ' (2.14)
0

On substituting this expression of By(t) into Eq. (2.12); we obtain

t
%A(z) = =S er A e ar 2.15)
k,s 0

Thus,
44ty = —j G(t—1)A(t") dt (2.16)
dt 5 ’

where G(#-t’) is the memory kernel (Green function), and is given by

2 _‘ _'
e S (1) 2.17)

G(t=1) =%z,

G(t-t’) is a measure of the reservoir’s memory of its previous state on the time scale for the

evolution of the probability amplitude of the system.



In free space, the density of the field modes is broad and slowly varying, resulting in a
memory kernel that exhibits Markovian behavior, G(#-¢’) = (7 /2) 0 (t-t’), where 7 is the
usual decay rate for spontaneous emission [16]. In next section, we turn our attention to
the case when the two-level atom is located within a photonic band structure, and assume
photonic crystals are absorptionless. Using an effective-mass approximation to the full
dispersion relation for a photonic crystal, we consider two models for the near-band-edge

dispersion, isotropic and anisotropic model.

2-2 Fractional solution in isotropic model

In the isotropic model of a phetonic crystal,-we assume that the Bragg condition is
satisfied for the same wave vector magnitude for all directions in k space. Using an

effective-mass approximation to-the ifull_dispersion -relation for a photonic crystal, this
gives a dispersion relation of the fotm-@ =@ * A(k|-|k,))>. The positive (negative)

sign indicates that @ is expanded about the upper (lower) edge of the photonic band gap,
and @k 1s the frequency of the corresponding band edge. The bands above and below
the gap can be distinguished by where the power of their modes lies — in the high- ¢
regions, or in the low- & regions. Often the low- ¢ regions are air regions. For this
reason, it is convenient to refer to the band above a photonic band gap as the “air band,”
and the band below a gap as the “dielectric band.” It is a good approximation to
completely neglect the effects of the lower photon bands by assuming the atom is located
in the air regions [7]. Under these assumptions, the dispersion relation about the upper

band (air band) edge is

— — 2
a)k:a)C+A(|k|—|k0 |) : (2.18)

-9.



where @. is the bandedge frequency, Ko is a point of the Brillouin zone boundary in the k
space instead of all direction, and A4 is a constant. The band-edge density of states

generated by this dispersion relationship in the isotropic model has a singular form as

p(@) =) 5o (k) - o) M(o-w)"".

It is a fractal phenomenon that induces the long-time memory of the spontaneous
emission in the photonic crystal. The natural mathematics of describing the fractal
phenomenon is the fractional calculus. Using the fractional calculus we can evaluate
derivatives and integrals with noninteger orders. Therefore, in next section we will treat
the density of states in isotropic model as singularity and smoothing in isotropic model by
applying fractional calculus to solve the time evolution integral equation of the excited

probability amplitude.

2-2.1 Singular density of states

The band-edge density of states in the isotropic model has the singular form

do—-w,)
m(o—w,)"?

pl@)=3 (o k) -0)= (2.19)

where 6 is the step function. We change the K summation to an integration by
introducing a continuum density of states 0 (@) such that o (@)dw@ gives the number
of oscillators in the frequency interval @ to w+dw [17]. Hence we can obtain the

memory kernel from Eq. (2.17) as

-10 -



2 i) (=) 1 1o

G-1)=X [ s,
)

:ﬂl3/2\/;.[p(a)) e_i(w_wzl)(t_f)da). (220)
0

The memory kernel is obtained on substituting Eq. (2.19) into Eq. (2.20) and integrating

over @, and the integral reduces to a complex Fresnel integral given by [18]
wa”"e_“xdx = LF(p) , (2.21)
0 y75

where I" is Gamma function and yields
—i[ /A=A (1—1")]
G(t—t")= 3" QT (2.22)

Here, /\¢ = w2i-w. is the detuning of the atomic-resonant frequency from the band

edge shown as in Fig. 2.1 and S = (@yds ks )/(127% he,,4") is coupling constant.

12> @ | \air band

&)21 &)C

——— | ] > k

atom photonic crystal
(@) (b)

Fig. 2-1. (a) Schematic representation of a two-level atom with atomic transition
frequency @2 and (b) the band structure of photonic crystals with band-edge frequency.

-11 -



On the other hand, we can also replace the summation over K by an integral:

o]

3 37, _ 4 2
;»;jd k—2(2ﬂ)3 ik dk[dQ, (2.23)

where k=K dkd (2, dQ being the solid angle element. Because the isotropic model
associates the band edge with a sphere in k space, there is no angular dependence in the
expansion of @i« about the band edge. We may thus separate out the angular integration

over solid angle ) in Eq. (2.17). Thus, G(t-t’) can be expressed as

G(t—1")

dk . (2.24)

W@ d? 1 8r ookze—i(wk—wzl)(f—f')

— 1% N
2heg, (272')3 3 Io @,

Using isotropic dispersion relation near the upper band edge, wi=w.+ A(K|-|ko|)’, Eq.

(2.24) can be expressed as

0)2 dz - L kze—iA(\k\-\ko\)z(t—t')
Gl(t_t') — s of elAc(l t)

Ongyr k@ (K-, )

(2.25)

Here, /\¢ = ®21-®@. is the detuning of the atomic resonant frequency from the band edge.
For sufficiently large time, the integrand is a rapidly oscillating function of £. Thus the
main contribution to the integral comes from the stationary point, that is, kK = k. We can

take K%/ @ in the integrand as ko*/ @ , hence the resulting integral is

2d? e K2 —iA(KHK)2 (!
G (1-1) = L g Ko [ g AU gy (2.26)
6he, @, Jx,
We apply a complex Fresnel integral [18]
J ey =37 2.27)
0 2u

in Eq. (2.26) to obtain the memory kernel

-12 -



i[7/A—Ae (1—1")]

G(t—t' 32 € ,
O e

(2.28)

which is identical to Eq. (2.22).

Using the fractional calculus and making a transformation, A(¢) = eiACtC(t) , Eq.

(2.16) with memory kernel of Eq. (2.28) becomes

—C(t)+zA C(t)=— 27/ j Iz C(TT)ZQ dr (2.29)

From the Riemann-Liouville fractional differentiation operator [19] defined by the formula

dta ()_F( I(t $) " lu(s)ds, (2.30)

where I'(x) is a gamma function. s Usingra fractional differentiation equation [20] Eq.

(2.29) can be expressed as:

1/2
—C(t)+zA = e AT (112) S d (). 231)

We can apply the integral operator d -1 / dt™' first with C(0)=1, and then the fractional

differentiation operator d 32 / dr’’? to Eq. (2.31) to obtain a fractional Langevin equation

of the spontaneous emission of an atom in a photonic band gap,

d3/2 = __C A d1/2 L _C \/_ 3/2 —ir/4 C _ 1 -3/2
Sr CO+iA g CO VT (t)__ﬁt : (2.32)
We can solve Eq. (2.32) using the Laplace transform of C (t),
C(s)=Li{C@)} = "e™C(t) dt, (2.33)

then the inverse Laplace transform of C’(s),

-13 -



Cty=r" {C(s)} S o1 Gi(s) ds. (234)

7[1 £—100

where the real number ¢ is chosen so that s = ¢ lies on the right of all singularities (poles
and branch points) of function é(s) . Using the formulas of the fractional Laplace

transform [19]

ﬁ(t”)=—r(ﬂtl), (2.35)
sH
d* a
{d = C(t)}—s C(s), (2.36)

the Laplace transform C(s) can be found from Eq. (2.32) as

~ \s.
C(s)= , 2.37
( ) S3/2 +iAcS1/2 _(l-ﬂ)S/Z ( )
where S°'2 = 87> Jx. Converting the variable as s> = X, we can then rewrite Eq.
(2.37) as a sum of partial fractions
a a
C(X)= 2 3 (2.38)

(X X) (X X) (X - X)
Note that the parameters X, (n=1,2,3) of Eq. (2.38) are the roots of

X’ +iA, X —(if)"? =0, which are also expressed in [11] as

:ﬂl/Z(n++n_ )elﬂ'/4’ (239)
X3 :ﬂ1/2(77+eiiz/6_77_e—i7r/6 )ei37r/4’ (2.41)
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From the formula of the inverse fractional Laplace transform [19]
_ 1 1, 2t
e \=FE(—=,a*)+a ",
{Sl/z —a } l( 2 )

we can yield the inverse Laplace transform of Eq. (2.38)

3
€= Yo, BN X,
n=1

or

. 3
A0 = Y a, TR X, |
n=1

where E (a,a) is the fractional exponential function of order « and is defined as

e (at)
E(a,a)=t ZHa+—1fHD

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

The time evolution of the probability amplitude A(¢) of an excited atom can be written in

terms of the error function
_2 2
Erf(z)—ﬁjo eV dy,

which is related to the fractional exponential function
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E,(%, a)=a "2 Erf(\ai ) (2.49)

and
12
N

From Egs. (2.49) and (2.50), Eq. (2.46) can be written as

E(-3, a)=aE (3, a)+ (2.50)

A= Sa, [Xn 1Y, [Erf(«/X,ft)DeX’%t , (2.51)
n=l1

where Y, =X (n=1223).

2-2.2 Smoothed density ofstates

The density of states in the isotropic: modelwith-a weak singularity (- w.)"* for
®> @ had been smoothed out [12] by introducing a “cut-off smoothing” parameter ¢ .

The smoothed density of states can be written as

)1/2

p° (@) oclim (@-o,

M o=, +e) Olo-—w,). (2.52)

Appling the same steps use fractional calculus as Eq. (2.31) to Eq. (2.37) to obtain the

Laplace transform of the excited-state amplitude as in Eq. (46) of Ref. [12]

Js ++ie
T e 1t b T

C3(s)= (2.53)

Instead of using complicated integration in Ref. [11], we use the formula in Eq. (2.44) to

take the inverse fractional Laplace transform of Eq. (2.53)
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3
Co0=Yaf| B3, 1P+ X5 @34
n=1
or
. 3
A= Y al {E,(—%, (X5Y) + XS ﬂ . (2.55)
n=1

The parameters X° of Eq. (35) are the roots of s*+igs+iA_s"2+(infieA, - f74**) =0

as
X5 =B+ )e"’”“—@, (2.56)
Xzs _ ﬂl/z(ﬂie_mm e Ve il _%’ (2.57)
Xf _ '31/2(77$+em/6 _ns_’e—m/é )ei37z/4 _@’ (2.58)
(l_gAcx/;_igm \/{1_2%_2(,;2//22J2+4(WJ3-1/3
P /f”z 277 U357 2T ﬂ2 A e

The coefficients @’ of Eq. (35) is given by

s
as = (X,f_X;)((nX]f_Xj) (n;tj;tm; n,j,m:1,2,3). (2.60)
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2-3 Fractional solution in anisotropic model

We consider now a more realistic model, in which the dispersion relation is
anisotropic. In anisotropic dispersion models, we account for the fact that, as kK moves
away from Ko, both the direction and magnitude of the band-edge wave vector are modified,
and use an effective-mass approximation to the full dispersion relation for a photonic

crystal. This gives a dispersion relation about the upper band (air band) edge is
w, = o+ Atk —k,)*. (2.61)

The anisotropic effective mass dispersion relation leads to a photonic density of states at a

12

band edge . which behaves as p(w)=(w—-®,)”, ®> w,. For our purposes, we shall

therefore assume that 4 is a scalariconstantya.condition that is satisfied exactly for crystal
geometries in which the band-edge wave vector possesses cubic symmetry within the
Brillouin zone [6], and is otherwise a reasonable approximation for the dispersion near a

band edge after averaging over all directions.

Using the anisotropic effective mass dispersion relation Eq. (2.61) in Eq. (2.24) and
making the substitution q = k — ko (so that d’q = ¢’dg d(2) we can evaluate the

corresponding memory kernel G4(f —¢’) is expressed as

@’ d> . 0 qze—iqu(t—t')
G (t—t")=—2%n A=) 4° g, 2.62
W(t=1) 6he, 0 @, +Aq’ 1 (2:62)

For large ¢ —¢’, the integral in Eq. (2.62) is dominates by the stationary phase point ¢ =
0. Thus, the integral can be approximated by putting ¢ = 0 in the denominator, and using

the integral [18]
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o0

2

IO x2e P dx 24—@ (2.63)
p

to obtain

i3 7/4-Ag (1—1')]

(t _ t')3/2

G, (1)=& : (2.64)

where B = (&d2) /(247" £ he,m,). Making a transformation A(r) = e C(¢) and
using the fractional calculus Eq. (2.64) becomes

d : __pl2 _3zaf_ C(1)
T C(O+iDC(1)==p;" i o dr. (2.65)

From Eq. (2.30), we can express Eq. (2.65) as,a fractional differentiation equation

dl/2

d . —I37
—CO+iA Ct)y= —pyrerd™ NCU2)

C(1). (2.66)

We can apply Eq. (2.36) to obtain'the Laplace transform C’(s) from Eq. (2.66) as

1

C(s)= P +2,B”2€i”/4sl/2 1A, )

(2.67)

where B2 = B Jz and e™'* =—¢™'*.  Applying the partial fractions as Eq. (2.38),

we can then rewrite Eq. (2.67) under X, # X, as a sum of partial fractions

2o 11
C(X)_(XI_XZ)(X_X1 X_Xz} (2.68)

The parameters X, are the roots of X +2/4, e¢™*X +iA_X =0 which are expressed as

X, =™ =B +B. -A), (2.69)
X, =4 =B =B -A,). (2.70)
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Using the formula in Eq. (2.44) we can obtain the inverse Laplace transform of Eq. (2.67)
1 Xt 1 X2t
G =E (=5, XD+ X e —E(=7, X;)-Xe™'. (2.71)

For degenerate root X; = X> (i.e., A=A ), Eq. (2.67) can be written as

C(s) = (2.72)

1
(S1/2+M)2

and from the formula [19]

) 1 1 1
Ll {m} =2atE, (—5, a*)+(1+2a*t)E,(0,a*)+aE, (5, a*). (2.73)

The inverse Laplace transform of Eq. (2.72) is given by

Co(0) = 2B E (5B )0+ 280015~ IBLE(3iB) . 274

2-4 Spontaneous emission of a finite-size atom

In our previous studies, the radiation atom is taken as a point-like electric dipole,
neglecting its finite dimension as compared with the wavelength of the emitted light.
However, for stronger coupling, as in the case of an atom with finite size may depend on
the history of the spontaneous emission. Therefore, neglecting the finite atom-size effect
and restriction to electric dipole transitions may become improper. In this section, we

will carry out higher allowed multipole contributions.

In dipole approximation, the atom with an allowed transition is taken as a point-like
electric dipole in the calculation of the correlation spectra, so that the factor e* * is omitted.

For such a point-like atom, the spectrum Rp(w) is
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w
Ry(w)= —27 7‘;60 , (2.75)
0

in which 7 4 is the decay rate and @y is the atomic transition frequency. On the other
hand, the non-Markovian correlation spectra of spontaneous emission of an excited
two-level atom are derived including the effect of finite size of the atom and all the

possible contribution of allowed multipole radiations with the result [13]

R(e) = 242 1

2.76
2w, 1+ w?a® I c*)*’ (2.70)

where the parameter a is particle size and c is light speed. Comparing Eq. (2.75) and Eq.
(2.76), we can obtain the factor due to the finite size of the atom, which is 1/(1+*a%/c?)*.
Therefore, the memory kernel in Eq. (2.62) can be rewritten including the factor of

finite-size effect as

W’ d> o0 q2e—i(wk'wa)(t_f') 1
G.(t—t") =24 d 2.77
(=1 6hey .[0 @, (+aa® /)y &7

where @ =@, +Aq’. In photonic crystal, ‘the radiation wavelength is larger than particle

sizeas wal/c<<l (ie., (1+ a)]fa2 /) =1+ 4a)lfa2 / ¢*), thus Eq. (2.77) will reduce to

2 J2 ) N O o2 piAq (1Y)
G(1—1') = 2a_gincn ("4 1 dg. (2.78)
bne,r 0 o, +Agq 4q°® ~)
I+ — (. + Aq")
c

For simplicity, we consider the spontaneous emission near photonic band edge, hence we

have @, >> Aq®, and Eq. (2.78) can be given by

@:d> a7 q2e—iAq2(f—f')
G (t—t"= 2% ol (1 f)j d s 2.79
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where p=2a/c. Applying Eq. (2.63) we can yield the same form as Eq. (2.64) with

different coupling constant /3 as

|y @ IBAA=A(=1)]

G(t=1) = B = (2.80)
Comparing the coupling constant S and 53 as
F 3 (1+12a%w? /)P (1 +4a*w? | ¢?)

Appling the same step from Eq. (2.65) to Eq. (2.74) we can obtain the amplitude of excited
state of spontaneous emission due to a finite size atom. In photonic crystal, the

band-edge frequency can be approximated as @, ~2c/d [21], here c is speed of light and

d is the lattice constant for photonic crystals. Eq. (2.81) can be rewritten as

1
B2 = g2
F

2.82
3 (148022 P(1+164% 1 d7) (252)

From Eq. (2.82), we can observe:the coupling constant /3¢ is related to d (lattice constant)

and a (particle size).
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Chapter 3  Numerical results and Discussion

3-1 Spontaneous emission of a point-like atom

3-1.1 Isotropic model

As can be seen from Eq. (2.46), the dynamics of the spontaneous emission strongly
depends on the detuning A.= w2-@w. Using the explicit form for A(?) in Eq. (2.46),
we can calculate the probability P(t) = |4(2)|* of the atom on the excited state in isotropic

model and plot it on a time scale of the order of /5.

Figure 3-1 shows the atomic population on the.excited state as a function of the scaled
time for various values of the atomic detuning outside the photonic band gap (A.>0).
Outside the photonic band gap which. means.-in the allowed band, the atomic population
vanishes in the long-time limit, regardless how close the atomic frequency is to the
band-edge frequency. In other words, the excited-state population eventually decays to
zero (there is no population trapped on the upper level) due to the propagating state in the
allowed band. The population decay becomes exponential for sufficiently large detuning
into the allowed band, where the atom emits to the continuum modes with a decay rate
proportional to the density of states. The closer photonic band edge, the density of states
is bigger. Therefore, we can see that as increasing A (the atomic level is resonant father

away from the band edge), the atom would decay very rapidly.

Figure 3-2 depicts the variation of A, with respect to the excited-state population
inside the band gap (A.<0) and at the band edge( A.= 0). We observe the excited-state

population exhibits decay and oscillation behavior before reaching a nonzero steady-state
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value due to photon localization. In other words, the spontaneously emitted photon will
tunnel through the photonic crystal for a short length before being Bragg reflected back to
the emitting atom to re-excite it. The result is a strongly coupled eigenstates of the
electronic degrees of freedom of the atom and the electromagnetic modes of the dielectric.
This is the photon-atom bound state and is the optical analogue of an electronic impurity
level bound state in the gap of a semiconductor [22]. We note that the degree of
localization of the upper state population for @j; within the gap is influenced by the
density of states in the continuum of modes. This accounts for the absence of a

completely localized state for @, deep in the gap within our model.

Moreover, spontaneous emission in free space produces monotonic and irreversible

decay of upper-level amplitude, whereas here' we.find the so-called Rabi oscillation and the

generalized Rabi frequency is defined as €. -=4/A* +4ng’ , where A is atomic detuning,

n is the number of photons and g is coeupling strength- which is proportional to the overlap
integral of the atom and the confined photonfield. Hence, as |A(| is increased, the
population oscillates faster due to the photon field being more confined, and reaches its
steady-state value more quickly. We also find that there is no unphysical photon-atom

bound state, as described in Refs. [11], in the allowed band.

For comparison, the probability P°(t)=[4%(t)]* derived from the “cut-off smoothing”
density of states in Eq. (2.55) for A/ = 0.3 (near-band edge condition) were plotted in Fig.
3-3 with &€ = 0 (i.e., the case of singular density of states as the solid curve), 10~ (dash
curve), and 107 (dot-dash curve), respectively. It also shows no unphysical photon-atom
bound state with small oscillatory behavior in the short time regime and approaches zero in
the long time limit. The probability P*(t) of & =0 is basically identical with that of ¢

=107 and slightly differs for ¢ =10~. Note that Fig. 3 of Ref. [12] was plotted for A, =
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0.3y, = 0.3Ce™""* = 104>?, which may be still far from the band edge in the allowed band,
therefore, exhibits much faster decay. It is hard to tell whether the excited-state
probability derived in [12] for the near bandedge (0 < A. < B) would decay to zero in the

long time limit or not.

By calculating the probabilities contributed from three X,’s from Eq. (2.39) to Eq.
(2.41) separately for A/B =0.01, we found these probabilities show decaying
characteristics and only small oscillation in the short time regime even closer to the band
edge. Indeed, it can be analytically shown that A(?) of Eq. (2.46) will always approach
zero as t approaches infinity for positive detuning (A, > 0) due to the first term,
X2t

E

t

(—%, X?), and the second term, X,e" "', in the square bracket of Eq. (2.45) will

asymptotically cancel out each otheras ¢ — oo." Thus, there is neither interference effect
being involved in the decaying-probability of the excited state nor photon-atom bound
states existing near the allowed band.” It _might be that the photon will not strongly
interact with atom in the allowed band. Therefore, in the allowed band, the atomic

frequency shift may not provide enough strength to form the photon-atom bound state.
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Fig. 3-1. Atomic population on the-excited.atomic state, P(t) = |A(t)]%, as a function of
Bit, for various values of the atomig detuning inside-the band gap (A /B; > 0).
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Population
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Bt

Fig. 3-2. Atomic population on the excited atomic state, P(t) = |A(t)]%, as a function of

Bit, for various values of the atomic detuning inside the band gap (A /Pr<0) and at the
band edge (A /pr=0).
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Population

Fig. 3-3. Atomic population on thesexeited atomic state, P5(t) = [AS(t)]* for A /P =
0.3 with three values of € = 0 (solid line), & = 10°+(dashed line) and € = 10~ (dot dashed
line). The difference of & = 0, ¢ =107 and € = 10> marked by circle is enlarged and shown

in the inset.

3-1.2 Anisotropic model

In anisotropic density of states, no singularity occurring like the isotropic density of
states, the photon-atom bound states might also exist near the allowed band due to the
shifted atomic frequency excitations. The temporal evolution of the excited atomic

population for anisotropic model is given in Egs. (2.71) and Eq. (2.74).

As shown in Fig. 3-4, when the atomic level is within the allowed band (A . >0), the

propagating electromagnetic modes are present here. Hence, the atomic population
vanishes in the long-time limit like in isotropic model. However, the population for A,

= 0.01 (blue line) and A, = 0.1 (green line) decay faster in anisotropic model than in
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isotropic model. This is because that the anisotropic model is more realistic causing

imperfect localization.

Clearly, if the atomic level is inside the photonic band gap (A< 0) which is plotted
in Fig. 3-5, the population also exhibits decay and oscillation behavior before reaching a
nonzero steady-state value for A/Pa =—1 and A /Pa = —5 due to the number of stable
localized states which is intimately connected to the behavior of the system in the
long-time limit. One such state gives rise to a steady-state population in the excited level.
These phenomena are the same as in the isotropic model except that the atomic population
decay to zero for A /Pa = —0.1 and at band edge (A/Pa = 0). It is possible to
realistically investigate the immediate neighborhood of the band-edge frequency in
anisotropic model. = When the atomic: frequency is detuned into the band gap, a
superposition of the continuum states and a bound state leads the emitted photon to the
atom. Therefore, the atomic=population again displays fractionalized inversion for
relatively small values of the atomic detuning. However, this phenomenon should not be
due to Lamb shift, which is only in order of 107 [23], the Lamb shift may not provide
enough strength to push the atomic frequency to the gap to form the photon-atom bound

state.
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Fig. 3-4. Atomic population on the excited atomic state in allowed band, P(t) = |A(t)]%,
as a function of Pat, for various yalues of the atomic detuning from A /Pa= 0.01 (blue

line) to A/PBa=S5 (red line).
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Fig. 3-5. Atomic population on the excited atomic state in the photonic band gap, P(t)
= |A(t)]%, as a function of Pat, for various values of the atomic detuning from A /Ba= —5

-29.



(black line) to A ¢/Pa=—0.01 (blue line).

3-1.3 Summary

In this section, we have reported the properties of spontaneous emission of an atom
under dipole approximation in an isotropic and anisotropic model. We find a propagating
state corresponding to transition frequency outside the photonic gap, therefore the
population vanishes in the long-time limit in the isotropic and anisotropic model. On the
other hand, the dressed state corresponding to transition frequency in side the gap is a no
decaying photon-atom bound state except that the atomic population decays to zero when

the detuning frequency is close to photonic band-edge.

3-2 Spontaneous emission'ofa finite-size atom

From Eq. (2.82), we can obtain’ the relationship between the coupling constant /S
and the ratio of particle size to lattice constant (a/d). In this section, we use various

values of a/d to calculate the probability of the atom with finite-size effect.

In Fig. 3-6 and Fig. 3-7, we plot the population on the excited state with various
values of ratio from a/d = 1/2 to a/d = 1/50 and without the finite-size effect (a = 0) for A
J/Pr < O (in the band gap). We find that the excited-state population with finite-size
effect exhibits decay and oscillatory behavior before reaching a nonzero steady-state which
is bigger as the atom size increasing. These effects are due to the strong coupling
between atom and field resulting in confinement which localizes photon like defect modes
where the atom is present. As we known, the defect mode enhances electric field than the
rest [24] shown in Fig. 3.8. This implies that by increasing the atom size, the
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confinement becomes stronger. Accordingly, the generalized Rabi frequency mentioned
above leads to the higher oscillatory frequency as increasing atom size due to the stronger
coupling with the confined field or the larger g. The atomic population for A /Pr = —1
with a/d = 1/10 is close to the population for A ./pBr = —5 without the size effect, but their
oscillatory frequencies are different. This is because the Rabi frequency is decided by

both the detuning frequency and the coupling strength.

We plot the population within the allowed band and use various values of a/d for A
J/Br=1and A Pr=15 in Figs. 3-9 and Fig. 3-10, respectively. The decay rate decreases
as the size increasing is also due to the enhanced atom-filed coupling that induces the
deeper defect potential or the larger defect dielectric constant. By comparison with Fig.
3-11 and Fig. 3.12, we can observe that the population is close with various values of ratio
from a/d = 1/2 to a/d = 1/10. =The reason for. this similarity is that when the atomic
frequency is detuned near the band gap,-a superposition of the continuum states and a

bound state leads the emitted photon to the atom.
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Fig. 3-6. Atomic population on the excited atomic state, as a function of Brt, for A

o/Br= —1 with various values of ratio from a/d = 1/2.(red line) to a/d = 1/10 (magenta line)
and without the finite-size effect (black line).
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Fig. 3-7. Atomic population on the excited atomic state, as a function of Prt, for A

o/Br= —5 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line)
and without the finite-size effect (black line).
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Fig. 3-8. Schematic illustration of the enlarging electric field distribution associated
with an atom in photonic crystal.
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Fig. 3-9. Atomic population on the excited atomic state, as a function of Bgt, for A
JPr= 1 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line)

and without the finite-size effect (black line).
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Fig. 3-10. Atomic population on the excited atomic state, as a function of Brt, for A
¢/Br= 5 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line)
and without the finite-size effect (black llne)ﬁj b
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Fig. 3-11. Atomic population on the excited atomic state, as a function of Bgt, for A
o/Pr= —0.01 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/50 (cyan line)
and without the finite-size effect (black line).
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Fig. 3-12. Atomic population on the execited atomic state, as a function of Brt, for A

o/Pr=0.01 with various values of ratio from a/d < 1/2 (red line) to a/d = 1/50 (cyan line)
and without the finite-size effect {black fine)..| 4 =
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Chapter 4 Conclusion and Future works

4-1 Conclusion

The dynamics of the spontaneous emission of an atom in a photonic crystal can be
treated by the fractional calculus. For the first time to our knowledge we show that it is a
fractal phenomenon that induces the long-time memory of the spontaneous emission in the
photonic crystal. Fractional memory kernel was derived in the long time limit as a result
of rapidly varying in frequency near a photonic band edge where the density of
electromagnetic modes possesses singularity. ~ We also show that there is no
multiple-valued problem encountered.in-our'derivation. Contrary to the previous study,
there is no unphysical state of fractionalized, atomic-population in the excited state when
the resonant atomic frequency ltes in the allowed band even extremely close to the band

edge.

The atomic population on excited state as a function of the scale time for various
values of the atomic detuning outside the photonic band gap vanishes in the long-time limit
for isotropic and anisotropic model. We can see that as A increases, the decay rate very
rapidly. When the population inside or at the band gap, we found the excited-state
population exhibits decay and oscillation behavior before reaching a nonzero steady-state
value due to photon localization. Besides to near band edge, a superposition of the
continuum states and a bound state leads the emitted photon to the atom in anisotropic

model.

Finally, we use various values of a/d to calculate the probability of the atom with
finite-size effect. We find that the excited-state population within the band gap exhibits
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decay and oscillatory behavior before reaching a nonzero steady-state which is bigger as
the atom size increasing. On the other hand, when the atomic detuning in the allowed
band, the decay rate decreases as the size increasing. These effects are due to the

atom-field coupling that causes field confinement.

4-2 Future works

The band structure of photonic crystals is an important factor for spontaneous
emission of an atom under atom-field interaction. In ours previous studies, the dispersion
relation of photonic crystal about the upper band edge (the air band) and only one band
were considered. Therefore, we will also consider the lower band (the dielectric band)
and multiple bands in the future~ The existence of multiple bands in the density of states

will allow for a more realistic description-of the dynamics.

On the other hand, driving a multi-level atom with a sufficiently strong resonant field
alters the radiative dynamics in a fundamental way. It leads to such interesting effects as
the enhancement of the index of refraction with greatly reduced absorption,
electromagnetically and optical amplification without population inversion. In a
three-level atoms are of particular interest in quantum optics and predictably their behavior
in the context of structured reservoirs has been addressed. This is includes ladder, A and
V type arrangements. In view of these results, it would be interesting to investigate the
combines effects of coherent control by an external driving field and photon localization
facilitated by embedded in a photonic band gap material. Hence, our future work is to
investigate the coherent control of spontaneous emission for a three-level atom located

within in a perfect photonic band gap structure.
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Due to the technical difficulties in producing the three-dimension (3D) photonic
crystal band-gap materials with a sufficiently large and complete band gap, an
unambiguous experimental proof of this effect has, however, not been achieved until now.
On the other hand, it is well known that the radiative decay of an atom can be substantially
altered by frequently repeated measurements. This result of the interplay between
quantum dynamics and measurement, which is absent in classical measurements, is known
as the quantum Zeno, (decay suppression) or quantum-anti-Zeno (decay acceleration)
effects. Therefore, in the future, we hope to study deeper research for example with
quantum measurement and the behavior of an atom in photonic crystal by using Quantum

Optics.
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Appendix A. Hamiltonian of a two-level atom interaction

with a field [16]

In this appendix we drive the total Hamiltonian from a gauge invariance point of view
in semiclassical theory and quantum theory by using dipole approximation. A
semiclassical theory of the interaction of a single two-level atom with a single mode of the
field in which the atom is treated as a quantum two-level system and the field is treated
classically. Otherwise, we also treat the atom-field interaction Hamiltonian in fully

quantum theory where a quantized description of the field is required.

A-1 Local gauge invariance and. minimal-coupling Hamiltonian

The motion of a free electron is described by the Schrodinger equation

—h? . Oy
— V% =ih= A.l
om it ot’ @A)

such that P(#,t)=|w(7¥,1)[° gives the probability density of finding an electron at position
r and time t. In Eq. (A.1), if w(7,t) is a solution sois ,(¥,t) =y (7r,t)exp(iy) where
X 1is an arbitrary constant phase. The probability density P(7,t) would also remain
unaffected by an arbitrary choice of y. Thus the choice of the phase of the wave
function w(7,t) is completely arbitrary, and two functions differing only by a constant

phase factor represent the same physical state.

The situation is different, however, if the phase is allowed to vary locally, i.e. to be a

function of space and time variables as

w7, t) >y (F,0)e*". (A2)
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The probability P(7,¢f) remains unaffected by this transformation, but the Schridinger
equation (A.1) is no longer satisfied. We examine the problem of an electron bound by a
potential V() which arises from the electrostatic potential that binds the electron to the
nucleus and want to satisfy /ocal gauge (phase) invariance, then the Schrgdinger equation
must be modified by adding new terms to Eq. (A.1)

2
Vi A OR +eUF 1) +eV (7) by =in Y (A3)
2m h ot

where A(7,t) and U(7,t) are vector and scalar potentials of the electromagnetic field,
respectively, which must be inserted into Eq. (A.1) if we want to be able to make the

transformation Eq. (A.2), and are given by

AGF 1) — (7.0 +Zv ) (Ad)

- g ho |~
U(r,t)—-)U(r,t)—zaz(r,t), (A.5)

The gauge-independent quantities are theielectric and magnetic fields

—

04

E=-VU-22,
ot

(A.6)

— —

B=VxA. (A7)

Equation (A.3), which is the logical extension of Eq. (A.1) due to the requirement of local

gauge (phase) invariance, has the form

L, Oy
=ih=—= A.
Hwy=in prl (A.8)

where H being the minimal-coupling Hamiltonian.

The minimal-coupling Hamiltonian for an interaction between an atom and the
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radiation field can be reduced to a simple form by using the dipole approximation.
Consider an atom interacting with a radiation field represented by a vector potential A(r,

+r,t). This vector potential may be written in the dipole approximation, K « r <<1, as

A(ro +r, t) = A(t) exp[iK * (o +1)]
=A(t) exp(ik * ro)(1+ ik » r+...)

~ A(t) exp(iK * Io). (A.9)

The Schridinger equation in the dipole approximation with A(r, t) = A(r, t) is given by Eq.

(A3),1.e.,

I’ o e . o - . Ow(7,1)
{%[V Z%A(I’O,l‘)] +eV(r)}l//(r,t)—zh—at , (A.10)

which are working in the radiation gauge, in -which U(7,f)=0 and V-4=0.

Therefore the total Hamiltonian can be obtained-as

_ 2
Htotzﬁ[V—i%A(fb,t)]z+eV(z7’). Al

A-2 r « E Hamiltonian

We proceed to simplify Eq. (A.10) by defining a new wave function ¢ (r,t) as
V(F.0)=exp| AT |9(F.) (A12)
by applying the gauge transformation

271y =—eA(F,b)-F 1 1. (A.13)
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Inserting Eq. (A.12) into Eq. (A.10), we find
.[ie-qq L }_{pz q} .
ih| —A-ro(F,t)+P(F,t) |=| =—+eV (¥) |4(F,1), (A.14)
h 2m

where p =-iiV 1is the canonical momentum operator. Taking the simple form as

ihg(7,0)=| H , —eF - E,0) |(7.0), (A.15)
where
2
HA=§—m+eV(r), (A.16)

is the Hamiltonian of the free atom and we use E (r,1) = —A. Therefore, the total

Hamiltonianis H,, =H,+H,, with

H, ==eF-E(f)1). (A.17)

int —

which is interaction Hamiltonian in dipele approximation.

A-3 p * A Hamiltonian

The Hamiltonian can be also expressed in terms of the canonical momentum p and the
vector potential A.  We again choose a radiation gauge in which U(7,£)=0 and V-4=0.

By using the canonical momentum operator p =—ihV, the total Hamiltonian in Eq. (A.11)

can be written as

Lo - P -
Htot=%[p—eA(r0,t)} +eV (7). (A.18)

We may write Eq. (A.17) as
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H :‘5—2+eV(17)—£;1(77 t)-ﬁ+e—2;12(17 1). (A.19)
tot 2m m 0 om 02

Therefore, the total Hamiltonian H ,=H ,+H,, where H, is given by Eq. (A.16) and

tot

— 2 —
Hip = AF 1) pt o (71 (A.20)
m 2m

nt

is the interaction Hamiltonian. In Eq. (A.20), the first term of represents the interaction
between the electron momentum p and the radiation field A and the second term represents
the energy of mutual interaction between radiation fields through the coupling of the
electron to the field. The second term in eq. (A.20) is usually small and can be ignored.
with

Hence, the total Hamiltonianis H ,=H, +H

int

Hiy :—%;1(770,0'13- (A.21)

A-4 Fully quantum theory

In the preceding sections concerning the interaction of a radiation field with matter,
we assumed the field to be classical. In many situations this assumption is valid. There
are, however, many instances where a classical field fails to explain experimentally
observed results and a quantized description of the field is required.

Due to the quantum aspects of the field, the total Hamiltonian is treated by adding the

energy of the quantized radiation field H,. Therefore, ther - E and the p - A interaction

Hamiltonian respectively as
Htot:HA_eF'E(ﬁ)J)'FHF, (A.22)

and

-43 -



Htot:HA_%;i(ﬁ)at)'ﬁ'i'HFs (A23)

where H , is the Hamiltonian of the free atom in Eq. (A.16).
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