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                             摘要 

 

原子在光子晶體中的自發輻射具有長時間記憶(long-time memory)
的效應。 因此利用記憶核心(memory kernel)我們可以了解原子在等向性

(isotropic)及非等向性(anisotropic)光子晶體的自發輻射會導致碎形現象

(fractal phenomenon)產生。 此種現象我們可以利用碎形微積分(fractional 
calculus)來描述。 所以當原子的躍遷頻率(transition frequency)落在光子

晶體中的光能隙(photonic band-gap)外時，利用碎形微積分我們不會有多

值解的問題，也不會有非物理的狀態出現，而這些問題是在之前的研究

[Phy. Rev. A 50, 1764 (1994)]中所會遇到的。 

以上所探討的原子在空間中視為一個點(point-like)，不過在實際的

情況下，原子是具有尺寸的。 因此在有尺寸的效應之下，需要考慮多極

(multi-pole)的貢獻。所以我們利用具有尺寸的記憶核心來探討對原子自

發輻射的影響，會發現其偶合常數(coupling constant)會改變。 
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                           Abstract 
 

We use memory kernel to study the spontaneous emission of an atom in 

a photonic crystal with the isotropic band and anisotropic band. Our studies 

show that the long-time memory of the spontaneous emission in the photonic 

crystal induces a fractal phenomenon.  Therefore, the fractional calculus is a 

natural mathematics to describe the fractal phenomenon.  When the atomic 

transition frequency lies within the allowed band, using the fractional calculus 

we show that there is no multiple-valued problem and no fractionalized 

steady-state inversion encountered in the previous studies [J. Mod. Opt. 41, 

353 (1994)]. On the other hand. 

We also consider an atom with finite size effect leading to multipole 

contributions and yield the memory kernel with the same form as a point-like 

atom. However, the memory kernel including finite-size effect has different 

coupling constant. 
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Chapter 1   Introduction 

1-1 Background  

Spontaneous emission is a fundamental concept in atomic physics.  A new 

generation of experiments reveals that spontaneous radiation from excited atoms can be 

greatly suppressed or enhanced by placing the atoms between mirrors or in cavities [1].  

This modification of spontaneous emission arises from the fact that a dielectric cavity acts 

as a local resonance mode for electromagnetic wave propagation.  There is a long lifetime 

for radiation injected into the cavity and a perfect isolation of electromagnetic modes is 

possible if a localized state of light can be formed.  The extent of isolation of modes 

inside the resonator from modes outside is measured by the quality factor of the cavity.  

We will expect very different dynamical features of spontaneous emission decay of an 

atom in photonic crystals from that in a high-Q mircocavity [2]. 

Photonic crystals (PhC) constitute a new class of dielectric materials, in which the 

basic electromagnetic interaction is controllably altered over certain frequency and length 

scales.  In photonic crystals, the synergetic interplay between the microcavity resonances 

of individual dielectric particles and the Bragg scattering resonances of the dielectric array 

leads to the formation of a photonic band gap (PBG), a range of frequencies for which 

electromagnetic wave propagation is classically forbidden [3].  The presence of the 

photonic band gap in the dispersion relation of the electromagnetic field gives rise to new 

phenomena in quantum optics, including the inhibition of the spontaneous [4] and strong 

localization of light [5] leading to important technological applications.  Therefore, when 

an atom with a resonant transition within the frequency gap is placed in the photonic 
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band-gap material, it has been predicted that the excited atom forms a photon-atom bound 

states [6], the optical analog of an electron-impurity level bound state in the gap of a 

semiconductor.  The dispersion relation of photon is significantly modified near a 

photonic band edge, so the reservoir density of states becomes singular [7] and the 

atom-field interaction becomes strong when it becomes zero below the band-edge 

frequency.  

More fundamentally, the correlation time of the electromagnetic vacuum fluctuation 

near a band edge is no longer negligibly small on the time scale of the evolution of an 

atomic system coupled to the electromagnetic (EM) field.  In fact, the reservoir exhibits 

long-range temporal correlations, making the temporal distinction between atomic system 

and EM reservoir unclear.  This renders the usual Born-Markov approximation [8] 

scheme invalid for the band gap systems. In such an interaction, the future of the atomic 

system is entirely determined by the present and not by the past.  However, in the 

photonic crystal the Markov approximation that the spontaneous-emission atom loses all 

memory of its past is invalid and the atom-reservoir interaction becomes non-Markovian.   

The time evolution of the probability amplitude of excited level of an atom is related 

to the delay Green function or memory kernel G(t-t’) [7], which is a measure of the 

reservoir memory on the excited atom.  The resultant Green function depends very 

strongly on the photon density of states of the relevant photon reservoir.  In the free space, 

the density of field modes as a function of frequency is broad and slowly varying, resulting 

in a Green function (memory kernel) that exhibits Markovian behavior, G(t-t’) = (γ/2)δ

(t-t’), where γ is the usual decay rate for spontaneous emission [9].  Studies of single 

atom spontaneous emission near a photonic band edge in the isotropic model [10,11] have 

shown that this non-Markovian system reservoir interaction gives rise to the time evolution 
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of the excited-state population such as decay and oscillatory behavior due to photon 

localization.  The density of states in the isotropic model has the same square-root 

singularity-like has the form of ( ) ( ) 1 2 ,  c cρ ω ω ω ω ω−∝ − >  and anisotropic model has the 

form of ( ) ( )1 2 ,  c cρ ω ω ω ω ω∝ − > .  The memory kernel in the isotropic and anisotropic 

model have the forms ( ) ( ) 1 2' ,  'G t t t tω −∝ − >  and ( ) ( )1 2' ,  'G t t t tω ∝ − > , respectively.  

 Recently, the long-time memory phenomena have also attracted a great attention in 

statistical physics.  There is no time scale to separate the microscopic levels from the 

macroscopic levels.  Our studies show that the long-time memory of the spontaneous 

emission in the photonic crystal induces a fractal phenomenon.  The fractional calculus 

provides a bridge between purely deterministic processes and purely stochastic ones.  The 

fact is of interest in its own right because chaos and order in Nature coexist.  Therefore, 

the fractional calculus is a natural mathematics to describe the fractal phenomenon.  

 

1-2 Motivation 

Of late, the long-time memory phenomena have also attracted a great attention in 

statistical physics.  Such a long-time memory is intrinsic to all time scales of the phase 

space of a system, provided that the number of divisions generating a fractal set tends to 

infinity.  The research of spontaneous emission of an atom in photonic crystals has been 

developed for a long time.  However, using the Laplace transform method to solve the 

time evolution integral equation of the excited probability amplitude researched by John et 

al. [11], there is an unphysical state of fractionalized atomic population in the excited state 

when the resonant atomic frequency lies outside the band gap.  In the thesis, we applied 
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the fractional calculus to study the dynamics of the spontaneous emission of an atom in 

photonic bandgap using singular and smoothed [12] density of states.  In previous 

approach [11,12], the radiating atom is taken as a point-like electric dipole.  Actually, a 

finite-size or an artificial atom and reservoir have stronger coupling, hence the finite-size 

effect and higher allowed multiple contributions can’t be neglected.  We will also use the 

density of states with finite-size effect [13] to calculate the memory kernel.  

 

1-3 Organization of the thesis 
In this thesis, we divided the text into four chapters.  We have narrated a brief 

statement of spontaneous emission to the background and our research motivations in this 

chapter.  In Chapter 2, we apply the time-dependent Schrödiger equation to describe the 

spontaneous emission in vacuum filed from a single atom and present the dynamics of 

spontaneous emission in photonic crystal with isotropic and anisotropic model.  We also 

derive the population of spontaneous emission of an atom including finite-size effect.  

After that, we show our numerical results and discuss qualitatively possible processes in 

Chapter 3.  In the end, the final conclusion and future works will be presented in Chapter 

4. 
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Chapter 2   Theory and Calculation Method 

2-1 The dynamics of the spontaneous emission 

In this section, we treat the atom-field interaction fully quantum mechanically, 

proving a basic understanding of spontaneous emission.  It is well known that an atom in 

an excited state is not in a stationary state－it will eventually decay to the ground state by 

spontaneously emitting a photon.  The nature of this evolution is due to the coupling of 

the atom to the electromagnetic vacuum field.  Victor Weisskopt presented a method for 

analyzing this interesting problem in his thesis work, together with his advisor Eugene 

Wigner that is called Weisskopf-Wigner theory [14]. 

We begin by investigation a system involving the interaction of one two-level atom 

with all multi-modes filed.  Initially the atom is prepared in its excited state 2  and the 

field is in vacuum state {0} .  We use  

(0) 2,{0}ψ =                               (2.1) 

to denote this initial state.  Since this is not a stable state, the atom will decay to the 

ground 1  state and give off a photon to one of the field modes (k,s).  These state 

vectors form a complete set for expanding the time-dependent state of the system: 

 
,

s21( ) ( ) 2,{0} ( ) 1,{1 }ks ks
k s

ki tit A t e B t e ωωψ −− += ∑ ,              (2.2) 

where ω21 is the atomic transition frequency and the initial condition is A(0)=1, Bks(0)=0.  

The state vector 2,{0}  describes the atom in its excited state 2  with no photons in 
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all reservoir modes, and the state vector 1,{1 }ks  represents the atom in its ground state 

1  and a single photon in the mode with frequency ωks  with wavevector k and 

polarization s. 

 The total Hamiltonian for the coupled atom-reservoir system is Htot = HA + HF + Hint 

(see appendix A).  HA represents the Hamiltonian of the free atom can be written as 

21 22AH ω σ= .                             (2.3) 

Here  ( , 1, 2)ij i j i jσ = =  are the atomic operators acting on level j  transforming it 

to level  i  and  ii i iσ = gives the population of level i , that is, the probability to 

fine the atom in level i .  HF stands for the energy of the quantized radiation field in 

the absence of the atom (neglecting the zero-point energy).  It is given by 

†

,
F ks ks ks

k s
H a aω= ∑ ,                          (2.4) 

where ska  and †
ska  are the radiation field annihilation and creation operators with k and 

s (=1,2) representing, respectively.  Let us now concentrate on the interaction 

Hamiltonian 

int  H d E= − ⋅ .                           (2.5) 

The dipole operator ˆd er= can be expressed as 

12 12 21 21d d dσ σ= + ,                         (2.6) 

where we have used the property that states 1  and 2  have opposite parity such that 

1 1 2 2 0r r= = .  And the quantized electric field is [15]  
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1 2
†

0
( )

2ks

ik r ik rks
ks ks ksE i e a e a e

V
ω
ε

⋅ − ⋅⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= −∑ .             (2.7) 

Here ke s  is the unit vector of polarization for the reservoir mode (k,s), and 0ε  is the 

permittivity of free space.  In the optical regime of the spectrum where photon 

wavelengths are long compared to atomic dimensions (λphoton ~ 103Å and λatom ~ 1Å), it 

is useful to make the electric dipole approximation (k‧r ~ 0) in Eq. (2.7).  Thus the 

interaction Hamiltonian can be written as 

†
12 21int

,
( )( )ks ks ks

k s
H i g a aσ σ= + −∑ ,                (2.8) 

where gk  is the atom-field coupling constant 

1 2
21 21

02k k
k

e us s d
s

dg
V

ω
ε ω

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ⋅ .                  (2.9) 

Here 21d  and du  are the absolute value and the unit vector of the atomic dipole moment, 

V is the sample volume.  The interaction energy in Eq. (2.8) consists of four terms.  The 

terms †
12ksa σ  describes the process in which the atom is taken from the upper state into 

the lower state and a photon of mode (k,s) is created; the term 21ksa σ  describes the 

opposite process.  The energy is conserved in both of the processes.  The other two 

terms violate energy conservation, therefore we invoke the rotation wave approximation 

(RWA) to neglect the terms 12 ksaσ  and †
21 ksaσ .  The resulting simplified Hamiltonian is 

†
12 21int

,
( )ks ks ks

k s
H i g a aσ σ= −∑ .                   (2.10) 

 We want to determine the state of the atom and the state of the radiation field at 

some later time when the atom begins to emit photons and we do so in the 
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Weisskopf-Wigner approximation.  From the Schrödinger equation 

 ( )  ( )H t i t
t

ψ ψ∂=
∂

,                        (2.11)  

we get the equations of motion for the probability amplitudes A(t) and Bks(t) : 

,
( ) ( ) ksi t

ks ks
k s

d A t g B t e
dt

− Ω= −∑ ,                    (2.12) 

( )  ( ) ksi t
ks ks

d B t g A t e
dt

Ω= .                      (2.13) 

where Ωks = ωks-ω21 is the detuning frequency of the radiation frequency ωks to the 

atomic transition frequency ω21.  In order to get an equation that involves A(t) only, we 

first integrate Eq. (2.13). 

0

' '( ) ( ')
t

ksi t
ks ks dtB t g A t e Ω= ∫ .                       (2.14) 

On substituting this expression of Bks(t) into Eq. (2.12), we obtain 

(2 ')

, 0
'( ) ( ') ks

t
i t t

ks
k s

dt
d A t g A t e
dt

− Ω −= −∑ ∫ ,               (2.15) 

Thus, 

0
( ) ( ') ( ') '

td A t G t t A t dt
dt

= −−∫ ,                   (2.16) 

where G(t-t’) is the memory kernel (Green function), and is given by 

2 ( ')

,
( ') ksi t t

ks
k s

G t t g e− Ω −− = ∑ .                    (2.17) 

G(t-t’) is a measure of the reservoir’s memory of its previous state on the time scale for the 

evolution of the probability amplitude of the system. 
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In free space, the density of the field modes is broad and slowly varying, resulting in a 

memory kernel that exhibits Markovian behavior, G(t-t’) = (γ/2)δ(t-t’), whereγis the 

usual decay rate for spontaneous emission [16].  In next section, we turn our attention to 

the case when the two-level atom is located within a photonic band structure, and assume 

photonic crystals are absorptionless.  Using an effective-mass approximation to the full 

dispersion relation for a photonic crystal, we consider two models for the near-band-edge 

dispersion, isotropic and anisotropic model. 

 

2-2 Fractional solution in isotropic model 

In the isotropic model of a photonic crystal, we assume that the Bragg condition is 

satisfied for the same wave vector magnitude for all directions in k space.  Using an 

effective-mass approximation to the full dispersion relation for a photonic crystal, this 

gives a dispersion relation of the form 2
0(| | | |)

k c A k kω ω= ± − .  The positive (negative) 

sign indicates that ωk is expanded about the upper (lower) edge of the photonic band gap, 

and ωk is the frequency of the corresponding band edge.  The bands above and below 

the gap can be distinguished by where the power of their modes lies − in the high-ε 

regions, or in the low-ε regions.  Often the low-ε regions are air regions.  For this 

reason, it is convenient to refer to the band above a photonic band gap as the “air band,” 

and the band below a gap as the “dielectric band.”  It is a good approximation to 

completely neglect the effects of the lower photon bands by assuming the atom is located 

in the air regions [7].  Under these assumptions, the dispersion relation about the upper 

band (air band) edge is 

( )2
0 |+ | | |ck A k kω ω= − ,                       (2.18) 
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where ωc is the bandedge frequency, k0 is a point of the Brillouin zone boundary in the k 

space instead of all direction, and A is a constant.  The band-edge density of states 

generated by this dispersion relationship in the isotropic model has a singular form as 

1/2
k c( ) = (  (k) ) ( )ρ ω δ ω ω ω ω −− ≈ −∑ . 

It is a fractal phenomenon that induces the long-time memory of the spontaneous 

emission in the photonic crystal.  The natural mathematics of describing the fractal 

phenomenon is the fractional calculus.  Using the fractional calculus we can evaluate 

derivatives and integrals with noninteger orders.  Therefore, in next section we will treat 

the density of states in isotropic model as singularity and smoothing in isotropic model by 

applying fractional calculus to solve the time evolution integral equation of the excited 

probability amplitude. 

 

2-2.1 Singular density of states 

The band-edge density of states in the isotropic model has the singular form 

k 1/2
( )( ) (  (k) ) = 

( )
c

c

θ ω ωρ ω δ ω ω
π ω ω

−= −
−∑              (2.19)  

where θ is the step function.  We change the k summation to an integration by 

introducing a continuum density of states ρ(ω) such that ρ(ω)dω gives the number 

of oscillators in the frequency interval ω to ω+dω [17].  Hence we can obtain the 

memory kernel from Eq. (2.17) as 
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              21
2 ( )( ')

, 0
( ') ( ) ksi t t

ks
k s

G t t g e dω ωρ ω ω
∞

− − −− = ∑∫   

      213/ 2
1

( )( ')

0
( ) i t te dω ωπβ ρ ω ω

∞
− − −= ∫ .            (2.20) 

The memory kernel is obtained on substituting Eq. (2.19) into Eq. (2.20) and integrating 

over ω, and the integral reduces to a complex Fresnel integral given by [18] 

1

0

1 ( )p
p

xx e dx pµ

µ
−

∞
− = Γ∫ ,                      (2.21) 

where Γ is Gamma function and yields 

I

c[ /4 ( ')]
3/2

1( ')
'

i t t
G t t

t t
e π

β
− −∆ −

− =
−

                   (2.22) 

Here, △c = ω21-ωc is the detuning of the atomic resonant frequency from the band 

edge shown as in Fig. 2.1 and 3/ 2 2 2 2 3/ 2 1/2
1 21 21 0 0( ) /(12 )cd k Aβ ω π ε ω=  is coupling constant. 

Fig. 2-1. (a) Schematic representation of a two-level atom with atomic transition 
frequencyω21 and (b) the band structure of photonic crystals with band-edge frequency.  

 

aattoomm  pphhoottoonniicc  ccrryyssttaall  

ω21 
|2> 

|1> 

ω air band 

ωc 
k

((aa))  ((bb))  
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On the other hand, we can also replace the summation over k by an integral: 

2
3 2

3
1, 0

2  
(2 )sk s

Vd k k dk d
π

∞

=
→ = Ω∑ ∑∫ ∫ ∫ ,               (2.23) 

where d3k≣k2dkdΩ, dΩ being the solid angle element.  Because the isotropic model 

associates the band edge with a sphere in k space, there is no angular dependence in the 

expansion of ωk about the band edge.  We may thus separate out the angular integration 

over solid angle Ω in Eq. (2.17).  Thus, G(t-t’) can be expressed as 

2 2
21 21

2 21( )( ')

3 00

1 8( ')
2 3(2 )

ki t t

k

d k eG t t dk
ω ωω π

ε ωπ

− − −∞
− = ∫ .          (2.24) 

Using isotropic dispersion relation near the upper band edge, ωk =ωc + A(|k|-|k0|)2, Eq. 

(2.24) can be expressed as 

( )

2

0

02 2
21 21

A( k - k ) ( ')2

I 2

0

c ( ')
2k0 c k - k

( ')
6 +

t ti
i t td k eG t t e dkω

ε π ω

−−∞
∆ −− = ∫ .            (2.25) 

Here, △c = ω21-ωc is the detuning of the atomic resonant frequency from the band edge. 

For sufficiently large time, the integrand is a rapidly oscillating function of k.  Thus the 

main contribution to the integral comes from the stationary point, that is, k = k0.  We can 

take k2/ωk in the integrand as k0
2/ωc , hence the resulting integral is  

0

2 2
21 21

I 2
oc

2 k k( ') 0
kc0

2A( - ) ( ')k( ')
6

 i t t i t tdG t t e dkeω
ε π ω

∞
∆ − − −− = ∫ .        (2.26) 

We apply a complex Fresnel integral [18]  

2 2

0
 

2
xe dxµ π

µ
∞

− =∫                           (2.27) 

in Eq. (2.26) to obtain the memory kernel  
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I

c[ /4 ( ')]
3/2

1( ')
'

i t t
G t t

t t
e π

β
− −∆ −

− =
−

,                     (2.28) 

which is identical to Eq. (2.22). 

Using the fractional calculus and making a transformation, ( ) ( )ci tA t e C t∆= , Eq. 

(2.16) with memory kernel of Eq. (2.28) becomes 

3/2
1 1/2

0

/4 ( )( ) ( )
( )

t

c
id CC t i C t e d

dt t
π τβ τ

τ
−+ ∆ = −

−∫ .             (2.29) 

From the Riemann-Liouville fractional differentiation operator [19] defined by the formula 

0
11( ) ( ) ( )

( )
td u t t s u s ds

dt
α

α
α α

− −= −
Γ − ∫ ,                 (2.30) 

where Γ(x) is a gamma function.  Using a fractional differentiation equation [20] Eq. 

(2.29) can be expressed as: 

 
1/2

3/2
1 1/2

/4( ) ( )  (1/ 2) ( )c
id dC t i C t e C t

dt dt
πβ

−

−
−+ ∆ = − Γ .          (2.31) 

We can apply the integral operator 1 1d dt− −  first with C(0)=1, and then the fractional 

differentiation operator 3/ 2 3/ 2d dt  to Eq. (2.31) to obtain a fractional Langevin equation 

of the spontaneous emission of an atom in a photonic band gap, 

3/2 1/2
3/2 3/2

13/2 1/2
/4 1( ) ( )  ( )

2c
id dC t i C t e C t t

dt dt
ππ β

π
−−+ ∆ + = − .      (2.32) 

We can solve Eq. (2.32) using the Laplace transform of C (t),  

{ }
0

( ) ( ) ( ) stC s C t e C t dt
∞ −= = ∫L ,                   (2.33) 

then the inverse Laplace transform of ( )C s , 
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{ } 1 1( ) ( ) ( ) 
2

sti
i

C t C s e C s ds
i

ε

επ
− + ∞

− ∞
= = ∫L ,              (2.34) 

where the real number ε is chosen so that s = ε lies on the right of all singularities (poles 

and branch points) of function ( )C s .  Using the formulas of the fractional Laplace 

transform [19] 

1
( 1)( )t
s

µ
µ

µ
+

Γ +=L ,                            (2.35) 

( ) ( )d C t s C s
dt

α
α

α
⎧ ⎫
⎨ ⎬
⎩ ⎭

=L ,                       (2.36) 

the Laplace transform ( )C s  can be found from Eq. (2.32) as 

3/2 1/2 3/2
 ( )  

s ( )c

sC s
i s iβ

=
+ ∆ −

,                    (2.37) 

where 3 / 2 3 / 2
1β β π= .  Converting the variable as s1/2 = X, we can then rewrite Eq. 

(2.37) as a sum of partial fractions 

31 2

1 2 3

 ( )  
( ) ( ) ( )

aa aC X
X X X X X X

= + +
− − −

.             (2.38) 

Note that the parameters Xn (n=1,2,3) of Eq. (2.38) are the roots of 

3 3 / 2( ) 0cX i X iβ+ ∆ − = , which are also expressed in [11] as 

1/2
  1

/4(  ) iX e πβ η η+ −= + ,                           (2.39) 

1/2
  2

/6 /6 /4(  )i i iX e e eπ π πβ η η+ −
− −= − ,                 (2.40) 

1/2
  3

/6 /6 3 /4(  )i i iX e e eπ π πβ η η+ −
−= − ,                 (2.41) 
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1/3
3

3
1 1 41
2 2 27

cη
β±

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∆= ± + ,                      (2.42) 

and the coefficients an (n=1,2,3) of Eq. (2.38) are given by 

( ) ( )
( ) ;  , , 1,2,3n

n
n n mj

Xa n j m n j m
X X X X

= ≠ ≠ =
− −

.         (2.43) 

From the formula of the inverse fractional Laplace transform [19] 

 1 2
1/2

21 1( , )  
2t

a tE a a e
s a

− ⎧ ⎫
⎨ ⎬
⎩ ⎭

= − +
−

L ,                   (2.44) 

we can yield the inverse Laplace transform of Eq. (2.38) 

3
2

1

21( )  ( ,  )
2n t n n

n

nX tC t a E X X e
=

⎡ ⎤
⎢ ⎥
⎣ ⎦

= − +∑                   (2.45) 

or 

3
2

1

21( )  ( ,  )
2n t n n

n

c nX titA t e a E X X e
=

∆ ⎡ ⎤
⎢ ⎥
⎣ ⎦

= − +∑ ,                (2.46) 

where ( , )tE aα  is the fractional exponential function of order α and is defined as 

( )
0

( , )
( 1)t

n

n

at
E a t

n
αα

α
∞

=
=

Γ + +∑ .                     (2.47) 

The time evolution of the probability amplitude ( )A t  of an excited atom can be written in 

terms of the error function 

0

22Erf(z)=
z ye dy

π
−∫ ,                         (2.48) 

which is related to the fractional exponential function 
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1/21( ,  )  Erf(  )
2t

atE a a e at−=                      (2.49) 

and  

1/21 1( ,  ) ( ,  )
2 2t t

tE a aE a
π

−
− = + .                    (2.50) 

From Eqs. (2.49) and (2.50), Eq. (2.46) can be written as 

( )3
2

1

2( )  Erfn n n n
n

c nX titA t e a X Y X t e
=

∆ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
= +∑ ,          (2.51) 

where 2  n nY X= (n = 1,2,3). 

 

2-2.2 Smoothed density of states 

The density of states in the isotropic model with a weak singularity (ω-ωc)-1/2 for 

ω>ωc had been smoothed out [12] by introducing a “cut-off smoothing” parameter ε.  

The smoothed density of states can be written as 

( ) ( )
( )

1 2

0
lim ( )cS

c
cε

ω ω
ρ ω θ ω ω

ω ω ε→

−
∝ −

− +
.                  (2.52) 

Appling the same steps use fractional calculus as Eq. (2.31) to Eq. (2.37) to obtain the 

Laplace transform of the excited-state amplitude as in Eq. (46) of Ref. [12] 

 
3/2 1/2 3/2 3/4

 ( )  
( )

S

c c

s iC s
s i s i s i i i

ε
ε ε β

+=
+ + ∆ + ∆ −

.           (2.53) 

Instead of using complicated integration in Ref. [11], we use the formula in Eq. (2.44) to 

take the inverse fractional Laplace transform of Eq. (2.53) 
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3
) 2

1

2(1( ) ( ,  ( ) )
2 n

S S S S
n t n

n

SnX tC t a E X X e
=

⎡ ⎤
⎢ ⎥
⎣ ⎦

= − +∑                 (2.54) 

or 

3
)2

1

2(1( )  ( ,  ( ) )
2 n

S S S S
n t n

n

Snc X titA t e a E X X e
=

∆ ⎡ ⎤
⎢ ⎥
⎣ ⎦

= − +∑ .              (2.55) 

The parameters S
nX  of Eq. (35) are the roots of 3/2 1/ 2 3/2 3/ 4s + s +( ) = 0c ci i s i i iε ε β+ ∆ ∆ −  

as  

  1
1/2 /4(  )

3
S S S i iX e π εβ η η

+ −
= + − ,                    (2.56) 

  2
1/2 /6 /6 /4(  )

3
S S Si i i iX e e eπ π π εβ η η

+ −
− −= − − ,               (2.57) 

  3
1/2 /6 /6 3 /4(  )

3
S S Si i i iX e e eπ π π εβ η η

+ −
−= − − ,               (2.58) 

3/2

3/2 3/2
S

1/3
323/2

3/2 3/2
2 2 4 /32 2 1 +(1 ) 3 27 273 27

2 2

c c cε ε εε ε
ββ ββ βη

±

⎡ ⎤
⎛ ⎞ ⎛ ⎞∆ ∆ −⎢ ⎥∆ − −⎜ ⎟ ⎜ ⎟− − ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥= ±

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  (2.59)  

The coefficients S
na  of Eq. (35) is given by 

( )( ) ( ) ;  , , 1,2,3
m

S
S n
n S S S S

n nj

Xa n j m n j m
X X X X

= ≠ ≠ =
− −

.          (2.60) 
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2-3 Fractional solution in anisotropic model 

We consider now a more realistic model, in which the dispersion relation is 

anisotropic.  In anisotropic dispersion models, we account for the fact that, as k moves 

away from k0, both the direction and magnitude of the band-edge wave vector are modified, 

and use an effective-mass approximation to the full dispersion relation for a photonic 

crystal.  This gives a dispersion relation about the upper band (air band) edge is 

2
0+ ( )k c A k kω ω= − .                        (2.61) 

The anisotropic effective mass dispersion relation leads to a photonic density of states at a 

band edge ωc which behaves as 1/2
c c( ) ( ) ,  > ρ ω ω ω ω ω≈ − .  For our purposes, we shall 

therefore assume that A is a scalar constant, a condition that is satisfied exactly for crystal 

geometries in which the band-edge wave vector possesses cubic symmetry within the 

Brillouin zone [6], and is otherwise a reasonable approximation for the dispersion near a 

band edge after averaging over all directions. 

 Using the anisotropic effective mass dispersion relation Eq. (2.61) in Eq. (2.24) and 

making the substitution q = k − k0 (so that d3q = q2dq dΩ) we can evaluate the 

corresponding memory kernel GA(t－t’) is expressed as 

22 2
21 21

2

2

( ')
( ')

200
( ')

6
A

A
c

i q t t
i t t

c

d q eG t t e dq
Aq

ω
ε π ω

− −∞
∆ −− =

+∫ .              (2.62) 

For large t－t’, the integral in Eq. (2.62) is dominates by the stationary phase point q = 

0.  Thus, the integral can be approximated by putting q = 0 in the denominator, and using 

the integral [18] 
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2
3/2

2

0
=  

4
pxx e dx

p
π∞

−∫                         (2.63) 

to obtain 

A 3/2

c[3 /4 ( ')]
1/2
3 ( )

( ')
'

i t t
G t t

t t
e π

β
− −∆ −

− =
−

,                    (2.64) 

where 1/2 2 2 3/ 2 3/2
3 21 21 0( ) /(24 )cd Aβ ω π ε ω= .  Making a transformation ( ) ( )ci tA t e C t∆=  and 

using the fractional calculus Eq. (2.64) becomes 

1/2
3 3/2

0

3 /4 ( )( ) ( )
( )

t

c
id CC t i C t e d

dt t
π τβ τ

τ
−+ ∆ = −

−∫ .              (2.65) 

From Eq. (2.30), we can express Eq. (2.65) as a fractional differentiation equation 

 
1/2

1/2
3 1/2

3 /4( ) ( )  ( 1/ 2) ( )c
id dC t i C t e C t

dt dt
πβ −+ ∆ = − Γ − .          (2.66) 

We can apply Eq. (2.36) to obtain the Laplace transform ( )C s  from Eq. (2.66) as 

1/ 2 1/ 2/4
1( )

 +2 i
c

C s
s s ie πβ

=
+ ∆

,                      (2.67) 

where 1/ 2 1/ 2
A 3β β π=  and 3 / 4 / 4i ie eπ π− = − .  Applying the partial fractions as Eq. (2.38), 

we can then rewrite Eq. (2.67) under 1 2X X≠  as a sum of partial fractions  

1 2 1 2

1 1 1( )
( )

C X
X X X X X X

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= −
− − −

.                 (2.68) 

The parameters Xn are the roots of 
1 / 22 - / 4
A2 0cX e X i Xπβ+ + ∆ =  which are expressed as 

1/ 2 1/ 2

c1 A A
/4( )iX e π β β= − + − ∆ ,                   (2.69) 

1/ 2 1/ 2

c2 A A
/4( )iX e π β β= − − − ∆ .                   (2.70) 
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Using the formula in Eq. (2.44) we can obtain the inverse Laplace transform of Eq. (2.67) 

2 2
1 22 2

1 1 1 2 1
1 1( ) ( ,  ) ( ,  )
2 2

X X
t t

t tC t E X X e E X X e= − + − − − .       (2.71) 

For degenerate root X1 = X2 (i.e., △c=β1/2), Eq. (2.67) can be written as  

A
1/ 2 2

1( )
( )

C s
s iβ

=
+

                        (2.72) 

and from the formula [19] 

 1 2 2 2 2
1/2 2

1 1 12 ( , ) (1 2 ) (0, ) ( , )
2 2( ) t t tatE a a t E a aE a

s a
− ⎧ ⎫⎪ ⎪

⎨ ⎬
⎪ ⎪⎩ ⎭

= − + + +
−

L .    (2.73) 

The inverse Laplace transform of Eq. (2.72) is given by 

A A A A A A2
1 1( ) 2 ( , ) (1 2 ) (0, ) ( , )
2 2t t tC t i tE i i t E i i E iβ β β β β β= − − + + − .   (2.74) 

 

2-4 Spontaneous emission of a finite-size atom 

In our previous studies, the radiation atom is taken as a point-like electric dipole, 

neglecting its finite dimension as compared with the wavelength of the emitted light.  

However, for stronger coupling, as in the case of an atom with finite size may depend on 

the history of the spontaneous emission.  Therefore, neglecting the finite atom-size effect 

and restriction to electric dipole transitions may become improper.  In this section, we 

will carry out higher allowed multipole contributions. 

In dipole approximation, the atom with an allowed transition is taken as a point-like 

electric dipole in the calculation of the correlation spectra, so that the factor eik．x is omitted. 

For such a point-like atom, the spectrum RD(ω) is 
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0
( )

2
A

DR γ ωω
πω

= ,                            (2.75) 

in which γA is the decay rate and ω0 is the atomic transition frequency.  On the other 

hand, the non-Markovian correlation spectra of spontaneous emission of an excited 

two-level atom are derived including the effect of finite size of the atom and all the 

possible contribution of allowed multipole radiations with the result [13] 

2 2 2 4
0

1( )
2 (1 / )

AR
a c

γ ωω
πω ω

=
+

,                     (2.76) 

where the parameter a is particle size and c is light speed.  Comparing Eq. (2.75) and Eq. 

(2.76), we can obtain the factor due to the finite size of the atom, which is 1/(1+ω2a2/c2)4. 

Therefore, the memory kernel in Eq. (2.62) can be rewritten including the factor of 

finite-size effect as 

2 2
21 21

-2

F 2 2
k

ak( )( ')

2 2 400 k

1( ')
6 (1 / )

i t td q eG t t dq
a c

ω ωω
ε π ω ω

− −∞
− =

+∫ ,       (2.77) 

where 2
k c Aqω ω= + .  In photonic crystal, the radiation wavelength is larger than particle 

size as / 1a cω <<  (i.e., 2 2 4 2 2
k k

2 2(1 / ) 1 4 /c ca aω ω+ ≈ + ), thus Eq. (2.77) will reduce to 

22 2
21 21

2

F 2

( ')
( ')

2 200 2 2
2 ( )

1( ')
6 41

A
c

i q t t
i t t

c
c

d q eG t t e dq
Aq a Aq

c

ω
ε π ω

ω

− −∞
∆ −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− =
+

+ +
∫ .   (2.78) 

For simplicity, we consider the spontaneous emission near photonic band edge, hence we 

have 2
c Aqω >> , and Eq. (2.78) can be given by 

2 2
21 21

22

2

( ')
( ')

2 3 2 2 200 ( ) ( )
( ')

6 + 3

A

F
c

i q t t
i t t

c c c

d qG t t e dq
p p A A q

eω
ε π ω ω ω

− −∞
∆ −− =

+ +∫ ,     (2.79) 
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where p=2a/c.  Applying Eq. (2.63) we can yield the same form as Eq. (2.64) with 

different coupling constant βF as 

A 3/2

c[3 /4 ( ')]
1/2
F ( )

( ')
'

i t t
G t t

t t
e π

β
− −∆ −

− =
−

.                 (2.80) 

Comparing the coupling constant βF andβ3 as 

1/2 1/2
2 2 2 3/2 2 2 23

1
(1 12 / ) (1 4 / )c cF a c a c

β β
ω ω

=
+ +

.         (2.81) 

Appling the same step from Eq. (2.65) to Eq. (2.74) we can obtain the amplitude of excited 

state of spontaneous emission due to a finite size atom.  In photonic crystal, the 

band-edge frequency can be approximated as 2 /c c dω ≈  [21], here c is speed of light and 

d is the lattice constant for photonic crystals. Eq. (2.81) can be rewritten as 

1/2 1/2
2 2 3/2 2 23

1
(1 48 / ) (1 16 / )F a d a d

β β=
+ +

            (2.82) 

From Eq. (2.82), we can observe the coupling constant βF is related to d (lattice constant) 

and a (particle size). 
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Chapter 3   Numerical results and Discussion 

3-1 Spontaneous emission of a point-like atom 

3-1.1 Isotropic model 

As can be seen from Eq. (2.46), the dynamics of the spontaneous emission strongly 

depends on the detuning Δc = ω21-ωc.  Using the explicit form for A(t) in Eq. (2.46), 

we can calculate the probability P(t) = |A(t)|2 of the atom on the excited state in isotropic 

model and plot it on a time scale of the order of β.  

Figure 3-1 shows the atomic population on the excited state as a function of the scaled 

time for various values of the atomic detuning outside the photonic band gap (Δc＞0).  

Outside the photonic band gap which means in the allowed band, the atomic population 

vanishes in the long-time limit, regardless how close the atomic frequency is to the 

band-edge frequency.  In other words, the excited-state population eventually decays to 

zero (there is no population trapped on the upper level) due to the propagating state in the 

allowed band.  The population decay becomes exponential for sufficiently large detuning 

into the allowed band, where the atom emits to the continuum modes with a decay rate 

proportional to the density of states.  The closer photonic band edge, the density of states 

is bigger.  Therefore, we can see that as increasing Δc (the atomic level is resonant father 

away from the band edge), the atom would decay very rapidly. 

Figure 3-2 depicts the variation of Δc with respect to the excited-state population 

inside the band gap (Δc＜0) and at the band edge(Δc = 0).  We observe the excited-state 

population exhibits decay and oscillation behavior before reaching a nonzero steady-state 
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value due to photon localization.  In other words, the spontaneously emitted photon will 

tunnel through the photonic crystal for a short length before being Bragg reflected back to 

the emitting atom to re-excite it.  The result is a strongly coupled eigenstates of the 

electronic degrees of freedom of the atom and the electromagnetic modes of the dielectric.  

This is the photon-atom bound state and is the optical analogue of an electronic impurity 

level bound state in the gap of a semiconductor [22].  We note that the degree of 

localization of the upper state population for ω21 within the gap is influenced by the 

density of states in the continuum of modes.  This accounts for the absence of a 

completely localized state for ω21 deep in the gap within our model.     

Moreover, spontaneous emission in free space produces monotonic and irreversible 

decay of upper-level amplitude, whereas here we find the so-called Rabi oscillation and the 

generalized Rabi frequency is defined as 2 24n ngΩ = ∆ + , where Δ is atomic detuning, 

n is the number of photons and g is coupling strength which is proportional to the overlap 

integral of the atom and the confined photon field.  Hence, as |Δc| is increased, the 

population oscillates faster due to the photon field being more confined, and reaches its 

steady-state value more quickly.  We also find that there is no unphysical photon-atom 

bound state, as described in Refs. [11], in the allowed band.  

For comparison, the probability PS(t)=|AS(t)|2 derived from the “cut-off smoothing” 

density of states in Eq. (2.55) for ∆c/β = 0.3 (near-band edge condition) were plotted in Fig. 

3-3 with ε = 0 (i.e., the case of singular density of states as the solid curve), 10-5 (dash 

curve), and 10-3 (dot-dash curve), respectively.  It also shows no unphysical photon-atom 

bound state with small oscillatory behavior in the short time regime and approaches zero in 

the long time limit.  The probability PS(t) of ε = 0 is basically identical with that of ε

=10-5 and slightly differs forε=10-3.  Note that Fig. 3 of Ref. [12] was plotted for ∆c = 
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0.3γc = 0.3Cε−1/2 = 10β 3/2, which may be still far from the band edge in the allowed band, 

therefore, exhibits much faster decay.  It is hard to tell whether the excited-state 

probability derived in [12] for the near bandedge (0 < ∆c < β) would decay to zero in the 

long time limit or not.  

By calculating the probabilities contributed from three Xn’s from Eq. (2.39) to Eq. 

(2.41) separately for ∆c/β =0.01, we found these probabilities show decaying 

characteristics and only small oscillation in the short time regime even closer to the band 

edge.  Indeed, it can be analytically shown that A(t) of Eq. (2.46) will always approach 

zero as t approaches infinity for positive detuning (∆c > 0) due to the first term, 

21( ,  )
2t nE X− , and the second term, 

2

n
nX tX e , in the square bracket of Eq. (2.45) will 

asymptotically cancel out each other as t → ∞ .  Thus, there is neither interference effect 

being involved in the decaying probability of the excited state nor photon-atom bound 

states existing near the allowed band.  It might be that the photon will not strongly 

interact with atom in the allowed band.  Therefore, in the allowed band, the atomic 

frequency shift may not provide enough strength to form the photon-atom bound state. 
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Fig. 3-1. Atomic population on the excited atomic state, P(t) = |A(t)|2, as a function of 

βI t, for various values of the atomic detuning inside the band gap (Δc/βI＞0). 
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Fig. 3-2. Atomic population on the excited atomic state, P(t) = |A(t)|2, as a function of 

βIt, for various values of the atomic detuning inside the band gap (Δc/βI＜0) and at the 
band edge (Δc/βI = 0). 
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Fig. 3-3. Atomic population on the excited atomic state, PS(t) = |AS(t)|2 for Δc/βI = 

0.3 with three values of ε = 0 (solid line), ε = 10-5 (dashed line) and ε = 10-3 (dot dashed 
line). The difference of ε = 0, ε = 10-5 and ε = 10-3 marked by circle is enlarged and shown 
in the inset. 

  

3-1.2 Anisotropic model 

In anisotropic density of states, no singularity occurring like the isotropic density of 

states, the photon-atom bound states might also exist near the allowed band due to the 

shifted atomic frequency excitations.  The temporal evolution of the excited atomic 

population for anisotropic model is given in Eqs. (2.71) and Eq. (2.74).  

As shown in Fig. 3-4, when the atomic level is within the allowed band (Δc＞0), the 

propagating electromagnetic modes are present here.  Hence, the atomic population 

vanishes in the long-time limit like in isotropic model.  However, the population for Δc 

= 0.01 (blue line) and Δc = 0.1 (green line) decay faster in anisotropic model than in 
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isotropic model.  This is because that the anisotropic model is more realistic causing 

imperfect localization.   

Clearly, if the atomic level is inside the photonic band gap (Δc＜0) which is plotted 

in Fig. 3-5, the population also exhibits decay and oscillation behavior before reaching a 

nonzero steady-state value for Δc/βA = −1 and Δc/βA = −5 due to the number of stable 

localized states which is intimately connected to the behavior of the system in the 

long-time limit.  One such state gives rise to a steady-state population in the excited level.  

These phenomena are the same as in the isotropic model except that the atomic population 

decay to zero for Δc/βA = −0.1 and at band edge (Δc/βA = 0).  It is possible to 

realistically investigate the immediate neighborhood of the band-edge frequency in 

anisotropic model.  When the atomic frequency is detuned into the band gap, a 

superposition of the continuum states and a bound state leads the emitted photon to the 

atom.  Therefore, the atomic population again displays fractionalized inversion for 

relatively small values of the atomic detuning.  However, this phenomenon should not be 

due to Lamb shift, which is only in order of 10-7 [23], the Lamb shift may not provide 

enough strength to push the atomic frequency to the gap to form the photon-atom bound 

state. 
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Fig. 3-4. Atomic population on the excited atomic state in allowed band, P(t) = |A(t)|2, 

as a function of βA t, for various values of the atomic detuning from Δc/βA= 0.01 (blue 
line) to Δc/βA= 5 (red line). 
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Fig. 3-5. Atomic population on the excited atomic state in the photonic band gap, P(t) 

= |A(t)|2, as a function of βA t, for various values of the atomic detuning from Δc/βA= −5 
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(black line) to Δc/βA= −0.01 (blue line). 

 

3-1.3 Summary 

In this section, we have reported the properties of spontaneous emission of an atom 

under dipole approximation in an isotropic and anisotropic model.  We find a propagating 

state corresponding to transition frequency outside the photonic gap, therefore the 

population vanishes in the long-time limit in the isotropic and anisotropic model.  On the 

other hand, the dressed state corresponding to transition frequency in side the gap is a no 

decaying photon-atom bound state except that the atomic population decays to zero when 

the detuning frequency is close to photonic band-edge. 

 

3-2 Spontaneous emission of a finite-size atom 

From Eq. (2.82), we can obtain the relationship between the coupling constant βF 

and the ratio of particle size to lattice constant (a/d).  In this section, we use various 

values of a/d to calculate the probability of the atom with finite-size effect. 

In Fig. 3-6 and Fig. 3-7, we plot the population on the excited state with various 

values of ratio from a/d = 1/2 to a/d = 1/50 and without the finite-size effect (a = 0) for Δ

c/βF ＜ 0 (in the band gap).  We find that the excited-state population with finite-size 

effect exhibits decay and oscillatory behavior before reaching a nonzero steady-state which 

is bigger as the atom size increasing.  These effects are due to the strong coupling 

between atom and field resulting in confinement which localizes photon like defect modes 

where the atom is present.  As we known, the defect mode enhances electric field than the 

rest [24] shown in Fig. 3.8.  This implies that by increasing the atom size, the 
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confinement becomes stronger.  Accordingly, the generalized Rabi frequency mentioned 

above leads to the higher oscillatory frequency as increasing atom size due to the stronger 

coupling with the confined field or the larger g.  The atomic population for Δc/βF = −1 

with a/d = 1/10 is close to the population for Δc/βF = −5 without the size effect, but their 

oscillatory frequencies are different.  This is because the Rabi frequency is decided by 

both the detuning frequency and the coupling strength.   

We plot the population within the allowed band and use various values of a/d for Δ

c/βF = 1 and Δc/βF = 5 in Figs. 3-9 and Fig. 3-10, respectively.  The decay rate decreases 

as the size increasing is also due to the enhanced atom-filed coupling that induces the 

deeper defect potential or the larger defect dielectric constant.  By comparison with Fig. 

3-11 and Fig. 3.12, we can observe that the population is close with various values of ratio 

from a/d = 1/2 to a/d = 1/10.  The reason for this similarity is that when the atomic 

frequency is detuned near the band gap, a superposition of the continuum states and a 

bound state leads the emitted photon to the atom. 
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Fig. 3-6. Atomic population on the excited atomic state, as a function of βF t, for Δ

c/βF = −1 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line) 
and without the finite-size effect (black line). 
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Fig. 3-7. Atomic population on the excited atomic state, as a function of βF t, for Δ

c/βF = −5 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line) 
and without the finite-size effect (black line). 
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Fig. 3-8. Schematic illustration of the enlarging electric field distribution associated 

with an atom in photonic crystal. 
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Fig. 3-9. Atomic population on the excited atomic state, as a function of βF t, for Δ

c/βF = 1 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line) 
and without the finite-size effect (black line). 
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Fig. 3-10. Atomic population on the excited atomic state, as a function of βF t, for Δ

c/βF = 5 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/10 (magenta line) 
and without the finite-size effect (black line). 
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Fig. 3-11. Atomic population on the excited atomic state, as a function of βF t, for Δ

c/βF = −0.01 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/50 (cyan line) 
and without the finite-size effect (black line). 
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Fig. 3-12. Atomic population on the excited atomic state, as a function of βF t, for Δ

c/βF = 0.01 with various values of ratio from a/d = 1/2 (red line) to a/d = 1/50 (cyan line) 
and without the finite-size effect (black line). 
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Chapter 4   Conclusion and Future works 

4-1 Conclusion 

The dynamics of the spontaneous emission of an atom in a photonic crystal can be 

treated by the fractional calculus.  For the first time to our knowledge we show that it is a 

fractal phenomenon that induces the long-time memory of the spontaneous emission in the 

photonic crystal.  Fractional memory kernel was derived in the long time limit as a result 

of rapidly varying in frequency near a photonic band edge where the density of 

electromagnetic modes possesses singularity.  We also show that there is no 

multiple-valued problem encountered in our derivation.  Contrary to the previous study, 

there is no unphysical state of fractionalized atomic population in the excited state when 

the resonant atomic frequency lies in the allowed band even extremely close to the band 

edge. 

The atomic population on excited state as a function of the scale time for various 

values of the atomic detuning outside the photonic band gap vanishes in the long-time limit 

for isotropic and anisotropic model.  We can see that as Δc increases, the decay rate very 

rapidly.  When the population inside or at the band gap, we found the excited-state 

population exhibits decay and oscillation behavior before reaching a nonzero steady-state 

value due to photon localization.  Besides to near band edge, a superposition of the 

continuum states and a bound state leads the emitted photon to the atom in anisotropic 

model.  

Finally, we use various values of a/d to calculate the probability of the atom with 

finite-size effect.  We find that the excited-state population within the band gap exhibits 
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decay and oscillatory behavior before reaching a nonzero steady-state which is bigger as 

the atom size increasing.  On the other hand, when the atomic detuning in the allowed 

band, the decay rate decreases as the size increasing.  These effects are due to the 

atom-field coupling that causes field confinement. 

 

4-2 Future works 

 The band structure of photonic crystals is an important factor for spontaneous 

emission of an atom under atom-field interaction.  In ours previous studies, the dispersion 

relation of photonic crystal about the upper band edge (the air band) and only one band 

were considered.  Therefore, we will also consider the lower band (the dielectric band) 

and multiple bands in the future.  The existence of multiple bands in the density of states 

will allow for a more realistic description of the dynamics. 

 On the other hand, driving a multi-level atom with a sufficiently strong resonant field 

alters the radiative dynamics in a fundamental way.  It leads to such interesting effects as 

the enhancement of the index of refraction with greatly reduced absorption, 

electromagnetically and optical amplification without population inversion.  In a 

three-level atoms are of particular interest in quantum optics and predictably their behavior 

in the context of structured reservoirs has been addressed.  This is includes ladder, Λ and 

V type arrangements.  In view of these results, it would be interesting to investigate the 

combines effects of coherent control by an external driving field and photon localization 

facilitated by embedded in a photonic band gap material.  Hence, our future work is to 

investigate the coherent control of spontaneous emission for a three-level atom located 

within in a perfect photonic band gap structure. 
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Due to the technical difficulties in producing the three-dimension (3D) photonic 

crystal band-gap materials with a sufficiently large and complete band gap, an 

unambiguous experimental proof of this effect has, however, not been achieved until now.  

On the other hand, it is well known that the radiative decay of an atom can be substantially 

altered by frequently repeated measurements.  This result of the interplay between 

quantum dynamics and measurement, which is absent in classical measurements, is known 

as the quantum Zeno, (decay suppression) or quantum-anti-Zeno (decay acceleration) 

effects.  Therefore, in the future, we hope to study deeper research for example with 

quantum measurement and the behavior of an atom in photonic crystal by using Quantum 

Optics. 
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Appendix A. Hamiltonian of a two-level atom interaction 

with a field [16] 

 

In this appendix we drive the total Hamiltonian from a gauge invariance point of view 

in semiclassical theory and quantum theory by using dipole approximation.  A 

semiclassical theory of the interaction of a single two-level atom with a single mode of the 

field in which the atom is treated as a quantum two-level system and the field is treated 

classically.  Otherwise, we also treat the atom-field interaction Hamiltonian in fully 

quantum theory where a quantized description of the field is required. 

 

A-1   Local gauge invariance and minimal-coupling Hamiltonian 

The motion of a free electron is described by the Schrödinger equation 

2
2

2
i

m t
ψψ− ∂∇ =
∂

,                           (A.1) 

such that 2( , ) | ( , ) |P r t r tψ=  gives the probability density of finding an electron at position 

r and time t.  In Eq. (A.1), if ( , )r tψ  is a solution so is 1( , ) ( , ) exp( )r t r t iψ ψ χ=  where 

χ is an arbitrary constant phase.  The probability density ( , )P r t  would also remain 

unaffected by an arbitrary choice of χ.  Thus the choice of the phase of the wave 

function ( , )r tψ  is completely arbitrary, and two functions differing only by a constant 

phase factor represent the same physical state.  

The situation is different, however, if the phase is allowed to vary locally, i.e. to be a 

function of space and time variables as  

( , )( , ) ( , ) i r tr t r t e χψ ψ→ .                        (A.2) 
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The probability ( , )P r t  remains unaffected by this transformation, but the Schrödinger 

equation (A.1) is no longer satisfied.  We examine the problem of an electron bound by a 

potential V(r) which arises from the electrostatic potential that binds the electron to the 

nucleus and want to satisfy local gauge (phase) invariance, then the Schrödinger equation 

must be modified by adding new terms to Eq. (A.1) 

2
2[ ]( , ) ( , ) ( )

2
ei A r t eU r t eV r i

m t
ψψ⎧ ⎫

⎨ ⎬
⎩ ⎭

− ∂∇ − + + =
∂

,         (A.3) 

where ( , )A r t  and ( , )U r t  are vector and scalar potentials of the electromagnetic field, 

respectively, which must be inserted into Eq. (A.1) if we want to be able to make the 

transformation Eq. (A.2), and are given by 

( , ) ( , ) ( , )A r t A r t r t
e

χ→ ∇+ ,                      (A.4) 

( , ) ( , ) ( , )U r t U r t r t
e t

χ∂→ −
∂

,                     (A.5) 

The gauge-independent quantities are the electric and magnetic fields 

AE U
t

∂= −∇ −
∂

,                            (A.6) 

B A= ∇× .                                 (A.7) 

Equation (A.3), which is the logical extension of Eq. (A.1) due to the requirement of local 

gauge (phase) invariance, has the form 

i
t

ψψ ∂=
∂

H ,                              (A.8) 

where H being the minimal-coupling Hamiltonian. 

The minimal-coupling Hamiltonian for an interaction between an atom and the 
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radiation field can be reduced to a simple form by using the dipole approximation.  

Consider an atom interacting with a radiation field represented by a vector potential A(ro 

+r, t).  This vector potential may be written in the dipole approximation, k‧r <<1, as 

                  A(ro +r, t) = A(t) exp[ik‧(ro +r)]    

                       = A(t) exp(ik‧ro)(1+ ik‧r +...) 

                       ≈ A(t) exp(ik‧ro).                           (A.9) 

The Schrödinger equation in the dipole approximation with A(r, t) = A(ro, t) is given by Eq. 

(A.3), i.e.,  

0

2
2[ ] ( , )( , ) ( ) ( , )

2
e r ti A r t eV r r t i

m t
ψψ⎧ ⎫

⎨ ⎬
⎩ ⎭

− ∂∇ − + =
∂

,          (A.10) 

which are working in the radiation gauge, in which ( , ) 0U r t =  and 0A∇ ⋅ = .  

Therefore the total Hamiltonian can be obtained as 

0

2
2

tot [ ]= ( , ) ( )
2

ei A r t eV r
m

− ∇ − +H .                  (A.11) 

 

A-2  r • E Hamiltonian 

We proceed to simplify Eq. (A.10) by defining a new wave function ψ(r,t) as 

0( , ) exp ( , ) ( , )ier t A r t r r tψ φ⎡ ⎤
⎢ ⎥⎣ ⎦

= ⋅                     (A.12) 

by applying the gauge transformation  

0( , ) ( , ) /r t eA r t rχ = − ⋅ .                       (A.13) 
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Inserting Eq. (A.12) into Eq. (A.10), we find  

2
( , ) ( , ) ( ) ( , )

2
pi A r r t r t eV r r t
m

ie φ φ φ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
⋅ + = + ,           (A.14) 

where p i= − ∇  is the canonical momentum operator.  Taking the simple form as  

A 0( , ) ( , ) ( , )i r t er E r t r tφ φ⎡ ⎤
⎣ ⎦= − ⋅H ,                 (A.15) 

where  

2

A ( )
2
p eV r
m

= +H ,                           (A.16) 

is the Hamiltonian of the free atom and we use 0( , )E r t A= − .  Therefore, the total 

Hamiltonian is tot A int+=H H H  with 

0int ( , )er E r t= − ⋅H .                          (A.17) 

which is interaction Hamiltonian in dipole approximation. 

 

A-3  p • A Hamiltonian 

The Hamiltonian can be also expressed in terms of the canonical momentum p and the 

vector potential A.  We again choose a radiation gauge in which ( , ) 0U r t =  and 0A∇⋅ = .  

By using the canonical momentum operator p i= − ∇ , the total Hamiltonian in Eq. (A.11) 

can be written as 

0

2
tot

1 ( , ) ( )
2

p eA r t eV r
m

⎡ ⎤
⎣ ⎦= − +H .                  (A.18) 

We may write Eq. (A.17) as 
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2 2
2

0 0tot ( ) ( , ) ( , )
2 2
p e eeV r A r t p A r t
m m m

= + − ⋅ +H .             (A.19) 

Therefore, the total Hamiltonian tot intA +=H H H  where AH  is given by Eq. (A.16) and  

2
2

0 0int ( , ) ( , )
2

e eA r t p A r t
m m

= − ⋅ +H .                    (A.20) 

is the interaction Hamiltonian.  In Eq. (A.20), the first term of represents the interaction 

between the electron momentum p and the radiation field A and the second term represents 

the energy of mutual interaction between radiation fields through the coupling of the 

electron to the field.  The second term in eq. (A.20) is usually small and can be ignored.  

Hence, the total Hamiltonian is tot A int+=H H H  with 

0int ( , )e A r t p
m

= − ⋅H .                          (A.21) 

 

A-4  Fully quantum theory 

In the preceding sections concerning the interaction of a radiation field with matter, 

we assumed the field to be classical.  In many situations this assumption is valid.  There 

are, however, many instances where a classical field fails to explain experimentally 

observed results and a quantized description of the field is required. 

Due to the quantum aspects of the field, the total Hamiltonian is treated by adding the 

energy of the quantized radiation field FH .  Therefore, the r．E and the p．A interaction 

Hamiltonian respectively as  

tot FA 0( , )er E r t= − ⋅ +H H H ,                    (A.22) 

and 
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0tot FA ( , )e A r t p
m

= − ⋅ +H H H ,                   (A.23) 

where AH  is the Hamiltonian of the free atom in Eq. (A.16). 
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