5.3 Contribution of the Longitudinal Field (I_z)

As we can see from Figures 5.5 and 5.6 for $\gamma = 5^0$ and f = 35.08 mm, the longitudinal field is about three orders of magnitude smaller than the traverse one for both polarized inputs. However, significant longitudinal contribution for the $\gamma = 0.5^0$ and f = 5.08 mm case that the field distribution of x-linearly polarization input nearby the thinnest ring position (Z_b) at z = 5.2 mm is shown in Figure 5.7.

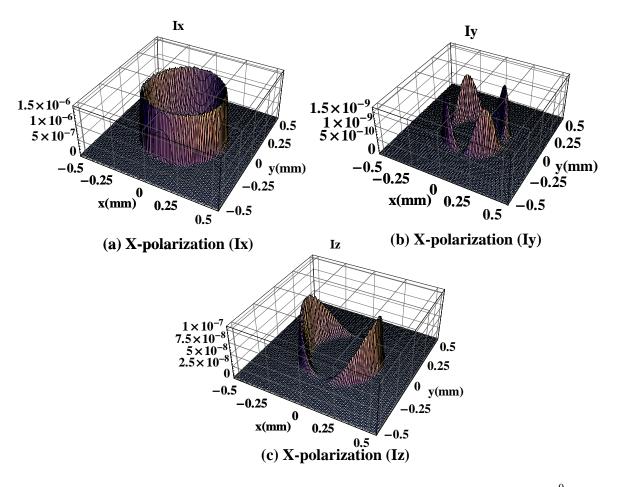
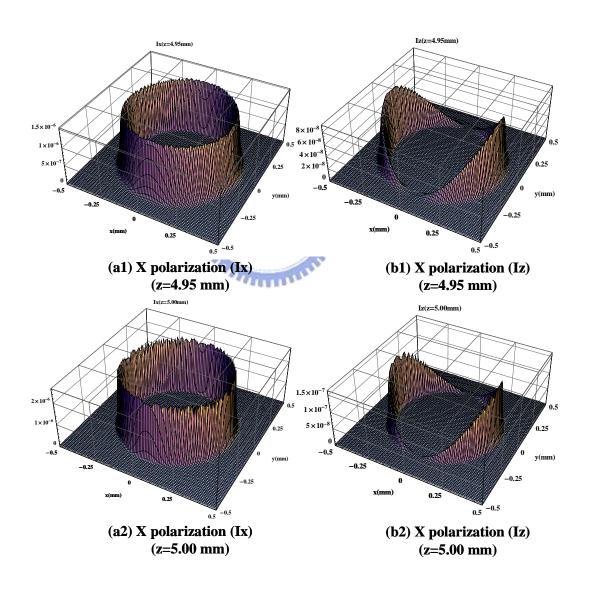



Fig 5.7 Cross sectional 3D beam profile of x-polarization at z = 5.2 mm for $\gamma = 0.5^0$ and f = 5.08 mm: (a) I_x , (b) I_y , and (c) I_z .

The ratios of the longitudinal field to the transverse one, I_z/I_ρ and I_z/I_x are ~ 10^{-3} for $\gamma=5^0$ and f=35.08 mm with very smaller $I_y/I_x\sim 10^{-7}$. However, the longitudinal field (I_z) approaches the traverse field with also relatively small $I_y/I_x\sim 10^{-3}$ if both γ and f are

significantly reduced to the case of $\gamma=0.5^0$ and f=5.08 mm. The higher contribution of the longitudinal field will result in an asymmetric dipole force. In the focal region, we show cross sectional profiles of I_x and I_z at different positions to make sure the weight that longitudinal field obtained in Figure 5.8 (a1)~(b5). We see that the ratios of I_z / I_x at different positions are 0.05 (z = 4.95 mm), 0.06 (z = 5.00 mm), 0.07 (z = 5.10 mm), 0.06 (z = 5.15 mm), and 0.07 (z = 5.20 mm), respectively. Therefore, we know that the weights of longitudinal field are similar to each other at different position in the focal region.

