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National Chiao-Tung University

Abstract

A general parallel three-dimensional electrostatic particle-in-cell scheme with
finite element method (PIC-FEM) using an unstructured mesh is proposed and
verified in this dissertation. A multi-level graph-partitioning technique is used to
dynamically decompose the computational domain to improve the parallel
performance during runtime. Completed parallelized PIC-FEM code is used to
simulate several important physical problems, including field emission, DC/RF gas
discharge and DC/RF magnetron plasmas.-In-this thesis, research is divided into three

different phases.

In the first phase, a parallelized three-dimensional electrostatic Poisson’s
equation solver using Galerkin finite element method using an unstructured mesh is
developed and validated. In addition, a parallelized three-dimensional vector potential
magnetostatic Poisson’s equation solver is developed and validated. Furthermore,
these two solvers are coupled, respectively, with a parallel adaptive mesh refinement
(PAMR) module, to automatically improve the resolution of solution near where the
property gradient is large. In both solvers, resulting algebraic equations are solved
using either the parallel conjugate gradient method with a subdomain-by-subdomain
scheme for more processors (>10) or the direct sparse matrix solver for fewer

processors (<10). Parallel speedup test for solvers using parallel conjugate gradient

il



method is performed on a HP-IA64 cluster system up to 32 processors at NCHC of
Taiwan. Results show that parallel efficiency can reach 84% and 75% at 32 processors
for the electrostatic Poisson’s equation solver and magnetostatic vector Poisson’s

equation solver, respectively.

In the second phase, a general parallel three-dimensional PIC-FEM code is
developed and validated. This PIC-FEM code integrates the parallelized Poisson’s
equation solver, developed in the first phase, with the PIC and Monte Carlo collision
(MCC) schemes on an unstructured tetrahedral mesh. Charged particles are traced
either cell-by-cell on an unstructured mesh. This is achieved using leap-frog
time-integration method and Boris rotational scheme when magnetic field is involved.
Charge assignment and force (field) interpolation between charged particles and grid
points is implemented using the same interpolation function originated from the FEM.
In addition, dynamic domain décomposition (DDD) with weighting based on number
of particles is used to balance the workload-among-processors during runtime. Study
of parallel performance of the parallelized” PIC-FEM code is performed on the
HP-IA64 clusters. Results using DDD show that parallel efficiency can reach 83% at

32 processors.

In the third phase, the parallelized PIC-FEM code is used to simulate several
important problems to demonstrate its superior capability in handling practical
problems. These problems include field emission from a CNT /silicon based emitter
under external electric field and magnetic field, two typical three-dimensional DC and
RF gas discharge plasmas, and two typical three-dimensional DC and RF magnetron

plasmas with permanent magnets.
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Chapter 1

Introduction

1.1 Motivation and Background

Understanding of several important physical and engineering problems, for
example, field emission [Itoh ez al., 2004] and low-temperature rarefied
(low-pressure) plasma [Lieberman and Lichtenberg, 1994], requires the consideration
of space-charged effects self-consistently due to the motion of charged particles.
Some common characteristics of these problems may include three-dimensional,
geometrically complicated, thermally non-equilibritm and low-pressure. In addition
to studying these problems experimentally, modeling through computer simulation
may become one of the most efficient ways to understand the underlying physics due
to the rapid advancement of the modern computer technology. Modeling technique
that assumes thermally equilibrium, such as fluid modeling [Kushner, 2005], fails in
correctly capturing the important physical features of the-above mentioned problems.

Until 1960s, the plasma physicists had devised an important simulation technique,
Particle-In-Cell (PIC) [Birdsall and Langdon, 1991], which equivalently solves the
collisionless Boltzmann equation for charged particles self-consistently. However, a
self-consistent PIC simulation is often computationally intensive even at low pressure.

In general, the conventional PIC solves the fields with finite difference method using



a structured mesh. This is not flexible enough or becomes awkward to simulate the
device with complicated geometries. In addition, the structured mesh is often difficult
to manage efficiently when dynamic domain decomposition is required in a typical
parallel particle simulation, such as the PIC method. In contrast, not only does the
finite element method (FEM), which often uses an unstructured mesh, offer much
greater flexibility in handling the complicated geometry, but also it provides excellent
flexibility in dynamic domain decomposition for parallel computing. In addition,
mesh refinement that is important in several simulations can be easily coupled to the
finite element method using an.tunstructured.mesh. However, there are some
disadvantages by using unstructured mesh for PIC method. Firstly, particle tracing on
an unstructured mesh may slow:-down the simulation. Secondly, the programming
may become complicated. Nevertheless, there were very few studies directed along
this line. Taking all these intertwining factors together, it is still very valuable to
develop a PIC simulation code using an unstructured mesh. Therefore, in this thesis
our goal is to develop a parallelized three-dimensional PIC-FEM code considering
Monte-Carlo collision, which can be run on memory-distributed parallel machines,
such as PC clusters.

1.2 Literature Surveys

Since we are mainly interested in simulating field emission and low-temperature



low-pressure plasma, past studies of modeling and simulation in these two disciplines

are reviewed in detail in the following in turn.

1.2.1 Modeling of Field Emission

Field emission display (FED) is the new type of flat-panel display and its

working principle is similar with traditional CRTs. The colored light is generated from

the phosphor, which is excited by electrons. The electrons are emitted from cathode.

Instead of thermo-ionic emission in CRT, the electrons in FED are emitted by a cold

pixel electron source that typically consists of a large array of low-work-function

emitter micro-tips. Moreover, FED,needs the lower power input then CRT since there

is a power-inefficient deflection’ system 1n CRT to steer the emitted electrons.

Furthermore, when FED is compared with TFT LCD, the FED also exhibits the some

better performances than TFT LCD. For example, FED offer a superior viewing angle

and are several microseconds quicker in response time. In addition, FED also has the

potential for high brightness and contrast. The advantages of applying FED in display

technology include lower driving voltage, higher lighting frequency, and possibly,

better display resolution. In general, three types of FED can be classified depend on

their structures, which are diode, triode, and tetrode types. Table 1 also shows the

main features of these different type of FED [Itoh et. al., 2004].

Using carbon nanotubes (CNTs) as field emission cathodes has attracted



tremendous interest in the past few years for their remarkable field emission (FE)

properties such as high aspect ratios, whisker-like in shape for optimum geometrical

field enhancement, high electrical conductivity, and extraordinary environment

stability, e.g., [de Heer et. al., 1995], [Rao et. al, 2000], [Nishimura et. al., 2004], and

[Nilsson et. al, 2000]. Therefore, CNTs have great potential to be used as field

emission cathodes for various applications of vacuum microelectronic devices,

including field-emission displays (FED), e.g., [Wang et. al.,1997], [Fowler and

Nordheim, 1928], and [Spindt,1968], high-frequency microwave amplifier, e.g., [Choi

et. al,1999], and [Pirio et. al,2002]; electron microscopy and parallel electron beam

lithography (EBL) [Hong et. al 1994], to name a few.

Most of the FE devices applied the famous:Spindt-type structure [Wang et. al.,

1997], which has a metallic or silicon etched field emitter with an integrated gate

electrode aperture surrounding the emitter tip to control the extraction of emission

current. The multiple carbon nanotubes based field emission cathodes within the

integrated gate electrode aperture have been reported in many papers over the past six

years, e.g., [Fowler and Nordheim,1928], [Spindt, 1968], [Lei et. al,1998], and [Hu

and Huang, 2003]. For some applications, such as electron beam lithography and

microscopy, individual gated carbon nanotube field emitter was specifically fabricated

to eliminate the-screening effects and to optimize the emitted current and electron



beam diameter [Lan et. al., 2004]. The electrons emitted from a very small area on the

top of CNT inherently spread with a large dispersion angle. Thus, an appropriate

electron-beam focusing system is necessary for developing a well-focused electron

beam source.

From the Fowler-Nordheim law [Fowler and Nordheim, 1928], the magnitude of

the electron flux emitted from the surface depends upon the local electric field at the

surface and the work function of the solid. In addition to finding materials with lower

work functions, enhancing the local electric field near the surface is one of the most

critical tasks in improving field emission properties. As a trial-and-error method is

often expensive in terms of time and cost, a'computer simulation may speed up the

design process by revealing the detailed physics with the FED. In practice, the

geometry of the field emitter and the gates involved in the FED design is

three-dimensional and often very complicated, e.g., [Spindt, 1968], [Choi et. al.,

1999], and [Pirio et. al, 2002].

In the past, several numerical studies have been conducted for the prediction of

field emission properties, e.g., [Hong et. al.,1994], [Wang et. al,1997], [Lei et. al.,

1998], [Hu and Huang, 2003], [Lan et. a/.,2000], and [Lan et. al.,2004]. Most of these

studies use either the 2-D or 3-D finite difference method, e.g., [Wang et. al.,1997],

[Lei et. al.,1998], [Hu and Huang, 2003], [Lan et. al.,2000], and [Lan et. al., 2004], or



the 2-D finite element approach [Hong et. al., 1994] for discretizing the electrostatic

Poisson’s equation. As mentioned earlier, a practical FED design often involves

three-dimensional objects with a complicated geometry, rendering the use of the

finite-difference method as very difficult or unsuitable. The finite-element or

finite-volume method using unstructured grids should represent the best choice for the

numerical method in this regard. In addition, parallel processing can be necessary in

simulating the practical three-dimensional design of field emitters or when including

space-charged effect with high emission currents in the Particle-In-Cell (PIC)

method ,e.g., [Hu and Huang, 2003}, [Lan etr.a/.,2000], and [Lan et. al., 2004].

Otherwise, in Ref.,e.g., [Hu and Huang, 2003}, [Lan et. al,2000], and [Lan et.

al.,2004], the computational time for @ typical run-to emit only a few electrons can

take up to one week. Also, the accuracy of the electron-flux prediction from the

emitters strongly depends on the accuracy of the local electrical field at the surface,

which makes the grid resolution at the surface a critical issue in the simulation. In the

following, the very similar concerns are also arising from the low-temperature plasma

simulation

1.2.2 Modeling of Low-temperature Plasma

Plasma is ionized gas. Hence, it consists of ions and electrons, as well as neutral

species. The ionization degree of plasma varies from 100% (fully ionized plasma) to



very low values (e.g. 10*—107°; weakly ionized plasma). Besides the space plasma,
the laboratory plasma 1is divided into two main groups, which are the
high-temperature plasma (fusion plasma), and the low-temperature plasma (gas
discharges plasma). Moreover, two sub-groups of gas discharge plasma are classified
depended on its working gas pressure, which are thermal equilibrium plasma and
non-thermal equilibrium plasma [Lieberman and Lichtenberg, 1994]. The efficient
energy exchange between the plasma species due to many collisions occur for
high-pressure plasma. Thermal equilibrium discharge is typically used for
applications where heat is required; such as for.cutting, spraying, welding. On the
other hand, for low gas pressure plasma, différent temperatures of the plasma species
due to its inefficient energy transfer. Non-thermal equilibrium plasma is typically used
for applications where heat is not desirable. In recent years, this field of non-thermal
equilibrium plasma applications has rapidly expanded due to its non-equilibrium
aspect of the plasma. The latter sub-group of gas discharge plasmas is also the second
subject of this dissertation.

Some important operating parameters for obtaining different non-equilibrium
conditions are briefly summarized as follows [Economou, 2000]:
® The chemical input of working gas and its corresponding gas pressure

® The imposed external electromagnetic field structure



® The configurations of plasma chamber and electrodes

® The temporal behavior (e.g. pulsing the plasma)

One can realizes that the non-equilibrium plasma conditions are strongly

influenced by any one or many of these summarized parameters. For example, the

representation of the parameter space in plasma etching is shown in Fig. 1.1. It clearly

illustrates that the above-mentioned operating parameters (in the top block) determine

the following key plasma properties (listed in the middle block) including the electron

velocity distribution function (EVDF), the space and time variation of electron, etc.

Finally, these properties may dominate the figutes of merit (listed in the bottom block)

including the etching (or depesition) rate, uniformity, etc. Therefore, a computer

simulation code should use such many parameters as inputs to help optimize the

expected non-equilibrium plasma conditions easily and understand the underlying

physics.

Dimensionality of plasma reactor simulations ranges from zero-dimensional to

three-dimensional. Low dimensional simulations, such as zero-dimensional, e.g.,

[Font et. al.,1998], [Meeks and Shon, 1995], and [Deshmukh. and Economou, 1992],

and one-dimensional models, e.g., [Midha and Economou, 2000], [Kline ez. al. 1989],

and [Nedelea and Urbassek, 2004], are best choice in handling very complicated

chemistry [Meeks et. al., 1997]. However, two-dimensional simulations can address



the important aspect of reaction uniformity across the wafer radius, e.g., [Shon and

Lee, 2002], [Shon et. al,1999], and [Shon et. al.,1998]. Three-dimensional

simulations are useful for studying azimuthal asymmetries in the reactor due to

non-axisymmetric power deposition, or non-axisymmetric gas inlets and pumping

ports, e.g., [Kushner et. al.,1996], and [Kushner, 1997].

In general, there are three kinds of plasma simulation approaches; the first is the

fluid model, the second is the kinetic model and the third is the hybrid model. In

addition, Maxwell’s equations for electromagnetic fields also need to be solved

self-consistently coupled with the ‘plasma densities and currents from plasma

simulations. For the fluid model, one need to solve the equations, which are derived

after taking the moments of the Boltzmann equation with some assumptions regarding,

e.g., [Meyyappan, 1994], and [Gogolides and Sawin, 1992]. They are species

continuity equation, species momentum equation and species energy equation.

Related publications of fluid model could be found in numerous articles, e.g.,

[Ventzek et. al.,1993], [Lymberopoulos et. al.,1995], [Bukowski and Graves, 1996],

and [Ventzek et. al.,1994], and are not repeated here. Unlike fluid model, kinetic

approach yields the particle distribution functions as an output of the simulation.

Especially, it is more accurate than fluid model at low pressures when the species

mean free path is comparable to or longer than a characteristic length scale or for



highly non-equilibrium situations. However, Kinetic approach is computationally

intensive as compared to fluid model. One of the well-established kinetic approaches

is the Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) method, e.g., [Birdsall,

1991], and [Vahedi et. al.,1993]. In the past two decades, PIC-MCC method has long

been used to study the nonlinear kinetic problems in space and laboratory plasma

physics. For self-consistent treatment of the plasma and the background gas, Nanbu

combined the Direct Simulation Monte Carlo method (DSMC) with PIC-MCC, e.g.,

[Nanbu, 2000], and [Serikov et. al.,1997].

Each time step in the PIC-MCC:consists of four major steps: charge extrapolation,

force interpolation from the solution of the Maxwells equations, particle movement,

and Monte-Carlo collisions. Briefly speaking, based on the particle positions, charges

are assigned to each mesh point and current densities are assigned to the faces

between the mesh points. Maxwell's equations are then solved to compute the electric

and magnetic fields on the grid. The force on the particles is obtained from the fields

at these gird points by interpolation based on the particle position. Particles are then

moved according to Newton's law. Particle collisions are handled stochastically in a

Monte Carlo module in-between field adjusting time steps. The details of the

PIC-MCC method will be given in chapter 4.

As mentioned earlier, most conventional PIC-MCC, e.g., [Birdsall and Langdon,
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1991], and [Birdsall, 1991], a structured mesh is usually construed for the

computational domain. However, until very recently, there have been few

developments of electrostatic PIC method using a three-dimensional unstructured

mesh, mostly designed for thruster plume simulations due to their complicated

computational geometry. A hybrid PIC-DSMC code using unstructured mesh, called

AQUILA, which has been developed by [Santi et al., 2003] on hall thruster plume

simulation. They obtained the improved current density results from better the

unstructured mesh resolution. AQUILA uses finite element method to discretize

Poisson’s equation with electrons’ from Beoltzmann relation, and then uses

Newton-Raphson method to solve the non-liner resulting matrix. [Spirkin et al., 2004]

has also developed a three-dimensional Particle-In-Cell code on a unstructured

tetrahedral mesh with finite volume method. This PIC code was applied to the

simulation of the flow inside the segmented micro-channel of a directional-retarding

potential analyzer. Results show the flow characteristics of the ions and electrons and

provide estimates of the collected current by the micro-plate.

Parallel PIC-MCC method has been previously studies by various researchers

using different schemes, e.g., [Seidel et al.,2002], [Kawamura et al.,2000], [Decyk,

2002], [Walker,1991], [Walker, 1990], [Lee and Azari, 1992], [Akarsu et al.,1996],

[Decyk and Norton, 2004], and [Liewer and Decyk, 1989], since it is the most
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computationally demanding compared with other models. Most parallel PIC-MCC

schemes, e.g., [Kawamura et al.,2000], [Seidel ef al.,2002], and [Lee and Azari, 1992]

employ a Eulerian decomposition scheme in which just paralleling the particle

processing without paralleling the field solver since the field solver can be a small

percentage of the work load especially when FFT methods are used. In this report, for

a fixed number of grid points, the speedup just for this parallel particle processing

became more linear with increasing particle number on 2 and 4 CPU symmetric

multiprocessor (SMP) machines and on a distributed network of workstations (NOW).

In the past, there have been vety few studies. concerning on developing dynamic

load-balancing technique for patticle-based PIC-MCE€ code, e.g., [Seidel et al.,2002] ,

[Decyk and Norton, 2004], and [Liewer and Decyk; 1989]. In Seidel’s work [Seidel et

al.,2002], he has proposed a method in which the code will dynamically repartition

the computational domain and intends to balance the workload among processors

under the framework of structured mesh. Decyk er al. have developed a new

algorithm just for PIC method on concurrent processors with distributed memory,

which named the general concurrent PIC algorithm (GCPIC). In this algorithm, the

physical domain of particle simulation was divided into sub-domains, which are equal

to the number of processors. The sub-domain can be re-created to keep the processor

loads of particle computations balance (dynamic load balancing) during the transient

12



period of the simulation, which was called primary decomposition. Again, each
sub-domain may have equal numbers of particles, however, unequal numbers of grid
numbers. Thus, GCPIC used secondary decomposition to divide the physical domain
into number of processors equal sub-domains with equally number of grid points
under MIMD paradigm for computing field solver efficiently. However, these reviews

showed that parallel PIC methods are not suitable using the SIMD paradigm.

1.3 Objectives of the Thesis
Specific objectives of the present thesis arebriefly summarized as follows:

1. To develop and verify a parallelized three-dimensional Poisson’s equation
solver using FEM for predicting electrostatic distribution;

2. To develop and verify a parallelized three-dimensional vector potential
Poisson’s equation solver using FEM for predicting magnetostatic
distribution;

3. To develop and verify a parallelized three-dimensional PIC-FEM code
using an unstructured mesh by combining the Poisson’s equation solvers
mentioned in the above;

4. To apply the completed PIC-FEM code to simulate field emission, DC/RF

gas discharge plasma and DC/RF magnetron plasma and compare with

13



experimental data wherever available.

1.4 Organization of the Thesis

The chapters of this thesis are organized as follows.

Chapter 2 details a parallel three-dimensional electrostatic field solver
formulated via  Galerkin  finite  element —method based on the
subdomain-by-subdomain non-overlapping domain decomposition method. After
finite element assembling procedure, the resulting matrix is stored in compressed
sparse row format and is solved using either the parallel conjugate gradient method or
a direct matrix solver, MUMPS. A parallel adaptive mesh refinement module (PAMR)
is also coupled into the developed ‘electrostatic field solver for obtaining better
solution, especially, when there is a large variation of potential in the computational
domain. Some benchmark problems are presented for demonstrating the accuracy and
applicability of the electrostatic field solver. In the end of this chapter, the parallel
performances of the Poisson’s equation solver are studied and their time breakdown is
analyzed in detail.

Chapter 3 details a parallel three-dimensional magnetostatic field solver. This
solver is developed and paralledized follows the techniques presented in chapter 2.

Also, PAMR is coupled into the developed magnetostatic field solver. Some
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benchmark problems are presented for demonstrating the accuracy and applicability

of the parallel magnetostatic field solver. In the end of this chapter, the parallel

performances of these solvers are studied and their time breakdown is analyzed.

Chapter 4 presents the proposed parallel three-dimensional PIC-FEM method

using an unstructured mesh. The PIC-FEM is developed follows the main principles

of the conventional PIC-MCC method. In addition, the parallel implementation of

PIC-FEM is done via domain decomposition method. Dynamic domain

decomposition is developed for alleviating the load between the processors. Two

benchmark problems are presentedfor demonstrating the accuracy and applicability

of the parallel PIC-FEM code. In the end of‘this chapter, the parallel performance of

the PIC-FEM code using DDD is:studied andits time breakdown is analyzed in detail.

In chapter 5, the proposed parallel three-dimensional PIC-FEM code is used to

simulate three different realistic problems. They are: three-dimensional field emission

display (FED), three-dimensional DC/RF gas discharge plasma, and

three-dimensional DC/RF magnetron plasma. Most of the simulated results are then

compared with the previous studied available in the literature. Finally, the conclusions

of this work and some possible directions for the future research work are presented in

the chapter 6 in turn.
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Chapter 2
The Parallel Computing of Finite Element Method for

Three-Dimensional Electrostatic Field Problems

This chapter begins with the introduction to background of computational
electromagnetic. In solving electrostatic problems, only the finite element Galerkin
weighted residual method (GWRM) is chosen and introduced for using either a
tetrahedral or a hexahedral mesh. Globe coordinate and local coordinate shape
functions are used for tetrahedral.and hexahedral meshes, respectively. Before the
parallel computing of FEM, the computational domain is firsts decomposed into a
number of non-overlapping sub-domains using multi-level graph-partitioning library,
METIS. Then, some preprocessing procedure is used in converting the output data
from graph-partitioning tool into the input data for field solvers. The second step is
that the Poisson’s equation is formulated via GWRM using subdomain-by-subdomain
method (SBS). After applying the assembling procedure of FEM, only the non-zero
entries of the system of equation are stored in compressed sparse row format and
solve the matrix using either parallel conjugate gradient method or direct matrix
solver, MUMPS. The parallel adaptive mesh refinement module is then coupled with

the parallel Poisson’s equation solver in order to improve the resolution of solution
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near where the property gradient is large. Some benchmark problems are presented for
demonstrating the accuracy and applicability of the Poisson’s equation solver. In the
end of this chapter, the parallel performance of the Poisson’s equation solver is

studied and its time breakdown is analyzed in detail.

2.1 Background of Computational Electromagnetic

For the whole electromagnetic theory, it could be regarded as the logical
deduction from the Maxwell’s equations, which were first formulated by James Clerk

Maxwell in 1873 [Cheng, 1995]. They are:

vxE=_98 2-1)
ot
vxB=L "%, g (2-2)
c” ot
v.E=L (2-3)
&
V-B=0 (2-4)

where E is the electric field intensity, B is the magnetic flux density, J is the
current density, €is the dielectric permittivity of the medium, p is the dielectric
permeability of the medium, c is the speed of light and pis the volume charge density.
In this thesis, we only consider the electrostatic (ES) and magnetostatic (MS) field
problems, hence, the Maxwell’s equations can be simplified to the scalar and vector

Poisson’s equations for ES and MS fields, respectively. They are:
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vig=-~ (2-5)
g

1 2 - -

—Vi4=—J (2-6)
U

where ¢ is electric potential and A4 is the magnetic vector potential. From these two
equations, it is clear that the electrostatic fields are contributed from the static electric
charges and the magnetostatic fields are due to motion of electric charges with
uniform velocity (direct current) or external magnets. The details in solving the
magnetostatic field problems are presented in the next chapter.

In the past years, Maxwell’s equations have long been studied in dealing with
electromagnetic problems. Two different approaches for solving Maxwell’s equations
are analytic and numerical approached. For the simple structured device, there are
many analytic solutions available which could+easily derived from the series
expansions, separation of variables, Bessel and Legandre polynomials, Laplace
transformations, and the like [Umashankar, 1993]. However, there is almost no
solution available when one consider a device with a complicated structure that
involve a number of conductors, dielectric, permanent magnets, and semiconductors
of arbitrary shapes, etc. Thus, an extremely accurate numerical method for solving
Poisson’s equation is required to model these complicated structures.

Fortunately, with the developments in numerical techniques in the past two

decades, nowadays it is possible to solve large-scale electromagnetic problems

18



numerically within reasonable time limits. The numerical methods can be generally

divided into three separate groups, which are integral method, differential method,

and variational method. For the integral method, it is based on the basis of the

superposition principle and one can integrate such effects at any point obtaining the

potential at that point. The well-known integral method is the boundary element

method [Kythe, 1995], which is particularly suitable for problems with material

homogeneity. Finite difference method [Sullivan, 2000] is the most popular among the

differential methods. For this method, the computational domain is usually divided

into structured mesh and the values of a scalat potential field are sought at all grid

points. However, this method usually suffers from many problems when considering a

complicated structured case, especially in generating the structured mesh on object

with arbitrary geometrical shape, imposing the boundary conditions, interface

approximation of muti-material region. For the variational method, it is based on the

differential or integral form of the field equations to be solved [Zeidler, 1985]. The

well-known variational method is the finite element method, which is widely used in

many fields, e.g., [Beltzer, 1990], [Winslow, 1967], [Silvester and Pelosi, 1994], and

[Jin, 2002], which also include the electromagnetic problems [Winslow, 1967].
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2.2 Finite Element Method (FEM)
2.2.1 Background

The FEM is the numerical technique for obtaining approximate numerical
solution of the partial differential equations (PDEs) arising from any physical system
subjected to its boundary conditions. For FEM, the computational domain is first
divided into smaller non-overlapping regions called elements (cells), and a trial
function is postulated over each of the elements. For example, the trial solution with
global coordinates for a three-dimensional tetrahedral mesh is:
ﬁ(x,y,z;a) =a,+ alNl(x,y,z)+ azNz(x,y,z)+--~+ a,N, (x,y,z) (2-7)
Where x, y, z are the independent variables in' the problems. The functions N (x, v, Z)
are known functions called trial funetions. The coefficients, a,, are undetermined
parameters and »n is called degree of freedom (DOF). After formulating the PDEs
using Galerkin weighted residual method with the trial solution, the element equations
are obtained for a typical element. These element equations can then be used for other
the elements over the domain as shown in Fig. 2.1. Then, larger sets of algebraic
equations, which are called system equations, are formed after assembling these
element equations. Moreover, the matrix structure of such huge system equations is

sparse in essence; the matrix may be solved efficiently only storing the non-zero

entries.
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2.2.2 The Galerkin Weighted Residual Method (GWRM)

In FEM, we employ Galerkin weighted residual method (GWRM) with the
three-dimensional C’-linear shape-function for a tetrahedral mesh and for a
hexahedral mesh. In GWRM, a weighted average of residual over the entire domain
should be zero and the trial function is the element shape function associated with
each a;. The representations of GWRM with three-dimensional C’-linear global
coordinate shape function and local coordinate shape function are given in EQs. (2-8a)
and EQs. (2-8a), respectively.

J”R(x,y,z;a)N[ (x,y,z)dxdydz =0 (2-8a)
[[[R(&.n. p3a)N,(&.7, p)dxdyedz=0 (2-8b)

where R(x,y,z,a) or R(é, n, p; a) 18 the'residual of the governing equation.

2.3 Calculation of Electrostatic (ES) Field

Since the concept of GWRM is introduced, this section begins with derivation of
the element equation of Poisson’s equation for typical ES fields (as shown in EQs.
(2-5)). A trial solution is first constructed to approximate the exact electric
potential, #(r)~U(r;), which can be written with shape function using global

coordinate for a tetrahedral mesh,

ﬁ(x, ¥,z a) ziaij (x, ¥, z) (2-9)

j=l

The local coordinate shape for a hexahedral mesh will be presented later. The major
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steps for formulating EQs.(2-5) using GWRM with a three-dimensional tetrahedral
mesh in global coordinates are described in detail as follows.

Step 1: Derive the typical element equation of Egs. (2-5) using GWRM.

j”(a U(e)+a U aU()

) Nfdxdydz = —”j( )Nedxdydz

y? (2-10)
i=1-4
Step 2: Integrate by parts.

yo U9 _ o v aU“))_aN,.“’ ou"
foar ax T ox  Ox (2-11a)

y© UV o VO aﬁ<e>)_azv,.“> oU"
Loyt o ' oy oy 0Oy (2-11b)

277 (e) rre) (e) Ar7y(e)
N o°Uu :g(Ni(e) oU )_6N,. oU (2-11¢)

0z* oz 0z 0z (674

Substituting EQs.(2-11) mto the RHS of EQs. (2-10), and Eqgs. (2-10) becomes

7 (e) 7 (e) r7(e)
m[i(aU N©)+ 0 (6U N 0 (aU N drdyds
oy Oz
5U(6) aN(E) aU(e) aN(e) aU(e) aN(e)
-l )+ ( )+ ( )My (2-12)
il (ﬁ)Nl.(e)dxdydz i=1-4
&

EQs. (2-12) can be reformulated using divergence theorem, it may be written,

aU<e> oN'"  oU@ oN o0 oN,"
i )+ ( )+ ( )dxdydz
ox dy Oy oz 0Oz
(e) (e) (e)
_M( )N(e)a’xdydz+”N(e) ou aU j+aU k)-rdA
ox oy 0z

=[] (gﬁ)zv,@dxdydz ~ ([N 97 -jida
0 4 (2-13)
=([f (gﬁ)N[(e)dxdydz ~[[N9z9aa  i=1-4
0 A
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) is the outward-normal component of the flux. All load terms are placed on the

where 7,

RHS; this includes the interior load and the boundary fluxes.

Step 3: Substitute the trial solution into element equations.
Inserting EQs. (2-9) into Egs. (2-13) yields,

© oN 1 © oN ‘@ © oN ‘9
IR Sy (B (DS yiddza,
o yo (2-14)

= ([N, Odxdydz - [[N79da  i=1-4, j=1-4
; |

Writing it also in matrix form,

(e) (e) (e) (e)

Ky K, - K, |a K
(e) (e) (e) (e)

Ky Ky oo Ko a _ £y (2-15)
(e) (e) (e) (e)

Knl KnZ e sz an E’l

Where the coefficient matrix andload matrix  are defined as:

N-(E) .(e) aN.(@) '(e) ﬁN‘(e)
J )_I_(aNl J ) (aNl J

. oN© 8
K;)_'[”[( ox  Ox oy Oy i 0z

F=([] (f)Ni(e)dxdydz ~[[ N7 a4
0 A

)ldxdydz

Step 4: Substitute the 3-D C%linear shape function for a tetrahedral mesh into
element equation.

The LHS of EQs. (2-14) may be reformulated,

K =[[[ (07D} +cc +d“d " )dxdydz (2-16)
Where
N(x,p,2) = é(a,@ +b,x+cy+d z)  i=1-4 (2-17a)
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Xy Ve 2
aﬁe’: X, Yz (2-17b)

1y z
b9 =— y, z (2-17c¢)
Ly, z,
x, 1 z
c=-x 1 gz (2-17d)
x, 1 z,
X, o1
di¥=—x y 1 (2-17¢)
Xy Vo 1

Where V' is the volume of cell and the subseripts i, k, 1, m have the values 1,
2, 3, 4 (see Fig. 22) for N“(x,y,2) and are permuted cyclically
for N\ (x,y,2z), N (x,y,z)and N (x,y,z2).
Step 5: Evaluate the interior load term and boundary flux term of Eqs .(2-14).

For coupling with Particle-In-Cell method in later chapter, here we
interpolate charges from the particles to the nodes [Santi et. al., 2003], that
is:

P =>qN(x,,y,2,) i=1-4 (2-18)

k

Where the subscript & represents charged particle properties. Substituting Eqs. (2-18)
into the interior load term, it becomes
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” j (E%)N O dxdydz

LS O [ N, vz (2-19)

&y =1
3
_ (e)
= 2.0
de, o

Where V' is the volume of cell. Now consider the boundary flux integral, we

assume the flux is constant and move 7'¢

n

outside the integrals:

[[nv 74

A

=7 [[ N “da (2-20)
A

(¢)
=7 A
n 3

Where A is the face area of the element.

Step 6: Assemble-the element equations into:a system equation

Using an assembly procedure,
W (K a,) =W (F) (2-21)
The system equation is formed,
Ka;, =F" (2-22)
After these theoretical developments, we may apply the boundary conditions
to Eqs. (2-22).
For a three-dimensional hexahedral mesh with local coordinate shape function,

the same steps 1-3 and 6 are repeated for EqQs.(2-5), and the step 4-5 are be modified

as follows.
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Step 4: Substitute the 3-D C°-linear shape function for a hexahedral mesh into
element equation.

The Eqgs. (2-15) is transformed into a form appropriate for numerical

evaluation.
111 (e) (e)
K = (17 o Sy
—-1-1-1
111 e (e) e
+£££825)&N &V”Lﬂ“d&hmp (2-23)
11 laN,(e> aN(e) aN(e) .
+ jl jl jl ~ . /@ |d&dndp
F© = Hj( ;’ W |T©ldédndp - j [N 97 a4 (2-24)

-1-1-1 0

Where N.(&,7,p) is the shape function'with local coordinate,
N, (&1, p) = 5 (1+ E& ) nmg, )1 +pp;) (2-25)
And &, i, and p, are the local coordinate of grid node for a standard

hexahedral element (as shown in Fig.2-3). And, is the Jacobian [Shao,

2006]:
_Xl Yl Zl_
_aNl ON, &N, ON, ON, oN, ON, aNs_ X, Y, Z,
of 0f o0& of o0& o o0& of |4 b4
1= Ny ONy 0N, ONg ONg Ny ONg |\ Xu Xs Zid g o
on on on on oOn On On on | X, Y, Z
ON, ON, ON; ON, ON; ON, N, ONy |y, vy, z,
0p Op Op Op Op Op OIp Op | X, Y, Z,
Xy Y Zg]
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-(1-md-p) +A-p)(A-p) +1A+m)A-p) —-A+p)IA-p) ,

=% —(1-91-p) -1+5A=-p) +(1+5H1A-p) +(-HA-p) ,
-(1-9Hd-n) -1+5HA-n) -A+5HA+n) -A-HA+n) ,
X1
Xy B
—(=-mA+p) +A-mA+p) +A+pd+p) —(A+7)1+p) ));3 ;3
-(1=-81+p) —-A+HA+p) +1+5HA+p) +(1-5)(1+p) X: Y:
A== +A+&)A-m) +A+)A+n) +A=)A+m) || ¥,
X7 Y
Xg I3

The stiffness integral may now be written as the following quadrature

expressions:

R ON ON;” aN{ 8N!” N ON{©
Kig‘e) = z z Z Wnk Wnl an [( : ’ ‘ + : . . +
' pa s p— ox Ox Ox oy 0oy Oy (2-27)

e (e) e
. ON{ ON;” ON/°!
0z Oz 0z

)‘ J©

](gnk STt > P )

Where w ., w

nl >

and w, = are weight factors-¢ ,,7,, and p, are so called
Gauss points at which the integral is evaluated. » is the number of Gauss points.
Here, the derivative of shape function with respect to x, y, z is handled using the

chain rule of differentiation, and it yields:

[ON, (&1, p) ] [ON, (£,7,p) |
ox o £+ )+ pp,)]
ON(E.1.0) | [,41N(.P) | 1 adi([J) ]
o PV T | a0 | 229
ON,(&,m, p) ON, (&1, ) Lo+ 85 )A+71,) |
L oz | i ap |

Step 5: Evaluate the interior load term and boundary flux term of Eqs .(2-24).

Again, for coupling with Particle-In-Cell method in later chapter, we
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interpolate charges from the particles to the nodes, that is:

P = a N Eomep) i=1-8 (2-29)
k
Where the subscript k represents charged particle properties. Then, p is

weightied to the Gauss point becomes p((gk ooy » and substitute this into the

interior load integral term in quadrature expressions:
111 (e)
JITEy N agindp
555 %o (2-30)

- Z Z Z Wk Wit W [(f)(e) NN
0

k=1 I=1 m=1

(&t Mt >Prum)
Now considering the boundary flux integral term in quadrature expressions,

[[v 74

A

J\dEdn (2-31)
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2.4 Sparse Matrix Storage Schemes

The FEM formulations and assembly techniques typically lead to large and

sparse matrices. Thus, it becomes essential to store sparse matrix in some kind of

storage schemes, especially for an efficient matrix-by-vector product of the iterative

method. Nearly all schemes have these two following storage components, e.g.,

[Golub and Van Loan, 1996], and [Saad, 2003]:

. A one-dimensional array, which is called the primary array with the size of the

number of non-zero entries, for storing the non-zero entries.
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2. Two one-dimensional arrays of integer identifiers, which are called secondary
arrays with the size of the number of non-zero entries, for recognizing which
entries of the matrix are stored in the primary array.

The Compressed Sparse Row (CSR) scheme is used for storing the current FEM

sparse matrix, in which scheme the each entry of primary array is stored row-by-row.

2.5 Preconditioned Conjugate Gradient Method (PCG)

Among the iterative methods, the Preconditioned Conjugate Gradient method
(PCQ) is extremely effective for solving the symmetric positive define systems. The
PCG method was developed= in.'1952 ' by Hestenes and Stiefel, which is an
improvement to the steepest descent.method [Saad, 2003]. The steepest descent
approaches the solution asymptotically, however, the disadvantage of this method is
that the speed of convergence may be very slow if the condition number of the matrix
A is large. PCG is an efficient implementation of the conjugate directions method in
which the search directions are constructed by conjugation of the residuals. In this
section, the theory of PCG will not be described in detail, which can be found
elsewhere, e.g., [Golub and Van Loan, 1996], [Saad, 2003], and [Barrett and Berry,

1994]. The algorithm is given in the following,
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Algorithm 1.Preconditioned Conjugate Gradient Method

Choose x°
r® =b— Ax"
solve Mz" =r°
pO — ZO
¥’ = inner product (z°,r")
DOk=01 2.k,
q" = matrix multiply (A, p*)

t* = inner product (p*,q")
ot = }/k / 7k

xk+1 :xk +akpk

PRk _aqu

k+1 . k+1 k+1
r*" = inner product (r"",r'")

k+1 1

k
solve Mz"" =r*"

k+1 .
r*" = inner product (z

If (\Jy*"' < tolerance) exit

k+1 , rk+1 )

ﬂk — }/kJrl /7/k
pk+1 — }/k +ﬂkpk
ENDDO

Where £ is the iterative number, 7 is the residual, x is the solution vector, p is the step
direction, o is the step length, and £ is the correction factor. Preconditioner M is
defined as the diagonal of stiffness 4, known as Jacobi preconditioning, is equivalent

to scaling the quadratic form along the coordinate axes.

2.6 Multi-frontal Massively Parallel Solver (MUMPS)
MUMPS [Amestoy et. al., 2000] is a package for solving systems of linear
equations of the form Ax = b. Unlike PCG, the stiffness matrix, 4, is a square sparse

matrix that can be either un-symmetric, symmetric positive definite, or general
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symmetric. MUMPS uses a multi-frontal technique, which is a direct method based on

either the LU or the LDLT factorization of the matrix. In the following, the main

features and steps of MUMPS from its userguide are given in turn.

The main features of the MUMPS package include the solution of the transposed

system, input of the matrix in assembled format (distributed or centralized) or

elemental format, error analysis, iterative refinement, scaling of the original matrix,

return of a Schur complement matrix, and several built-in ordering algorithms. The

details of this technique can be found in the reference of its user-guide. The system Ax

= b is solved in three main steps:

1. Analysis. The host performs-an ordering based on-the symmetrized pattern A+AT,

and carries out symbolic’s factorization. A~ mapping of the multifrontal

computational graph is then computed, and symbolic information is transferred

from the host to the other processors. Using this information, the processors

estimate the memory necessary for factorization and solution.

2. Factorization. The original matrix is first distributed to processors that will

participate in the numerical factorization. The numerical factorization on each

frontal matrix is conducted by a master processor (determined by the analysis

phase) and one or more slave processors (determined dynamically). Each

processor allocates an array for contribution blocks and factors; the factors must
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be kept for the solution phase.

3. Solution. The right-hand side b is broadcast from the host to the other processors.

These processors compute the solution x using the (distributed) factors computed

during Step 2, and the solution is either assembled on the host or kept distributed

on the processors. Each of these phases can be called separately and several

instances of MUMPS can be handled simultaneously. MUMPS allows the host

processor to participate in computations during the factorization and solve phases,

just like any other processor. For both the symmetric and the unsymmetric

algorithms used in the code, MUMPS has chosen a fully asynchronous approach

with dynamic scheduling ' of the <~computational tasks. Asynchronous

communication is used to“.enable overlapping between communication and

computation. Dynamic scheduling was initially chosen to accommodate numerical

pivoting in the factorization. The other important reason for this choice was that,

with dynamic scheduling, the algorithm can adapt itself at execution time to

remap work and data to more appropriate processors. In fact, we combine the

main features of static and dynamic approaches; MUMPS uses the estimation

obtained during the analysis to map some of the main computational tasks; the

other tasks are dynamically scheduled at execution time. The main data structures

(the original matrix and the factors) are similarly partially mapped according to
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the analysis phase.

MUMPS distributes the work tasks among the processors, but an identified
processor (the host) is required to perform most of the analysis phase, to distribute the
incoming matrix to the other processors (slaves) in the case where the matrix is

centralized, and to collect the solution.

2.7 Parallel computing of FEM

In parallel computing of FEM, the computational domain is first partitioned
divided into a number of non-overlapping sub-domains, which is equal to the number
of processors. One processor is assigned for the.comiputation of each sub-domain, and
communications are required between processors whenever needed, e.g., [Farhat et.
al., 1995], and [Hodgson and Jimack, 1993]. Fig. 2.4 shows the three different kinds
of partitioning methods, which are common used in graph-partitioning techniques
[Saad, 2003]. We use the element-based partitioning to partition the domain, in which
partitioning method, there is no element should is split between two sub-domains, e.g.,
[Gullerud and Dodds, 2001], and [Thiagarajan and Aravamuthan, 2002].

The different type of approach is used for the different type of domain
decomposition [Saad, 2003]. When the domain is partitioned into a set of overlapping
sub-domains in which case overlapping Schwartz methods are used for the solution of

the system. On the other hand, iterative sub-structuring methods are used for domain
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is partitioned into a set of non-overlapping sub-domains. There are two typical
non-overlapping domain decomposition methods used in parallel computing of FEM,
which are the subdomain-by-subdomain (SBS) and the Schur complement method. We
use the SBS approach for paralleling FEM, in which the global stiffness matrix is
divided a numbers of partitioned matrices and be stored on each corresponding
processor. Then the PCG method should be performed on the SBS basis. The details
of SBS method are described in the following.

Before introducing SBS method, the graph-partitioning library, METIS [Karypis,
and Kumar, 1995], is first used totdecompose the computational domain Q into p
non-overlapping sub-domains (SeeFig. 2.5).

Q=[] Q, (2-32)
and

Q. NQ, ={} wheni=j (2-33)
The following EQs. (2-34) is the standard block-arrowhead structure of the stiffness

matrix usually formed from SBS method.

4 B | x b,
4, B, || x, b,
' : =) (2-34)
4, B, Xp b,
Bl B, - B, A|x | |b

This kind of matrix structure stems from the special nodes re-ordering on each
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sub-domain using SBS method. For each sub-domain, the rule of nodes re-ordering is
that the internal nodes is numbered first and last the interfacial nodes. The matrices of

internal nodes (4,,B,, B/ ,x,, andb,) are contributed entirely from its corresponding

1

sub-domain, and the matrices of interfacial matrices ( 4, , B, , B! ,x,, andb, ) have the
contributions from all sub-domains. Since all these matrices are concurrently
assembled on each processor, the PCG algorithm using SBS method is given as
follows, e.g., [Saad, 2003], [Gullerud and Dodds, 2001], [Khan and Topping, 1996],
and [Jimack, and Touheed, 1997],

Algorithm 2. Parallel Preconditioned Conjugate Gradient Method

b, =Updated(b, )

PO =br’=p"

i S; S;

solve M(z),z)=(@",r’

i 275

0 _ .0 0 _ _0
D; _Zi’ps, _Zsl-

0 .
r® = inner product (z°,z°;r’,r")

DOk=0,1,2,..k,,

X

qik+l = Aipik +Bsipsik

k+

qS[ 1 = update(B[Tpik + Asi ps[ k)

N
|

= inner product (p,p,pg ;qf‘,qf,)

a" =y" It
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K+l k Kok
X, =x;, +ta'p, ; x

1

kAl k K k.
reoo=r o —atq;r

i s;

k+1 k k k
_rs[ —a qs[

solve M(Zl-kH,Z »k+l) — (I".k+1 k+l)

i >0 s

Si i

k+1 . k+1 k+l1 k+l1 k+1
r*" = inner product (z,” ,z," ;r, )

S; >0 20s;

If (Y < tolerance) exit

ﬁk — 7k+1 /yk

k+1

pi :7ik +:kaik; ps‘.k+

1

k k k
=y, +5°p,
ENDDO

This algorithm shows that the PCG with SBS method should be performed
concurrently on each processor,whereas:the: communication is performed in two
matrix operators: inner product and update [Jimack, and Touheed, 1997]. The
subroutine inner product is used to calculate the inner product of two distributed
vector between processors and then it requires a single globe communication for
providing each processor with a copy of this sum. Since this sum is calculated
repeatedly, it should be scaled by the reciprocal of the number of processor. The
subroutine update is used to sum the distributed contribution of interfacial nodes via

local communication.

The technique of non-overlapping domain decomposition we utilized in parallel

computing of FEM is briefly described in the next section.
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2.7.1 Domain Decomposition Method

There are two typical domain decomposition methods, which are

geometry-based and graph-based domain decomposition. Since Geometry-based

method provided poor edge cut (£.) and poor load balance, e.g., [Tseng, 2005],

[Wehage and Haug, 1982], and [Simon, 1991], we use the graph-based method for our

domain decomposition method. For the graph theory, a sketch of two-dimensional

triangle mesh (graph) is shown in Fig. 2.6. This figure shows that a graph is the

collection of the vertices of each cell and edge cuts between the cells. Most of this

method was developed by the scientists who major in computer science, and the main

idea of this method is to subdivide the n vertices beétween the NP sub-domains while

minimizing the number of edge cuts, and balancing the weight in each sub-domain.

Tseng [Tseng, 2005] had reviewed' the partition method using graph-based method,

e.g. [Simon, 1991], [Vanderstraeten et. al., 1996], and [Barnard and Simon, 1994]

including Greedy partitioning, recursive spectral bisection, multi-level scheme,

two-step method. And he recommended that the graph-partitioning library, named

METIS, developed by University of Minnesota using multi-level scheme, especially

has impressive performance in terms of CPU time and very easy for implementation.

After obtaining the partitioned data, a converter should be designed for preprocessing

the mesh (grid) data. The main function of this converter is to reorder the fully

unstructured mesh data into the globally sequential but locally unstructured mesh data
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for obtaining the relationship between global and local cell data by a simple
arithmetic operation due to this special cell-numbering design [Tseng, 2005]. In
addition, the nodes numbers of each sub-domain must be re-ordered follow the
requirement for FEM using SBS method. This converter is a improvement of Tseng’s

method.

2.8 Parallel Adaptive Mesh Refinement using a Tetrahedral Mesh
(PAMR)

Fig. 2.7 shows the proposed overall procedures of parallel adaptive mesh
refinement for an unstructured tetrahedral mesh. Only the general procedures are
described in this thesis, while the details and results of the parallel implementation
can be found elsewhere [Lian ef. al.,2006]. Basically, the parallel mesh refinement
procedures in Fig. 2.7 are similar to those presented earlier for serial mesh refinement
elsewhere [Wu et. al., 2004]. In the serial mesh refinement, the cells are first
examined to identify if cell refinement is necessary. If so, then they are refined
“isotropically” into eight child cells. The generated hanging nodes are then removed
following the procedures proposed in Wu et al. [Wu et. al., 2004] in which the cells
are further refined into two, four, or eight child cells.

However, the detailed procedures and related data structure become more

complicated than those in serial mesh refinement because of the parallel processing.
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Domain decomposition is also used in line with parallel implementation of the current

Poisson’s equation solver. Each spatial sub-domain belongs to a specific processor in

practice. The overall procedure shown in Fig. 2.7 can be summarized as follows:

4a.

4b.

4c.

4d.

Preprocess the input data at the host processor, and distribute them to all

other processors.

Index the cells which require refinement based on the refinement criteria.

In the current study, we use the variation of potentials among elements as

the criterion for cell refinement which, in practice, is equivalent to a

generally accepted errot estimator as.will be shown in the next section.

Check if further mesh refinement is necessary. If it is, then proceed to the

next step. If not, proceed to Step 9.

Add new nodes into those cells that require refinement.

Add new nodes onto all edges of isotropic cells.

Add new nodes into the anisotropic cells which require further

refinement as decided upon in the following steps.

Communicate the hanging-node data to corresponding neighboring

processor if the hanging nodes are located at IPB.

Remove the hanging nodes following the procedures as shown in Wu, et

al. [Wu et. al., 2004]. The basic idea is to remove the hanging nodes for
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5.
5a.
5b.
5c.
5d.
Se.
6.

all kinds of conditions, and then refine the cell into two, four, or eight

child cells.

Unify the global node and cell numberings caused by the newly added

nodes in all processors.

Add up the number of the newly added nodes in each processor,

excluding those located at interprocessor boundaries (IPBs).

Gather this number from all other processors, and add them up to

obtain the updated total number of nodes, including old and new nodes,

but excluding the newly added nodes at IPBs.

Build up the updated node-mapping and corresponding cell-mapping

arrays for those “newly added nodes in the interior part of each

sub-domain based on the results in Step 5b.

Communicate the data of newly added nodes at the IPBs among all

Processors.

Build up the node-mapping array for the new nodes received at IPBs in

each processor.

Build up new connectivity data for all cells to include the newly added

nodes.

7. Build up the new neighbor-identifying array based on the new connectivity

40



data obtained in Step 6.

7a. Reset the neighbor-identifying array.

7b.  Build up the neighbor-identifying arrays for all cells based on the new

connectivity data, excluding the data associated with the faces lying on

the IPBs that require the updated information of the global cell number

which is not yet known at this stage.

7c.  Record all the neighbor-identifying arrays that have not been rebuilt in

Step 7b.

7d. Broadcast all the recorded data in all processors.

7e. Build up the neighbor-identifying arrays on the IPBs, considering the

overall connectivity data structure.

8. Decide if it reaches the preset maximum number of refinement. If it does,

then proceed to the next step. Otherwise, return to Step 3.

9. Synchronize all processors.

10. The host processor gathers and outputs the data.

In the current study, by coupling the PAMR with the parallel Poisson’s equation

solver as stated in Step 3, the maximum number of refinement is set to be “one”, since

the option whether further refinement is necessary is decided outside the PAMR, as

can be seen in the next section.
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2.9 Coupling of PAMR with Parallel Electrostatic Field Solver

The PAMR presented in the previous section can be easily coupled to the current
parallel electrostatic field solver since both utilize 3-D unstructured tetrahedral mesh
and MPI for data communication. One can readily wrap up the PAMR as a library and
insert it into the source code of any parallel numerical solver to be used. However,
some problems may occur due to memory conflicts between the inserted library and
the numerical solver itself that could reduce the problem size one can handle in
practice. As such, a simple coupling procedure, written in shell script (Fig. 2.8) that is
standard on all Unix-like systems,.can be prepared to link the PAMR and the current
parallel electrostatic field solver. In doing so; we cankeep the source codes intact and
without alterations. Indeed, it is especially justified if only a steady state of the
physical problem is sought, in which normally only several times of mesh refinement
is enough to have a fairly satisfactory solution. Thus, the total I/O time, which is in
proportion to the number of couplings in switching between two codes, can be
reduced to a minimum in practical applications. In addition, as shown in Fig. 2.8,
after identifying those cells that require refinement before PAMR, the domain is
repartitioned based on the new mesh refinement requirements. For example, the
weight factors of the cells (vertex in graph theory) are set as eight for those cells

which are flagged to be refined; otherwise, they are set as unity. With this distribution
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of weight factors as the input to ParMETIS [Karypis, 1998], an approximate (but

rather good) load balancing can be achieved in the PAMR module. Then the

electrostatic field solvers read in the output refined mesh from the PAMR module and

partition the new mesh with equal weight factors for all cells, in which the workload

1s balanced in the electrostatic field solvers.

The current parallel electrostatic field solvers along with PAMR are implemented

and tested on a PC-cluster system with the Linux OS at the National Center for

High-Performance Computing in Taiwan (64-node, dual processor and § GB RAM

per node). The standard message-passing interface (MPI) is used for data

communication. It is thus expected that the current parallel code will be highly

portable among the memory-distributed parallel. machines that are running with the

Linux (or its equivalent) operating system.

2.10 Validation and Parallel Performance of the Electrostatic Field
Solver

Fig. 2.9 shows a simplified flowchart of the parallel computing of FEM

proposed in the current chapter, which incorporates the multi-level graph-partitioning

library. Fig. 2.9 shows that after reading the preprocessed cell and node data on a

master processor (CPU 0), the data are then distributed to all other processors

according to the designated initial domain decomposition. With these data, every
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processor will concurrently construct shape function, coefficient matrix and then
impose the boundary conditions. Once every processor has the above information the
system will ready be solved using parallel PCG. The final results are then output when
L2 error norm is less then the specified convergence criteria.
Validation of the parallel electrostatic field solver

Many analytical solutions of Poisson’s equation are available for comparison
either with or without the source term. In the current study, we have selected one
problem without a source term and another with a constant source term. The former is
a grounded conducting sphere with diameter (D) 2 meters immersed in a uniform
electric field (E =10 volts/m, ~40,000 elements, 20-processors), while the latter is a

uniformly charged distribution between two infinite, grounded conducting plates at

16 -3
L=0m and L=0.02m (quasi 1-D, number density of singly-charged ions=10 m ,

~8,500 elements, 20 processors). About ~56,000 particles are used. The charge
weighting used in this is based on the volume coordinates that originated from the
finite element method. The simulation and analytic solutions of these two problems
are both in excellent agreement with the analytical solution as shown in Fig. 2.10(a)
and Fig. 2.10(b), respectively. These results validate the accuracy of the current

parallel Poisson’s equation solver.
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Parallel performance of the electrostatic field solver

The simulation of a typical single CNT field emitter within a periodic cell using

0.47 million elements (~97,000 nodes), as shown in Fig. 2.11, is employed to test the

parallel performance of the current Poisson’s equation solver. This size of the mesh is

typical for further production run as will be presented in chapter 5. Only % of the

volume is used for the simulation by taking advantage of the symmetry in this

problem. The gate voltage is applied with 150 volts, while the cathode and anode

electrodes are grounded and applied with 400 volts, respectively. At the planes of

symmetry, Neumann boundary conditions are used. A very refined grid (Fig. 2.12) is

used near the silicon tip to improve the accuracy of the predicted electrical field. No

parallel adaptive mesh refinement is used in the simulation since at this stage; we are

only interested in obtaining the parallel performance of the Poisson’s equation solver.

Fig. 2.13 illustrates the parallel speedup as a function of the number of processors

up to 32. The corresponding time breakdown of various components of the solver

along with speedup is summarized in Table 2. The runtime using a single processor is

about 138.17 seconds, while it is reduced to 5.13 seconds using 32 processors, which

results in ~26.93 of parallel speedup. Most of the time is consumed in the parallel CG

matrix solver, in which the percentage of communication time generally increases

with the number of processors used. Note that the communication time, including the
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send/receive and allreduce commands required in a parallel CG solver, is relatively

short (~3.53 seconds or 4.5% of the total time) at 2 processors which is attributed to

the fast access to the same memory by the dual-processor per node architecture of this

cluster system. An appreciable portion of the runtime is spent in the communication

for a large number of processors, e.g., 35.4% at 16 processors. A further improvement

of the solver efficiency by adding a robust parallel preconditioner before the parallel

CG solver is highly expected and will be reported elsewhere in the future.

Nevertheless, the present results clearly show that the parallel implementation of the

Poisson’s equation using a subdomain-by-subdomain procedure performs very well

for the typical problem size we employ in the field: emission prediction. A smaller

problem size is not tested in the current study since it is irrelevant for this kind of

application. It is expected that the parallel speedup can be even better if a larger

problem size is simulated, e.g., for an array of field emitters. Thus, the current parallel

implementation can greatly help to reduce the runtime required for the parametric

study of optimizing the field emitter design.

Performance of parallel adaptive mesh refinement

A case with the same boundary conditions as the above test case for parallel

performance is used to demonstrate the improvement of prediction using parallel

adaptive mesh refinement. Fig. 2-14 shows a close-up view of the mesh distribution
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near the single CNT tip using PAMR where the initial mesh is rather coarse (7,006
nodes), while the level-5 mesh is very fine (61,241 nodes) near the tip. In this case, an

element is refined into eight child elements if the standard deviation of the potentials

among the nodes of this element is larger than the value of a preset criterion, ¢, . In

this case, ¢, . is set to 0.08. Table 3 lists the number of nodes/elements and the

ref
corresponding maximal electric field in the simulation domain at different levels of
mesh refinement. In addition, the data in the parentheses are obtained by using an a
posteriori error estimator as proposed by Zienkiewicz and zhu [Zienkiewicz and Zhu,
1987]. We have employed a very simple gradient recovery scheme by averaging the
cell values of the FE solution -to ‘extract the “‘exact™ solution of the electric field in

each cell. A prescribed global relative-errore " 0f:0.0003 is used to control the level

of accuracy. The absolute error in each element is then compared with a current mean

absolute error at each level, based on ¢ ,,, to decide if refinement is required. From

Table 3, it is clear that the results are nearly the same by using either the variation of
potential or the error estimator in the current study, although the implementation of
variation of potential is more cost effective. For all the data presented in the present
study, mesh refinement based on variation of potential is used throughout the study,

unless otherwise specified.

After level-5 refinement, the maximum value of the electric field near the tip
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reaches an approximately constant value of 11.323 V/nm. Note that the parallel

performance of the PAMR module is not discussed here for brevity purposes but it

appears in detail elsewhere [Lain et. al., 2006]. All the cases shown in succeeding

sections apply this mesh refinement module for a better resolution near the emitter

tip.

2.11 Some Remarks

From the benchmark validations, the developed 3D parallel Poisson’s equation

solver is verified successfully with and without the source term considering an

Neumann boundary condition-and Dirichlet boundary condition. The 3D parallel

Poisson’s solver coupled with PAMR 15 used in simulating a typical CNT emitter and

the results show a good resolution of potential distribution around a very narrow

emitter tip. Such an accurate potential distribution usually plays an important role in

correctly predicting the emission current from the CNT emitter tip. Parallel speedup

performance shows 84% at 32 processors, and a more robust precondition should be

implemented in the near future.

48



Chapter 3
The Parallel Computing of Finite Element Method for

Three-Dimensional Magnetostatic Field Problems

As will be shown in later chapter, for simulating the typical DC and RF
magnetron plasma, there is usually a permanent magnet system behind the cathode
electrode, which has to be simulated before plasma modeling. In general, this
magnetic field plays an important role in sustaining magnetron plasma at very low
temperature. Thus, the main purpose of developing a parallel magnetostatic field
solver is to obtain the magnetic field induced by permanent magnet system. Since
both the finite element Galerkin “weighted residual method (GWRM) and
subdomain-by-subdomain (SBS) method are introduced in previous chapter in detail,
in this chapter, we only interest in developing the parallel magnetostatic field solver
using the GWRM and SBS coupled with PAMR directly. Some benchmark problems
are presented for demonstrating the accuracy and applicability of the parallel
magnetostatic field solver. In the end of this chapter, the parallel performances of

these solvers are studied and their time breakdown is analyzed.
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3.1 Calculation of magnetostatic (MS) Field
For the magnetostatic field problem, the Maxwell’s equation is reduced to a
vector Poisson’s equation as shown as Eqs. (2-6) in the previous chapter. The

magnetic vector potential in Egs. (2-6) is expressed in terms of current density J

with the following definition,
J=VxM (3-1)

Where M is the magnetization vector of permanent magnet. Substituting Eqs. (3-1)

into Egs. (2-6), Eqs. (2-6) yields

ERVEy ~(VxM) (3-2)
y7,
In Cartesian coordinates, EQs. (3:2) is equivalentto three scalar Poisson equations:
lvax =—(VxM), (3-3a)
)7,
1 -
;vay =—(VxM), (3-3b)
lvaz =—(VxM), (3-3c)
y7,

In general, both M and u can be functions of position. In the following, the same
developing steps of GWMR are used for EQs. (3-3). After employing GWRM, we can
obtain the element equation similar to previous Poisson’s equation. For the

x-component element equation,

.(e) 6NA(8) .(e) aN'(e) A(e) aN_(e)
= )+(6Nl (B vz,
Ox oy Oy 0z 0z /

oM, (3-4a)

M- \N© dvdydz - ”N‘@) ©d4 i=1-4,j=1-4

or in matrix form,
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(e) (e) (e) (e)
Ky Ky oo K a £

In

K K e K lan | | B9
K9 K9 ... K9|a F©
Where
1 6N.(e) aN‘(e) aN‘(e) 6]\7‘(6) 6N.(e) aN‘(e)
ng) —_ i J + i J + i J dXd dZ
: jﬁ[( renAlers 6y )+ )dxdy

oM, (3-4b)

(&) _
F,

M.\ N©dxdyd: ” N7 9d4
A

Steps 1-4 and 6 of GWRM are not repeated here, and we only describe the detail in

step 5 for Egs. (3-3).

Step 5: Evaluate the interior load term and boundary flux term of Egs.(3-4).
The divergence theorem could be written as.follows,
IH(MV F)dv = ”uﬁ - ndQ —”IVu - Fdv (3-5)
with the identity
V-wF)=Vu-F+uV-F (3-6)
where u is an arbitrary scalar and F is an arbitrary vector. After employing

Egs. (3-5), the interior load integral becomes,

- aL)N © dxdydz
0y (3-7)
= [[ N (M x7i) . dQ2~ [[[ (M x VN() dxdydz
and the boundary flux term is
IIN(e) (E)dA *(e) A (3-8)

3u
The EQs. (3-4b) can be rewritten with EQs. (3-7) and EQs. (3-8), and the same
manners are handled in y- and z- components. The final forms of element equations of
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EQs. (3-3) are:

X-component:

(e) aN(@) (e) aN(e) (e) aN(e)
1 m AN’ L ON! S ) dvdvdzla,

o oy oz
= j N (M x i) dQ+ [[[ (M x VNI, dvdydz -7 i—: (3-9a)

i=1-4,j=1-4

y-component.

(e) aN(e) Fe) aN{e) (e) aN(e)
—[WN T N vy,

oy Oy 0z
©(Af w7 1 (e) = (e) A(e)
=—ij[ (Mxn)de+I”(MxVNi ), dxdydz 7 " (3-9b)

i=1-4,j=1-4

z-component:

(e) aN(e‘) aN@ aN(e) aN(e) aN(e)
e, P

dxdda
o ) lydz]

- j j NO(M x7i),dQ + j ”(M x VN9 _dxdydz — 7 % (3-9¢)

i=1-4,j=1-4

After the theoretical development, the boundary conditions are imposed to EQs. (3-9)
and ready be solved using either the precondition conjugated gradient method (PCG)
or the direct matrix package MUMPS. In parallel computing Eqs. (3-9), PCG is used
based on the SBS method, the same description is given in the previous chapter and it

will not be repeated for brevity.
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3.2 Coupling of PAMR with Parallel Magnetostatic Field Solver

In the previous chapter, PAMR is described and successfully coupled with the
parallel Poisson’s equation solver for electrostatic field problems. In the subsection,
the same idea is followed for coupling PAMR and current parallel vector Poisson’s
equation for magnetostatic field problems. Therefore, almost the same developing
procedures are given as those for electrostatic field solvers as follows.

The PAMR presented in the previous section can be easily coupled to the current
parallel magnetostatic field solvers since both utilize 3-D unstructured tetrahedral
mesh and MPI for data communication. One can readily wrap up the PAMR as a
library and insert it into the source code of any parallel numerical solver to be used.
However, some problems may ocecur ‘due to memeory conflicts between the inserted
library and the numerical solver itself that could reduce the problem size one can
handle in practice. As such, a simple coupling procedure, written in shell script (Fig.
3.1) that is standard on all Unix-like systems, can be prepared to link the PAMR and
the current parallel magnetostatic field solvers. In doing so, we can keep the source
codes intact and without alterations. Indeed, it is especially justified if only a steady
state of the physical problem is sought, in which normally only several times of mesh
refinement is enough to have a fairly satisfactory solution. Thus, the total I/O time,

which is in proportion to the number of couplings in switching between two codes,
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can be reduced to a minimum in practical applications. In addition, as shown in Fig.

3.1, after identifying those cells that require refinement before PAMR, the domain is

repartitioned based on the new mesh refinement requirements. For example, the

weight factors of the cells (vertex in graph theory) are set as eight for those cells

which are flagged to be refined; otherwise, they are set as unity. With this distribution

of weight factors as the input to ParMetis, an approximate (but rather good) load

balancing can be achieved in the PAMR module. Then the magnetostatic field solvers

read in the output refined mesh from the PAMR module and partition the new mesh

with equal weight factors for all.eells, in which the workload is balanced in the

magnetostatic field solvers.

The current parallel magnetostatic ™ ficld solvers along with PAMR are

implemented and tested on a PC-cluster system with the Linux OS at the National

Center for High-Performance Computing in Taiwan (64-node, dual processor and 8

GB RAM per node). The standard message-passing interface (MPI) is used for data

communication. It is thus expected that the current parallel code will be highly

portable among the memory-distributed parallel machines that are running with the

Linux (or its equivalent) operating system.
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3.3Validation and Parallel Performance of the Magnetostatic Field
Solver

Since the parallel computing of the vector Poisson’s equation solver is the same
with those techniques for Poisson’s equation solver presented in the previous chapter,
the only difference of computing procedures is that Poisson’s equation has to be
solved three times in order to obtain three different component of vector potential.
Therefore, we also use the Fig. 2.9 for representing the procedures of parallel vector
Poisson’s equation solver, and the details of Fig. 2.9 can be found in previous chapter.
Validation of the parallel magnetostatic field solver

A permanent magnet array made up-of eight segments is used to be the
benchmark problem for validating the parallel magnetostatic field solver. Fig. 3.2
shows a cross section of the permanent magnet array. There are the experimental data
and analytical solution available to this problem, e.g., [Leupold et. al., 1993],
[Leupold et. al., 2000], and [Halbach, 1980]. The experimental data shows that the
magnetic flux density in the center air gap of the permanent magnet array is about
80-90% of the ideal value of analytic prediction. The analytic solution for this system
is also given as follows:

B = Brlin(r,/1;) (3-10)

Where Bg is the remanence of the permanent magnet, and r, and r; are the outer and
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inner radii of the permanent magnet array, respectively.

Fig. 3.3shows the mesh distribution of the permanent magnet array made up of
eight segments using 0.63 million elements (~108,840 nodes). And in this simulation,
the remanence Br of the permanent magnet material is 1 Tesla, the relative
permeability is 1, the inner radius is 1 inch, and the outer radius is 2.74 inch. After
substituting these parameters to EqQs. (3-10), the calculated magnetic flux density in
the air gap is expected to be 1 Tesla. The Fig. 3.4 shows that the simulated magnitude
of the magnetic flux density of the permanent magnet array at the center of the air gap
is about 0.87 Tesla, which is agree with the previous experimental data. Fig. 3.5
shows the mesh distribution of-pérmanent magnet array made up of eight segments
using PAMR where the initial mesh is‘rather coarse (7,845 nodes), while the level-6
mesh is very fine (108,840 nodes) around the permanent magnets array. Table 4 lists
the number of nodes/elements and the corresponding maximal magnitudes of the
magnetic flux density of the permanent magnet array at the center of the air gap in the
simulation domain at different levels of mesh refinement with the ¢, is set to 0.08
based on the variation of vector potential is used. It also shows that better solution
obtained after using PAMR.

Parallel performance of the magnetostatic field solver

The previous validation simulation case is also employed to test the parallel
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performance of the current parallel magnetostatic field solver. Fig. 3.6 illustrates the
parallel speedup as a function of the number of processors up to 32. The
corresponding time breakdown of various components of the solver along with
speedup is similar with the time breakdown of parallel electrostatic solver since they
used the same parallel CG matrix solver. And, detailing the analysis on this time
breakdown structure is not repeated here. The runtime using a single processor is
about 259.86 seconds, while it is reduced to 10.82 seconds using 32 processors, which

results in ~24.01 of parallel speedup.

3.4 Some Remarks

Following the development steps in-previeus chapter, the parallel vector
Poisson’s equation solver is developed.and verified successfully using a typical
permanent magnet system. When our simulation results compare with the simulation
results from commercial software, it especially shows a better resolution in magnetic
field distribution since the parallel PAMR module is coupled into the parallel vector
Poisson’s equation solver. Parallel speedup performance shows 75% at 32 processors,

and a more robust precondition should also be implemented in the near future.
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Chapter 4
An Overview of the PIC-FEM Method Using an

Unstructured Mesh and Its Parallel Implementation

This chapter begins with the introduction to the overview of the conventional
Particle-In-Cell and Monte-Carlo method (PIC-MCC), which is a well-known kinetic
approach for plasma simulation. Since the conventional PIC-MCC is less flexible in
simulating the device with complicated geometric shape when using a structured
mesh. Therefore, the first main contribution of this chapter is to develop a PIC-MCC
code for especially using an unstructured tetrahedral mesh, named PIC-FEM code.
However, the PIC-FEM code” with 'a“large -number of particles does make the
computation become very expensive.: For sure, the second main contribution of this
chapter is to accelerate the code using the parallel computing technique. In parallel
computing of PIC-FEM method, the computational domain is first decomposed in a
number of sub-domains, which is equal to the number of processors via the
multi-level graph-partitioning library, METIS. Dynamic domain decomposition (DDD)
technique is employed for alleviating the load unbalance among sub-domains. Two
benchmark problems are presented for demonstrating the accuracy and applicability
of the parallel PIC-FEM code. In the end of this chapter, the parallel performance of

the PIC-FEM code using DDD is studied and its time breakdown is analyzed in detail.
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4.1 General Description of PIC-MCC Method

The PIC-MCC method is the particle method coupling with the Maxwell’s
equations. The original PIC method without MCC method was developed by plasma
physicists, and it mainly be used in simulating the charged particles motion under
electromagnetic field. This important theory greatly reduces the computational load in
considering that N° Coulomb interactions among N particles based on the charge
extrapolation and force interpolation. Since PIC does not consider particle collisions,
it could be represent as the collisionless Boltzmann equation, i,e., Vlasov’s equation
[Nanbu, 2000]. The more details®of PIC method can be found in Birdsall and
Landon’s book [Birdsall and- Langdon, 1991}, Hockey and Eastwood’s book
[Hockney and Eastwood, 1988],"and Birdsall’s review [Birdsall, 1991]. Until 1980s,
Monte-Carlo collisions method was included in PIC method for modeling the
self-sustained plasma discharge [Birdsall, 1991]. In simulating the plasma discharge
using PIC-MCC, the cell size should be a fraction of the Debye length in order to
resolve the plasma sheath. Moreover, in order to resolve the plasma oscillation, the

electron time-step must be one order smaller than 1/(plasma frequency).

4.2 The PIC-MCC Procedures

The conventional flowchart of the PIC-MCC scheme is shown as Fig. 4.1. It
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shows that after initialization, one time step consists of eight stages as follows:

1. Charge extrapolation to each grid points

2. Calculation of electromagnetic fields

3. Force interpolation to each particle

4. Calculation of motion of each particle

5. Calculation of Monte-Carlo collision of each particle

6. Indexing (or sorting) all the particles

7. Calculation particle reduction

8. Sampling the particles within cells to determine the macroscopic quantities

In order to significantly speedup the simulation, sub-cycling scheme [Brackbill and

Cohen, 1985] is used since ion move very slowlyin one time step due to it is heavier

than electron. In such scheme, after repeating the calculation of stages 1-8, 10 times

for At,, we calculate the stages once for At,, thus advancing the system time by A¢,.

Since step 2 was introduced in chapter 2, the other steps will be given in detail as

follows:
4.2.1 Initialization

Before beginning stage 1-8, the data of geometry and simulation conditions

should be read in the code. The number of simulated particles of each cell is

calculated according to the particle number density and current cell volume. Since

plasma is electrically neutral, we have the same initial number of simulated electrons
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and ions. The particle velocities are assigned to each particle based on
Maxwell-Boltzmann distribution according to the particle velocities and temperature.
The positions for each simulated electron are randomly allocated within the cells and
the same positions are assigned to the simulated ions.
4.2.2 Force Interpolation and Charge Extrapolation

The same weighting function should be used for force interpolation and charge
extrapolation in order to eliminate the self-force and conserves momentum [Birdsall
and Langdon, 1991]. For an unstructured mesh, the derived finite element volume
coordinate in previous chapter [Santi‘ef. al., 2003] is used to as the interpolation and
extrapolation weighting function.! The force interpolation and charge extrapolation
using volume coordinate are written in"EqS. (4-1).and (4-2), respectively.

p; = Zk‘,qui (7) (4-1)

Fy = . Y IEN, 7))+ g9, x Y [BN, (7,)] (4-2)
where the subscript i represents mesh node properties and subscript k represents

particle properties.
4.2.3 Equations of Motion

The leap-frog scheme [Birdsall and Langdon, 1991] is used for solving the
equation of motion (see Fig. 4.2), in which scheme is second-order accuracy in time
through use of a velocity that is staggered at half time steps relative to the particle

position. In addition, this scheme requires minimal storage information of particle
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velocity and position since only the updated particle velocity and position are stored.
EQs.(4-3) and Egs. (4-4) are the particle position and velocity derivatives in finite

difference form with leap-frog scheme, respectively:

—n+l/2 —=n-1/2
mi— Y F" (4-3)

—:‘—;n+1/2 (4_4)
Where 7 is the time step counter. The force term in the RHS of EQs. (4-3) can also be

formulated using leap-frog scheme, it yields

‘—}>n+1/2 _‘—/;n—l/2 ‘—}’H+1/2 +‘—/;n—1/2

q  n D
=—(E"+—xB 4-5
~ o 5 ) (4-5)
Then EQs. (4-5) is ready to be solved using Boris’s method [Birdsall and Langdon,
1991]. In this method, the magnetic and electric fields are separated completely after

introducing two new variables into EQn. (4-5). They are:

5 _grn  9E A (4-6)
m 2
‘—;n+1/2 =‘—}>++££ (4_7)
m 2
After substituting EQs. (4-6) and Egs. (4-7) into Eqs. (4-5), EQs. (4-5) becomes
v —vT q -+ | == nn
==—(W"+v )xB 4-8
~ m( ) (4-8)

Therefore, from EQs. (4-6) to (4-8), the main ideas of Boris’s method can be
explained that v~ is obtained after adding the half of the electric impulse to the
initial velocity via EQs. (4-6). Then v" is obtained after rotating v~ with magnetic

field via Eqgs. (4-7). Finally, the updated velocity ¥""/? can be obtained after adding
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the half of the electric impulse to v* via EQs. (4-8). The detail of this method is also

can be found in Birdsall’s book [Birdsall and Langdon, 1991].

4.2.3.1 Particle Ray Tracing

There are two different methods for particle ray tracing, which are cell-by-cell and

coordinate particle tracking for an unstructured mesh, respectively. For an

unstructured mesh, the cell-by-cell particle tracking takes the advantage of cell

connectivity provided by the unstructured mesh data [Tseng, 2005]. The first step of

the particle tracing is to determine whether the particle will across if the particle will

stay in or leave the current cell. If the particle. leaves, then the second step is to

determine the intersection poison on the intersecting face. Further journey of the

particle depends on the face condition. If it is the normal face between cells, then it

will continue its movement until the time step ends. If the intersection face is an I/O

or specified boundary, the particle will be removed. If not, then process the interaction

according to the wall boundary conditions. The more details of this particle tracking

can be found elsewhere [Tseng, 2005].

4.2.4 Monte Carlo Collision Algorithm (MCC)

In order to simulate a self-sustained and self-consistent plasma discharge, the

dominant reactions between species should be considered properly. Since we use

argon gas for plasma discharge, the simulation species are electron (e), ion ( Ar" ), and
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ground state atom (A4r). In general, there are three different collision algorithms for
these plasma species (see Fig. 4.3) [Nanbu, 2000], which are short-range collision
between unlike particles, short-range collision between like particles, and Coulomb
collisions. For the low-temperature plasma, the plasma density is usually less
than10""m ™, the Coulomb collisions are all negligible. Moreover, argon gas is
assumed in equilibrium and at rest, the short-range collision between like particles are
also negligible in current work. Therefore, totally five reactions in the argon Monte
Carlo collision which are listed as follows,

(1) e+ A4Ar > e+ Ar (Elastic Scattering)

(2Q) e+ Ar > e+ Ar’ (Excitation)

(3) e+ Ar > e+ Ar” +e "+ (lonization)

(4) Ar" + Ar —> Ar+ Ar® (Charge Exchange)

(5) Ar* + Ar > Ar” + Ar  (Elastic Scattering)
In general, there are two methods for treating e-Ar and Ar* -Ar collisions, which are
null-collision method and Nanbu’s method. Since only one random number used in
Nanbu’s method [Vahedi and Surendra, 1995], it makes collision computation
becomes more efficient than using the typical null-collision method, and Nanbu’s
method is very simple and straightforward in treating such collisions. For treating the

e-Ar collision using this method, the total collisional probability ( P, ) is written as
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1=PT+<1—PT)=ki[Pk+(§—m] (-9)
Where P, is probability of the ith collisional event,

P, =N,vo, (&), (4-10)
Then one can sample a collisional event k randomly

k=1+UK (4-11)
and evaluate P, at the energy ¢ of the electron. The kth collisional event occurs
when U > (k/K)— P,, otherwise the collisional event not occurs (as shown in Fig.
4.4). This method is also used for treating the Ar"-Ar collisions. In the following,
each collisional event in the electron-molecule and ion-molecule collision is described
briefly. The more detailed theory can be found in Ref:[Vahedi and Surendra, 1995].
4.2.4.1 Electron-Molecule Collision

The electron-molecule collision cross sections are the same as the ones used by
Nanbu [Nanbu, 2000] as shown in Fig. 4.5. The only difference is we averaged 26
elastic collisions into one for fitting cross section data easily. =~ When a  elastic
collision occurs, the incident electron scatters through an angle y which is computed

follows the formulation in Ref. [Vahedi and Surendra, 1995]. It is

24e-2(1+&)"
&

cos y

(4-12)
where R is the random number and ¢ is the energy of the incident electron. The EQs.

(4-16) also holds for determining electron scattering angle for all types of
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electron-neutral collisions. Since the azimuthal scattering angle ¢, is uniformly
distributed on the interval [0, 2 7 ], and is determined by

p=2mR 4-13)
where R is the random number. Once )y and ¢ are obtained, the direction of the

scattered velocity (as shown in Fig. 4.6) is determined by [Vahedi and Surendra,

1995]

- 7sin;(sin¢+‘7 sin y cos ¢

Vecart = Vine COS X + Vine X1 sin® inc x (l x vinc) (4-14)

sin @

Where 0 is given by cos@ =¥, -i, v, and v, are unit vector parallel to the

incident and scattered velocities, respectively. Then the scattered velocity components

can be determined by taking the projection-of v, .- on the coordinates axes. In an

t
excitation collision, the incident electron loses the excitation threshold energy of
11.55ev and is scattered through an angle y determined by Egs. (4-12).

In an ionizing event, the incident electron strips an electron off the neutral, and

the neutral becomes an ion, continuing on its trajectory virtually undistributed. The

energy balance equation with this assumption, it yields

gscal + gej = ginc - gi(m (4-15)
E =&y (4-16)
Where ¢, &, and &, are energies of the scattered, ejected and incident electrons,

respectively. ¢, and &, are the energies of the created ion and the target neutral

inc
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atom, and ¢,, 1s the ionization threshold energy. The energy of the incident electron

is given by

g, ~ R(@) (4-17)

Then energy of the scattered electron is obtained form EQs. (4-15). After the energy
assignment, each of the scattered and ejected electrons scatters through angles y and
¢ determined by EgQs. (4-12) and (4-13), respectively. From the EQs. (4-16), the
velocity of the created ion is calculated from 3V Maxwellian distribution at the
molecule temperature.
4.2.4.2 lon-Molecule Collision

Fig. 4.7 shows the ion-neutral cross sections’ we used in the model. In a simple
charge exchange collision, an eleetronis assumed to hop from the neutral onto the ion.
Therefore, the velocity of the new ion is assigned with the velocity of the incident
neutral and the new neutral takes the velocity of incident ion. The hard-sphere
collisions assumption is used in treating the ion-neutral elastic scattering collision.
And the energy of the scattered ions are determined by [Vahedi and Surendra, 1995]

=(l-a,)e (4-18)

inc

Where ¢, and ¢, are the energies of the incident and scattered ions, respectively.

scat

The energy loss factor, «,, is given by

a, =sin’ y (4-19)
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where x is the scattering angle in the laboratory frame which is determined by
cos y = JI-R (4-20)
Where R is the random number. The azimuthal scattering angle ¢ is determined
with EQs. (4-13).
4.2.5 Indexing
The location of the particle after movement with respect to the cell is important
information for particle reduction. The relations between particles and cells are
reordered according to the order of the number of particles and cells using a simple
algorithm [Tseng, 2005]. Before the particle reduction, the removed particle will be
chosen by a random method in the current cell: And the number of the removed
particle can be easy determined decording to this numbering system.
4.2.6 Particle Reduction
For simulating plasma discharge, the number of simulated particles usually
increases rapidly due to ionization, which makes computational load become very
heavy. In this case, speedup, particle reduction technique should be employed with
switching the particle weighting factor in order to speed up the code, e.g., [Nanbu,
2000], [Shon et. al., 2001]. The particle reduction technique we used is the
improvement of Nanbu’s particle reduction technique [Nanbu, 2000]. The main idea

of this technique is given as follows.
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When the current number of ion (N, (¢)) is equal to 1.2 times the initial number
of ion (N,(0)), the particle weighting function is increased from initial weighting
function (W,) to 1.2W, by removing excess sampled particles cell by cell. The
numbers of sampled particles in a cell are chosen in proportion to their number
density in each cell. This procedure is repeated whenever N,(¢#) exceeds N,(0).
However, it is clear that this particle reduction has no effect on charge density
distribution and the number of real electron is also unchanged before and after
switching.

4.2.7 Data sampling

A steady state of the plasma.system is reached by-monitoring the total numbers of
particle in the computational domain.“Once a steady state is reached; we can obtain
the data with small statistical fluctuations by time-averaging a set of temporal data
sampled for equal time interval. The data for the electron density, ion density, charge
density, electric potential, and electric field, are sampled at the grid points. And, the
electron temperature, ion temperature, and electron energy distribution function are

sampled in each cell.

4.3 Parallel computing of PIC-FEM method

Since the computational domain has been partitioned using multi-level graph

partitioning tool, the PIC-MCC is then ready for paralleling under single-instruction
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multiple-data (SIMD) paradigm. Under SIMD paradigm, the PIC-MCCC code is
executed in serial on its own sub-domain. Communications are required when particle
meets the inter-processor boundary (/PB) and also in field solver. High parallel
performance can only be achieved if communication is minimized and the
computational load is evenly distributed among processors. Therefore, dynamic load
balancing (DDD) technique should be used to re-partition the domain using the
weights base on the number of particle in each domain when load becomes unbalance.
The reason for selecting the number of particle as the weight for DDD is that the

particle computation is the most expensive component of PIC-MCC.

4.3.1 The Parallel PIC-FEM Method

Fig. 4.8 and 4.9 shows a simplified flowchart of the parallel PIC-FEM method

proposed in the current study. A converter should be designed for preprocessing the

mesh (grid) data obtained from the domain-decomposition and for proving a processor

neighbor-identifying array. The main function of this converter is to reorder the fully

unstructured mesh data into the globally sequential but locally unstructured mesh data

for obtaining he relationship between global and local cell data by a simple arithmetic

operation due to this special cell-numbering design [Tseng, 2005]. In addition, the

node numbers of each sub-domain are must re-ordered follow the requirement for

FEM SBS method. Except for parallel computing of FEM, most of the particle

computation follows the experience from the previous parallel DSMC method [Tseng,

2005].
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Again referring to Fig. 4.8, the master processor first reads in the preprocessed

mesh data and then distributes it to all other processors. Once all preprocessor has the

information of mesh data, the PIC-MCC code is executed in serial on it own processor.

After force interpolation, particle starts to move and be tracked using cell-by-cell.

When particle meets the IPB during its journey within a simulation time step, the

particle related data is then stored into a buffer array and are numbered sequentially

for considering communication efficiency [Tseng, 2005]. After all the particles in a

processor are moved, a local communication among processor is occurred for

communicating the buffer array. Received particle data are then unpacked and each

particle continues to finish its journey for thetfemaining time step.

After all particles finishing its free flight on €ach processor, the program carries out

the Monte-Carlo collisions, indexing the particles, extrapolating the charges and

solving the field equations in parallel. The particles in each cell are then sampled at

the appropriate time.
4.3.2 Dynamic Domain Decomposition (DDD)

For reaching the high parallel performance during simulation, the computational

load should be balanced properly when the load becomes unbalance since particle

moves very frequency through sub-domains. This dynamic load balance is achieved

by employed the dynamic domain decomposition technique (DDD). The DDD

technique we used is an improvement of previous method in DSMC [Tseng, 2005].
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The flowchart of parallel PIC-FEM method with DDD technique is shown as Fig.

4.10. It shows that there are three main processes in DDD, which are repartition the

domain, cell/particle migration, and node re-ordering. In the following, these main

processes of this technique will be given and the details also can be found elsewhere

[Tseng, 2005].

The main idea of the dynamic domain decomposition technique is to repartition

the computational domain using the multi-level graph-partitioning library ParMetis

[Karypis et. al., 1998]. The library ParMetis is the parallel version of library METIS

which are also developed by University of'.Minnesota. In parallel PIC-FEM

simulation, the workload of each processot is ‘approximately proportional to the

number of particles in the corresponding sub-domain. Thus, the weight of each vertex

for graph-partitioning library is assigned using number of particle in the

corresponding cell. After repartitioning the domain based on this weight, a fairly

particle distribution among processors is obtained. Once the domain has been

repartitioned, the relationship for cell and sub-domain will be updated via cell and

particle migration technique [Tseng, 2005]. The main idea of this technique is that the

to-be-transferred particle related and cell related data on each processor are packed

into the corresponding buffer array and migrate these arrays into a whole array. Then

local communication is occurs for this to-be-transferred array between sub-domains.

72



For the sub-domain in this communication, the array is unpacked and then updates the

particle and cell related relationship. Finally, node re-ordering on internal and

interfacial nodes is carried out (as shown in Fig. 4.11) for the requirement of parallel

FEM using SBS method.

4.4 Validation of the Parallel PIC-FEM Method

For validating the PIC-FEM code, two benchmark problems are presented, which

are the quasi one-dimensional DC and RF gas discharge plasma. Gas discharge

plasmas are benchmarked because they find. well-established use in practical

industrial applications, such as-sutface modification,-lasers, lighting, etc. In addition,

one-dimensional DC discharge “is: a prototype of-all discharge simulation. Before

simulating these plasma systems, the elementary gas discharge plasma physics is

introduced. Then, the simulation conditions are described and the results are

compared with experimental data and previous simulation wherever available.

4.4.1 Quasi One-dimensional DC Gas Discharge Plasma

A schematic picture of the elementary glow discharge processes is presented in

Fig. 4.12. When a constant potential difference is applied between the cathode and

anode, the ions are accelerated by the electric field in front of the cathode sheath and

collide with the cathode electrode. Then the secondary electrons are emitted from the
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cathode electrode, which are accelerated toward bulk region by electric field in front

of the cathode sheath and collide with neutral species. This leads to many important

collisions for sustaining plasma, such as ionization, excitation, elastic scattering, etc.

It is clear that the secondary electrons emission play an essential role for sustaining

the DC gas discharge plasma. The main structure of the DC glow discharge plasma is

shown in Fig. 4.13.1t shows that there are many regions in DC glow discharge plasma,

which are cathode dark space (CDS), negative glow (NG), Faraday dark space (FDS),

the positive column (PC), and anode zone (AZ). However, when the distance

between cathode and anode is shortj there are only CDS, NG, and AZ formed in DC

glow discharge plasma [Bogaerts ét. al., 2002]. Here,-the mechanism of each region is

not described in detail for the brevity purposes.

Simulation Conditions

Consider the discharge sustained between two parallel electrodes by 40mm under
an operation argon pressure of 42mtorr. The cathode and anode potentials are set
to —1000Volts and OVolts, respectively. The computational domain is divided with the
cell size 0.2mm (=~ A,) using an unstructured mesh. Initially, the spatial distributions
of the ion and electron number densities are assumed uniform to each other. The
electron timestep is 0.5x107'’s and the number of sub-cycling is 10. The particle

velocities are sampled from the Maxwellian distribution at a corresponding
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temperature, e.g., T, =232K for ions and K7, =0.5elV for electrons, where K is

the Boltzmann constant. The secondary electron emission coefficient is 0.3. The initial

velocity of the emitted electrons is assumed to be zero. The ions and electrons

incident on the solid surfaces are always neutralized.

Simulation Results

The potential and electric field are shown in Fig. 4.14(a) and Fig. 4.14(b),
respectively. The plasma potential is nearly constant and slightly positive (= 107")
and hence, the electric field is very small in the bulk region. The ion and electron
number densities are shown in Fig..4.15. The net'charge density is shown in Fig. 4.16.
One can easily recognize the cathode and anode sheaths. The ion and electron kinetic
energies are shown in Fig. 4.17.Tons atre rapidly accelerated in the sheath, reaching a
velocity of about 10*m/s before impinging on the cathode. The ion energy
distribution function (IEDF) onto the cathode surface has been sampled in the course
of simulation as shown in Fig. 4.18. IEDF is falling off exponentially with energy,
which demonstrates a good match with the theoretical predictions, e.g., [Serikov. and
Nanbu, 1997], and [Abril ez. al., 1983].

4.4.2 Quasi One-dimensional RF Gas Discharge Plasma
When one or both of the electrodes are non-conductive materials, the electrodes

should be applied with an alternating voltage. The frequency of the alternating
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voltages is typically in the radio-frequency (RF) range with a most common value of

13.56 MHz. With this applied alternating voltage, each electrode will act alternately as

the cathode and anode in order to eliminate the charge accumulation on insulator

electrodes. For RF gas discharge plasma, the electrons will follow the instantaneous

electric fields, however, the ions can only follow time-averaged electric fields

produced by the applied RF frequency. This totally different behavior can be easily

explained by the different masses of ions and electrons.

Simulation Conditions

Consider the discharge sustained between two parallel electrodes by 20mm under

an operation argon pressure of 50mforr. The cathode potential is in the following,
¢ =V, cos2nft (4.21)
Where f is the frequency, ¥V, =500Volts is the amplitude. The conventional
frequency is 13.56MHz. The computational domain is divided with the cell size
0.1mm (= 0.54, ) using an unstructured mesh. Initially, the spatial distributions of the
ion and electron number densities are assumed uniform to each other. The electron
timestep is 3.695x107''s and the number of sub-cycling is 10. The particle
velocities are sampled from the Maxwellian distribution at a corresponding

temperature, e.g., 7, =232K for ions and K7, =0.5el/ for electrons, where K is

the Boltzmann constant. The secondary electron emission coefficient is 0. The ions
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and electrons incident on the solid surfaces are always neutralized.

Simulation Results

The potential are shown in Fig. 4.19. The plasma potential is nearly constant and
positive (~ 0.5V, ) and hence, the electric field is very small in the bulk region. The
ion and electron number densities are shown in Fig. 4.20. One can easily recognize
the cathode and anode sheaths. The ion and electron kinetic energies are shown in Fig.
4.21. The electron energy probability function (EEPF) of two different pressures in
the bulk region has been sampled in the course of simulation as shown in Fig. 4.22. In
Fig. 4.22(a) (50 mtorr), EEPF shows a weakly bi-Maxwellian distribution (T =1.58
eV, Ty=2.58 eV), while Fig- 4.22(b) (20° mtorr) shows strong bi-Maxwellian
distribution (T.=0.833 eV, Ty=3.264 eV’), which is-comparable with previous studies
under similar simulation conditions, e.g., [Godyak et. al., 1992], [Mahony et. al.,
1999], [Raizer et. al., 1995], [Turner et. al., 1993], and [Vahedi et. al., 1993]. At low
pressures the bi-Maxwellian EEPF revealing the stochastic electron heating
mechanism, leading to the formation of cold bulk and oscillating hot tail electrons,

which demonstrates a good match with the experimental data.
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4.5 Parallel Performance of the Parallel PIC-FEM Method Using
Dynamic Domain Decomposition

In order to study the parallel performance of the current parallel PIC-FEM code
using DDD, the three-dimensional RF gas discharge plasma with different numbers of
particle is used as the test problem. This parallel performance is studied using 32
processors on the HP IA-64 clusters at National Center for High-performance
Computing (NCHC), which is a memory-distributed machine. In the following, the
simulation conditions, dynamic domain decomposition, parallel performance, and
time breakdown analysis of the parallel PIC-FEM code with DDD is presented in

turn.

Simulation Conditions

Fig. 4.23 illustrates the sketch of the 3D RF discharge plasma. Considering the
discharge sustained between two parallel circular electrodes in a grounded cylindrical
chamber by 20mm under an operation argon pressure of 50mtorr. EQs. (4.21) is used
for the cathode potential with 7, =500V and f =13.56MHz . The computational
domain is divided using an unstructured mesh (~165,000 cells). Initially, the spatial
distributions of the ion and electron number densities are assumed uniform to each
other. The electron timestep is 3.695x107"'s and the number of sub-cycling is 10.
The particle velocities are sampled from the Maxwellian distribution at a

corresponding temperature, e.g., 7, = 232K for ions and K7, =0.5elV for electrons,
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where k is the Boltzmann constant. The secondary electron emission coefficient is 0.

The ions and electrons incident on the solid surfaces are always neutralized. In

addition, two different numbers of particles are considered for simulation, which are

10 particles per cell and 40 particles per cell.

Parallel Performance

Results of parallel speedup and efficiency of the 3D RF gas discharge plasma

computation, with different numbers of particle, as a function of the number of

processors are presented in Fig. 4.24. In Fig. 4.24, there are five curves with circle,

square, diamond and triangle symbols with respect to static domain decomposition

(SDD), dynamically domain decomposition  (DDD) at intervals of 1500At with

different numbers of particles. And the'linear dash line with square symbol represents

the ideal case. As expected, the parallel performance of those using dynamic domain

decomposition is much better than those using static dynamic domain decomposition.

Several trends for different numbers of particle are described in detail as follows.

10 Particles per Cell

Linear speedup occurs clearly for number of processors less than or equal to 10

is shown in Fig. 4.24. However, the efficiency decreases with increasing number of

processors (up to 32) as expected, due to heavy FEM solver communication among

processors and particle load unbalance, if only the static domain decomposition is
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applied. As the number of processors increases over 10, FEM begin to play a more

important role than the particle load unbalance. Thus, the parallel efficiency decreases

monotonously with increasing number of processors (up to 32) even if dynamic

domain decomposition is used. However, for the this problem the parallel efficiency

using dynamic domain decomposition improves appreciably in the range of 5-10%, as

compared with static domain decomposition.

40 Particles per Cell

Similarly, linear speedup exists for this problem up to 10 processors, if static

domain decomposition is activated.(see Fig. 4.24). However, the quasi-linear speedup

(up to 28 processors) is seen if the dynamic-domain decomposition is deactivated,

which demonstrates the effectiveness of .‘implementing dynamic domain

decomposition in particle load unbalance. However, as the number of processors is

over 28, this quasi-linear speedup decreases due to increasing FEM solver

communication among processors. For this problem, parallel performance using

dynamic domain decomposition is generally improve 10-30% parallel efficiency than

that using static domain decomposition as the number of processors is less than or

equal to 32. Note that approximately 85% of parallel efficiency can be reached at

processor numbers of 64 for this problem.

Typical evolutions of dynamic domain decomposition using graph-partitioning

80



technique are shown in Fig. 4.25. METIS used to form the initial partition by

assigning the unitary weight on each vertex, and ParMetis is used to repartition at

constant time interval. It is clear that region covered by each sub-domain (processor)

changes as the simulation proceeds due to repartitioning among processors when the

initial size of each domain is approximately the same. There exists a smallest

sub-domain in the middle of the camber due to the presence of highest density in this

region (see Fig. 4.25). In addition, the size of the sub-domains near the electrodes is

generally larger as compared with others due to the rarefied conditions caused by the

sheath potential. It clearly demonstrates that the current implementation of dynamic

domain decomposition is very effective in dealing with such plasma system.

Time Breakdown Analysis

Fig. 4.26 illustrates the typical fraction of time spending in PIC-FEM

computation and dynamic domain decomposition of 32 processors. It can be seen that,

for the both problem the cost of repartition is very small and can be neglected by

comparing with “useful” PIC-FEM. For problem of 10 particles per cell, the average

fraction of time spending in FEM solver is larger than the fraction time for the particle

movement. This explains the rapid decrease of parallel efficiency at this condition

even if using dynamic domain decomposition for load balance (See Fig. 4.24).

Fraction time for parallel communication (is almost proportional to FEM solver)
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among processors is large in PIC-FEM, which causes the parallel efficiency increase

dramatically with the number of processors.

On the contrast, for the problem of 40 particles per cell, the fraction of time for

particle movement is larger then the fraction of time for FEM solver. For this problem,

parallel efficiency using dynamic domain decomposition could be generally improved

10-30% than that using static domain decomposition as the number of processors is

less than or equal to 32. This shows the current parallel PIC-FEM method may be

scalable at least for the large numbers of particles.

4.6 Some Remarks

In this chapter, the proposéd parallel 3D PIC-FEM code using an unstructured

mesh with DDD mainly follows the major steps of conventional PIC-MCC code in

order to keep first principal and self-consistent approach. This code has successfully

been verified in simulating quasi-1D DC and RF gas discharge plasma since the

results agree with the previous studies very well. Parallel speedup of PIC-FEM shows

that better speedup is performed with larger number of particles in both SDD and

DDD cases. And, when the number of particles is fixed, DDD performed better

speedup than SDD. The reasons were clearly explained from the detailed time

breakdown analysis.
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Chapter 5

Applications to Realistic Problems

In this chapter, the proposed parallel 3D PIC-FEM code is used to simulate three
different realistic problems. They are: 3D field emission display (FED), 3D DC/RF
gas discharge plasma, and 3D DC/RF magnetron plasma. The backgrounds of these
studying cases can be found in the chapter 1 of this thesis, here, we only interest in the
simulation work using PIC-FEM code. In simulating FED, Monte-Carlo collision
module does not take into account since the gas pressure is very low. When the
space-charge effect is ignored, only parallel Poisson’s equation solver is used to solve
the electrostatic field once, the particles are then moved and collected when on the
anode surface. Two studying cases of FED simulation without considering
space-charge effect are presented. However, whenever there is a high charge density
distribution in FED cell, space-charge effect has to be considered properly, and a
studying case is simulated and compared with the experimental data. In simulating 3D
DC and RF gas discharge, the simulation conditions is similar with those in previous
1D simulation work, the main different is the computational domain is pure 3D,
which is close to the geometry of practical plasma chamber. From the results, one can

clearly see the important 3D geometry effect on spatial distribution of plasma
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macroparameter. In simulating 3D DC and RF magnetron plasma, two concentric
cylindrical magnets behind the cathode, which is used to confine electrons for
providing higher ionization rate. Therefore, before plasma simulation, this magnetic
field induced by the permanent magnets has to be solved in advance using vector
Poisson’s equation solver. Once the magnetic field is obtained, and then the following
simulation work is similar with those in 3D DC/RF gas discharge. Different cases
with different magnetization (M) and different secondary electron emission

coefficient (7 ) on the spatial distribution of plasma macroparameter are studied.

5.1 Simulation on Field Emission Display (FED)

In this section, FED is simulated using the PIC method without considering space
charge-effect and with considering space-charge effect in turn. Thus a completed
parallel Poisson’s equation solver with parallel adaptive mesh refinement is used to
compute the electric field distribution of a CNT-based field emitter without
considering space-charge effect as the first simulation case.

The generally accepted Fowler-Nordheim theory [Fowler and Nordheim, 1928]
for a clean metal surface relates the field emission’s current density, J, to the electric
field at the tip surface of the emitter, £, in volts/nm and the work function of the

emitter, ¢, in electron volts (eV) by the equation,
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AE2 3/2
J=— exp[— B v(y)} Ampere/cm?, (5-1)
() E
where
A=1.5414x10"°, (5-2)
B =6.8309%10", (5-3)
y=3.79x10"*E"/¢. (5-4)

and y is the image charge lowering the contribution to the work function. The
functions #(y) and v(y) are approximated by #*(y)=1.1, v(y)=0.95-y".
5.1.1. FED Simulation Without Space-Charge Effect

The Electron trajectory from the emitter surface to the anode surface is traced on
the unstructured mesh based on the'computed eleetric field distribution from the
Poisson’s equation solver, by using ‘the eell-by-cell particle tracking technique. The
current density is then computed as the time average of the accumulated charges due
to electron flow reaching the anode surface. In the following, two different cases are
studied. The first studying case is to predict the FED emission current and investigate
the spatial distribution of electron trajectory under different applied voltages. The
second studying case is to add the external uniform magnetic field into FED to
demonstrate the focus-ability and FED emission current are also strongly influenced

by the magnetic field.
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Case 1

Fig. 5.1 depicts the simulation domain for a typical CNT triode-type field emitter

within a periodic cell. Only % of the full emitter is used due to the intrinsic symmetry

with Neumann boundary conditions applied at all symmetric planes. Important

geometrical conditions (also summarized in part in table 5) include a tip radius of 10

nm, an emitter height of 600 and 400 nm, a distance of 0.5 um between the gate and

the cathode, a gate radius of 0.5um above the emitter, a distance of 50 um between

the anode and the cathode, a thickness of the gate of 0.2 um, and the half width of

each cell measuring 25 um. The applied voltage of the gate ranges from 110 to 190

volts, while the cathode and .anode jare groundéd and applied with 400 volts,

respectively. The refined final number of- nodes used for the simulation is

approximately 90,000. The typical results of the predicted potential distribution along

with electric field distribution (gate voltage=150 volts, height= 600 nm) are shown in

Fig. 5.2a and Fig. 5.2b, respectively. The maximal value of the electric field can reach

up to ~11.47 V/nm at the emitter tip when the gate voltage is 150 volts.

The predicted current and voltage data with an emitter height of 600 nm are

presented in Fowler-Nordheim format in Fig. 5.3, with an anode voltage of 400 volts.

It is clear that the computed I-V data follow the Fowler-Nordheim law very well as

the gate voltage varies from 110 to 160 volts. The fitted field enhancement factor
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(p=E %) is 26.1, where V is the applied cathode voltage, and d is the vacuum gap in
the field emission diode configuration. The corresponding electron trajectories are
illustrated in Fig. 5.4 at two different gate voltages (110 and 160 volts) with a height
of 600 nm. The results show that the spreading angle of electrons from the tip
increases with the increasing gate voltage. This is attributed to the fact that the area of
the tip surface which has a larger local electric field increases as the applied voltage
increases, which results in the greater emission of electrons from the side of the
emitter near the tip. As will be shown later, adding a focusing gate can help to
effectively reduce the spreading angle:

The effects of CNT height and gate voltage to- the emission current under an
applied voltage of 400 volts are"presented in Fig. 5.5, with the CNT measuring 400
and 600 nm, respectively. The results show that the turn-on voltage increases with the
decreasing height of the CNT emitter. Also, the emission current increases
dramatically with the given CNT height. This is reasonable since the larger the height
of the CNT, the larger the local electric field which results at the tip surface (shorter
anode-cathode distance with the same voltage difference), which in turn induces
greater emission of electrons.

Fig. 5.6 shows schematically the same field emitter as shown in Fig. 5.1 with an

additional focusing gate in-between the gate electrode and anode. Most geometrical
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conditions (also summarized in part in table 6) are the same as those in Fig. 5.1,

except for the distance between the focusing electrode and the gate electrode

measuring 0.5 um, the thickness of the focusing electrode measuring 0.2 um, and the

radius of the hole in the center of the focusing electrode which is 1.5 um. Similar to

that in the previous case without the focusing gate, only %4 of a periodic cell is used

for the simulation. Fig. 5.7b to Fig.5.7d present a comparison of the focusing effects

of electron trajectories using different focusing electrode voltages (5, 0, =5 volts).

Likewise, data involving the absence of focusing electrode are presented for the

purpose of comparison (Fig. 5.7a).4The results show that the addition of a focusing

electrode above the gate electrode can effectively reduce the spreading angle of the

electron trajectories, which can ‘possibly increase the resolution and the intensity at

the anode. Among the cases simulated, focusing the electrode with 5 volts represents

the best choice in focusing the electron flows at the anode.

Case II

Another simulation case for parallel Poisson’s equation solver is the magnetic

focusing structure consists of a solenoid (or a permanent magnet) outside of the FE

device, as shown in Fig. 5.8, which is used to induce the tunable magnetic flux

density (B,), which is assumed uniformly in space. A 1/4 simulation domain of a

single gated cathode structure is shown in Fig. 5.9, while a typical final adaptive

88



refined mesh (91930 nodes) is shown in Fig. 5.10. Important geometrical conditions

include a tip radius of 10 nm, emitter height of 600 nm, distance of 0.5 um between

the gate and the cathode, gate radius of 0.5um above the emitter, distance of 900 pm

between the anode and the cathode, thickness of the gate of 0.2 um, and the half

width of each cell measuring 300 um. The applied voltage of the gate ranges from 50

to 120 volts, while the cathode and anode are grounded and applied with 1,000 volts,

respectively.

Without the externally applied magnetic focusing field, the simulated anode

current versus gate voltage (I-V).scurve is shown in Fig. 5.11, which displays a

turn-on voltage of approximate 95V. Note the turn-on voltage is defined as the gate

voltage at which the current to anede is 1 WA. The anode current plotted in

Fowler-Nordheim coordinate (FN plot) is also shown as an inset to Fig. 5.11 .The

linearity of FN plot clearly shows that the computed I-V data follow the

Fowler-Nordheim model very well. The corresponding electron snapshots and

trajectories with the gate voltage of 120 V are illustrated in Fig. 12 (a), which will be

explained shortly.

Furthermore, we simulate the electron trajectories considering the presence of the

externally applied downward magnetic field in the range of 0-1 Tesla to study

influence of magnetic field to the electron focusing. In Fig. 12 (a)~(d) several 3-D
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electron snapshots and trajectories are presented at the gate voltage of 120V, the

anode voltage of 1kV, and the different magnetic flux density of 0T, -0.2 T, -0.5T, -1T,

respectively. Based on the simulated electron trajectories, the maximum diameter of

beam spot on the anode plane can be estimated. The dependence of electron beam

diameter on the magnetic flux density is shown in Fig. 5.13, which demonstrates an

Airy-function like structure. It is clear that the electron beam diameter rapidly

decreases from 500um down to less than 100um as the magnetic flux density

increases from zero to ~0.3T. At B, =-0.35 T the beam spot size is estimated as 52um,

which is a minimum in the present simulation. conditions. The over focusing of

electron beam, as shown in Fig.75.12(C), is observed in some high magnetic flux

density region and the oscillation amplitude in eleetron beam diameter diminishes as

the magnetic field becomes very large. At very large value of magnetic field the

electron beam size eventually converges to ~70um. The total emission current and

anode current with magnetic focusing field shown in table 6 are the same as the

results without magnetic field. From the simulation, we can find that this magnetic

focusing design can optimally suppress the electron beam dispersion under a

well-controlled magnetic field and the emission current to anode will not decrease by

using this magnetic focusing method.

The above computational examples only serve to demonstrate the capability of

90



the current parallel Poisson’s equation solver using FEM with parallel adaptive mesh

refinement in predicting field emission properties with complicated geometries.

5.1.3. FED Simulation With Space-Charge Effect

In this subsection, PIC method is used for considering the space-charge effect in

simulating the silicon field emission diode. Fig. 5.14 shows the SEM image and

surface mesh distribution for a typical silicon based field emitter within a periodic cell.

Only 1/4 of the full emitter is used due to the intrinsic symmetry with Neumann

boundary conditions applied on all symmetric planes. A conical etched single emitter

has been used for our modeling. Imiportant geometrical conditions include an emitter

height of 400 nm, a distance of 20 nm between the-anode and the cathode, and the

half width of each cell measuring 25“um. The applied voltage of the anode probe

ranges from 140 to 320 volts, while the cathode are grounded The refined final

number of nodes used for the simulation is approximately 96,326. Fig. 5.15 shows the

simulated potential and electric field profile with anode voltage 200 volts.

The simulated and experimental anode current versus gate voltage (I-V) curve is

shown in Fig. 5.16. Fig.5.16 shows simulations with work function is 4.5¢V agree

very well with measurement after turn-on. And before turn-on, simulations using

work function is 4.9eV agree very well with measurements probably due to the

contamination on the tip surface. It also displays a turn-on voltage of approximate 175
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volts. Note the turn-on voltage is defined as the gate voltage at which the current to
anode is 1 pA. The anode current plotted in Fowler-Nordheim coordinate (FN plot) is
also shown as an inset to Fig. 5.16. The linearity of FN plot clearly shows that the
computed and experimental I-V data follow the Fowler-Nordheim model very well.
The above computational examples serve to demonstrate the capability of the current
PIC-FEM code with parallel adaptive mesh refinement in predicting field emission

properties with complicated geometries.

5.2 Simulation on Gas Discharge Plasma

In this section, PIC-FEM code is used to investigate the structure of typical 3D
DC and RF gas discharge plasma: The'argon discharge under a low pressure has been
simulated as taking place between two cylindrical electrodes in a dielectric cylindrical
chamber. In the following, the related simulation conditions and results are given in
turn.
5.2.1 Three-dimensional DC gas discharge plasma

Consider the discharge sustained between two parallel cylindrical electrodes by
20mm enclosed in a dielectric cylindrical chamber under an operation argon pressure
of 42 mtorr. And, the Neumann boundary condition can be imposed on the chamber

wall. The background gas is assumed to be at rest and in local equilibrium. We ignore
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all collisions among charged particles and consider only their collisions with
background gas. The cathode potential is set to —300 Volts. A uniform mesh dividing
the electrode gap into 164,865 cells in the computational domain (see Fig. 5.17a) and
decomposed by 20 processors (see Fig. 5.17b). The electron timestep is 0.5x107'°s
and the number of sub-cycling is 10. Initially, the spatial distributions of the ion and
electron number densities are assumed uniform to each other. The particle velocities
are sampled from the Maxwellian distribution at a corresponding temperature, e.g.,
T. =232K for ions and K7, =0.5elV for electrons, where K is the Boltzmann
constant. The secondary electron, emission coefficient for ions is 0.3. The initial
velocity of the emitted electrons is assumed to be zero. The ions incident on the solid
surfaces are neutralized and refléeted back to the gas, while the incident electrons are
always absorbed.

The potential and electric field are shown in Fig. 5.18. The plasma potential is
nearly constant and slightly positive (=10} ) and hence, the electric field is very
small in the bulk region. The field strength increases with the cathode potential, as
expected. In addition, a very high electric field existing around the edge of cathode is
observed, and ion will be accelerated rapidly due to this strong electric field. The
electron and ion number densities are shown in Fig. 5.19. One can easily recognize

the cathode and anode sheaths. The ion and electron kinetic energies are shown in Fig.
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5.20. Ions are rapidly accelerated in the sheath, reaching a velocity of about 10*m/s

before impinging on the cathode.
5.2.2 Three-dimensional RF Gas Discharge Plasma

Consider the discharge sustained between two parallel cylindrical electrodes by
20mm under enclosed in a dielectric cylindrical chamber wall. The operation argon
pressure is 20mtorr. By taking the advantage of symmetric, we only simulate 1/6 of
the cylindrical chamber with a uniform mesh dividing the electrode gap into 164,865
cells (see Fig. 5.21a) and decomposed by 20 processors (see Fig. 5.21b). The

boundary condition for dielectric wall is set to be the typically Neumann boundary

condition (see Fig. 5.22). The radio-frequency 1$+13.56MHz,V, is 300 Volts. The

electron timestep is Az, =3.695x10 5= :

and the number of sub-cycling is
10. Initially, the spatial distributions’ of the 1on and electron number densities are
assumed uniform to each other. Initial ion temperature is 232 K and initial electron
temperature is 0.5 eV. The secondary electron emission coefficient for ions is 0. The
ions incident on the solid surfaces are neutralized and reflected back to the gas, while
the incident electrons are always absorbed.

The potential are shown in Fig. 5.23. The plasma potential is nearly constant and
positive (~ 0.5V, ) and hence, the electric field is very small in the bulk region. A
very high electric field existing around the edge of cathode and anode is observed,

and ion will be accelerated rapidly due to this strong electric field. The electron and
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ion number densities are shown in Fig. 5.24. One can easily recognize the cathode

and anode sheaths. The electron and ion kinetic energies are shown in Fig. 5.25.

5.3 Simulation on magnetron Plasma

In this section, PIC-FEM code is used to investigate the structure of 3D DC and
RF magnetron plasma. The magnetron has two concentric cylindrical magnets behind
the cathode, which is used to confine electrons, enforcing ExB drift motion on
electrons between N and S poles. This motion greatly enhances the ionization rate and
hence makes it possible to sustain the discharge at.a low pressure of 5 mtorr or less. In
the following, the related simulation conditions and results are given in turn.
5.3.1 Three-dimensional DC Magnetron Plasma
The computational domain is a cube box with size 128mmx128mmx20mm as shown
in Fig. 5.26 (a). The computation domain is divided into 82,000 unstructured meshes
as shown in Fig. 5.26 (b). The anode is grounded and the cathode potential is fixed
at =300 Volts. Expect for the electrodes, the Neumann boundary condition is imposed.
The permanent magnet behind the back of the cathode is also shown in Fig. 5.26 (a),
which is formed by two concentric cylindrical magnets. The magnetic field B is
proportional to magnetization M of the permanent magnet, which can clearly be seen

from Fig. 5.27. The gas pressure is 5 mtorr and the gas temperature is 323 K. The
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electron timestep is 0.5x107'°s and the number of sub-cycling is 10. Initial ion
temperature is 232 K and initial electron temperature is 0.5 eV. In this work, we
examine the effects of magnetization M and secondary electron emission coefficient
v on the discharge structure. Three cases are presented: (1.) M=0.125T, 7 =0.06, (2)
M=0.125T, 7 =0.1, and (3) M=0.1875T, 7 =0.06.

Fig. 5.28 Shows the potential distributions of these three cases, which illustrates that
the plasma potential is nearly constant and positive and there is a weak sheath in front
of anode. As M or 7 increases, the thickness of cathode sheath between N and S poles
decreases. The electron and ion number densities of these three cases are shown in Fig.
5.29-5.31. Both show that the most of electrons and tons are confined between N and
S poles, which show the axisymmetrical electron and ion number densities
distributions. As M or 7 increases, both the electron and ion number densities
increase. The electron and ion energies of these three cases are shown in Fig.
5.32-5.34. They show that the mean electron energy in the bulk region is 2~5eV. The
electron energy is larger at the region between bulk and cathode sheath, where is
located between N and S poles. This is because electrons are strongly magnetized and
exhibit ExB drift motion. The mean ion energy can be accelerated to 60eV by the
strong electric field in the cathode sheath and ions are hardly magnetized due to their

heavy mass.
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5.3.2 Three-dimensional RF Magnetron Plasma

In this studying case, we use the same computational domain and permanent magnet

system as shown in the previous subsection. The radio-frequency is 13.56MHz, V', is

and the number of

300 Volts. The electron timestep is Af, =3.695x107"'s = !
2000
sub-cycling is 10. Initial ion temperature is 232 K and initial electron temperature is
0.5 eV. In this work, we still examine the effects of magnetization M and secondary
electron emission coefficient 7 on the discharge structure. Three cases are presented:
(1.) M=0.125T, v =0.,(2) M=0.125T, 7 =0.06, and (3) M=0.25T, v =0.06.
Fig. 5.35 Shows the potential distributions of these three cases, which illustrates that
the plasma potential is nearly=constant and”positive (~ 0.5V, ) and axisymmetric
sheaths are formed near the powered and grounded electrodes. As M or 7 increases,
the thickness of cathode sheath between N and S poles decreases. The electron and
ion number densities of these three cases are shown in Fig. 5.36-5.38. Both show that
the most of electrons and ions are confined between N and S poles, which also show
the axisymmetrical electron and ion number densities distributions. As M or ¢
increases, both the electron and ion number densities increase. The electron and ion
energies of these three cases are shown in Fig. 5.39-5.41. They show that the mean
electron energy in the bulk region is 5~9¢V. The electron energy is larger at the region

between bulk and cathode sheath, where is located between N and S poles. This is
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because electrons are strongly magnetized and exhibit ExB drift motion. The mean

ion energy can be accelerated to 50eV by the strong electric field in the two sheath

regions and ions are hardly magnetized due to their heavy mass.

5.4 Some Remarks

In this chapter, our developed parallel 3D PIC-FEM code has performed its

superior capability in dealing with the 3D field emission display and 3D

low-temperature plasma sources since their corresponding results agree with the

previous experimental or numerical studies. Some important simulation results are

summarized as follows:

1. In simulating the 3D FED without'considering-the space-charge effect, we use a

triode-type CNT-based emitter without a focusing electrode as the studying case.

The primarily results are: The first is the spreading angle of electrons from the tip

increases with the increasing gate voltage. The second is the emission current

increases dramatically with the given CNT height. The third is a magnetic

focusing design can optimally suppress the electron beam dispersion under a

well-controlled magnetic field and the emission current to anode will not decrease

by using this magnetic focusing method. The second studying case for considering

the space-charge effect is simulation on the silicon field emission diode. The
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primarily result shows that simulated I-V curve agrees with the experimental work,

especially when simulation work function is set to 4.5eV.

In simulating 3D DC and RF gas discharge plasmas, the spatial distributions of

plasma macroparameters are presented. The results show that sheath does play an

important role in sustaining plasma, which providing the field to accelerate the

particles. Due to the 3D geometric shape of electrodes, there is a very strong

electric field existing around the edges of electrodes. In other words, this field

may lead to unexpected ion bombardment.

In simulating 3D DC and RF: magnetron plasmas, the spatial distributions of

plasma macroparameters are presented. The coneentric cylindrical magnets with

different magnetization are solved in advance, and the results that magnetic field

is proportional to magnetization. With these magnetic fields, electrons are

confined between N and S poles and exhibit the ExB drift motion, which leads to

high ionization rate in plasma under very low gas pressure. The results also show

that as M or 7 increases, the plasma density increases.
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Chapter 6

Concluding Remarks

6.1 Summary

In this dissertation, a general parallel three-dimensional electrostatic
particle-in-cell scheme with finite element method (PIC-FEM) using unstructured
mesh is proposed and verified. A multi-level graph-partitioning technique is used to
dynamically decompose the computational domain to improve the parallel
performance during runtime. Completed parallelized PIC-FEM code is used to
simulate several important physical problems, including field emission, DC/RF gas
discharge and DC/RF magnetron plasmas. In brief summary, the major achievements

in the present dissertation can be listed as follows:

1. A parallelized three-dimensional. electrostatic- Poisson’s equation solver using
Galerkin finite element method ‘with ‘an unstructured mesh is developed and
validated. Study of parallel performance of the parallelized PIC-FEM code is
performed on the HP-IA64 clusters. With subdomain-by-subdomain scheme for
parallel conjugate gradient method, parallel efficiency can reach 84% at 32
processors of HP PC clusters at NCHC. This code coupled with PAMR was used
to accurately and efficiently simulate field emission from emitter with
complicated geometry without considering space-charge effects, as

demonstrated in Chapter 5.

2. A parallelized three-dimensional vector potential magnetostatic Poisson’s
equation solver using Galerkin finite element method with an unstructured mesh

is developed and validated. Study of parallel performance of the parallelized
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PIC-FEM code is performed on the HP-IA64 clusters. With
subdomain-by-subdomain scheme for parallel conjugate gradient method,
parallel efficiency can reach 75% at 32 processors of HP PC clusters at NCHC.
This code was used to simulate the magnetic field around permanent magnets or

coils for magnetron plasma simulation as demonstrated in Chapter 5.

A general parallelized three-dimensional PIC-FEM code is developed and
validated. This PIC-FEM code integrates the parallelized Poisson’s equation
solver with the PIC and Monte Carlo collision (MCC) schemes on an
unstructured tetrahedral mesh. Charged particles can be traced either cell-by-cell
on an unstructured mesh. This is achieved using leap-frog time-integration
method and Boris rotational scheme .when magnetic field is involved. Charge
assignment and force (field) interpolation bétween charged particles and grid
points is implemented using the same interpolation function originated from the
FEM. In addition, dynamic-domain decemposition (DDD) with weighting based
on number of particles is used to balance the workload among processors during
runtime. Study of parallel performance of the parallelized PIC-FEM code is
performed on the HP-IA64 clusters. Results using DDD for a typical RF gas

discharge show that parallel efficiency can reach 83% at 32 processors.

Completed parallelized PIC-FEM code was used to simulate several important
problems to demonstrate its superior capability in handling practical problems.
These problems include field emission from a silicon tip under external electric
field, two typical three-dimensional DC and RF gas-discharge plasmas, and two
typical three-dimensional DC and RF magnetron plasmas with permanent
magnets. Results are either compared well with experiments or demonstrate the

correct physical pictures as expected.
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6.2 Recommendation for Future Study
In the present dissertation, we have developed and tested a parallelized

three-dimensional PIC-FEM code using an unstructured mesh on memory-distributed
parallel machines. We have also applied this code to simulate several important
physical problems. Based on the viewpoints of further improving this PIC-FEM code,
several possible directions of research are recommended for the future study and are
summarized as follows:

1. To implement a better preconditioner for parallel conjugate gradient method for
solving the Poisson’s equation more efficiently to shorten the runtime and
improve the speedup at higher number of processors.

2. To incorporate a Maxwell’s;equation solver that uses edge-based finite element
method into the present PIC-FEM code to further extend its applicability in
plasma related simulation, such as ICP, ECR and microwave plasmas.

3. To incorporate a simulation module that can model realistic external circuits into
the present PIC-FEM code, which are often coupled to a RF-type gas discharge.

4.  To extend the database of collision data for other types of plasma, such as
methane with hydrogen, which are very important in growing carbon nanotubes.

5. To incorporate a parallelized DSMC (direct simulation Monte Carlo) module

into the PIC-FEM code to consider the neutral transport self-consistently that is
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very important in some plasma flow, such as magnetron plasma.
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Table 1. Main excellent features of a field emission display

1. | Thin panel thickness (~2mm)

2. | Self-emissive

3. | Distortion free image

4. | Wide viewing angle (~170° )

5. | Quick response in the order of | us' by-controlling with analog or digital without
active elements

6. | Tolerance to environment as high as that of receiving tubes

7. | Free from the terrestrial magnetic effect

8. | Free from the changes in the ambient magnetism

9. | Quick start of operation

10. | Less dead space of images

11. | Low power consumption display device

12. | Good stable characteristics in severe environmental conditions
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Table 2. Time breakdown and speedup of Poisson’s equation solver at the different

number of processors

Processor No. 1 2 4 8 16 32
Total time (seconds) 138.17+%. 7917, 4253  14.78 8.21 5.13
CG solver time (%) 98.8 99.1 9433 76.79 85.14 94.54
Matrix assembling time (%)  =0.44 0.36 0.32 0.47 0.42 0.31
Communication time (%) N/A 4.45 28.1 34.5 35.32 37

Speedup 1 1774 3.25 9.35 16.83  26.93
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Table 3. Evolution of simulation parameters at different levels of mesh refinement.

(Emax 1s the local maximum electric field strength at the surface of CNT field emitter).

Refinement Level  Number of nodesr - Numberiof elements Eumax (V/nm)

0 7006 (7006) 27814 (27814) 8.218482 (8.21848)
1 22750 (24892) 110218 (121064) 10.20636 (10.20257)
2 34927 (38896) 175254 (196378) 11.50804 (11.50135)
3 44080 (47984) 225156 (245975) 11.54894 (11.51166)
4 51638 (55488) 264259 (284766) 11.32366 (11.32647)
5 61241 (59279) 313092 (306368) 11.32303 (11.32665)
6 67173 345307 11.32324

* Numbers in the parentheses represent numerical data obtained using a posteriori

error estimator with prescribed global relative error &, =0.0003.
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Table 4. Evolution of simulation parameters at different levels of mesh refinement.

(Bumax 1s the local maximum magnetic field strength at the center of magnet arrays).

Refinement Level = Number of nodesr -~ Numberiof elements Buax (T)
0 7845 46953 0.869774
1 38364 228201 0.870979
2 54355 319482 0.870808
3 70773 414616 0.871388
4 98743 574237 0.871401
5 108415 629268 0.871556
6 108840 631711 0.871553
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Table 5. The important geometrical parameters of CNT triode- and tetrode-type field

emitters.

Triode-type ( Fig. 7) Tetrode-type (Fig. 12)
he 600 nm 600 nm
r 10 nm 10 nm
R 500 nm 500 nm
Rs N/A 1500nm
d 200 nm N/A
h 500 nm N/A
di N/A 200 nm
d2 N/A 200 nm
hi N/A 500 nm
h2 N/A 500 nm
L 49.3um 48.6pm
W 25 um 25 pm

124



Table 6. Characteristics of device performance for different focus types.

o Spot diameter
Emission current — Gate.current  Anode current

Focus type ; at anode
from tip (A) (A) (A)

(12 m)

Without focus 2.48E-05 ~0 2.48E-05 528.68
Magnetic focus (Bz=0.2 T) 2.48B-05 ~0 2.48E-05 296.99

Magnetic focus (Bz=0.35T) 2.48B-05 ~0 2.48E-05 52.01
Electrostatic focus (Vi=-5V) 5.47E-06 2.39E-06 3.08E-06 154.76
Electrostatic focus (V=0 V) 5.69E-06 1.35E-06 4.35E-06 226.26
Electrostatic focus (Vi=5 V) 6.50E-06 1.56E-06 4.93E-06 210.20
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(zas Flow Rate and Composition
Wall Material and Temperature

EVDF, Ng, Ni; Np

Ion Flux, IED, 14D
Radical Flux, RED, RAD
Current/Potential Distribution

Surface Reaction Rate
Uniformity
Amnisotropy
Selectivity

Radiation Damage

Waler Temperature

Figure 1.1 Representation of the parameter space in plasma etching. The key internal
plasma properties (middle) are the bridge between externally controlled variables (top)

and the figures of merit (bottom).
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Figure 2.1 Element equation from a typical element (e) are used for each element in

the mesh.
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Figure 2.2 A three-Dimensional C° -linear standard tetrahedral element.
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Figure 2.3 A three-Dimensional C° -linear standard hexahedral element.
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(a)

(b)

(c)

Figure 2.4 (a) Vertex-based. (b) edge-based (c¢) element-based partition of 4 x 3

mesh into two sub-regions.
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Figure 2.5 An L-shape domain subdivided into three sub-domains.
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Figure 2.7. Flowchart of the parallel mesh refinement module.
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Figure 2.8 Flowchart of the coupled PPES-PAMR method.
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Figure 2.9 The flowchart of parallel FEM.
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Figure 2.10 Contours of the potential distribution of (a) a grounded conducting sphere
(®= 0 Volts) immersed in a uniform electric field (E =10Volts/m) and (b) uniform

positive charges distribution between two infinite grounded conducting plates (O= 0
Volts)
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Figure 2.11 Schematic diagram of the simulation domain for a typical CNT
triode-type field emitter within a periodic cell. The important geometrical parameters
are: R=500 nm, =10 nm, #e=600 nm, #/=500 nm, L=49.3 1 m, d=200 nm and W=25
um
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Figure 2.12 Surface mesh distribution of a typical single CNT triode-type field emitter
within a periodic cell. Only % of a periodic cell is simulated for the study of parallel

performance of the Poisson’s equation solver

138



| | | | | | |
—&A—— Node: 97442; Cell: 471853 / .
0~ | — — Ideal
/
- /
/ i
2 20 z
©
QJ —
(<))
At 7
/ -
10 /
/
P
0 . I . I . I
0 10 20 30

Number of processors

Figure 2.13 Parallel speedup as a function of the number of processors on the
PC-cluster system (maximum 32 processors) for CNT triode-type field emitter with

gate voltage 150 volts, anode voltage 400 volts and the grounded cathode
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Figure 2.14 Close-up of the unstructured adaptive surface mesh at different levels for

a single CNT triode-type field emitter with gate voltage 150 volts, anode voltage 400

0.08). (a) Level-0 (7006 nodes). (b) Level-1

ref =

volts and the grounded cathode (&

(22750 nodes). (c) Level-2 (34927 nodes). (d) Level-5 (61241 nodes).
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Figure 3.1 Flowchart of the coupled PVPES-PAMR method
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Figure 3.2 Arrangement of magnetization vectors of each permanent magnet segment
for producing uniform flux density in the center of the permanent magnet array

consisting of eight segments.
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Figure 3.3 Surface mesh distribution of the permanent magnet array consisting of

eight segments.
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Figure 3.4 (a) Contour of magnetic flux density and (b) magnetic flux lines

permanent magnetic arrays (see Fig. 3.2).
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Figure 3.5 Unstructured adaptive mesh distribution at different levels the permanent

magnet array consisting of eight segments. (¢,,, =0.08). (a) Level-0 (7845 nodes). (b)

Level-1 (38364 nodes). (¢) Level-2 (54355 nodes). (d) Level-4 (98743 nodes). (e)
Level-5 (108415 nodes). (f) Level-6 (108840 nodes).
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Figure 3.6 Parallel speedup as a function of the number of processors on the
PC-cluster system (maximum 32 processors) for of the permanent magnet array

consisting of eight segments
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Figure 4.1 The flowchart of conventional PIC-MCC method
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Figure 4.8 Flowchart of parallel PIC-FEM.
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Figure 4.17 Ion and electron kinetic energies of quasi-1D DC glow discharge
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Figure 4.23 Sketch of the 3D RF gas discharge plasma.
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Figure 4.25 Evolution of domain decomposition using 20 processors, during the

simulation for a RF gas discharge plasma (a) initial (b) intermediate (c) final.
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Figure 5.1 Schematic diagram of the simulation domain for a typical CNT triode-type

field emitter within a periodic cell. The important geometrical parameters are: R=500
nm, =10 nm, 2e=600 nm, ~=500 nm, L=49.3 y m, d=200 nm and W=25 ym.
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Figure 5.2 Contours of the (a) electric potential and the (b) electric field distribution
near the tip of the CNT triode-type field emitter with gate voltage 150 volts, anode
voltage 400 volts and the grounded cathode.

174



-19

=20

=21

In(I/V %)

5=-1191.63
=22 — b = 26.166

0.006 0.007 0.008 0.009 0.01
1V

Figure 5.3 FN plot of the field emission characteristics of CNT triode-type field
emitter (height is 600 nm) with gate voltage 110-160 volts, anode voltage 400 volts
and the grounded cathode.( S = slope = —-3244.25¢°*/8, ¢=4.52 ¢V).
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Figure 5.4 Trajectories of the emitted electrons inside the periodic cell of CNT

triode-type field emitter with the grounded cathode, anode voltage 400 volts and two
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different gate voltages: (a) 110 volts (b) 160 volts.
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cathode.
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Figure 5.6 Schematic diagram of the simulation domain for a typical CNT tetrode-type

field emitter within a periodic cell. The important parameters are: R=500 nm,
R, =1500 nm, r=10 nm, he=600 nm, A =500 nm, h,=500 nm, L=48.6 1 m,

d,=200 nm, d,=200nm and W=25 pum.
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Figure 5.7 Comparisons of the trajectories of the emitted electrons between (a) CNT
triode-type field emitter with the grounded cathode, anode voltage 400 volts and the
gate voltage150 volts and tetrode-type field emitter with the additional three different
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Figure 5.8 Perspective view of the structure of the magnetic focusing carbon nanotube
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Figure 5.9 Schematic diagram of the 1/4 simulation domain for a typical CNT-based
triode-type field emitter within a periodic cell. The important geometrical parameters
are: R=500nm, r=10nm, he=600nm, h=500nm, d=200nm, L=0.9mm and W=0.3mm
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Figure 5.10 LHS shows surface mesh distribution of a single CNT triode-type field
emitter within a periodic cell. RHS shows surface mesh distribution of the CNT field
emitter and equipotential lines near the tip for Vg=120V. Unstructured tetrahedral
adaptive mesh is ideal for the simulation structure, which consists of a smaller emitter

within a larger periodic cell
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Figure 5.12 Snapshots and trajectories of electrons for (a) Bz=0T, (b) Bz=-0.2 T, (¢)
Bz =-0.5 T, and (d) Bz=-1.0 T. The gate voltage and the anode voltage are fixed to
120V and 1 kV, respectively.

184



600

P i rprrrrprrrrprrrrprrrrprrrrprireprr gt

4]
o
o

400

200

Electron dispersion width {(um)

100

|
300 -
L

NANNERE ARERA FEENE ARERE ANERE AR ANNEN ARERE AR N

Ll
0 01 02 03 04 05 06 07 08 09 1
Flux density of magnetic field B (T)

Figure 5.13 Dependence of electron beam diameter at the anode on the flux density
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Figure 5.14 (a) SEM image and (b) surface mesh distribution of a single silicon based

field emitter within a periodic cell.
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Figure 5.15 Contours of the (a) electric potential and the (b) electric field distribution
near the tip of the single silicon based field emitter with anode voltage 200 volts.
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Figure 5.19 Contours of (a) electron and (b) ion number densities of 3D DC glow

discharge.
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Figure 5.20 Contours of (a) electron and (b) ion kinetic energies of 3D DC glow

discharge.
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Figure 5.21 (a) The surface mesh plot and (b) domain decomposition profile of 3D RF

gas discharge plasma.
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Figure 5.22 Sketch and boundary condition of the 3D RF discharge plasma enclosed

by a dielectric chamber wall.
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Figure 5.24 Contours of (a) electron and (b) ion number densities of 3D RF discharge

plasma enclosed by a dielectric chamber wall.
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Figure 5.25 Contours of (a) electron and (b) ion kinetic energies of 3D RF discharge
plasma enclosed by a dielectric chamber wall.
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Figure 5.26 Sketch and surface mesh distribution of the 3D DC magnetron plasma.
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Figure 5.27 Contours of magnetic flux density with magnetization (a) 0.25 T (b) 0.5T
(c) 0.75 T (d) 1.0 T of permanent magnet systems.
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Figure 5.28 Potential contours of 3D DC magnetron plasma with (a) M=0.125T, v
=0.06, (b) M=0.125T, 7 =0.1, and (c) M=0.1875T, 7 =0.06.
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Figure 5.29 Contours of (a) electron and (b) ion number densities of 3D DC
magnetron plasma with M=0.125T and 7 =0.06
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Figure 5.30 Contours of (a) electron and (b) ion number densities of 3D DC
magnetron plasma with M=0.125T and 7 =0.1.
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Figure 5.31 Contours of (a) electron and (b) ion number densities of 3D DC
magnetron plasma with M=0.1875T and 7 =0.06.
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Figure 5.32 Contours of (a) electron and (b) ion kinetic energies of 3D DC magnetron
plasma with M=0.125T and y =0.06
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Figure 5.33 Contours of (a) electron and (b) ion kinetic energies of 3D DC magnetron
plasma with M=0.125T and y =0.1
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Figure 5.34 Contours of (a) electron and (b) ion kinetic energies of 3D DC magnetron
plasma with M=0.1875T and 7 =0.06.
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Figure 5.35 Potential contours of 3D RF magnetron plasma with (a) M=0.125T, ¢ =0
(b) M=0.125T, 7 =0.06 (c) M=0.25T, 7 =0.06.
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Figure 5.36 Contours of (a) electron and (b) ion number densities of 3D RF
magnetron plasma with M=0.125T and ¢ =0
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Figure 5.37 Contours of (a) electron and (b) ion number densities of 3D RF
magnetron plasma with M=0.125T and 7y =0.06
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Figure 5.38 Contours of (a) electron and (b) ion number densities of 3D RF
magnetron plasma with M=0.25T and 7 =0.06
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Figure 5.39 Contours of (a) electron and (b) ion kinetic energies of 3D RF magnetron
plasma with M=0.125T and ¢ =0.0
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Figure 5.40 Contours of (a) electron and (b) ion kinetic energies of 3D RF magnetron
plasma with M=0.125T and ¢ =0.06.
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Figure 5.41 Contours of (a) electron and (b) ion kinetic energies of 3D RF magnetron
plasma with M=0.25T and 7 =0.06
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