		目	錄	
中文打	商要			I
英文打	商要			Ι
誌謝.				1
目錄.			V	Ί
Schen	ne 目錄		E	X
Table	目錄		E	X
Figure	e 目錄			X
附圖	目錄	E ESA	XII	I
第一	章 緒論	1896		1
1.1	有機電激發光簡介	anne.		1
1.2	電激發光原理			5
1.3	高分子發光二極體材料	斗與合成		9
1.4	中孔洞氧化矽材料		13	3
1.5	溶膠-凝膠法		1	5
1.6	界面活性劑(Surfactant))	18	8
1.7	薄膜塗佈的方式		19	9
1.8	中孔洞氧化氧化矽材料	↓的應用	20	0

1.9 含環氧乙烷侧取代之聚(2,3-雙苯基-1,4 仲苯基乙烯)研究動機22
1.10 偏極化之高分子發光二極體
1.11 含三苯基側取代之聚(2,3-雙苯基-1,4 仲苯基乙烯)研究動機27

第二章 含環氧乙烷侧取代之聚(2,3-雙苯基-1,4 仲苯基乙烯)之合成28
2.1 試藥
2.2 儀器
2.3 單體及聚合物之合成32
2.3.1 單體之合成
2.3.2 聚合物之合成
2.4 元件製作
2.5 溶膠-凝膠(Sol-Gel)製程
第三章 含環氧乙烷侧取代之聚(2,3-雙苯基-1,4 仲苯基乙烯)之結果與討
論
3.1 單體之合成與鑑定42
3.2 聚合物合成與反應之探討43
3.2.1 聚合物之鑑定44
3.3 GPC 量測46
3.4 熱性質分析47

3.5 循環伏安計量(Cyclic Voltammetry)分析	49
3.6 有機電激發光二極體製作與光電性質量測	51
3.61 ITO 圖形化的製作	51
3.62 發光元件的結構	52
3.63 元件光電性質討論	54
3.7 穿透式電子顯微鏡(TEM)鑑定高分子複合材料之奈米結構.	58
3.8 薄膜態之光學性質鑑定高分子複合材料之奈米結構	64
3.9 小角度 X-ray(SAXS)鑑定高分子複合材料之奈米結構	65
3.10 結論	67
第四章 含三苯基侧取代之聚(2,3-雙苯基-1,4仲苯基乙烯)之合成	69
4.1 試藥	69
4.2 儀器	69
4.3 合成部份	69
4.4 聚合物之合成	76
4.5 元件製作	78
第五章 含三苯基侧取代之聚(2,3-雙苯基-1,4 仲苯基乙烯)之結果	與討論82
5.1 單體合成與鑑定	82
5.2 高分子 P4~P6 之合成	83
5.3 主鏈液晶高分子 P4~P6 之性質分析	84

5.31 高分子 P4~P6 之熱性質分析	84
5.32 高分子 P4~P6 之偏級化光學性質探討	86
5.4 結論	89
第六章 參考文獻	90

List of Schemes

Scheme 1 Synthesis of Amphiphilic Polymer P1~P3	41
Scheme 2 Synthesis of monomer M ₁	80
Scheme 3 Synthesis of Liquid Crystal Polymer P4~P6	81

Table 3-1 Polymer P1~P3 溶解度測試表	45
Table 3-2 Molecular weights and Molecular weight distributions	.47
Table 3-3 DSC and TGA data	48
Table 3-4 Device Performance	.55
Table 5-1 Polymerization Results of Polymers	.83
Table 5-2 The Thermo Properties of Polymers	84

List of Figures

Figure 1-1 Small molecular OEL device prepared by Tang <i>et al</i> 2
Figure 1-2 Structures of some common small molecules
Figure 1-3 Structures of some common polymer materials4
Figure 1-4 Structure of a single layer OLED device
Figure 1-5 Electroluminescence mechanism
Figure 1-6 Energy diagram of exciton formation7
Figure 1-7 Schematic energy level diagram for an ITO/PPV/Al device8
Figure 1-8 Structure of a multilayer OLED device
Figure 1-9 Structure of MEH-PPV
Figure 1-10 Scheme of SPR method10
Figure 1-11 Scheme of XPR method11
Figure 1-12 Structures of some DP-PPVs12
Figure 1-13 Scheme of ring-opening polymerization12
Figure 1-14 中性界面活性劑(兩性分子)在水溶液中的相圖15
Figure 1-15 中孔洞材料的三種對稱性15
Figure 1-16 溶劑揮發誘導自組裝現象示意圖17
Figure 1-17 不同的起始溶液配方,在相圖中將可能導致不同的薄膜形18

Figure 1-18 界面活性劑示意圖: (a) CTAB(S ⁺), (b) BrijR56(S ⁰)19
Figure 1-19 pH 值對氧化矽與正離子界面活性劑之間作用的影響示意圖19
Figure 1-20 Polymer hybrid with silica form mesostructure21
Figure 1-21 Molecular orientation of the polymer chains in the L-B film22
Figure 1-22 Structures of PF2/6, PI and ST63825
Figure 1-23 Structures of some LC-PPVs, LC-PPPs and LC-PTVs26
Figure 1-24 Structures of DP-PPVs with liquid crystalline side groups27
Figure 2-1 Experiment process of first Sol-gel method
Figure 2-2 Experiment process of second Sol-gel method
Figure 3-1 Mechanism of the Gilch route43
Figure 3-2 FT-IR spectra of P1~P3.
Figure 3-3 Energy Level of P1~P350
Figure 3-4 Cyclic Voltammogram of P1 in film state
Figure 3-5 Luminance-Voltage curve for the device with configuration: ITO $\!/$
PEDOT / P1 /Ca(Al)55
Figure 3-6 Current density-Voltage curve for the device with Configuration
: ITO / PEDOT / P1 / Ca(Al)56
Figure 3-7 Luminance-Voltage curve for the device with Configuration : ITO/
PEDOT / P2 / Ca(Al)

Figure 3-8 Current density-Voltage curve for the device with Configuration
: ITO / PEDOT / P2 / Ca(Al)57
Figure 3-9 Luminance-Voltage curve for the device with Configuration : ITO /
PEDOT / P3 / Ca(Al)57
Figure 3-10 Current density-Voltage curve for the device with Configuration
: ITO / PEDOT / P3 / Ca(Al)58
Figure 3-11 TEM of P3 nanocomposite
Figure 3-12 TEM of P3 nanocomposite
Figure 3-13 TEM of P3 與矽源反應後經由高溫鍛燒後之照片61
Figure 3-14 TEM of P3 與矽源反應後經由高溫鍛燒後之照片61
Figure 3-15 TEM of P3 與矽源反應後經由高溫鍛燒後之照片62
Figure 3-16 TEM of P3 與矽源反應後經由高溫鍛燒後之照片62
Figure 3-17 凝膠在 UV 燈照射之下63
Figure 3-18 EDX of P3 nanocomposite63
Figure 3-19 PL of P3 nanocomposite and P3 solution ightarrow film state65
Figure 3-20 Small Angle X-ray of P3 nanocomposite
Figure 5-1 TGA Thermogram of copolymer P4~P685
Figure 5-2 DSC thermogram of polymer P685
Figure 5-3 Polarizing optical micrograph of polymer P6 at 250°C

Figure 5-4 Polarized PL emission spectra of P4	.87
Figure 5-5 Polarized PL emission spectra of P5	.88
Figure 5-6 Polarized PL emission spectra of P6	.88

List of 附圖

附圖	1. ¹ H-NMR spectrum of 5a	95
附圖	2. ¹³ C-NMR spectrum of 5a	96
附圖	3. MALDI spectrum of 5a	97
附圖	4. ¹ H-NMR spectrum of 5b	98
附圖	5. ¹³ C-NMR spectrum of 5b	99
附圖	6. MALDI spectrum of 5b	-100
附圖	7. ¹ H-NMR spectrum of 5c	-101
附圖	8. ¹³ C-NMR spectrum of 5c	-102
附圖	9. MALDI spectrum of 5c	-103
附圖	10. ¹ H-NMR spectrum of P1	-104
附圖	11. ¹ H-NMR spectrum of P2	-105
附圖	12. ¹ H-NMR spectrum of P3	-106
附圖	13. TGA of P1 、 TGA of PEO(Mw:120)	-107
附圖	14. TGA of P2 、 TGA of PEO(Mw:350)	-108

附圖	15. TGA of P3 、 TGA of PEO(Mw:750)	-109
附圖	16. DSC of P1~P3	-110
附圖	17. ¹ H-NMR spectrum of M ₁	-111
附圖	18. ¹³ C-NMR spectrum of M ₁	-112
附圖	19. Mass spectrum of M ₁	-113
附圖	20. ¹ H-NMR spectrum of P4	-114
附圖	21 ¹ H-NMR spectrum of P5	-115
附圖	22. ¹ H-NMR spectrum of P6	-116

