第三章

含聚環氧乙烷側取代之聚(2,3-雙苯基 -1,4-仲苯基乙烯)之結果與討論

3.1 單體之合成與鑑定

本部份所使用的前驅物為含雙苯環之化合物 2,3-diphenyl -5-(4-heptyloxy-4'-oxytrimethylenediphenyl)-1,4-bis(chloro-methyl)benzene (6),其合成流程圖詳列於 Scheme 1 中。利用化合物 benzil 與 diethyl 1,3-acetonedicarboxylate 在 KOH 的作用下進行 Aldol condensation, 之後在 濃硫酸與醋酸酐的作用下進行脫水反應得到化合物 2,5-dicarbethoxy-3,4-diphenylcyclopentadienone (1)。 另以化合物 5-chloro-1-pentyne 在 toluene 作用下進行 Diels-Alder reaction,得到化合物 411111 (2)。之後將2與Poly(ethylene oxide)在NaH/KI作用下進行醚化反應,得到 化合物(3)。接下來將 3 以 LiAlH4 將酯基還原形成醇基,得到化合物(4)。最 後將(4)與 SOCl2反應,將醇基轉變為氯亞甲基,即得最後單體(5)。各產物 經¹H-NMR 光譜確認結構無誤,光譜資料及產率詳列於第二章實驗部份。 本系列我們合成了以 PPV 為主幹, PEO 為側鏈的單體其分子量分別為 120、 350 以及 750。

3.2 聚合物合成與反應之探討

本實驗單體的聚合方法是利用溶液聚合,所使用的聚合試劑為單體 1

當量加入 16 倍當量鹼 potassium t-butoxide (t-BuOK) 在氮氟下進行聚合反 應,為了使單體能更完全反應,故加入多量的鹼來進行聚合,以期能合成 出足夠分子量且 Cl 脫去完全之聚合物。聚合完畢後,再逐漸滴入正已烷進 行再沉澱,並且利用半透膜在 THF 中進行透析以去除過量之鹽類。我們採 用改良過的聚合方法為 Gilch route。

有關於 Gilch route 的反應機制,在文獻上有認為是自由基聚合(Radical polymerization) [57],也有認為是進行陰離子聚合(Anionic polymerization) [14],但是目前並沒有確切的解釋,其可能反應機制如 Figure 3-1 所示 [16]:

Figure 3-1 Mechanism of the Gilch route.

由於為了討論 PPV 側鏈長度 PEO 不同對高分子在親疏水端上所形成奈 米結構的探討,所以我們單純合成 homopolymer 進行性質探討。

3.21 聚合物之鑑定

經由¹H-NMR 圖譜(如附圖 10、11、12)也可以發現,所有 polymers 中

均有 PEO 之存在,特徵峰=3.6-3.8 為 ethylene oxide 官能基上的 H 訊號,特 徵峰在 3.3-3.5 ppm 為 PEO 末端-OCH3 的 H 訊號,可以確定確實有 PEO 之 存在。

Polymers 經由 IR 測量,顯示 1100 cm⁻¹ 的位置(Fig.3-2)有很明顯的 peak 存在,其代表意義為 C-O-C stretching,由於 PEO 為 ethylene oxide 所組成, 故其 C-O-C streching peak 非常明顯,由此我們也可得知所合成之 polymers 是含有 PEO 官能基 ,在高極性溶液之溶解度方面我們所合成之長鏈 PEO (Mw=750、350)皆可溶於甲醇中,因 polymer 極性隨著接上 PEO 而有很大 改變,polymer 側鏈接上短鏈(Mw=120)卻無法溶解於甲醇中,其原因可能 是因為 ethylene oxide 太短對於整體 polymer 極性改變不大,故無法溶解於 甲醇當中(詳見於 Table3-1);相對於實驗室之前所做的 polymer 側鏈接上 長碳鏈之 DP-PPV 皆不可溶於甲醇,故可以證明我們所接的 PEO 確實改變 了 polymer 之親疏水性質,在後面我們將會著重於探討 polymer 親水性質對 於奈米結構之影響。

44

Figure 3-2 FT-IR spectra of P1 \sim P2 and P3 film. The spectra show the

magnified C-O-C stretching mode at 1100 cm ⁻¹ . Table 3-1 polymer 溶解度測試表				
溶劑\高分子	P1	P2	Р3	
CH_2Cl_2	\bigtriangleup	0	\bigcirc	
THF	\bigtriangleup	\bigcirc	\bigcirc	
CH ₃ CN	\bigtriangledown	\bigcirc	\bigtriangleup	
МеОН	\bigtriangledown	\bigtriangleup	\bigtriangleup	

溶解度 Excellent: △ 溶解度 medium: ○ 溶解度 bad: ▽

3.3 GPC 量测

由於高分子的各項性質和分子量大小有很密切關係,故藉由 GPC 的量 测,可得到一個相對標準品的相對分子量。在此所用之標準品為 polystyrene, THF 為充提液,流速為1 mL/min,樣品注入量為100μL。樣品配置濃度為 2 mg/mL,經超音波震盪使其完全溶解後,再以 0.22 μm 的 Teflon 過濾板進 行過濾。P1-P3 量測結果如下頁 Table 3-2 所示。P3 為 PPV 側鏈接上 PEO(Mw:750)之 polymer,所聚合出之分子量約一萬,相對於傳統上 Gilch-route 所聚合出的分子量,明顯小了許多,我們推測其原因是因為單體 接上長鏈 PEO 造成較大的立體阻礙,影響其聚合分子量; P2 的單體所聚合 出的 polymer 分子量亦不高約1萬多,推測其原因亦如同 P3; P1 之單體所 聚合出的分子量約 19 萬,因為 P3 所接的側鏈 PEO 最短(Mw=120),其立 411111 體阻礙最小,在 THF 溶劑溶解度方面,也因為 PEO 鏈較短對整體極性改變 不大,故單體很容易溶於 THF,故其所聚出的分子量可到達 19 萬之多, PDI 方面可發現隨著 PEO 鏈越長其 PDI 值會越大,因為商業上所購買的 PEO 鏈越長其平均分子量分布越廣,故高分子的 PDI 會隨著 PEO 鏈長越長而有 增大的趨勢。

Polymer	Mw	Mn	PDI
P1	314900	195800	1.61
P2	12800	6881	1.86
Р3	14680	6892	2.13

Table 3-2 Molecular weights and Molecular weight distributions of Polymers P1~P3

3.4 熱性質分析

一個良好的發光材料除了色彩飽和度要足夠外,材料本身的結構穩定 性也要有一定程度以上,而穩定性可細分為化學穩定及物理穩定性。所謂 化學穩定性即材料本身的化學結構是否容易產生化學鍵斷裂,通常發光元 件在外加電壓操作下,溫度會不斷上升,若材料在低溫就發生化學鍵斷裂, 材料本質便會發生改變,進而造成元件壽命縮短;而所謂物理穩定性即材 料本身是否易有規則排列情形,而在發光元件中,材料規則排列的情形, 會有局部結晶現象產生造成缺陷(defect)。高分子 P1-P3 的 TGA 圖及 DSC 圖,詳見於附圖 13、14、15、16 中,而 Tg、Td 列於 Table3-3。

Polymer	Tg(℃)	Td(°C)
P1	181	371
P2	177	316
P3	177	368

Table 3-3 Glass transition and decomposition temperature of polymers P1~P3

在熱穩定方面,由 TGA 量測之。量測方式為秤取 5-10mg 樣品,先升 溫至 100℃維持 30 分鐘,以去除樣品中可能含有的水氣,而後降溫到 50℃, 再以 10℃/min 之速率加熱到 750℃。所得之時間與重量百分比之關係圖, 如附圖所示。以產物 5%重量損失時之溫度為 Td 點。在 P2-P3 中,Td 值逐 漸上升(316~368℃),與 PEO 鏈長有很大關係,因為單純 PEO 之 Td 點隨 著 PEO 鏈長越長,其 Td 點會越高(如附圖 14、15),故 P3 與 P2 在分子量 相近的情況下,其 Td 會因為接了 PEO 長度越長,而提高 polymer 整體的 Td 點,故 P3 的 Td 點是比 P2 的 Td 更高;P1 之 PEO 鏈長是最短的(Mw:120), 其 Td 點 371℃,與 P3、P2 明顯有著不同的 Td 點趨勢,乃因為 P1 所得到 的分子量高達 19 萬,雖然其側鏈 PEO 是最短的,但其分子量提高了 19 倍, 不同分子量其 Td 點的趨勢無法用 PEO 鏈的長短來比較,故我們可藉由 Td 點的比較得知 P3、P1 均有較佳的熱穩定性。

玻璃轉換溫度由 DSC 量測之,測量方式為秤取 5-10mg 樣品,先降溫

至-20℃平衡後,以加熱速率為 10℃/min 加熱至 200℃後,再以 30℃/min 降 回-20℃。觀察第二段降溫曲線,即可得到明顯的 Tg 點,如附圖 16 所示。 其中 P3、P2 的 Tg 點相近約(177℃),相對於 P1 明顯看出差異,因為 P3、 P2 的側鏈 PEO 較長造成高分子整體玻璃轉換溫度降低,P1 之 PEO 鏈最短 而分子量最高,故其 Tg 點相對於 P3、P2 明顯比較高。

3.5 循環伏安計量(Cyclic voltammetry)分析

為了瞭解發光材料於光激發光或電激發光過程中 HOMO 及 LUMO 等 能帶的高低關係,本實驗對高分子 P1~P3 進行了循環伏安計量分析,實驗 時以濃度 0.1 M 之(n-Bu)₄NBF₄ 的 acetonitrile 溶液為電解液,高分子塗覆在 Pt 電極上量測,量測時以 50 mV/sec 的速率掃描記錄其氧化還原曲線。

發光材料之能帶結構會直接影響其 PL 及 EL 的光色,故這一方面的數 據亦是評估發光材料的一項重要指標。對於發光材料之電子游離能 (Ionization potential, IP)與電子親和力(Electronic affinity, EA)數據的取 得,最簡單的方法就是以 CV 數據配合 UV-visible 光譜之吸收波長數據來計 算。一般發光材料 IP、EA 及能隙(Energy gap, Eg)的標準表示法如下頁所 示:

$$IP = 4.4 + E_{ox,onset}$$
$$EA = 4.4 + E_{red,onset}$$
$$E_g = IP - EA$$

由於高分子材料在量測 CV 所表現出的還原曲線會因為有水或其它物 質的出現而變得非常雜亂,導致材料本身的還原曲線並不明顯,因而無法 直接得到 EA 值,故對於高分子能隙的取得一般藉由 UV-visible 光譜中的 最長波長吸收峰的起始波長(λonset)來計算:

$$E_g = 1240 / \lambda_{onset}$$

其中 λ_{onset} 單位為 nm,而所得 Eg 的單位為 eV

Figure 3-3 Energy level of P1-P3

Figure 3-4 Cyclic Voltammogram of P1 in film state.

متللك

3.6 有機發光二極體元件製作與光電性質量測 3.61 ITO 圖形化的製作

本實驗所使用的玻璃基板為 Merck Display Tecnology 公司之電阻值為 20Ω/square 的銦錫氧化物(indium-tin oxide, ITO 玻璃),使用時並切割為3 × 3 cm² 之正方形。由於發光元件於光電性質測量時須先將 ITO 圖形化 (patterning),故必須先從事以下之步驟:

- 上光阻:本研究所使用之光阻為長春人造樹酯股份有限公司 AF5040 乾 式光阻。
- (2) 曝 光:依照所需圖形,在300~400 nm 波長的紫外光下曝光30 秒。
- (3) 顯 影:以1~2% 重量百分濃度之碳酸鈉水溶液顯影。
- (4) 蝕 刻:將顯影過後的 ITO 玻璃基板浸入 50 ℃的濃鹽酸溶液蝕刻約

30秒。

(5) 去光阻:以1~3% 重量百分濃度之氫氧化鈉水溶液剝除光阻。

圖形化後的 ITO 玻璃,再經過以下的清洗步驟後,即可用來作為發光 元件的基材。

Cleaning step	Time	
Detergent	10 min	
H ₂ O	10 min	
NaOH(aq)	10 min	
D.I water	10 min	
Acetone	10 min	
IPA	10 min	
Oven 150°C	96 12 hr	

Glass-cleaning process

3.62 發光元件的結構

高分子發光二極體元件採用 ITO/PEDOT/polymer/Cathode 的單層結構,其中 PEDOT 作為電洞傳輸層。Poly(3,4-ethylenedioxythienylene) (PEDOT) 結構如下,其具有高導電度及良好的熱穩定性,且由於其為水溶性高分子, 因此於元件的製作過程之中,將不會有被上層有機發光層的有機溶液互溶 的問題,且藉由此層之加入,將可促使電洞有效的傳輸,進而提升元件性 質。

至於陰極則是使用功函數較低的鈣,此金屬使得電子更容易地注入發 光材料的 LUMO 軌域。但因陰極的鈣金屬接觸到空氣中的氧氣之後,相當 容易氧化,此現象將會嚴重影響元件的效率,因此為避免在元件封裝時陰 極的鈣金屬接觸到氧氣,在鈣金屬的上方,另外蒸鍍了一層鋁金屬以作為 鈣陰極的保護層。鋁金屬在經由氧化之後,會在其表面形成一層緻密的保 護層,以保護內部的金屬不再繼續氧化。

在 PEDOT 的旋轉塗佈方面,以 6500 rpms 旋轉 30 秒,塗佈完成後於 120℃下烘烤1小時。在發光材料的配置方面,一般高分子發光層厚度約在 80~150 nm,經由測試一系列的轉速與濃度配方之後,其最恰當的濃度均 為 1.5% (w/v),以 1500 rpms 旋轉 30秒,經由超音波震盪兩小時之後,將 溶液以 0.45 µm 的鐵氟龍(Telfon)分子過濾板過濾,在真空烘箱內抽真空並 以 80℃烘烤1小時,然後將元件送入蒸鍍機內作陰極的蒸鍍。在陰極金屬 的蒸鍍方面,先將塗佈高分子薄膜的基材置於金屬蒸鍍機之腔體內,以高 真空幫浦抽真空使腔體內壓力達到9×10⁻⁷ torr,即可進行金屬 Ca 與 Al 的 蒸鍍,其厚度分別為 35/100 nm。

3.63 元件光電性質討論

將 P1-P3 做成有機電激發光二極體元件,所得元件各項基本性質詳列於 Table 3-4; Fig 3-5~Fig 3-10 為 P1~P3 之 L-V 與 J-V curve 圖,在此系列元件 效果裡面以 P1 的元件性質為最佳,可得最大亮度為 677 cd/m²,相對於 P2、 P3 來說高出兩倍以上的亮度,其原因為 P1 之分子量達到 19 萬,其成膜性 質好,另外我們也發現 PPV 側鏈接上 PEO 長鏈過長會改變高分子的極性, 使得高分子呈現高親水性,然而元件製作過程中我們使用的為雙層元件, 亦即在 PEDOT 上直接旋轉塗佈上高分子,但 PEDOT 為水溶性與我們的水 溶性高分子可能會有互溶的影響,這對載子結合率上會有很大的影響以至 於降低元件效率,所以對元件亮度以及效率來說,水溶性高分子在做上雙 層 PLED 結構表現不佳,目前水溶性材料比較多應用在電子傳輸層(因其 LUMO 與 Ca 能階相近),未來方向可嘗試多層結構來改善這些影響。

polymer	Turn on Voltage (V)	Current Density at max brightness (mA/cm ²)	Max brightness (cd/m ²)	Best Power efficience (lm/W)	Best Luminance Efficience (cd/A)
P1	4	256	677	0.217	0.41
P2	5	584.4	263	0.027	0.06
P3	5	686.8	242	0.022	0.05

Table 3-4 device performance of polymers P1~P3

Figure 3-5 Luminance-voltage curve for the device with configuration: ITO/PEDOT/**P1**/Ca(Al)

Fig 3-7 Luminance-voltage curve for the device with configuration: ITO/PEDOT/**P2**/Ca(Al)

Fig 3-9 Luminance-voltage curve for the device with configuration: ITO/PEDOT/**P3**/Ca(Al)

3.7 穿透式電子顯微鏡(TEM)鑑定高分子複合材料之奈米結構

我們使用不同條件下製備出兩種不同奈米結構,第一種方法為使用 Brinker, C. J. 等人在2003年於 J. Am. Chem. Soc. [29]所發表的論文在酸性環 境中利用 Amphiphilic 分子與矽源進行水解作用產生規則排列之奈米結 構,我們使用同樣的方法製作出的奈米結構為微胞狀奈米結構,其原因是 由於我們所使用的 Amphiphilic 分子為高分子,並非 Brinker, C. J.所使用的 小分子系統,高分子與矽源要直接形成 hexagonal phase 排列仍缺少一些驅 動力,在2005年UCLA研究團隊 Tolbert 教授發表於 Nano Letters[56]上有 提到對於高分子要進行 Sol-gel,反應需要再加入另一個界面活性劑,以促 進形成 hexagonal phase 排列,這部份我們將於第二種實驗方法中詳細介紹, 因為 Brinker, C. J.在酸性條件下所使用的環境大部分仍為 THF,只含少部分 的水,在疏水的系統(THF)裡 PEO 會被侷限成一個微胞狀,高分子之 PEO 與矽源進行 sol-gel 反應會把矽源也一起侷限於微胞狀內,故我們將 Sol-gel 後的 gel 經高溫鍛燒後(為了去除有機分子以利 TEM 觀察),觀察到利用 Brinker, C. J.所使用的合成方法製備之奈米結構為微胞狀 Fig 3-11、Fig 3-12。

Fig 3-11 TEM micrograph of P3 nanocomposite

Fig 3-12 TEM micrograph of P3 nanocomposite

目前在此系統中比較有規則的微胞排列為 P3,因為其 PEO 鏈最長與矽源的 作用比較好,故可得到比較高規則的微胞結構,對於 P2、P3 並沒有形成太 規則的微胞結構,可能與 PEO 鏈長不夠長,因此無法形成一個比較有規則 的奈米結構。

參照 Brinker, C. J.之方法所得到的秦米結構,與當初所預期的 hexagonal phase 不符合,故我們對高分子系統進行 sol-gel 系統做了一些改變。參考 UCLA 研究團隊 Tolbert 教授近年對於高分子與矽源的研究 ,首先我們將 溶劑環境系統改變成為親水系統,所使用的溶劑為水,另外由於高分子本 身要與矽源反應進行 sol-gel 在排列上需要另一個驅動力,所以我們加入了 另一個陽離子界面活性劑,此界面活性在鹼性環境中可以形成微胞狀態因 為陽離子的正電與鹼性的環境可以有一個驅動力,之後再加入親水性高分 子,如此在親水環境中我們所加入的親水性高分子便可以使 PEO 分子朝 外,苯環分子疏水端向內,最後加入矽源反應,因為 PEO 朝外可立即與矽 源反應,形成高規則度的 hexagonal 排列, sol-gel 反應後將 gel 高溫鍛燒, 之後將燒結完的粉末分散於乙醇置於在銅網上並以 TEM 觀測如 Fig 3-13 至 Fig 3-16,可以發現其排列為高規則度的六角孔洞排列(hexagonal-like)。

當合成溶液於室溫下放置兩週之後,溶液中的溶劑逐漸揮發後,樣品 中的溶膠將會轉變為凝膠,從圖 Fig 3-17 中可見,將樣品瓶倒置之後,溶 液中的凝膠因凝結在一起因而不會掉落,若施加紫外光光源,則因溶液中 同時含有綠光高分子以及矽材,因而在紫外光源下我們可看見很亮的綠光 凝膠。

圖 3-18 為 P3 與矽源形成的奈米複合材料的 EDX 圖,從圖中亦可很明

60

顯的分辨出來奈米複合材料主要成分是含有矽、碳、氧等原子。

Figure 3-13 TEM micrograph of P3 與矽源反應後經由高溫鍛燒後之照片

Figure 3-14 TEM micrograph of P3 與矽源反應後經由高溫鍛燒後之照片

Figure 3-15 TEM micrograph of P3 與矽源反應後經由高溫鍛燒後之照片

Figure 3-16 TEM micrograph of P3 與矽源反應後經由高溫鍛燒後之照片

Figure 3-17 凝膠在 UV 燈照射之下可發現 gel 已凝固於瓶子上方

Figure 3-18 EDX spectrum of P3 與矽源反應行程之奈米複合材料

於 TEM 下所做的元素分析

3.8 薄膜態之光學性質鑑定高分子複合材料之奈米結構

UCLA Tolbert 曾於 J. Phys. Chem. B[58]中討論過高分子與矽源在不同 大小的孔洞其 Film state 會有不同的 PL shift , 當高分子塞在小的孔洞內其 PL的放光模式類似於高分子在溶液中的狀態,當高分子塞在大孔 30-100 nm 時,其分子的 PL 放光位置會與 Film state 類似, Tolbert 探討其原因是在於 當高分子在較小的孔洞內 5-10 nm , 高分子所能塞進的的分子數目會比較 少使得分子之間彼此聚集狀態比較少,類似於溶液狀態中,每條高分子鏈 都是很均匀的分散,故在越小孔洞内的 PL 放光位置跟在溶液中的狀態是越 相近的,故本實驗也要證明我們所合成的奈米複合材料中高分子的確是有 與矽源進行反應而塞在小孔洞的矽源中;在大孔洞內高分子能塞進矽源模 板的數目多,聚集現象會影響其放光波長,由於聚集數目跟孔洞越大是成 正比關係,故可以利用經由測量複合材料的 Film state 來比較與 solution 的 放光波長以及單純 polymer 之放光波長來決定是否有形成奈米級的複合孔 洞材料。

如 Fig 3-19 中可見, P3 與矽源形成的奈米複合材料之 PL 放光位置為 484 nm 非常接近單純為 P3 的 solution state 之放光位置 480 nm, P3 在 Film state 的放光位置接近 500 nm 由此可知 P3 與矽源有進行 Sol-gel 反應,形成 奈米級的孔洞複合材料。

本實驗對於 P2、P1 仍然未找到最理想的比例,以產生有規則性的排列,

此部份,在未來仍可繼續探討其原因是否為 Sol-gel 各項比例條件之因素或者 PEO 鏈長不同溶解度不同造成分子與矽源反應之作用力不同而造成仍然 找不到最好條件做出高規則度之排列。

Figure 3-19 PL of P3 (PEOPPV750) nanocomposite and P3 solution , film state

3.9 小角度 X-ray (SAXS)鑑定高分子複合材料之奈米結構

由於 TEM 照片只能說明我們確實有做出此奈米複合材料的結構,但仍 無法證明我們所做出的材料的均一性因此另外測量 Small Angle X-ray 來證 明其量的方面亦是也同樣的結構存在,在 Fig 3-20 可以看到圖中出現了三 組主要的 peak,其代表意義為六角狀排列的 100、110、200 三個不同方向 的面,q值方面可以看到 q(h,k,l)當分子形成 hexagonal packing 時各組 peak q 值正比於 $\sqrt{h^2 + hk + k^2}$,亦即 100、110、200 三組面的存在必為 1:1/ $\sqrt{3}$: 1/2。我們所得的 peak 經過計算後 q value 是符合的,在 100 的 peak intensity 很大,其半高寬也同時證明了 100 方向的面排列非常好,故可證明我們所 得的奈米複合材料除了 TEM 提供了直接有利的證據之外, SAXS 亦提供了 另一個很重要的結構排列證據。

SAXS analysis nanostructure

3.10 結論

本研究成功的合成出以雙苯環取代之 PPV 為主幹,側鏈接上親水性官 能基 Poly(ethylene oxide)之高分子發光材料。所合成出來的親水性高分子側 鏈分別接上了不同長短的 Poly(ethylene oxide)[PEO]其分子量分別為 750、 350、120,其中側鏈接上 750 以及 350 分子量的單體所聚出來的親水性高 分子,分子量並不高,推測其原因可能因為 PEO 鏈長過長會影響陰離子聚 合造成分子量聚不高;側鏈接上短鏈 PEO 的單體聚合出來的分子量可到達 19 萬,但是由於側鏈過短以及分子量變高故其親水性質卻大大降低。此系 列所做的元件發光亮度以 P1 的 677 cd/m²最亮,因為其分子量較高故可以 提高其元件發光效果,但相對於實驗室以前所做的亮度動輒數千甚至破 萬,仍有一段差距。

在高分子奈米複合材料性質方面,要探討親水性高分子與矽源(TEOS) 進行 Sol-gel 反應,由於 P1 所接的側鏈 PEO 最短,故其親水性很低,不適 用於與矽源反應,故我們只選用 P2、P3 來研究。P3 所接的 PEO 鏈長最長, 與矽源反應進行 Sol-gel 後經由 TEM、PL、SAXS 的分析,我們可以清楚的 發現其奈米結構具有非常高規則度,P2 與矽源進行 Sol-gel 反應後再 TEM 下所觀測到的 Morphology 仍為不規則狀,探究其原因(A)可能是還沒找到最 佳的 Sol-gel 條件比例,或者(B)鏈長需要更長與矽源來作反應才能形成高規 則度的奈米結構。我們利用了兩種不同的實驗方法針對 P3 與矽源進行 Sol-gel 反應,藉由改變環境的極性,我們可以操控 P3 與矽源所形成的奈米 結構,從 micelle 到 hexagonal packing 兩種不同的型態形成不同奈米尺寸不 同與結構的樣貌。

