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Abstract 

A general parallel three-dimensional electrostatic particle-in-cell scheme with 

finite element method (PIC-FEM) using an unstructured mesh is proposed and 

verified in this dissertation. A multi-level graph-partitioning technique is used to 

dynamically decompose the computational domain to improve the parallel 

performance during runtime. Completed parallelized PIC-FEM code is used to 

simulate several important physical problems, including field emission, DC/RF gas 

discharge and DC/RF magnetron plasmas. In this thesis, research is divided into three 

different phases.  

In the first phase, a parallelized three-dimensional electrostatic Poisson’s 

equation solver using Galerkin finite element method using an unstructured mesh is 

developed and validated. In addition, a parallelized three-dimensional vector potential 

magnetostatic Poisson’s equation solver is developed and validated. Furthermore, 

these two solvers are coupled, respectively, with a parallel adaptive mesh refinement 

(PAMR) module, to automatically improve the resolution of solution near where the 

property gradient is large. In both solvers, resulting algebraic equations are solved 

using either the parallel conjugate gradient method with a subdomain-by-subdomain 

scheme for more processors (>10) or the direct sparse matrix solver for fewer 

processors (<10). Parallel speedup test for solvers using parallel conjugate gradient 
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method is performed on a HP-IA64 cluster system up to 32 processors at NCHC of 

Taiwan. Results show that parallel efficiency can reach 84% and 75% at 32 processors 

for the electrostatic Poisson’s equation solver and magnetostatic vector Poisson’s 

equation solver, respectively.  

In the second phase, a general parallel three-dimensional PIC-FEM code is 

developed and validated. This PIC-FEM code integrates the parallelized Poisson’s 

equation solver, developed in the first phase, with the PIC and Monte Carlo collision 

(MCC) schemes on an unstructured tetrahedral mesh. Charged particles are traced 

either cell-by-cell on an unstructured mesh. This is achieved using leap-frog 

time-integration method and Boris rotational scheme when magnetic field is involved. 

Charge assignment and force (field) interpolation between charged particles and grid 

points is implemented using the same interpolation function originated from the FEM. 

In addition, dynamic domain decomposition (DDD) with weighting based on number 

of particles is used to balance the workload among processors during runtime. Study 

of parallel performance of the parallelized PIC-FEM code is performed on the 

HP-IA64 clusters. Results using DDD show that parallel efficiency can reach 83% at 

32 processors.  

In the third phase, the parallelized PIC-FEM code is used to simulate several 

important problems to demonstrate its superior capability in handling practical 

problems. These problems include field emission from a CNT /silicon based emitter 

under external electric field and magnetic field, two typical three-dimensional DC and 

RF gas discharge plasmas, and two typical three-dimensional DC and RF magnetron 

plasmas with permanent magnets. 
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Keyword: Particle-In-Cell with Monte-Carlo collision, finite element method, 

unstructured mesh, parallel, graph-partitioning, field emission, DC and RF gas 

discharge plasmas, DC and RF magnetron plasmas 
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應用非結構性網格之平行化三維 PIC-FEM程式的研究與發展 

學生：許國賢                                          指導教授：吳宗信 

國立交通大學機械工程學系 

摘要 

本論文研究目的主要是發展與驗證一平行化三維粒子式 Particle-In-Cell 

(PIC-FEM)和蒙地卡羅法程式，並使用 multi-level 圖形切割技術於三維非結構性

網格的動態區域切割法。此程式可應用於許多重要物理問題上的模擬，包括場發

射元件、直流氬氣放電電漿、射頻氬氣放電電漿、直流氬氣磁控式電漿和射頻氬

氣磁控式電漿。 

本研究主要可分為三部分。第一部份：使用 Galerkin有限元素法來分別離散

靜電 Poisson 方程式來求解三維靜電場問題以及靜磁向量 Poisson 方程式來求解

三維靜磁場問題。當平行電腦叢集數目大於 10時，程式使用的平行化 conjugate 

gradient method 來求解矩陣問題；反之，當平行電腦叢集數目小於 10時，則使

用直接矩陣法 MUMPS 來求解矩陣問題。再者，將以上所發展的平行化靜電和

靜磁程式結合平行可調適網格再切割模組(parallel adaptive mesh refinement 

module, PAMR)；因此，當計算區域出現位勢場變化較大處，計算網格將會自動

被切割以獲得更正確的數值解。兩者程式平行效率測試於國家高速電腦提供的

32 台 HP-IA64 平行電腦叢集上進行，結果顯示靜電和靜磁程式的平行化效率於

32台電腦腦叢集下分別可達到 84%和 75%。 
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論文的第二部份：主要是結合第一部份發展的三維平行化靜電和靜磁程式及

三維平行 PIC-FEM程式於三維非結構性四面體網格上。PIC-FEM程式使用蛙跳

法與 Boris法來計算粒子運動方程式。因計算網格的不同，粒子追蹤法可利用非

結構性網格關係來追蹤運動粒子軌跡。帶電粒子和計算網格點之間的權重函數為

有限元素法中的形狀函數。再者，使用動態區域切割法來平均分散平行電腦間的

工作量以改善平行化效率。最後模擬一近似一維的直流氬氣放電電漿和射頻氬氣

放電電漿來驗展程式的正確性，並模擬三維射頻氬氣放電電漿來測試程式平行效

率，測試結果顯示，如使用粒子數目為動態區域切割法的權重，於 32台 HP-IA64

電腦腦叢集下還可達到 83%平行效率。 

論文最後部份，為展現三維平行 PIC-FEM 程式在許多重要物理問題上優秀

的模擬能力，其應用問題包括三維奈米碳管式場發射元件與矽式場發射元件、三

維直流氬氣放電電漿、三維射頻氬氣放電電漿、三維直流氬氣磁控式電漿和射頻

氬氣磁控式電漿。 

 

關鍵字：粒子式和蒙地卡羅法、有限元素法、非結構性網格、平行化、圖形切割

法、場發射元件、直流氬氣放電電漿、射頻氬氣放電電漿、直流氬氣磁

控式電漿和射頻氬氣磁控式電漿 
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Chapter 1   

Introduction 
 

1.1 Motivation and Background 

Understanding of several important physical and engineering problems, for 

example, field emission [Itoh et. al., 2004] and low-temperature rarefied 

(low-pressure) plasma [Lieberman and Lichtenberg, 1994], requires the consideration 

of space-charged effects self-consistently due to the motion of charged particles. 

Some common characteristics of these problems may include three-dimensional, 

geometrically complicated, thermally non-equilibrium and low-pressure. In addition 

to studying these problems experimentally, modeling through computer simulation 

may become one of the most efficient ways to understand the underlying physics due 

to the rapid advancement of the modern computer technology. Modeling technique 

that assumes thermally equilibrium, such as fluid modeling [Kushner, 2005], fails in 

correctly capturing the important physical features of the-above mentioned problems. 

Until 1960s, the plasma physicists had devised an important simulation technique, 

Particle-In-Cell (PIC) [Birdsall and Langdon, 1991], which equivalently solves the 

collisionless Boltzmann equation for charged particles self-consistently. However, a 

self-consistent PIC simulation is often computationally intensive even at low pressure. 

In general, the conventional PIC solves the fields with finite difference method using 
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a structured mesh. This is not flexible enough or becomes awkward to simulate the 

device with complicated geometries. In addition, the structured mesh is often difficult 

to manage efficiently when dynamic domain decomposition is required in a typical 

parallel particle simulation, such as the PIC method. In contrast, not only does the 

finite element method (FEM), which often uses an unstructured mesh, offer much 

greater flexibility in handling the complicated geometry, but also it provides excellent 

flexibility in dynamic domain decomposition for parallel computing. In addition, 

mesh refinement that is important in several simulations can be easily coupled to the 

finite element method using an unstructured mesh. However, there are some 

disadvantages by using unstructured mesh for PIC method. Firstly, particle tracing on 

an unstructured mesh may slow down the simulation. Secondly, the programming 

may become complicated. Nevertheless, there were very few studies directed along 

this line. Taking all these intertwining factors together, it is still very valuable to 

develop a PIC simulation code using an unstructured mesh. Therefore, in this thesis 

our goal is to develop a parallelized three-dimensional PIC-FEM code considering 

Monte-Carlo collision, which can be run on memory-distributed parallel machines, 

such as PC clusters.  

1.2 Literature Surveys 

Since we are mainly interested in simulating field emission and low-temperature 
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low-pressure plasma, past studies of modeling and simulation in these two disciplines 

are reviewed in detail in the following in turn. 

1.2.1 Modeling of Field Emission  

Field emission display (FED) is the new type of flat-panel display and its 

working principle is similar with traditional CRTs. The colored light is generated from 

the phosphor, which is excited by electrons. The electrons are emitted from cathode. 

Instead of thermo-ionic emission in CRT, the electrons in FED are emitted by a cold 

pixel electron source that typically consists of a large array of low-work-function 

emitter micro-tips. Moreover, FED needs the lower power input then CRT since there 

is a power-inefficient deflection system in CRT to steer the emitted electrons. 

Furthermore, when FED is compared with TFT LCD, the FED also exhibits the some 

better performances than TFT LCD. For example, FED offer a superior viewing angle 

and are several microseconds quicker in response time. In addition, FED also has the 

potential for high brightness and contrast. The advantages of applying FED in display 

technology include lower driving voltage, higher lighting frequency, and possibly, 

better display resolution. In general, three types of FED can be classified depend on 

their structures, which are diode, triode, and tetrode types. Table 1 also shows the 

main features of these different type of FED [Itoh et. al., 2004]. 

Using carbon nanotubes (CNTs) as field emission cathodes has attracted 
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tremendous interest in the past few years for their remarkable field emission (FE) 

properties such as high aspect ratios, whisker-like in shape for optimum geometrical 

field enhancement, high electrical conductivity, and extraordinary environment 

stability, e.g., [de Heer et. al., 1995], [Rao et. al, 2000], [Nishimura et. al., 2004], and 

[Nilsson et. al, 2000]. Therefore, CNTs have great potential to be used as field 

emission cathodes for various applications of vacuum microelectronic devices, 

including field-emission displays (FED), e.g., [Wang et. al.,1997], [Fowler and 

Nordheim, 1928], and [Spindt,1968], high-frequency microwave amplifier, e.g., [Choi 

et. al,1999], and [Pirio et. al,2002], electron microscopy and parallel electron beam 

lithography (EBL) [Hong et. al., 1994], to name a few.  

Most of the FE devices applied the famous Spindt-type structure [Wang et. al., 

1997], which has a metallic or silicon etched field emitter with an integrated gate 

electrode aperture surrounding the emitter tip to control the extraction of emission 

current. The multiple carbon nanotubes based field emission cathodes within the 

integrated gate electrode aperture have been reported in many papers over the past six 

years, e.g., [Fowler and Nordheim,1928], [Spindt, 1968], [Lei et. al.,1998], and [Hu 

and Huang, 2003]. For some applications, such as electron beam lithography and 

microscopy, individual gated carbon nanotube field emitter was specifically fabricated 

to eliminate the screening effects and to optimize the emitted current and electron 
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beam diameter [Lan et. al., 2004]. The electrons emitted from a very small area on the 

top of CNT inherently spread with a large dispersion angle. Thus, an appropriate 

electron-beam focusing system is necessary for developing a well-focused electron 

beam source. 

From the Fowler-Nordheim law [Fowler and Nordheim, 1928], the magnitude of 

the electron flux emitted from the surface depends upon the local electric field at the 

surface and the work function of the solid. In addition to finding materials with lower 

work functions, enhancing the local electric field near the surface is one of the most 

critical tasks in improving field emission properties. As a trial-and-error method is 

often expensive in terms of time and cost, a computer simulation may speed up the 

design process by revealing the detailed physics with the FED. In practice, the 

geometry of the field emitter and the gates involved in the FED design is 

three-dimensional and often very complicated, e.g., [Spindt, 1968], [Choi et. al., 

1999], and [Pirio et. al, 2002]. 

In the past, several numerical studies have been conducted for the prediction of 

field emission properties, e.g., [Hong et. al.,1994], [Wang et. al,1997], [Lei et. al., 

1998], [Hu and Huang, 2003], [Lan et. al.,2000], and [Lan et. al.,2004]. Most of these 

studies use either the 2-D or 3-D finite difference method, e.g., [Wang et. al.,1997], 

[Lei et. al.,1998], [Hu and Huang, 2003], [Lan et. al.,2000], and [Lan et. al., 2004], or 
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the 2-D finite element approach [Hong et. al., 1994] for discretizing the electrostatic 

Poisson’s equation. As mentioned earlier, a practical FED design often involves 

three-dimensional objects with a complicated geometry, rendering the use of the 

finite-difference method as very difficult or unsuitable. The finite-element or 

finite-volume method using unstructured grids should represent the best choice for the 

numerical method in this regard. In addition, parallel processing can be necessary in 

simulating the practical three-dimensional design of field emitters or when including 

space-charged effect with high emission currents in the Particle-In-Cell (PIC) 

method ,e.g., [Hu and Huang, 2003], [Lan et. al.,2000], and [Lan et. al., 2004].  

Otherwise, in Ref.,e.g., [Hu and Huang, 2003], [Lan et. al.,2000], and [Lan et. 

al.,2004], the computational time for a typical run to emit only a few electrons can 

take up to one week. Also, the accuracy of the electron-flux prediction from the 

emitters strongly depends on the accuracy of the local electrical field at the surface, 

which makes the grid resolution at the surface a critical issue in the simulation. In the 

following, the very similar concerns are also arising from the low-temperature plasma 

simulation 

1.2.2 Modeling of Low-temperature Plasma  

Plasma is ionized gas. Hence, it consists of ions and electrons, as well as neutral 

species. The ionization degree of plasma varies from 100% (fully ionized plasma) to 
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very low values (e.g. 410− – 610− ; weakly ionized plasma). Besides the space plasma, 

the laboratory plasma is divided into two main groups, which are the 

high-temperature plasma (fusion plasma), and the low-temperature plasma (gas 

discharges plasma). Moreover, two sub-groups of gas discharge plasma are classified 

depended on its working gas pressure, which are thermal equilibrium plasma and 

non-thermal equilibrium plasma [Lieberman and Lichtenberg, 1994].  The efficient 

energy exchange between the plasma species due to many collisions occur for 

high-pressure plasma. Thermal equilibrium discharge is typically used for 

applications where heat is required, such as for cutting, spraying, welding. On the 

other hand, for low gas pressure plasma, different temperatures of the plasma species 

due to its inefficient energy transfer. Non-thermal equilibrium plasma is typically used 

for applications where heat is not desirable. In recent years, this field of non-thermal 

equilibrium plasma applications has rapidly expanded due to its non-equilibrium 

aspect of the plasma. The latter sub-group of gas discharge plasmas is also the second 

subject of this dissertation. 

Some important operating parameters for obtaining different non-equilibrium 

conditions are briefly summarized as follows [Economou, 2000]: 

 The chemical input of working gas and its corresponding gas pressure 

 The imposed external electromagnetic field structure  
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 The configurations of plasma chamber and electrodes 

 The temporal behavior (e.g. pulsing the plasma) 

One can realizes that the non-equilibrium plasma conditions are strongly 

influenced by any one or many of these summarized parameters. For example, the 

representation of the parameter space in plasma etching is shown in Fig. 1.1. It clearly 

illustrates that the above-mentioned operating parameters (in the top block) determine 

the following key plasma properties (listed in the middle block) including the electron 

velocity distribution function (EVDF), the space and time variation of electron, etc. 

Finally, these properties may dominate the figures of merit (listed in the bottom block) 

including the etching (or deposition) rate, uniformity, etc. Therefore, a computer 

simulation code should use such many parameters as inputs to help optimize the 

expected non-equilibrium plasma conditions easily and understand the underlying 

physics. 

Dimensionality of plasma reactor simulations ranges from zero-dimensional to 

three-dimensional. Low dimensional simulations, such as zero-dimensional, e.g., 

[Font et. al.,1998], [Meeks and Shon, 1995], and [Deshmukh. and Economou, 1992], 

and one-dimensional models, e.g., [Midha and Economou, 2000], [Kline et. al. 1989], 

and [Nedelea and Urbassek, 2004], are best choice in handling very complicated 

chemistry [Meeks et. al., 1997]. However, two-dimensional simulations can address 
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the important aspect of reaction uniformity across the wafer radius, e.g., [Shon and 

Lee, 2002], [Shon et. al.,1999], and [Shon et. al.,1998]. Three-dimensional 

simulations are useful for studying azimuthal asymmetries in the reactor due to 

non-axisymmetric power deposition, or non-axisymmetric gas inlets and pumping 

ports, e.g., [Kushner et. al.,1996], and [Kushner, 1997]. 

In general, there are three kinds of plasma simulation approaches; the first is the 

fluid model, the second is the kinetic model and the third is the hybrid model. In 

addition, Maxwell’s equations for electromagnetic fields also need to be solved 

self-consistently coupled with the plasma densities and currents from plasma 

simulations. For the fluid model, one need to solve the equations, which are derived 

after taking the moments of the Boltzmann equation with some assumptions regarding, 

e.g., [Meyyappan, 1994], and [Gogolides and Sawin, 1992]. They are species 

continuity equation, species momentum equation and species energy equation. 

Related publications of fluid model could be found in numerous articles, e.g., 

[Ventzek et. al.,1993], [Lymberopoulos et. al.,1995], [Bukowski and Graves, 1996], 

and [Ventzek et. al.,1994], and are not repeated here. Unlike fluid model, kinetic 

approach yields the particle distribution functions as an output of the simulation. 

Especially, it is more accurate than fluid model at low pressures when the species 

mean free path is comparable to or longer than a characteristic length scale or for 
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highly non-equilibrium situations. However, Kinetic approach is computationally 

intensive as compared to fluid model. One of the well-established kinetic approaches 

is the Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) method, e.g., [Birdsall, 

1991], and [Vahedi et. al.,1993]. In the past two decades, PIC-MCC method has long 

been used to study the nonlinear kinetic problems in space and laboratory plasma 

physics. For self-consistent treatment of the plasma and the background gas, Nanbu 

combined the Direct Simulation Monte Carlo method (DSMC) with PIC-MCC, e.g., 

[Nanbu, 2000], and [Serikov et. al.,1997].  

Each time step in the PIC-MCC consists of four major steps: charge extrapolation, 

force interpolation from the solution of the Maxwell’s equations, particle movement, 

and Monte-Carlo collisions. Briefly speaking, based on the particle positions, charges 

are assigned to each mesh point and current densities are assigned to the faces 

between the mesh points. Maxwell's equations are then solved to compute the electric 

and magnetic fields on the grid. The force on the particles is obtained from the fields 

at these gird points by interpolation based on the particle position. Particles are then 

moved according to Newton's law. Particle collisions are handled stochastically in a 

Monte Carlo module in-between field adjusting time steps. The details of the 

PIC-MCC method will be given in chapter 4. 

As mentioned earlier, most conventional PIC-MCC, e.g., [Birdsall and Langdon, 
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1991], and [Birdsall, 1991], a structured mesh is usually construed for the 

computational domain. However, until very recently, there have been few 

developments of electrostatic PIC method using a three-dimensional unstructured 

mesh, mostly designed for thruster plume simulations due to their complicated 

computational geometry. A hybrid PIC-DSMC code using unstructured mesh, called 

AQUILA, which has been developed by [Santi et al., 2003] on hall thruster plume 

simulation. They obtained the improved current density results from better the 

unstructured mesh resolution. AQUILA uses finite element method to discretize 

Poisson’s equation with electrons from Boltzmann relation, and then uses 

Newton-Raphson method to solve the non-liner resulting matrix. [Spirkin et al., 2004] 

has also developed a three-dimensional Particle-In-Cell code on a unstructured 

tetrahedral mesh with finite volume method. This PIC code was applied to the 

simulation of the flow inside the segmented micro-channel of a directional-retarding 

potential analyzer. Results show the flow characteristics of the ions and electrons and 

provide estimates of the collected current by the micro-plate. 

Parallel PIC-MCC method has been previously studies by various researchers 

using different schemes, e.g., [Seidel et al.,2002], [Kawamura et al.,2000], [Decyk, 

2002], [Walker,1991], [Walker, 1990],  [Lee and Azari, 1992], [Akarsu et al.,1996], 

[Decyk and Norton, 2004], and [Liewer and Decyk, 1989], since it is the most 
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computationally demanding compared with other models. Most parallel PIC-MCC 

schemes, e.g., [Kawamura et al.,2000], [Seidel et al.,2002], and [Lee and Azari, 1992] 

employ a Eulerian decomposition scheme in which just paralleling the particle 

processing without paralleling the field solver since the field solver can be a small 

percentage of the work load especially when FFT methods are used. In this report, for 

a fixed number of grid points, the speedup just for this parallel particle processing 

became more linear with increasing particle number on 2 and 4 CPU symmetric 

multiprocessor (SMP) machines and on a distributed network of workstations (NOW). 

In the past, there have been very few studies concerning on developing dynamic 

load-balancing technique for particle-based PIC-MCC code, e.g., [Seidel et al.,2002] , 

[Decyk and Norton, 2004], and [Liewer and Decyk, 1989]. In Seidel’s work [Seidel et 

al.,2002], he has proposed a method in which the code will dynamically repartition 

the computational domain and intends to balance the workload among processors 

under the framework of structured mesh. Decyk et al. have developed a new 

algorithm just for PIC method on concurrent processors with distributed memory, 

which named the general concurrent PIC algorithm (GCPIC). In this algorithm, the 

physical domain of particle simulation was divided into sub-domains, which are equal 

to the number of processors. The sub-domain can be re-created to keep the processor 

loads of particle computations balance (dynamic load balancing) during the transient 
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period of the simulation, which was called primary decomposition. Again, each 

sub-domain may have equal numbers of particles, however, unequal numbers of grid 

numbers. Thus, GCPIC used secondary decomposition to divide the physical domain 

into number of processors equal sub-domains with equally number of grid points 

under MIMD paradigm for computing field solver efficiently. However, these reviews 

showed that parallel PIC methods are not suitable using the SIMD paradigm.  

 

1.3 Objectives of the Thesis 

Specific objectives of the present thesis are briefly summarized as follows: 

1. To develop and verify a parallelized three-dimensional Poisson’s equation 

solver using FEM for predicting electrostatic distribution; 

2. To develop and verify a parallelized three-dimensional vector potential 

Poisson’s equation solver using FEM for predicting magnetostatic 

distribution; 

3. To develop and verify a parallelized three-dimensional PIC-FEM code 

using an unstructured mesh by combining the Poisson’s equation solvers 

mentioned in the above; 

4. To apply the completed PIC-FEM code to simulate field emission, DC/RF 

gas discharge plasma and DC/RF magnetron plasma and compare with 
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experimental data wherever available. 

 

1.4 Organization of the Thesis 

The chapters of this thesis are organized as follows. 

Chapter 2 details a parallel three-dimensional electrostatic field solver 

formulated via Galerkin finite element method based on the 

subdomain-by-subdomain non-overlapping domain decomposition method. After 

finite element assembling procedure, the resulting matrix is stored in compressed 

sparse row format and is solved using either the parallel conjugate gradient method or 

a direct matrix solver, MUMPS. A parallel adaptive mesh refinement module (PAMR) 

is also coupled into the developed electrostatic field solver for obtaining better 

solution, especially, when there is a large variation of potential in the computational 

domain. Some benchmark problems are presented for demonstrating the accuracy and 

applicability of the electrostatic field solver. In the end of this chapter, the parallel 

performances of the Poisson’s equation solver are studied and their time breakdown is 

analyzed in detail.  

Chapter 3 details a parallel three-dimensional magnetostatic field solver. This 

solver is developed and paralledized follows the techniques presented in chapter 2. 

Also, PAMR is coupled into the developed magnetostatic field solver. Some 
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benchmark problems are presented for demonstrating the accuracy and applicability 

of the parallel magnetostatic field solver. In the end of this chapter, the parallel 

performances of these solvers are studied and their time breakdown is analyzed.  

Chapter 4 presents the proposed parallel three-dimensional PIC-FEM method 

using an unstructured mesh. The PIC-FEM is developed follows the main principles 

of the conventional PIC-MCC method. In addition, the parallel implementation of 

PIC-FEM is done via domain decomposition method. Dynamic domain 

decomposition is developed for alleviating the load between the processors. Two 

benchmark problems are presented for demonstrating the accuracy and applicability 

of the parallel PIC-FEM code. In the end of this chapter, the parallel performance of 

the PIC-FEM code using DDD is studied and its time breakdown is analyzed in detail.  

In chapter 5, the proposed parallel three-dimensional PIC-FEM code is used to 

simulate three different realistic problems. They are: three-dimensional field emission 

display (FED), three-dimensional DC/RF gas discharge plasma, and 

three-dimensional DC/RF magnetron plasma. Most of the simulated results are then 

compared with the previous studied available in the literature. Finally, the conclusions 

of this work and some possible directions for the future research work are presented in 

the chapter 6 in turn.  
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Chapter 2  

The Parallel Computing of Finite Element Method for 

Three-Dimensional Electrostatic Field Problems 

 

This chapter begins with the introduction to background of computational 

electromagnetic. In solving electrostatic problems, only the finite element Galerkin 

weighted residual method (GWRM) is chosen and introduced for using either a 

tetrahedral or a hexahedral mesh. Globe coordinate and local coordinate shape 

functions are used for tetrahedral and hexahedral meshes, respectively. Before the 

parallel computing of FEM, the computational domain is firsts decomposed into a 

number of non-overlapping sub-domains using multi-level graph-partitioning library, 

METIS. Then, some preprocessing procedure is used in converting the output data 

from graph-partitioning tool into the input data for field solvers. The second step is 

that the Poisson’s equation is formulated via GWRM using subdomain-by-subdomain 

method (SBS). After applying the assembling procedure of FEM, only the non-zero 

entries of the system of equation are stored in compressed sparse row format and 

solve the matrix using either parallel conjugate gradient method or direct matrix 

solver, MUMPS. The parallel adaptive mesh refinement module is then coupled with 

the parallel Poisson’s equation solver in order to improve the resolution of solution 
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near where the property gradient is large. Some benchmark problems are presented for 

demonstrating the accuracy and applicability of the Poisson’s equation solver. In the 

end of this chapter, the parallel performance of the Poisson’s equation solver is 

studied and its time breakdown is analyzed in detail.  

 

2.1 Background of Computational Electromagnetic  

For the whole electromagnetic theory, it could be regarded as the logical 

deduction from the Maxwell’s equations, which were first formulated by James Clerk 

Maxwell in 1873 [Cheng, 1995]. They are:  
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where E
r

 is the electric field intensity, B
r

 is the magnetic flux density, J
r

 is the 

current density, εis the dielectric permittivity of the medium, µ is the dielectric 

permeability of the medium, c is the speed of light and ρis the volume charge density. 

In this thesis, we only consider the electrostatic (ES) and magnetostatic (MS) field 

problems, hence, the Maxwell’s equations can be simplified to the scalar and vector 

Poisson’s equations for ES and MS fields, respectively. They are: 
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where φ is electric potential and A
r

 is the magnetic vector potential. From these two 

equations, it is clear that the electrostatic fields are contributed from the static electric 

charges and the magnetostatic fields are due to motion of electric charges with 

uniform velocity (direct current) or external magnets. The details in solving the 

magnetostatic field problems are presented in the next chapter. 

In the past years, Maxwell’s equations have long been studied in dealing with 

electromagnetic problems. Two different approaches for solving Maxwell’s equations 

are analytic and numerical approached. For the simple structured device, there are 

many analytic solutions available which could easily derived from the series 

expansions, separation of variables, Bessel and Legandre polynomials, Laplace 

transformations, and the like [Umashankar, 1993]. However, there is almost no 

solution available when one consider a device with a complicated structure that 

involve a number of conductors, dielectric, permanent magnets, and semiconductors 

of arbitrary shapes, etc. Thus, an extremely accurate numerical method for solving 

Poisson’s equation is required to model these complicated structures. 

 Fortunately, with the developments in numerical techniques in the past two 

decades, nowadays it is possible to solve large-scale electromagnetic problems 
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numerically within reasonable time limits. The numerical methods can be generally 

divided into three separate groups, which are integral method, differential method, 

and variational method. For the integral method, it is based on the basis of the 

superposition principle and one can integrate such effects at any point obtaining the 

potential at that point. The well-known integral method is the boundary element 

method [Kythe, 1995], which is particularly suitable for problems with material 

homogeneity. Finite difference method [Sullivan, 2000] is the most popular among the 

differential methods. For this method, the computational domain is usually divided 

into structured mesh and the values of a scalar potential field are sought at all grid 

points. However, this method usually suffers from many problems when considering a 

complicated structured case, especially in generating the structured mesh on object 

with arbitrary geometrical shape, imposing the boundary conditions, interface 

approximation of muti-material region. For the variational method, it is based on the 

differential or integral form of the field equations to be solved [Zeidler, 1985]. The 

well-known variational method is the finite element method, which is widely used in 

many fields, e.g., [Beltzer, 1990], [Winslow, 1967], [Silvester and Pelosi, 1994], and 

[Jin, 2002], which also include the electromagnetic problems [Winslow, 1967].  
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2.2 Finite Element Method (FEM) 

2.2.1 Background 

The FEM is the numerical technique for obtaining approximate numerical 

solution of the partial differential equations (PDEs) arising from any physical system 

subjected to its boundary conditions. For FEM, the computational domain is first 

divided into smaller non-overlapping regions called elements (cells), and a trial 

function is postulated over each of the elements. For example, the trial solution with 

global coordinates for a three-dimensional tetrahedral mesh is: 

 ( ) ( ) ( ) ( )zyxNazyxNazyxNaaazyxU nn ,,,,,,;,,~
22110 ++++= L       (2-7) 

Where x, y, z are the independent variables in the problems. The functions ( )zyxN ,,  

are known functions called trial functions. The coefficients, ia , are undetermined 

parameters and n is called degree of freedom (DOF). After formulating the PDEs 

using Galerkin weighted residual method with the trial solution, the element equations 

are obtained for a typical element. These element equations can then be used for other 

the elements over the domain as shown in Fig. 2.1. Then, larger sets of algebraic 

equations, which are called system equations, are formed after assembling these 

element equations. Moreover, the matrix structure of such huge system equations is 

sparse in essence; the matrix may be solved efficiently only storing the non-zero 

entries. 
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2.2.2 The Galerkin Weighted Residual Method (GWRM) 

In FEM, we employ Galerkin weighted residual method (GWRM) with the 

three-dimensional C0-linear shape-function for a tetrahedral mesh and for a 

hexahedral mesh. In GWRM, a weighted average of residual over the entire domain 

should be zero and the trial function is the element shape function associated with 

each ai. The representations of GWRM with three-dimensional C0-linear global 

coordinate shape function and local coordinate shape function are given in Eqs. (2-8a) 

and Eqs. (2-8a), respectively. 

 
( ) ( ) 0,,;,, =∫∫∫ dxdydzzyxNazyxR i                         (2-8a) 

( ) ( ) 0,,;,, =∫∫∫ dxdydzNaR i ρηξρηξ
                                

(2-8b) 

where R(x,y,z;a) or ( )aR ;,, ρηξ  is the residual of the governing equation.  

 

2.3 Calculation of Electrostatic (ES) Field  

Since the concept of GWRM is introduced, this section begins with derivation of 

the element equation of Poisson’s equation for typical ES fields (as shown in Eqs. 

(2-5)). A trial solution is first constructed to approximate the exact electric 

potential, ( ) ( )αφ ;~ rUr ≈ , which can be written with shape function using global 

coordinate for a tetrahedral mesh,  

( ) ( )∑
=

=
4

1
,,;,,~

j
jj zyxNaazyxU                     (2-9) 

The local coordinate shape for a hexahedral mesh will be presented later. The major 
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steps for formulating Eqs.(2-5) using GWRM with a three-dimensional tetrahedral 

mesh in global coordinates are described in detail as follows.  

Step 1: Derive the typical element equation of Eqs. (2-5) using GWRM. 
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Step 2: Integrate by parts. 

        x
U

x
N

x
UN

xx
UN

ee
i

e
e

i

e
e

i ∂
∂

∂
∂

−
∂

∂
∂
∂

=
∂

∂ )()()(
)(

2

)(2
)(

~
)

~
(

~

                  (2-11a) 

y
U

y
N

y
UN

yy
UN

ee
i

e
e

i

e
e

i ∂
∂

∂
∂

−
∂

∂
∂
∂

=
∂

∂ )()()(
)(

2

)(2
)(

~
)

~
(

~

                  (2-11b) 

z
U

z
N

z
UN

zz
UN

ee
i

e
e

i

e
e

i ∂
∂

∂
∂

−
∂

∂
∂
∂

=
∂

∂ )()()(
)(

2

)(2
)(

~
)

~
(

~
                  (2-11c) 

      Substituting Eqs.(2-11) into the RHS of Eqs. (2-10), and Eqs. (2-10) becomes 
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Eqs. (2-12) can be reformulated using divergence theorem, it may be written, 
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where )(e
nτ
r

 is the outward-normal component of the flux. All load terms are placed on the 

RHS; this includes the interior load and the boundary fluxes. 

Step 3: Substitute the trial solution into element equations. 

 Inserting Eqs. (2-9) into Eqs. (2-13) yields, 
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       Writing it also in matrix form, 
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       Where the coefficient matrix and load matrix are defined as: 
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Step 4: Substitute the 3-D C0-linear shape function for a tetrahedral mesh into 
element equation. 

The LHS of Eqs. (2-14) may be reformulated, 
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Where V is the volume of cell and the subscripts i, k, l, m have the values 1, 

2, 3, 4 (see Fig. 2.2) for ),,()(
1 zyxN e  and are permuted cyclically 

for ),,()(
2 zyxN e , ),,()(

3 zyxN e and ),,()(
4 zyxN e . 

Step 5: Evaluate the interior load term and boundary flux term of Eqs .(2-14).  

For coupling with Particle-In-Cell method in later chapter, here we 

interpolate charges from the particles to the nodes [Santi et. al., 2003], that 

is: 

41),,()()( −== ∑ izyxNq
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iρ       (2-18) 

Where the subscript k represents charged particle properties. Substituting Eqs. (2-18) 
into the interior load term, it becomes 
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        Where V is the volume of cell. Now consider the boundary flux integral, we 

assume the flux is constant and move )(e
nτ
r  outside the integrals: 
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       Where )(e∆  is the face area of the element. 

Step 6: Assemble the element equations into a system equation 

      Using an assembly procedure, 
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The system equation is formed, 

     )()(
,

s
ij

s
ji FaK =                                            (2-22) 

After these theoretical developments, we may apply the boundary conditions 

to Eqs. (2-22).  

For a three-dimensional hexahedral mesh with local coordinate shape function, 

the same steps 1-3 and 6 are repeated for Eqs.(2-5), and the step 4-5 are be modified 

as follows. 
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Step 4: Substitute the 3-D C0-linear shape function for a hexahedral mesh into 
element equation. 

The Eqs. (2-15) is transformed into a form appropriate for numerical 

evaluation. 
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Where ),,( ρηξiN  is the shape function with local coordinate, 

)1)(1)(1(),,( 8
1

iiiiN ρρηηξξρηξ +++=                        (2-25)   

    And iξ , iη  and iρ  are the local coordinate of grid node for a standard 

hexahedral element (as shown in Fig.2-3). And, )(eJ  is the Jacobian [Shao, 

2006]: 
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The stiffness integral may now be written as the following quadrature 

expressions: 
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Where nlnk ww , , and nmw  are weight factors. nlnk ηζ , , and nmρ are so called 

Gauss points at which the integral is evaluated. n is the number of Gauss points. 

Here, the derivative of shape function with respect to x, y, z is handled using the 

chain rule of differentiation, and it yields: 
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Step 5: Evaluate the interior load term and boundary flux term of Eqs .(2-24).  

Again, for coupling with Particle-In-Cell method in later chapter, we 
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interpolate charges from the particles to the nodes, that is: 
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Where the subscript k represents charged particle properties. Then, )(e
iρ  is 

weightied to the Gauss point becomes )(
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interior load integral term in quadrature expressions:  
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   Now considering the boundary flux integral term in quadrature expressions,  
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2.4 Sparse Matrix Storage Schemes 

 The FEM formulations and assembly techniques typically lead to large and 

sparse matrices. Thus, it becomes essential to store sparse matrix in some kind of 

storage schemes, especially for an efficient matrix-by-vector product of the iterative 

method. Nearly all schemes have these two following storage components, e.g., 

[Golub and Van Loan, 1996], and [Saad, 2003]: 

1. A one-dimensional array, which is called the primary array with the size of the 

number of non-zero entries, for storing the non-zero entries. 
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2. Two one-dimensional arrays of integer identifiers, which are called secondary 

arrays with the size of the number of non-zero entries, for recognizing which 

entries of the matrix are stored in the primary array.  

The Compressed Sparse Row (CSR) scheme is used for storing the current FEM 

sparse matrix, in which scheme the each entry of primary array is stored row-by-row.  

 

2.5 Preconditioned Conjugate Gradient Method (PCG) 

Among the iterative methods, the Preconditioned Conjugate Gradient method 

(PCG) is extremely effective for solving the symmetric positive define systems. The 

PCG method was developed in 1952 by Hestenes and Stiefel, which is an 

improvement to the steepest descent method [Saad, 2003]. The steepest descent 

approaches the solution asymptotically, however, the disadvantage of this method is 

that the speed of convergence may be very slow if the condition number of the matrix 

A is large. PCG is an efficient implementation of the conjugate directions method in 

which the search directions are constructed by conjugation of the residuals. In this 

section, the theory of PCG will not be described in detail, which can be found 

elsewhere, e.g., [Golub and Van Loan, 1996], [Saad, 2003], and [Barrett and Berry, 

1994]. The algorithm is given in the following, 
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Algorithm 1.Preconditioned Conjugate Gradient Method 

 Choose 0x  
    00 Axbr −=  
    solve 00 rMz =  
    00 zp =  

 0r = inner product ),( 00 rz  
DO k= 0, 1, 2,..,. maxk  
   =kq  matrix multiply ),( kpA  

kτ  = inner product ),( kk qp  
kkk τγα /=   

kkkk pxx α+=+1  
kkkk qrr α−=+1  

1+kr = inner product ),( 11 ++ kk rr  
      solve 11 ++ = kk rMz  

1+kr = inner product ),( 11 ++ kk rz  

If ( ≤+1kγ  tolerance) exit 

kkk γγβ /1+=  
kkkk pp βγ +=+1  

ENDDO 

Where k is the iterative number, r is the residual, x is the solution vector, p is the step 

direction, α is the step length, and β is the correction factor. Preconditioner M is 

defined as the diagonal of stiffness A, known as Jacobi preconditioning, is equivalent 

to scaling the quadratic form along the coordinate axes.  

 

2.6 Multi-frontal Massively Parallel Solver (MUMPS) 

MUMPS [Amestoy et. al., 2000] is a package for solving systems of linear 

equations of the form Ax = b. Unlike PCG, the stiffness matrix, A, is a square sparse 

matrix that can be either un-symmetric, symmetric positive definite, or general 
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symmetric. MUMPS uses a multi-frontal technique, which is a direct method based on 

either the LU or the LDLT factorization of the matrix. In the following, the main 

features and steps of MUMPS from its userguide are given in turn. 

The main features of the MUMPS package include the solution of the transposed 

system, input of the matrix in assembled format (distributed or centralized) or 

elemental format, error analysis, iterative refinement, scaling of the original matrix, 

return of a Schur complement matrix, and several built-in ordering algorithms. The 

details of this technique can be found in the reference of its user-guide. The system Ax 

= b is solved in three main steps: 

1. Analysis. The host performs an ordering based on the symmetrized pattern A+AT, 

and carries out symbolic factorization. A mapping of the multifrontal 

computational graph is then computed, and symbolic information is transferred 

from the host to the other processors. Using this information, the processors 

estimate the memory necessary for factorization and solution. 

2. Factorization. The original matrix is first distributed to processors that will 

participate in the numerical factorization. The numerical factorization on each 

frontal matrix is conducted by a master processor (determined by the analysis 

phase) and one or more slave processors (determined dynamically). Each 

processor allocates an array for contribution blocks and factors; the factors must 
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be kept for the solution phase. 

3. Solution. The right-hand side b is broadcast from the host to the other processors. 

These processors compute the solution x using the (distributed) factors computed 

during Step 2, and the solution is either assembled on the host or kept distributed 

on the processors. Each of these phases can be called separately and several 

instances of MUMPS can be handled simultaneously. MUMPS allows the host 

processor to participate in computations during the factorization and solve phases, 

just like any other processor. For both the symmetric and the unsymmetric 

algorithms used in the code, MUMPS has chosen a fully asynchronous approach 

with dynamic scheduling of the computational tasks. Asynchronous 

communication is used to enable overlapping between communication and 

computation. Dynamic scheduling was initially chosen to accommodate numerical 

pivoting in the factorization. The other important reason for this choice was that, 

with dynamic scheduling, the algorithm can adapt itself at execution time to 

remap work and data to more appropriate processors. In fact, we combine the 

main features of static and dynamic approaches; MUMPS uses the estimation 

obtained during the analysis to map some of the main computational tasks; the 

other tasks are dynamically scheduled at execution time. The main data structures 

(the original matrix and the factors) are similarly partially mapped according to 



 33

the analysis phase. 

MUMPS distributes the work tasks among the processors, but an identified 

processor (the host) is required to perform most of the analysis phase, to distribute the 

incoming matrix to the other processors (slaves) in the case where the matrix is 

centralized, and to collect the solution.  

 

2.7 Parallel computing of FEM 

In parallel computing of FEM, the computational domain is first partitioned 

divided into a number of non-overlapping sub-domains, which is equal to the number 

of processors. One processor is assigned for the computation of each sub-domain, and 

communications are required between processors whenever needed, e.g., [Farhat et. 

al., 1995], and [Hodgson and Jimack, 1993]. Fig. 2.4 shows the three different kinds 

of partitioning methods, which are common used in graph-partitioning techniques 

[Saad, 2003]. We use the element-based partitioning to partition the domain, in which 

partitioning method, there is no element should is split between two sub-domains, e.g., 

[Gullerud and Dodds, 2001], and [Thiagarajan and Aravamuthan, 2002]. 

The different type of approach is used for the different type of domain 

decomposition [Saad, 2003]. When the domain is partitioned into a set of overlapping 

sub-domains in which case overlapping Schwartz methods are used for the solution of 

the system. On the other hand, iterative sub-structuring methods are used for domain 
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is partitioned into a set of non-overlapping sub-domains. There are two typical 

non-overlapping domain decomposition methods used in parallel computing of FEM, 

which are the subdomain-by-subdomain (SBS) and the Schur complement method. We 

use the SBS approach for paralleling FEM, in which the global stiffness matrix is 

divided a numbers of partitioned matrices and be stored on each corresponding 

processor. Then the PCG method should be performed on the SBS basis. The details 

of SBS method are described in the following. 

Before introducing SBS method, the graph-partitioning library, METIS [Karypis, 

and Kumar, 1995], is first used to decompose the computational domain Ω into p 

non-overlapping sub-domains (see Fig. 2.5). 

i
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                                                   (2-32) 

and 

jiwhenji ≠=ΩΩ }{I                                      (2-33)               

The following Eqs. (2-34) is the standard block-arrowhead structure of the stiffness 

matrix usually formed from SBS method.  
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This kind of matrix structure stems from the special nodes re-ordering on each 
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sub-domain using SBS method. For each sub-domain, the rule of nodes re-ordering is 

that the internal nodes is numbered first and last the interfacial nodes. The matrices of 

internal nodes ( iA , iB , T
iB , ix , and ib ) are contributed entirely from its corresponding 

sub-domain, and the matrices of interfacial matrices ( sA , sB , T
sB , sx , and sb ) have the 

contributions from all sub-domains. Since all these matrices are concurrently 

assembled on each processor, the PCG algorithm using SBS method is given as 

follows, e.g., [Saad, 2003], [Gullerud and Dodds, 2001], [Khan and Topping, 1996], 

and [Jimack, and Touheed, 1997],                                                          

Algorithm 2. Parallel Preconditioned Conjugate Gradient Method 
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ENDDO 

This algorithm shows that the PCG with SBS method should be performed 

concurrently on each processor, whereas the communication is performed in two 

matrix operators: inner product and update [Jimack, and Touheed, 1997]. The 

subroutine inner product is used to calculate the inner product of two distributed 

vector between processors and then it requires a single globe communication for 

providing each processor with a copy of this sum. Since this sum is calculated 

repeatedly, it should be scaled by the reciprocal of the number of processor. The 

subroutine update is used to sum the distributed contribution of interfacial nodes via 

local communication. 

 The technique of non-overlapping domain decomposition we utilized in parallel 

computing of FEM is briefly described in the next section.  
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2.7.1 Domain Decomposition Method 

There are two typical domain decomposition methods, which are 

geometry-based and graph-based domain decomposition. Since Geometry-based 

method provided poor edge cut (Ec) and poor load balance, e.g., [Tseng, 2005], 

[Wehage and Haug, 1982], and [Simon, 1991], we use the graph-based method for our 

domain decomposition method. For the graph theory, a sketch of two-dimensional 

triangle mesh (graph) is shown in Fig. 2.6. This figure shows that a graph is the 

collection of the vertices of each cell and edge cuts between the cells. Most of this 

method was developed by the scientists who major in computer science, and the main 

idea of this method is to subdivide the n vertices between the NP sub-domains while 

minimizing the number of edge cuts, and balancing the weight in each sub-domain. 

Tseng [Tseng, 2005] had reviewed the partition method using graph-based method, 

e.g. [Simon, 1991], [Vanderstraeten et. al., 1996], and [Barnard and Simon, 1994] 

including Greedy partitioning, recursive spectral bisection, multi-level scheme, 

two-step method. And he recommended that the graph-partitioning library, named 

METIS, developed by University of Minnesota using multi-level scheme, especially 

has impressive performance in terms of CPU time and very easy for implementation. 

After obtaining the partitioned data, a converter should be designed for preprocessing 

the mesh (grid) data. The main function of this converter is to reorder the fully 

unstructured mesh data into the globally sequential but locally unstructured mesh data 



 38

for obtaining the relationship between global and local cell data by a simple 

arithmetic operation due to this special cell-numbering design [Tseng, 2005]. In 

addition, the nodes numbers of each sub-domain must be re-ordered follow the 

requirement for FEM using SBS method. This converter is a improvement of Tseng’s 

method. 

 

2.8 Parallel Adaptive Mesh Refinement using a Tetrahedral Mesh 
(PAMR) 

Fig. 2.7 shows the proposed overall procedures of parallel adaptive mesh 

refinement for an unstructured tetrahedral mesh. Only the general procedures are 

described in this thesis, while the details and results of the parallel implementation 

can be found elsewhere [Lian et. al., 2006]. Basically, the parallel mesh refinement 

procedures in Fig. 2.7 are similar to those presented earlier for serial mesh refinement 

elsewhere [Wu et. al., 2004]. In the serial mesh refinement, the cells are first 

examined to identify if cell refinement is necessary. If so, then they are refined 

“isotropically” into eight child cells. The generated hanging nodes are then removed 

following the procedures proposed in Wu et al. [Wu et. al., 2004] in which the cells 

are further refined into two, four, or eight child cells.  

However, the detailed procedures and related data structure become more 

complicated than those in serial mesh refinement because of the parallel processing. 
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Domain decomposition is also used in line with parallel implementation of the current 

Poisson’s equation solver. Each spatial sub-domain belongs to a specific processor in 

practice. The overall procedure shown in Fig. 2.7 can be summarized as follows:  

1. Preprocess the input data at the host processor, and distribute them to all 

other processors. 

2. Index the cells which require refinement based on the refinement criteria. 

In the current study, we use the variation of potentials among elements as 

the criterion for cell refinement which, in practice, is equivalent to a 

generally accepted error estimator as will be shown in the next section. 

3. Check if further mesh refinement is necessary. If it is, then proceed to the 

next step. If not, proceed to Step 9. 

4. Add new nodes into those cells that require refinement.  

4a. Add new nodes onto all edges of isotropic cells.  

4b. Add new nodes into the anisotropic cells which require further 

refinement as decided upon in the following steps. 

4c. Communicate the hanging-node data to corresponding neighboring 

processor if the hanging nodes are located at IPB. 

4d. Remove the hanging nodes following the procedures as shown in Wu, et 

al. [Wu et. al., 2004]. The basic idea is to remove the hanging nodes for 
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all kinds of conditions, and then refine the cell into two, four, or eight 

child cells. 

5. Unify the global node and cell numberings caused by the newly added 

nodes in all processors.  

5a.  Add up the number of the newly added nodes in each processor, 

excluding those located at interprocessor boundaries (IPBs).  

5b.  Gather this number from all other processors, and add them up to 

obtain the updated total number of nodes, including old and new nodes, 

but excluding the newly added nodes at IPBs. 

5c.  Build up the updated node-mapping and corresponding cell-mapping 

arrays for those newly added nodes in the interior part of each 

sub-domain based on the results in Step 5b.  

5d.  Communicate the data of newly added nodes at the IPBs among all 

processors. 

5e.  Build up the node-mapping array for the new nodes received at IPBs in 

each processor. 

6. Build up new connectivity data for all cells to include the newly added 

nodes.   

7. Build up the new neighbor-identifying array based on the new connectivity 
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data obtained in Step 6. 

7a.  Reset the neighbor-identifying array. 

7b.  Build up the neighbor-identifying arrays for all cells based on the new 

connectivity data, excluding the data associated with the faces lying on 

the IPBs that require the updated information of the global cell number 

which is not yet known at this stage. 

7c. Record all the neighbor-identifying arrays that have not been rebuilt in 

Step 7b. 

7d. Broadcast all the recorded data in all processors. 

7e. Build up the neighbor-identifying arrays on the IPBs, considering the 

overall connectivity data structure. 

8. Decide if it reaches the preset maximum number of refinement. If it does, 

then proceed to the next step. Otherwise, return to Step 3. 

9. Synchronize all processors. 

10. The host processor gathers and outputs the data. 

In the current study, by coupling the PAMR with the parallel Poisson’s equation 

solver as stated in Step 3, the maximum number of refinement is set to be “one”, since 

the option whether further refinement is necessary is decided outside the PAMR, as 

can be seen in the next section. 
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2.9 Coupling of PAMR with Parallel Electrostatic Field Solver 

The PAMR presented in the previous section can be easily coupled to the current 

parallel electrostatic field solver since both utilize 3-D unstructured tetrahedral mesh 

and MPI for data communication. One can readily wrap up the PAMR as a library and 

insert it into the source code of any parallel numerical solver to be used. However, 

some problems may occur due to memory conflicts between the inserted library and 

the numerical solver itself that could reduce the problem size one can handle in 

practice. As such, a simple coupling procedure, written in shell script (Fig. 2.8) that is 

standard on all Unix-like systems, can be prepared to link the PAMR and the current 

parallel electrostatic field solver. In doing so, we can keep the source codes intact and 

without alterations. Indeed, it is especially justified if only a steady state of the 

physical problem is sought, in which normally only several times of mesh refinement 

is enough to have a fairly satisfactory solution. Thus, the total I/O time, which is in 

proportion to the number of couplings in switching between two codes, can be 

reduced to a minimum in practical applications. In addition, as shown in Fig. 2.8, 

after identifying those cells that require refinement before PAMR, the domain is 

repartitioned based on the new mesh refinement requirements. For example, the 

weight factors of the cells (vertex in graph theory) are set as eight for those cells 

which are flagged to be refined; otherwise, they are set as unity. With this distribution 
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of weight factors as the input to ParMETIS [Karypis, 1998], an approximate (but 

rather good) load balancing can be achieved in the PAMR module. Then the 

electrostatic field solvers read in the output refined mesh from the PAMR module and 

partition the new mesh with equal weight factors for all cells, in which the workload 

is balanced in the electrostatic field solvers. 

The current parallel electrostatic field solvers along with PAMR are implemented 

and tested on a PC-cluster system with the Linux OS at the National Center for 

High-Performance Computing in Taiwan (64-node, dual processor and 8 GB RAM 

per node). The standard message-passing interface (MPI) is used for data 

communication. It is thus expected that the current parallel code will be highly 

portable among the memory-distributed parallel machines that are running with the 

Linux (or its equivalent) operating system. 

 

2.10 Validation and Parallel Performance of the Electrostatic Field 
Solver 

Fig. 2.9 shows a simplified flowchart of the parallel computing of FEM 

proposed in the current chapter, which incorporates the multi-level graph-partitioning 

library. Fig. 2.9 shows that after reading the preprocessed cell and node data on a 

master processor (CPU 0), the data are then distributed to all other processors 

according to the designated initial domain decomposition. With these data, every 
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processor will concurrently construct shape function, coefficient matrix and then 

impose the boundary conditions. Once every processor has the above information the 

system will ready be solved using parallel PCG. The final results are then output when 

L2 error norm is less then the specified convergence criteria.  

Validation of the parallel electrostatic field solver 

Many analytical solutions of Poisson’s equation are available for comparison 

either with or without the source term. In the current study, we have selected one 

problem without a source term and another with a constant source term. The former is 

a grounded conducting sphere with diameter (Dsphere) 2 meters immersed in a uniform 

electric field ( 10=E
r

volts/m, ~40,000 elements, 20 processors), while the latter is a 

uniformly charged distribution between two infinite, grounded conducting plates at 

L=0m and L=0.02m (quasi 1-D, number density of singly-charged ions=10
16 

m
-3

, 

~8,500 elements, 20 processors). About ~56,000 particles are used. The charge 

weighting used in this is based on the volume coordinates that originated from the 

finite element method. The simulation and analytic solutions of these two problems 

are both in excellent agreement with the analytical solution as shown in Fig. 2.10(a) 

and Fig. 2.10(b), respectively. These results validate the accuracy of the current 

parallel Poisson’s equation solver. 
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Parallel performance of the electrostatic field solver  

The simulation of a typical single CNT field emitter within a periodic cell using 

0.47 million elements (~97,000 nodes), as shown in Fig. 2.11, is employed to test the 

parallel performance of the current Poisson’s equation solver. This size of the mesh is 

typical for further production run as will be presented in chapter 5. Only ¼ of the 

volume is used for the simulation by taking advantage of the symmetry in this 

problem. The gate voltage is applied with 150 volts, while the cathode and anode 

electrodes are grounded and applied with 400 volts, respectively. At the planes of 

symmetry, Neumann boundary conditions are used. A very refined grid (Fig. 2.12) is 

used near the silicon tip to improve the accuracy of the predicted electrical field. No 

parallel adaptive mesh refinement is used in the simulation since at this stage; we are 

only interested in obtaining the parallel performance of the Poisson’s equation solver. 

Fig. 2.13 illustrates the parallel speedup as a function of the number of processors 

up to 32. The corresponding time breakdown of various components of the solver 

along with speedup is summarized in Table 2. The runtime using a single processor is 

about 138.17 seconds, while it is reduced to 5.13 seconds using 32 processors, which 

results in ~26.93 of parallel speedup. Most of the time is consumed in the parallel CG 

matrix solver, in which the percentage of communication time generally increases 

with the number of processors used. Note that the communication time, including the 
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send/receive and allreduce commands required in a parallel CG solver, is relatively 

short (~3.53 seconds or 4.5% of the total time) at 2 processors which is attributed to 

the fast access to the same memory by the dual-processor per node architecture of this 

cluster system. An appreciable portion of the runtime is spent in the communication 

for a large number of processors, e.g., 35.4% at 16 processors. A further improvement 

of the solver efficiency by adding a robust parallel preconditioner before the parallel 

CG solver is highly expected and will be reported elsewhere in the future. 

Nevertheless, the present results clearly show that the parallel implementation of the 

Poisson’s equation using a subdomain-by-subdomain procedure performs very well 

for the typical problem size we employ in the field emission prediction. A smaller 

problem size is not tested in the current study since it is irrelevant for this kind of 

application. It is expected that the parallel speedup can be even better if a larger 

problem size is simulated, e.g., for an array of field emitters. Thus, the current parallel 

implementation can greatly help to reduce the runtime required for the parametric 

study of optimizing the field emitter design. 

Performance of parallel adaptive mesh refinement 

A case with the same boundary conditions as the above test case for parallel 

performance is used to demonstrate the improvement of prediction using parallel 

adaptive mesh refinement. Fig. 2-14 shows a close-up view of the mesh distribution 
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near the single CNT tip using PAMR where the initial mesh is rather coarse (7,006 

nodes), while the level-5 mesh is very fine (61,241 nodes) near the tip. In this case, an 

element is refined into eight child elements if the standard deviation of the potentials 

among the nodes of this element is larger than the value of a preset criterion, refε . In 

this case, refε  is set to 0.08. Table 3 lists the number of nodes/elements and the 

corresponding maximal electric field in the simulation domain at different levels of 

mesh refinement. In addition, the data in the parentheses are obtained by using an a 

posteriori error estimator as proposed by Zienkiewicz and zhu [Zienkiewicz and Zhu, 

1987]. We have employed a very simple gradient recovery scheme by averaging the 

cell values of the FE solution to extract the “exact” solution of the electric field in 

each cell. A prescribed global relative error preε  of 0.0003 is used to control the level 

of accuracy. The absolute error in each element is then compared with a current mean 

absolute error at each level, based on preε , to decide if refinement is required. From 

Table 3, it is clear that the results are nearly the same by using either the variation of 

potential or the error estimator in the current study, although the implementation of 

variation of potential is more cost effective. For all the data presented in the present 

study, mesh refinement based on variation of potential is used throughout the study, 

unless otherwise specified. 

After level-5 refinement, the maximum value of the electric field near the tip 
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reaches an approximately constant value of 11.323 V/nm. Note that the parallel 

performance of the PAMR module is not discussed here for brevity purposes but it 

appears in detail elsewhere [Lain et. al., 2006]. All the cases shown in succeeding 

sections apply this mesh refinement module for a better resolution near the emitter 

tip. 

 

2.11 Some Remarks 

From the benchmark validations, the developed 3D parallel Poisson’s equation 

solver is verified successfully with and without the source term considering an 

Neumann boundary condition and Dirichlet boundary condition. The 3D parallel 

Poisson’s solver coupled with PAMR is used in simulating a typical CNT emitter and 

the results show a good resolution of potential distribution around a very narrow 

emitter tip. Such an accurate potential distribution usually plays an important role in 

correctly predicting the emission current from the CNT emitter tip. Parallel speedup 

performance shows 84% at 32 processors, and a more robust precondition should be 

implemented in the near future. 
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Chapter 3  

The Parallel Computing of Finite Element Method for 

Three-Dimensional Magnetostatic Field Problems 

 

As will be shown in later chapter, for simulating the typical DC and RF 

magnetron plasma, there is usually a permanent magnet system behind the cathode 

electrode, which has to be simulated before plasma modeling. In general, this 

magnetic field plays an important role in sustaining magnetron plasma at very low 

temperature. Thus, the main purpose of developing a parallel magnetostatic field 

solver is to obtain the magnetic field induced by permanent magnet system. Since 

both the finite element Galerkin weighted residual method (GWRM) and 

subdomain-by-subdomain (SBS) method are introduced in previous chapter in detail, 

in this chapter, we only interest in developing the parallel magnetostatic field solver 

using the GWRM and SBS coupled with PAMR directly. Some benchmark problems 

are presented for demonstrating the accuracy and applicability of the parallel 

magnetostatic field solver. In the end of this chapter, the parallel performances of 

these solvers are studied and their time breakdown is analyzed.  
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3.1 Calculation of magnetostatic (MS) Field  

For the magnetostatic field problem, the Maxwell’s equation is reduced to a 

vector Poisson’s equation as shown as Eqs. (2-6) in the previous chapter. The 

magnetic vector potential in Eqs. (2-6) is expressed in terms of current density J
r

 

with the following definition, 

MJ
vr

×∇=                                                   (3-1) 

Where M
r

 is the magnetization vector of permanent magnet. Substituting Eqs. (3-1) 

into Eqs. (2-6), Eqs. (2-6) yields 
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In Cartesian coordinates, Eqs. (3-2) is equivalent to three scalar Poisson equations: 
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In general, both M
r

 and µ can be functions of position. In the following, the same 

developing steps of GWMR are used for Eqs. (3-3). After employing GWRM, we can 

obtain the element equation similar to previous Poisson’s equation. For the 

x-component element equation, 

41,41)(

])]()()[(

)()()(

)()()()()()(

−=−=−
∂
∂

−
∂

∂
=

∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

∫∫∫∫∫

∫∫∫

jidANdxdydzN
y

M
z

M

adxdydz
z

N
z

N
y

N
y

N
x

N
x

N

A

e
n

e
i

e
i

zy

jx

e
j

e
i

e
j

e
i

e
j

e
i

τr
(3-4a) 

or in matrix form, 
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 (3-4b)                 

Steps 1-4 and 6 of GWRM are not repeated here, and we only describe the detail in 

step 5 for Eqs. (3-3). 

Step 5: Evaluate the interior load term and boundary flux term of Eqs.(3-4).  

      The divergence theorem could be written as follows, 
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where u is an arbitrary scalar and F
r

 is an arbitrary vector. After employing 

Eqs. (3-5), the interior load integral becomes, 
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      and the boundary flux term is 
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The Eqs. (3-4b) can be rewritten with Eqs. (3-7) and Eqs. (3-8), and the same 

manners are handled in y- and z- components. The final forms of element equations of 
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Eqs. (3-3) are: 
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y-component: 
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z-component: 

41,41
3

)()(

])([1

)(
)()()(

)()()()()()(

−=−=

∆
−∇×+Ω×−=

∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

∫∫∫∫∫

∫∫∫

ji

dxdydzNMdnMN

adxdydz
z

N
z

N
y

N
y

N
x

N
x

N

e
e

nz
e

iz
e

i

jz

e
j

e
i

e
j

e
i

e
j

e
i

µ
τ

µ
rrrr

      (3-9c)               

 

After the theoretical development, the boundary conditions are imposed to Eqs. (3-9) 

and ready be solved using either the precondition conjugated gradient method (PCG) 

or the direct matrix package MUMPS. In parallel computing Eqs. (3-9), PCG is used 

based on the SBS method, the same description is given in the previous chapter and it 

will not be repeated for brevity.                                                
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3.2 Coupling of PAMR with Parallel Magnetostatic Field Solver 

In the previous chapter, PAMR is described and successfully coupled with the 

parallel Poisson’s equation solver for electrostatic field problems. In the subsection, 

the same idea is followed for coupling PAMR and current parallel vector Poisson’s 

equation for magnetostatic field problems. Therefore, almost the same developing 

procedures are given as those for electrostatic field solvers as follows. 

The PAMR presented in the previous section can be easily coupled to the current 

parallel magnetostatic field solvers since both utilize 3-D unstructured tetrahedral 

mesh and MPI for data communication. One can readily wrap up the PAMR as a 

library and insert it into the source code of any parallel numerical solver to be used. 

However, some problems may occur due to memory conflicts between the inserted 

library and the numerical solver itself that could reduce the problem size one can 

handle in practice. As such, a simple coupling procedure, written in shell script (Fig. 

3.1) that is standard on all Unix-like systems, can be prepared to link the PAMR and 

the current parallel magnetostatic field solvers. In doing so, we can keep the source 

codes intact and without alterations. Indeed, it is especially justified if only a steady 

state of the physical problem is sought, in which normally only several times of mesh 

refinement is enough to have a fairly satisfactory solution. Thus, the total I/O time, 

which is in proportion to the number of couplings in switching between two codes, 
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can be reduced to a minimum in practical applications. In addition, as shown in Fig. 

3.1, after identifying those cells that require refinement before PAMR, the domain is 

repartitioned based on the new mesh refinement requirements. For example, the 

weight factors of the cells (vertex in graph theory) are set as eight for those cells 

which are flagged to be refined; otherwise, they are set as unity. With this distribution 

of weight factors as the input to ParMetis, an approximate (but rather good) load 

balancing can be achieved in the PAMR module. Then the magnetostatic field solvers 

read in the output refined mesh from the PAMR module and partition the new mesh 

with equal weight factors for all cells, in which the workload is balanced in the 

magnetostatic field solvers. 

The current parallel magnetostatic field solvers along with PAMR are 

implemented and tested on a PC-cluster system with the Linux OS at the National 

Center for High-Performance Computing in Taiwan (64-node, dual processor and 8 

GB RAM per node). The standard message-passing interface (MPI) is used for data 

communication. It is thus expected that the current parallel code will be highly 

portable among the memory-distributed parallel machines that are running with the 

Linux (or its equivalent) operating system. 
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3.3 Validation and Parallel Performance of the Magnetostatic Field 

Solver 

Since the parallel computing of the vector Poisson’s equation solver is the same 

with those techniques for Poisson’s equation solver presented in the previous chapter, 

the only difference of computing procedures is that Poisson’s equation has to be 

solved three times in order to obtain three different component of vector potential. 

Therefore, we also use the Fig. 2.9 for representing the procedures of parallel vector 

Poisson’s equation solver, and the details of Fig. 2.9 can be found in previous chapter. 

Validation of the parallel magnetostatic field solver  

A permanent magnet array made up of eight segments is used to be the 

benchmark problem for validating the parallel magnetostatic field solver. Fig. 3.2 

shows a cross section of the permanent magnet array. There are the experimental data 

and analytical solution available to this problem, e.g., [Leupold et. al., 1993], 

[Leupold et. al., 2000], and [Halbach, 1980]. The experimental data shows that the 

magnetic flux density in the center air gap of the permanent magnet array is about 

80-90% of the ideal value of analytic prediction. The analytic solution for this system 

is also given as follows:  

      B = BRln(ro/ri)                                           (3-10) 

Where BR is the remanence of the permanent magnet, and ro and ri are the outer and 
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inner radii of the permanent magnet array, respectively.  

Fig. 3.3shows the mesh distribution of the permanent magnet array made up of 

eight segments using 0.63 million elements (~108,840 nodes). And in this simulation, 

the remanence BR of the permanent magnet material is 1 Tesla, the relative 

permeability is 1, the inner radius is 1 inch, and the outer radius is 2.74 inch. After 

substituting these parameters to Eqs. (3-10), the calculated magnetic flux density in 

the air gap is expected to be 1 Tesla. The Fig. 3.4 shows that the simulated magnitude 

of the magnetic flux density of the permanent magnet array at the center of the air gap 

is about 0.87 Tesla, which is agree with the previous experimental data. Fig. 3.5 

shows the mesh distribution of permanent magnet array made up of eight segments 

using PAMR where the initial mesh is rather coarse (7,845 nodes), while the level-6 

mesh is very fine (108,840 nodes) around the permanent magnets array. Table 4 lists 

the number of nodes/elements and the corresponding maximal magnitudes of the 

magnetic flux density of the permanent magnet array at the center of the air gap in the 

simulation domain at different levels of mesh refinement with the refε  is set to 0.08 

based on the variation of vector potential is used. It also shows that better solution 

obtained after using PAMR. 

Parallel performance of the magnetostatic field solver  

The previous validation simulation case is also employed to test the parallel 
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performance of the current parallel magnetostatic field solver. Fig. 3.6 illustrates the 

parallel speedup as a function of the number of processors up to 32. The 

corresponding time breakdown of various components of the solver along with 

speedup is similar with the time breakdown of parallel electrostatic solver since they 

used the same parallel CG matrix solver. And, detailing the analysis on this time 

breakdown structure is not repeated here. The runtime using a single processor is 

about 259.86 seconds, while it is reduced to 10.82 seconds using 32 processors, which 

results in ~24.01 of parallel speedup.  

 

3.4  Some Remarks 

Following the development steps in previous chapter, the parallel vector 

Poisson’s equation solver is developed and verified successfully using a typical 

permanent magnet system. When our simulation results compare with the simulation 

results from commercial software, it especially shows a better resolution in magnetic 

field distribution since the parallel PAMR module is coupled into the parallel vector 

Poisson’s equation solver. Parallel speedup performance shows 75% at 32 processors, 

and a more robust precondition should also be implemented in the near future. 
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Chapter 4 

An Overview of the PIC-FEM Method Using an 

Unstructured Mesh and Its Parallel Implementation 
 

This chapter begins with the introduction to the overview of the conventional 

Particle-In-Cell and Monte-Carlo method (PIC-MCC), which is a well-known kinetic 

approach for plasma simulation. Since the conventional PIC-MCC is less flexible in 

simulating the device with complicated geometric shape when using a structured 

mesh. Therefore, the first main contribution of this chapter is to develop a PIC-MCC 

code for especially using an unstructured tetrahedral mesh, named PIC-FEM code. 

However, the PIC-FEM code with a large number of particles does make the 

computation become very expensive. For sure, the second main contribution of this 

chapter is to accelerate the code using the parallel computing technique. In parallel 

computing of PIC-FEM method, the computational domain is first decomposed in a 

number of sub-domains, which is equal to the number of processors via the 

multi-level graph-partitioning library, METIS. Dynamic domain decomposition (DDD) 

technique is employed for alleviating the load unbalance among sub-domains. Two 

benchmark problems are presented for demonstrating the accuracy and applicability 

of the parallel PIC-FEM code. In the end of this chapter, the parallel performance of 

the PIC-FEM code using DDD is studied and its time breakdown is analyzed in detail.  
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4.1 General Description of PIC-MCC Method 

The PIC-MCC method is the particle method coupling with the Maxwell’s 

equations. The original PIC method without MCC method was developed by plasma 

physicists, and it mainly be used in simulating the charged particles motion under 

electromagnetic field. This important theory greatly reduces the computational load in 

considering that 2N  Coulomb interactions among N particles based on the charge 

extrapolation and force interpolation. Since PIC does not consider particle collisions, 

it could be represent as the collisionless Boltzmann equation, i,e., Vlasov’s equation 

[Nanbu, 2000]. The more details of PIC method can be found in Birdsall and 

Landon’s book [Birdsall and Langdon, 1991], Hockey and Eastwood’s book 

[Hockney and Eastwood, 1988], and Birdsall’s review [Birdsall, 1991]. Until 1980s, 

Monte-Carlo collisions method was included in PIC method for modeling the 

self-sustained plasma discharge [Birdsall, 1991]. In simulating the plasma discharge 

using PIC-MCC, the cell size should be a fraction of the Debye length in order to 

resolve the plasma sheath. Moreover, in order to resolve the plasma oscillation, the 

electron time-step must be one order smaller than 1/(plasma frequency). 

 

4.2 The PIC-MCC Procedures 

 The conventional flowchart of the PIC-MCC scheme is shown as Fig. 4.1. It 
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shows that after initialization, one time step consists of eight stages as follows: 

1. Charge extrapolation to each grid points 

2. Calculation of electromagnetic fields 

3. Force interpolation to each particle 

4. Calculation of motion of each particle 

5. Calculation of Monte-Carlo collision of each particle 

6. Indexing (or sorting) all the particles 

7. Calculation particle reduction 

8. Sampling the particles within cells to determine the macroscopic quantities 

In order to significantly speedup the simulation, sub-cycling scheme [Brackbill and 

Cohen, 1985] is used since ion move very slowly in one time step due to it is heavier 

than electron. In such scheme, after repeating the calculation of stages 1-8, 10 times 

for et∆ , we calculate the stages once for it∆ , thus advancing the system time by it∆ . 

Since step 2 was introduced in chapter 2, the other steps will be given in detail as 

follows: 

4.2.1 Initialization  

 Before beginning stage 1-8, the data of geometry and simulation conditions 

should be read in the code. The number of simulated particles of each cell is 

calculated according to the particle number density and current cell volume. Since 

plasma is electrically neutral, we have the same initial number of simulated electrons 
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and ions. The particle velocities are assigned to each particle based on 

Maxwell-Boltzmann distribution according to the particle velocities and temperature. 

The positions for each simulated electron are randomly allocated within the cells and 

the same positions are assigned to the simulated ions. 

4.2.2 Force Interpolation and Charge Extrapolation  

The same weighting function should be used for force interpolation and charge 

extrapolation in order to eliminate the self-force and conserves momentum [Birdsall 

and Langdon, 1991]. For an unstructured mesh, the derived finite element volume 

coordinate in previous chapter [Santi et. al., 2003] is used to as the interpolation and 

extrapolation weighting function. The force interpolation and charge extrapolation 

using volume coordinate are written in Eqs. (4-1) and (4-2), respectively. 
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where the subscript i represents mesh node properties and subscript k represents 

particle properties.  

4.2.3 Equations of Motion 

 The leap-frog scheme [Birdsall and Langdon, 1991] is used for solving the 

equation of motion (see Fig. 4.2), in which scheme is second-order accuracy in time 

through use of a velocity that is staggered at half time steps relative to the particle 

position. In addition, this scheme requires minimal storage information of particle 
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velocity and position since only the updated particle velocity and position are stored. 

Eqs.(4-3) and Eqs. (4-4) are the particle position and velocity derivatives in finite 

difference form with leap-frog scheme, respectively: 
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Where n is the time step counter. The force term in the RHS of Eqs. (4-3) can also be 

formulated using leap-frog scheme, it yields 
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Then Eqs. (4-5) is ready to be solved using Boris’s method [Birdsall and Langdon, 

1991]. In this method, the magnetic and electric fields are separated completely after 

introducing two new variables into Eqn. (4-5). They are: 
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After substituting Eqs. (4-6) and Eqs. (4-7) into Eqs. (4-5), Eqs. (4-5) becomes 
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Therefore, from Eqs. (4-6) to (4-8), the main ideas of Boris’s method can be 

explained that −vr  is obtained after adding the half of the electric impulse to the 

initial velocity via Eqs. (4-6). Then +vr  is obtained after rotating −vr  with magnetic 

field via Eqs. (4-7). Finally, the updated velocity 2/1+nvr  can be obtained after adding 
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the half of the electric impulse to +vr via Eqs. (4-8). The detail of this method is also 

can be found in Birdsall’s book [Birdsall and Langdon, 1991]. 

4.2.3.1 Particle Ray Tracing 

There are two different methods for particle ray tracing, which are cell-by-cell and 

coordinate particle tracking for an unstructured mesh, respectively. For an 

unstructured mesh, the cell-by-cell particle tracking takes the advantage of cell 

connectivity provided by the unstructured mesh data [Tseng, 2005]. The first step of 

the particle tracing is to determine whether the particle will across if the particle will 

stay in or leave the current cell. If the particle leaves, then the second step is to 

determine the intersection poison on the intersecting face. Further journey of the 

particle depends on the face condition. If it is the normal face between cells, then it 

will continue its movement until the time step ends. If the intersection face is an I/O 

or specified boundary, the particle will be removed. If not, then process the interaction 

according to the wall boundary conditions. The more details of this particle tracking 

can be found elsewhere [Tseng, 2005].  

4.2.4 Monte Carlo Collision Algorithm (MCC) 

In order to simulate a self-sustained and self-consistent plasma discharge, the 

dominant reactions between species should be considered properly. Since we use 

argon gas for plasma discharge, the simulation species are electron (e), ion ( +Ar ), and 
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ground state atom (Ar). In general, there are three different collision algorithms for 

these plasma species (see Fig. 4.3) [Nanbu, 2000], which are short-range collision 

between unlike particles, short-range collision between like particles, and Coulomb 

collisions. For the low-temperature plasma, the plasma density is usually less 

than 31710 −m , the Coulomb collisions are all negligible. Moreover, argon gas is 

assumed in equilibrium and at rest, the short-range collision between like particles are 

also negligible in current work. Therefore, totally five reactions in the argon Monte 

Carlo collision which are listed as follows, 

    (1) AreAre +→+        (Elastic Scattering) 

    (2) *AreAre +→+       (Excitation) 

    (3) eAreAre ++→+ +    (Ionization) 

    (4) ++ +→+ ArArArAr   (Charge Exchange) 

    (5) ArArArAr +→+ ++   (Elastic Scattering) 

In general, there are two methods for treating e-Ar and +Ar -Ar collisions, which are 

null-collision method and Nanbu’s method. Since only one random number used in 

Nanbu’s method [Vahedi and Surendra, 1995], it makes collision computation 

becomes more efficient than using the typical null-collision method, and Nanbu’s 

method is very simple and straightforward in treating such collisions. For treating the 

e-Ar collision using this method, the total collisional probability ( TP ) is written as 
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Where kP  is probability of the kth collisional event, 

 ekgk tvNP ∆= )(εσ            (4-10) 

Then one can sample a collisional event k randomly 

 Κ+= Uk 1                                                   (4-11) 

and evaluate kP  at the energy εof the electron. The kth collisional event occurs 

when kPkU −Κ> )/( , otherwise the collisional event not occurs  (as shown in Fig. 

4.4). This method is also used for treating the +Ar -Ar collisions. In the following, 

each collisional event in the electron-molecule and ion-molecule collision is described 

briefly. The more detailed theory can be found in Ref. [Vahedi and Surendra, 1995]. 

4.2.4.1 Electron-Molecule Collision 

 The electron-molecule collision cross sections are the same as the ones used by 

Nanbu [Nanbu, 2000] as shown in Fig. 4.5. The only difference is we averaged 26 

elastic collisions into one for fitting cross section data easily. When a elastic 

collision occurs, the incident electron scatters through an angle χwhich is computed 

follows the formulation in Ref. [Vahedi and Surendra, 1995]. It is 

 
ε

εεχ
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=                                        (4-12) 

where R is the random number andεis the energy of the incident electron. The Eqs. 

(4-16) also holds for determining electron scattering angle for all types of 
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electron-neutral collisions. Since the azimuthal scattering angle φ, is uniformly 

distributed on the interval [0, 2π], and is determined by 

 φ=2πR                                                    (4-13) 

where R is the random number. Once χ and φ are obtained, the direction of the 

scattered velocity (as shown in Fig. 4.6) is determined by [Vahedi and Surendra, 

1995] 
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Whereθis given by ivinc

rr
⋅=θcos , incvr  and scatvr  are unit vector parallel to the 

incident and scattered velocities, respectively. Then the scattered velocity components 

can be determined by taking the projection of scatvr  on the coordinates axes. In an 

excitation collision, the incident electron loses the excitation threshold energy of 

11.55ev and is scattered through an angle χ determined by Eqs. (4-12). 

 In an ionizing event, the incident electron strips an electron off the neutral, and 

the neutral becomes an ion, continuing on its trajectory virtually undistributed. The 

energy balance equation with this assumption, it yields 

 ionincejscat εεεε −=+               (4-15) 

 Ni εε =                  (4-16) 

Where scatε , ejε  and iε  are energies of the scattered, ejected and incident electrons, 

respectively. incε  and Nε  are the energies of the created ion and the target neutral 
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atom, and ionε  is the ionization threshold energy. The energy of the incident electron 

is given by 
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Then energy of the scattered electron is obtained form Eqs. (4-15). After the energy 

assignment, each of the scattered and ejected electrons scatters through angles χ and 

φ determined by Eqs. (4-12) and (4-13), respectively. From the Eqs. (4-16), the 

velocity of the created ion is calculated from 3V Maxwellian distribution at the 

molecule temperature.  

4.2.4.2 Ion-Molecule Collision 

Fig. 4.7 shows the ion-neutral cross sections we used in the model. In a simple 

charge exchange collision, an electron is assumed to hop from the neutral onto the ion. 

Therefore, the velocity of the new ion is assigned with the velocity of the incident 

neutral and the new neutral takes the velocity of incident ion. The hard-sphere 

collisions assumption is used in treating the ion-neutral elastic scattering collision. 

And the energy of the scattered ions are determined by [Vahedi and Surendra, 1995] 

 incLscat εαε )1( −=                                              (4-18) 

Where incε  and scatε  are the energies of the incident and scattered ions, respectively. 

The energy loss factor, Lα , is given by 

χα 2sin=L                                                   (4-19) 
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where χ is the scattering angle in the laboratory frame which is determined by 

 R−= 1cosχ                                                (4-20) 

Where R is the random number. The azimuthal scattering angle φ is determined 

with Eqs. (4-13). 

4.2.5 Indexing 

The location of the particle after movement with respect to the cell is important 

information for particle reduction. The relations between particles and cells are 

reordered according to the order of the number of particles and cells using a simple 

algorithm [Tseng, 2005]. Before the particle reduction, the removed particle will be 

chosen by a random method in the current cell. And the number of the removed 

particle can be easy determined according to this numbering system. 

4.2.6 Particle Reduction 

  For simulating plasma discharge, the number of simulated particles usually 

increases rapidly due to ionization, which makes computational load become very 

heavy. In this case, speedup, particle reduction technique should be employed with 

switching the particle weighting factor in order to speed up the code, e.g., [Nanbu, 

2000], [Shon et. al., 2001]. The particle reduction technique we used is the 

improvement of Nanbu’s particle reduction technique [Nanbu, 2000]. The main idea 

of this technique is given as follows. 
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When the current number of ion ( )(tNi ) is equal to 1.2 times the initial number 

of ion ( )0(iN ), the particle weighting function is increased from initial weighting 

function ( 0W ) to 02.1 W  by removing excess sampled particles cell by cell. The 

numbers of sampled particles in a cell are chosen in proportion to their number 

density in each cell. This procedure is repeated whenever )(tNi  exceeds )0(iN . 

However, it is clear that this particle reduction has no effect on charge density 

distribution and the number of real electron is also unchanged before and after 

switching. 

4.2.7 Data sampling 

  A steady state of the plasma system is reached by monitoring the total numbers of 

particle in the computational domain. Once a steady state is reached; we can obtain 

the data with small statistical fluctuations by time-averaging a set of temporal data 

sampled for equal time interval. The data for the electron density, ion density, charge 

density, electric potential, and electric field, are sampled at the grid points. And, the 

electron temperature, ion temperature, and electron energy distribution function are 

sampled in each cell. 

 

4.3  Parallel computing of PIC-FEM method 

Since the computational domain has been partitioned using multi-level graph 

partitioning tool, the PIC-MCC is then ready for paralleling under single-instruction 
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multiple-data (SIMD) paradigm. Under SIMD paradigm, the PIC-MCCC code is 

executed in serial on its own sub-domain. Communications are required when particle 

meets the inter-processor boundary (IPB) and also in field solver. High parallel 

performance can only be achieved if communication is minimized and the 

computational load is evenly distributed among processors. Therefore, dynamic load 

balancing (DDD) technique should be used to re-partition the domain using the 

weights base on the number of particle in each domain when load becomes unbalance. 

The reason for selecting the number of particle as the weight for DDD is that the 

particle computation is the most expensive component of PIC-MCC.  

4.3.1 The Parallel PIC-FEM Method 

Fig. 4.8 and 4.9 shows a simplified flowchart of the parallel PIC-FEM method 

proposed in the current study. A converter should be designed for preprocessing the 

mesh (grid) data obtained from the domain decomposition and for proving a processor 

neighbor-identifying array. The main function of this converter is to reorder the fully 

unstructured mesh data into the globally sequential but locally unstructured mesh data 

for obtaining he relationship between global and local cell data by a simple arithmetic 

operation due to this special cell-numbering design [Tseng, 2005]. In addition, the 

node numbers of each sub-domain are must re-ordered follow the requirement for 

FEM SBS method. Except for parallel computing of FEM, most of the particle 

computation follows the experience from the previous parallel DSMC method [Tseng, 

2005]. 
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Again referring to Fig. 4.8, the master processor first reads in the preprocessed 

mesh data and then distributes it to all other processors. Once all preprocessor has the 

information of mesh data, the PIC-MCC code is executed in serial on it own processor. 

After force interpolation, particle starts to move and be tracked using cell-by-cell. 

When particle meets the IPB during its journey within a simulation time step, the 

particle related data is then stored into a buffer array and are numbered sequentially 

for considering communication efficiency [Tseng, 2005]. After all the particles in a 

processor are moved, a local communication among processor is occurred for 

communicating the buffer array. Received particle data are then unpacked and each 

particle continues to finish its journey for the remaining time step.  

After all particles finishing its free flight on each processor, the program carries out 

the Monte-Carlo collisions, indexing the particles, extrapolating the charges and 

solving the field equations in parallel. The particles in each cell are then sampled at 

the appropriate time. 

4.3.2 Dynamic Domain Decomposition (DDD) 

For reaching the high parallel performance during simulation, the computational 

load should be balanced properly when the load becomes unbalance since particle 

moves very frequency through sub-domains. This dynamic load balance is achieved 

by employed the dynamic domain decomposition technique (DDD). The DDD 

technique we used is an improvement of previous method in DSMC [Tseng, 2005]. 
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The flowchart of parallel PIC-FEM method with DDD technique is shown as Fig. 

4.10. It shows that there are three main processes in DDD, which are repartition the 

domain, cell/particle migration, and node re-ordering. In the following, these main 

processes of this technique will be given and the details also can be found elsewhere 

[Tseng, 2005]. 

The main idea of the dynamic domain decomposition technique is to repartition 

the computational domain using the multi-level graph-partitioning library ParMetis 

[Karypis et. al., 1998]. The library ParMetis is the parallel version of library METIS 

which are also developed by University of Minnesota. In parallel PIC-FEM 

simulation, the workload of each processor is approximately proportional to the 

number of particles in the corresponding sub-domain. Thus, the weight of each vertex 

for graph-partitioning library is assigned using number of particle in the 

corresponding cell. After repartitioning the domain based on this weight, a fairly 

particle distribution among processors is obtained. Once the domain has been 

repartitioned, the relationship for cell and sub-domain will be updated via cell and 

particle migration technique [Tseng, 2005]. The main idea of this technique is that the 

to-be-transferred particle related and cell related data on each processor are packed 

into the corresponding buffer array and migrate these arrays into a whole array. Then 

local communication is occurs for this to-be-transferred array between sub-domains. 
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For the sub-domain in this communication, the array is unpacked and then updates the 

particle and cell related relationship. Finally, node re-ordering on internal and 

interfacial nodes is carried out (as shown in Fig. 4.11) for the requirement of parallel 

FEM using SBS method. 

 

4.4 Validation of the Parallel PIC-FEM Method 

For validating the PIC-FEM code, two benchmark problems are presented, which 

are the quasi one-dimensional DC and RF gas discharge plasma. Gas discharge 

plasmas are benchmarked because they find well-established use in practical 

industrial applications, such as surface modification, lasers, lighting, etc. In addition, 

one-dimensional DC discharge is a prototype of all discharge simulation. Before 

simulating these plasma systems, the elementary gas discharge plasma physics is 

introduced. Then, the simulation conditions are described and the results are 

compared with experimental data and previous simulation wherever available.  

4.4.1 Quasi One-dimensional DC Gas Discharge Plasma 

A schematic picture of the elementary glow discharge processes is presented in 

Fig. 4.12. When a constant potential difference is applied between the cathode and 

anode, the ions are accelerated by the electric field in front of the cathode sheath and 

collide with the cathode electrode. Then the secondary electrons are emitted from the 



 74

cathode electrode, which are accelerated toward bulk region by electric field in front 

of the cathode sheath and collide with neutral species. This leads to many important 

collisions for sustaining plasma, such as ionization, excitation, elastic scattering, etc. 

It is clear that the secondary electrons emission play an essential role for sustaining 

the DC gas discharge plasma. The main structure of the DC glow discharge plasma is 

shown in Fig. 4.13.It shows that there are many regions in DC glow discharge plasma, 

which are cathode dark space (CDS), negative glow (NG), Faraday dark space (FDS), 

the positive column (PC), and anode zone (AZ). However, when the distance 

between cathode and anode is short, there are only CDS, NG, and AZ formed in DC 

glow discharge plasma [Bogaerts et. al., 2002]. Here, the mechanism of each region is 

not described in detail for the brevity purposes. 

Simulation Conditions 

Consider the discharge sustained between two parallel electrodes by 40mm under 

an operation argon pressure of 42mtorr. The cathode and anode potentials are set 

to –1000Volts and 0Volts, respectively. The computational domain is divided with the 

cell size 0.2mm ( Dλ≈ ) using an unstructured mesh. Initially, the spatial distributions 

of the ion and electron number densities are assumed uniform to each other. The 

electron timestep is s10105.0 −×  and the number of sub-cycling is 10. The particle 

velocities are sampled from the Maxwellian distribution at a corresponding 
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temperature, e.g., KTi 232= for ions and eVKTe 5.0=  for electrons, where K is 

the Boltzmann constant. The secondary electron emission coefficient is 0.3. The initial 

velocity of the emitted electrons is assumed to be zero. The ions and electrons 

incident on the solid surfaces are always neutralized. 

Simulation Results 

The potential and electric field are shown in Fig. 4.14(a) and Fig. 4.14(b), 

respectively. The plasma potential is nearly constant and slightly positive ( V10≈ ) 

and hence, the electric field is very small in the bulk region. The ion and electron 

number densities are shown in Fig. 4.15. The net charge density is shown in Fig. 4.16. 

One can easily recognize the cathode and anode sheaths. The ion and electron kinetic 

energies are shown in Fig. 4.17. Ions are rapidly accelerated in the sheath, reaching a 

velocity of about sm /104  before impinging on the cathode.  The ion energy 

distribution function (IEDF) onto the cathode surface has been sampled in the course 

of simulation as shown in Fig. 4.18. IEDF is falling off exponentially with energy, 

which demonstrates a good match with the theoretical predictions, e.g., [Serikov. and 

Nanbu, 1997], and [Abril et. al., 1983]. 

4.4.2 Quasi One-dimensional RF Gas Discharge Plasma 

When one or both of the electrodes are non-conductive materials, the electrodes 

should be applied with an alternating voltage. The frequency of the alternating 
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voltages is typically in the radio-frequency (RF) range with a most common value of 

13.56 MHz. With this applied alternating voltage, each electrode will act alternately as 

the cathode and anode in order to eliminate the charge accumulation on insulator 

electrodes. For RF gas discharge plasma, the electrons will follow the instantaneous 

electric fields, however, the ions can only follow time-averaged electric fields 

produced by the applied RF frequency. This totally different behavior can be easily 

explained by the different masses of ions and electrons. 

Simulation Conditions 

Consider the discharge sustained between two parallel electrodes by 20mm under 

an operation argon pressure of 50mtorr. The cathode potential is in the following,  

ftVrf πφ 2cos−=                                           (4.21) 

Where f is the frequency, VoltsVrf 500=  is the amplitude. The conventional 

frequency is 13.56MHz. The computational domain is divided with the cell size 

0.1mm ( Dλ5.0≈ ) using an unstructured mesh. Initially, the spatial distributions of the 

ion and electron number densities are assumed uniform to each other. The electron 

timestep is s1110695.3 −×  and the number of sub-cycling is 10. The particle 

velocities are sampled from the Maxwellian distribution at a corresponding 

temperature, e.g., KTi 232= for ions and eVKTe 5.0=  for electrons, where K is 

the Boltzmann constant. The secondary electron emission coefficient is 0. The ions 



 77

and electrons incident on the solid surfaces are always neutralized. 

Simulation Results 

The potential are shown in Fig. 4.19. The plasma potential is nearly constant and 

positive ( rfV5.0≈ ) and hence, the electric field is very small in the bulk region. The 

ion and electron number densities are shown in Fig. 4.20. One can easily recognize 

the cathode and anode sheaths. The ion and electron kinetic energies are shown in Fig. 

4.21. The electron energy probability function (EEPF) of two different pressures in 

the bulk region has been sampled in the course of simulation as shown in Fig. 4.22. In 

Fig. 4.22(a) (50 mtorr), EEPF shows a weakly bi-Maxwellian distribution (TL=1.58 

eV, TH=2.58 eV), while Fig. 4.22(b) (20 mtorr) shows strong bi-Maxwellian 

distribution (TL=0.833 eV, TH=3.264 eV), which is comparable with previous studies 

under similar simulation conditions, e.g., [Godyak et. al., 1992], [Mahony et. al., 

1999], [Raizer et. al., 1995], [Turner et. al., 1993], and [Vahedi et. al., 1993]. At low 

pressures the bi-Maxwellian EEPF revealing the stochastic electron heating 

mechanism, leading to the formation of cold bulk and oscillating hot tail electrons, 

which demonstrates a good match with the experimental data. 
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4.5 Parallel Performance of the Parallel PIC-FEM Method Using 

Dynamic Domain Decomposition 

In order to study the parallel performance of the current parallel PIC-FEM code 

using DDD, the three-dimensional RF gas discharge plasma with different numbers of 

particle is used as the test problem. This parallel performance is studied using 32 

processors on the HP IA-64 clusters at National Center for High-performance 

Computing (NCHC), which is a memory-distributed machine. In the following, the 

simulation conditions, dynamic domain decomposition, parallel performance, and 

time breakdown analysis of the parallel PIC-FEM code with DDD is presented in 

turn. 

Simulation Conditions 

Fig. 4.23 illustrates the sketch of the 3D RF discharge plasma. Considering the 

discharge sustained between two parallel circular electrodes in a grounded cylindrical 

chamber by 20mm under an operation argon pressure of 50mtorr. Eqs. (4.21) is used 

for the cathode potential with VVrf 500= and f =13.56MHz . The computational 

domain is divided using an unstructured mesh (~165,000 cells). Initially, the spatial 

distributions of the ion and electron number densities are assumed uniform to each 

other. The electron timestep is s1110695.3 −×  and the number of sub-cycling is 10. 

The particle velocities are sampled from the Maxwellian distribution at a 

corresponding temperature, e.g., KTi 232= for ions and eVKTe 5.0=  for electrons, 
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where k is the Boltzmann constant. The secondary electron emission coefficient is 0. 

The ions and electrons incident on the solid surfaces are always neutralized. In 

addition, two different numbers of particles are considered for simulation, which are 

10 particles per cell and 40 particles per cell.  

Parallel Performance  

Results of parallel speedup and efficiency of the 3D RF gas discharge plasma 

computation, with different numbers of particle, as a function of the number of 

processors are presented in Fig. 4.24. In Fig. 4.24, there are five curves with circle, 

square, diamond and triangle symbols with respect to static domain decomposition 

(SDD), dynamically domain decomposition (DDD) at intervals of 1500∆t with 

different numbers of particles. And the linear dash line with square symbol represents 

the ideal case. As expected, the parallel performance of those using dynamic domain 

decomposition is much better than those using static dynamic domain decomposition. 

Several trends for different numbers of particle are described in detail as follows. 

10 Particles per Cell 

Linear speedup occurs clearly for number of processors less than or equal to 10 

is shown in Fig. 4.24. However, the efficiency decreases with increasing number of 

processors (up to 32) as expected, due to heavy FEM solver communication among 

processors and particle load unbalance, if only the static domain decomposition is 
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applied. As the number of processors increases over 10, FEM begin to play a more 

important role than the particle load unbalance. Thus, the parallel efficiency decreases 

monotonously with increasing number of processors (up to 32) even if dynamic 

domain decomposition is used. However, for the this problem the parallel efficiency 

using dynamic domain decomposition improves appreciably in the range of 5-10%, as 

compared with static domain decomposition. 

40 Particles per Cell 

Similarly, linear speedup exists for this problem up to 10 processors, if static 

domain decomposition is activated (see Fig. 4.24). However, the quasi-linear speedup 

(up to 28 processors) is seen if the dynamic domain decomposition is deactivated, 

which demonstrates the effectiveness of implementing dynamic domain 

decomposition in particle load unbalance. However, as the number of processors is 

over 28, this quasi-linear speedup decreases due to increasing FEM solver 

communication among processors. For this problem, parallel performance  using 

dynamic domain decomposition is generally improve 10-30% parallel efficiency than 

that using static domain decomposition as the number of processors is less than or 

equal to 32. Note that approximately 85% of parallel efficiency can be reached at 

processor numbers of 64 for this problem.  

Typical evolutions of dynamic domain decomposition using graph-partitioning 
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technique are shown in Fig. 4.25. METIS used to form the initial partition by 

assigning the unitary weight on each vertex, and ParMetis is used to repartition at 

constant time interval. It is clear that region covered by each sub-domain (processor) 

changes as the simulation proceeds due to repartitioning among processors when the 

initial size of each domain is approximately the same. There exists a smallest 

sub-domain in the middle of the camber due to the presence of highest density in this 

region (see Fig. 4.25). In addition, the size of the sub-domains near the electrodes is 

generally larger as compared with others due to the rarefied conditions caused by the 

sheath potential. It clearly demonstrates that the current implementation of dynamic 

domain decomposition is very effective in dealing with such plasma system. 

Time Breakdown Analysis  

Fig. 4.26 illustrates the typical fraction of time spending in PIC-FEM 

computation and dynamic domain decomposition of 32 processors. It can be seen that, 

for the both problem the cost of repartition is very small and can be neglected by 

comparing with “useful” PIC-FEM. For problem of 10 particles per cell, the average 

fraction of time spending in FEM solver is larger than the fraction time for the particle 

movement. This explains the rapid decrease of parallel efficiency at this condition 

even if using dynamic domain decomposition for load balance (See Fig. 4.24). 

Fraction time for parallel communication (is almost proportional to FEM solver) 
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among processors is large in PIC-FEM, which causes the parallel efficiency increase 

dramatically with the number of processors. 

On the contrast, for the problem of 40 particles per cell, the fraction of time for 

particle movement is larger then the fraction of time for FEM solver. For this problem, 

parallel efficiency using dynamic domain decomposition could be generally improved 

10-30% than that using static domain decomposition as the number of processors is 

less than or equal to 32. This shows the current parallel PIC-FEM method may be 

scalable at least for the large numbers of particles. 

 

4.6 Some Remarks 

 In this chapter, the proposed parallel 3D PIC-FEM code using an unstructured 

mesh with DDD mainly follows the major steps of conventional PIC-MCC code in 

order to keep first principal and self-consistent approach. This code has successfully 

been verified in simulating quasi-1D DC and RF gas discharge plasma since the 

results agree with the previous studies very well. Parallel speedup of PIC-FEM shows 

that better speedup is performed with larger number of particles in both SDD and 

DDD cases. And, when the number of particles is fixed, DDD performed better 

speedup than SDD. The reasons were clearly explained from the detailed time 

breakdown analysis. 
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Chapter 5  

Applications to Realistic Problems 

 

In this chapter, the proposed parallel 3D PIC-FEM code is used to simulate three 

different realistic problems. They are: 3D field emission display (FED), 3D DC/RF 

gas discharge plasma, and 3D DC/RF magnetron plasma. The backgrounds of these 

studying cases can be found in the chapter 1 of this thesis, here, we only interest in the 

simulation work using PIC-FEM code. In simulating FED, Monte-Carlo collision 

module does not take into account since the gas pressure is very low. When the 

space-charge effect is ignored, only parallel Poisson’s equation solver is used to solve 

the electrostatic field once, the particles are then moved and collected when on the 

anode surface. Two studying cases of FED simulation without considering 

space-charge effect are presented. However, whenever there is a high charge density 

distribution in FED cell, space-charge effect has to be considered properly, and a 

studying case is simulated and compared with the experimental data. In simulating 3D 

DC and RF gas discharge, the simulation conditions is similar with those in previous 

1D simulation work, the main different is the computational domain is pure 3D, 

which is close to the geometry of practical plasma chamber. From the results, one can 

clearly see the important 3D geometry effect on spatial distribution of plasma 



 84

macroparameter. In simulating 3D DC and RF magnetron plasma, two concentric 

cylindrical magnets behind the cathode, which is used to confine electrons for 

providing higher ionization rate. Therefore, before plasma simulation, this magnetic 

field induced by the permanent magnets has to be solved in advance using vector 

Poisson’s equation solver. Once the magnetic field is obtained, and then the following 

simulation work is similar with those in 3D DC/RF gas discharge. Different cases 

with different magnetization (M) and different secondary electron emission 

coefficient (γ) on the spatial distribution of plasma macroparameter are studied.  

 

5.1 Simulation on Field Emission Display (FED)  

In this section, FED is simulated using the PIC method without considering space 

charge-effect and with considering space-charge effect in turn. Thus a completed 

parallel Poisson’s equation solver with parallel adaptive mesh refinement is used to 

compute the electric field distribution of a CNT-based field emitter without 

considering space-charge effect as the first simulation case. 

The generally accepted Fowler-Nordheim theory [Fowler and Nordheim, 1928] 

for a clean metal surface relates the field emission’s current density, J, to the electric 

field at the tip surface of the emitter, E, in volts/nm and the work function of the 

emitter, φ , in electron volts (eV) by the equation, 
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φ/1079.3 214 Ey −×= .                                  (5-4) 

and y  is the image charge lowering the contribution to the work function. The 

functions ( )yt  and ( )yv  are approximated by ( ) 1.12 =yt , ( ) 295.0 yyv −= . 

5.1.1. FED Simulation Without Space-Charge Effect 

 The Electron trajectory from the emitter surface to the anode surface is traced on 

the unstructured mesh based on the computed electric field distribution from the 

Poisson’s equation solver, by using the cell-by-cell particle tracking technique. The 

current density is then computed as the time average of the accumulated charges due 

to electron flow reaching the anode surface. In the following, two different cases are 

studied. The first studying case is to predict the FED emission current and investigate 

the spatial distribution of electron trajectory under different applied voltages. The 

second studying case is to add the external uniform magnetic field into FED to 

demonstrate the focus-ability and FED emission current are also strongly influenced 

by the magnetic field.  
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CaseⅠ 

Fig. 5.1 depicts the simulation domain for a typical CNT triode-type field emitter 

within a periodic cell. Only ¼ of the full emitter is used due to the intrinsic symmetry 

with Neumann boundary conditions applied at all symmetric planes. Important 

geometrical conditions (also summarized in part in table 5) include a tip radius of 10 

nm, an emitter height of 600 and 400 nm, a distance of 0.5 µm between the gate and 

the cathode, a gate radius of 0.5µm above the emitter, a distance of 50 µm between 

the anode and the cathode, a thickness of the gate of 0.2 µm, and the half width of 

each cell measuring 25 µm. The applied voltage of the gate ranges from 110 to 190 

volts, while the cathode and anode are grounded and applied with 400 volts, 

respectively. The refined final number of nodes used for the simulation is 

approximately 90,000. The typical results of the predicted potential distribution along 

with electric field distribution (gate voltage=150 volts, height= 600 nm) are shown in 

Fig. 5.2a and Fig. 5.2b, respectively. The maximal value of the electric field can reach 

up to ~11.47 V/nm at the emitter tip when the gate voltage is 150 volts.  

The predicted current and voltage data with an emitter height of 600 nm are 

presented in Fowler-Nordheim format in Fig. 5.3, with an anode voltage of 400 volts. 

It is clear that the computed I-V data follow the Fowler-Nordheim law very well as 

the gate voltage varies from 110 to 160 volts. The fitted field enhancement factor 



 87

(
V
dE=β ) is 26.1, where V is the applied cathode voltage, and d is the vacuum gap in 

the field emission diode configuration. The corresponding electron trajectories are 

illustrated in Fig. 5.4 at two different gate voltages (110 and 160 volts) with a height 

of 600 nm. The results show that the spreading angle of electrons from the tip 

increases with the increasing gate voltage. This is attributed to the fact that the area of 

the tip surface which has a larger local electric field increases as the applied voltage 

increases, which results in the greater emission of electrons from the side of the 

emitter near the tip. As will be shown later, adding a focusing gate can help to 

effectively reduce the spreading angle. 

The effects of CNT height and gate voltage to the emission current under an 

applied voltage of 400 volts are presented in Fig. 5.5, with the CNT measuring 400 

and 600 nm, respectively. The results show that the turn-on voltage increases with the 

decreasing height of the CNT emitter. Also, the emission current increases 

dramatically with the given CNT height. This is reasonable since the larger the height 

of the CNT, the larger the local electric field which results at the tip surface (shorter 

anode-cathode distance with the same voltage difference), which in turn induces 

greater emission of electrons. 

Fig. 5.6 shows schematically the same field emitter as shown in Fig. 5.1 with an 

additional focusing gate in-between the gate electrode and anode. Most geometrical 
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conditions (also summarized in part in table 6) are the same as those in Fig. 5.1, 

except for the distance between the focusing electrode and the gate electrode 

measuring 0.5 µm, the thickness of the focusing electrode measuring 0.2 µm, and the 

radius of the hole in the center of the focusing electrode which is 1.5 µm. Similar to 

that in the previous case without the focusing gate, only ¼ of a periodic cell is used 

for the simulation. Fig. 5.7b to Fig.5.7d present a comparison of the focusing effects 

of electron trajectories using different focusing electrode voltages (5, 0, –5 volts). 

Likewise, data involving the absence of focusing electrode are presented for the 

purpose of comparison (Fig. 5.7a). The results show that the addition of a focusing 

electrode above the gate electrode can effectively reduce the spreading angle of the 

electron trajectories, which can possibly increase the resolution and the intensity at 

the anode. Among the cases simulated, focusing the electrode with 5 volts represents 

the best choice in focusing the electron flows at the anode. 

Case Ⅱ 

Another simulation case for parallel Poisson’s equation solver is the magnetic 

focusing structure consists of a solenoid (or a permanent magnet) outside of the FE 

device, as shown in Fig. 5.8, which is used to induce the tunable magnetic flux 

density (Bz), which is assumed uniformly in space. A 1/4 simulation domain of a 

single gated cathode structure is shown in Fig. 5.9, while a typical final adaptive 
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refined mesh (91930 nodes) is shown in Fig. 5.10. Important geometrical conditions 

include a tip radius of 10 nm, emitter height of 600 nm, distance of 0.5 µm between 

the gate and the cathode, gate radius of 0.5µm above the emitter, distance of 900 µm 

between the anode and the cathode, thickness of the gate of 0.2 µm, and the half 

width of each cell measuring 300 µm. The applied voltage of the gate ranges from 50 

to 120 volts, while the cathode and anode are grounded and applied with 1,000 volts, 

respectively.  

Without the externally applied magnetic focusing field, the simulated anode 

current versus gate voltage (I-V) curve is shown in Fig. 5.11, which displays a 

turn-on voltage of approximate 95V. Note the turn-on voltage is defined as the gate 

voltage at which the current to anode is 1 µA. The anode current plotted in 

Fowler-Nordheim coordinate (FN plot) is also shown as an inset to Fig. 5.11 .The 

linearity of FN plot clearly shows that the computed I-V data follow the 

Fowler-Nordheim model very well. The corresponding electron snapshots and 

trajectories with the gate voltage of 120 V are illustrated in Fig. 12 (a), which will be 

explained shortly. 

Furthermore, we simulate the electron trajectories considering the presence of the 

externally applied downward magnetic field in the range of 0-1 Tesla to study 

influence of magnetic field to the electron focusing. In Fig. 12 (a)~(d) several 3-D 



 90

electron snapshots and trajectories are presented at the gate voltage of 120V, the 

anode voltage of 1kV, and the different magnetic flux density of 0T, -0.2 T, -0.5T, -1T, 

respectively. Based on the simulated electron trajectories, the maximum diameter of 

beam spot on the anode plane can be estimated. The dependence of electron beam 

diameter on the magnetic flux density is shown in Fig. 5.13, which demonstrates an 

Airy-function like structure. It is clear that the electron beam diameter rapidly 

decreases from 500µm down to less than 100µm as the magnetic flux density 

increases from zero to ~0.3T. At Bz = -0.35 T the beam spot size is estimated as 52µm, 

which is a minimum in the present simulation conditions. The over focusing of 

electron beam, as shown in Fig. 5.12(c), is observed in some high magnetic flux 

density region and the oscillation amplitude in electron beam diameter diminishes as 

the magnetic field becomes very large. At very large value of magnetic field the 

electron beam size eventually converges to ~70µm. The total emission current and 

anode current with magnetic focusing field shown in table 6 are the same as the 

results without magnetic field. From the simulation, we can find that this magnetic 

focusing design can optimally suppress the electron beam dispersion under a 

well-controlled magnetic field and the emission current to anode will not decrease by 

using this magnetic focusing method. 

The above computational examples only serve to demonstrate the capability of 
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the current parallel Poisson’s equation solver using FEM with parallel adaptive mesh 

refinement in predicting field emission properties with complicated geometries.  

5.1.3. FED Simulation With Space-Charge Effect 

In this subsection, PIC method is used for considering the space-charge effect in 

simulating the silicon field emission diode. Fig. 5.14 shows the SEM image and 

surface mesh distribution for a typical silicon based field emitter within a periodic cell. 

Only 1/4 of the full emitter is used due to the intrinsic symmetry with Neumann 

boundary conditions applied on all symmetric planes. A conical etched single emitter 

has been used for our modeling. Important geometrical conditions include an emitter 

height of 400 nm, a distance of 20 nm between the anode and the cathode, and the 

half width of each cell measuring 25 µm. The applied voltage of the anode probe 

ranges from 140 to 320 volts, while the cathode are grounded The refined final 

number of nodes used for the simulation is approximately 96,326. Fig. 5.15 shows the 

simulated potential and electric field profile with anode voltage 200 volts. 

The simulated and experimental anode current versus gate voltage (I-V) curve is 

shown in Fig. 5.16. Fig.5.16 shows simulations with work function is 4.5eV agree 

very well with measurement after turn-on. And before turn-on, simulations using 

work function is 4.9eV agree very well with measurements probably due to the 

contamination on the tip surface. It also displays a turn-on voltage of approximate 175 
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volts. Note the turn-on voltage is defined as the gate voltage at which the current to 

anode is 1 µA. The anode current plotted in Fowler-Nordheim coordinate (FN plot) is 

also shown as an inset to Fig. 5.16. The linearity of FN plot clearly shows that the 

computed and experimental I-V data follow the Fowler-Nordheim model very well. 

The above computational examples serve to demonstrate the capability of the current 

PIC-FEM code with parallel adaptive mesh refinement in predicting field emission 

properties with complicated geometries. 

 
 

5.2 Simulation on Gas Discharge Plasma 

 In this section, PIC-FEM code is used to investigate the structure of typical 3D 

DC and RF gas discharge plasma. The argon discharge under a low pressure has been 

simulated as taking place between two cylindrical electrodes in a dielectric cylindrical 

chamber. In the following, the related simulation conditions and results are given in 

turn. 

5.2.1 Three-dimensional DC gas discharge plasma 

Consider the discharge sustained between two parallel cylindrical electrodes by 

20mm enclosed in a dielectric cylindrical chamber under an operation argon pressure 

of 42 mtorr. And, the Neumann boundary condition can be imposed on the chamber 

wall. The background gas is assumed to be at rest and in local equilibrium. We ignore 
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all collisions among charged particles and consider only their collisions with 

background gas. The cathode potential is set to –300 Volts. A uniform mesh dividing 

the electrode gap into 164,865 cells in the computational domain (see Fig. 5.17a) and 

decomposed by 20 processors (see Fig. 5.17b). The electron timestep is s10105.0 −×  

and the number of sub-cycling is 10. Initially, the spatial distributions of the ion and 

electron number densities are assumed uniform to each other. The particle velocities 

are sampled from the Maxwellian distribution at a corresponding temperature, e.g., 

KTi 232= for ions and eVKTe 5.0=  for electrons, where K is the Boltzmann 

constant. The secondary electron emission coefficient for ions is 0.3. The initial 

velocity of the emitted electrons is assumed to be zero. The ions incident on the solid 

surfaces are neutralized and reflected back to the gas, while the incident electrons are 

always absorbed. 

The potential and electric field are shown in Fig. 5.18. The plasma potential is 

nearly constant and slightly positive ( V10≈ ) and hence, the electric field is very 

small in the bulk region. The field strength increases with the cathode potential, as 

expected. In addition, a very high electric field existing around the edge of cathode is 

observed, and ion will be accelerated rapidly due to this strong electric field. The 

electron and ion number densities are shown in Fig. 5.19. One can easily recognize 

the cathode and anode sheaths. The ion and electron kinetic energies are shown in Fig. 
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5.20. Ions are rapidly accelerated in the sheath, reaching a velocity of about sm /104  

before impinging on the cathode.   

5.2.2 Three-dimensional RF Gas Discharge Plasma 

Consider the discharge sustained between two parallel cylindrical electrodes by 

20mm under enclosed in a dielectric cylindrical chamber wall. The operation argon 

pressure is 20mtorr. By taking the advantage of symmetric, we only simulate 1/6 of 

the cylindrical chamber with a uniform mesh dividing the electrode gap into 164,865 

cells (see Fig. 5.21a) and decomposed by 20 processors (see Fig. 5.21b). The 

boundary condition for dielectric wall is set to be the typically Neumann boundary 

condition (see Fig. 5.22). The radio-frequency is 13.56MHz, rfV is 300 Volts. The 

electron timestep is 
f

ste 2000
110695.3 11 =×=∆ −  and the number of sub-cycling is 

10. Initially, the spatial distributions of the ion and electron number densities are 

assumed uniform to each other. Initial ion temperature is 232 K and initial electron 

temperature is 0.5 eV. The secondary electron emission coefficient for ions is 0. The 

ions incident on the solid surfaces are neutralized and reflected back to the gas, while 

the incident electrons are always absorbed. 

The potential are shown in Fig. 5.23. The plasma potential is nearly constant and 

positive ( rfV5.0≈ ) and hence, the electric field is very small in the bulk region. A 

very high electric field existing around the edge of cathode and anode is observed, 

and ion will be accelerated rapidly due to this strong electric field. The electron and 
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ion number densities are shown in Fig. 5.24. One can easily recognize the cathode 

and anode sheaths. The electron and ion kinetic energies are shown in Fig. 5.25. 

 

5.3 Simulation on magnetron Plasma 

 In this section, PIC-FEM code is used to investigate the structure of 3D DC and 

RF magnetron plasma. The magnetron has two concentric cylindrical magnets behind 

the cathode, which is used to confine electrons, enforcing E×B drift motion on 

electrons between N and S poles. This motion greatly enhances the ionization rate and 

hence makes it possible to sustain the discharge at a low pressure of 5 mtorr or less. In 

the following, the related simulation conditions and results are given in turn. 

5.3.1 Three-dimensional DC Magnetron Plasma 

 The computational domain is a cube box with size 128mm×128mm×20mm as shown 

in Fig. 5.26 (a). The computation domain is divided into 82,000 unstructured meshes 

as shown in Fig. 5.26 (b). The anode is grounded and the cathode potential is fixed 

at –300 Volts. Expect for the electrodes, the Neumann boundary condition is imposed. 

The permanent magnet behind the back of the cathode is also shown in Fig. 5.26 (a), 

which is formed by two concentric cylindrical magnets. The magnetic field B is 

proportional to magnetization M of the permanent magnet, which can clearly be seen 

from Fig. 5.27. The gas pressure is 5 mtorr and the gas temperature is 323 K. The 
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electron timestep is s10105.0 −×  and the number of sub-cycling is 10. Initial ion 

temperature is 232 K and initial electron temperature is 0.5 eV. In this work, we 

examine the effects of magnetization M and secondary electron emission coefficient 

γ on the discharge structure. Three cases are presented: (1.) M=0.125T, γ=0.06, (2) 

M=0.125T, γ=0.1, and (3) M=0.1875T, γ=0.06. 

Fig. 5.28 Shows the potential distributions of these three cases, which illustrates that 

the plasma potential is nearly constant and positive and there is a weak sheath in front 

of anode. As M orγincreases, the thickness of cathode sheath between N and S poles 

decreases. The electron and ion number densities of these three cases are shown in Fig. 

5.29-5.31. Both show that the most of electrons and ions are confined between N and 

S poles, which show the axisymmetrical electron and ion number densities 

distributions. As M orγincreases, both  the electron and ion number densities 

increase. The electron and ion energies of these three cases are shown in Fig. 

5.32-5.34. They show that the mean electron energy in the bulk region is 2~5eV. The 

electron energy is larger at the region between bulk and cathode sheath, where is 

located between N and S poles. This is because electrons are strongly magnetized and 

exhibit E×B drift motion. The mean ion energy can be accelerated to 60eV by the 

strong electric field in the cathode sheath and ions are hardly magnetized due to their 

heavy mass. 
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5.3.2 Three-dimensional RF Magnetron Plasma 

In this studying case, we use the same computational domain and permanent magnet 

system as shown in the previous subsection. The radio-frequency is 13.56MHz, rfV is 

300 Volts. The electron timestep is 
f

ste 2000
110695.3 11 =×=∆ −  and the number of 

sub-cycling is 10. Initial ion temperature is 232 K and initial electron temperature is 

0.5 eV. In this work, we still examine the effects of magnetization M and secondary 

electron emission coefficient γ on the discharge structure. Three cases are presented: 

(1.) M=0.125T, γ=0., (2) M=0.125T, γ=0.06, and (3) M=0.25T, γ=0.06. 

Fig. 5.35 Shows the potential distributions of these three cases, which illustrates that 

the plasma potential is nearly constant and positive ( rfV5.0≈ ) and axisymmetric 

sheaths are formed near the powered and grounded electrodes. As M orγincreases, 

the thickness of cathode sheath between N and S poles decreases. The electron and 

ion number densities of these three cases are shown in Fig. 5.36-5.38. Both show that 

the most of electrons and ions are confined between N and S poles, which also show 

the axisymmetrical electron and ion number densities distributions. As M orγ

increases, both  the electron and ion number densities increase. The electron and ion 

energies of these three cases are shown in Fig. 5.39-5.41. They show that the mean 

electron energy in the bulk region is 5~9eV. The electron energy is larger at the region 

between bulk and cathode sheath, where is located between N and S poles. This is 
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because electrons are strongly magnetized and exhibit E×B drift motion. The mean 

ion energy can be accelerated to 50eV by the strong electric field in the two sheath 

regions and ions are hardly magnetized due to their heavy mass. 

 

5.4 Some Remarks 

 In this chapter, our developed parallel 3D PIC-FEM code has performed its 

superior capability in dealing with the 3D field emission display and 3D 

low-temperature plasma sources since their corresponding results agree with the 

previous experimental or numerical studies. Some important simulation results are 

summarized as follows: 

1. In simulating the 3D FED without considering the space-charge effect, we use a 

triode-type CNT-based emitter without a focusing electrode as the studying case. 

The primarily results are: The first is the spreading angle of electrons from the tip 

increases with the increasing gate voltage. The second is the emission current 

increases dramatically with the given CNT height. The third is a magnetic 

focusing design can optimally suppress the electron beam dispersion under a 

well-controlled magnetic field and the emission current to anode will not decrease 

by using this magnetic focusing method. The second studying case for considering 

the space-charge effect is simulation on the silicon field emission diode. The 
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primarily result shows that simulated I-V curve agrees with the experimental work, 

especially when simulation work function is set to 4.5eV. 

2. In simulating 3D DC and RF gas discharge plasmas, the spatial distributions of 

plasma macroparameters are presented. The results show that sheath does play an 

important role in sustaining plasma, which providing the field to accelerate the 

particles. Due to the 3D geometric shape of electrodes, there is a very strong 

electric field existing around the edges of electrodes. In other words, this field 

may lead to unexpected ion bombardment.   

3.  In simulating 3D DC and RF magnetron plasmas, the spatial distributions of 

plasma macroparameters are presented. The concentric cylindrical magnets with 

different magnetization are solved in advance, and the results that magnetic field 

is proportional to magnetization. With these magnetic fields, electrons are 

confined between N and S poles and exhibit the E×B drift motion, which leads to 

high ionization rate in plasma under very low gas pressure. The results also show 

that as M or γincreases, the plasma density increases. 
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Chapter 6 

Concluding Remarks 
 

6.1 Summary 

In this dissertation, a general parallel three-dimensional electrostatic 

particle-in-cell scheme with finite element method (PIC-FEM) using unstructured 

mesh is proposed and verified. A multi-level graph-partitioning technique is used to 

dynamically decompose the computational domain to improve the parallel 

performance during runtime. Completed parallelized PIC-FEM code is used to 

simulate several important physical problems, including field emission, DC/RF gas 

discharge and DC/RF magnetron plasmas. In brief summary, the major achievements 

in the present dissertation can be listed as follows: 

1. A parallelized three-dimensional electrostatic Poisson’s equation solver using 

Galerkin finite element method with an unstructured mesh is developed and 

validated. Study of parallel performance of the parallelized PIC-FEM code is 

performed on the HP-IA64 clusters. With subdomain-by-subdomain scheme for 

parallel conjugate gradient method, parallel efficiency can reach 84% at 32 

processors of HP PC clusters at NCHC. This code coupled with PAMR was used 

to accurately and efficiently simulate field emission from emitter with 

complicated geometry without considering space-charge effects, as 

demonstrated in Chapter 5.  

2. A parallelized three-dimensional vector potential magnetostatic Poisson’s 

equation solver using Galerkin finite element method with an unstructured mesh 

is developed and validated. Study of parallel performance of the parallelized 
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PIC-FEM code is performed on the HP-IA64 clusters. With 

subdomain-by-subdomain scheme for parallel conjugate gradient method, 

parallel efficiency can reach 75% at 32 processors of HP PC clusters at NCHC. 

This code was used to simulate the magnetic field around permanent magnets or 

coils for magnetron plasma simulation as demonstrated in Chapter 5.  

3. A general parallelized three-dimensional PIC-FEM code is developed and 

validated. This PIC-FEM code integrates the parallelized Poisson’s equation 

solver with the PIC and Monte Carlo collision (MCC) schemes on an 

unstructured tetrahedral mesh. Charged particles can be traced either cell-by-cell 

on an unstructured mesh. This is achieved using leap-frog time-integration 

method and Boris rotational scheme when magnetic field is involved. Charge 

assignment and force (field) interpolation between charged particles and grid 

points is implemented using the same interpolation function originated from the 

FEM. In addition, dynamic domain decomposition (DDD) with weighting based 

on number of particles is used to balance the workload among processors during 

runtime. Study of parallel performance of the parallelized PIC-FEM code is 

performed on the HP-IA64 clusters. Results using DDD for a typical RF gas 

discharge show that parallel efficiency can reach 83% at 32 processors.  

4. Completed parallelized PIC-FEM code was used to simulate several important 

problems to demonstrate its superior capability in handling practical problems. 

These problems include field emission from a silicon tip under external electric 

field, two typical three-dimensional DC and RF gas-discharge plasmas, and two 

typical three-dimensional DC and RF magnetron plasmas with permanent 

magnets. Results are either compared well with experiments or demonstrate the 

correct physical pictures as expected. 
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6.2 Recommendation for Future Study 

In the present dissertation, we have developed and tested a parallelized 

three-dimensional PIC-FEM code using an unstructured mesh on memory-distributed 

parallel machines. We have also applied this code to simulate several important 

physical problems. Based on the viewpoints of further improving this PIC-FEM code, 

several possible directions of research are recommended for the future study and are 

summarized as follows: 

1. To implement a better preconditioner for parallel conjugate gradient method for 

solving the Poisson’s equation more efficiently to shorten the runtime and 

improve the speedup at higher number of processors. 

2. To incorporate a Maxwell’s equation solver that uses edge-based finite element 

method into the present PIC-FEM code to further extend its applicability in 

plasma related simulation, such as ICP, ECR and microwave plasmas. 

3. To incorporate a simulation module that can model realistic external circuits into 

the present PIC-FEM code, which are often coupled to a RF-type gas discharge. 

4. To extend the database of collision data for other types of plasma, such as 

methane with hydrogen, which are very important in growing carbon nanotubes. 

5. To incorporate a parallelized DSMC (direct simulation Monte Carlo) module 

into the PIC-FEM code to consider the neutral transport self-consistently that is 
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very important in some plasma flow, such as magnetron plasma. 
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Table 1. Main excellent features of a field emission display 
 

 
 
 
 
 
 
 
 
 
 
 
 

1. Thin panel thickness (~2mm) 
2. Self-emissive 
3. Distortion free image 
4. Wide viewing angle (~170∘) 
5. Quick response in the order of sµ  by controlling with analog or digital without 

active elements 
6. Tolerance to environment as high as that of receiving tubes 
7. Free from the terrestrial magnetic effect 
8. Free from the changes in the ambient magnetism 
9. Quick start of operation 
10. Less dead space of images 
11. Low power consumption display device 
12. Good stable characteristics in severe environmental conditions 
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Table 2. Time breakdown and speedup of Poisson’s equation solver at the different 
number of processors 
 

Processor No. 1 2 4 8 16 32 
Total time (seconds) 138.17 79.17 42.53 14.78 8.21 5.13 

CG solver time (%) 
Matrix assembling time (%) 
Communication time (%) 

98.8 
0.44 
N/A 

99.1 
0.36 
4.45 

94.33
0.32 
28.1 

76.79
0.47 
34.5 

85.14 
0.42 
35.32 

94.54
0.31 
37 

Speedup 1 1.74 3.25 9.35 16.83 26.93 
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Table 3. Evolution of simulation parameters at different levels of mesh refinement. 
(EMAX is the local maximum electric field strength at the surface of CNT field emitter). 

 

Refinement Level Number of nodes Number of elements EMAX (V/nm) 
0 
1 
2 
3 
4 
5 
6 

   7006 (7006) 
  22750 (24892) 
  34927 (38896) 
  44080 (47984) 
  51638 (55488) 
  61241 (59279) 
  67173 

   27814 (27814) 
  110218 (121064) 
  175254 (196378) 
  225156 (245975) 
  264259 (284766) 
  313092 (306368) 
  345307 

 8.218482 (8.21848) 
 10.20636 (10.20257)
 11.50804 (11.50135)
 11.54894 (11.51166)
 11.32366 (11.32647)
 11.32303 (11.32665)
 11.32324 

* Numbers in the parentheses represent numerical data obtained using a posteriori 

error estimator with prescribed global relative error preε =0.0003. 

 
 
 
 
 
 
 
 
 
 



 123

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Evolution of simulation parameters at different levels of mesh refinement. 
(BMAX is the local maximum magnetic field strength at the center of magnet arrays). 

 

Refinement Level Number of nodes Number of elements BMAX (T) 
0 
1 
2 
3 
4 
5 
6 

7845 
38364 
54355 
70773 
98743 
108415 
108840 

46953 
228201 
319482 
414616 
574237 
629268 
631711 

0.869774 
0.870979 

0.870808 
0.871388 
0.871401 
0.871556 
0.871553 
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Table 5. The important geometrical parameters of CNT triode- and tetrode-type field 
emitters. 
 

 Triode-type ( Fig. 7) Tetrode-type (Fig. 12)   
he 
r 
R 
Rf 

d 

h 
d1 
d2 
h1 
h2 

L 
W 

600 nm 
10 nm 
500 nm 

N/A 
200 nm 
500 nm 

N/A 
N/A 

 N/A 
N/A 

49.3µm 
25 µm 

600 nm 
10 nm  
500 nm 
1500nm 
N/A 
N/A 

200 nm 
200 nm 
500 nm 
500 nm 
48.6µm 
25 µm 
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Table 6. Characteristics of device performance for different focus types. 

 

Focus type 
Emission current

from tip (A) 

Gate current 

(A) 

Anode current 

(A) 

Spot diameter

at anode 

(μm) 

Without  focus 2.48E-05  ~0 2.48E-05  528.68  

Magnetic focus (Bz= 0.2 T) 2.48E-05  ~0 2.48E-05  296.99 

Magnetic focus (Bz= 0.35 T) 2.48E-05  ~0 2.48E-05  52.01 

Electrostatic focus (Vf= -5 V) 5.47E-06  2.39E-06  3.08E-06  154.76 
Electrostatic focus (Vf= 0 V) 5.69E-06  1.35E-06  4.35E-06  226.26 
Electrostatic focus (Vf= 5 V) 6.50E-06  1.56E-06  4.93E-06  210.20 
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Figure 1.1 Representation of the parameter space in plasma etching. The key internal 
plasma properties (middle) are the bridge between externally controlled variables (top) 
and the figures of merit (bottom). 
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Figure 2.1 Element equation from a typical element (e) are used for each element in 
the mesh. 
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Figure 2.2 A three-Dimensional 0C -linear standard tetrahedral element.  
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Figure 2.3 A three-Dimensional 0C -linear standard hexahedral element.  
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Figure 2.4 (a) Vertex-based. (b) edge-based (c) element-based partition of 4 × 3  
mesh into two sub-regions. 
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Figure 2.5 An L-shape domain subdivided into three sub-domains. 
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Figure 2.6 Sketch of graph and mesh. 
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Figure 2.7. Flowchart of the parallel mesh refinement module. 
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Figure 2.8 Flowchart of the coupled PPES-PAMR method. 
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Figure 2.9 The flowchart of parallel FEM. 
 
 
 



 136

 

                                   (a) 

           L (mm)

P
ot

en
tia

l(
V

ol
ts

)

0 5 10 15 20
0

2000

4000

6000

8000

10000
simulation
analytical solution

 
(b) 
 
 

Figure 2.10 Contours of the potential distribution of (a) a grounded conducting sphere 

(Φ= 0 Volts) immersed in a uniform electric field )/10( mVoltsE =
r

 and (b) uniform 

positive charges distribution between two infinite grounded conducting plates (Φ= 0 
Volts) 
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Figure 2.11 Schematic diagram of the simulation domain for a typical CNT 
triode-type field emitter within a periodic cell. The important geometrical parameters 
are: R=500 nm, r=10 nm, he=600 nm, h=500 nm, L=49.3 μm, d=200 nm and W=25 
μm 
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Figure 2.12 Surface mesh distribution of a typical single CNT triode-type field emitter 
within a periodic cell. Only ¼ of a periodic cell is simulated for the study of parallel 
performance of the Poisson’s equation solver 
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Figure 2.13 Parallel speedup as a function of the number of processors on the 
PC-cluster system (maximum 32 processors) for CNT triode-type field emitter with 
gate voltage 150 volts, anode voltage 400 volts and the grounded cathode 
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           (a)                                 (b) 

                 
                  (c)                                (d) 
 
 
 
 
Figure 2.14 Close-up of the unstructured adaptive surface mesh at different levels for 
a single CNT triode-type field emitter with gate voltage 150 volts, anode voltage 400 

volts and the grounded cathode ( 08.0=refε ). (a) Level-0 (7006 nodes). (b) Level-1 

(22750 nodes). (c) Level-2 (34927 nodes). (d) Level-5 (61241 nodes). 
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Figure 3.1 Flowchart of the coupled PVPES-PAMR method 
 
 
 
 
 
 
 
 
 
 
 

PVPES 

PVPES: Parallel Vector Poisson’s Equation Solver 
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Figure 3.2 Arrangement of magnetization vectors of each permanent magnet segment 
for producing uniform flux density in the center of the permanent magnet array 
consisting of eight segments. 
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Figure 3.3 Surface mesh distribution of the permanent magnet array consisting of 
eight segments. 
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                                 (a) 
                                 

 
                                 (b) 
 
Figure 3.4 (a) Contour of magnetic flux density and (b) magnetic flux lines of 
permanent magnetic arrays (see Fig. 3.2). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
 
 
Figure 3.5 Unstructured adaptive mesh distribution at different levels the permanent 

magnet array consisting of eight segments. ( 08.0=refε ). (a) Level-0 (7845 nodes). (b) 

Level-1 (38364 nodes). (c) Level-2 (54355 nodes). (d) Level-4 (98743 nodes). (e) 
Level-5 (108415 nodes). (f) Level-6 (108840 nodes). 
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Figure 3.6 Parallel speedup as a function of the number of processors on the 
PC-cluster system (maximum 32 processors) for of the permanent magnet array 
consisting of eight segments 
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Figure 4.1 The flowchart of conventional PIC-MCC method 
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Figure 4.2 Schematic of leap-frog integration method. 
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Figure 4.3. Collisions in argon plasma. 
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Figure 4.4. Nanbu’s method to sample a collisional event. 
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Figure 4.5 The electron-molecule cross sections in argon. 
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Figure 4.6 Vector diagram for scattering collision. 
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Figure 4.7 The ion-molecule cross sections in argon. 
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Figure 4.8 Flowchart of parallel PIC-FEM. 
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Figure 4.9 PIC-MCC module of parallel PIC-FEM. 
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Figure 4.10 Flowchart of parallel PIC-FEM with dynamic domain decomposition 
 
 



 157

 
 
 
 
 
 
 

 
 
 
 
Figure 4.11 Sketch of the decomposed domain and the local data structure. 
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Figure 4.12 Schematic overview of the basic plasma processes in a magnetron glow 
discharge 
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Figure 4.13 Schematic diagram of the spatial regions present in DC glow discharges, 
(a) at short cathode–anode distance and/or low pressure; (b) at longer interelectrode 
distance and/or higher pressure. 
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                                    (b) 
     
 
Figure 4.14 (a) Potential and (b) electric profiles of quasi-1D DC glow discharge. 
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Figure 4.15 Ion and electron number densities of quasi-1D DC glow discharge  
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Figure 4.16 The net charge density of quasi-1D DC glow discharge.  
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Figure 4.17 Ion and electron kinetic energies of quasi-1D DC glow discharge 
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Figure 4.18 Energy distribution functions of a impinging on the cathode of quasi-1D 
DC glow discharge. 
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Figure 4.19 The potential profile of quasi-1D RF glow discharge  
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Figure 4.20 Ion and electron number densities of quasi-1D RF glow discharge. 
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Figure 4.21 Ion and electron kinetic energies of quasi-1D DC glow discharge 
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(a) 
 

 
(b) 

 
Figure 4.22 Electron energy probability functions of (a) 50mtorr and (b) 20mtorr in 
the bulk region of quasi-1D DC glow discharge. 
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Figure 4.23 Sketch of the 3D RF gas discharge plasma. 
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Figure 4.24 Parallel speedup as a function of number of processors for 3D RF plasma 
at different numbers of particle on HP IA-64 clusters machine (maximum 32 
processors). 
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(a) 

 
(b) 

 
(c) 

 

Figure 4.25 Evolution of domain decomposition using 20 processors, during the 
simulation for a RF gas discharge plasma (a) initial (b) intermediate (c) final. 
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(a) 

(b) 

Figure 4.26 Time breakdown of various steps in PIC-FEM on 32 processors with (a) 
10 particles per cell (b) 40 particles per cell. 
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Figure 5.1 Schematic diagram of the simulation domain for a typical CNT triode-type 
field emitter within a periodic cell. The important geometrical parameters are: R=500 
nm, r=10 nm, he=600 nm, h=500 nm, L=49.3 μm, d=200 nm and W=25 μm. 
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(a) 
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Figure 5.2 Contours of the (a) electric potential and the (b) electric field distribution 
near the tip of the CNT triode-type field emitter with gate voltage 150 volts, anode 
voltage 400 volts and the grounded cathode. 
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Figure 5.3 FN plot of the field emission characteristics of CNT triode-type field 
emitter (height is 600 nm) with gate voltage 110-160 volts, anode voltage 400 volts 
and the grounded cathode.( βφ /25.3244 2/3−=≡ slopeS , φ = 4.52 eV). 
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(a) (b) 

 
 
 
 
Figure 5.4 Trajectories of the emitted electrons inside the periodic cell of CNT 
triode-type field emitter with the grounded cathode, anode voltage 400 volts and two 
different gate voltages: (a) 110 volts (b) 160 volts.  
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Figure 5.5 Effect of the gate voltage on the emission current for two different CNT 
triode-type field emitter heights with anode voltage 400 volts and the grounded 
cathode.  
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Figure 5.6 Schematic diagram of the simulation domain for a typical CNT tetrode-type 
field emitter within a periodic cell. The important parameters are: R=500 nm, 

fR =1500 nm, r=10 nm, he=600 nm, 1h =500 nm, 2h =500 nm, L=48.6 μm, 

1d =200 nm, 2d =200 nm and W=25 μm. 
 
 
 



 179

             

             (a)                                     (b) 
 

                
(c)                                     (d) 
 
 

Figure 5.7 Comparisons of the trajectories of the emitted electrons between (a) CNT 
triode-type field emitter with the grounded cathode, anode voltage 400 volts and the 
gate voltage150 volts and tetrode-type field emitter with the additional three different 
focusing voltages: (b) 5 volts (c) 0 volts (d) –5 volts. 
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Figure 5.8 Perspective view of the structure of the magnetic focusing carbon nanotube 
field emission arrays 
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Figure 5.9 Schematic diagram of the 1/4 simulation domain for a typical CNT-based 
triode-type field emitter within a periodic cell. The important geometrical parameters 
are: R=500nm, r=10nm, he=600nm, h=500nm, d=200nm, L=0.9mm and W=0.3mm 
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Figure 5.10 LHS shows surface mesh distribution of a single CNT triode-type field 
emitter within a periodic cell. RHS shows surface mesh distribution of the CNT field 
emitter and equipotential lines near the tip for Vg=120V. Unstructured tetrahedral 
adaptive mesh is ideal for the simulation structure, which consists of a smaller emitter 
within a larger periodic cell 
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Figure 5.11. Field emission I-V characteristic of a single gated CNT field emitter 
without the externally applied downward magnetic field 
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(a) (b) 

 
 

 
(c) (d) 

 
 
 
Figure 5.12 Snapshots and trajectories of electrons for (a) Bz = 0 T, (b) Bz = -0.2 T, (c) 
Bz = -0.5 T, and (d) Bz=-1.0 T. The gate voltage and the anode voltage are fixed to 
120V and 1 kV, respectively. 
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Figure 5.13 Dependence of electron beam diameter at the anode on the flux density 
of magnetic focusing field.  
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(a) 
 
 

 

(b) 
 
 
 
Figure 5.14 (a) SEM image and (b) surface mesh distribution of a single silicon based 
field emitter within a periodic cell. 
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(b) 

 
 
 
Figure 5.15 Contours of the (a) electric potential and the (b) electric field distribution 
near the tip of the single silicon based field emitter with anode voltage 200 volts. 
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Figure 5.16 Field emission I-V characteristic and F-N plot of single silicon based field 
emitter with work function 4.5eV and 4.9eV. 
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(b) 

 
 
Figure 5.17 (a) The surface mesh plot and (b) domain decomposition profile of 3D 
DC gas discharge plasma. 
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Figure 5.18 Contours of the (a) electric potential and the (b) electric field distribution 
of 3D DC glow discharge. 
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(b) 

 
 

 
Figure 5.19 Contours of (a) electron and (b) ion number densities of 3D DC glow 
discharge. 
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(b) 

 
 
 
Figure 5.20 Contours of (a) electron and (b) ion kinetic energies of 3D DC glow 
discharge. 
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Figure 5.21 (a) The surface mesh plot and (b) domain decomposition profile of 3D RF 
gas discharge plasma. 
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Figure 5.22 Sketch and boundary condition of the 3D RF discharge plasma enclosed 
by a dielectric chamber wall. 
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Figure 5.23 Potential contour of 3D RF discharge plasma enclosed by a dielectric 
chamber wall. 
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(a) 

 
(b) 

 
 
 
Figure 5.24 Contours of (a) electron and (b) ion number densities of 3D RF discharge 
plasma enclosed by a dielectric chamber wall. 
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(b) 

 
 
 
Figure 5.25 Contours of (a) electron and (b) ion kinetic energies of 3D RF discharge 
plasma enclosed by a dielectric chamber wall. 
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(a) 
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Figure 5.26 Sketch and surface mesh distribution of the 3D DC magnetron plasma. 
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(a) (b) 

 
(c) (d) 

 
 
 
 
Figure 5.27 Contours of magnetic flux density with magnetization (a) 0.25 T (b) 0.5T 
(c) 0.75 T (d) 1.0 T of permanent magnet systems. 
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(a) 

 
(b) 

 

(c) 
 
Figure 5.28 Potential contours of 3D DC magnetron plasma with (a) M=0.125T, γ
=0.06, (b) M=0.125T, γ=0.1, and (c) M=0.1875T, γ=0.06. 
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Figure 5.29 Contours of (a) electron and (b) ion number densities of 3D DC 
magnetron plasma with M=0.125T andγ=0.06 
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Figure 5.30 Contours of (a) electron and (b) ion number densities of 3D DC 
magnetron plasma with M=0.125T andγ=0.1. 
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Figure 5.31 Contours of (a) electron and (b) ion number densities of 3D DC 
magnetron plasma with M=0.1875T andγ=0.06. 
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Figure 5.32 Contours of (a) electron and (b) ion kinetic energies of 3D DC magnetron 
plasma with M=0.125T andγ=0.06 
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Figure 5.33 Contours of (a) electron and (b) ion kinetic energies of 3D DC magnetron 
plasma with M=0.125T andγ=0.1 
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Figure 5.34 Contours of (a) electron and (b) ion kinetic energies of 3D DC magnetron 
plasma with M=0.1875T andγ=0.06. 
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(a) 

 
(b) 

 

(c) 
 
 

Figure 5.35 Potential contours of 3D RF magnetron plasma with (a) M=0.125T, γ=0 
(b) M=0.125T, γ=0.06 (c) M=0.25T, γ=0.06. 
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Figure 5.36 Contours of (a) electron and (b) ion number densities of 3D RF 
magnetron plasma with M=0.125T and γ=0 
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(b) 

 
 
 
 
Figure 5.37 Contours of (a) electron and (b) ion number densities of 3D RF 
magnetron plasma with M=0.125T and γ=0.06 
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(b) 

 
 
 
 

Figure 5.38 Contours of (a) electron and (b) ion number densities of 3D RF 
magnetron plasma with M=0.25T and γ=0.06 
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Figure 5.39 Contours of (a) electron and (b) ion kinetic energies of 3D RF magnetron 
plasma with M=0.125T and γ=0.0 
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Figure 5.40 Contours of (a) electron and (b) ion kinetic energies of 3D RF magnetron 
plasma with M=0.125T and γ=0.06. 
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Figure 5.41 Contours of (a) electron and (b) ion kinetic energies of 3D RF magnetron 
plasma with M=0.25T and γ=0.06 
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