第四章 以垂直入射方式及移相干涉術測量二維折射率分佈 4.1 前言

折射率的測量在光學測量、生物醫學以及化學工業中佔有相當重要的地位, 例如,單純液體種類的辨識與混合液體成分的分析以及生物體的體液分析,都可 以由折射率的測量來完成。在一般光學測量文獻中[19,20,21],大多利用干涉儀 測量物體折射率的方法,雖然這些方法有很好的解析度,但由於這些方法大多屬 於斜向入射式[22,23]或接觸式[24,25]的測量方法。使用接觸式的測量方法時,當 在測量液體折射率時,常會因為接觸到液體而需要清洗探頭而無法達到即時測量 的要求;當在測量固體物體的折射率時,又會因為探頭與固體接觸而造成探頭因 摩擦而損壞。若測試光源為斜向入射時,在光學系統中的光路校準上由於斜向入 射角度不夠精準以及成像面易變形,而降低解析度。為了改進這些缺點,本章將 討論如何利用垂直入射的方式來得到物體的二維折射率分佈,內容包括待測物結 構的介紹,垂直入射量測的實驗原理及實驗架構、結果,最後討論其誤差。

mann

4.2 實驗原理

由於本方法是利用旋光干涉以及電光晶體 EO 移相的方式,將待測物的折射 率引進干涉信號的相位差中,因此本節首先說明旋光干涉術原理,再推導出由旋 光所造成干涉信號的相位差與待測物折射率的關係,以及介紹如何利用光電晶體 調制器及五步驟移相法來得到干涉信號的相位差。

4.2.1 旋光干涉術原理

旋光干涉術的架構如圖 4.1 所示,此實驗架構類似於第三章圖 3.2 的實驗架 構圖,我們直接在圖 3.2 的架構插入一些元件,即可用來測量二維折射率分佈,

如此可以達到操作便利的優點。我們只要在可調式雷射與擴東器之間加入四分之 一波片,並且放置一檢偏板 AN 在於 CCD 前,即可用來測量二維折射率分佈。 為了實驗上方便起見,沿光前進的方向定為 z 軸,垂直紙面向上的方向為 y 軸。 雷射光經過穿透軸與 x 軸夾角為 45° 的起偏鏡 P 後,進入電光晶體調制器 EO, 再經過快軸與 x 軸夾角為 45° 的四分之一波片 Q1後,可得一同時具有左旋偏光 與右旋偏光的光源。

為了實驗上的方便,將電光晶體調制器的快軸定在與 x 軸成 45° 的方向。在 水平方向震盪的線性偏振光 E_{in},經過此電光晶體調制器與快軸和 x 軸夾角為 45° 的四分之一波片 Q1後,電場的 Jones vector 變為:[26]

 $E' = Q_1(45^\circ) \cdot EOM(\Gamma) \cdot E_{in}$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \begin{pmatrix} e^{i\frac{\Gamma}{2}} & 0 \\ 0 & e^{-i\frac{\Gamma}{2}} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{i\frac{\Gamma}{2}} + \frac{1}{2} \begin{pmatrix} -i \\ 1 \end{pmatrix} e^{-i\frac{\Gamma}{2}}$$
(4.1)

(4.1)式中Q₁與EOM 分別為四分之一波片與電光晶體調制器的 Jones 矩陣。Γ為經由電光晶體調制所造成的相位延遲,可以寫成:

$$\Gamma = \frac{\pi \cdot V_i}{V_{\frac{\lambda}{2}}} + \Gamma_0 \tag{4.2}$$

其中Γ₀是未加電場時的相位延遲,V_λ是電光晶體調制器的半波電壓,V_i是施加 在電光晶體調制器上的驅動電壓,在本論文中V_i驅動電壓為一固定直流電壓值。 當此旋光進入具有 Twyman-Green 架構的測試區域,經由分光鏡 BS 將此旋光分 成反射光及穿透光兩部份;反射光垂直入射至待測物 S,經由待測物反射之後,穿 過 BS 及穿透軸與水平軸夾 α 角的檢偏板 AN 後,進入 CCD 中,其振幅可以表 示為:

$$E_1 = (AN(\alpha) \cdot BS \cdot T \cdot E') \cdot e^{i\phi_{d_1}},$$

$$= \begin{bmatrix} (r\cos^{2}\alpha)e^{-i(\frac{\phi_{r}}{2}-\phi_{d_{1}})}\cos\frac{\Gamma}{2} - (r\cos\alpha\sin\alpha)e^{i\left(\frac{\phi_{r}}{2}+\phi_{d_{1}}\right)}\sin\frac{\Gamma}{2}\\ (r\sin\alpha\cos\alpha)e^{-i(\frac{\phi_{r}}{2}-\phi_{d_{1}})}\cos\frac{\Gamma}{2} - (r\sin^{2}\alpha)e^{i\left(\frac{\phi_{r}}{2}+\phi_{d_{1}}\right)}\sin\frac{\Gamma}{2} \end{bmatrix}, \quad (4.3)$$

其中, T 代表待測物的反射矩陣; r 代表待測物的反射係數, ϕ , 為 BS 所引起的相位差, 根據 Fresnel 方程式[27]可表示為 $r = \frac{n-1}{n+1}$, 且 n 為待測物之折射率。

在另一方面,穿透光通過快軸與水平軸夾 45°的四分之一波片 Q2之後入射 至面鏡 M,再經由面鏡反射再次通過 Q2,再經過 BS 反射並穿過 AN 後進入 CCD 中,其振幅可表示為:

$$E_{2} = (AN(\alpha) \cdot Q_{2}(45^{\circ}) \cdot M \cdot Q_{2}(-45^{\circ}) \cdot BS \cdot E') \cdot e^{i\phi_{d_{2}}}$$

$$= \begin{bmatrix} (2ir_{m}\sin\alpha\cos\alpha)e^{-i(\frac{\phi_{r}}{2}+\phi_{d_{2}})}\cos(\frac{\Gamma}{2}) + (2ir_{m}\cos^{2}\alpha)e^{i(\frac{\phi_{r}}{2}+\phi_{d_{2}})}\sin(\frac{\Gamma}{2})\\ (2ir_{m}\sin^{2}\alpha)e^{-i(\frac{\phi_{r}}{2}+\phi_{d_{2}})}\cos(\frac{\Gamma}{2}) + (2ir_{m}\sin\alpha\cos\alpha)e^{i(\frac{\phi_{r}}{2}+\phi_{d_{2}})}\sin(\frac{\Gamma}{2}) \end{bmatrix}, (4.4)$$

其中 M 代表面鏡的反射矩陣; r_m 代表面鏡的反射係數。因此經由 CCD 所測得的 測試光強度可以表示為:

$$I = |E_1 + E_2|^2 = I_o[1 + \gamma \cos(\Gamma + \phi)], \qquad (4.5)$$

其中, I_0 、 γ 分別為調制訊號之振幅與 visibility; ϕ 為由待測物所引進水平偏光 及垂直偏光間之相位差,其值可分別表示為:

$$I_0 = \frac{1}{2} \left(\frac{n-1}{n+1} \right)^2 + 2r_m^2 - 2 \left(\frac{n-1}{n+1} \right) r_m \sin(\phi_{d1} - \phi_{d2}) , \qquad (4.6a)$$

$$\gamma = \frac{\sqrt{A^2 + B^2}}{\left[\frac{1}{2}\left(\frac{n-1}{n+1}\right)^2 + 2r_m^2 - 2\left(\frac{n-1}{n+1}\right)r_m\sin(\phi_{d1} - \phi_{d2})\right]},$$
 (4.6b)

$$\phi = \tan^{-1}(\frac{B}{A}) \quad , \tag{4.6c}$$

其中, ϕ_{d1} 、 ϕ_{d2} 為 Twyman-Green 兩臂路程所引進之相位變化; A 與 B 可表示成:

$$A = \frac{1}{2}\cos 2\alpha \left(\left(\frac{n-1}{n+1} \right)^2 - 4r_m^2 \right) , \qquad (4.7a)$$

$$B = \frac{1}{2} \left[\left(\frac{n-1}{n+1} \right)^2 \sin 2\alpha - 4 \left(\frac{n-1}{n+1} \right) r_m \sin(\phi_{d_1} - \phi_{d_2}) + 4r_m^{-2} \sin 2\alpha \right], \qquad (4.7b)$$

因此,根據(4.7a)及(4.7b)式可以將(4.6c)改寫成:

$$\phi = \tan^{-1} \left\{ \frac{\frac{1}{2} \cos 2\alpha \left(\left(\frac{n-1}{n+1} \right)^2 - 4r_m^2 \right)}{\frac{1}{2} \left[\left(\frac{n-1}{n+1} \right)^2 \sin 2\alpha - 4 \left(\frac{n-1}{n+1} \right) r_m \sin(\phi_{d1} - \phi_{d2}) + 4r_m^2 \sin 2\alpha} \right] \right\}, \quad (4.8)$$

因此將 CCD 所得到干涉信號光強度,利用 EO 移相法,作五步驟移相得到相 位 φ(x, y),再由式子(4.6)及(4.7)導出 φ(x, y)與 n 的關係式。

4.2.2 使用電光晶體調制器移相

由圖 4.2 所示,假設 z 軸為光前進的方向, x 軸為水平方向, y 軸為鉛直方向。首先將電光晶體轉至快軸與 x 軸夾 45°角的位置,因此其 Jones matrix 可表示為:

$$EO(45^{\circ}, \Gamma) = \begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix} \begin{pmatrix} e^{i\frac{\Gamma}{2}} & 0 \\ 0 & e^{-i\frac{\Gamma}{2}} \end{pmatrix} \begin{pmatrix} \cos 45^{\circ} & \sin 45^{\circ} \\ -\sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix}$$
$$= \begin{pmatrix} \cos \frac{\Gamma}{2} & i \sin \frac{\Gamma}{2} \\ i \sin \frac{\Gamma}{2} & \cos \frac{\Gamma}{2} \end{pmatrix}, \qquad (4.9)$$

其中Γ為電光晶體快軸與慢軸間的相對相位差,當垂直線性光通過此電光晶體和

穿透軸與 x 軸夾0°的檢偏板之後,其干涉訊號之電場形式可以表示為:

$$E_{out} = A(0^{\circ}) \cdot EO(45^{\circ}, \Gamma) \cdot \frac{1}{\sqrt{2}} {0 \choose 1} e^{i\omega_0 t} = \frac{i}{\sqrt{2}} {\sin \frac{\Gamma}{2} \choose 0} e^{i\omega_0 t} , \qquad (4.10)$$

因此在 CCD 上测得光强 I 為:

$$I = \frac{1}{2}\sin^2\frac{\Gamma}{2} ,$$
 (4.11)

接著讓電光晶體受一外加直流電壓訊號調變,慢慢的改變電壓大小,然後觀察光 強度隨電壓變化的情形,我們可以將光強度與外加直流電壓的關係表示為:

$$I = \frac{1}{2}\sin^2\frac{\pi(V - V_0)}{2V_{\lambda/2}} , \qquad (4.12)$$

其中 V_0 代表消光偏壓,這是因為晶體在未受電壓調變前,仍有殘存的雙折射率效應,故須先加至此消光偏壓值才能修正殘存的雙折射效應。 $V_{\lambda/2}$ 代表半波電壓。 由式子(4.11)與(4.12)可以得到: $\Gamma = \frac{\pi(V - V_0)}{V_{\lambda/2}}$, (4.13) 由(4.13)式得知,實驗時先取一電壓 $V = V_0$,作為我們的初始電壓,接著每次改 變一固定的電壓,藉著改變固定的電壓,使得相位每次改變 $\frac{\pi}{2}$,以達到 EO 移相

圖 4.2 電光晶體振幅調制實驗結構

4.2.3 五步驟移相法

我們將 CCD 得到的干涉信號的光強度改寫為:

$$I(x, y) = |E_1(x, y) + E_2(x, y)|^2 = I_0[1 + \gamma \cos(\Gamma + \phi)] , \qquad (4.14)$$

為了解出此二維空間的相位分佈 $\phi(x, y)$,便使用電光晶體調制器來改變 p 偏光和 s 偏光間的相位差,每次改變一固定電壓,使得每次相位改變為 $\frac{\pi}{2}$,以 CCD 拍 攝五次干涉條紋,其強度分別為:

$$I_0(x, y) = a(x, y) + b(x, y) \cdot \cos[\phi(x, y) - \pi],$$
(4.15a)

$$I_1(x, y) = a(x, y) + b(x, y) \cdot \cos[\phi(x, y) - \frac{\pi}{2}],$$
(4.15b)

$$I_{2}(x, y) = a(x, y) + b(x, y) \cdot \cos[\phi(x, y)], \qquad (4.15c)$$

$$I_{3}(x, y) = a(x, y) + b(x, y) \cdot \cos[\phi(x, y) + \pi/2],$$
(4.15d)

$$I_{4}(x, y) = a(x, y) + b(x, y) \cdot \cos[\phi(x, y) + \pi]$$
(4.15e)
解(4.15a) 式至(4.15e) 式的聯立方程式可得
 $\phi(x, y) = \tan^{-1}(\frac{I_{1} - I_{3}}{2I_{2} - I_{4} - I_{0}})$
(4.12)

最後只要將得到的 $\phi(x, y)$ 與相關參數代入(4.8)式中,即可準確求出二維空間的折 射率分佈n(x, y)值。

4.3 實驗與結果

本研究所使用的光源為可調式的雷射光源,選取的波長為 632.8nm,由雷射 光源所射出的光經過穿透軸與 x 軸夾角為 45°的起偏鏡 P 後,進入電光晶體調制 器 EO 晶體(New Focus, Inc., Model: 4002)。測試區域中一臂利用反射率為 99%的 高反射率面鏡,而另一臂則經由待測物反射。這兩道光將經由 BS 合併之後穿過 方位角為 40°的檢偏板 AN,再由 CCD 接受訊號。由於電光晶體調制器是由兩塊 晶體所構成,如圖 4.3 所示,因此雷射光經過此電光晶體調制器後,p 偏光與 s 偏光會有些微的夾角,最後經過檢偏板時會產生翦切干涉的現象,所以會有干涉 條紋的產生。

為了驗證此方法可行性,我們利用折射率不同的三種材質作為我們測量的樣本,分別為壓克力板、BK-7 玻璃板以及 PVC 塑膠板,如圖 4.4。此待測物與第 三章中的待測物相同,我們使用相同的待測物為樣本,如此一來,可以證明在類 似的實驗架構中,我們不需要改變樣本的位置,即可以同時求出待測物的二維高 度分佈以及折射率分佈。實驗時在移相之前,首先要先確定電光晶體調制器移相 時的驅動電壓,我們利用移相軟體 IntelliWaveTM 來替我們做校正的工作,經過校 正後,我們可以得到實驗時所需的驅動電壓。電光調制晶體在移相 $-\pi \times -\frac{\pi}{2} \times 0 \times \frac{\pi}{2} \times \pi$ 利用 IntelliWaveTM 軟體計算後,即可得到其相位差二維分佈圖,如 圖 4.5 所示。但是由於我們選擇的待測物,為三種折射率不同且高度也不相同的 物體,因此,圖 4.5 所求出的相位差並不是我們真正的相位差。我們必須考慮高 度所造成相位差的影響。因此我們需要將先前第三張所求出的相位差圖,圖 3.12,加入圖 4.5 中,如圖 4.6a-b 所示,才是真正樣本折射率的二維相位差分佈 圖。

圖 4.3 電光晶體結構圖[10]

(單位:波長)

圖 4.6a 折射率二維相位差分怖圖

圖 4.6b 折射率二維相位分佈圖

(單位:radians)

4.3.1 實驗參數

實驗中我們的 CCD 為 PULNIX Inc.生產的 TM-545,為510×492 pixels 以及 8bits 的解析度,影像撷取卡為 Matrox 公司生產之 Metero-II/Standard,最後實驗 資料撷取與分析是使用 Engineering Synthesis Design Inc.的 IntelliWaveTM軟體, 以及 Math Work 公司的 Mathlab 軟體。

4.4 討論

本章節以旋光干涉以及電光晶體 EO 移相的方式,將待測物的折射率引進 干涉信號的相位差中,其中以電光調制晶體在移相 $-\pi \cdot -\pi/2 \cdot 0 \cdot \pi/2 \cdot \pi$ 利 用 IntelliWaveTM軟體計算後,即可得相位差二維分佈。由於我們實驗的基本架構 為 Twyman-Green 干涉儀,所以由式子(4.8)中得知,相位差除了為折射率的函數, 也與兩臂之間所造成的光程差有關係。此兩臂的光程差使得我們求出的公式中其 中一項為 $\sin(\phi_{d1} - \phi_{d2})$, $\sin(\phi_{d1} - \phi_{d2})$ 此項在二維的圖形中每一點的值皆不盡相 同,因為我們的樣本平整度並非非常的高,也因此所求出的相位圖 4.4 中會有一 條條明顯的干涉條紋。這些干涉條紋並非我們所需要的,但是由於架構的關係所 以也無法利用軟體將其消除。

由於(4.8)式中, sin($\phi_{d1} - \phi_{d2}$)在樣本中每點皆不盡相同,所以我們無法假設 它為一固定的常數;在圖形上由於樣本並非有完美的平整度,所以無法消除兩臂 之間光程差所造成的干涉條紋。由於上述的原因,使得我們無法藉由式子(4.8) 求出待測物二維的折射率分佈,僅能求出相位分佈圖。

4.5 小結

在本章中提出一種可以測量二維折射率的架構,並且對其原理以及結果做介 紹。當旋光經由具有 Twyman-Green 干涉儀架構的測試區中,一臂上的待測物反 射後,會將待測物的訊息載入反射光的相位中。而這個待測物引進的相位差為折 射率的函數,在利用五步驟移相法測得相位差的大小,代入方程式即可求出二維 相位差分佈圖,並推導出相位與折射率的關係式。此方法雖然僅能測量無吸收特 性物質,但它具有不須以斜角度入射、不須外加稜鏡探頭而沒有測量上的限制以 及它是一種完全非接觸式的折射率計,因此它可以被當作濃度計來使用。

