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Chapter 2  Mechanisms of passive mode-locking 

 

2-1 Basic principles of mode-locking 

Oscillation in an inhomogeneously broadened laser can take place at a number of 

frequencies, which are separated by (assuming a refractive index of n = 1)  

Ω≣
l
cπ

=ωω 1+qq -
,                          (2-1.1)

 

where Ω is the free spectral range (or the mode spacing) in angular frequency and q is an 

integer.  Now consider the total electric field on a reference plane resulting from such a 

multimode oscillation, say next to one of the mirrors, in the optical resonator.  It can be 

taken, using complex notation [1], as  

( ) ( )[ ]∑
m

φ+tΩm+ωi
m

m0eC=tE
,
                        (2-1.2) 

where Cm and φm are the amplitude and the phase of the m-th mode.  The summation runs 

over all the oscillating modes and ω0 is chosen arbitrarily as oscillation frequency of one of 

the modes (usually chosen as the one closest to the line center).  One property of Eq. 

(2-1-2) is that )t(E  is periodic in time with a period of cl2=Ωπ2τ ≣ , which is the 

round-trip transit time inside the resonator.  Using Eq. (2-1-2), the field at t + τ can be 

written 

∑
m

m0m ]}φ+)
Ω
π2

+t)(Ωm+ω[(iexp{C=)τ+t(E  

( )[ ]{ }∑
m

0
m0m m+

Ω
ω

π2iexpφ+tΩm+ωiexpC=  

( ) )Ω/tπω2iexp(tE= 0 .                            (2-1.3)  

Notice that E(t+τ) is identical to E(t), except with a constant phase factor and the periodic 

property of E(t) depends on the fact that the modes are equally spaced and the phases φm 
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are fixed.  In typical lasers the phases φm are likely to vary randomly with time.  This 

causes the intensity of the laser output to fluctuate randomly and greatly reduces its 

usefulness for many applications where temporal coherence is important.  It should be 

noted that this fluctuation takes place because of random interference between modes and 

not because of intensity fluctuations of individual modes.  

Two ways in which the laser can be made coherent are:  First, make it possible for 

the laser to oscillate at a single frequency only so that mode interference is eliminated.  

This can be achieved in a variety of ways, including shortening the resonator length l, thus 

increasing the mode spacing (Ω=πc/l) to a point where only one mode has sufficient gain to 

oscillate.  The second approach is to force the phases φm of all the modes to maintain their 

relative values (ideally zero, so that they all oscillate in phase).  This is the so-called 

"mode locking" technique proposed and demonstrated in the early history of the laser.  

This mode locking causes the oscillation intensity to consist of a periodic pulse train with a 

period of cl2=Ωπ2τ ≣ . 

One of the most useful forms of mode locking results when the phases φm are made 

equal to zero.  To simplify the analysis of this case, assume that there are N oscillating 

modes with equal amplitudes.  Taking N/1=Cm and φm = 0 in Eq. (2-1-2), we obtain  

( ) ( )
)2/tΩsin(
)2/tΩNsin(

e
N
1

=e
N
1

=tE t]2/Ω)1+N(+ω[i
N

1=m

tΩm+ωi 00∑
,
                    (2-1.4)  

where the field is normalized to a constant energy (independent of N).  The last equality 

is obtained by summing up the geometric series.  The average laser power output is 

proportional to E(t)E*(t) and is given by 

( )
)2tΩ(sin
)2tΩN(sin

N
1

tP 2

2

∝
,
                                (2-1.5)  

 where the averaging is performed over a time that is long compared with the optical 
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period 2π/ω0 but short compared with the modulation period 2π/Ω.  

Some of the analytic properties of P(t) are immediately apparent:  

1. The power is emitted in a form of a train of pulses with a period τ=2l/c, i.e., the 

round-trip transit time.  

2. The peak power, P(sτ) (for s = 0, 1, 2, 3, . . .), is equal to N times the average power, 

where N is the number of modes locked together.  

3. The peak field amplitude is equal to N times the amplitude of a single mode.  

4. The pulse width of the main peaks, defined as the time from the peak to the first zero is 

　τ0=τ/N.  This is approximately the FWHM of the main peaks of P(t) (for N >> 1).  

There are (N-2) sidelobes between the neighboring main peaks.  

The number of oscillating modes can be estimated by ΩωΔ≅N , that is, the ratio 

of the transition line width Δω (or gain bandwidth) to the frequency spacing between the 

modes.  Using this relation, as well as τ = 2π/Ω in τ0 = τ/N, we obtain  

Nv
τ

=
Δ

=
ωΔ
π

τ
12~0

,
                                      (2-1.6)  

where Δυ is the gain bandwidth.  Thus the temporal length of the mode-locked laser 

pulses is approximately the inverse of the gain line-width.  

 

2-2 Passively mode-locking with nonlinear mirror  

Saturable absorbers exhibit intensity-dependent light transmission.  In mode-locked 

lasers this feature is used to perform amplitude discrimination and pulse shortening.  

Pulse shortening has been analyzed in the case of a fast absorber.  Recently a novel 

nonlinear optical device utilizing second harmonic generation was proposed.  It may 

exhibit intensity-dependent reflection or transmission with a fast time response in the 

sub-picosecond range.  Successful mode locking of a Nd doped laser using this device 

was demonstrated.  Since one of the important characteristics of a mode locker is pulse 
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shortening in a single transit, pulse shortening is due to reflection by the nonlinear mirror 

as Fig. 2-1 shown below 

 

Fig. 2-1 The nonlinear mirror consists of a nonlinear crystal (NLC) for SHG and 

M-dichroic mirror 

 

Fig. 2-1 illustrates the basic idea of the nonlinear mirror.  An intense light beam at 

frequency ω generates second harmonic (SH) wave in a nonlinear crystal NLC.  The total 

SH at 2ω and part of the fundamental F are reflected by a dichroic mirror M in the exact 

backward direction.  In the second pass through the nonlinear crystal, partial 

reconversion of the second harmonic into the fundamental takes place. The higher the 

intensity of the incident beam the higher is the conversion into the second harmonic and 

the higher is the amplification of the reflected fundamental due to the presence of the 

second harmonic wave.  Hence one should expect that the resultant reflectivity increases 

with the increase of the intensity of the incident beam. 

    First, we review the basic theory of the second harmonic generation derived from the 

Maxwell equations [2].  We consider the interaction of three waves with (ω3 = ω1 + ω2) 

via the second-order optical nonlinearity.  Let the field be written as 

)t(E+)t(E+)t(E=)t(E 321 ω
i

ω
i

ω
ii   (i = x', y', z').                    (2-2.1) 

with ( ) ( ).c.c+eEa
2
1

=.c.c+eE
2
1

=)t(E )zktω(i
1i1

)zktω(iω
i0

ω
i

111111 --     (i = x', y', z') 

  

NLC M
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( ) ( ).c.c+eEa
2
1

=.c.c+eE
2
1

=)t(E )zktω(i
2i2

)zktω(iω
i0

ω
i

222222 --      (i = x', y', z') 

( ) ( ).c.c+eEa
2
1

=.c.c+eE
2
1

=)t(E )zktω(i
3i3

)zktω(iω
i0

ω
i

333333 -- ,   (i = x', y', z'), 

where we assume that all of the three fields are the normal modes of propagation along the 

z-direction in the nonlinear medium, with unique wave-numbers k1, k2, and k3 and 

amplitudes E1, E2, and E3.  In the above equations, a1, a2, and a3 are unit vectors 

representing the polarization direction of the normal modes of propagation of these three 

fields in the nonlinear medium.  In formulating the interaction we adopt z-axis as the 

common direction of propagation, and (x', y', z') as the Cartesian components in the 

principal coordinates of the nonlinear medium.  These three fields are propagating in the 

same direction (z-axis), but may assume different polarization states.  Generally speaking, 

the direction of propagation (z) may not be parallel to one of the principal axes.  The 

collinear propagation in the nonlinear medium is to ensure the maximum physical overlap. 

In the absence of nonlinear dielectric response, these three fields are solutions of the wave 

equation, and are propagating independently in the medium. 

By combining the Maxwell’s equations and eliminating the magnetic field, we can 

get wave equation in a form which includes the electric field and polarization only: 

NLttt
PEPEE 2

2

02

2

002

2

0
2 )(

∂
∂

μ+
∂
∂

εμ=+ε
∂
∂

μ=∇ ,                   (2-2.2) 

where PNL stands for the nonlinear polarization and can be written as 

kjijkiNL EEd2=)P(     (i, j, k = x', y', z').                  (2-2.3) 

It is important to note that E in the above equation is the sum of the three fields given by Eq. 

(2-2.1).  As a result of the nonlinear polarization, the three fields are coupled.  To obtain 

the coupled equations for the field amplitudes, we start with the nonlinear polarization at 

(ω1 = ω3 - ω2). 

.c.c+eEEaad=)]t,z(P[ ]z)kk(t)ωω[(i*
23k2j3ijki

ωω
NL

232323 ---                    (2-2.4) 
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.c.c+eEEaad=)]t,z(P[ ]z)kk(t)ωω[(i*
13k1j3ijki

ωω
NL

131313 ---                     (2-2.5) 

.c.c+eEEaad=)]t,z(P[ ]z)k+k(t)ω+ω[(i
21k2j1ijki

ω+ω
NL

212121 ,                   (2-2.6) 

where we observe the convention of summation over repeated indices (i, j, k = x', y', z'). 

These nonlinear polarizations can be viewed as distributed dipole sources which can 

radiate and generate waves at the oscillating frequencies.  We now substitute these 

nonlinear polarizations into the wave equation.  By carrying out the indicated 

differentiation and assuming the following slowly varying amplitude approximation, 

sss2

2

E
dz
d

k<<E
dz
d

,  (s = 1, 2, 3),                            (2-2.7) 

we obtain, after few steps of algebra 

z)kkk(i*
23

1

0
11

123eEdE
ε
μ

ωi=E
dz
d ---- , 

z)kkk(i+*
31

2

0
2

*
2

123eEdE
ε
μ

ωi+=E
dz
d -- ,                       (2-2.8) 

z)kkk(i+
21

3

0
33

123eEdE
ε
μ

ωi=E
dz
d --- ,  

where d is the effective second-order nonlinear coefficient 

∑
ijk

k3j2i1ijk aaad=d .                                  (2-2.9) 

The coupled equations (2-2.8) constitute the main result of this section.  In arriving at the 

coupled equations, we have employed the cyclic symmetry of the nonlinear coefficients, 

i.e., ikjjikijk ddd == .  We will apply them in the following sections to some specific cases. 

We note the coupled equations are in agreement with the conservation of energy.  It can 

be shown that 

( ) 0=Eε+Eε+Eε
dz
d 2

33
2

22
2

11 ,                     (2-2.10) 

provided (ω3  = ω1 + ω2). 

If we define the following new field variables A1, A2, and A3, 
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3,2,1=m,E
ω
n

=A m
m

m
m ,                       (2-2.11) 

where nm is the index of refraction associated with wave Em, and ωm is the corresponding 

frequency.  The beam intensity can be written 

2
mm

0

02
mm

0

0
m |A|ω

μ
ε

2
1

=|E|n
μ
ε

2
1

=I .                          (2-2.12) 

Since a photon's energy is ωh , it follows that 2
mA  is proportional to the photon flux of 

the beam at frequency ωm, the proportional constant being independent of frequency.  The 

coupled equations Eq. (2-2.8) can now be written 

kzΔi*
231 eAAκi=A

dz
d -- , 

kzΔi+*
31

*
2 eAAκi+=A

dz
d

,                                   (2-2.13) 

kzΔi+
233 eAAκi=A

dz
d

- , 

where the momentum mismatch Δk (or wave-number mismatch) and the coupling constant 

are given by 

)k+k(k=kΔ 213 - ,                                 (2-2.14) 

3210

3210

ijk
k3j2i1ijk

3210

3210

nnnε
ωωωμ

aaad=
nnnε
ωωωμ

d=κ ∑ ,               (2-2.15) 

where the summations are over all the components of the polarization unit vectors.  Using 

Eq. (2-2.15), the conservation of energy becomes 

( ) 0=Aω+Aω+Aω
dz
d 2

33
2

22
2

11                      (2-2.16) 

(for second harmonic generation, the above indices 1 = 2).  Since the nonlinear behavior 

of the mirror is expected to be more pronounced for high conversion into the second 

harmonic, the depletion of the fundamental is considerable and thus cannot be neglected.  

Therefore we use the exact solution for the amplitudes of the light waves (fundamental and 

second harmonic), as given by Armstrong et al.  The treatment here considers plane 

waves and the following assumptions are made:  
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I. perfect phase matching, i.e. Δk = k3-2k1 = 0.  

II. non-critical, i.e. 900 phase matching for which the “walk off” effect is avoided. 

III. quasi-stationary operation. 

The phase modulation, which may limit the conversion efficiency, is not included in this 

treatment. 

    We denote the real amplitude of the fundamental and the second harmonic with A1 

and A2 and introduce a new variable,  

z)A+A(C=δ 2/12
2

2
1 ,                 (2-2.17) 

derived by Stankov [3].  Here z is the distance, traveled by the waves in nonlinear crystal; 

C is a constant, which includes the second-order nonlinear susceptibility χ(2) and the 

quantity in the brackets is the total power flux.  Then the normalized amplitudes for the 

fundamental F and the second harmonic SH: 

2/12
2

2
11 )A+A/(A=u ,                                           (2-2.18) 

2/12
2

2
12 )A+A/(A=v .                                           (2-2.19) 

And substitute Eqs. (2-2.17), (2-2.18) and (2-2.19) into Eq (2-2.13) with the required 

conditions (I), (II) and (III) mentioned above, it gets 

Θsin•uv=
δd

du
- ,                                                (2-2.20) 

Θsin•u=
δd

dv 2 ,                                                 (2-2.21) 

where 31 ΦΦ2=Θ -  is the phase difference between the two light waves with initial 

phase Φ1 and Φ2 for F and SH.  Power conservation requires that: 

1=v+u 22 .                                                    (2-2.22) 

The solution of these equations under certain initial conditions is given by: 

)δ+δtanh(=v 0 ,                                               (2-2.23) 

)δ+δ(hsec=u 0 ;                                                (2-2.24) 
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and we shall discuss this in more details, because it is crucial for the operation of the 

nonlinear mirror.  First, if the amplitude of the SH is initial zero, A2(0) = 0, the constant 

δ0 = 0 and the second harmonic intensity increase with propagation in nonlinear crystal.  

The situation is encountered when the incident light beam travels through the nonlinear 

crystal from the left to the right. 

    If A1(0) ≠ 0, A2(0) ≠ 0 and the initial phase difference at the entrance boundary of the 

NLC equals π/2, the second harmonic will be amplified first.  In this case δ0 > 0 and the 

fundamental wave may be converted completely into the SH.  If Θ = -π/2 and δ0 < 0, then 

the fundamental will be amplified first.  This situation takes place when the fundamental 

F and SH are reflected back by the mirror M and the phase shift Θ is properly adjusted.  

After the first pass through the nonlinear crystal the phase shift between F and SH is +π/2, 

a phase change of –π may be obtained by tilting the nonlinear crystal or changing the 

distance between the nonlinear crystal and the dichroic mirror M (using dispersion in air). 

    The analysis of the nonlinear mirror is simplified by the fact that one may use relative 

intensities to evaluate the nonlinear reflection coefficient.  A useful parameter is the 

power conversion efficiency into SH, which we denoted by η.  Thus, we start with 

relative intensity of the fundamental A2(0) = 1, which provides the conversion efficiency η. 

The normalized amplitudes of the SH and F after the first pass through the nonlinear 

crystal are: 

η=v ,                                                       (2-2.25) 

)η1(=u - .                                                   (2-2.26) 

The coordinate δ is then simplified given by: 

ηharctan=δ .                                                (2-2.27) 

If the power reflection coefficient of dichroic mirror M for F and SH are Rω and R2ω 

respectively, the amplitudes of the reflected light waves at ω and 2ω are: 
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ω
'
1 Ru=A ,                                                   (2-2.28) 

ω2
'
2 Rv=A .                                                  (2-2.29) 

The total power flux, which enters the NLC after reflection by the mirror is ( 2'
2

2'
1 A+A ) 

and new coordinate δ, corresponding to this power flux is  

2/12
2

2
1

2/12
2

2
1 )'A+'A(δ=z•)'A+'A(C='δ .                          (2-2.30) 

Because δ = C A1(0) z and A1(0) = 1.  One can find the new value of the normalized SH 

amplitude v” at the exit plane of the nonlinear crystal in the backward direction: 

)δ'δtanh(="v 0- .                                               (2-2.31) 

The constant δ0 is determined by the initial conditions for reflected waves at the entrance 

of the NLC in the backward direction  

])'A+'A/('A[harctan=δ 2/12
2

2
12 .                                  (2-2.32) 

Then the normalized intensity of the fundamental wave, emerging from the nonlinear 

mirror is: 

22 "v1="u - .                                                   (2-2.33) 

Here one should point out that the scale for the reflected waves is described by a factor 

2'
2

2'
1 A+A .  Therefore, a correction has to make for the intensity of the emerging waves. 

The intensity of the amplified fundamental represents the nonlinear coefficient RNL, 

because the intensity of the incident fundamental is chosen to be equal to 1: 

)'A+'A("u=R 2
2

2
1

2
NL .                                          (2-2.34) 

Substituting the Eqs. (2-2.25)-(2-2.33) into (2-2.34), one obtains: 

2/1
ωω2

2
ωω2NL ]R)η1(+Rη([tanh1][R)η1(+Rη[=R ---  

})]]R)η1(+Rη/[)Rη{(harctanηharctan• 2/1
ωω2

2/1
ω2 -- .           (2-2.35) 

An illustration of the variation of F and SH light wave powers is presents in Fig. 2-2.  
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The conversion efficiency into SH is 70%, the reflection coefficient of the mirror M is 

0.99 for SH and 0.1 for F.  After the first pass through the nonlinear crystal the 

fundamental intensity decreases to 30% of its initial value of which 10% are reflected back 

into nonlinear crystal.  The injected intensity of 3% increase again (on left hand).  This 

is the value of the nonlinear reflection coefficient RNL. 

  

Fig. 2-2 Variation of the intensities of the fundamental (F) and the second harmonic (SH) 

as function of coordinate δ.  The conversion efficiency into SH is 0.7, the power 

reflection coefficient for F and SH are 0.1 and 0.99 respectively.  Note the different 

scales for forward (region A) and backward (region C) propagation. The region B 

corresponding to reflection by the mirror M. 

 

2-3 Passive mode-locking with semiconductor saturable absorber mirror 

The theory of CW mode-locking laser was first derived from the two papers of Haus’s 

[4].  Much of passive mode locking treats in time domains, and especially, it was derived 

in frequency domain in [5].  Consider the laser cavity as Fig. 2.3 
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. 

Fig. 2-3 Schematic of Laser with saturable absorber. 

 

So we can interpret the electric field in the Fourier space of (2-3-1)  

)ω(E)]ω(Gexp[)Tωjexp(=)ω(E knkIkknI - ,                           (2-3.1) 

where )ω(G k  is frequency dependent gain of the laser medium and TI is time delay in the 

gain medium.  In time domain, it can transfer into 

)Tt(E))
dt
d

(Gexp(=)t(E InnI - ,                                     (2-3.2) 

where )
dt
d

(G  is interpreted in terms of the expansion of the exponential )]ω(Gexp[ k  in 

jωk, and replacement of the nth power of jωk by dn/dtn.  After passage through the 

saturable absorber, the electric field is  

)TTt(E))
dt
d

(Gexp()]t(Lexp[=)t(E IIInnI --- ,                         (2-3.3) 

where L(t) is the power-dependent absorption coefficient of the saturable absorber.  When 

the pulse returns to the reference plane, the delay time is equal to the cavity round-trip time, 

TR=2(TI+TII), and two exponential have to reapplied.  In order to take cavity loss into 

account, one multiples the result in addition by exp[-(ω0/2Q)TR], which accounts for 

exponential decay of the pulse as determined by the Q of the axial modes.  Here ω0 is the 

center frequency of the pulse spectrum which has been assumed narrow. 

The return pulse on the reference plane, now by definition the (n+1)-st pulse of the 

TI 

Gain Medium Saturate absorber 

Reference plane 

TII 
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train, is given by 

)T2T2t(E)]
dt
d

(Gexp[)]t(L2exp[)]
dt
d

(Gexp[)T
Q2
ω

exp(=)t(E IIInR
0

1+n ---- . (2-3.4) 

The first approximation we shall make is that the change on the pulse upon any one 

passage through the components of the systems is small, so that the exponential can be 

expanded to the first order.  Furthermore, we assume that the gain has a Lorentzian line 

shape and can be expand to the second order in terms of the center frequency ω0 

])
ω
ωω

(
ω
ωω

j1)[ω(G)
ω
ωω

j+1)(ω(G=)ω(G 2

L

0k

L

0k
0

1

L

0k
0k

-
-

-
-≈

-
.     (2-3.5) 

Because gain contains powers of ω-ω0 , it is convenient to write the electric field in terms 

of a slowly time-varying envelope υ(t) and exp(jω0t) 

)tωjexp()t(υ=)t(E 0nn                                            (2-3.6) 

with the Fourier transform  

)ωω(υ=)ω(E 0knkn - .                                             (2-3.7) 

Multiplication of En(ωk) by j(ωk-ω0) corresponding to d/dt-jω0 in time domain which may 

be interpreted by a time derivative of υn(t) alone.  Using Eqs. (2-3-2)-(2-3-5) and 

expanding the exponentials, one obtains 

)Tt(υ)]
dt
d

ω
1

dt
d

ω
1

+1)(ω(G2+)t(L2T
Q2
ω

1[=)t(υ Rn
L

2

2

2
L

0R
0

1+n ---- .       (2-3.8) 

It convenient to simplify notation by introduction the following symbols: 

g≣
T)Q2/ω(
)ω(G2

R0

0 ,                                                (2-3.9) 

the gain normalized to the loss.  Note that with no saturable absorber in the cavity, g = 1 

corresponds to the threshold, 

)t(Q
Q

T)Q2/ω(
)t(L2

AR0
≣ ,                                           (2-3.10) 

where QA may be interpreted as the amplitude- and hence time-, dependent Q as produced 

by the saturable absorber.  We then have for Eq. (2-3-6) 
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)Tt(υ)]
dt
d

ω
1

dt
d

ω
1

+1(g
)t(Q

Q
+1[T

Q2
ω

)Tt(υ=)t(υ Rn
L

2

2

2
LA

R
0

Rn1+n ----- .  (2-3.11) 

The (n+1)-st pulse is a delayed version of the n-th pulse and has experienced the 

modifications expressed by the operator  

)]
dt
d

ω
1

dt
d

ω
1

+1(g
)t(Q

Q
+1[T

Q2
ω

L
2

2

2
LA

R
0 --- .                          (2-3.12) 

The first term is the effect of the linear cavity loss, the second term represents the 

modulation by the time-dependent inverse Q of the saturable absorber.  The last term 

expresses the effect of the gain and dispersion of the laser medium. 

The fast absorber analysis contains a relation between the nth and (n+1)-st pulse 

passing through the laser discussed above.  From Eq. (2-3-9), the modulation after one 

round-trip can be expressed as  

)Tt(υ]
)t(Q

1
+

Q
1

[
2
Tω

=|υΔ Rn
A

R0
lossn -- .                            (2-3.13) 

The laser medium modifies υn by 

)Tt(υ]
dt
d

ω
1

dt
d

ω
1

+1[g
Q2
Tω

=|υΔ Rn
L

2

2

2
L

R0
gainn -- .                     (2-3.14) 

This modification is of operator character which entails growth (the first term), spreading 

via “diffusion in time” (the second term), and a delay due to the change in dielectric 

susceptibility as caused by the laser medium (the third term).  

We note first of all that a startup of single mode-locked pulses is characterized by 

the period TR; relaxation oscillations usually have a much longer period.  The laser 

line-width affects the process only for time durations of the order of the mode-locked 

pulse-width, which is much shorter than TR.  If one considers the limit where the change 

per pass is small enough, so that 

υ
dt
d

T
)Tt(υ)t(υ

R

R1+n1+n ~
--

,                                       (2-3.15) 

then one has the basic equation for υ 

υ]gq+1[
Q2
ω

=
dt
υd 0 -- ,                                            (2-3.16) 
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where we have defined the normalized inverse Q of the saturable absorber 

)t(q≣
)t(Q

Q

A
.                                                  (2-3.17) 

In addition to the equation for the field envelope υ(t) in the cavity, one needs equations for 

the time-dependent gain g(t) and the time-dependent inverse Q of the absorber, i.e., q(t). 

We assume that the population difference nA of the saturable absorber obeys the rate 

equation 

A
A

A

0
AA

A E
P

n
T

nn
=n

dt
d

-
-

-                                         (2-3.18) 

and a similar equation for the population difference of the laser medium.  Here nA
0 is the 

equilibrium difference, TA is the relaxation time, and EA is the saturation energy.  Now 

A

0
A

0
A

A

Q
Q

=
n
n

,                                                    (2-3.19) 

where QA
0 is the small-signal value of QA .  Using Eq. (2-3-17) in Eq. (2-3-16) and the 

definition Eq. (2-3-15), we obtain the equation of motion for q,  

AA
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E
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q
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qq
=q

dt
d

-
-

- .                                            (2-3.20) 

The equation of motion for the gain is correspondingly 

LL

0

E
P

g
T

gg
=g

dt
d

-
-

- .                                             (2-3.21) 

    These equations assume that 1/QA and g follow the time variation of P in the same 

way as they adjust to its time average (i.e., the same saturation energy is used for both). 

This is only correct if the laser and the saturable absorber media are near the end mirrors. 

Modifications to take into account other positions will be considered later.  Eq. (2-3-14) 

has a different interpretation when the period of the process under study is a submultiple of 

the cavity round-trip time TR (self-starting of mode locking) from the one when the period 

of the process is much longer than TR (relaxation oscillations). 
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2-3-1 Criterion of Q-switching 

    And we will focus later on “relaxation oscillation”, which is when the energy inside 

the cavity grows at a rate usually much slower than the round-trip time.  The laser gain 

gets progressively depleted to give away to loss and the energy decays.  The pumping 

restores the gain while the field in the cavity is low, and the process repeats itself.  

    If one finds such oscillations, one may expect, at the very least, that the mode-locked 

pulse train is modulated by the relaxation oscillation.  It is more likely that the existence 

of relaxation oscillations suppresses mode locking if the period of the relaxation oscillation 

is too short to allow for the buildup of mode-locked pulses within one cycle of the 

oscillation.  The equation for the radiation inside the cavity is now a simple rate equation. 

It follows from Eq. (2-3-14) by multiplication by υ* and addition of the complex conjugate 

as Haus dealt in [6].  One may normalize υ so that |υ|2 = P, the power traveling in one 

direction in the cavity.  The differential equation for P is 

P]gq+1[
T
1

=P
dt
d

c
-- ,                                           (2-3-1.1) 

where 
Q
ω

=
T
1 0

c
. 

The perturbation of Eq. (2-3-1.1) gives  

0=P]gδqδ[
T
1

+Pδ
dt
d

s
c

- ,                                        (2-3-1.2) 

where we have taken into account the fact that for the CW steady state the quantity 1 + qs - 

gs = 0.  If TA is taken as short compared to the period of interest, a condition always met 

when relaxation oscillations tend to occur, then δq is an instantaneous function of δP/PA 

A2

A

s

0

P
Pδ

)
P
P

+1(

q
=qδ - .                                            (2-3-1.3) 

Using Eqs. (2-3-1.3) in (2-3-1.2) and the differential equation Eq. (2-3-21) for δg, one has 

two coupled first-order differential equations for δP and δg.  Assuming the time 

dependence exp(st), one obtains the determinantal equation  
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Instabilities are found (Re s > 0) when either the s independent term is negative, i.e., 
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or the coefficient of s is negative 
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Condition (2-3-1.5) corresponds to exponential growth of perturbation.  It has the simple 

interpretation 

|g
dP
d

|<|q
dP
d

| at P = Ps .                                           (2-3-1.7) 

So it can give the stability criterion against Q-switching of cw-running laser. 

By simplifying Eq. (2-3-1.6), we get  

LT
r

<
dP
dq

P2     with 
LP

P
+1=r  and 

L

L
L τ

E
=P ,                   (2-3-1.8) 

where RLL TT=τ , r is the pump parameter that describes at how many times the threshold 

the laser operates, and PL is the saturation power of the laser gain.  The inequality 

(2-3-1.8) has a simple physical explanation.  The right side of Eq. (2-3-1.8) is the 

relaxation time to equilibrium for the gain at a given pump power and constant laser power. 

The left side is the decay time of a power fluctuation of the laser at fixed gain.  If the gain 

cannot react fast enough to fluctuations of the laser power, relaxation oscillations grow and 

result in passive Q-switching of the laser. 

 

2-3-2 Criterion of Q-switching mode-locking 

Reconsider the rate equations (2-3-20), (2-3-21) and (2-3-1.1) to understand the 
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regime of Q-switched mode locking [7].  Figure 2.4 indicates that we can approximate the 

laser power as 

∑ -
n

Rp )nTt(f)T(E=)t,T(P                                       (2-3-2.1) 

with 1=dt)nTt(f R

2/T

2/T

R

R
-

-∫ ,                                         (2-3-2.2) 

where Ep (T= nTR) is the pulse energy of the nth pulse, which only changes appreciably 

over many cavity round trips, and f(t) is the shape of the mode-locked pulses, which is not 

of interest for the time being.  For simplicity we assume that the mode-locked pulses are 

much shorter than the recovery time of the absorber.  In this case, the relaxation term for 

the absorber  

A

0

P/P+1
q

=q  with 
A

A
A τ

E
=P   )TT=τ( RAA                        (2-3-2.3) 

can be neglected for the duration of the mode-locked pulses. 

 

Fig. 2-4 Time dependence of the power when the laser operates in the Q-switched 

mode-locked regime 

 

Since the absorber recovery time is assumed to be much shorter than the cavity 

round-trip time, the absorber is unsaturated before the arrival of a pulse.  Thus, we obtain 

for the saturation of the absorber during one pulse 
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Therefore, the loss in pulse energy per round trip can be written as  
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This equation shows that the saturable absorber essentially saturates with the pulse energy, 

and not with the average intensity of the laser as before in the case (2-3-2.3) of cw Q 

switching.  Therefore, the absorber is much more strongly bleached at the same average 

power.  After averaging Eqs. (2-3-21) and (2-3-1.1) over one round trip, we obtain the 

following two equations for the dynamics of the pulse energy and the gain on a 

coarse-grained time scale T: 
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The averaging is allowed because the saturation of the gain medium within one pulse is 

negligible due to the small interaction cross section of the solid state laser material. 

Comparing Eqs. (2-3-21), (2-3-1-1) and (2-3-2.3) with (2-3-2.5), (2-3-2.6) and (2-3-2.7), it 

becomes obvious that the stability criterion (2-3-1.8) applies also to Q-switched mode 

locking if we replace the formula (2-3-2.3) for cw saturation of the absorber by the formula 

(2-3-2.5) for pulsed saturation.  Then we have  
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or again expressed in terms of the average power P = Ep/TR, and A
L

A
p T

P
P

=χ describes an 



 30

effective stiffness of the absorber compared with the gain when the laser is cw mode 

locked at the same average power as the cw laser.  

The theory presented so far yields guidelines for the design of an absorber that 

prevents Q-switching instabilities but still self-starts mode locking.  A saturable absorber 

alone can shorten a pulse until it is roughly on the order of the absorber relaxation time if, 

of course, the gain band-width is sufficiently large.  The pulse formation process is 

essentially given by the fast-saturable-absorber mode-locking model analyzed by Haus et 

al.  This is the case for pico-second lasers where dispersion and self-phase-modulation are 

not the dominant pulse-shaping mechanisms. 

 

2-3-3 Criterion of contineous wave mode-locking 

The nonlinear reflectivity R(Ep) can be measured with the output of another cw 

mode-locked laser, which provides enough pulse energy to bleach the absorber.  The 

pulse fluence in the absorber can be varied with an adjustable attenuator.  A typical 

nonlinear reflectivity of a SESAM is shown in Fig. 2.5.  The measured data are fitted with 

the function [8][9] 

A,sat

P

A,sat

P

nsP

E
E

]}1)
E
E

)[exp(RΔexp(+1ln{
R=)E(R

--
,                       (2-3-3.1) 

which was derived from a simple model for nonlinear pulse propagation in the absorber. 

This is equivalent to the equations used previously.  The fit parameters are ΔR, Fsat,A , and 

Rns, which is the reflectivity for high pulse energies and determines the nonsaturable loss 

ΔRns=1-Rns.  ΔR is the maximum change in nonlinear reflectivity, which is also referred 

to as the maximum modulation depth of the SESAM device.  For absorbers with ΔR 

smaller than approximately 10% (as used in all the experiments), one can simplify Eq. 

(2-3-3.1) to  
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Fig. 2-5 The measured data are fitted with the function of Eq (2-3-3.1) 

 

The nonlinear reflectivity R(Ep) of the SESAM is related to the pulse energy loss per round 

trip qp(Ep).  Note that it’s not include any nonsaturable losses in q(t) Eq. (2-3.20) or  
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q=)E(q
A,effA,sat

P

P

A,effA,sat
0Pp -- .                        (2-3-3.3) 

Therefore the maximum modulation depth is given by ΔR = 1- exp(-q0) ~ q0 for ΔR << 1.  

For passively mode-locked solid-state lasers we can assume that the modulation depth is 

small, i.e., ΔR << 1.  In addition, the nonsaturable losses should be as low as possible 

because they only degrade the laser performance.  For stable mode locking we typically 

have to use a small output coupler transmission Tout of the order of a few percent, which 

results in the additional condition that ΔRns << Tout << 1.  Therefore we can make the 

approximation that Rns ~ 1 and that 

)E(q1~)]E(qexp[~)E(R ppppp -- .                                (2-3-3.4) 

The approximations made for Eq. (2-3-3.2) are then consistent with Eqs. (2-3-3.4) and 

(2-3-3.3) by means of Rns ~ 1.  The stability criterion against QML from relation (2-3-2.8) 
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can be rewritten with the nonlinear reflectivity as [7] 
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The absorber parameters determine the left-hand side of relation Eq. (2-3-3.5), whereas, 

the right-hand side contains the laser material and laser cavity parameters. 

To benefit from the full modulation depth of the saturable absorber in cw 

mode-locked lasers, the pulse energy must be high enough to bleach the absorber.  To 

meet that condition, the pulse fluence in the SESAM should be approximately five times 

the absorber saturation fluence.  With this approximation and the assumption that Rns = 1, 

as well as with relations (2-3-3.4) and (2-3-3.3), it’s obtained for the nonlinear reflectivity 

of the SESAM [10] 
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F
RΔ1~)F(R - ,                                          (2-3-3.7) 

where FP,A=EP/Aeff, A is the pulse fluence (i.e., pulse energy per unit area) incident upon the 

SESAM.  At lower fluence the residual saturable absorption would contribute to the 

cavity loss and act against self-starting and efficient mode-locked operation.  If the laser 

operates far above threshold (r >> 1), which is the case in most mode-locked lasers, we can 

neglect the first term on the right-hand side of relation (2-3-3.6), and the stability criterion 

against QML becomes independent of the upper-state lifetime of the considered laser 

material.  The saturation energy is then the only relevant parameter of the gain medium. 

A laser material with a large stimulated-emission cross section σL is therefore desirable for 

stable cw mode locking. It also helps to choose a geometry of resonator with multiple 

passes through the gain medium to decrease the gain saturation fluence.  Selecting 

inhomogeneously broadened gain materials with the same averaged σL would also reduce 

the gain saturation fluence because the class of laser ions with the highest cross sections 
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dominates the gain saturation.  Reducing the spontaneous lifetime, e.g., by lifetime 

quenching effects, does not affect the stability condition against QML. 

With the approximations listed above, the stability condition (2-3-3.5) can be written 

in the following equivalent forms: 

RΔEE>E A,satL,sat
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p ,                                             (2-3-3.8) 
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ARAΔFF>P .                                (2-3-3.10) 

With respect to the experimental verification of the theory, it is helpful to introduce the 

QML parameter Esat,LEsat, AΔR, because it contains all the parameters that determine the 

laser dynamics.  We then define the critical intra-cavity pulse energy EP,c as the square 

root of the QML parameter: 

2/1
A,satL,satc,P )RΔEE(≣E  

2/1
A,effA,satL,effL,sat )RΔAFAF(= . 

This is the minimum intra-cavity pulse energy, which is required for obtaining stable cw 

mode locking; i.e., for EP. EP,c we obtain stable cw mode locking, and for EP , EP,c we 

obtain QML.  Note that, if we neglect the lifetime-dependent term in relation (2-3-3.6) 

and set the bracketed term in Eq. (2-3-3.2) as 1, both approximations lead to a slightly 

stricter stability criterion: A laser fulfilling the stability condition with these 

approximations will always fulfill the exact condition.  For good stability of a mode 

locked laser against unwanted fluctuations of pulse energy, operation close to the stability 

limit [relations (2-3-3.8)–(2-3-3.10)] is not recommended. 
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2-4 Generalized model for passively Q-switched lasers with simultaneous 

mode-locking 

    In this Section, we will show the temporal change of photon density by the method 

derived by many pioneers such as John J. Degnan [11] [12], Michael Bass [13], YF Chen 

[14][15].  The case we discussed is the laser with an intra-cavity saturable absorber.  The 

laser rod, saturable absorber and resonator mirrors are indicated.  The following coupled 

rate equations describe the laser’s operation: 
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And in Q-switching mode-locking state, photon density shape can be expressed as: 

)tt(fΦ=)t(Φ m
0=m

m -∑ ,                                            (2-4.4) 

where tm = m tr , with tr being the round trip time, m the number of round trip, Φm the 

relative amplitude of the mode locked pulses at m-th round trip, and f(t) assumed to be a 

sharp pulse centered at t = 0 which falls off rapidly in a time short compared to the 

resonator roundtrip transit time. 

Consider the excited state absorption (ESA) effect in a four-level saturable absorber, the 

relative amplitude of the mode-locked pulses at time tm = m tr after an additional roundtrip 

through the cavity is given by 

 ]}L+)
R
1

[ln(l)t(nσ2l)t(nσ2l)t(nσ2exp{Φ=Φ smesessmgsgsm1mm ---- ,       (2-4.5) 

where σ is the stimulated emission cross section of the gain medium, n(tm) is population 

density of the gain medium at the m-th roundtrip, l is length of the gain medium, σgs is 

ground-state absorption (GSA) in the saturable absorber, σes is ESA cross section in the 
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saturable absorber, ngs(tm) is the absorber ground-state population density at the m-th 

roundtrip, nes(tm) is absorber excited-state population density at the m-th roundtrip, R is 

reflectivity of the output mirror, and L is unsaturable intracavity roundtrip dissipative 

optical loss, respectively. 

Introducing the variable gses σ/σ=β  and using the condition ngs(tm) + nes(tm) = nso,  

Eq. (2-4.5) can be rewritten as  

]}L+)
R
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[ln(β+l)t(nσ)β1(2l)t(nσ2exp{Φ=Φ 2smgsgsm1mm -)]
T
1
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0

- ,    (2-4.6) 

where nso is the total density of the absorber and T0 = exp(-σgsnsols) is the initial 

transmission of the saturable absorber.  Note that the condition is an assumption 

introduced by Hercher [16] and adopted by Xiao and Bass [13] to simplify the analysis of 

passive saturable absorbers.  This condition assumes:  

1.  the upper terminal level of the GSA relaxes infinitely fast ( relative to the temporal 

duration of the optical pulse) to the lower level of the ESA. 

2.  the upper terminal level of the ESA behaves similarly.  Namely, it is assumed that the 

saturable absorber atomic populations are totally contained in either the ground or excited 

states during the interaction with the optical pulse.   

These approximations may not be valid for very short mode-locked pulse-widths.  

Since the Q-switched laser output pulses are much shorter than both the spontaneous 

lifetime and the pump period (time between output pulses), spontaneous relaxation and 

pumping can be safely neglected during the development of the output pulse.  Therefore, 

the equation for the time rate of change of the population inversion density can be 

expressed as Eq. (2-4.2) where c is the speed of light and is the inversion reduction factor.  

    Dividing Eq. (2-4.2) by n, using (2-4.4) and normalized function  

1=dt)t(fσc
∞

∞∫ ,                                                 (2-4.7) 

and integration over time from zero to tm, n(tm) is given by  
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where n(0) is the initial population inversion density in the gain medium.  It can be 

determined from the condition that the round–trip gain is exactly equal to the round-trip 

losses just before the Q-switch opens, thus  
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The equation for the time rate of change of the absorber ground state population density is 

given by Eq. (2-4.3), where A/As is the ratio of the effective area in the gain medium and 

in the saturable absorber.  Dividing Eq. (2-4.2) by (2-4.3) and integrated gives  
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where 
s

gs

A
A

σ
σ

γ
1
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The parameter α indicates how fast the saturable absorber is bleached.  The larger the 

parameter, the faster the saturable absorber is bleached.  Substituting Eqs. (2-4.8)-(2-4.10) 

into Eq. (2-4.6), the recurrence relation for Φm is given by: 
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In terms of )t(Φ , the instantaneous power coupled from the output mirror is given by 

Degnan: 
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R
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r
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where hυ is the laser photon energy and Al’ is the cavity volume occupied by photons. 

Substituting Eq. (2-4.12) into Eq. (2-4.13), the output power can be expressed as 
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In this simulation, we use hyperbolic secant as our pulse shape f(t) ~ sech2(t/τp), where the 

parameter τp is related to the FWHM mode-locked pulse-width by τ (FWHM) = 1.76τp [17]. 

Thus, we can simulate out the Q-switching mode-locking temporal results by (2-4.14) and 

we will present the results later in Chapter 6. 
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