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從物理系統之自發擾動行為探討其低激發態特性 

 

研究生:陳陳秉秉寬寬                           指導教授:黃黃中中垚垚 

 

國立交通大學光電工程研究所 

 

摘要 

 
古典統計力學的擾動耗散定理闡明了「低維激發態所引起的自發擾動行為存

在所有凝態物理系統中」，本論文之研究主旨即在探討特定凝態材料-液晶的分子

動態擾動現象。 

液晶分子與液晶盒基板間的錨定作用力大小與表面配向處理的方法有關。本

論文由動態光散射理論出發，輔以液晶指向矢流體動力方程式與特定邊界條件，

推得經液晶散射之光訊號其特徵相關時間與錨定能係數間之關係式，並以實際合

成不同表面配向處理的向列型液晶盒為實驗樣本，由動態光散射實驗得到符合理

論預測之結果，即液晶顯示器工業常使用的摩擦配向法所造成的錨定作用力，大

於光配向法所造成的錨定作用力，其錨定能係數相差約兩個數量級；並且，於配

向層上沉積液晶聚合物確能有效提升液晶分子排列品質。 

表面穩定型鐵電相液晶元件具有高應答速度、寬視角範圍等優點，然鐵電相

結構因不易完美排列而產生缺陷的缺點，限制了其在工業應用方面的發展。參雜

氧化鋅奈米晶體的表面穩定型鐵電相液晶元件由於奈米晶體引致的分子束縛效

應有效地提升了鐵電相液晶分子的排列品質；本論文觀察到因排列品質的提升使

得部份鐵電相液晶分子脫離表面錨定作用力影響的現象。 
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Abstract 

The fluctuation-dissipation theorem of classical statistical mechanics reveals that 
there always exist spontaneous fluctuation behaviors induced by low-level excitations 
in all condensed matter physical systems. The main theme of this thesis study lay in 
the discussion about the dynamical molecular fluctuations of specific condensed 
matter material – liquid crystal (LC). 

The anchoring strength of a LC cell is relevant to the surface treatment methods. 
In this thesis, we began the derivations from the dynamic light scattering theory, 
together with the hydrodynamic equation of LC director and certain specific boundary 
conditions. We finally obtained the relationship between the correlation time of the 
scattering light scattered by LC and the anchoring energy coefficient of the cell. After 
measuring the scattering light coming from various nematic cells with different 
surface treatments, the results obtained from dynamic light scattering technique 
confirmed the theoretical predictions well, that is, the anchoring energy coefficient 
produced by mechanical rubbing method that is often used in liquid crystal display 
industry is larger than that produced by photoalignment method by around two order 
of magnitude; moreover, depositing liquid crystal polymer on the photoalignment 
layer of the cell does improve the LC alignment quality. 

Surface-stabilized ferroelectric liquid crystal devices have merits of fast response 
speed and wide viewing angle. However, the tendency toward defect formation owing 
to imperfect molecular alignment restrains their development in industrial 
applications. Doping ZnO nanocrystals into ferroelectric liquid crystal host can 
improve the quality of liquid crystal molecular alignment by virtue of the molecular 
binding effect. In this thesis, we observed a novel phenomenon that a portion of the 
liquid crystal molecules got rid of the influence of surface anchoring because of the 
improvement of doping-induced orientational order. 
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CChhaapptteerr  11..    IInnttrroodduuccttiioonn  

 

11..11    FFlluuccttuuaattiioonn  aanndd  DDiissssiippaattiioonn  TThheeoorreemm  ooff  aa  PPhhyyssiiccaall  SSyysstteemm  

When a physical system is in thermal equilibrium, its thermodynamic quantities 

shall be constant. However, if one could measure those quantities precisely and 

rapidly, he or she will find that the measured values undergo small fluctuations [1]. 

For example, the pressure on a surface of an object immersed in a medium (such as air, 

water, etc.) changes rapidly. These small fluctuations come from the irregular impact 

of molecules. So is true for other similar fluctuation phenomena, which comprise the 

granular nature of matter. 

The granular nature of matter not only gives rise to fluctuations of 

thermodynamic quantities, it also explains why there exists friction (the reason for the 

dissipation of energy). To illustrate the essential idea indispensable for this thesis 

study, let us begin a discussion about the fluctuation phenomenon of a physical 

system with a Brownian motion of colloidal particles suspending in a liquid medium. 

In the following, we will derive the relation between fluctuation and dissipation of 

this physical system through a mathematically descriptive model known as Langevin 

equation. 
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1.1.1 Langevin Equation for Brownian Motion 

Considering a group of sufficiently small particles immersed in a liquid medium, 

the particles exhibit an irregular motion. This type of motion is called “Brownian 

motion” in honor of Scottish naturalist Robert Brown (1773–1858), who investigated 

the phenomenon in 1827 [2]. The system yields a direct insight into the mechanism 

responsible for the existence of fluctuations, dissipation of energy, and the 

relationship between them. 

To simplify our description, we shall treat this problem in one-dimensional case. 

Consider that a particle of mass m  is immersed in a liquid medium at temperature 

T , and its center-of-mass position at time t  is designated by ( )x t  and the 

corresponding velocity is therefore /v dx dt≡ . This particle’s dynamic behavior is 

governed by Newton’s second law of motion 

( ) ( ) ,ext
dvm F t F t
dt

= +                       (1.1.1) 

where extF  is an external force exerted by some external systems, such as gravity or 

electromagnetic fields; ( )F t  denotes an effective interaction from many degrees of 

freedom (i.e., such as those representing the atomic motion in the suspending particles 

or molecular motion in the surrounding medium) of the system. Apparently, ( )F t  

must be some rapidly fluctuating function of time t  since it depends on the positions 

of many atoms which are in constant motion [3]. This makes ( )F t  fluctuating in a 
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highly irregular fashion. Therefore, we cannot specify the exact dependence of ( )F t  

on t ; we must appeal to statistical language.  

To begin with, we define the ensemble average of ( )F t  to be an averaged 

value at time t  over all the N  subsystems, which is 
1

1( ) ( )
N

j
j

F t F t
N =

≡ ∑ . 

Accordingly, we shall write 

 ,F F F= +                        (1.1.2) 

where F  is the rapidly fluctuating part of F with its average F  being zero. 

Because of the existence of this fluctuating term, it follows from Eq. (1.1.1) that 

velocity v  also fluctuates in time. Hence, v  is also able to be decomposed into an 

ensemble average v  and a fluctuating part v , v v v= + . By the same token, v  

has zero mean just as F does. Intuitively, F  must be some function of v  such that 

( ) 0F v =  in equilibrium when v  equals zero. Under the condition that v  is not 

large, ( )F v  can be expanded in a power series of v  with the first nonvanishing 

term being linearly proportional to v , which gives 

( )   ,F v v v vγ γ γ= − = − − ≈ −                  (1.1.3) 

where γ  is a positive constant called “friction constant”, meanwhile, we have put 

v vγ γ≈  since vγ  is negligibly small compared with the fluctuating F . Finally, 

combining Eqs. (1.1.1) , (1.1.2), and (1.1.3) leads to the “Langevin equation＂for 

Brownian motion,  
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( )  .ext
dvm F v F t
dt

γ= − +                       (1.1.4) 

We shall discuss the solution of this equation in the later context. 

 

1.1.2 Stochastic Process 

By definition, a deterministic variable must be exactly determined by given 

physical conditions. A random variable, on the contrary, is conceptually different from 

a deterministic variable. It can not possess a deterministic value. If one wants to 

describe a random variable’s behavior, he or she must draw support from the 

statistical description. If some physical quantity X  evolves with time t , we refer to 

this function ( )X t  as a process. A physical process with random variables involved 

is called a “stochastic process＂. A continuous memoryless stochastic process is 

called a continuous Markov process. The term “ continuous ＂  means that 

( ) ( )X t dt X t+ →  as 0dt → , and the term “memoryless＂means that the process 

does not depend on any of its earlier values explicitly to advance itself from time t  

to time t dt+ . In theory of statistics, a continuous Marcov process guarantees that the 

increment ( ) ( )X t dt X t+ −  must have the analytical form of 

( ) ( )( ), ( ), ( )A X t t dt D X t t N t dt+ . Here ( )( ),A X t t  and ( )( ),D X t t  can be any 

smooth function with ( )( ),D X t t  non-negative, ( )N t  denotes an uncorrelated unit 

normal random variable, that is, ( )N t  is a random variable with its mean value equal 
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to 0  and variance equal to 1. ( )N t  is statistically independent of ( )N t′  when 

t t′≠ . From the above, we obtain 

( ) ( )( ) ( ) ( ), ( ), ( )  .X t dt X t A X t t dt D X t t N t dt+ = + +       (1.1.5) 

This equation is called the standard form of Langevin equation for the process X . 

The function ( )( ),A X t t  in Eq. (1.1.5) is called the drift function of the process, and 

( )( ),D X t t  is called the diffusion function [4]. Rearranging Eq. (1.1.5) yields the 

differential form 

( ) ( )( ), ( )( ) ( ) ( ),  .
D X t t N tX t dt X t A X t t

dt dt
+ −

= +           (1.1.6) 

In order to solve such an equation, it is necessary to understand some basic properties 

about normal random variables. The normal random variable 2( , )N m σ  is 

characterized by the probability density   
2

22

1 ( )( ) exp ,
22

x mp x
σπσ

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
    

,x− ∞ < < ∞     where the parameters m  and 2σ  stand for the mean and variance 

of N , respectively. Two essential properties of normal random variables arise: 

2 2 2( , ) ( , )  ,N m N mβ σ β β σ=                 (1.1.7a)  

2 2 2 2
1 1 2 2 1 2 1 2( , ) ( , ) ( , )  .N m N m N m mσ σ σ σ+ = + +          (1.1.7b) 

Then, if we define the Gaussian white noise process ( )tΓ  as ( )1
0

( ) lim 0, dt
dt

t N
→

Γ ≡               

and take the 0dt →  limit in Eq. (1.1.6), we obtain 

( ) ( )( ) ( ), ( ),  ( )  .dX t A X t t D X t t t
dt

= + Γ           (1.1.8) 
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This is the white noise form of Langevin equation [4]. There are also two properties 

of Gaussian white noise, which will be useful in the latter formulae derivation: 

( ) 0tΓ =                          (1.1.9a) 

( ) ( ) ( )t t t tδ′ ′Γ Γ + =                    (1.1.9b) 

The angle bracket is the notation of taking average. 

A continuous Markov process having the forms 

( ) ( )1( ), ( )    ,     ( ),A X t t X t D X t t c
τ

= − =              (1.1.10) 

is called an Ornstein-Uhlenbeck process with relaxation time τ  and diffusion 

constant c . The importance of Ornstein-Uhlenbeck process lies in the successful 

mathematical descriptions of some typical physical systems with 

fluctuation-dissipation nature, which includes Brownian motion mentioned in the 

former subsection. With the help of Eq. (1.1.10), we can transform Eqs. (1.1.5) and 

(1.1.8) into 

1( ) ( ) ( ) ( )   ,X t dt X t X t dt cN t dt
τ

+ = − +           (1.1.11)  

( ) 1 ( ) ( )  .dX t X t c t
dt τ

= − + Γ                       (1.1.12) 

The above two equations are known as the equivalent forms of the Langevin equation 

for the Ornstein-Uhlenbeck process. Being subject to the initial condition: 

0 0( )X t x= , ( )X t dt+  in Eq. (1.1.11) can be expressed as a linear combination of 

two normal random variables ( )X t  and ( )N t  since 0 0 0( ) ( ,0)X t x N x= =  and 
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( ) (0,1)N t N= . Hence, according to Eqs. (1.1.7a) and (1.1.7b), 0( )X t dt+  must be 

normal. Next, 0( 2 )X t dt+  must also be normal since it is also a linear combination 

of two normal random variables 0( )X t dt+  and 0( )N t dt+ . The same procedure is 

repeated. Ultimately, we can conclude that the random variable ( )X t  in 

Ornstein-Uhlenbeck process is normal for all 0t t> . 

To discover the solution of Eqs. (1.1.11) and (1.1.12) implies to find the mean 

and variance of the normal random variable ( )X t  since the statistical behavior of a 

normal random variable can be completely determined by its mean and variance. To 

get the mean and variance of ( )X t , let us take the average of Eq. (1.1.11) first, which 

yields 1( ) ( ) ( )X t dt X t X t dt
τ

+ = − . The term of ( )cN t dt  vanishes in 

deriving the above equation because of ( ) (0,1)N t N= . By letting 0dt → , we obtain 

a simple first order ordinary differential equation of ( )X t , whose solution for the 

initial condition 0 0( )X t x=  is 

0
0 0( ) exp    ,      .

t t
X t x t t

τ
−⎛ ⎞= − ≥⎜ ⎟

⎝ ⎠
                (1.1.13) 

Next, in order to get the information about variance, we square Eq. (1.1.11) to obtain 

2 2 2 22( ) ( ) ( ) 2 ( ) ( ) ( )X t dt X t X t dt cX t N t dt cN t dt
τ

+ = − + + . By averaging the 

equation, we then obtain 2 2 22( ) ( ) ( )X t dt X t X t dt cdt
τ

+ = − + . Note that 

2 ( ) ( ) 2 ( ) ( ) 0cX t N t dt c X t N t dt= =  because of the statistical 

independency of ( )X t  and ( )N t , and 2 ( ) 1N t =  from ( ) (0,1)N t N= . Let 
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0dt → , the equation transforms into a first order O.D.E of 2 ( )X t , whose solution 

for the initial condition 2 2
0 0( )X t x=  can be easily derived to give 

02( )2 2
0( )

2 2
t tc cX t x e ττ τ− −⎛ ⎞= − +⎜ ⎟

⎝ ⎠
. Using this solution together with the help of Eq. 

(1.1.13), the variance of ( )X t  can be obtained as follows 

{ } ( )0
2 2( ) /2

0var ( ) ( ) ( ) 1   ,     .
2

t tcX t X t X t e t tττ − −= − = − ≥     (1.1.14) 

Therefore from Eqs. (1.1.13) and (1.1.14) with the initial condition 0 0( )X t x= , we can 

conclude that the Ornstein-Uhlenbeck process with relaxation time τ  and diffusion 

constant c  is 

( )0 0( ) / 2( ) /
0 0( ) , 1   ,     .

2
t t t tcX t N x e e t tτ ττ− − − −⎛ ⎞= − ≥⎜ ⎟

⎝ ⎠
        (1.1.15) 

Furthermore, by some routine calculations, we can derive a limit equation as follows 

{ }
00

2
0lim var ( ) ( ) ,

t

tt t
X t dt c t tτ

− →∞
′ ′ = −∫                  (1.1.16) 

which is also useful in the following formulae derivation. 

 

1.1.3 Derivation of the Fluctuation-Dissipation Theorem (FDT) of a Physical 
System 

Having attained the basic cognitions of stochastic process in subsection 1.1.2, 

we can proceed with the analysis of Brownian motion in a more systematic way. Let 

us return to the discussion in subsection 1.1.1. For simplicity, let us assume there does 

not exist any external force. Eq. (1.1.4) becomes ( )dvm v F t
dt

γ= − + . To take 

advantage of the well-developed Ornstein-Uhlenbeck process, we first transform the 
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above equation into the form 

1( ) 1 ( ) ( )  .
m

dv t v t m F t
dt γ

−= − +                 (1.1.17) 

We then define m
γ  as a positive constant τ  and ( )F t  as ( )m c tΓ , Eq. (1.1.17) 

would become 

( ) 1 ( ) ( )  .dv t v t c t
dt τ

= − + Γ                   (1.1.18)   

This is essentially the white-noise form of Langevin equation mentioned in 

subsection 1.1.2, and ( )v t  is no other than an Ornstein-Uhlenbeck process with 

relaxation time τ  and diffusion constant c . Here, we set the velocity of Brownian 

particle as a normal random variable. Based on classical statistical thermodynamics, 

the velocity of Brownian particle must eventually be distributed in Maxwellian 

fashion. Now that ( )v t  is purely a normal random variable in an 

Ornstein-Uhlenbeck process, solving Eq. (1.1.17) becomes a simple task with the 

knowledge developed in subsection 1.1.2. The solution would then be of the form of     

Eq. (1.1.15), which gives 

( )0 0( ) / 2( ) /
0 0( ) , 1   ,     .

2
t t t tcv t N v e e t tτ ττ− − − −⎛ ⎞= − ≥⎜ ⎟

⎝ ⎠
         (1.1.19) 

It yields ( ) 0,
2
cv t N τ⎛ ⎞→ ∞ = ⎜ ⎟

⎝ ⎠
. On the other hand, according to equipartition theorem, 

the energy associated with fluctuation in each degree of freedom is 2
Bk T , that is, 

{ }1 1var ( )
2 2 Bm v t k T⋅ → ∞ = , we then have 

 .
2

Bk Tc
m

τ
=                            (1.1.20a) 
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By solving Fick’s second law of diffusion, Einstein deduced that the mean-square 

displacement of Brownian particle from diffusion equation is 2
0( ) 2 ( )x t D t t= − . 

Here, D  is the diffusion coefficient of the diffusion equation. By comparing this 

Einstein-derived equation with Eq. (1.1.16) we can find 

22   .D cτ=                        (1.1.20b) 

By solving Eqs. (1.1.20a) and (1.1.20b) simultaneously, we have 

  ,
B

Dm
k T

τ =                        (1.1.21a) 

22   .Bk T
c

D m
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                    (1.1.21b)    

Now, we are capable of examing the fluctuation-dissipation relation of Brownian 

motion in a quantitative way. Firstly, by substituting Eq. (1.1.21a) into τ  which is 

defined as m
γ  , we get 

       .B

B

k Tm Dm
k T D

γ
γ

= ⇒ =                  (1.1.22)   

From this formula, we can find that the diffusion coefficient D  is related to the 

friction constant. The above theoretical derivation also matches the experimental 

observation discovered by Einstein very well. Second, by substituting Eq. (1.1.21b) 

into ( ) ( )F t m c t= Γ  mentioned in the previous context together with Eq. (1.1.22), 

we obtain ( ) 2 ( )BF t k T tγ= Γ , which can be expressed in an alternative form 

( ) ( ) 2 ( )  ,BF t F t t k T tγδ′ ′+ =                (1.1.23)   

by using Eq. (1.1.9b) in the derivation process. To gain a more deep insight into Eq. 
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(1.1.23), we integrate this equation to obtain 

1 ( ) ( )   .
2 B

F t F t t dt
k T

γ
∞

−∞
′ ′= +∫               (1.1.24) 

This equation relates the fluctuating force ( )F t  to the friction coefficient γ  and is 

thus called the“fluctuation-dissipation theorem＂. In a much more comprehensible 

picture, when a physical system shows fluctuating dynamics in some property, there 

must have some type of energy dissipation channel accompanying that physical 

property. We even can say that if there is no dissipation of energy there shall be no 

fluctuation. This inherent relationship between fluctuation and dissipation of energy is 

universally ubiquitous. In Brownian motion, the dissipation of energy comes from the 

head-on impact by surrounding solvent molecules; in molecular fluctuations in liquid 

crystals, the dissipation of energy comes from jostling by surrounding 

random-oriented molecules, and this case will be the main theme in later chapters. 

 

11..22    LLiigghhtt  SSccaatttteerriinngg  ffrroomm  aa  PPhhyyssiiccaall  SSyysstteemm  

1.2.1 Basic Concepts of Light Scattering  

In semi-classical physics, light is no other than an electromagnetic wave. When 

light impinges on matter, due to its electromagnetic nature, the oscillating electric 

field of the light induces an oscillating polarization of the electrons in the molecules. 

This oscillation of electrons infers the existence of acceleration of charged particles, 
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according to electromagnetic theory, which will re-radiate electromagnetic wave in all 

directions. The incident optical field is said to polarize the medium [5]. The molecules 

then serve as secondary sources of light and this reradiation is known as light 

scattering [6]. 

Generally speaking, there are two basic types of light scattering, named in honor 

of two Nobel Prize Laureates in physics, Chandrasekhara V. Raman (1888–1970) 

and Lord Rayleigh (1842–1919). When photons impinge on a molecule, they can 

either impart energy to or gain energy from the molecule. This energy transfer could 

be associated with the translational, rotational, vibrational, or electronic degrees of 

freedom of the molecules [6]. These photons thereby experience frequency shifts and 

the scattering is thus inelastic. Light scattering in such a way is called Raman 

scattering.  

The other type of light scattering is Rayleigh scattering. In the following, we 

shall proceed to investigate the angular dependence, the polarization and the intensity 

of the quasi-elastically scattered light. In this case the frequency spectrum of the 

scattered light is broadened by a samll frequency shift due to a distribution of finite 

lifetime of thermal fluctuations in the medium that scatter light [6]. Nevertheless, the 

central frequency of the spectrum is not shifted as it should be in quasi-elastic regime. 

In this thesis, we shall make a good use of this quasi-elastic light scattering technique 
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to probe certain intriguingly dynamical physical systems in the later content. 

Let’s probe further deep into the physical picture of light scattering. When light 

is incident upon the medium to yield an illuminated volume, the atoms in a subregion, 

which is small compared with the scale of the incident light wavelength, shall see the 

same incident optical field strength. When these subregions with equal size are 

considered to produce the optical scattering effect, the total scattered field shall be the 

superposition of the scattered optical fields from each of them. If these subregions are 

all optically identical, that is, each has the same dielectric constant, no scattered light 

other than the forward-propagating beam will come into being. This is so because the 

wavelets scattered from each subregion are identical except for their individual phase 

factor that depends on the relative positions [5]. Ignoring the surface effects of the 

medium, each subregion can always be paired with another one whose scattered 

electric field is identical in amplitude but opposite in phase and thus will cancel out, 

leaving no net scattered light in other than the forward direction. However, if these 

subregions are not optically identical, that is, they have different dielectric constants, 

then the amplitudes of the light scattered from different subregions are no longer 

identical. For this reason, complete cancellation of electric field in other than the 

forward direction will not happen any longer. This is the reason why there exists 

scattered light in other than the forward direction after incident light impinges on an 
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optically inhomogeneous medium. According to this semi-macroscopic view, 

originally brought up by Einstein, scattered light arises from optical inhomogeneity 

and the optical inhomogeneity results from local fluctuations in the dielectric constant 

of the medium (Einstein, 1910). From Section 1.1, we know the fact that all 

thermodynamic quantities show unavoidable fluctuation behavior governed by their 

own fluctuation-dissipation theorem. On a microscopic view, kinetic theory tells us 

that molecules in any given medium are not at rest, they are constantly vibrating, 

rotating and even translating. Therefore any given subregion’s physical quantities 

(such as dielectric constant), which depends on the positions and orientations of the 

molecules, will fluctuate and thus give rise to light scattering. 

 

1.2.2 Electromagnetic Theory of Light Scattering 

First, let us consider a nonmagnetic, nonconducting and nonabsorbing dielectric 

medium with average dielectric constant 0ε . An incident plane wave with amplitude 

0E , wave vector ik , angular frequency iω  and the unit vector ˆin  pointing toward 

the direction of the incident electric field can be properly described as 

( )0ˆ expi i i iE n E i k r tω= ⋅ − . The medium on which the optical wave is impinged has a 

local dielectric constant 0( , ) ( , )r t I r tε ε δε= + , where I  denotes the second-rank 

unit tensor and ( , )r tδε  is the thermally fluctuating part of dielectric tensor [6]. If the 
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EM fields of the incident plane wave are described by iE , iD , iB , iH  and the 

scattered fields are represented as sE , sD , sB , sH , the total fields at a position in 

the scattering medium can then be expressed as 

    ,

   ,

    ,

  .

i s

i s

i s

i s

E E E

D D D

B B B

H H H

= +

= +

= +

= +

                      (1.2.1) 

Since the incident fields and the total fields all satisfy the Maxwell equations, the 

scattered fields shall also obey the Maxwell equations [5]. The Maxwell’s equations 

for the scattered fields in the absence of sources are 

 ,s
s

B
E

t
∂

∇ × = −
∂

                       (1.2.2a) 

 ,s
s

D
H

t
∂

∇ × =
∂

                        (1.2.2b) 

0     ,       0  .s sB D∇ ⋅ = ∇ ⋅ =                 (1.2.2c) 

By taking curl of Eq. (1.2.2a) and then combining with Eq. (1.2.2b), we obtain 

2

2  .s s
s s

B H
E D

t t t
μ μ

∂∇ × ∂∇ × ∂
∇ ×∇ × = − = − = −

∂ ∂ ∂
        (1.2.3) 

The total electric displacement vector D  and the total electric field vector E  are 

related through the dielectric constant 0( , ) ( , )r t I r tε ε δε= +  by 

( ) ( )0

0 0     .
i s

i i s s

D I E E

E E E E

ε δε

ε δε ε δε

= + ⋅ +

= + ⋅ + + ⋅
               (1.2.4) 

From Eq. (1.2.1) and the fact that 0i iD Eε= , Eq. (1.2.4) gives 

0  .s s iD E Eε δε= + ⋅                        (1.2.5) 
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In the above derivation we have neglected the second-order term sEδε ⋅ . By solving 

Eq. (1.2.5) for sE  and then substituting the result into Eq. (1.2.3) together with the 

assumption of a nonmagnetic medium, we obtain ( )
2

0 0 2s i sD E D
t

δε μ ε ∂
∇×∇× − ⋅ = −

∂
. 

By using the vector identity ( ) 2a a a∇×∇× = ∇ ∇ ⋅ − ∇  and making some algebraic 

rearrangement, we obtain an inhomogeneous wave equation 

2
2

0 0 2  .s s iD D E
t

μ ε δε∂
∇ − = −∇ ×∇ × ⋅

∂
                (1.2.6) 

To simplify the above wave equation, we define the Hertz vector Π  by 

sD = ∇×∇× Π  [5]. Taking this defined-form into Eq. (1.2.6) leads to 

( )
2

2
0 0 2        iE

t
μ ε δε∂

∇ ∇ × ∇ × Π − ∇ ×∇ × Π = −∇ ×∇ × ⋅
∂

 

           
2

2
0 0 2      .iE

t
μ ε δε∂

⇒ ∇ Π − Π = − ⋅
∂

                       (1.2.7) 

The above Hertzian wave equation is exactly in the standard form of d’Alembert 

differential equation, 
2

2
2 2

1 ( , )( , ) ( , )F r tF r t r t
c t

∂
∇ − = Φ

∂
, which yields a general solution of 

( )1,1( , )
4

c

V

r t r r
F r t dV

r rπ ′

′ ′Φ − −
′= −

′−∫ . Therefore we can solve Eq. (1.2.7) to yield the 

scattered electric field ( , )sE r t  outside the medium ( 0ε ε= ) 

0 0

( )
3 0

0

( , )
( , )

ˆ( , )1             
4

i i

s
s

i k r t
i

r rV t t
c

D r t
E r t

r t n E e
d r

r r

ω

ε ε

δε
ε π

′ ′⋅ − ⋅

′−′ ′= −

∇ ×∇ × Π
= =

⎧ ⎫
′ ′− ⋅∇ × ∇ × ⎪ ⎪′= −⎨ ⎬′−⎪ ⎪⎩ ⎭

∫
 

( )
3 0

0

ˆ( , )
               .

4

i ii k r t
i

r rV t t
c

r t n E e
d r

r r

ωδε
πε

′ ′⋅ − ⋅

′−′ ′= −

⎧ ⎫
′ ′ ⋅∇ × ∇ × ⎪ ⎪′= ⎨ ⎬′−⎪ ⎪⎩ ⎭

∫       (1.2.8) 
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V ′  denotes the scattering volume (see Fig. 1-2-1), t′  means the scattering time 

occurring at r′ , and is observed at r  and time t . The time difference t t′−  is just 

the time duration required for the electromagnetic disturbance to propagate a distance 

from r′  to r . 

r

3d r′
r′

r r′−

 
 

        Fig. 1-2-1 The total radiated field observed at Detector is the superposition 
of those radiated from all infinitesimal elements 3d r′  at positions r′  with 
respect to the center of the illuminated volume [5].  

 

Since the detector is distant from the scattering medium, r r′−  can be expanded in 

a power series 

( )

2 2

2 2

( )( ) 2

  

ˆ ˆ         1 2 1   ,

r r

f f

r r r r r r r r r r

r r r rr r r k r k r r
r r

′

′ ′ ′ ′ ′− = − − = − ⋅ +

⎯⎯⎯→

′ ′⋅ ⋅⎛ ⎞ ′ ′≈ − ≈ − = − ⋅ = ⋅ −⎜ ⎟
⎝ ⎠

      (1.2.9) 

where ˆ
fk  is a unit vector in the direction of r . Then the following results are 

obtained 

( )1 ˆ  ,ft t k r r
c

′ ′≈ − ⋅ −                       (1.2.10) 

( )2

2

ˆˆ1 1 1 11   .ˆ
ff

f

k rk r
r r r r r rr k r

⎡ ⎤′⋅′⋅⎢ ⎥≈ = + + + ≈⎢ ⎥′− ′− ⋅ ⎢ ⎥⎣ ⎦

…            (1.2.11) 
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Substituting Eqs. (1.2.9), (1.2.10) and (1.2.11) into Eq. (1.2.8) and using i
i fk k

c
ω

= ≈ , 

we finally have 

( )
( )

( )

1 ˆ

3 0

0

ˆ

3 0

0

ˆ( , )
,

4

ˆ( , )
             

4

          

i i f

i
i i f

i k r t k r r
c

i
s

V

i k r t k r r
c

i

V

r t n E e
E r t d r

r r

r t n E e
d r

r

ω

ω
ω

δε
πε

δε
πε

⎡ ⎤⎛ ⎞′ ′⋅ − ⋅ − ⋅ −⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

′

⎡ ⎤′ ′⋅ − ⋅ + ⋅ −⎢ ⎥
⎣ ⎦

′

⎧ ⎫
′ ′⎪ ⎪⋅∇ × ∇ × ′= ⎨ ⎬′−⎪ ⎪

⎩ ⎭
⎧ ⎫

′ ′ ⋅∇ × ∇ × ⎪ ⎪′= ⎨ ⎬
⎪ ⎪
⎩ ⎭

∫

∫

( )

( ) ( )

( )

3
0

0

30

0

0

0

ˆ   ( , )
4

ˆ             ( , )
4

             
4

i i f

f i i f

f i

i k r t k r r
i

V

i k r t i k k r
r r i

V

i k r t
f f

d r r t n E e
r

E
d r r t n e e

r

E
e k k

r

ω

ω

ω

δε
πε

δε
πε

πε

⎡ ⎤′ ′⋅ − ⋅ + ⋅ −⎣ ⎦

′

′⋅ − ⋅ − ⋅

′

⋅ − ⋅

⎧ ⎫∇ × ∇ × ′ ′ ′= ⋅⎨ ⎬
⎩ ⎭

⎧ ⎫
′ ′ ′= ∇ ×∇ × ⋅⎨ ⎬

⎩ ⎭

= ×

∫

∫

( )

( ) ( )

3

30

0

ˆ( , )

ˆ              ( , )
4

i f

f i i f

i k k r
i

V

i k r t i k k r
f f i

V

d r r t n e

E
e d r e k k r t n

r
ω

δε

δε
πε

′− ⋅

′

′⋅ − ⋅ − ⋅

′

⎧ ⎫
′ ′ ′× ⋅⎨ ⎬

⎩ ⎭
⎧ ⎫

′ ′ ′= × × ⋅⎨ ⎬
⎩ ⎭

∫

∫     

( ) 30

0

ˆ              ( , )    .4
f ii k r t iq r

f f i
V

E
e d r e k k r t n

r
ω δε

πε
⋅ − ⋅ ′⋅

′

′ ′ ′= × × ⋅∫          

The scattering vector q  is defined as i fq k k≡ − , where ik  and fk  point in the 

direction of the incident wave and the wave toward the detector, respectively. 

Intuitively, we can view q  as the electromagnetic momentum transfer in the process 

of light scattering [7]. 

In general, scattered light is detected with polarization ˆ fn  to reveal dynamics 

of specific degree of freedom. Hence, the scattered field observed at the detector is 

given by 

( ) ( )ˆ, ,s f sE r t n E r t= ⋅  
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( ) 30

0

ˆ ˆ              ( , )
4

f ii k r t iq r
f f f i

V

E
n e d r e k k r t n

r
ω δε

πε
⋅ − ⋅ ′⋅

′

′ ′ ′= ⋅ × × ⋅∫  

( ) ( )
2

0 3

0

ˆ ˆˆ ˆ             ,     .
4

f ii k r tf iq r
f f f i

V

k E
e d r e n k k r t n

r
ω δε

πε
⋅ − ′⋅

′

′ ′= ⋅ × × ⋅∫    (1.2.12) 

The element ( ),if r tδε  of the dielectric fluctuation tensor is defined as 

( )
( )

0

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ      

ˆ ˆˆ ˆ ˆ ˆ      

if f f f i

f f f i i

f f f i f i

n k k n

n k k n n

n k k n n n

δε δε

δε δε

δε δε
=

= ⋅ × × ⋅

⎡ ⎤= ⋅ ⋅ ⋅ − ⋅⎣ ⎦

= ⋅ ⋅ ⋅ − ⋅ ⋅

         

ˆ ˆ           .f in nδε= − ⋅ ⋅  

Here we took advantage of the bac-cab rule and the fact that final polarization must be 

orthogonal to the scattered wave vector, i.e., ˆˆ 0f fn k⋅ = . Accordingly, Eq. (1.2.12) is 

further simplified to 

( ) ( ) ( )
2

0 3

0

, ,    .
4

f ii k r tf iq r
s if

V

k E
E r t e d r e r t

r
ω δε

πε
⋅ − ′⋅

′

′ ′= ∫          (1.2.13) 

From the above, it is clear that the existence of the dielectric fluctuation will induce 

light scattering away from the direction of the incident wave. 

 

11..33    AAuuttooccoorrrreellaattiioonn  FFuunnccttiioonn  ooff  SSccaatttteerreedd  PPhhoottoonnss  ffrroomm  aa  PPhhyyssiiccaall  

SSyysstteemm 

1.3.1 Basic Concepts of Autocorrelation Function  

Correlation function is measure of the similarity between two arbitrary signal 

waveforms [5, 7]. It provides a concise way of expressing the degree to which two 



 

 20

dynamical properties are correlated over a period of time. We shall discuss some 

features of correlation functions that are helpful to understand the essence of the 

signals from photocounts read by photodetector and to extract certain relevant 

dynamical information of the corresponding physical systems. 

To begin with, let us consider a physical property ( ){ },{ }i iY r p  that depends on 

the positions { }ir  and momenta { }ip  of all the components (they can be particles, 

molecules, etc.) in the system. By virtue of their thermal motions, these small 

components are constantly shoving with each other so that their positions and 

momenta are constantly changing in time, and so is the corresponding property Y . It 

is important to declare that although every single component must obey Newton’s 

laws of motion, their massive quantity makes their thermal motions appear to be 

somewhat random. We can view them as stochastic process legitimately, and this 

stochastic nature leads to erratic behavior of the property Y , that is fluctuation. In 

statistics, the most efficient way to extract information from a stochastic property is 

through its autocorrelation function. 

Generally, the stochastic and fluctuated property Y  will show a noise-like 

profile due to its random behavior (Fig. 1-3-1). 
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Fig. 1-3-1 Typical noise-like pattern of a physical property Y . The time 

axis is divided into discrete intervals, t  in width, and Y  means the 

time average of Y . 

 

The noise-like signal ( )Y t  possesses the following features： the property Y  

usually takes on different values at different positions in time axis, that is, 

( ) ( )Y t Y tτ+ ≠ , provided that 0τ ≠ . However, when τ  is small compared with the 

time scale characterizing the fluctuations in Y , ( )Y t τ+  will be very close to ( )Y t . 

As τ  increases, ( )Y t τ+  and ( )Y t  are likely getting less and less similar. With 

this notion in mind, we can say that ( )Y t τ+  and ( )Y t  are correlated when τ  is 

small, whereas ( )Y t τ+  and ( )Y t  are getting less and less correlated as τ  is 

getting larger. To specify this phenomenon more quantitatively, we need a measure of 

this correlation. An efficient and viable method is the autocorrelation function of the 

property Y  which is defined as 

0

1(0) ( ) lim  ( ) ( )  .
T

T
Y Y dt Y t Y t

T
τ τ

→∞
≡ +∫                (1.3.1) 

Here, a fact must be reminded that for time-invariant property, the corresponding 
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autocorrelation function possesses a feature as follows, ( ) ( ) (0) ( )Y t Y t Y Yτ τ+ = . 

In order to make the calculation of Eq. (1.3.1) workable, we discretize the time axis 

into discrete intervals with t  in width, such that jt j t= , n tτ = , and T N t= . 

Next, we replace integration with summation, and then Eq. (1.3.1) becomes 

1

1(0) ( ) lim
N

j j nN j
Y Y Y Y

N
τ +→∞

=

≅ ∑ . Here jY  denotes the thj  value of the property Y , 

which is counted from the beginning to the thj  interval. We are interested in how the 

autocorrelation function behaves or how it varies with time. To answer these questions, 

we must acquaint ourselves with the principle of Schwartz’s inequality [5] in advance, 

which states that 
2

2 2
j j j j

j j j
X Y X Y

⎛ ⎞⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ . Let us now take j j nX Y += , divide both 

sides by 2N  and take the limit N → ∞ , the above Schwartz’s inequality will lead to 

2 2

2 2 2

1 1 1 1

1 1 1 1lim lim lim lim
N N N N

j j n j j n jN N N Nj j j j
Y Y Y Y Y

N N N N+ +→∞ →∞ →∞ →∞
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
≤ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ . What the above 

inequality implies is that 2

1 1

1 1lim lim
N N

j j n jN Nj j
Y Y Y

N N+→∞ →∞
= =

≤∑ ∑  or 2(0) ( ) (0)Y Y Yτ ≤ . 

This result tell us an important feature of the autocorrelation function, namely, 

delayed autocorrelation value (i.e., 0τ ≠ ) will never exceed initial autocorrelation 

value (i.e., 0τ = ). To be more explicit, we would say that the autocorrelation 

function of a nonconserved, nonperiodic property decays from its initial value 2Y . 

For delays τ  large compared with the characteristic time for the fluctuation of Y , 

( )Y t  and ( )Y t τ+  are expected to become completely uncorrelated [5]. That is to 

say, 2lim (0) ( ) (0) ( )Y Y Y Y Y
τ

τ τ
→∞

= = . This means that the autocorrelation 
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function of a nonperiodic property decays from 2Y  to 2Y  in the course of time. 

Now that we have caught on some basic features of the autocorrelation function 

of certain physical propertyY , we are capable of proceeding with further deeper 

discussion about practical properties, such as signals generated by photodetector after 

which receives photons impinging on it. In light scattering experiments, 

photodetectors, inclusive of photomultipliers (PMTs) and photodiodes (PDs), act as 

nonlinear square-law detectors [7]. Photons impinging on the photodetector produce 

amplified photonelectron current pulses at its output. However, we must stress that 

only a fraction of the input photons are responsible for the output photoelectron pulses. 

Besides, the quantum efficiency of the photodetector must also be taken into account 

before the experiment is conducted. Because of the above two uncertain factors, the 

whole process of the detection of photons is a statistical process. Hence, we must 

introduce probability to proceed with the analysis by the same token. The probability 

distribution of sensing n  photoelectron pulses by an ideal photodetector in a 

sampling time interval T  from t  to t T+  is ( ) ( )( )1, , !
n I Tp n t T I T en

αα −= , 

where α  is a coefficient that is proportional to the quantum efficiency with which 

the photons are capable of ejecting electrons as well as the effective gain of the 

photodetector, i.e., α =(quantum efficiency) × (photodetector gain), I  is a 

short-time average intensity, and T  is the sampling time period. The average number 
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of photoelectron pulses emitted during the sampling period T  is 

( ) ( ) ( )
( )0 0 1

( ) , ,
! 1 !

n n

I T I T

n n n

n I T I T
n T n p n t T e e

n n
α αα α∞ ∞ ∞

− −

= = =

= ⋅ = =
−∑ ∑ ∑  

( ) ( )
( )

1

1
          

1 !

n

I T

n

I T
e I T

n
α α

α
−

∞
−

=

=
−∑  

( )I T I Te I T e I Tα αα α−= =  

With the help of the above relationship, we then get 

( )22 2 2 2 (2)( ) ( ) ( ) ( ) ( )   ,n t n t T I t I t T I t gτ α τ α τ+ = + =      (1.3.2) 

where  

( )
* *

(2)
2 2*

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

E t E t E t E t I t I t
g

I tE t E t

τ τ τ
τ

+ + +
= =         (1.3.3) 

is the normalized intensity correlation function. At this moment, we reach an 

important conclusion: the intensity autocorrelation function can be completely 

determined by means of the photon-count autocorrelation function. That is to say, the 

information of the second-order correlation function ( )(2)g τ  can be completely 

extracted from the information of the output of the photodetector. 

 

1.3.2 Implementation of Autocorrelation Function 

The most promising technique, which makes best use of the digital nature of 

photon statistics of scattered light, is photon-count autocorrelation function. The 

autocorrelation function of photoncounting fluctuations is related to the 
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autocorrelation function of the short-time-averaged intensity fluctuations by the 

relationship 

( )22 2 2 2 (2)( ) ( ) ( ) ( ) ( )   ,n t n t T I t I t T I t gτ α τ α τ+ = + =      (1.3.2) 

where ( )n t  is the number of photocounts (i.e., photoelectron counts) during the time 

interval t  to t T+  with T  being the sampling time which satisfies the condition 

cT τ , where cτ  is the characteristic decay time of photon-count or intensity 

fluctuations (not of the source). ( )I t  is the short-time-averaged (over T ) intensity 

of light incident on the photodetector at t . α  is the effective quantum efficiency of 

the whole light-collecting system. This relationship allows us to get ( ) ( )I t I t τ+  by 

simply measuring ( ) ( )n t n t τ+ . 

There are several ways to measure ( ) ( )n t n t τ+ . In this thesis, all the measures 

are based on the digital correlator technique. Here, we shall discuss its basic operation 

principles. For a sequence of photoelectron pulses with ( )in t  as random variables 

(due to its Poissonian nature), as shown in Fig. 1-3-2, the average product ( )M τ  

corresponding to the specific delay time τ  for the photon-count autocorrelation 

function is defined by 

1

1( ) ( ) ( ),       1,  2, 3, ,  
N

i i
i

M n t n t L
N

τ
−

+
=

= =
− ∑ …           (1.3.4) 

where Tτ =  and L N . N  is the number of samples of counts measured over 

the total time duration NT  with T  being the sampling time interval for each n ; 
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L  is the longest delay-time index with delay-time increment T  so that the longest 

delay time L LTτ = . A clear example with a specific delay time 2 2Tτ =  is shown in 

Fig. 1-3-2. 

(1) 3n = (2) 1n = (3) 2n = (4) 0n = (5) 4n =

(1) (3) 6n n× =

(2) (4) 0n n× =

(3) (5) 8n n× =

T

 
Fig. 1-3-2 Computation of the photoelectron-count autocorrelation function 
at stage 2 2Tτ = . ( )in t , denoted by ( )n i , is the number of photocounts 
detected at time it  over a sampling time T . In this case, 

( ) ( )( )
2

2
1

1 1(2 ) ( ) ( ) 6 0 8 .2 2
N

i i
i

M T n t n tN N
−

+
=

= = + + +− −∑  

In our experiment, we use a digital correlator to carry out Eq. (1.3.4) and the whole 

implementation process is real-time since the data processing rate is generally high in 

state-of-the-art hardware correlators. Fig. 1-3-3 shows  

θ

( )in t T− ( 2 )in t T− ( 3 )in t T− ( )in t LT−
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        Fig. 1-3-3 Schematic illustration of Dynamic Light Scattering experiment 
and operation of the digital correlator. 1, 2, 3, ,  L…  are delay-time indices 
with delay-time increment T  [7]. 

 

A digital correlator samples the incident signals from a photodetector. These sampled 

signals are converted into photonelectron pulses. By counting the number of these 

photonelectron pulses (referred to as photon events) occurring in a sample timeT , we 

can get a train of counting numbers ( )in t , ( )in t T+ , ( 2 )in t T+ ,… , and then 

compute the average products corresponding to different delays as follows, 

1

1 1
1

1( ) ( ) ( )  ,
1

N

i i
i

M T n t n t
N

τ
−

+
=

= =
− ∑  

2

2 2
1

1( 2 ) ( ) ( )  ,
2

N

i i
i

M T n t n t
N

τ
−

+
=

= =
− ∑  

                                                      (1.3.5) 

1

1( ) ( ) ( )  .
N L

L i i L
i

M LT n t n t
N L

τ
−

+
=

= =
− ∑  

In hardware correlator’s internal logic, the input signal (equivalent to using ( )in t ) is 

routed into two paths with one path keeping ( )in t  unchanged as a reference 

multiplier and the other path introducing multiple delays of the original ( )in t , 

allowing all channels’ multiplications in Eq. (1.3.5) to be performed in parallel, just 

like that shown in Fig. 1-3-3. Having completed all the implementation processes for 

realizing the calculation of Eq. (1.3.3), we can say that the goal of getting the 

autocorrelation function of the fluctuations from certain physical property has been 

presented successfully. 
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1.3.3 Test Run of Flex02-01D Digital Correlator 

Flex02-01D is a state-of-the-art commercial correlator, which is made by 

Correlator.com. We use it in multiple tau mode to calculate autocorrelation function. 

The term “Multiple tau＂means that it uses various delay-time differences between 

any two consecutive delay times, instead of a constant one in linear mode, to calculate 

Eq. (1.3.3). Multiple tau technique has the advantage of higher speed than that of 

single tau scheme since delay time advances in a hopping fashion. Moreover, the 

characteristics of 1.5625 ns minimum sampling time and 1152 real-time channels 

make Flex02-01D work precisely and efficiently. In this subsection, we shall 

demonstrate the measurement of identifying the hydrodynamic diameter of Au 

nanoparticles to verify the performance of Flex02-01D and our dynamic light 

scattering apparatus. 

Before go into the technical details, let us first concisely discuss about how to 

determine the hydrodynamic diameter of the solute via the autocorrelation function 

measurement with dynamic light scattering [8,9,10]. Consider that a monochromatic 

plane wave is incident on the solution in which identical micrometer-scale particles 

undergo Brownian motion. The incident photons are scattered due to the optical 

inhomogeneity produced by the mixing of small particles and solvent. Far from the 
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scattering region, the radiation scattered from each particles is approximated by an 

outgoing spherical wave, which is shown in Fig. 1-3-4, and the electric field perceived 

by the detector will be the sum of the scattered spherical waves from all particles in 

the scattering region.  

fk
2

θ

2 ˆ
i ik kπ

λ
=

( )4 ˆsin 2q qπ θ
λ

=

O

P

ik

fk

O

PA
B

θjr

( )a ( )b

        
Fig. 1-3-4 (a) Incident plane waves (dotted lines) travel in the direction of 

ik . Spherical scattered wavefronts (dotted circles) from spheres are brought 

about. The detector will be placed in the direction of fk  that is shown by 
interference of two particles’ scattered spherical wave; O  represents the 
reference sphere, and P  represents another sphere located in jr  relative 

to O  [9]; (b) The scattering is quasi-elastic so that i fk k=  and 

( ) ˆ2 sin 2iq k qθ= . 

 

The scattered spherical wave from a stationary particle is of the form having typical 

sinusoidal electric field strength variation, ( )0
0

i tE e φ ω− , where 0E  is the amplitude of 

the oscillation that depends on various properties of the scattering system, such as 

incident wave’s polarization, polarizabilities of the particles and solvent, and 

scattering angle, etc.; 0ω  is the angular frequency of the oscillation that is the same 

as that of the incident plane wave. If the detector is far from the scattering volume, the 
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variations in 0E  from particles at different positions are negligible. That is, 0E  can 

be considered as a constant for all identical particles observed at a single scattering 

angle. However, φ  is highly sensitive to the position of the scatterer and would 

suffer severe 2π  change even when the particle moves in a distance as short as a 

wavelength. Variations in φ  as the particles move about lead to variations in the 

electric field strength and are thus the source of the intensity fluctuation to be 

measured in this experiment. 

In Fig. 1-3-4 (a), O  is taken as the reference origin with 0φ = . For the thj  

sphere at jr  away from O , it scatters a spherical wave with its phase jφ . From 

direct perspective, jφ  would be 2π λ  times the path length difference between 

waves scattered from the origin and from jr . If the detector is far from the scattering 

volume, jφ  can be expressed as  

( ) ( ) ( )2 2 ˆ ˆ .j i j f j i f jAP PB k r k r k k rπ πφ
λ λ

= + = ⋅ − ⋅ = − ⋅    

Recall that we have defined the scattering vector by i fq k k≡ −  in subsection 1.2.2. 

The above jφ  can then be rewritten as 

 .j jq rφ = ⋅                           (1.3.6) 

The total electric field is the sum of the individual field scattered by all particles 

( )0( )
0

1
( ) ,  j

N
i t t

j
E t E e φ ω−

=

= ∑  where N  is the total number of scatterers. It follows that 

the intensity is of the form 
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( )2 ( ) ( )2
0( ) ( )   .j ki t t

j k
I t E t E e φ φβ β −= = ∑∑              (1.3.7) 

Since all the particles randomly diffuse, jr  varies randomly. From Eq. (1.3.6), jφ  

thus varies randomly, too. Accordingly, ( )E t  and ( )I t  become random variables 

and must be treated in a statistical way. The autocorrelation technique discussed in the 

former subsections is now serviceable. 

The unnormalized autocorrelation function for the intensity ( )I t  is 

(2) ( ) ( ) ( )G I t I tτ τ∗= + . By taking ( )I t  from Eq. (1.3.7) into (2)G , we obtain 

( ) ( )( ) ( ) ( ) ( )(2) 2 4
0( )   .  j k mi t t i t t

j k m
G E e eφ φ φ τ φ ττ β − − + − += ∑∑∑∑     (1.3.8) 

We must emphasize two important facts about Eq. (1.3.8):  

1. The average of the product is the product of the average if terms are 

statistically independent with each other. 

2. ( ) 0ji te φ = . This is because the particles move about randomly over large 

distances compared with the wavelength within the averaging time. ( )tφ  

varies through many cycles of 2π , and since cos sinie iφ φ φ= + , both 

cosφ  and sinφ  will vary through many oscillations. The average of 

cosφ  and sinφ  over many oscillations is zero, ( ) 0ji te φ =  is verified. 

The above two facts ensure that any jk m  term in Eq. (1.3.8) will be averaged to 

zero if any one index is different from the other three indices. So, there is only one 

way to make Eq. (1.3.8) nonzero, that is, pairs of indices are equal. There are three 
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such cases that will be discussed as follows, 

 

 

 

 

In case 2 and case 3, 2S  and 3S  can both be rewritten as product of their average. 

Since thj  and thk  particles’ motions are statistically independent, we then have 

2 2 2 3 3 3   and   S s s S s s∗ ∗= = , where ( ) ( )( ) ( ) ( ) ( )
2 3   and   i t t i t ts e s eφ φ τ φ φ τ− − + − + += = . With 

the help of Eq. (1.3.6), the above 2s  and 3s  then give ( , )
2

iq r ts e τ⋅= , 

( ) fact 1
2 ( ) ( , ) 2 ( ) ( , )

3

0, from fact 2

0iq r t r t iq r t iq r ts e e eτ τ− ⋅ + − ⋅ − ⋅= = = , where ( , ) ( ) ( )r t r t r tτ τ≡ + − . 

Now, the only remaining question is how we calculate 2s . For simplicity, let us take 

the x-axis along the scattering vector q  so that q r q x⋅ = ⋅ . Divide time-axis into 

time steps 0 1, , t t …  spaced equal interval τ  apart over the entire averaging time, 

1.   =j k and m= = ：assuming that N  represent the number of the 

scatterers, there should be 2N  pairs for this case. When j k=  and 

m= , the exponential factor in Eq. (1.3.8) is always unity. 

2. ,  ,   j and k m but j k= = ≠ ：there should have 2N N−  pairs for this 

case, and the exponential factor of each such term becomes   

      ( ) ( )( ) ( ) ( ) ( )
2 .j j k ki t t i t tS e eφ φ τ φ φ τ− − + − +=   

3. ,  ,   j m and k but j k= = ≠ ：there should have 2N N−  pairs for this 

case, and the exponential factor of each such term becomes 

         ( ) ( )( ) ( ) ( ) ( )
3 .j j k ki t t i t tS e eφ φ τ φ φ τ− + + + +=   
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and 0 1, , x x …  are the particle’s x-coordinates corresponding to 0 1, , t t … , 

respectively. Since the particles undergo Brownian motion, the values of 

1j j jx x x −≡ −  will be random variables. They distribute with the probability density 

( )p x of a normal random variable mentioned in subsection 1.1.2. We then have 

( )2 22
2 2

1 .
2

 xiq xs e e d xσ

πσ

∞ −⋅

−∞
= ∫ By employing Euler formula, 

cos( ) sin( )iq xe q x i q x⋅ = ⋅ + ⋅  and taking this expansion into the above 2s  

expression, we can simplify the calculation because the sine term is an odd integrand 

over an even integration interval and therefore vanishes. The remaining cosine term 

can be easily integrated with the help of Gaussian cosine integral 

22
4cos( )  
k

aaxkx e dx e
a
π∞ −−

−∞
=∫  and gives ( )2 22

2 2

1 cos( ) 
2

xs q x e d xσ

πσ

∞ −

−∞
= ⋅∫  = 

2 2

2
2

1
2  

2

q

e
σ

σ π
πσ

− 2 2

2
q

e
σ−

= . 

Up to now, we have developed the knowledge needed for writing down an 

analytic expression for (2)G . Recall that the three cases for Eq. (1.3.8), there are 2N  

terms each contributing unity and 2N N−  terms each contributing 
2 2

2 2
qs s e σ∗ −= . 

(2)G  is thus of the analytic form 

( ) 2 2(2) 2 4 2 2
0( )   .qG E N N N e στ β −⎡ ⎤= + −⎣ ⎦            (1.3.9) 

In subsection 1.1.3, we have mentioned that Einstein had deduced the mean-square 

displacement of Brownian particle to be 2
0( ) 2 ( )x t D t t= − . This means the 

variation of the particle’s displacement is proportional to the time interval taken as it 
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travels in such displacement. So, 2σ  in Eq. (1.3.9) is exactly 2 ( )x t  and 2σ  is 

accordingly of the form 2 2Dσ τ= . Eq. (1.3.9) can be rewritten as 

( ) 2(2) 2 4 2 2 2
0( ) DqG E N N N e ττ β −⎡ ⎤= + −⎣ ⎦ . Thus, we can conclude that the normalized 

second-order intensity autocorrelation function (2)g  shall be a constant plus a 

decaying exponential just as (2)G  is, which yields the form 

(2) ( )   ,cg A Be τ ττ −= +                    (1.3.10) 

where 1A ≅  because of the effect of normalization and 2

1
2c Dq

τ ≡  is the 

characteristic decay time of the autocorrelation function. After a series of derivations, 

we have derived an explicit analytic expression Eq. (1.3.10) for the intensity 

autocorrelation function from Brownian motion measurement, and will use this 

expression as our fitting model for the raw data measured in the test run later on. 

In 1851, an English scientist George G﹒Stokes derived an equation for drag 

force exerted on very small spherical particles in a viscous fluid by solving a 

condition-limited case of the unsolvable Navier-Stokes equation: 3   ,F d vπ η=  

where F  is frictional force, d  is the hydrodynamic diameter of the spherical 

particle, η  is the fluid viscosity, and v  is the particle’s velocity. This equation 

implies that the friction constant for this fluid system is  

3   .dγ π η=                        (1.3.11) 

This is the so-called Stokes’ law. Eq. (1.1.22) told us that Bk T
D

γ = . If we replace the 
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γ  with 3 dπ η  as Stokes suggested in Eq. (1.3.11), we shall obtain the well-known 

Stokes-Einstein relation 

 .
3

Bk T
D

dπη
=                       (1.3.12) 

In Eq. (1.3.10), we have obtained 2

1
2c Dq

τ ≡ . By taking D  suggested by the 

Stokes-Einstein relation and q  suggested by Fig. 1-3-4 (b) into cτ ’s denominator 

and making appropriate rearrangement, we finally get a serviceable formula that can 

be used to determine the hydrodynamic diameter of the solute to be measured in the 

following test run, 

2
2

2
0

32
sin   ,

3 2
B cn k T

d
π τ θ

ηλ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                  (1.3.13) 

where 0λ  is the incident wavelength in vacuum and n  is solution’s index of 

refraction. 

12- nm diameter Au nanoparticles were used for the test samples of this study. 

The experimental setup is sketched in Fig. 1-3-5. 

 

P

P
L
D D D

M

M

M

Sample

 

Fig. 1-3-5 Schematic experimental setup for determining particle size in the 
sample solution. M:mirror ; P:polarizer ; L:lens ; D:diaphragm. 
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A series of different concentration solutions with solutes being the Au nanoparticles 

were tested. We used a He-Ne laser of 632.8 nm  wavelength with an output power 

of 15 mW as our light source. The laser was focused onto the sample by a lens. After 

passing through the sample, the strong forward unscattered light was directed into a 

homemade beam dump. A silicon avalanche photodiode (Si APD) was used to detect 

the scattered light at 90°  scattering angle. The detected photons were converted into 

photoelectron pulses, and these pulses were fed into the Flex02-01D digital correlator 

to calculate (2)g  via Eq. (1.3.2). The calculation result was shown on PC’s monitor 

in real time.  

To obtain satisfactory accuracy, it is necessary to average the correlator output 

over a long enough time; generally to attain a statistical uncertainty of 1 % requires a 

measurement over 10,000 characteristic decay times of the autocorrelation function 

[11]. In our test run, the solute particles with known diameter can suggest how long 

the measuring time should be in order to reach the desired statistical uncertainty less 

than 1%. From Eq. (1.3.13), by taking d  to be 12 nm  and the other parameters 

taking proper values (will be given later), cτ  is approximated in the order of 410−  

sec.. This estimated value suggests that we shall use a measuring time at least 

410000 10 1−× =  sec. in order to reach a statistical uncertainty that is lower than 1%. 
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In the following test run, the measuring times were all set to be 180 sec., thus leads to 

a statistically uncertainty that is much lower than 1%. 

Our samples were Au nanoparticles dissolved in a variety of deionized 

water/ethylene glycol (E.G.) mixture by varying the concentrations of ethylene glycol 

(E.G.) in water. Six different weight percent of E.G. in water were prepared: 0% , 

20% , 40% , 60% , 80% , 100% . The higher the E.G. concentration is, the more 

viscous the solution exhibits. Fig. 1-3-6 shows the raw data (open symbols) of the 

measured (2)g  in the case of concentration 100% ethylene glycol solution in which 

12- nm  Au nanoparticles suspend and the fitting result (the solid red-color curve). 
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        Fig. 1-3-6 (a) The intensity (kilo-photocounts per second) trace recorded 
the scattering light intensity scattered from 100% (wt%) ethylene glycol 
solution in which 12-nm Au nanoparticles suspended; (b) the 
autocorrelation function calculated from the intensity information in (a). 

 

Eq. (1.3.10) suggests that (2) ( ) cg A Be τ ττ −= +  can be used as the fitting model 

for the autocorrelation function from solution with monodisperse Brownian particles. 
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However, there are in fact no perfect monodisperse Brownian particles. There must be 

distributive in particle’s size, making particles appear polydisperse. This implies that 

we should make some modifications on Eq. (1.3.10) in order to achieve better fitting 

quality. The modification strategy we adopted is introducing a stretching parameter s  

to the decaying exponential part, so as to get a more flexible fitting model shown 

below 

( )(2) ( ) exp[ ]  .s
cg A Bτ τ τ= + −               (1.3.14) 

The effect of small deviations from central cτ  is incorporated into the stretching 

parameter s , in other words, s  can serve as an equalizer that equalizes the effect of 

polydisperse system and the effect of monodisperse system plus s  itself. Thereafter, 

we shall use Eq. (1.3.14) to fit the raw data measured by Flex02-01D digital correlator, 

and then obtain the useful fitting parameter cτ  to determine the solute particle’s 

hydrodynamic diameter via Eq. (1.3.13). Take the case in Fig. 1-3-6 as an example, 

the nanoparticle’s hydrodynamic diameter in such a solution is calculated in such a 

way 

( ) ( )( )( )
( )( )

2
2

100% 2
0

2 23 5 5
2

29

32 sin
3 2

32 1.4308 1.38 10 301 46.527 10 3.6292 10  90       sin
23 0.015367  Pa s 632.8 10  

       10.773 (  0.840)    ,

B cn k Td

K s

m

nm

π τ θ
ηλ

π − − −

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

× × ± × °⎛ ⎞= ⎜ ⎟
⎝ ⎠⋅ ×

≅ ±

where the related parameters and the corresponding units are shown during the 
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process of calculation. By the same token, the nanoparticle’s hydrodynamic diameters 

corresponding to the solutions with different viscosities can be derived in the same 

way, the results and the related parameters are given below, 

 

 n  η  (Pa．s)
cτ  ( 510 s− ) diameter (nm) 

0 % 1.3306 0.000836 6.5543 (± 0.6827) 24.125 (± 2.513) 

20 % 1.3507 0.001313 8.4518 (± 1.3922) 20.411 (± 3.362) 

40 % 1.3707 0.002156 12.163 (± 1.4132) 18.422 (± 2.140) 

60 % 1.3907 0.003823 21.309 (± 1.8196) 18.736 (± 1.600) 

80 % 1.4108 0.007274 30.575 (± 2.7496) 14.541 (± 1.308) 

100 % 1.4308 0.015367 46.527 (± 3.6292) 10.773 (± 0.840) 

     
Table 1-3-1 The 12 nm  nanoparticle’s hydrodynamic diameters correspond to 
various viscous solutions; E.G. wt% means ethylene glycol’s percentage of the 
water solvent; n  represents index of refraction; η  represents viscosity of 
solution; cτ  represents characteristic decay time of the autocorrelation function. 

 

It is not contradictory that nanoparticle appears to have different hydrodynamic 

diameter in different viscous solutions since it possesses different Debye length in 

different viscous solutions. Debye length is defined as the thickness of the electric 

double layer that surrounds the nanoparticle. Pure water produces a larger double 

layer around a nanoparticle because of its ultra-low ionic strength, and this larger 

E.G. wt % 
Parameter
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double layer reduces the diffusion speed of the nanoparticle and then results in a 

larger apparent hydrodynamic diameter. The more ethylene glycol are added to the 

water solvent, the higher ionic strength the solvent behaves; and the higher ionic 

strength the solvent behaves, the thinner double layer the nanoparticle possesses, this 

leads to the smaller apparent hydrodynamic diameter. This trend clearly appears in 

Table 1-3-1. 

Our Flex02-01D digital correlator can give us quite accurate answers given in 

Table 1-3-1 and has the capability of telling such a subtle hydrodynamic diameter 

differences at the nm  scale. The successful test run guarantees the excellent 

performance of the Flex02-01D digital correlator, and we shall use it to probe the 

other physical system in the later chapters. 
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CChhaapptteerr  22..    PPrroobbiinngg  tthhee  TTwwiisstt  AAnncchhoorriinngg  SSttrreennggtthh  ooff  

LLiiqquuiidd  CCrryyssttaall  MMoolleeccuulleess  oonn  VVaarriioouuss  AAlliiggnnmmeenntt  SSuurrffaacceess  

  

22..11  OOvveerrvviieeww  ooff  LLiiqquuiidd  CCrryyssttaallss  PPhhaasseess  

Generally speaking, matters can exhibit three physical states, solid, liquid, and 

gaseous phases. These three states of matter can be classified according to their 

degrees of spatial order. The molecular constituents in a solid material not only 

occupy specific spatial positions, but they also orient in a specific spatial direction. 

This is because there are large attractive forces holding these molecules in place, even 

though they might be allowed to vibrate. The situation in liquid state is quite different 

in that the molecules of this state neither occupy specific average positions nor orient 

in a specific direction. These molecules are free to diffuse about in a random fashion 

and constantly change their orientations. The degree of order in a liquid is therefore 

much less than that in a solid. Attractive forces still exist in a liquid, but they are 

much weaker than forces in a solid because the intermolecular distances in a liquid are 

larger than those in a solid. In gaseous state, the most freely and chaotically molecular 

motion makes the intermolecular distances much larger than those in liquid state, and 

thus causes the attractive forces in between are much less than those in liquid state. 

The degree of order in gaseous state is therefore the least one among all states of 
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matter [12, 13, 14]. 

In late 19th  century, scientists found that there exists a number of mesophases 

that possess a degree of order intermediate between those of the conventional liquid 

and solid states. The molecules in these mesophases retain somewhat orientational 

order, but lack most of their positional order. These mesophases are named liquid 

crystals (LCs) since they preserve a combination of properties that are commonly 

associated with both liquids (fluidity) and crystals (anisotropy). 

LCs consist of several subphases categorized by their spatial arrangement. The 

main theme of this thesis work will focus on the two among them: nematic and 

smectic phases. Let us take an elongated molecular system as our example. Elongated 

molecules bump into each other less when they tend to point in the same average 

direction, a fact that acts to stabilize aligned phases. This preferred average direction 

is called the director of the LC, and is denoted by n̂ . In nematic phase, the molecules 

are positionally random just as in liquid phase, whereas they are orientationally 

correlated, they point in the direction of n̂ . Generally, nematic molecules are 

centrosymmetric and optically uniaxial since their physical properties in the two 

mutually orthogonal directions perpendicular to the director are physically equivalent. 

As to smectic phase, not only do the molecules in this phase possess small amount of 

orientational order, but there is also a small amount of positional order. These 
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molecules are free to bounce around randomly, but they tend to point along the 

director and arrange themselves in layers. The schematic representations are shown in 

Fig. 2-1-1. 

n̂n̂

         
Fig. 2-1-1 Spatial arrangements of elongated molecules in various phases. 
Smectic and nematic phases belong to liquid crystalline phase； n̂  means 
their directors [6]. 

 

22..22  TThheeoorreettiiccaall  BBaacckkggrroouunndd  ooff  MMoolleeccuullaarr  FFlluuccttuuaattiioonnss  iinn  LLiiqquuiidd    

CCrryyssttaallss  

2.2.1 Broken Symmetry and Elementary Excitations 

The concepts of symmetry and broken symmetry are similar in solid crystals and 

more general condensed-phase materials. In solid crystals, a given crystalline 

configuration belongs to one of the 230 space groups [15]. These groups all possess 

positional and translational order of constituent atoms or ions. In condensed matter, 

taking LCs as an example, they could be either positionally disordered or 

orientationally disordered. Here, the concept of orientational order can be roughly 

explained by the degree of the molecular orientations’ tendency toward the same 

direction. With these concepts in mind, we can proceed with the discussion of the 
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comparison between the phenomena of the positional order in solid crystals and the 

orientational order in LCs. 

Another useful concept in describing the constituent elements’ behavior is 

collective excitations. This term describes phenomena that a large number of 

constituents act coherently and cooperatively. In solid crystals, one of these collective 

excitations is phonon, which is a collective behavior and represents oscillations of 

crystal lattices as a whole. Each constituent of the lattices cooperates in this collective 

motion coherently with its neighbors, which implies the same oscillating frequency of 

all constituents for a given phonon mode [15]. The analogy to phonons in solid 

crystals are molecular orientational fluctuations in LCs. Molecules in LCs are usually 

positionally disordered, but they always have somewhat orientational order and their 

orientations fluctuate coherently over fairly long distances. The collective excitations 

in solid crystals (phonons) are usually underdamped, whereas the collective 

excitations in LCs (molecular orientational fluctuations) are always overdamped. The 

oscillatory behaviors of phonons result from their positionally ordered configurations 

that would reduce the probability of bumping into each other, so they are relatively 

free to oscillate. However, in LCs the inertial forces are much smaller than the viscous 

force, a result originating from the positional disorder of the spatial configurations of 

LC constituents and the relation between the molecular fluctuations and their energy 
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dissipations as mentioned in Chapter 1. 

Let us introduce the dispersion relations for phonons in solid crystals and 

orientational fluctuations in nematic LCs to gain further insight into their comparison. 

The dispersion relations are illustrated in the schematic diagram of Fig. 2-2-1. 

( ) ( ) ( )0ˆ , ,n r t n r n r tδ= +

q

( )qω1τ −

( )1 2q qτ − ∝

q

t
n e τδ −∝ ( )  qω

 

 

Some similarities and differences of the dispersion relations between liquid crystals 

and solid crystals could be found. From the figure, there both exist zero-frequency 

mode. In solid crystals, the long-wavelength limit of acoustic phonon modes always 

Fig. 2-2-1 The comparison 
of positional order in solids 
crystals and orientational 
order in nematic liquid 
crystals; the bottom two 
figures are their 
corresponding dispersion 
relations. Note that they 
both show the presence of 
zero-frequency modes; q  
is wavevector of fluctuation, 

0n  is the average 
orientation of the director, 

nδ  is the fluctuation of the 
director, τ  is the relaxation 
time of nδ , ( )qω  is the 
oscillating frequency of the 
phonons [15]. 
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leads to zero-frequency mode. In nematic LCs, the long-wavelength limit of 

molecular orientational fluctuations also leads to zero-frequency mode. However, 

their q -dependent behavior are quite different. The acoustic phonon in solids shows 

linear dispersion: qω ∝ , whereas the dispersion relation in nematic LCs is parabolic: 

1 2qτ − ∝ , which is a characteristic feature of overdamped systems. 

The existence of zero-frequency modes is closely related to the spontaneous 

breaking of the continuous symmetry in a system. Their relation is unveiled in the 

context of Goldstone theorem: if the ground state of a nonrelativistic many-body 

system is one with broken continuous symmetry, a gapless branch of collective 

excitations of this system exists and tries to restore the lost symmetry. The term

“gapless＂means that in the limit of zero q , the frequency (or the relaxation rate) of 

collective excitations also approaches zero, which are shown in the bottom two 

illustrations in Fig. 2-2-1. 

It is this zero-frequency (long-wavelength) mode that makes all the neighboring 

atoms in solid crystals move coherently and all the neighboring molecules in LCs 

rotate coherently when external perturbations are exerted on them. These phenomena 

are depicted in the following figure. 

d d d d φ φ
( )a ( )b
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        Fig. 2-2-2 (a) coherent collective excitations in solid crystals; (b) coherent 
collective excitations in liquid crystals. 

 

The coherent nature of collective excitations in matter can be fully explained by the 

existence of this zero-frequency Goldstone mode, and this concept will be of great 

help for our later discussion. 

 

2.2.2 Orientational Fluctuations in Thin Nematic Liquid Crystal Cells 

The long-wavelength fluctuations of the optical axes of molecules in nematic 

LCs give rise to light scattering because of the existence of dielectric constant 

fluctuations due to the molecular anisotropy, which is illustrated in Eq. (1.2.13); and 

further, since these thermally-induced orientational fluctuations are not static, the 

scattering light flickers. The dynamics of these fluctuations is thus revealed in this 

flicker phenomenon. To probe this phenomenon with our dynamic light scattering 

apparatus described in Chpater 1, we must prepare nematic LC cells with the director 

of LC pointing along the easy axis, which can be defined to the direction of surface 

treatment in advance. There are several surface treatment methods for producing 

aligning layers for LC devices nowadays, and we shall discuss them in the later 

content. 

When LC materials deform with external perturbations, three types of 
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deformation occur, they are splay, twist, and bend, whose schematic representations 

are sketched below, 

ˆ 0n∇ ⋅ ≠ ˆ ˆ 0n n⋅∇× ≠ ˆ ˆ 0n n×∇× ≠  
        Fig. 2-2-3 The three types of deformation in nematics. n̂  represents their 

director [6]. 

 

In mechanical point of view, mechanical internal energy inside a physical system 

varies when the system suffers mechanical deformation. Hence, the deformed LC 

exhibits a distortion energy density that shall be expressed in terms of the three types 

of mechanical deformation 

( ) ( ) ( )2 2 2
1 2 3

1 1 1ˆ ˆ ˆ ˆ ˆ   ,
2 2 2dE K n K n n K n n= ∇ ⋅ + ⋅∇ × + ×∇ ×       (2.2.1) 

where ( )1, 2,3iK i =  are Frank elastic constants associated with the three types of 

deformation: 1K  corresponds to splay with ˆ 0n∇ ⋅ ≠ ; 2K  corresponds to twist with 

ˆ ˆ 0n n⋅∇× ≠ ; and 3K  corresponds to bend with ˆ ˆ 0n n×∇× ≠ . The unit of 

( )1, 2,3iK i =  is energy per length, and thus the unit of dE  is energy per cubic 

length. 

For nematic LCs in a cell, their director n̂  always suffers small fluctuation nδ  

from its average orientation 0n . The small fluctuation 0ˆn n nδ = −  will relax to zero 

in a certain time [14]. For simplicity, we choose 0n  along ẑ  and decompose nδ  
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in two spatially independent directions x̂  and ŷ  to give 

( ) ( ) ( ) ( ) ( )0ˆ ˆ ˆˆ, , , ,   .x yn r t n r n r t z n r t x n r t yδ= + = + +        (2.2.2) 

Taking ( )ˆ ,n r t  of Eq. (2.2.2) into Eq. (2.2.1), the distortion energy reduces to 

2 2 22

1 2 3
1 .
2

y y yx x x
d

n n nn n n
E K K K dr

x y x y z z

⎧ ⎫⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞⎪ ⎪⎢ ⎥= + + − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢⎝ ⎠ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫   (2.2.3) 

Moreover, in order to retrieve useful information from the dispersion relation 

mentioned in subsection 2.2.1, we appleal to the language used in wave vector space. 

We first Fourier transform ( )xn r  and ( )yn r  into ( )xn q  and ( )yn q  with 

( ) ( ) iq r
j j

q
n r n q e ⋅= ∑ , j = x , y . By substituting the above transforms into Eq. (2.2.3), 

the total distortion free energy becomes 

3
dE E d r= ∫  

( ) ( ) ( ) ( )

( ) ( )

2 2

1 2

22 2
3

     ,
2

x x y y x y y x

q
x y z

K n q q n q q K n q q n q qV

K n q n q q

⎧ ⎫+ + − +⎪ ⎪= ⎨ ⎬⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∑      (2.2.4) 

where V  is the sample volume. It is convenient to diagonalize the quadratic form in 

Eq. (2.2.4) by a linear transformation: ( ) ( ) ( )ˆ ˆ  x yn q n q x n q yδ = + →  

( ) ( ) ( )1 1 2 2ˆ ˆn q n q e n q eδ = +  for any given q , where the unit vector 2ê  is normal to q  

and 0n , and 1̂e  is normal to 2ê  and 0n . The new coordinates system is shown in 

Fig. 2-2-4. 
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        Fig. 2-2-4 Definition of the new coordinates system in LC. 

 

In this new coordinates system, the total distortion free energy has a simple diagonal 

form 

( ) ( ) ( ) ( )2 22 2 2 2
1 3 1 2 3 2   ,

2 q

VE K q K q n q K q K q n q⊥ ⊥
⎡ ⎤= + ⋅ + + ⋅⎢ ⎥⎣ ⎦∑       (2.2.5) 

where zq q=  and 1̂q q e⊥ = ⋅ . Eq. (2.2.5) indicates that ( )1n q  describes a 

distortion that is a mixture of splay and bend, and ( )2n q  depicts a distortion that is a 

mixture of twist and bend. The classical equipartition theorem tells us that the average 

energy per degree of freedom of a system in thermal equilibrium is equal to 1
2 Bk T . 

That is ( ) ( ) 22 2
1 3 1

1
2 2 B
V K q K q n q k T⊥ + ⋅ =  and ( ) ( ) 22 2

2 3 2
1

2 2 B
V K q K q n q k T⊥ + ⋅ = , where 

 denotes taking thermal average. After some algebraic rearrangements, the above 

two formulae become 

( ) ( ) ( ) ( )
2 2

1 22 2 2 2
1 3 2 3

 ,     .B Bk T k T
n q n q

V K q K q V K q K q⊥ ⊥

= =
+ +

     (2.2.6) 

French physicist de Gennes came up with a notion of molecular field for LC [14]. 

From the distortion energy density per small fluctuating deviation nδ  shown in Eq. 
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(2.2.6), we can define a molecular field as 

( )2 2
3        = 1 , 2   .h K q K q nα α α α⊥= − +              (2.2.7) 

In Onsager’s viewpoint, a fluctuation shall experience a restoring“force＂, that is 

the molecular field hα . Therefore, ( )2 2
3K q K qα ⊥ +  can be viewed as the 

corresponding force constant. Furthermore, for a fluctuating system showing viscous 

overdamped behavior, the relaxation dynamics shall have the form 

( ) ( ) ( )1  ,n q n q
t qα α

ατ
∂

= −
∂

                    (2.2.8) 

where ( )qατ  is the relaxation time of this overdamped system. By intuition, the 

relaxation rate 
( )
1

qατ
 in Eq. (2.2.8) must be proportional to the restoring force 

constant ( )2 2
3K q K qα ⊥ + , 

( ) ( )
2 2

31  ,
K q K q

q q
α

α ατ η
⊥ +

=                      (2.2.9) 

where ( )qαη  is the proportional constant and known as the effective viscosity of the 

system. 

Recall that we have let ( ) ( ) ( ) ( ) ( )0ˆ ˆ ˆˆ, , , ,x yn r t n r n r t z n r t x n r t yδ= + = + +  in 

Eq. (2.2.2). In the following derivation, we shall assume that ( ),xn r t  represents the 

twist deviation and ( ),yn r t  represents the deviation in LC tilt direction. Substituting 

this ( )ˆ ,n r t  into the hydrodynamic equation for the director field 

2 2ˆ ˆ ˆ ˆ ˆ( )n K n K n n n
t

η ∂
= ∇ − ⋅∇

∂
 [16]. Here, η  is the viscosity mentioned in Eq. (2.2.9) and 

K  denotes the effective elastic constant, 1 2 3K K K K= = = , under the one-constant 
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approximation suggested by de Gennes [14]. We then have 

2

2

x
x

y
y

n K n
t

n
K n

t

η

η

∂
= ∇

∂
∂

= ∇
∂

⇒ ( ) ( )2 ,
n

K n
t

δ
η δ

∂
= ∇

∂
 

and the corresponding boundary conditions at 0y =  and y d=  can be expressed as 

1 20
0

1 20
0

0 , 0 ,

0 , 0 .

x x
x xy y d

y y d

y y
y yy y d

y dy

n nK W n K W n
y y

n n
K W n K W n

y y

= =
= =

= =
==

∂ ∂
− + = + =

∂ ∂⎧⎪
⎨

∂ ∂⎪⎩ − + = + =
∂ ∂

            ,

        

 

Here 1W  and 2W  are the anchoring energy coefficients with unit being energy per 

square length of the substrates at 0y =  and y d= , respectively. These boundary 

conditions are determined by a torque balance condition from the bulk elastic 

deformations and the surface torque acting on the LC at the boundaries [17]. 

Obtaining anchoring energy coefficients is the main theme in this chapter. Note that 

the hydrodynamic equation as well as the boundary conditions are the same for both 

fluctuation modes, so we expect to see the same results from both twist and tilt modes. 

Therefore, we are going to discuss the twist fluctuation mode ( ),xn r t  only. The 

hydrodynamic equation 2x
x

n K n
t

η ∂
= ∇

∂
 in Eq. (2.2.10) is a standard diffusion 

equation, whose general solution is ( ) ( ) ( ) ( ), cos sin x z
ti q x q z

x y yn r t q y q y e e τα β −+⎡ ⎤= ⋅ + ⋅⎣ ⎦  

with the relaxation time 2Kq
ητ = . The mathematical form of τ  has already been 

given in Eq. (2.2.9) under one-constant approximation of Frank elastic formalism of 

LC material. The boundary conditions for the twist fluctuation can now be expressed 

(2.2.10) 
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as
1

2 2

 0  ,

    cos( ) sin( ) sin( ) cos( ) 0 .

y

y y y y y y

W Kq

W q d Kq q d W q d Kq q d

α β

α β

− =⎧⎪
⎨
⎪⎩ ⎡ ⎤ ⎡ ⎤− + + =⎣ ⎦ ⎣ ⎦

 

The system of homogeneous linear equations for α  and β  has a nontrivial solution 

if its coefficient determinant equals zero, which leads to 

( )1 2 1 2
2

1cot   ,y y
y

q d q d
d q d d

λ λ λ λ+
= − + where 1λ  and 2λ  are the extrapolation 

lengths defined as ( ) 1, 2i
i

K i
W

λ = = . If we treat the aligning layers on the two 

substrates of a LC cell with the same condition, their anchoring coefficients shall be 

the same, that is, 1 2W W W= = . Thus, the above eigenvalue equation reduces to 

( )
2

2

2 1cot y y
y

q d q d
d q d d
λ λ

= − +                  (2.2.11) 

with K
W

λ = . This formula will help us to obtain the anchoring coefficient of certain 

specifically treated substrates for LC alignment.  

 

22..33  TThhee  RReellaattiioonnsshhiipp  ooff  tthhee  AAnncchhoorriinngg  EEnneerrggyy  SSttrreennggtthh  wwiitthh  

AAuuttooccoorrrreellaattiioonn  TTiimmee  aanndd  IIttss  MMeeaassuurreemmeenntt  wwiitthh  DDyynnaammiicc  LLiigghhtt  

SSccaatttteerriinngg  

In chapter 1, we have introduced the autocorrelation technique for describing a 

fluctuation process. At that time, we took it for granted that the correlation time 

(characteristic decay time) is equal to the relaxation time of the fluctuation dynamics. 

Here, to be more accurate, we explicitly define the correlation time cτ  to be 
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2

220

(0) ( )
 .c

Y Y Y
d

Y Y
τ

τ τ
∞ −

≡
−∫                  (2.3.1) 

Here Y  can be any given physical process [5]. This formula can be further illustrated 

with the following sketch. 

τ
0 c rτ τ=

2Y

2Y

(0) ( )Y Y τ

 
        Fig. 2-3-1 cτ  is the τ -position at which the two sections (blue & red) are 

equal in area; in the case of exponentially decaying fluctuation, cτ  is equal 
to its relaxation time rτ . 

 

If the fluctuating behavior of the process decays exponentially with the form of 

2 22(0) ( )   ,rY Y Y Y Y e τ ττ −⎡ ⎤− = −⎣ ⎦ where rτ  is the relaxation time of this 

fluctuating process, Eq. (2.3.1) becomes 
2

220 0

(0) ( )
  .r

c r

Y Y Y
d e d

Y Y
τ ττ

τ τ τ τ
∞ ∞ −−

≡ = =
−∫ ∫  

This result suggests that we can get the rτ  of the dynamical process simply by 

measuring cτ  of its corresponding correlation function under the condition of the 

process decaying exponentially [5, 18, 21]. The orientational fluctuations in nematic 

LC cells happen to be the case. 

Recall that, in the derivation process of Eq. (1.3.10), we did not place any 

restriction on the shape of the scatterer. This implies that the pure fluctuation mode 
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(for example, pure twist mode) of LC molecules in a cell also inherits the character of 

exponential decay. Hence, in the following discussion, we shall treat cτ  and rτ  as 

the same symbol τ  to take into account their identical nature in this case. 

We are now in a position to derive the relationship between the correlation time 

τ  and the anchoring energy coefficient W . To simplify our discussion, we divide 

the anchoring effect into three regimes: infinitely strong, strong but finite, weak 

anchorings. 

                

                 

                 

                 

                 

                 

                 

                 

          

 

 

 

1. Infinitely Strong Anchoring: Let us review the secular equation 

( )
2

2

2 1cot y y
y

q d q d
d q d d
λ λ

= − +                (2.2.11) 

  with K
W

λ = . In this infinitely strong anchoring case (W → ∞ ), 0λ → . 

The secular equation becomes: ( ) 1cot     .
2 2y y

y

q d q
q

λ
λ

= − + → − ∞  

This implies ( )sin 0yq d = , which leads to 

( )1         0,1, 2,   .ynq n n
d
π

= + = …  

Under the condition of pure twist fluctuation mode, Eq. (2.2.9) yields a 

simple relation 
21 Kq

τ η
= , and by substituting the fundamental mode 

( 0n = ) of ynq  into this simple relation, we then obtain the correlation 

time — sample thickness relationship 

2

22 2
0

 .
y

d
Kq K

K
d

η η ητ
ππ

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠
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2. Strong but Finite Anchoring: The discussion in infinitely strong 

anchoring regime tells us the fundamental fluctuation mode is 0yq
d
π

= . 

This is incorrect when the anchoring is not infinite. In this case, we use an 

appropriate approximation for 0yq d xπ= − , where x  represents a small 

deviation from π . By taking this into account, the secular equation Eq. 

(2.2.11) becomes 

         

( ) ( )

( )

2

2

3

0

0

2 1 1cot    since 

2 1cot

2 1 1
3 45

2 1

2
2

2
2 2

  .
2

y

y

x x d
d x d x

x
d x

x x
d x x

dx x

x d
dq d x

d d

q
d

λ λπ π λ
π π

λ
π

λ
π

λ
π
λπ

λ
λπ ππ π

λ λ
π

λ

− = − + − ≈ −
− −

⇒ − = −
−

⎛ ⎞
⇒ − − + =⎜ ⎟ −⎝ ⎠

⇒ ≈
−

⇒ = +

⇒ = − = − =
+ +

⇒ =
+

 

   Having obtained the fundamental mode 0yq  for strong but finite 

anchoring regime, we substitute 0yq  into 
21 Kq

τ η
=  to yield 

( )2 2

22 2
0

4 4

2
y

d d

Kq K
K

d

λ λη η ητ
ππ

λ

+ +
= = =

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

2
2

2 2

2 2

4 41
4  since   .  1    

d
d d d d

K K d

λ λ
η η λ λ

π π

⎛ ⎞
+ +⎜ ⎟

⎛ ⎞⎝ ⎠= ≈ +⎜ ⎟
⎝ ⎠

    (2.3.2)
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22..44  TThhee  TTwwiisstt  AAnncchhoorriinngg  SSttrreennggtthh  ooff  NNeemmaattiicc  LLiiqquuiidd  CCrryyssttaall  

MMoolleeccuulleess  oonn  VVaarriioouuss  AAlliiggnnmmeenntt  SSuurrffaacceess  

In section 2.3, we have derived the relationship between the correlation time and 

the anchoring energy coefficient of the LC’s molecular fluctuations in a nematic cell. 

3. Weak Anchoring: In the weak anchoring regime ( 0W → ), λ → ∞ , the 

secular equation becomes ( ) 1cot     .
2 2y y

y

q d q
q

λ
λ

= − + → ∞  This 

suggests to use 0yq d x=  for the fundamental mode in the weak 

anchoring case. Substituting 0yq d x=  into the secular equation Eq. 

(2.2.11), we obtain 

        

( )

( )

( )

2

2

3 2

2

2 2 2
2

2 2

2
2 2 2 2

0 02 2

2

2
0

2 1cot

2 1 1
3 45

2 1 1 2   1 1
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6 3 6 3    
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213 2 3 2 3
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d x d
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λ λ
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λ λ λ λ
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⎝ ⎠
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(2.3.3)
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We measured the correlation times of some practical homemade nematic LC cells 

with different surface treatments in order to understand the correlation between the 

magnitude of the anchoring strength and the corresponding surface treatment 

techniques. 

Three different surface treatment conditions were prepared for our dynamic light 

scattering study. They are strong mechanical rubbing alignment, photoalignment with 

special photoactive polyimide (RN1349 from Nissan Chemical Ltd.), and 

photoalignment with a composite layer system of RN1349 and LCP (liquid crystal 

polymer). 

For the strong mechanical rubbing alignment, we used a roller coated with a 

velvet cloth to rub the polyimide on a glass substrate. The LC molecules deposited on 

it can be strongly aligned in a preferred direction (easy axis). This kind of alignment 

technique produces very stable and strong surface anchoring quality [19, 20, 21]. In 

contrast to rubbing alignment, photoalignment technique provides a clean and 

non-contact surface treatment. We illuminated the photoalignment film deposited on a 

glass substrate with linearly polarized UV light, the photoactive polyimide changes its 

configuration, which induces an easy axis pointing in the direction perpendicular to 

the polarization of the UV light [19, 22, 23, 24]. As the recent developments show, 

this non-contact alignment technology seems to be promising for applications in the 
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display industry because the contact-induced sample contamination is prevented. 

 

2.4.1 Experimental Setup and Considerations 

The LC used in our experiment was 4 4n pentyl cyanobiphenyl− − − −′  (5CB), 

whose nematic range is 22 35 C C° − ° . The experiment was performed at constant 

ambient temperature of 25 C° . All the three cells were in homogeneous 

configuration with the easy axes on both substrates being antiparallel. In addition, 

since what we were interested in was their surface anchoring effect, these cells were 

all made directly contact (no spacers in between) to diminish the LC’s bulk effect. The 

cell gaps used were all 1 ( )d mμ , which were approximated by the polarimetry 

measurements. Our experimental setup is sketched in Fig. 2-4-1. 

M

HeNe  Laser

Flex02-01D    PC

M

1P L D

D D2P

3°î

f̂

n̂

LC cell  

Fig. 2-4-1 Experimental setup for measuring the anchoring energy 
coefficients. M: mirror ; 1 2P & P : polarizers ; L: lens ; D: diaphragm ; the 

polarization of the incoming beam î  is parallel to the LC’s director n̂ , but 

perpendicular to the outgoing beam’s polarization f̂  and the scattering 

plane. The scattering angle was chosen small, 3°  in this experiment, so as 
to minimize the contribution of splay / bend fluctuations. 
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Note that the polarizers 1P  and 2P  must be in cross-polarized so that the 

2P -directional component of scattered light coming from the scattering region is 

permitted to pass through 2P , which flicker in response to the LC’s molecular 

fluctuations. 

The knowledge of the molecular twist fluctuations in a nematic cell developed 

in the former sections help us determine the azimuthal anchoring energy coefficients 

of the cells. In Fig. 2-4-1, the scattering vector i fq k k≡ −  was perpendicular to the 

LC’s director n̂  so that the q  in Fig. 2-2-4 vanished, together with the use of a 

small scattering angle. These pre-cautions allow us to probe the pure twist component 

of the fluctuations, as illustrated in the following figure. 

îk

ˆ
fk

q

 
        Fig. 2-4-2 The scattering angle was so small that the scattering vector q  

was almost parallel to the substrates, which made it possible to probe the 
pure twist component of the fluctuations. 

 

To understand why an experimental arrangement with small scattering angle is needed 

for unambiguously probing the twist component of the LC’s molecular fluctuations, 

let us first review some concepts of the scattering theory mentioned in chapter 1. 

Consider the specific case in which the element ( ),if r tδε  of the dielectric 
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fluctuation tensor in Eq. (1.2.13) is a simple sinusoidal wave of frequency ω  

traveling in a direction k , and has the form ( ) ( )
0,   ,j k r t

if r t e ωδε δε ⋅ −
=  where 0δε  is 

its amplitude. Taking this equation into Eq. (1.2.13) yields 

( ) ( ) ( )
2

0 0 3

0

,
4

f ii k r t i k r tf iq r
s

V

k E
E r t e d r e e

r
ω ωδε

πε
′⋅ − ⋅ −′⋅

′

′= ∫ ( ) ( )
2

0 0 3

0

  .
4

f i i k r tik r i q r tf

V

k E
e d r e e

r
ωωδε

πε
′⋅ −⋅ ′⋅ −

′

′= ∫  

The above equation tells us we cannot calculate it directly in complex form, instead, 

we should return it to its sinusoidal form as follows 

( ) ( ) ( )
2

0 0 3

0

, Re Re Re  
4

f i j k r tik r i q r tf
s

V

k E
E r t e d r e e

r
ωωδε

πε
′⋅ −⋅ ′⋅ −

′

⎡ ⎤⎡ ⎤ ⎡ ⎤′= ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫  

( ) ( )
2

0 0 3

0

Re cos cos
4

fik rf
i

V
A

k E
e d r q r t k r t

r
δε

ω ω
πε

⋅

′

⎡ ⎤ ′ ′ ′= ⋅ − ⋅ ⋅ −⎣ ⎦ ∫  

( ) ( ) ( ) ( ){ }3 cos cos   .
2 i i

V

A d r q k r t q k r tω ω ω ω
′

⎡ ⎤ ⎡ ⎤′ ′ ′= + ⋅ − + + − ⋅ − −⎣ ⎦ ⎣ ⎦∫  

The scattered field in complex form thus gives 

( ) ( ) ( ) ( ) ( ){ }
2

0 0 3

0

,  
8

f i iik rf i q k r t i q k r t
s

V

k E
E r t e d r e er

ω ω ω ωδε
πε

⎡ ⎤ ⎡ ⎤⋅ ′ ′+ ⋅ − + − ⋅ − −⎣ ⎦ ⎣ ⎦

′

′= +∫  

( ) ( ) ( ) ( )
2

0 0 3 3

0

            .
8

f i ii iq k r q k rik r i if t t

V V

k E
e e d r e d re e

r
ω ω ω ωδε

πε
′ ′+ ⋅ − ⋅⋅ − −+ −

′ ′

⎧ ⎫⎪ ⎪′ ′= +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫   (2.4.1) 

From Fourier transform formula ( )2i te dtω πδ ω
∞ −

−∞
=∫ , ( ),sE r t  can be found to 

reach its maximum when the two integrals ( )3 i q k r

V

d r e ′+ ⋅

′

′∫  and ( )3 i q k r

V

d r e ′− ⋅

′

′∫  in Eq. 

(2.4.1) are sharply peaked at 0q k± = , viz k q= ± . That is, the differential 

scattering cross section (the intensity of the scattered light per solid angle, which is 

proportional to 2
sE ) is the largest when k q= ± . To be more explicit, the dielectric 
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fluctuation δε  may fluctuate in very many directions. However, only those 

fluctuations in q±  directions will largely contribute to the scattered light. This result 

gives us a hint that we should choose small scattering angle to make the scattering 

vector be nearly parallel to the direction of twist fluctuation. In our case, the direction 

was parallel to both the scattering plane and the cell’s substrates as shown in Fig. 

2-4-2. By doing so, the scattered light will almost come from the contribution of the 

twist component of the whole fluctuations, and from the former discussion we know 

that the dynamics of this twist part fluctuation highly correlates to the cell’s azimuthal 

anchoring strength. 

 

2.4.2 Experimental Results and Discussion 

The measured results are shown below with an order of a LC cell with strong 

mechanical rubbing, a photoalignment cell with photoactive polyimide RN1349 (from 

Nissan Chemical Ltd.), and a photoalignment cell with composite layers of RN1349 

and LCP (liquid crystal polymer). The results were taken at one specific position on 

each cell. 
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         τ = 3.5059 (ms)    ;    s = 0.8816

 Photoalignment_on_RN1349+LCP

         τ = 3.5633 (ms)    ;    s = 0.9284

g(2)

 
        Fig. 2-4-3 The colorful circle lines are the measured raw data, and the black 

solid lines are their corresponding fitting results. The fitting model is the 

stretched exponential function ( ) exp ( )st A B t τ⎡ ⎤= + −⎣ ⎦
(2)g . τ  is the 

correlation time and s  is the stretching parameter. 

 

The discussion in section 2.3 led us to choose a stretched exponential function 

as the fitting model for the relaxation dynamics of LC’s molecular fluctuations in a 

cell. The fitting parameter τ  represents the correlation time of the relaxation 

dynamics; the fitting parameter s  can be used as a measure to reveal how close the 

dynamics approaches a single fluctuation mode. If the fluctuating dynamics is exactly 

a single fluctuation mode without any mode-mixing, s  shall be equal to unity. 

As shown in Fig. 2-4-3, the fitting parameters are 0.5403 msτ =  and 

0.9349s =  for the strong mechanical rubbing cell; 3.5059 msτ =  and 

0.8816s =   for the photoalignment cell with RN1349; 3.5633 msτ =  and 

0.9284s =   for the photoalignment cell with composite layers of RN1349 and LCP. 
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From these fitting data, we can easily observe the differences among them. Firstly, the 

correlation time for the strong mechanical rubbing cell is less than those for the 

photoalignment cells by about one order of magnitude. Secondly, as to the 

photoalignment cells, the value taken by s  seems to depend on whether LCP was 

deposited on RN1349 layer or not. Let us examine these two major differences with 

more caution. 

We begin the discussion by examining the difference of the correlation time. In 

section 2.3, we achieved a conclusion that the correlation time is highly correlated 

with the surface anchoring energy coefficient. This hints that the difference of the 

correlation time may come from the difference in surface anchoring strengths of LC 

cells. 

Having derived the Wτ −  relationships in section 2.3, we can use these 

relationships to determine the anchoring energy coefficient W  of each cell. 

According to many reports published in literature, surface rubbing treatment usually 

generates rather strong surface anchoring strength, whereas the UV-induced alignment 

shows weak anchoring strength. We therefore expect that our strong mechanical 

rubbing cell is strong anchoring and our photoalignment cells are weak anchoring. We 

then retrieve the corresponding anchoring energy coefficients from the measured data 

to see whether these retrieved values are in accord with the expected results.  
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From Eq. (2.3.2) 

2

2

41        for   ,
K

d d
d

η λτ λ
π

⎛ ⎞= +⎜ ⎟
⎝ ⎠

              (2.3.2) 

by substituting all the parameters of the rubbing cell with known values into the 

equation 
3 6 2 11

3
11 2 6

50 10 (1 10 ) 4 100.5403 10 1
1 10 1 10 Wπ

− − −
−

− −

⎛ ⎞× × ×
× = +⎜ ⎟× × ×⎝ ⎠

, we achieved a value of 

( )4 2
rubbing 6.014 10   W J m−× . Here, the effective Frank elastic constant 

( )111 10K N−×   and the rotational viscosity ( )50 mPa sη ⋅  at 25T C= °  [25]. 

For the photoalignment cells, we adopt the following approximative formula 

for 1          .
2 6

dd d
W
ητ λ

λ
⎛ ⎞= +⎜ ⎟
⎝ ⎠

                (2.3.3) 

Similarly, by substituting all the parameters of the photoalignment cells with known 

values into Eq. (2.3.3), it yields
3 6

6 3
11

50 10 1010 1 3.5059 10
2 6 10

W
W

τ
− −

− −
−

⎛ ⎞× ×
= × + = ×⎜ ⎟×⎝ ⎠

 

( )6 2
photo. 8.093 10   W J m−⇒ × ; and 

3 6
6 3

11

50 10 1010 1 3.5633 10
2 6 10

W
W

τ
− −

− −
−

⎛ ⎞× ×
= × + = ×⎜ ⎟×⎝ ⎠

 

( )6 2
photo.+LCP 7.945 10   W J m−⇒ × . 

Having derived all the three cells’ anchoring energy coefficients, let us check 

these results to see whether they are reasonable or not. We expected high anchoring 

strength from the strong mechanical rubbing cell and our measured anchoring 

coefficient is ( )4 2
rubbing 6.014 10W J m−×   . We expected that the photoalignment 

cells are weak anchoring and our measured values are: ( )6 2
photo. 8.093 10W J m−×   

and ( )6 2
photo.+LCP 7.945 10W J m−×  . The results agree well with our expectation, 

and thus we confidently conclude that the mechanically rubbing-induced anchoring 
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strength is much larger than that from photoalignment mechanism by about two 

orders of magnitude. 

Let us examine the schematic shown below to intuitively illustrate the inverse 

tendency between τ  and W . 

 

(1)n ( )n τ

 

 

As shown in the figure, photocounts ( )n τ  at a delay τ  will be very close to the 

initial photocounts (1)n , provided that the delay τ  is very small. This is because 

what the incident light field sees are the almost identical geometric configurations due 

to the“collective＂excitation nature of LC. In other words, after the delay τ , the 

collective excitation of LC molecules just produces a small rotation, the incident light 

field shall therefore see very similar geometric configuration except for the LC 

molecule marked by blue color shown in Fig. 2-4-4. Seeing a similar geometric 

configuration implies that the transmitted light fields will be also very alike. 

Therefore, ( )n τ  must be very close to (1)n , and this is the origin of the 

Fig. 2-4-4 The self-similarity 
existing in the collective 
excitation of LC Goldstone 
mode: Yellow wave represents 
the incident light field. (1)n  is 
the photoelectron pulses 
counted at initial time, and 

( )n τ  is the photocounts at a 

delay τ  from the initial time. 
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self-similarity in photocounts. Once the self-similarity is confirmed, the principle of 

the Schwartz’s inequality discussed in subsection 1.3.1 assures a high correlation 

value. 

How about the decay behavior? The explanation could also be found with this 

picture. As the delay time τ  becomes larger, the collective excitation of LC 

molecules generates a much larger rotation. At this stage, the incident light field 

experiences a configuration less similar to that in the initial time. This leads to a 

smaller degree of similarity between (1)n  and ( )n τ  and a lower correlation value. 

The larger the delay time τ  is, the smaller the correlation value will be. 

We can extend these intuitive pictures to yield a connection with the LC cell’s 

surface anchoring strength. We have understood that the high correlation values result 

from the similar configurations the incident light field experiences. As time goes by, 

the transient LC configuration is less and less similar to the initial one. But how fast 

does the LC configuration changes from the most similar one to the least similar one? 

To answer this question, we need a reference to compare with! Since the excitations in 

LC cells are collective, the effective wavelength Eλ  of the standing wave induced by 

the collective excitation in a confined cell can be used to reveal the changing rate of 

LC configuration. When Eλ  is large, the LC spends more time to change from the 

most similar configuration to the least similar one. Whereas when Eλ  is small, it 



 

 68

takes the LC configuration less time to evolve. The comparison must be taken under 

the same physical conditions, that is, the same viscosity, the same ambient 

temperature, etc.  

Let us consider two limiting cases: infinitely strong anchoring cell and weak 

anchoring cell. In the infinitely strong anchoring cell, the two substrates anchor the 

contacting LC molecules tightly, so these two contact surfaces play roles as nodal 

points of the standing wave. The effective Eλ  is thus equal to the cell gap d . In the 

weak anchoring cell, the two substrates anchor the contacting LC molecules loosely, 

the effective Eλ  could be lager than the cell gap d . Since we have shown that for 

longer Eλ  LC medium spends more time on evolving their configuration. This leads 

to that a weak anchoring cell will spend more time to change its molecular 

configuration. The concept of the“more time” implies“larger correlation time＂

because it is this time that reflects correctly the rate of LC configuration changing 

from high to low correlation. Hence, we reach the point that a weak anchoring cell 

exhibits a characteristic long correlation time in its scattered optical signal; Similar 

analysis on an infinitely strong anchoring cell reveals that a strong anchoring cell 

shall possess a small correlation time in its scattered optical signal. Two illustrating 

schematic diagrams are shown below to facilitate our interpretation. 
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Eλ

d

Eλ

( )a

( )b

 

 

Up to now, we have only examined the difference in correlation time among 

cells with different surface treatment. Next we shall study the difference in the 

stretching parameter s . In the beginning, we have mentioned that s  can be used as a 

measure of how close the fluctuation approaches a purely single exponential 

dynamics. The s  obtained from the two photoalignment cells are different. It 

appears that the cell with LCP has a purer fluctuation dynamics than that one without 

LCP. We are interested to know about what role LCP plays in the photoaligning 

process. 

A LCP is a polymer produced by binding mesogenic molecules together. In our 

experiment, the LCP we used was 1,4-phenylene-bis{4-[6-(acryloyloxy)-hexyloxy] 

benzoate}, whose structural formula is depicted in Fig. 2-4-6 (a) below. 

Fig. 2-4-5 (a) Effective Eλ  of the 
collective excitation-induced standing 
wave in the strong anchoring cell;  
(b) effective Eλ  of the collective 
excitation-induced standing wave in the 
weak anchoring cell. 
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( )a ( )b

 

Fig. 2-4-6 (a) The structural formula of the LCP used in our experiment；(b) the 
morphological change of the LCP in the photopolymerization process. 

 

The LCP was deposited on the top of the LPUV-defined photo-alignment layer of the 

cell. After illuminated by UV light, the polymerizable mesogenic groups in the 

photo-alignment layer were crosslinked to yield a small degree of uniaxial alignment. 

This effect of inducing macroscopic alignment of LCP followed the 

photopolymerization process, improves the aligning quality of LC molecules in a LC 

device [22, 23, 24]. The LC molecules contacting with the LCP surfaces thus 

possessed a higher order of orientation, and the corresponding orientation fluctuation 

mode was purer, which was supported by the observation that higher value of 

stretching parameter s was obtained for the photoalignment cell with composite layers 

of RN1349 and LCP. 

To evaluate the possibility of our data in fact resulting from probing into the 

singularities or defects in the cell, we measured 50 more positions on each cell. The 

total experimental results are summarized in the following two histograms. 
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( )a ( )b

 

Fig. 2-4-7 (a) Distribution of correlation times of the three cells with different            
surface treatments. 50 points were probed for each cell. The abscissa is correlation 
time and the ordinate is its corresponding population; (b) distribution of stretching 
parameters of the three cells with different surface treatments. 50 points were 
probed for each cell. The abscissa is stretching parameter and the ordinate is its 
corresponding population. 

 

From Fig. 2-4-7 (a), we can see that the mechanical rubbing cell does have smaller 

correlation times than those of photoalignment cells, this is in agreement with the fact 

that mechanical rubbing produces stronger anchoring strength than that produced by 

photoaligning method. We can deduce that the photoalignment cells have similar 

anchoring strength no matter whether LCP is deposited or not. However, from Fig. 

2-4-7 (b), we find that LCP does play a role in improving the alignment order of LC 

molecules in the cell. By adding LCP layer, the stretching parameter s was improved 

to the level as that reached by the mechanical rubbing method. 
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CChhaapptteerr  33..    PPrroobbiinngg  tthhee  TThheerrmmaall  FFlluuccttuuaattiioonn  iinn  tthhee  CCoonniicc  

MMoottiioonn  ooff  SSuurrffaaccee--SSttaabbiilliizzeedd  FFeerrrrooeelleeccttrriicc  LLiiqquuiidd  CCrryyssttaallss  

  

33..11  IInnttrroodduuccttiioonn  ttoo  tthhee  PPhhyyssiiccss  ooff  SSSSFFLLCC  

3.1.1 Basic Concepts of Ferroelectric Liquid Crystals 

In section 2.1, we have seen that the liquid crystal phase may have different 

subphases. One special kind of them is the smectic phase that possess a small amount 

of positional order, which leads to a molecular structure arranged in layers. The two 

types of the smectic phase liquid crystals shown in Fig. 3-1-1 (a) and (b) differ in their 

molecular orientations. The director in the smectic A phase is in the direction of the 

layer normal while the director in the smectic C phase is at an angle smaller than 90°  

from the layer normal [26, 27]. 

layer normal n̂
θ

layer normal
( )a ( )b

( )c
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        Fig. 3-1-1 (a) Smectic A phase; (b) smectic C phase, where θ  is the tilt 
angle and n̂  is the director of the LC [26]. (c) For thermotropic matter, 
different phase corresponds to different temperature range. The Smectic C 
phase exists in the lower temperature range than the smectic A phase does 
[27]. 

 

In describing some physical properties in condensed matter physics regime, it is 

usually necessary to look into the symmetry structure possessed by a specific matter 

phase. If a structure remains unchanged after translated in any direction by any 

distance, it possesses the translational symmetry. Likewise, if it remains unchanged 

after rotated about any axis by any angle, reflected from any plane that is oriented in 

any direction, or inverted through any point, this structure possesses rotation 

symmetry, reflection symmetry, or inversion symmetry respectively [28]. Take the 

isotropic liquid phase in Fig. 3-1-1 (c) as an example, it can be translated, rotated, 

reflected, and inverted in any way such that its structure looks exactly the same. An 

isotropic liquid phase thus possesses a high degree of symmetry in that it possesses 

almost all the symmetry. When the temperature is cooled down to the nematic phase 

range, this phase with somewhat orientational order still possesses all the possible 

translational, reflection, and inversion symmetries, however, only those 

180° -rotations about axes perpendicular to the director are left to contribute to the 

small amount of rotation symmetries. In other words, some rotation symmetries are 

broken when the isotropic liquid phase undergoes the phase transition to the nematic 
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phase. Similarly, the phase transitions from nematic to smectic A, smectic A to 

smectic C, and smectic C to solid crystal all suffer symmetry broken. Knowing the 

basic concepts of symmetry is helpful to an understanding of ferroelectricity in LCs. 

In crystallography, structures that contain an inversion center as one of its 

symmetry elements are called centrosymmetric structures. In non-centrosymmetric 

structures, there often exists a phenomenon that a net displacement of charges is 

induced due to their non-inversional constituent arrangement. It is this net 

displacement of charges that produces an equivalent electric polarization. This result 

hints that ferroelectric materials must possess non-centrosymmetric configurations. 

As to liquid crystals, how can them become ferroelectric? In 1975, Robert B. 

Meyer gave the answer [28]. He predicted that tilted, layered liquid crystal phases of 

chiral molecules must be ferroelectric. The term“chiral＂means the property of not 

possessing inversion symmetry. From Meyer’s prediction, the smectic C phase may be 

a promising candidate. 

As shown in Fig. 3-1-1 (b), the smectic C phase is centrosymmetric since it 

possesses inversion symmetry. To become ferroelectric, replacing the original 

molecules with chiral molecules is a feasible way and it really does by virtue of the 

solid evidence from the practical experiments. The first ferroelectric liquid crystal 

molecule was synthesized by organic chemists with a structure similar to molecules 
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that could form smectic C liquid crystal phase. But to produce spontaneous 

polarization that a ferroelectric material should possess, an asymmetric carbon atom 

should exist near one end of the molecule. The asymmetric carbon atom that serves as 

the chiral part of the whole molecule represents a carbon atom bound to four different 

atoms in order to induce inversion symmetry broken. The structural formula and the 

temperature ranges correspond to different phases of this molecule are shown below. 

∗

P

 

        Fig. 3-1-2 The first ferroelectric liquid crystal molecule DOBAMBC. The 
carbon atom marked by an asterisk (∗ ) is referred to as an asymmetric one. 
P  represents the spontaneous polarization of the molecule [28]. 

 

A chiral smectic C (SmC∗ ) phase LC also has layered structure as well as a typical 

smectic phase LC does, but its director traverses to outline a cone as it rotates around 

the layer normal from layer to layer with a typical helical pitch of a few microns. A 

molecule in SmC∗  always possesses a spontaneous polarization P  (Fig. 3-1-2) that 

tends to orient parallel to the layer and rotates as the director rotates around the cone, 

which is shown in the following figure. 
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3.1.2 Optical Properties of SSFLC 

Although each ferroelectric LC molecule has its own spontaneous polarization 

just like that shown in Fig. 3-1-2, Fig. 3-1-3 tells us that there is no net electric 

polarization in a bulk sample because of the overall cancellation of the polarizations 

in each layer. However, we can use external fields to induce a net electric polarization 

existing in the ferroelectric material. This implies that we may have a chance to utilize 

this electrical property for certain applications. Surface-stabilized ferroelectric liquid 

crystal (SSFLC) device is one of them. 

With the knowledge of SmC∗  discussed in subsection 3.1.1 in mind, the 

molecules in SmC∗  phase undergo conic motions unceasingly, but this behavior is 

not what we want in electro-optical applications that usually require unidirectionally 

oriented directors [27]. Clark and Lagerwall came up with a smart idea for 

Fig. Fig. 3-1-3 The layered structure of SmC∗ . The 
chiral molecule with specific spontaneous polarization 
rotates  around the layer normal to outline a cone from 
layer to layer with a typical helical pitch of a few 
microns. The director n̂  makes the same angle θ  with 
the layer normal. P  represents its induced electric 
polarization. 
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overcoming this problem. Their brilliant invention was a SSFLC device in bookshelf 

structure that is shown in Fig. 3-1-4. 

 

P

1̂n
x

y
z

P

2n̂

−

−

( )a ( )b

 
Fig. 3-1-4 Two bistable states of a bookshelf type SSFLC device. The      
polarity of the external applied electric field switches the device on either (a) 
dark state or (b) bright state. 

 

The ferroelectric LC is filled into the space between two substrates with the cell gap 

( 2 mμ<  in practice) much smaller than the helical pitch, then the structure inside the 

cell is affected by the surface anchoring and the helical twist of the molecules is 

suppressed and unwound. The smectic layers are perpendicular to the substrates of the 

cell and the original helical axis (though unwoud now) is perpendicular to the smectic 

layers. Under the confinement produced by the surface anchoring, there only exist two 

allowable directions out of the whole conic motion that the molecules can take, say, 

1̂n  and 2n̂ , which are illustrated in Fig. 3-1-4. These two orientational states can be 

selected by applying an electric field across the cell with specific polarity. In this 

figure, when applying a downward electric field, the spontaneous polarizations tend to 
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align themselves with the external field and thus 1̂n  is choosed by the molecules; 

similarly, when applying an upward electric field, 2n̂  is choosed. Furthermore, if the 

polarizer is choosen in the direction of 1̂n  with the analyzer perpendicular to it, the 

molecules orienting in the orientational state 1̂n  induced by a downward electric 

field will cause no light to come out of the cell. On the other hand, when the 

molecules are forced to orient in the orientational state 2n̂  by an upward electric 

field, the angle 2θ  (θ  is the tilt angle) between the polarization of the incident light 

and the LC’s director gives rise to a phase retardation and thus makes the polarization 

of the light propagating through LC rotate, which leads to the leakage light coming 

out of the cell. 

From the above discussion, we see that, for a SSFLC device, the switching 

between the dark state and the bright state can be easily achieved by simply altering 

the polarity of the applied electric field. Once either one state is turned on, it will 

remain on that state even after the applied electric field is removed. This is because 

there exists an energy barrier between these two states for the confined structure [27]. 

Therefore, SSFLC are bistable devices. 

 

33..22  EExxppeerriimmeennttaall  SSttuuddyy  ooff  tthhee  DDyynnaammiicc  LLiigghhtt  SSccaatttteerriinngg  ffrroomm  PPuurree  

SSSSFFLLCC  aanndd  NNaannooccrryyssttaalllliinnee––ZZnnOO  DDooppeedd  SSSSFFLLCC  



 

 79

The switching speeds in almost all LCDs (liquid crystal displays) of nowadays 

are mainly constrained by one of their switching mechanisms: a relaxation back to the 

orientation favored by the anchoring of the alignment surface when the applied 

electric field is removed [28]. SSFLC devices do not need to worry about this 

problem since the relaxation mechanism is avoided in such kinds of devices. However, 

in display industry, it is difficult to make quality confirmed SSFLC displays with 

large size because of the problem of surface irregularities [27]. Achieving a nearly 

perfect molecular alignment inside a SSFLC device is still an unsolved problem. 

In recent years, it was found that doping nanocrystalline-ZnO (nc-ZnO) into the 

ferroelectric LC filled in the SSFLC cell can provide some degrees of freedom for 

tailoring material properties [29, 30, 31, 32]. Here, we shall try to probe into the 

validity of this viewpoint. 

 

3.2.1 Experimental Setup 

We made two kinds of SSFLC cells: with and without nc-ZnO doped. The 

ferroelectric LC material used in this experiment was FELIX-017/100 manufactured 

by Clariant Japan. After rubbing the alignment layer (polyimide RN1182 

manufactured by Nissan Chemical Ltd.) coated on the Indium Tin Oxide (ITO) 

substrates, the ferroelectric LC was infused into the cell made by the above 
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surface-treated substrates with the 2 mμ  cell gap. An undoped SSFLC cell was then 

obtained. On the other hand, ZnO nanocrystals with 3.4 nm  average diameter were 

prepared for being doped into the ferroelectric LC to obtain a nc-ZnO-doped SSFLC 

cell in the doping level of around 1 wt %. 

The experimental setup was nearly the same as that adopted in the measurement 

of nematic cells in Fig. 2-4-1, but a small change was introduced. In a smectic phase 

LC, the tilt angle subtended by the LC molecules and the layer normal is sensitive to 

the ambient temperature [26]. Therefore, to suppress the tilt angle fluctuations caused 

by the ambient temperature variations, we used an accurate heating stage with 

 0.1 C± °  precision. The smectic C phase’s temperature range of the ferroelectric LC 

material we used is 28 C  to  73 C− ° ° , so that keeing the measuring temperature at 

28 C°  is a safe choice. The experimental scheme is given below. 

 

M

M

1P L D

D D2P

3°î

f̂

1̂n

SSFLC cell  

  Fig. 3-2-1 The scheme is similar to that shown in Fig. 2-4-1. H represents the 
heating stage. Note that 1̂n  is the direction in one of the two orientational 
states, which is shown in Fig. 3-1-4. A function generator was used to switch 
the SSFLC cell between two bistable states. 
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As shown in the figure, we still probed the dynamics parallel to both the substrates of 

the cell and the scattering plane for simplifying our discussion. 

 

3.2.2 Experimental Results and Discussion 

We begin the discussion by first examining the dynamical behavior of the LC 

molecules in the nc-ZnO-doped SSFLC cell. 

Having connected the electrodes attached on the ITO of the cell to a function 

generator, we applied sinusoidal driving voltages ( 1 VPPV = ) to the cell with a series 

of frequencies, say 10 Hz , 100 Hz , 1 KHz , and 10 KHz  to drive the LC molecules in 

the cell to fluctuate coercively. The corresponding autocorrelation functions 

calculated by the digital correlator Flex02-01D are shown in the following figure. 

 
        Fig. 3-2-2 The autocorrelation functions of the scattered light signals 
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correspond to externally sinusoidal driving voltages with different driving 
frequencies. The small hollow circles represent the measured raw data while 
the red lines represent the fitting curves. 

 

The regularly oscillating behavior of the autocorrelation functions under lower driving 

frequencies gives us a hint that we are supposed to use a sinusoidal function as our 

fitting model. The fitting model thus may take the form 

( ) ( ) ( )(2) cos   ,dtg t a t H p e cω −= ⋅ ⋅ ⋅ +                 (3.2.1) 

where a  is the initial fluctuation amplitude, ω  is the frequency of the oscillation, 

( )H p  is the Heaviside function (unit step function) that stands for taking nothing 

until t p= , dte−  reflects the decay character of the oscillation, and c  is a constant.  

The fitting curves are shown as red lines in Fig. 3-2-2 and seem quite matching. The 

fitting results are tabulated below. 

 
 

10 Hz 100 Hz 1 KHz 

a  0.1394 0.1074 0.07044 

ω  62.82 628.2 6282 

p  0.01 0.001 0.0001 

d  0.4536 5.496 37.16 

c  1.006 1.013 1.005 

         
Table 3-2-1 The fitting results of Fig. 3-2-2. Note that the parameters ω  
and p  are correlated. 

Driven

Parameter 
Freq. 
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The fitting results worth noting are the parameters ω  and p . The unit of ω  is 

radian per second. When it is transformed into Hz , we find that the fitting values of 

ω  are completely equal to the driving frequencies of the applied sinusoidal driving 

voltages. This observation strongly implies that (1) the autocorrelation function is 

sensitive to the dynamics under measure, and it provides the equivalent dynamical 

information existing in the dynamics; (2) the motion of the LC molecules is indeed 

modulated by the external driving voltage coercively and coherently or else the 

conclusion (1) will collapse; (3) the LC molecular coherent motion is switched 

between the two bistable states of the nc-ZnO-doped SSFLC cell with the driving 

frequency suggested by (2). The fourth case in Fig. 3-2-2 can not be fitted well 

because the LC molecules can not keep up with such a high frequency voltage 

modulation any more in such a high viscous environment, and the coherent behavior 

with the driving frequency mentioned in the conclusion (2) was not be observed any 

more. 

Besides ω , the fitting parameter p  also could provide us with something 

useful. If we take a closer look into Fig. 3-2-2, we could find that the initial positions 

in which the function profile begins to oscillate are all different under different 

driving frequencies. This observation suggests that p  and the driving frequency may 
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be correlated with each other, which leads to an assumption that p  and ω  are 

correlated with each other since ω  and the driving frequency are coherent, which 

was confirmed by the above conclusion (2). From Table 3-2-1, the fitting results give 

solid evidence that p  and ω  are absolutely correlated with each other because of 

the existence of the relationship constantpω ⋅ = . 

Having come this far, we have obtained an informative conclusion: once we find 

that there exists an oscillation in the measured autocorrelation function, there must be 

certain kind of periodic fluctuation existing in our probing region, and even further, 

we can understand how fast this periodic fluctuation is oscillating, which can be 

simply deduced from the fitting value of either ω  or p . 

Let us turn our attention to the measurements of the SSFLC cells without 

applying any external field on them. In these measurements, unlike any before, we 

adopted a strategy of long time measuring. It is necessary to do so because we have 

no idea about what kind(s) of fluctuation(s) we shall see and how many fluctuation 

modes there will be in the ferroelectric LC cell with much more complicated 

molecular motions than those in the nematics. The knowledge background of 

subsection 1.3.3 has told us to adopt a measuring time over 10,000 characteristic 

decay time of the autocorrelation function to attain a statistical uncertainty of 1 % [11]. 

Compared with the fluctuation mode that corresponds to the longest characteristic 
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decay time, if the measuring time is not long enough, we may lose the accuracy of the 

dynamical information about this fluctuation mode to any extent, even lose it 

completely. 

The measuring times we adopted in the measurements of the cases with no 

external field applied were all kept at 7,200 seconds. The results of the measured 

autocorrelation functions together with their fitting curves and their corresponding 

intensity (photocounts per second) traces are shown below. 
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   Fig. 3-2-3 (a) The top figure shows the intensity trace collected in duration of 

7,200 seconds for the undoped SSFLC cell while the bottom shows the 
corresponding autocorrelation function (hollow circle line) and its fitting curve 
(red line); (b) the case for the nc-ZnO-doped SSFLC cell. Note that in both 
intensity traces in (a) and (b), they exhibit not only global fluctuation but also 
local fluctuation. 
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The difference deserves to be mentioned in Fig. 3-2-3 is the small oscillating ripples 

existing in the middle region of the autocorrelation function for nc-ZnO-doped 

SSFLC cell, whereas ripples do not appear for the undoped case. This obliges us to 

adopt different fitting models for them, which gives 

( ) ( ) ( ) ( ) 31 2
31 2(2)

ss s tt tg t A B e C e D e ττ τ −− −= + ⋅ + ⋅ + ⋅             (3.2.2) 

for undoped SSFLC cell and 

( ) ( ) ( ) ( ) ( ) ( )31 2
31 2(2) cos

ss s tt t dtg t A B e C e D e E t H p eττ τ ω−− − −= + ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅  (3.2.3) 

for nc-ZnO-doped SSFLC cell. 

In measuring the size of Brownian particle in chapter 1 and the anchoring 

strength of nematic LC cell in chapter 2, we always applied single stretched 

exponential function ( ) exp ( )sg t A B t τ⎡ ⎤= + −⎣ ⎦
(2)  to fit the measured raw data since 

the dynamical behaviors that were measured were all close to a single fluctuation 

mode (in Brownian motion case, it is translational motion; in nematic LC molecular 

fluctuation case, it is twist fluctuation) and a single relaxation time was thus expected. 

However, the situation in SSFLC seems much more complicated. In addition to the 

molecular conic motion that exists in the ferroelectric LC material, the restriction 

caused by surface constrains the LC molecular motion in switching between the two 

bistable states, and this may contribute a fluctuation mode. Furthermore, the existence 

of nc-ZnO affects some physical properties of the ferroelectric LC material [30, 31, 
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32], which may also contribute a different fluctuation mode. Hence, a model that 

describes only one single relaxation dynamics is no longer appropriate for describing 

the dynamics in SSFLC. 

The measured raw autocorrelation function profile of the undoped SSFLC cell 

shown in Fig. 3-2-3 (a) gives us a hint that we can try a triple stretched exponential 

function of the form shown in Eq. (3.2.2) owing to the three steps appearing in its 

profile. The fitting results are tabulated below. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 nc-ZnO-doped undoped (a) undoped (b) 

A  0.9917 0.9917 0.9896 

B  0.009248 0.0008995 NA 

C  0.02395 0.04127 0.04199 

D  0.03119 0.0174 0.01934 

E  0.006359 NA NA 

1s  1 1 NA 

2s  0.5624 0.7454 0.7155 

3s  1 0.5181 0.5208 

1τ  8.782e-005 1.168e-004 NA 

2τ  0.7885 0.2077 0.2058 

3τ  206.7 459.9 643.8 

ω  73.05 NA NA 

p  0.01 NA NA 

d  8.699 NA NA 

Cell 
Parameter
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Table 3-2-2 The fitting results of the two autocorrelation functions in Fig. 
3-2-3. Here,“undoped (a)＂represents the fitting results by using the fitting 
model Eq. (3.2.2);“undoped (b)＂represents the fitting results by using a 

double stretched exponential function ( ) ( ) ( ) 32
32(2)

ss ttg t A C e D e ττ −−= + ⋅ + ⋅ . 

 

Note that adopting triple stretched exponential function means that we believe there 

may exist three exponentially decaying dynamics inside the probing region, and we 

mathematically combine these three exponentially decaying dynamics by simply 

adding up their corresponding stretched exponential functions by virtue of the 

linearity property of the correlation operation. 

Let us try to explain what we really got from these measurements. As we have 

known that a ferroelectric LC molecule is in a constant conic motion, a spontaneous 

polarization accompanying it also rotates. However, the spontaneous polarization is 

induced from the unbalance of the spatial charge distribution inside the molecule. This 

internal unbalance is unnecessarily correlated to the ensemble behavior of the 

molecule. For this reason, the uncorrelation in between contributes excess degrees of 

freedom to the fluctuations in the ferroelectric LC material, just like that shown in Fig. 

3-2-4. 
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ŷ

ẑ
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        Fig. 3-2-4 In SmC∗ , (a) ξ  is the in-plane projection of the molecular tilt 

and P  is the spontaneous electric polarization on a plane parallel to ˆ ˆx y−  

plane. (b) the small fluctuations of the tilt and the polarization [15]. 

 

Now that both the tilt part and the polarization part contribute to the ensemble 

fluctuations as well, it is reasonable for us to treat them as different fluctuation modes. 

The parallel fluctuating component (δξ  and Pδ ) thus corresponds to the amplitude 

excitations while the perpendicular fluctuating component ( δξ⊥  and Pδ ⊥ ) 

corresponds to the phase excitations [15]. It is these two excitations that contribute to 

the two relaxation times 2τ  and 3τ  in Table 3-2-2. Moreover, since our experiment 

was conducted at almost constant ambient temperature (with 0.1 C± °  precision), 

the fluctuation in tilt angle was supposed to be suppressed, which leads to the 

difficulty of the existence of the amplitude excitations. Therefore, 2τ  was supposed 

to be relatively small, and this conjecture is strongly confirmed by the fitting results 

shown in Table 3-2-2. In other words, we reach the point that in the ferroelectric LC 

the phase excitations are more popular than the amplitude excitations given that the 
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ambient temperature is kept constant stably. So far, we have explained the physical 

meaning of 2τ  and 3τ , and the discussion seems quite reasonable. What about 1τ ? 

In our viewpoint, 1τ  may possibly come from the correlation of the noises that exist 

in our measuring system, especially those dependent of frequency, the so-call 1 f α  

noise. These kinds of noises have the“pink＂character, that is, their power spectral 

density decays with their frequencies. According to the Wiener-Khinchin theorem, it 

is this spectrum decay with frequency that produces an equivalent correlation time. 

Generally speaking, the correlation time of 1 f α  noise is not easy to be observed 

when it is mixed into a relatively strong signal, but why can we extract this 

information? This is possibly because (1) the measuring time (7,200 seconds) was 

long enough (compared with the measuring time in the measurements of nematic cells) 

for observing it; (2) the mixing signal did not have strong correlation itself (compared 

with the observed strong correlation in the measurements of nematic cells), as you can 

see in the comparison between Fig. 3-2-3 and Fig. 1-3-6 (b) .  

A final question about the fitting relaxation times may arise: how can we 

determine which one among 1τ , 2τ , and 3τ  is the minor effect coming from the 

1 f α  noise that exists in the system? To answer this question, we made a simple test 

as follows: using a double stretched exponential function as our fitting model to fit the 

raw data measured from the undoped cell. The fitting result is shown in the third 
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column of Table 3-2-2. Now, we can easily tell which one is the minor term coming 

from noise and which ones are the dominant terms coming from the two excitation 

modes (amplitude and phase). 

Last but not least, let us examine the difference between the autocorrelation 

functions measured from the undoped SSFLC cell and the nc-ZnO-doped SSFLC cell. 

With nc-ZnO doped, the improved molecular alignment quality is expectd and was 

really achieved in our lab. This mainly originates from the dipole-dipole interaction 

between the nc-ZnO and the C O=  groups of the surrounding ferroelectric LC. Each 

ZnO quantum dot provides a dipolar interaction with the surrounding ferroelectric LC 

molecules and forces them to align parallel to its electric polarization resulting from 

the internal dipole moment [29]. 

Note that in section 3.1, we have understood that the smectic phase has more ordered 

spatial arrangement of the molecules than nematic phase does, which is revealed by a 

fact that the smectic phase has somewhat positional order while the nematic does not. 

This fact strongly hints that the dynamical behavior in the smectic phase structure is 

supposed to be closer to that in the solid crystal structure than that in the nematic 

phase structure. But unlike the underdamped dynamics of the phonons in the soild 

crystal, molecular fluctuations in the ferroelectric LC are still overdampted, as proved 

in the autocorrelation function measured from the undoped SSFLC cell shown in Fig. 
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3-2-3 (a). However, something really interesting happened right after doping nc-ZnO 

into the pure ferroelectric LC cell. In Fig. 3-2-2, the LC molecules driven by the 

external electric field switched between the two bistable states regularly, which leads 

to an periodically oscillating autocorrelation function; in Fig. 3-2-3 (b), the 

autocorrelation function exhibits the similar oscillating part to that in Fig. 3-2-2 

without any externally applied electric field. This observation strongly implies that the 

fluctuations in the ferroelectric LC experience a dynamical change from completely 

overdamped to partially overdamped and partially underdamped after doped with 

nc-ZnO. We attribute this underdamped component of the whole fluctuations to the 

better spatial molecular arrangement coming from the intrinsically positional order 

and the doping-induced better orientational order. It is this doping-induced effect that 

makes this smectic phase LC in the cell be much closer to solid crystal, and makes the 

molecules in the cell encounter less resistance for oscillating underdampingly. The 

nc-ZnO helps the molecules in the cell overcome the energy barrier put up by the 

surface anchoring successfully and switch between the two bistable states freely. This 

free switching between the two bistable states contributes another fluctuation mode to 

the system. However, instead of overdamped, it is a periodically underdamped mode. 

Furthermore, the fitting result in Table 3-2-2 also tell us that the frequency of this 

underdamped oscillation is 73.05 / sec.rad , which approximately equals 11.63 Hz. 
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q
  

The doping level we used in the nc-ZnO-doped SSFLC cell was around 1 wt%, 

this leads to an estimation of 15000FLCn ≈  ferroelectric LC molecules surrounding 

one ZnO nanoparticle in a spherical space of max 14 R nm  [29]. Because of this 

wide gap of ratio, not all of the molecules in the cell are affected severely by the 

nc-ZnO, which is illustrated in the following figure. 

P

2 mμ
ZnOP

P

Fig. 3-2-6 In the upper figure, the left 
two circles represent the orbits 
traversed by the ends of the FLC 
molecules. One of them is in the 
unaffected region while the other one is 
in the balanced region; the left figure 
show the conic motion of the LC 
molecules in the balanced region. 

Fig. 3-2-5 The three fluctuation modes 
observed in the measurement. q  
represents the scattering vector. 
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    Two mechanisms competed in affecting LC molecular dynamical behavior. As 

shown in this figure, the behavior of the LC molecules in the unaffected region far 

from the nc-ZnO was still dominated by the effect of the surface anchoring, so the 

bistable states were preferred in this region and the overdamped fluctuation survived; 

in the balanced region, the existence of the nc-ZnO, on account of highly spatial order 

coming from positional order and doping-induced orientational order, made the LC 

molecules get rid of the influence of the surface anchoring and recover their primitive 

conic motions. In the course of conic motion the LC molecular polarization were 

somewhat affected by that of the nc-ZnO. This effect is illustrated in the bottom figure 

of Fig. 3-2-6, when a LC molecule tended to rotate conically, say at position (4) for 

example, its polarization felt the existence of the polarization of the nc-ZnO so that it 

speeded up toward the position at which its polarization could be parallel to that of the 

nc-ZnO. Therefore, an accelerated pathway (4) (5) (6) (1)→ → →  was possibly set 

up. Likewise, a decelerated pathway (1) (2) (3) (4)→ → →  was also expected. Once 

a motion in such pathways happened, it can bring about a periodic motion between 

the two bistable states. This picture gives a direct insight into the existence of the 

oscillating behavior observed in the autocorrelation function measured from the 

nc-ZnO-doped SSFLC cell.  
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CChhaapptteerr  44..    CCoonncclluussiioonnss  

 

To summarize, this thesis study confirmed several facts that have been well 

developed in some other ways, provided several intuitively physical pictures for 

several complex theoretical notions, and observed a dynamical phenomenon never 

found before. Recapitulating as follows, 

(1) The hydrodynamic diameters of the nanoparticles suspending in the solution 

can be determined accurately by the dynamic light scattering technique. 

(2) The theoretical derivations of the relationships between the measured 

correlation time and the cell’s anchoring strength were achieved. 

(3) The fact that the anchoring strength of the photoalignment cell is smaller 

than that of the mechanical rubbing cell was confirmed. 

(4) Liquid crystal polymers do improve the surface alignment quality. 

(5) The autocorrelation functions measured from the SSFLC were observed 

successfully; the fitting results are in accordance with the intuitive physical 

models. 

(6) A transformation of fluctuation mode in the measurement of the 

nc-ZnO-doped SSFLC cell from completely overdamped to partially 

overdamped and partially underdamped was discovered. 
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(7) A model responsible for the explanation of the transformation in (6) was 

presented. 
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