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ABSTRACT

This thesis explores the novel use of semiconductor lasers as optical delay
lines. Slowing light using vertical-cavity surface-emitting lasers (VCSELS)
is explained and simulated using the VCSEL amplifier model. Simulated
results and experimental result are qualitatively in a good agreement. With
the aid of the filter phase analysis, the simulations-explain that group delay
increases with increased modal gain and decreases with increased
modulation frequency. Besides, the simulations predict the VCSEL’s
capability of delaying single-tone sinusoidal signal of 1 to 5 GHz. On the
other hand, RF delay or optical delay using injection-locking of VCSELS is
studied experimentally in the thesis. Optical spectra show that the VCSEL
is not in the stable-locking range. The VCSEL acts as a regenerative

amplifier, making one of the signal side band much larger than the other.
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Chapter 1

INTRODUCTION

Semiconductor optoelectronics deals with the interaction between electrons and
photons in the semiconductor materials and devices [1, 2]. Form an applied
physicist’s point of view, semiconductor optoelectronics is an exciting application of
quantum mechanics. In order to.describe how electrons interact with photons, semi
classical treatment which treats photons’ as a wperturbation field [3], or all
quantum-mechanically approach. which “sees  photons as quanta [2], is needed.
Besides, to design semiconductor materials and devices, quantum mechanics is
necessary to understand the crystal band structure, quantized electronic quantum
states in a low-dimensional nanostructure, and the working principle of the devices.
We have witnessed the great impact of the semiconductor optoelectronics on both
our everyday lives and scientific interests. One successful example is the
quantum-well semiconductor laser. Thanks modern heteroepitaxy techniques such
as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition
(MOCVD), high-quality quantum-well lasers can be made. Today, the quantum-well

semiconductor laser is found in virtually every home as part of the compact-disc (CD)



player [4].

On the other hand, the success in the growth of quantum-well structure makes a
study of the introductory quantum physics realizable in these artificial semiconductor
structures [3].  Semiconductor heterostructures and especially low-dimensional
nanostructures such as quantum wells (QW), quantum wires, and quantum dots (QD),
currently comprise the object of investigation of two thirds of all research groups in
the physics of semiconductors [4]. Among them, a QD mimics the basic properties
of an atom providing a geometrical size allowing the practical application of atomic
physics to the field of semiconductor devices [5]. In the optoelectronics applications,
quantum-dot lasers are expected :fo show a broader modulation bandwidth, higher
temperature stability and lower-power consumption than quantum-well counterparts,
primarily due to the discrete ehergy states .of electrons and holes under
three-dimensional quantum confinement by quantum dots [6]. At the beginning of
the 1990s it was realized that universal self-organization on surfaces in lattice
mismatched heteroepitaxial growth can be used to form high densities of homogenous
QDs [7]. Recently, owing to the developments of high-density and high-quality
InAs-based self-assembled quantum dots, semiconductor lasers using semiconductor
quantum dots in the wavelength range of 1.3—1.6um have improved in their
performances remarkably [6]. Therefore, QD lasers are very promising for new
generations of edge-emitting lasers (EEL) and vertical-cavity surface-emitting lasers

(VCSEL) in communication.



In addition to the development of the semiconductor lasers with low-dimensional
gain materials, one of the remaining grand challenges in optoelectronic technology is
the ability to store an optical signal in optical format [8]. Slow light, i.e. optical
signal propagating at a velocity much slower than the speed of light in the vacuum,
has attracted unprecedented attentions in the past few years [9]. Various
mechanisms have been used to obtain a large material dispersion for achieving slow
light on semiconductor platform [8, 9]. Among these methods, slowing light using
quantum-well Fabry-Perot laser [10], quantum-well VCSEL [11], and quantum-dot
VCSEL [12] creates new application of semiconductor lasers in communication in
addition to serving as optical transmitters. = ‘Especially, large delay-bandwidth
product (DBP) using surface-emitting lasers are experimentally demonstrated [11, 12],
but few theoretical explanation and analysis are given.

The outline of this thesis is as follows.

* Chapter 2 gives an introduction to semiconductor optoelectronics and
semiconductor lasers

*  Chapter 3 first reviews the previous experimental work in [12] and
subsequently utilizes VCSEL amplifier model to explain this novel
slow-light phenomenon with VCSEL.

* Chapter 4 studies RF delay or optical delay using injection-locking

technique of semiconductor lasers.

® The last chapter concludes the research study, and presents some future



work.




Chapter 2

SEMICONDUCTOR LASERS AND

LOW-DIMENSIONAL GAIN MATERIALS

2.1 INTRODUCTION

In this chapter, the basic theory of the semiconductor band structure using Kane’s
k-p model and low-dimensional, nanostructures will be reviewed first.
Subsequently, electron-photon mteraction in semiconductors and its low-dimensional
structures will be described using semi-classical @approach. Then we will review one
of the most important device applications of semiconductor optoelectronics —
semiconductor lasers, and vertical-cavity surface-emitting lasers (VCSELs) will then
be addressed. Afterward, semiconductor lasers with low-dimensional gain materials

will be discussed.

2.2 KANE’S k-p THEORY FOR SEMICONDUCTOR BAND

STRUCTURE [3, 13, 14]
A semiconductor crystal has a periodic arrangement of the atoms, and then has a

periodic electronic potentialV (F) =V (F + T), where Tis the translational vector of



the crystal lattice. Fig. 2.1 shows schematic plot of the periodic potential in a

one-dimensional crystal.

V(x)

T=ma, m=%l1,42, £3,...

(V)

(¥
— ™~ Cryatal ions

a

Figure 2.1. Schematic periodic potential in a one-dimensional crystal.

To describe the behavior of an electron in the,semiconductor crystal, we must solve

the eigenstates of the time-independent Schrodinger equation:

~ n’
r .= |—
Hy (M), =[5

v* VO e =E v, (D). (1.1)

0

Besides, for an electron in a periodic potential, Bloch theorem requires that
V(P =u,  (F)-e"". (1.2)

Therefore, the Schrédinger equation can be rewritten as

- Ky )

v? +V(r)+112~ plu . =(E, , -
m, m, ’ T 2m,

At the zone center (k=0), we can solve the energy eigenstates. Because the
Hamiltonian operator is hermitian, the eigenstates not in the zone center can be
presented as the linear combination of the eigenstates at the zone center. Using the

eigenstates at the zone center as the basis, we can get



U, (M= Cl U, () (1.4)

Use (1.4) in (1.3), we have

hz m m
[EM,k:0+2 kz_En,E]Cn,k +ZHll\</1pn Coy =0 (1.5)
m, m
where
h - A
Hom :m_ok '<uM,k:0‘p‘um,k:0>‘ (1.6)
A E(k)
> kK

Figure 2.2. A single-band in the k #pmethod.

For a single band, such as the band edge of conduction band (Fig. 2.2), using (1.3)

and the time-independent perturbation theory to the second order, we can get

_ 2
h*k? h - R h ‘k' Uy ko [ P|Un ko ‘
nk 2 = En,k=0 +—K '<un,k:0 un,k=0> + 2 Z <En E - >
m, m, My n=n nk=0  —n'k=0
(1.7)
Therefore, we can have
E .—E .= D.D?k, Kk,
K k=0 = (1.8)
2 : 2 P .P’ +PLP
Daﬂ :h_(i*)a,ﬂ — h 50!’/3 + h - Z nn nn nn'’ nn
2'm 2m, 2m," o3 Bors — Broo (1.9)



where P, is the momentum matrix element. According to (1.8), the eigen-energy

near the band edge is in the quadratic form.

2.2.1 Kane’s ke p Model with the Spin-Orbit Interaction

If the spin-orbit interaction is taken into account, we add a spin-orbit interaction term
in the Hamiltonian. Because spin-orbit interaction perturbation is proportional to
L-S, where L and S are the orbit angular momentum and the spin angular momentum,

respectively. Thus, we have the total Hamiltonian

h2
2m,

H=— (1.10)

2
V? +V(r)+/1%(J2 —L*-S?).

Use this total Hamiltonian and the Bloch theofem, the Schrodinger equation becomes

nto_, . h - h? n’k? ~
- VP4V () +—k-p+d—(@F2=L2-SHJu . =(E . ——)-u__(F).
[ om, (r) m p 2( Nu,« =(E ¢ 2m0) i (1)
(1.11)
At the zone center,
n’ 2 = n’ 2 2 2 =
oV VO + A7 =L =S e = oo Ungo (M) (1.12)

0

The solutions of the above equation form a complete set, so we can expand the
eigenstate not in the zone center as the linear combination of the complete set at zone
center. Because the total angular momentum J, the orbit angular momentum L, the
spin angular momentum S, and L-S coupling term commute with each other, they

can have common complete set of eigenfunctions. Since s=1/2 for electron, we can

denote the eigenstates of these operators as

j,mj,|> in Dirac notation, where the



items in the “ket” are the quantum numbers corresponding their physical operators.

Assume ﬁ0|5>=ES|S> andﬁo‘j=1,mj>=Ep‘j=1,mj>, and choose the basis

functions
lis T).)is V),

e

Then we can have an 8x& interaction matrix
) [“

where, assuming k = k? is in the z-direction, the 4x4 matrix H is

asy|
I

where

is the Kane’s parameter, and A

Z T},

Z ¢>,

X+IYT

XHYi

X iy ¢>’_

NG

Solving the eigenvalue problem

NG

0

0 H

'E, 0 kP
o gF A Vib
303
ERel
3
0 =0 0
h .
P=-i—(S|B,|Z
L (slpyz)
2
_
2
‘[H]- E'E‘ =0

)

0
0

, we can obtain the energy eigenvalues near the zone center:

NG

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)



k*P(E, +§A)

21,2
E . =E + =E, + 'k (Conduction band, C) (1.18)
E,(E, +4) 2m, *
hk?
E, = am, (Heavy - hole band, HH) | (1.19)
2k*P? hk?
E, =- =- Light - hole band
Ih 3E, om, * (Lig ) (1.20)
k*P? n’k’
= = —A- Split - off band
% 3(E, +4) 2mg, (Sp ) (1.21)

Note that the conduction band effective mass increase with increased band gap of a
semiconductor material. The Kane’s model indicates positive effective mass for

heavy-hole band, and this is corrected in the Luttinger-Kuhn model [3, 14, 15].

4 E(k)

Conduction band

;k

Heavy-holes band

Light-holes band

Spin-orbit band

Figure.2.3. Schematic band structure of the direct gap semiconductor using Kane’s

model. The heavy-hole effective mass is corrected in this figure.

The Kane’s model is summarized in Fig. 2.3. The heavy-hole effective mass is

corrected in the figure.
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2.3 SEMICONDUCTOR HETEROSTRUCTURES AND THE
EFFECTIVE MASS THEORY

In the previous section, we assumed the semiconductor crystal is infinite. Practically,
useful semiconductor optoelectronic devices usually have small size, and are the
combination of several semiconductor materials of different band structures
(semiconductor heterostructures). When two semiconductors of different band
structures are joint, a heterojunction will then forms. There are three types of
heterojunctions possible (Fig. 2.4). Furthermore, semiconductor heterostructures

important to optoelectronics such as'the cjo‘ublgf'h"'etgrostructure (DH) and the quantum

well are shown in the Fig. 2.5.= .;“DH is ”us'ed" in th‘e‘e-i;rly semiconductor lasers before
w | P ‘ _-';'

L 1855

quantum-well lasers are invented, = "

L& 1Lk

Type 1 Type 2 Type 3

Figure 2.4. Possible three types of semiconductor heterojunctions.
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Double heterostructure Quantum well

Figure 2.5. Schematic diagrams of the double heterostructure (DH) and the

quantum-well heterostructure.

Now, we then need a general theory to describe how an electron behaves in these
optoelectronic materials. For the single-band case, the variation of the band stucture
with the position can be treated as a perturbation on the Hamiltonian. If this
perturbation is slowly varying, then the behavior of an electron in semiconductors can
be described as the effective mass theory (EMT) or-envelop function approximation
(EFA) [3, 14, 15]

[—%v#vw(r)w(r):(E—EnﬁO)F(f). (1.22)

where m* is the electron effective mass, U is the perturbation energy function seen by
an electron, E,,_, is the band-edge energy. F(F)is the envelope function,
where w(F) = F(F)-u,,_,(F). Note that (1.22) is very similar to the standard
time-independent Schrodinger equation.

For DH, the thickness of the small-band gap region is much larger than the
electron’s deBroglie wavelength, so the quantum effect is negligible. Classical

semiconductor device physics can then be used to analyze the band structure of DH

12



[3].
For quantum well, the small-band gap region width is comparable to the electron’s
deBroglie wavelength, and obvious quantum effect will then occur. Theory of the

quantum wells will be addressed in the next section.

24 QUANTUM WELLS, WIRES, AND DOTS

Low-dimensional structure is an artificial structure that provides one-dimensional to
three-dimensional quantum effect. Therefore, the width of the low-dimensional
structure and the electron deBroglie wavelength must be in the same order. Because
the conduction band effective mass in direct gap semiconductor materials such as
InAs and GaAs is usually=much smaller tham the vacuum electron mass,
low-dimensional semiconductor’ . quantum structureés have scale in several tens to
hundreds of nanometers, rather than the smaller size of a natural atom. We use
effective mass theory to accurately describe the behavior of an electron in a
low-dimensional semiconductor structures, or semiconductor nanostructures, termed

because the electron deBroglie wavelength in a semiconductor is nanoscale.

13



Barrier Well Barrier X

Energy

U(2)

Figure 2.7. Schematic diagram of a quantum well having two energy eigenstates,

and the energy spectra in the k-space.

For an electron in an one-dimensional (1D) semiconductor nanostructure, or a
quantum well (QW) (Fig. 2.6), the envelope function can be expressed as the product
of three components

=\ _ alKR
I:well(r.) =e F(Z) (123)

where K =k X+ k,y,and R=X+Yy. After substitution and assuming the effective



mass is the same in the different materials, the energy eigenvalues of this standard

quantum-mechanics problem are

217 2
E, = h K ~+é,
2M,q (1.24)
where the eigenenergy ¢, satisfies
o 1 0
[————— = tU®IE (@) =¢, F (2. (1.25)

2 0zm*(z) 0z
The equation can be solved easily by use of graphical solution method, similar to the

rectangular slab waveguide problems. Fig. 2.7 shows schematic of a quantum well

having two energy eigenstates, and the energy spectra in the k-space.

Quantum Wire Quantum Box (Quantum Dot)
Lx
7

L]

L
L |
T

(a) (b)

Figure 2.8. Schematic diagrams of (a) quantum wire and (b) quantum dot.

Likewise, quantum wires (Fig. 2.8a) and quantum boxes (or quantum dots, QD)
(Fig. 2.8b)are two-dimensional (2D) and three-dimensional (3D) nanostructures,
respectively. The effective mass equation can be easily solved using separable

variable method.

15



For quantum wires,

Fuie (F) =€ -F(y)-F(2)
Uwire (f) = U(Y) + U(Z)

21, 2
E—ifleX +e, +
n . 2 gn gm

2m

well

[_7£m*—(z)£+ U@)]F,(2)=¢, -F, (2)

[-——————+UWIF,(y)=¢, -F.(¥).
m

For quantum boxes,
Foo (M) = F() - F(Y)-F(2)
Uy, @ =U(x) + U@+ U(z)

S et

['?am*—(z)a‘F U@ ]E @) =¢, -F,(2)

[———————+tUWIF, ) =¢, F.()
m

[_T&m*—(x)&—i_ UX]F X =¢ -Fx).

(1.26)
(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

With the knowledge of the quantum states, it is useful to calculate density of state

(D.0.S) D(E), which is defined as the number of quantum states per unit volume

between E and E+dE. Schematic diagrams of the density of states of bulk materials,

quantum wells, quantum wires, and quantum dots are plotted in Fig. 2.9.

16



Bulk Quantum Well Quantum Wire Quantum Dot

D(E) D(E) D(E) D(E)

~— e WLt

I
>

Figure 2.9. Schematic diagrams of the density of states for bulk materials, quantum

wells, quantum wires, and quantum dots.

2.5 INTERBAND OPTICAL TRANSITION AND GAIN |2, 3]
We now have a brief review the_optical tfansition in bulk and low-dimensional
nanostructures. If the electron=hole system is subjected to a sinusoidal steady-state

electromagnetic perturbation (Fig: 2.10);then-the optical transition will be possible.
4 E(k)

Conduction band

-
AN

Valence band

hv

Figure 2.10. Optical interband transition in a direct gap semiconductor material.

In quantum mechanics, time-dependent perturbation theory and the Fermi’s golden

rule tell us in order to have an optical transition between a state in the conduction

17



band and a state in the valence band, the transition energy difference must equal to the
photon energy (AE=hv) and the k-selection rule must be obeyed (k.~k,). The

transition probability, or transition rate, is proportional to the optical matrix element

H',, = (b|-er-E|a
ba < | | > (1.37)
where a and b denote the wave function of the two states. Using slowly-varying

approximation and the Bloch theorem, we can have

L= €Ay 4
(b|—er- E|a>;—%e-PCV Oy x, (1.38)
0

where P, is the interband momentum matrix element, € is the unit directional vector
of the electric field and A0 is the amplitude of the vector potential.
The gain coefficient g is defined as the fraction of photons increased per unit

distance:

=ldS(z) zldl(z) (1.39)
S“idz | dz

where S is the photon density and I is the light intensity.
For a bulk semiconductor, assuming the conduction band is completely empty, and

the valence band is completely full, then gain coefficient of the bulk semiconductor is

2
e

Zour (V) = ——

A = 2
e-Pcv‘ D, (hv-E)-(f, - f)) (1.40)
n.ce,m, @

where fc and fv are the Fermi-Dirac distribution for the electronic state and hole state,

respectively.  Dr is the density of state using the reduced effective mass

1 1 1 (1.41)
m m.* m*

r e

Note that the gain coefficient is positive if fc>fv (population inversion). At this time,

18



the light in the material will be amplified.
For a low-dimensional semiconductor nanostructure, and assuming the valence
band-mixing effect is negligible, and there is only one quantized state in each of the

conduction and valence band, the gain coefficient is

2
& 1ow-dimensional (hl/) = Lz I; ’ e ISCV‘Z ’ D: (hV— Eg) H (hV— Ef?r?ﬁ) ) ( fc - fv)
n.cem, @
(1.42)
where
E-f=E,+E -E
noTe e (1.43)

is the interband transition energy. Because the density of states spectra of the
low-dimensional nanostructures: is; sharper’ and -higher than that of the bulk
semiconductors, the max gain- achievable where lasing behavior usually occur is
higher in low-dimensional nanostfuctures than.in bulk materials. This characteristic
opens the applications of the low-dimensional nanostructures in optoelectronics,

termed “nano-photonics”.

2.6 SEMICONDUCTOR LASERS [1, 2]

Semiconductor lasers are important optoelectronic devices. Applications of the
semiconductor lasers include optical storage, optical communication, medical use etc.
Before we discuss how semiconductor lasers can be used to slow down optical
information velocity, it is beneficial to have a brief review on the basic properties of
the Fabry-Perot resonators.
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Figure 2.11.  Schematic illustration of a Fabry-Perot resonator with mirror

reflectivity R; and R,.

A Fabry-Perot resonator (Fig. 2.11) consists of two planar mirrors of reflectivity R1
and R2. Assuming lossless mirrossiand nd-mirror phase shift, the electric field
transmission coefficient t and- the eleetric  field -reflection coefficient r of the

Fabry-Perot resonator are as follow [1]:

{,-t, b exp[—i ~ME]
- 0 1.44
t Vo 4L (144)
1-r"r,"exp[-I ]
0
. . 27mnL
I, +r, " exp[-I T]
r= 2 (1.45)
. - 4ml
l-r'"r,“exp[-I ]

where 1y, 11°, 17, 127, t1, t;’, to, ty” are reflection and transmission coefficients of the
mirrors. The intensity transmission coefficient T and the intensity reflection
coefficient R of the Fabry-Perot resonator are defined as the square of the absolute

value of t and r, respectively.
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From (1.44), the t is unity if

A
2L=m-7° (1.46)

where m is any integer. On the other hand, r is zero also whenever

A
2L=m-7°. (1.47)

Optical wavelengths fulfilling this resonant condition are called Fabry-Perot cavity
modes. It is worthwhile noting that the condition t=1 and r=0 is the resonant
transportation of the photon, which has its counterpart in the electronic device
examples. Furthermore, the phase of the t and r has its profound significance for use
in slowing light information speed, which will:be addressed in the next chapter of the

thesis.

I(Z) oce (T'g-a;)z

M -

R,

Output light

Figure 2.12. Schematic diagram of an asymmetric Fabry-Perot resonator with a gain

material.

If the resonator includes a gain material (An active resonator), then the story will be
more interesting. Fig. 2.12 shows schematic of an asymmetric Fabry-Perot resonator
with a gain material. The electric field transmission coefficient becomes
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t,-t,"exp[—i 2ﬂL] . exp[M L]
t— jo - 2 (1.48)
1=t expl—i - exp[(I'g — L]

0

According to (1.48), t will be infinite if

1
RiR,

rg, =o,+a, =a; + iln( J Gain condition

(1.49)

and

A
2L=m-=2  Phase condition (1.50)
n

where I' is the optical confinement factor. (1.49) is the threshold condition of the
lasers. When above threshold, the gain coefticient of the gain material will clamp at
the threshold value because of: the mechanism of gain saturation [1, 2]. Extra
carriers will rapidly recombine and produce photons in the lasing cavity mode.

In a semiconductor laser, electfons.in conduction band and holes in valence band
can recombine and produce photon emission. In order to control flow of the carriers,
a forward biased p-n junction is generally used in a semiconductor laser. Besides,
optical waveguides are needed in order to provide optical confinement and hence can
reduce optical loss. In a double heterostructure (DH) semiconductor laser (Fig. 2.13),
the central GaAs region provides both the carrier confinement and optical
confinement because of the conduction and valence-band profiles and the refraction

index profile [3].

22



z I Optical mode profile

P-AlGaAs
\
4—/\/\/\- GaAs -— )‘ J\/\/\—’
/
N-AlGaAs E
* Voo o T
I P-AlGaAs  GaAs N-AlGaAs
(@)

(b)
Figure 2.13. (a) A double heterostructure (DH) semiconductor laser and (b) its band

structure profile.

Light output power of semiconductor lasers when above its lasing threshold can be

shown as

o

Pt = B+ = 1y) (1.51a)

where 7, is the internal quantum efficient, defined as the percentage of the injected

carriers that contribute to the radiative recombination. The external quantum

efficiency 7, is defined as

d;)llm lln(i)
7. = —p—L R (1.51b)
hv 1. 1
— a; +—In(—)
e L R

Fig. 2.14 shows schematic diagram of the light power—injection current curve (L-I

curve) of a semiconductor laser.
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Figure 2.14. Schematic diagram of the light power—injection current curve (L-I

curve) of a semiconductor laser.

Free spectrum range (FSR) of the Fabry-Perot resonator is defined as the separation

between neighboring cavity modes in the frequency spectrum, or

c

FSR=V_ ., -V, =—.
2nL

(1.52)

In order to have a single-frequency laser, FSR need to be large enough compared with
gain spectrum. According to (1.52), to have large FSR, the cavity length L must be
small. Compared with the long cavity length of a edge-emitting semiconductor laser
such as the double heterostructure semiconductor lasers and the quantum-well
Fabry-Perot lasers, vertical-cavity surface-emitting lasers (VCSELs) (Fig. 2.15) have
cavity length of several optical wavelength. Thus, VCSEL is an ideal candidate for
the single frequency semiconductor lasers. Fig. 2.16 shows the cavity mode spectra

for edge-emitting laser (EEL) and VCSEL, and optical gain spectra against frequency.
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Figure 2.16. Cavity mode spectra for (a) edge-emitting laser and (b) VCSEL, and

optical gain spectra against frequency.

However, because short cavity length induces large mirror loss, making
high-reflectivity laser mirrors and then decreasing mirror loss becomes a critical issue
of VCSEL. Distributed Bragg reflectors (DBRs) consist of alternating layers of

dielectric or semiconductor materials. The difference in the index of refraction
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between adjacent layers give rise to a high reflectivity (>99%) at the vicinity of the
Bragg frequency [1]. The thickness of each layer is A, /(4n), where n is the index of
refraction of the layer [1]. At the Bragg wavelength, the reflectivity of the DBR is

given by [16]:

- D (1.53)
1+(Lj

where p is the number of the quarter-wave pairs. ny is the larger refraction index,
while np stands for the smaller one. The reflectivity spectra of the DBRs can be
calculated using transfer matrix method. - Fig..2.17 shows the calculated reflectivity

spectra of the DBRs with different number-of quarter-wave pairs.
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Figure 2.17. Calculated reflectivity spectra of the Al ,,Ga,,As/GaAs DBR

(Agragg = 1300 nm ) with different number of quarter-wave pairs.

2.7 HIGH-SPEED DIRECT MODULATION OF
SEMICONDUCTOR LASERS [1-3]

Optical communication is one of the most important applications of the
semiconductor lasers. A unique feature of semiconductor lasers is that, unlike other
lasers that are modulated externally, the semiconductor laser can be modulated
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directly by modulating the injection current [1]. This is especially important in view
of the possibility of monolithic integration of the two principle actors of the modern
information era—the transistor and the laser—in integrated semiconductor
optoelectronic circuits [1].

Light output power of the Semiconductor lasers is proportional to (I-Ip).
Therefore, if the injection current has a dc component and a small signal sinusoidal

modulation:

I(ty=1, +i(t)=1, +i,(@k'  (Current)

(1.54)
30 =3, + ()= 3, + i, (@)™ (Current density) 159
N(t) = N, +n(t) =Ny +n, (0)e%. (Carrier density) (156)

then we would expect that the light output power will correspondingly be with a dc
component and a small signal sinusoidal modulation‘terms
P(t) =P, + p(t)=P, + p, (@)’  (Light output power) (1.57)

S(t)=S, +5(t)=S, +s,(@e'  (Photon density). (158)
Then we can transform electrical signal into optical format (Fig. 2.18)by use of

semiconductor lasers, and then transmit information optically.
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Figure 2.18. Schematic diagram of the direct modulation of semiconductor lasers.

To have a review on the basic theony of the direct modulation of semiconductor

lasers, let us start from the carrier density{IN) and photon density (S) rate equation:

AN J N

—:——V' N 'S__

s g( ) . (1.59)
ds S
E:F-v-g(n)~3—r—+ﬂspRsp (1.60)

p

Where f,is the spontaneous emission factor, zis the carrier lifetime, and Re is the

spontaneous emission rate per unit volume. 7, 1s the photon lifetime

(el
—=|—||a+=—In .
7, nr{ 2L (RR, (1.61)

Assuming there 1s only one lasing mode, and using linear gain approximation

g(N)=g,+9'(N=-N,) (1.62)
Where ¢ is the differential gain at I=lo, in addition to small Signal approximation:
Jo>>J,
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N, >>n_ (1.63)
S, >>s,

, then 1t can be shown that

(o) o0 Lo

| 1.64
—jo(—+S,-v-g") -0+ ed (169
T
where
! =Vg' 5 .
7, (1.65)
And
fr:ﬂzl V(@_g) . i (1.66)
2r_2x Ny, =\ 7y
1s the relaxation frequency. Modulation frequency response M (a)) 18:
‘ Iz 0 ‘
M(a)):|sm(w)|: ed :FTD wrz
‘Jm(a))‘ . ' 2 2 2 1 2 242 "
Jo +35,-V-g) - +o; {a) (—+S,-v-g")’ — (0" - @) —I
T
(1.67)

which peaks atw = o, .
Given that the photon lifetime in a typical semiconductor laser is about several
pico-seconds, differential gain is of the order of 10°cm?® , photon density is

about10" photons/cm®, the modulation frequency or modulation bandwidth is about
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several GHz. The high-speed modulation ability and the compact volume make

semiconductor lasers an ideal candidate for signal transmitter in optical electronics.
Increasing injection current increases the light output, and then increases the relaxation

frequency. Fig. 2.19 shows schematic plot of modulation spectra at different injection

currents.
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Figure 2.19. Schematic plot of.the*modulation spectra of a semiconductor laser at

different injection currents.

A very important concept, but people are usually ignorant, is that the optical
spectrum of a modulated single-frequency semiconductor laser is not longer
single-frequency. When subjected to a sinusoidal direct modulation, the photon
number in the laser cavity and the light output power is modulated. Hence, the
amplitude of the electric field of the laser light is also modulated. This is the
amplitude modulation (AM) scheme. The electric field under AM can be easily

shown [17]:
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E(t) = E,(1+ msin[w,t])sin[w, t]
. m m
= E, sin[a,t] +E E, cos[(w, — o, )t] Y E, cos[(w, + o, )t] (1.68)
Where m is the modulation index, ,is the carrier frequency, and @, 1s the

modulation frequency.  Schematic optical spectra of the direct modulated

single-frequency laser are shown in the Fig. 2.20.
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Figure 2.20. Schematic optical spectra of a single-frequency semiconductor laser
and a direct modulated single-frequency laser:
(LSB: Lower side band. USB: upper side band, f,: modulation frequency, f: carrier

frequency)

2.8 SEMICONDUCTOR LASERS WITH LOW-DIMENSIONAL
GAIN MATERIALS
A semiconductor laser with low-dimensional gain materials is superior to its
counterpart with bulk gain materials, or double-heterostructure (DH) lasers.

Because of the discrete energy eigenstates, gain spectra of the low-dimensional

nanostructures are narrower than bulk materials. As a result, injected carriers can
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effectively increase the population inversion within a narrower spectra width. This
characteristic makes lasers with low-dimensional gain material can have larger
differential gain and smaller threshold current densities than conventional DH
semiconductor lasers. Thus, lasers with low-dimensional gain material can have
larger modulation relaxation frequency and larger available modulation bandwidth as
compared with DH lasers. Compared with QW gain materials, ideal QD have very
sharp density of states. The gain spectrum of an ideal QD material is narrowly
centered on its transition energy. Therefore, based on the laser theory, it is easier and
quicker to reach threshold gain in an ideal QD laser than in an ideal QW laser.
Besides, the lasing wavelength of the lasers with low-dimensional gain material is less
sensitive to the injection current, because of the narrower gain spectra. Fig. 2.21

shows schematic plots of the gain.spéctra of the ideal QW and QD lasers.

Ideal QW

gain spectrum Gain coefficient
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/Gain spectrum
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Figure 2.21. Schematic gain spectra of ideal (a) QW laser and (b) QD lasers.

Modern crystal growth techniques such as the molecular beam epitaxy (MBE) and
the metal-organic chemical vapor deposition (MOCVD), has demonstrated that it is
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possible to grow semiconductors of different atomic compositions on top of another
semiconductor substrate with monolayer precision [3]. Therefore, high-quality
quantum-well gain materials can be made by utilizing these epitaxy techniques.

Since the mid-1990s, there has been considerable work on the direct synthesis of
semiconductor nanostructures by applying the phenomenon of island formation during
strained-layer heteroepitaxy, a process called the Stranski-Krastanow growth mode
[16]. During the heteroepitaxial growth, the semiconductor atoms tend to form
islands spontaneously on a planar wetting layer because the strain energy can be
relaxed and is energetically favorable there. If these islands are small enough to
have quantum effect, they are called self-assembled quantum dots.

Due to the much higher number of available states in the 2-D wetting layer and
barrier states at high temperatutes, ‘compared to that in the dots, injected carriers
preferably occupy the wetting layer and barrier states [18]. This makes the carrier
dynamics of the real quantum dots dependent not only on the QD discrete levels, but
also on the wetting layer and barrier states. Besides, the QD size non-uniformity
during the spontaneous self-organized process can causes the ground-state (GS)
optical transition energies of the quantum dots vary from one QD to another and
hence broaden the gain spectrum, so the real GS optical gain spectrum of QD is not an
ideal delta function. These difficulties limit the performances of today’s QD lasers.

In the thesis, we will study the slow-light phenomenon in a self-organized QD laser,

whose QD active region is fabricated by use of MBE technique.
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2.9 SUMMARY

In this chapter, the basic theory of the semiconductor band structures using Kane’s
k-p model and the low-dimensional nanostructures is reviewed. Subsequently,
electron-photon interaction in semiconductors and its low-dimensional structures is
described using semi-classical approach. @ Then we review the basics of
semiconductor lasers. Finally, semiconductor lasers with low-dimensional gain

materials and their challenges are discussed.
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Chapter 3

SLOWING LIGHT USING QUANTUM-DOT

LASER AMPLIFIERS

3-1 INTRODUCTION [1, 8-11, 19-34]

The reduction in light group velocity, termed “slow light”, has been a fast-moving

topic recently, with potential  applications | from quantum computing to

communications [19].  Before the study of the slow-light using semiconductor

lasers, a brief review of the important.definitions’and terms would be helpful.
Referring to Fig. 3.1, we consider the transmission of an input light signal x(t)

through a general photonic system, and the output light signal is y(t).

Photonic material,
x(t) device, or system y(t)
> >

H(w)

Figure 3.1. Schematic drawing of a general photonic transmission system. The
box can be an atomic medium, a semiconductor quantum-dot nanostructure, an

optoelectronic device, and so on.
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If the photonic “box™ is a linear time-invariant system, in the frequency domain, the
output Fourier transform Y(t) is the product of the input Fourier transform X(t) and
the frequency response of the photonic “box”, and this relationship can be written

Y(w)=H(w) X(w) (3.1)
Typically H(w) is complex, which we will write as H(w) =|H(a))|-e"i¢(”’), where
|H (a))| is the amplitude response and ¢(w) is the phase response. If the amplitude
response is uniform over the optical regime of the input light signal and the
higher-order terms in phase response can be neglected, the output signal remains
identical to that of the input signal, with a time delay of (d¢/dw). Thus the
propagation time delay, referred to as the group delay, due to propagation through the

photonic box plotted in Fig. 3.1 15 given by

L4 (3.2)

which is, in general, a function of frequency. If the physical length of the photonic

box is L, then the group velocity in the box can be defined

v, = L (3.3)
r
Besides, the slowdown factor S is
C
S=—_ 34
; G4

which is equivalent to the definition of the group indexn, .
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3.1.1 Slowing Light with Material Dispersion

When the photonic box is an optical material, we have
@
H(w) = < n(w)-L. (3.5)

Here, n(w) is the frequency-dependent refraction index of the material, and L is the

length of the material. Applying (3.2), we find that

L
c/ng

(3.6)
. dn . . . .
where group indexn; =n(®) + a)d— in this case.  So the group velocity of the light
0]

signal in the photonic material can be written

e o e 3.7)
: T dn

n(w)+w-—

do

To obtain a very slow light group velocity, we can increase the material index n()

e . dn " .
and/or the material dispersion 9o However, it is hard to change the material index,
@

because it is related to the inherent absorption/gain spectra by the famous
Kramer-Kronig relation. Though producing a sharp dip in the gain/absorption
spectra, the material dispersion can be very large, based on Kramer-Kronig relation.

Various mechanisms have been used to obtain a large material dispersion for
achieving slow light [8, 9, 21]. These include electromagnetically induced
transparency (EIT) [22, 23], coherent population oscillations (CPOs) or four-wave
mixing (FWM) in atomic crystals [24] and semiconductor optical amplifiers [25-29],
etc.
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While having a very large slowdown factor, EIT needs a long dephasing time, so
that the quantum coherent interference between the quantum energy levels is not
destroyed. This makes EIT impossible to be achieved at room temperature.
Compared with EIT, CPO is less sensitive to the dephasing effect, so it may be used
as the basis of the room-temperature slow-light devices. To increase the bandwidth
in a CPO medium, semiconductor-based materials has been proposed because of its
longer carrier lifetime (~1 ns) than atomic crystals (~ms). With the discrete energy
levels and the stronger carrier confinement, recent experiments have been successful

using CPO or FWM in QW and QD devices from low to room temperatures [27-29].

3.1.2 Slowing Light with Waveguide Dispersion and Optical Resonators
In addition to material dispersion,”slow-light can also be achieved by utilizing
structurally dispersive resonators. Recently, group delay of 110-140 ps of a 200
MHz sinusoidal signal in a coupled ring optical waveguide (CROW) has been
experimentally demonstrated [30]. However, the delay in a passive CROW or a
passive resonator is not tunable. Chuang et al varied the group delay by changing
the injection current of a quantum-well Fabry-Perot laser amplifier [10] and a
semiconductor DFB-phase-shifted coupled cavity [31, 32]. Besides, slowing light
using photonic crystal defect cavities has also been experimentally demonstrated [33].
In addition the experiment, designing of a resonator slow light device is an

interesting issue. Designing coupled-resonator optical waveguide delay line has
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been proposed using transfer matrix, tight-binding, and time domain formalisms, and
these points of view are consistent with one another [34]. Among these theoretical
analysis tool, transfer matrix approach is particularly enabling because it can deal with
any arbitrary sequence of resonator [34]. On the other hand, Chuang et al uses
transfer matrix method to analyze the phase response of the coupled cavity under
various current injection [31, 32]. With this information, they can predict group
delay of a sinusoidal signal, and then reshape the waveform of the delayed pulse train.
These successful designing tools largely increase the practicability of the slow light

devices with dispersive resonators.

3.1.3 Applicability and Design-Issues of Slow-Light Devices [11, 31, 32]
While both material and structurally dispersive method offer unique features, it is
important to evaluate them in terms of their applicability to delay line.
For a practical tunable optical delay line, one would require [31, 32]
1. Continuously tunable group delay via an external control mechanism, which
may be electrical, optical, or even mechanical.
2. Minimal power variation accompanying change in delay
3. Of useful bandwidth. This is the key towards implementations of compact
optical delay line because broadband signals in the GHz-range are required
in most communications applications [11].

4. Compactness and suitability to integration into optoelectronic platforms.
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5. Room-temperature operation.

3.2 REVIEW OF THE PREVIOUS EXPERIMENTAL WORK [12]
3.2.1 QD-Laser Device Structure [12, 35]

The device used in this study is a quantum-dot vertical-cavity surface-emitting laser
(QD-VCSEL) and is depicted in Fig. 3.2.

The device structures were fabricated using molecular beam epitaxy (MBE) by NL
Nanosemiconductor GmbH (Germany), grown on (100) plane of the GaAs substrates.
The top mirror is a 22-pair carbon-doped p'-Aly9GagAs/p -GaAs distributed Bragg
reflector (DBR), and the Jbottom mirror is a 33.5-pair Si-doped
n"-AlgoGag As/n -GaAs DBR. In order to increase the electrical conductivity of
DBRs, Carbon and Silicon of relatively “high concentration about 2-3x10'® cm™ is
used as the p-type dopant in the top DBR and n-type dopant in the bottom DBR
respectively, which can result in absorption in the DBRs and hence limit the
maximum achievable mirror reflectivity.

The length of the undoped graded-index separate confinement heterostructure
(GRINSCH) optical cavity was 3A, without taking DBR penetration depths into
account.

The active region is composed of five quantum-dot groups. Each group has three
layers of quantum dots, and is located within the locations of the intracavity intensity

distribution maximum, inset between two linear-graded AlyGa;<As (x =0 to 0.9 and x
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= 0.9 to 0) confinement layers. The light-current curve of the QD-VCSEL is shown

in Fig. 2.3. The details of the device structure were described in [35].

Light output

Contact

T P-type Al ,Ga,,As/GaAs DBR (22 pairs)

A

InAs QD active region

N-type Al,,Ga,,As/GaAs DBR (33 pairs)

GaAs substrate

Contact

Figure 3.2. Schematic diagram of the’QD-VCSEL.
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Figure 3.3. Light power-injection current curve of the QD-VCSEL [12].

3.2.2 Experimental Setup
Our experimental setup for optical delay measurement is shown in Fig. 3.4.
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Figure 3.4. Experimental setup used for group delay measurement.
(TLD: tunable laser diode; VA: svariable attenuatory PC: polarization controller; OC:
optical circulator; OSA: optical spectrum analyzer; PD: photodetector; RFA: RF

amplifier; DUT: device under test,"which is the QD-VCSEL in this study).

The 1300-nm tunable laser diode produces the continuous-wave (CW) probe light.
A sinusoidal light signal is then generated after the CW probe light is sent through a
Mach-Zehnder interferometric waveguide electro-optical modulator [1-3], which is
driven by an RF source. A variable optical attenuator is used to control the power of
the light signal, which is fixed to -14 dBm (~40 £W ) in this study. A polarization
controller (PC) is used to adjust the polarization of the input light signal. The carrier
frequency of the input light signal is adjusted to the QD-VCSEL resonance frequency.
The resonance wavelength of the QD-VCSEL is determined by observing directly on
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the optical spectrum analyzer (OSA). We measure the signal group delays by
estimating the scope traces directly. The group delay reference was taken for an
input light signal well away from the QD-VCSEL resonance, which is logical because

the reflective phase response is flat.

3.2.3 Measurements of the Group Delay
Measurements at several QD-VCSEL injection current are studied. The amplified
spontaneous emission (ASE) center frequency below threshold and the lasing
frequency of the QD-VCSEL above threshold are recorded first on the spectrum
analyzer.
Signal group delay increases-when we increase theinjection current. Group delay
of the 10-GHz sinusoidal signal for variousinjection currents are shown in Fig. 3.5.
For a 10-GHz sinusoid, the maximum group delay of 41 ps at 1 mA is observed.
When injection current is 1mA, delay of sinusoidal signals for 5, 6, 7, 8, 9, and

10-GHz are plotted in Fig. 3.6.
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3.3 THEORETICAL ANALYSIS AND SIMULATION

3.3.1 Introduction

Slow-light using quantum-well Fabry-Perot laser [10], quantum-well VCSEL [11],
and the quantum-dot VCSEL [12] have been experimentally demonstrated. In [12],
the tunable delay of sinusoidally modulated light signal up to 10 GHz is achieved.
However, clear physical mechanism and explanation why there is such a
high-bandwidth delay in vertical-cavity laser, is rarely provided. On the other hand,
delay of 1 GHz sinusoidally modulated signal in a vertical-cavity semiconductor
optical amplifier (VCSOA) is studied [36], and a Fabry-Perot model is used to explain
the experiment result. Since the filter phase tesponse changes very fast in the
vicinity of the cavity resonance frequency, the group delay theory in [36] is suitable
only for use in the low modulated fréquency (<1 GHz) signal, rather than the possible
several GHz range bandwidth use of the semiconductor slow-light optoelectronic
devices. Chuang et al [31, 32] used transfer matrix formalism to analyze delay of
signal of several GHz in a semiconductor active waveguide, and can reshape square
waves of 5-GHz bandwidth. In this study, we adopt the approach similar to [31, 32]

to analyze slow-light in active vertical-cavity optoelectronic devices.

3.3.2 Explanation and Simulation
The experimental results with stress on the group delay, injection current, and

modulation frequency can be explained by use of VCSEL amplifier model [37].
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Schematic optical spectrum of the reflection from a VCSEL used to explain the
group delay is shown in Fig. 3.7.  The input signal power in the experiment is -14
dBm or 40 £W , which is much larger than the laser emission power of 8.5 £4W of the
QD VCSEL biased at 1 mA. The strong input light increases the photon number
inside the laser cavity, and then expedites stimulated emission rate of the laser
medium, thus depleting the carrier density to a level that is below its lasing threshold
[37]. Therefore the VCSEL acts like an amplifier at this time [37]. To explain why
group delay increases with the injection current and its trend as a function of
modulation frequency, the VCSEL amplifier model is used to carry out some
simulations using equivalent Fabry=Perot etalon'method [15]. The VCSEL amplifier

model used to carry out theoretical simulations is depicted in Fig. 3.8.

Optical Power )
Carrier

A wave Uoper
Lower PP

) side band
side band /
A

Reflection from a
VCSEL amplifier

>
Frequency

Figure 3.7. Schematic optical spectrum of the reflection from a VCSEL used to

explain the group delay.
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Figure 3.8. VCSEL amplifier model used to carry out theoretical simulations.

The maximum achievable reflectivity of top and bo;ttom DBRs is about 99.65% and
99.66% respectively [16], due to a rélatively-high dobing (N,,N,=2~3x10"cm?)
and then considerable absorption optical losses. An input light signal is incident on
an active VCSEL resonator below its lasing threshold. The filter phase and the
intensity response are the quantities of interests. Because phase shift of the
distributed Bragg mirror is zero at the Bragg frequency and a slowly-changing linear
function in the vicinity of Bragg frequency [1], the mirror phase shift can be neglected.
The thickness of the center region Lc is 3 A, where A is the laser wavelength in the
cavity. The top and bottom DBR penetration depths are calculated and are 1.5 A

respectively. The effective cavity length Lc, is thus 6 A in the QD VCSEL. The

internal loss in the device of 10cm™ is assumed in the simulations. The reflection
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coefficient of the asymmetric Fabry-Perot etalon is [3]:

— i 2KL o
r+r,-e

— (3.8)
l-r-r,-e

“12KL o
where I, and r, are the real reflection coefficient of the effective top and bottom
mirror respectively, k=2zw,/c+i(g—¢;)/2 is the complex propagation constant,
where c is the light speed in the air, n,is the effective index of the graded-index

separate confinement heterostructure (GRINSCH) active region, g is the modal gain,

and ¢; is the intrinsic internal loss. The reflection intensity response and the phase
shift of the resonator a.lre|r(v)|2 and ¢(v) = Arg[r]], respectively

Fig. 3.9 and Fig. 3.10 show the simulated ihtensity response and the corresponding
phase response of the VCSEL amplifier:'for three different modal gain values.
Wheng =0.7 g, , the amplitude response-is-flat, behaving as an all-pass filter [10].

Note that phase response changes slowlyrwhen 0.7 g, increases t00.8 g, , and then

becomes steeper swiftly when modal gain is close to threshold.
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Figure 3.9. Simulated amplitude response of the VCSEL amplifier for three different

modal gain values 0f0.7 g, ,0.9.g,. ,and 0:99 g ...
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Figure 3.10. Corresponding simulated phase response of the VCSEL amplifier for
the same three different modal gain values.
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The group delay of an optical sinusoidal signal, given

by 7, =[PV, + T,)—d(v, — ,,))/(47£), can be deduced from the slope of the phase

response [32], where f, is sinusoidal modulation frequency of the input light signal.

The proof of the formula is in the appendix. Simulated delay as a function of
modulation frequency between 1 and 10 GHz for different modal gains is plotted in
Fig. 3.11. To have a comparison between simulation results and experimental results,
experimental results for injection current 1 mA is also shown in Fig. 3.11.  Fig. 3.12
shows the simulated delay as a function of modal gain for different modulation

frequencies.

400 L) % L] L Wi L) L) L)
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70l
60 k
50 |
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=

Modulation Frequency (GHz)

Figure 3.11. Simulated group delay as a function of modulation frequency for

different modal gains. Experimental data is also shown in this figure
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Figure 3.12. Simulated group delay as a®function of modal gain for different

modulation frequencies

The simulation results agree well with'the experimental results. The group delay
decreases with the increased modulation frequency. This is because phase response
changes fast in the vicinity of etalon resonance frequency (phase slope is large), and
phase slope is small when the modulation frequency is large. On the other hand,
group delay increases with the increased modal gain, because the phase response
becomes steeper. Note that the calculated delay of the single-tone 1-GHz signal can
be high up to 240 ps, corresponding to a delay-bandwidth product (DBP) [8] of 0.24.
Larger simulated DBP of 0.37 can be for the single-tone 10-GHz signal, which is

slightly smaller than the experimental value of 0.41.
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If the -14 dBm strong input light signal makes the slave laser below its lasing
threshold, spectrum hole burning effect will appear, making index and gain coefficient
dependent on wavelength. Our simulation does not take this wavelength-dependent
gain into consideration as in [38]. Moreover, because gain value and refraction
index of the laser medium are coupled to each other through famous Kramer-Kronig
relation, this decrease in gain value can shifts the cavity resonance frequency to a
longer wavelength (red-shift).[2, 40]. It can be shown that the amount of this
red-shift frequency change is directly proportional to the linewidth enhancement

factor of the laser gain medium [40, 41]:

(04
Af :Tevg (9, =49,) (3.9)

where @, is the linewidth enhancement factor or o-parameter, V is the group
velocity of light in the laser cavity, g, is the suppressed modal gain of the VCSEL,
and g, is the small-signal modal gain of the VCSEL. It has been predicted that
quantum-dot (QD) lasers, in principle, should exhibit a near-zero a-parameter, due to
the discrete density of states and symmetric gain spectrum [18]. Our simulation
assumes that the carrier frequency is exactly in the VCSEL cavity mode, and should
be in best agreement with the experiment when the input signal power is not large
enough to change the resonance frequency.

On the other hand, we think that four wave mixing (FWM) effect is not obvious in
the experiment. Because the large DBR mirror reflectivity, the short cavity length in
the VCSEL and the fact that the carrier wave and the signal sidebands cannot be in the
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VCSEL cavity mode concurrently, the superposition of the multiple reflected waves
can be destructive interference if it is not in the cavity mode. Consequently,
nonlinear coherent interaction between light of different wavelength such as FWM or
coherent population oscillation (CPO) can be negligible in the study.

The simulation shown here is done assuming the carrier frequency is in the cavity
mode exactly and strong input light signal causes the slave laser below its lasing
threshold. Red-shift resonance and the influence of the spectrum hole burning effect
need to be included to fully realize the physical mechanism. These are beyond the

scope of this master degree thesis and complete investigation is underway.

3.4 SUMMARY

In this chapter, slowing light using vertical-cavity surface-emitting lasers (VCSELSs) is
explained and simulated using VCSEL amplifier model. Simulated results and result
are qualitatively in a good agreement. With the aid of the filter phase analysis, the
simulation explains that group delay increases with increased modal gain. Besides,
the simulations predict the slow-light capability of delaying single-tone sinusoidal
signal of 1 to 5 GHz. Further, the principle should not be suitable for use in VCSELs

only. It can be generalized to the general kinds of semiconductor lasers.
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Chapter 4

SLOWING LIGHT USING

INJECTION-LOCKING OF VCSELS

4.1 INTRODUCTION

In this chapter, we will study RF delay or optical delay in a semiconductor laser far
above its lasing threshold. This jis-a standard «laser injection-locking problem.
Before any experimental study is deseribed, it is worthwhile reviewing the basic

theory of the injection-locking of the semiconductor lasers first.

4.2 INTRODUCTION TO INJECTION-LOCKING OF
SEMICONDUCTOR LASERS - RATE EQUATIONS AND
STEADY-STATE ANALYSIS [39-42]

When an external laser light (master laser) enter into the resonator of a following laser
(slave laser), the behavior of the photon and the carrier in the semiconductor lasers

can be described by use of the rate equation formalism below:
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d . 1 1
photon: —E = {JQH‘E[Q Vg _T_]}'ESL(t)+77' fo B (D (4-1)

dt p
carrier: SN =g-NO_ gV, - Ey (1)’ (4-2)
dt 75,

In these equations, Eg;, Emi, and N are the slave laser electric field, the master laser
electric field, and the carrier density in the slave laser’s active region, respectively. g
is the differential gain. 1, and 1, are the photon and carrier lifetimes, respectively.
Fd is the longitudinal mode spacing, and 1 is the coupling coefficient.

To solve these united differential equations, we can set:

Eq (t) = Ey (1) €4

. (4-3)
n-Ew (1) =E, el
(4-4)
After substitution into the rate equation, we can get
b 4.5
o2y = Vg (9, 2 0,) (4-5)

where a is the linewidth enhancement factor (a-parameter). Because gain coefficient
and refraction index of the gain materials are coupled to each other, changing in gain
can lead to shift of the cavity resonance.

Using (4-3) ~ (4-5), the photon rate equation can then be converted to the

amplitude-phase format

CEO=2%9N =Ny E, 0+ T, €, cosfaort—g) 4O
d 1 E

Bl . _ e o 4-7
dt¢o(t) 2Vgg(N Ny )+ f, Eo(t)sm[Aa)t ¢, ()] (4-7)

where Aw =, —w, is the angular frequency detuning between the free-running

lasers. After some algebra derivations, and assuming the steady locking state, the
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depleted carrier density can be shown

AN, = -2 fy -5-c0s(¢L) (4-8)
Vg9 E,

where ¢, is the phase of the slave laser with respect to the master laser, and EO is

the constant slave laser electric field amplitude. The light intensity within the

resonator can easily be shown

N (E:‘Os)2 - :_p ’ Aﬁ|
(B’ = :

1+TS-TP-ANi

(4-9)

The stable locking range, where the slave laser and the master laser operate in the

same wavelength, can be shown [1985 JQE Henry & Dutta]

E
- f, ~E—1\/1+a2 < @)\~ @ < fd~E—l (4-10)
0 0

m

From this equation, the stable locking range-is-wide when the intensity of the master
laser is much larger than the slave laser. " Besides, the appearance of the a-parameter
make the stable locking range not symmetric with respect to the free-running slave
laser frequency. Outside the stable locking range, complex nonlinear phenomena
such as chaos, four wave mixing, and nonlinear dynamics etc will appear, which are

above the scope of this thesis.

4.3 EXPERIMENTAL SETUP
In this study we explore a slow light scheme using an injection-locked semiconductor

laser. 'We demonstrate that the RF delay or optical delay can largely increase due to
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the amplified signal sideband.

Fig. 4.1 shows the experimental setup. The 1.3-um tunable laser diode produces
the continuous-wave (CW) probe light. A sinusoidal light signal is then generated
after the CW probe light is sent through a Mach-Zehnder interferometric waveguide
electro-optical modulator, which is driven by a vector network analyzer (HP 8270ES).
variable optical attenuator is used to control the power of the light signal, which is
fixed to -14 dBm (~40 £W ) in this study. A polarization controller (PC) is used to
adjust the polarization of the input light signal. The input light signal enters the
slave semiconductor laser through an optical circulator (OC). A small part of the
output light signal enter an optical'spectrum analyzer (OSA), and the greater part of
the output light signal goes inte the photodetector and transforms into electrical RF
signal. The RF signal is amplified by*a RF-amplifier and then goes into the network
analyzer. The RF amplitude frequency response and phase frequency response of the
output signal are directly observed by measuring the amplitude and the phase
response of the S21 port of the network analyzer, calibrated with the responses when
the input light signal is away from the free-running slave semiconductor laser
wavelength. Amplitude response and phase response are measured at various

WaVelength detuning values (A)\ = Acarrier wave of input — )\free-running slave)-
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Figure 4.1.

(TLD: tunable laser diode; VA: variable attenuator; PC: polarization controller; OC:
optical circulator; OSA: optical spectrum analyzer; PD: photodetector; RFA: RF

amplifier; DUT: device under test, which is the quantum-dot VCSEL in this study).

The slave semiconductor laser used inthis ‘study is a monolithically single-mode

Coupler

OSA

Experimental setup used for RF delay or optical delay measurement.

quantum-dot (QD) vertical-cavity surface-emitting laser (VCSEL) [35].

shows the light-current curve of the slave quantum-dot VCSEL used in this study.

the study, the injection current of the slave VCSEL is 1.7 mA, which is well above its

lasing threshold.
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Figure 4.2. Light-current curve of the quantum-dot VCSEL used in this study. The

threshold current is about 0.8 mA.

4.4 EXPERIMENTAL RESULTS AND DISCUSSION
Fig. 4.3 and Fig. 4.4 show the relative amplitude response and the RF phase change
response for various wavelength detuning values. Increasing wavelength detuning
shifts the amplitude and phase response to higher RF frequency. RF phase change of
nearly 27 can be achieved if the modulation frequency is high enough. It is
observed that the dip in the amplitude response also accompanies a RF phase change
about 200 degree.

Fig. 4.5 shows the optical spectrum at wavelength detuning of 0.1122nm, and the
modulation frequency is 14 GHz, corresponding to a RF phase change of 200 degree.

Fig. 4.6 shows the optical spectrum at wavelength detuning of 0.1386nm.
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Modulation frequency is 19 GHz, corresponding to RF phase change of 250 degree
for the wavelength detuning.

According to the optical spectra, the upper sideband of the signal is amplified and is
10 dB larger than the lower sideband. Moreover, the slave VCSEL is mot in the
stable locking regime, provided the slave laser and the master laser do not operate in
the same lasing wavelength. Thus, the upper sideband is amplified because of the
complex nonlinear dynamic phenomena and the slave VCSEL acts as a regenerative
amplifier.

Compared with the VCSEL amplifier below its lasing threshold in chapter 3,
although slow-light based on the injection-locking. mechanism can have more optical
delay, the amplified sideband may: induce signal distortion (appendix) , which is not
wanted for optical delay line use.. "Besides; the complexity of nonlinear dynamics

largely increases difficulty in designing slow-light devices.
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Figure 4.3. Measured relative amplitude response of an injection-locked VCSEL for
various wavelength detuning values. The input signal power before entering the

VCSEL is -14 dBm throughout the study.
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Figure 4.4. Measured corresponding REF “phase change response of an

injection-locked VCSEL for various wavelength detuning values.
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Figure 4.5. Optical spectrum at wavelength detuning of 0.1122nm. Modulation
frequency is 14 GHz, corresponding to RF phase change of 200 degree for the

wavelength detuning.
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Figure 4.6. Optical spectrum at wavelength detuning of 0.1386nm. Modulation
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frequency is 14 GHz, corresponding to RF phase change of 250 degree for the

wavelength detuning.

4.5 SUMMARY

The chapter concludes the study of achieving RF delay or optical delay using
injection-locking of the VCSEL. The amplitude response and phase response shift
with increased wavelength detuning. The optical spectrum is studied, which reflects

the slave laser does not operate in the stable locking regime.
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Chapter 5

CONCLUSION

In this thesis, slowing light using vertical-cavity surface-emitting lasers (VCSELs) is
explained and simulated using VCSEL amplifier model. Simulated results and result
are qualitatively in a good agreement. With the aid of the filter phase analysis, the
simulation explains that group .delay increases. with increased modal gain and
decreases with increased modulation frequency. Besides, the simulations predict the
VCSEL’s capability of delaying single-tone sinusoidal signal of 1 to 5 GHz.

Moreover, understanding the basic principle behind allow us to design optimized
optical delay line using VCSEL amplifier scheme. Further, the principle should not
be suitable for use in VCSELs only. It can be generalized to the general kinds of
semiconductor lasers.

RF delay or optical delay using injection-locking of VCSELSs is studied in the thesis.
Optical spectra show that the VCSEL is not in the stable-locking range. The VCSEL
acts as a regenerative amplifier, making one of the signal side band much larger than
the other. From the description in the appendix of this thesis, a reflected signal with

one of its side band amplified can cause signal distortion.
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In summary, this thesis explores the novel use of semiconductor lasers as optical
delay line and gives at least qualitative explanation. The functionality, compactness,
and practicality nature will make semiconductor lasers promising candidates for the

novel generation of optical delay lines in high-speed optical network in the future.
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Appendix

REFLECTION OF A SINGLE-TONE
OPTICAL SIGNAL FROM A PHOTONIC

DEVICE OR A SYSTEM (1, 2, 31, 32]

Let us consider the reflection of:an optical sinusoidal signal from a photonic device.
The sinusoidal signal is produced through amplitude modulation (AM), so input
complex electric field of light can be written as.the carrier wave plus two sidebands:
E, (1) = A e - (1+ A e M+ A eI (A1)
where f_ is modulation frequency of the sinusoidal, and v, is the carrier wave
frequency, A, and A are the Fourier spectrum of the light signal. The optical

signal reflecting from an optical device or a system can be written

E e (D = A -y/R(v, L g L A Pt R (v, + ) - 00
+ IA1 . eizn-(VO—fm)~t . R(VO _ fm) . e-i¢(vﬂ—fm)
(A2)

where R is the reflectivity of the optical device, which is a function of light frequency.

We now consider the situation where R(v,+ f )= R(v,—f,). In this case, the

reflected signal can be rewritten
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E_. ()= B, e &0 [| 4 B, .2t . g0t 4 g gi2uint o ld0ua)hr)]]

_il¢(vo—fm)-4(vo)]

. . . [#(vo+m)-4(v0)] .
2m- £ P ™ i2nf - —
:Bo_e1nvot_el¢(vﬂ)_[1+Bl_612nfmt_el fn +B1-e'2“f“‘t-e m ]
D : Dt (A2 Lo (122
~ BO _6127:v0t ,el¢("0) '[1+B1 .el iy (t-3,,) _I_B1 'el o Am)] (A3)

The last equation is reasonable if the phase response can be approximated as a linear
function. Because the photodetector cannot detect the optical carrier frequency, the
reflected sinusoidal signal remains identical to that of the input signal, with a group

time delay

r=20 (A4)
Aw

regardless of the altered amplitude factors and the overall phase factor [1, 2].
However, these two terms would.not affect the measured light signal delay because
the detector measures the light intensity, not the light electric field.

Form (A.3), note that once the reflectivity of one side band is different from the
other, or the reflective phase response at these two sideband frequencies is not
anti-symmetric with respect to the carrier frequency, then the reflected signal will be

distorted.
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