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Abstract

We calculate high-energy massive string scattering amplitudes of compactified open string. We derive
infinite linear relations, or stringy symmetries, among soft high-energy string scattering amplitudes of dif-
ferent string states in the Gross kinematic regime (GR). In addition, we systematically analyze all hard
power-law and soft exponential fall-off regimes of high-energy compactified open string scatterings by
comparing the scatterings with their 26D noncompactified counterparts. In particular, we discover the exis-
tence of a power-law regime at fixed angle and an exponential fall-off regime at small angle for high-energy
compactified open string scatterings. The linear relations break down as expected in all power-law regimes.
The analysis can be extended to the high-energy scatterings of the compactified closed string, which cor-
rects and extends the previous results in [J.C. Lee, Y. Yang, Linear relations and their breakdown in high
energy massive string scatterings in compact spaces, Nucl. Phys. B 784 (2007) 22].
© 2008 Published by Elsevier B.V.

1. Introduction

There are three fundamental characteristics of high energy, fixed angle string scattering ampli-
tudes [1–3], which are not shared by the field theory scatterings. These are the softer exponential
fall-off behavior [1,4] (in contrast to the hard power-law behavior of field theory scatterings [5]),
the infinite Regge-pole structure [6,7] of the form factor and the existence of infinite number of
linear relations [6–17], or stringy symmetries, discovered recently among string scattering am-
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plitudes of different string states in the high-energy string scattering amplitudes. An important
new ingredient to derive these linear relations is the zero-norm states (ZNS) [18–20] in the old
covariant first-quantized (OCFQ) string spectrum. Other approaches related to this development
can be found in [21–26].

It was believed [27,28] that the newly discovered linear relations are responsible for the softer
exponential fall-off behavior of high-energy string scatterings. One way to justify this conjecture
is to find more hard power-law high-energy string scatterings, which simultaneously show the
breakdown of the above linear relations. However, it is well known that the genetic high-energy,
fixed angle behavior of string scatterings is soft exponential fall-off rather than hard power-law.
Recently, following an old suggestion of Mende [29], two of the present authors [28] calcu-
lated high-energy massive scattering amplitudes of closed bosonic string with some coordinates
compactified on the torus. They obtained infinite linear relations among high-energy scattering
amplitudes of different string states in the Gross kinematic regime (GR). This result is reminis-
cent of the existence of an infinite number of massive ZNS in the compactified closed string
spectrum constructed in [30]. In addition, they discovered that, for some kinematic regime, these
infinite linear relations break down and, simultaneously, the string amplitudes enhance to hard
power-law behavior instead of the usual soft exponential fall-off behavior at high energies.

To further understand the relationship of the infinite linear relations and the softer exponential
fall-off behavior of high-energy, fixed angle string scatterings, it is crucial to find more examples
of high-energy string scatterings, which show the unusual power-law behavior and, simultane-
ously, give the breakdown of the infinite linear relations. In this paper, we calculate high-energy
massive string scattering amplitudes of open bosonic string with some coordinates compacti-
fied on the torus. As in the case of compactified closed string, we obtain infinite linear relations
among soft high-energy scattering amplitudes of different string states in the GR. This result is
reminiscent of the existence of an infinite number of massive ZNS in the compactified open string
spectrum constructed in [31]. More importantly, we analyze all possible hard power-law and soft
exponential fall-off regimes of high-energy compactified open string scatterings by comparing
the scatterings with their 26D noncompactified counterparts. In particular, we discover the ex-
istence of a power-law regime at fixed angle and an exponential fall-off regime at small angle
for high-energy compactified open string scatterings. These new phenomena never happen in the
26D string scatterings. The linear relations break down as expected in all power-law regimes. The
analysis can be extended to the high-energy scatterings of the compactified closed string, which
corrects and extends the previous results in [28]. In particular, we correct the “Mende regime”
discussed in [28], which is indeed exponential fall-off behaved rather than power-law claimed
in [28]. As an example, we derive a hard power-law regime at fixed angle for high-energy com-
pactified closed string scatterings. This paper is organized as follows. In Section 2 we calculated
high-energy massive scattering amplitudes of compactified open string. In Section 3 we classify
all kinematic regimes of the amplitudes and extend our results to the closed string case. A brief
conclusion is given in Section 4.

2. High-energy scatterings

We consider 26D open bosonic string with one coordinate compactified on S1 with radius R.
As we will see later, it is straightforward to generalize our calculation to more compactified
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coordinates. The mode expansion of the compactified coordinate is

(1)X25(σ, τ ) = x25 + K25τ + i
∑
k �=0

α25
k

k
e−ikτ cosnσ,

where K25 is the canonical momentum in the X25 direction

(2)K25 = 2πl − θj + θi

2πR
.

Note that l is the quantized momentum and we have included a nontrivial Wilson line with U(n)

Chan–Paton factors, i, j = 1,2, . . . , n, which will be important in the later discussion. The mass
spectrum of the theory is

(3)M2 = (
K25)2 + 2(N − 1) ≡

(
2πl − θj + θi

2πR

)2

+ M̂2,

where we have defined level mass as M̂2 = 2(N − 1) and N = ∑
k �=0 α25−kα

25
k + α

μ
−kα

μ
k , μ =

0,1,2, . . . ,24. We are going to consider 4-point correlation function in this paper. In the center
of momentum frame, the kinematics can be set up to be [28]

(4)k1 =
(
+

√
p2 + M2

1 ,−p,0,−K25
1

)
,

(5)k2 =
(
+

√
p2 + M2

2 ,+p,0,+K25
2

)
,

(6)k3 =
(
−

√
q2 + M2

3 ,−q cosφ,−q sinφ,−K25
3

)
,

(7)k4 =
(
−

√
q2 + M2

4 ,+q cosφ,+q sinφ,+K25
4

)
,

where p is the incoming momentum, q is the outgoing momentum and φ is the center of mo-
mentum scattering angle. In the high-energy limit, one includes only momenta on the scattering
plane, and we have included the fourth component for the compactified direction as the internal
momentum. The conservation of the fourth component of the momenta implies

(8)K25
1 − K25

2 + K25
3 − K25

4 = 0.

Note that

(9)k2
i = K2

i − M2
i = −M̂2

i .

The center of mass energy E is defined as (for large p,q)

(10)E = 1

2

(√
p2 + M2

1 +
√

p2 + M2
2

)
= 1

2

(√
q2 + M2

3 +
√

q2 + M2
4

)
.

We have

−k1 · k2 =
√

p2 + M2
1 ·

√
p2 + M2

2 + p2 + K25
1 K25

2

(11)= 1

2

(
s + k2

1 + k2
2

) = 1

2
s − 1

2

(
M̂2

1 + M̂2
2

)
,
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−k2 · k3 = −
√

p2 + M2
2 ·

√
q2 + M2

3 + pq cosφ + K25
2 K25

3

(12)= 1

2

(
t + k2

2 + k2
3

) = 1

2
t − 1

2

(
M̂2

2 + M̂2
3

)
,

−k1 · k3 = −
√

p2 + M2
1 ·

√
q2 + M2

3 − pq cosφ − K25
1 K25

3

(13)= 1

2

(
u + k2

1 + k2
3

) = 1

2
u − 1

2

(
M̂2

1 + M̂2
3

)
,

where s, t and u are the Mandelstam variables with

(14)s + t + u =
∑

i

M̂2
i ∼ 2(N − 4).

Note that the Mandelstam variables defined above are not the usual 25-dimensional Mandelstam
variables in the scattering process since we have included the internal momentum K25

i in the
definition of ki . We are now ready to calculate the high-energy scattering amplitudes. In the
high-energy limit, we define the polarizations on the scattering plane to be

(15)eP = 1

M2

(√
p2 + M2

2 ,p,0,0
)
,

(16)eL = 1

M2

(
p,

√
p2 + M2

2 ,0,0
)
,

(17)eT = (0,0,1,0),

where the fourth component refers to the compactified direction. It is easy to calculate the fol-
lowing relations:

(18)eP · k1 = − 1

M2

(√
p2 + M2

1

√
p2 + M2

2 + p2
)
,

(19)eP · k3 = 1

M2

(√
q2 + M2

3

√
p2 + M2

2 − pq cosφ
)
,

(20)eL · k1 = − p

M2

(√
p2 + M2

1 +
√

p2 + M2
2

)
,

(21)eL · k3 = 1

M2

(
p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ
)
,

(22)eT · k1 = 0, eT · k3 = −q sinφ.

In this paper, we will consider the case of a tensor state [28]

(23)
(
αT−1

)N−2r(
αL−2

)r |k2, l2, i, j〉
at a general mass level M̂2

2 = 2(N − 1) scattered with three “tachyon” states (with M̂2
1 = M̂2

3 =
M̂2

4 = −2). In general, we could have considered the more general high-energy state

(24)
(
αT−1

)N−2r−2m−∑
n nsn

(
αL−1

)2m(
αL−2

)r
∏
n

(
α25−n

)sn |k2, l2, i, j〉.

However, for our purpose here and for simplicity, we will not consider the general vertex in this
paper. The s–t channel of the high-energy scattering amplitude can be calculated to be (we will
ignore the trace factor due to Chan–Paton in the scattering amplitude calculation; this does not
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affect our final results in this paper)

A =
∫

d4x
〈
eik1X(x1)

(
∂XT

)N−2r(
i∂2XL

)r
eik2X(x2)e

ik3X(x3)e
ik4X(x4)

〉
=

∫
d4x ·

∏
i<j

(xi − xj )
ki ·kj

×
[

ieT · k1

x1 − x2
+ ieT · k3

x3 − x2
+ ieT · k4

x4 − x2

]N−2r

(25)×
[

eL · k1

(x1 − x2)2
+ eL · k3

(x3 − x2)2
+ eL · k4

(x4 − x2)2

]r

.

After fixing the SL(2,R) gauge and using the kinematic relations derived previously, we have

A = iN (−1)k1·k2+k1·k3+k2·k3(q sinφ)N−2r

(
1

M2

)r
1∫

0

dx xk1·k2(1 − x)k2·k3

[
1

1 − x

]N−2r

×
[√

p2 + M2
1 +

√
p2 + M2

2

x2
−

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

(1 − x)2

]r

= (−1)k1·k2+k1·k3+k2·k3(iq sinφ)N

(
−

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

M2q2 sin2 φ

)r

×
r∑

i=0

(
r

i

)[
−

√
p2 + M2

1 +
√

p2 + M2
2

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

]i

×
1∫

0

dx · xk1·k2−2i (1 − x)k2·k3−N+2i

= (−iq sinφ)N

(
−

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

M2q2 sin2 φ

)r

×
r∑

i=0

(
r

i

)[
−

√
p2 + M2

1

√
p2 + M2

2 + p2

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

]i

(26)× B

(
−1

2
s + N − 2i − 1,−1

2
t + 2i − 1

)
,

where B(u, v) is the Euler beta function. We can do the high-energy approximation of the gamma
function 	(x) then do the summation, and end up with
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A = (−iq sinφ)N

(
−

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

M2q2 sin2 φ

)r

×
r∑

i=0

(
r

i

)[
−

√
p2 + M2

1 +
√

p2 + M2
2

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

]i

× 	(−1 − 1
2 s + N − 2i)	(−1 − 1

2 t + 2i)

	(2 + 1
2u)

� (−iq sinφ)N

(
−

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

M2q2 sin2 φ

)r

×
r∑

i=0

(
r

i

)[
−

√
p2 + M2

1 +
√

p2 + M2
2

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

]i

× B

(
−1 − 1

2
s,−1 − 1

2
t

)(
−1 − 1

2
s

)N−2i(
−1 − 1

2
t

)2i(
2 + 1

2
u

)−N

=
(

−iq
sin φ

2

cos φ
2

)N(
− 1

M2

)r

B

(
−1 − 1

2
s,−1 − 1

2
t

)

(27)

×
[

p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ

q2 sin2 φ
−

√
p2 + M2

1 +
√

p2 + M2
2

q2 sin2 φ

(
t

s

)2
]r

.

3. Classification of compactified string scatterings

It is well known that there are two kinematic regimes for the high-energy string scatterings in
26D open bosonic string theory. The UV behavior of the finite and fixed angle scatterings in the
GR is soft exponential fall-off. Moreover, there exist infinite linear relations among scatterings
of different string states in this regime [6,8–16]. On the other hand, the UV behavior of the small
angle scatterings in the Regge regime is hard power-law. The linear relations break down in the
Regge regime. As we will see soon, the UV structure of the compactified open string scatter-
ings is more richer. In the following, we will systematically analyze all possible hard power-law
regimes of high-energy compactified open string scatterings by comparing the scatterings with
their noncompactified counterparts. In particular, we show that all hard power-law regimes of
high-energy compactified open string scatterings can be traced back to the Regge regime of the
26D high-energy string scatterings. The linear relations break down as expected in all power-law
regimes. The analysis can be extended to the high-energy scatterings of the compactified closed
string, which corrects and extends the previous results in [28].
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3.1. Gross regime—linear relations

In the Gross regime, p2 � q2 � K2
i and p2 � q2 � N , Eq. (27) reduces to

(28)A �
(

−iE
sin φ

2

cos φ
2

)N(
− 1

2M2

)r

B

(
−1 − 1

2
s,−1 − 1

2
t

)
.

For each fixed mass level N , we have the linear relation for the scattering amplitudes

(29)
T (n,r)

T (n,0)
=

(
− 1

2M2

)r

with coefficients consistent with our previous results [6,8–16]. Note that in Eq. (28) there is an
exponential fall-off factor in the high-energy expansion of the beta function. The infinite linear
relation in Eq. (29) “soften” the high-energy behavior of string scatterings in the GR.

3.2. Classification of compactified open string

We first discuss the open string case. Since our definitions of the Mandelstam variables s, t and
u in Eqs. (11)–(13) include the compactified coordinates, we can analyze the UV structure of the
compactified string scatterings by comparing the scatterings with their simpler 26D counterparts.
We introduce the space part of the momentum vectors

(30)k1 = (−p,0,−K25
1

)
,

(31)k2 = (+p,0,+K25
2

)
,

(32)k3 = (−q cosφ,−q sinφ,−K25
3

)
,

(33)k4 = (+q cosφ,+q sinφ,+K25
4

)
,

and define the “26D scattering angle” φ̃ as follows:

(34)k1 · k3 = |k1||k3| cos φ̃.

It is then easy to see that the UV behavior of the compactified string scatterings is power-law if
and only if φ̃ is small. This criterion can be used to classify all possible power-law and expo-
nential fall-off kinematic regimes of high-energy compactified open string scatterings. We first
consider the high-energy scatterings with one coordinate compactified.

3.2.1. Compactified 25D scatterings
I. For the case of φ = finite, the only choice to achieve UV power-law behavior is to require

(we choose K25
1 � K25

2 � K25
3 � K25

4 and p � q in the following discussion)

(35)
(
K25

i

)2 � p2 � q2 � N.

By the criterion of Eq. (34), this is a power-law regime. To explicitly show that this choice of
kinematic regime does lead to UV power-law behavior, we will show that it implies

(36)s = const

in the open string scattering amplitudes, which in turn gives the desired power-law behavior of
high-energy compactified open string scattering in Eq. (27). On the other hand, it can be shown
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that the linear relations break down as expected in this regime. For the choice of kinematic regime
in Eq. (35), Eqs. (11) and (36) imply

(37)lim
p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2

K25
1 K25

2

= lim
p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2

2πl1−θj,1+θi,1
2πR

2πl2−θj,2+θi,2
2πR

= −1.

For finite momenta l1 and l2, Eq. (37) can be achieved by scattering of string states with “super-
highly” winding nontrivial Wilson lines

(38)(θi,1 − θj,1) → ∞, (θi,2 − θj,2) → −∞.

A careful analysis for this choice gives

(39)(λ1 + λ2)
2 = 0,

where signs of λ1 = p

K25
1

and λ2 = − p

K25
2

are chosen to be the same. It can be seen now that the

kinematic regime in Eq. (35) does solve Eq. (39).
We now consider the second possible regime for the case of φ = finite, namely

(40)
(
K25

i

)2 � p2 � q2 � N.

By the criterion of Eq. (34), this is an exponential fall-off regime. To explicitly show that this
choice of kinematic regime does lead to UV exponential fall-off behavior, we see that, for this
regime, it is impossible to achieve Eq. (36) since Eq. (39) has no nontrivial solution. Note that
there are no linear relations in this regime. Although φ̃ = finite in this regime, it is different from
the GR in the 26D scatterings since K25

i is as big as the scattering energy p. In conclusion, we
have discovered a φ = finite regime with UV power-law behavior for the high-energy compacti-
fied open string scatterings. This new phenomenon never happens in the 26D string scatterings.
The linear relations break down as expected in this regime.

II. For the case of small angle φ � 0 scattering, we consider the first power-law regime

(41)qK25
1 = −pK25

3 and
(
K25

i

)2 � p2 � q2 � N.

By the criterion of Eq. (34), this is a power-law regime. To explicitly show that this choice of
kinematic regime does lead to UV power-law behavior, we will show that it implies

(42)u = const

in the open string scattering amplitudes, which in turn gives the desire power-law behavior of
high-energy compactified open string scattering in Eq. (27). For this choice of kinematic regime,
Eqs. (13) and (41) imply

(43)lim
p→∞

√
p2 + M2

1 ·
√

q2 + M2
3 + pq

K25
1 K25

3

= −1.

By choosing different sign for K25
1 and K25

3 , Eq. (43) can be solved for any real number λ ≡
p

K25
1

= − q

K25
3

.

The second choice for the power-law regime is the same as Eq. (35) in the φ = finite regime.
The proof to show that it is indeed a power-law regime is similar to the proof in Section 1.
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Table 1

φ φ̃ UV behavior Examples of the kinematic regimes Linear relations

Finite Finite Exponential fall-off �K2
i

� p2 � q2 � N Yes
�K2
i

� p2 � q2 � N No
�K2
i

� p2 � q2 � N and cos δ �= 0

φ̃ � 0 Power-law �K2
i

� p2 � q2 � N and cos δ = 0

φ � 0 φ̃ � 0 Power-law �K2
i

� p2 � q2 � N No
�K2
i

� p2 � q2 � N and q �K1 = −p �K3
�K2
i

� p2 � q2 � N and cos δ = 0

Finite Exponential fall-off �K2
i

� p2 � q2 � N and q �K1 �= −p �K3
�K2
i

� p2 � q2 � N and cos δ �= 0

The last choice for the power-law regime is

(44)
(
K25

i

)2 � p2 � q2 � N.

It is easy to show that this is indeed a power-law regime.
The last kinematic regime for the case of small angle φ � 0 scattering is

(45)qK25
1 �= −pK25

3 and
(
K25

i

)2 � p2 � q2 � N.

By the criterion of Eq. (34), this is an exponential fall-off regime. We give one example here. Let
us choose λ ≡ p

K25
1

�= − q

K25
3

= 2λ. By choosing different sign for K25
1 and K25

3 , Eq. (43) reduces

to

(46)λ2 = 0,

which has no nontrivial solution for λ, and one cannot achieve the power-law condition Eq. (42).
So this is an exponential fall-off regime. In conclusion, we have discovered a φ � 0 regime with
UV exponential fall-off behavior for the high-energy compactified open string scatterings. This
new phenomenon never happens in the 26D string scatterings. This completes the classification
of all kinematic regimes for compactified 25D scatterings.

3.2.2. Compactified 24D (or less) scatterings
For this case, we need to introduce another parameter to classify the UV behavior of high-

energy scatterings, namely the angle δ between �K1 and �K2, �K1 · �K2 = |K1||K2| cos δ. Similar
results can be easily derived through the same method used in the compactified 25D scatterings.
The classification is independent of the details of the moduli space of the compact spaces. We
summarize the results in Table 1.

3.3. Classification of compactified closed string

The classification for the high-energy compactified open string scatterings can be easily ex-
tended to the case of compactified closed string [28]. For illustration, we discuss the case of φ =
finite regime with UV power-law behavior for the high-energy 25D compactified closed string
scatterings. The kinematic set up for the compactified closed string is

(47)k1L,R =
(
+

√
p2 + M2,−p,0,−K1L,R

)
,
1
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(48)k2L,R =
(
+

√
p2 + M2

2 ,+p,0,+K2L,R

)
,

(49)k3L,R =
(
−

√
q2 + M2

3 ,−q cosφ,−q sinφ,−K3L,R

)
,

(50)k4L,R =
(
−

√
q2 + M2

4 ,+q cosφ,+q sinφ,+K4L,R

)
,

where the left and right compactified momenta are defined to be

(51)KL,R = K ± L = m

R
± 1

2
nR,

where m is the quantized momentum and n is the winding number. The “super-highly” wind-
ing nontrivial Wilson line for the open string in Eq. (38) is replaced by “super-highly” closed
string winding ni . The condition to achieve power-law behavior for the compactified open string
scatterings, Eq. (36), is replaced by

(52)sL = const, sR = const

for the compactified closed string scatterings. The left and the right Mandelstam variables are
defined to be

(53)sL,R ≡ −(k1L,R + k2L,R)2,

(54)tL,R ≡ −(k2L,R + k3L,R)2,

(55)uL,R ≡ −(k1L,R + k3L,R)2,

with

(56)sL,R + tL,R + uL,R =
∑

i

M2
iL,R.

One can easily calculate the following kinematic relations:

−k1L,R · k2L,R =
√

p2 + M2
1 ·

√
p2 + M2

2 + p2 + K1L,RK2L,R

(57)= 1

2

(
sL,R + k2

1L,R + k2
2L,R

) = 1

2
sL,R − 1

2

(
M2

1L,R + M2
2L,R

)
,

−k2L,R · k3L,R = −
√

p2 + M2
2 ·

√
q2 + M2

3 + pq cosφ + K2L,RK3L,R

(58)= 1

2

(
tL,R + k2

2L,R + k2
3L,R

) = 1

2
tL,R − 1

2

(
M2

2L,R + M2
3L,R

)
,

−k1L,R · k3L,R = −
√

p2 + M2
1 ·

√
q2 + M2

3 − pq cosφ − K1L,RK3L,R

(59)= 1

2

(
uL,R + k2

1L,R + k2
3L,R

) = 1

2
uL,R − 1

2

(
M2

1L,R + M2
3L,R

)
.

It was calculated in [28] that the beta function part of the high-energy closed string scattering
amplitude can be written as

Aclosed ∼ B

(
−1 − tR

2
,−1 − uR

2

)
B

(
−1 − tL

2
,−1 − uL

2

)
(60)= 	(− tR

2 − 1)	(−uR

2 − 1)

	( sR
2 + 2)

	(− tL
2 − 1)	(−uL

2 − 1)

	( sL
2 + 2)

.
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It is easy to see that the condition (52) leads to the power-law behavior of the compactified
closed string scattering amplitudes. To satisfy the condition in (52), we define the following
“super-highly” winding kinematic regime

(61)n2
i � p2 � q2 � NR + NL.

Note that all mi were chosen to vanish in order to satisfy the conservations of compactified
momentum and winding number respectively [28]. For the choice of the kinematic regime in
Eq. (61), Eqs. (57) and (52) imply

(62)lim
p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2

2(K1K2 + L1L2)
= lim

p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2

2(m1m2
R2 + 1

4n1n2R2)
= −1.

Note that since we have set mi = 0, Eq. (62) is similar to Eq. (37) for the compactified open
string case, and one can get nontrivial solution for Eq. (39) with signs of λ1 = 2p

n1R
and λ2 =

− 2p
n2R

the same. This completes the discussion of power-law regime at fixed angle for high-
energy compactified closed string scatterings. The “super-highly” winding regime derived in this
subsection is to correct the “Mende regime”

(63)E2 � M2 � NR + NL

discussed in [28]. The regime defined in Eq. (63) is indeed exponential fall-off behavior rather
than power-law claimed in [28].

4. Conclusion

In this paper, we calculate high-energy massive string scattering amplitudes of compactified
open string. We derive infinite linear relations among soft high-energy string scattering ampli-
tudes of different string states at arbitrary but fixed mass level in the Gross kinematic regime
(GR). We then systematically analyze all hard power-law and soft exponential fall-off regimes
of high-energy compactified open string scatterings by comparing the scatterings with their 26D
noncompactified counterparts. We classify all kinematic regimes for high-energy compactified
open string scatterings. In particular, we discover the existence of a power-law regime at fixed
angle and an exponential fall-off regime at small angle for high-energy compactified open string
scatterings. These two new phenomena do not exist for high-energy 26D noncompactified open
string scatterings. It is a stringy effect due to string compactification. The linear relations break
down as expected in all power-law regimes. Finally, we have extended the analysis to the high-
energy scatterings of the compactified closed string, which corrects and extends the previous
results in [28].
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