國 立 交 通 大 學 應用化學研究所 碩士 論 文

四元新硒化合物AgSnM₃Se₆(M = Sb、Bi) 與Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉原子選擇性填佔的分析 Site Preference Study on New Quaternary Selenides AgSnM₃Se₆(M = Sb, Bi) and Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉

指導教授:李積琛 博士

研究生: 顏詠哲

中華民國九十六年九月

四元新硒化合物 $AgSnM_3Se_6(M = Sb \cdot Bi)$ 與 $Cu_0 gSn_1 gSb_4 gSe_9$ 原子選擇性填佔的分析

Site Preference Study on New Quaternary Selenides

 $AgSnM_3Se_6(M = Sb, Bi)$ and $Cu_{0.9}Sn_{1.2}Sb_{4.9}Se_9$

研究生:顏詠哲 指導教授:李積琛博士 Student : Youn-Cher Yan Advisor : Dr. Chi-Shen Lee

A Thesis Submitted to Department of Applied Chemistry National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in Applied Chemistry

September 2007

Hsinchu, Taiwan, Republic of China.

中華民國九十六年九月

四元新硒化合物 AgSnM₃Se₆(M = Sb、Bi)

與 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉ 原子選擇性填佔的分析

學生: 顏詠哲 指導教授:李積琛 博士

國立交通大學應用化學研究所 碩士班

摘要

本論文中,將討論的三種新化合物的結構及物理性質。這些硒 化物皆採用固態燒結法,以元素態粉末為起始物,在真空石英管中於 1073K的溫度下合成。

(一)AgSnSb₃Se₆:斜方晶系(orthorhombic),空間群為P2₁2₁2₁,晶胞常 數a = 4.115(1)Å,b = 13.724(4)Å,c = 20.321(6)Å,V = 1147.47(6)Å³, R1/wR2/GOF = 0.0308/0.1037/0.788,其結構與天然的硫磺鹽類礦物 AgPbSb₃S₆相同。此化合物中陽離子的原子序相當接近,因此陽離子 位置的填佔原子種類,將由比較數個同結構化合物中,各陽離子位置 在置換了不同陽離子後,電子密度的變化情況,來做為判斷的依據。 物理性質方面,其電阻值會隨著溫度的上升而下降,Seebeck係數在 312至700K測量所得平均值為238.31 μ V/K,是一P型半導體。 (二)Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉:單斜晶系(monoclinic),空間群為C2,晶胞常數 a = 13.57(5)Å,b = 4.089(2)Å,c = 15.07(6)Å, $\beta = 98.25(1)$ °,V = 828(6) Å³,R1/wR2/GOF = 0.0409/0.0961/1.067,其結構由二種不同NaCl型的

區塊所組成,與Ag0.6Cu0.48Bi6S9為同結構。

(三) AgSnBi₃Se₆:單斜晶系(monoclinic),空間群為C2,晶胞常數 a = 13.804(1)Å,b = 4.182(3)Å,c = 21.240(1)Å, $\beta = 103.583(2)$,V= 1191.7(1)Å³,R1/wR2/GOF = 0.0882/0.1940/1.052, Seebeck係數在室 溫下為-247.38µV/K,是一N型半導體。

Site Preference Study on New Quaternary Selenides

 $AgSnM_3Se_6(M = Sb, Bi)$ and $Cu_{0.9}Sn_{1.2}Sb_{4.9}Se_9$

Student : Youn-Cher Yan

Adviser : Dr. Chi-Shen Lee

Department of Applied Chemistry

National Chiao Tung University, Hsinchu(300), Taiwan Abstract

In this study, three new selenides were synthesized by solid state reactions. Those selenides were prepared under exclusion of air at 1073K. I. AgSnSb₃Se₆, orthorhombic, space group P2₁2₁2₁, crystal data: a = 4.115(1)Å, b = 13.724(4)Å, c = 20.321(6)Å, V = 1147.47(6)Å³, R1/wR2/GOF = 0.0308/0.1037/0.788. In this compound, atomic numbers of caions are close that make it difficult to confirm the composition of cations. We compared the electron density of the same sites in several isostructure compounds to identify the site preference of the cations in the compound. The electronic resistivity decreases with increase of temperature, and the average Seebeck coefficient in temperature range between 312 and 700K is 238.31µV/K, which are in consistent with a p-type semiconductor behavior.

II. $Cu_{0.9}Sn_{1.2}Sb_{4.9}Se_9$, monoclinic, space group C2, crystal data: a = 13.57(5)Å, b = 4.089(2)Å, c = 15.07(6)Å, $\beta = 98.25(1)^{\circ}$, V = 828(6)Å³, R1/wR2/GOF = 0.0409/0.0961/1.067. The structure shows the combination of two different NaCl-type blocks, and is isostructure with $Ag_{0.6}Cu_{0.48}Bi_6S_9$.

III. AgSnBi₃Se₆, monoclinic, space group C2, crystal data: a = 13.804(1)Å, b = 4.182(3)Å, c = 21.240(1)Å, $\beta = 103.583(2)^{\circ}$, V = 1191.7(1) Å³, R1/wR2/GOF = 0.0882/0.1940/1.052. Seebeck coefficient in room temperature is -247.38µV/K, as an n-type semiconductor. 本論文的完成,最感謝的當然是指導教授 李積琛老師。這兩年 在無機及材料化學領域的研究中,老師花費了不少的時間及精神,給 予我研究的方向,並提出值得討論的問題及建議,也讓我感受到,做 一個研究,並不僅僅是以合成出新的化合物,或以得到實驗成果為目 標;更重要的是,遇到問題時,去思考以及嘗試可能的解決方式,才 是研究過程中最重要的精神。也感謝 陳登銘教授以及國家同步輻射 中心 許火順老師,對於本論文所給予的建議,讓論文能夠更完整地 呈現。

非常感謝實驗室的博士班學長明芳、奎伯、文亨、以及明誠,除 了傳授我實驗過程中的各項基本技術,每當我遇到問題請教時,也總 是撥出時間,耐心地指點我;而聖豐雖然名義上是同學,但比我早進 了實驗室許多,經驗也豐富得多,這段時間靠你支援而解決的問題實 在不少,一定要特別感謝!還有待人大方的同學譽騰,以及一起陷入 「meeting前歇斯底里狀態」的學弟乃倫及明諺,與你們相處的有趣 過程,讓研究生活中增添了許多色彩。另外也感謝已畢業的芳卿學 姊,留下的資料讓我的研究多了許多參考及依據。

能以文字表達的實在有限,最後也只能再說一次「這段時間受到 大家很多照顧,真的非常感謝!」。

III

目 錄

中文摘要	Ι
英文摘要	II
誌謝	III
目錄	V
圖目錄	VIII
表目錄	Х
第一章 總論	1
1-1 熱電材料	1
1-1-1 熱電效應	2
1-1-2 熱電優值	3
1-2 實驗方法及流程簡介	5
1-2-1 化合物之合成與長晶	5
1-2-2X-ray 繞射及晶體結構分析	7
1-2-2 其他實驗及物理性質測量	10
1-3 研究動機與實驗結果導論	12
第二章 AgMSb ₃ Se ₆ (M = Pb,Sn)之合成,物性,與結構探討	19
2-1 摘要	19

2-2 實驗部份	20
2-2-1 化合物之合成與長晶	20
2-2-2 粉末繞射圖譜	20
2-2-3 表面元素分析(EDS)	21
2-2-4 晶胞常數测定	22
2-3 晶體結構解析及陽離子填佔位置	24
2-3-1 其他相同結構化合物	24
2-3-2 元素選擇性填佔的分析	27
2-3-3 AgSnSb ₃ Se ₆ 的陽離子配位環境	31
2-3-4 晶體結構數據資料	33
2-4 物理性質測量與理論計算 1896	36
2-4-1 導電度及 Seebeck 係數	36
2-4-2 LMTO 理論模擬計算	39
2-5 結論	40
第三章 Cu _{0.9} Sn _{1.2} Sb _{4.9} Se ₉ 及 AgSnBi ₃ Se ₆ 的合成、結構與物性探討	41
3-1 摘要	41
3-2 Cu _{0.9} Sn _{1.2} Sb _{4.9} Se9之合成與結構	42
3-2-1 實驗部份	42
3-2-2 化學式之決定	43

3-2-3 晶體結構		47
3-3 AgSnBi ₃ Se ₆ 之合成與	結構	51
3-3-1 實驗部份		51
3-3-2 晶體結構		52
3-3-3 物理性質測量		58
3-4 結論		59
第四章 總結		61
參考文獻		63
附錄 I.反應列表	with the second	65

圖 目 錄

圖 1-1. 熱傳導與電阻對熱電優值之綜合影響	4
圖 1-2. 符合 Bragg's law 之繞射示意圖	8
圖 1-3. 從單晶樣品至構造模型的流程圖	9
圖 1-4. 硬球模型示意圖	12
圖 1-5. Bi ₂ Te ₃ 能態結構圖	13
圖 2-1. AgPbSb ₃ Se ₆ 以及 AgSnSb ₃ Se ₆ 的粉末繞射圖譜	21
圖 2-2. AgSnSb ₃ Se ₆ 由 a 軸以及 b 軸投影的結構圖	23
圖 2-3. CuPbSb ₃ Se ₆ 由 a 軸以及 b 軸投影的結構圖	26
圖 2-4.本章中等結構化合物的平面結構圖(標記陽離子位置)	27
圖 2-5. AgSnSb ₃ Se ₆ 各陽離子的配位環境	31
圖 2-6. AgPbSb ₃ Se ₆ 層狀結構圖	32
圖 2-7. AgSnSb ₃ Se ₆ 模擬繞射與粉末繞射圖譜	36
圖 2-8. AgSnSb ₃ Se ₆ 以及 AgPbSb ₃ Se ₆ 電阻及導電度對溫度趨勢	37
圖 2-9. AgSnSb ₃ Se ₆ 由 312K 至 700K 的 Seebeck 係數測量結果	38
圖 2-10. AgSnSb3Se6以及 AgPbSb3Se6的 DOS 圖	39

圖 3-1. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se ₉ 模擬繞射與粉末繞射(比例 1/1/3/6)圖	43
圖 3-2. Cu _{0.8} Sn _{1.4} Bi _{4.8} Se9及 Cu _{0.9} Sn _{1.2} Sb _{4.9} Se9的平面結構圖	44
圖 3-3. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se ₉ 結構圖	47
圖 3-4. AgSnBi ₃ Se ₆ 沿 b 軸及 a 軸投影的結構圖	52
圖 3-5. AgSnBi ₃ Se ₆ 模擬繞射與粉末繞射圖	54
圖 3-6. AgSnBi ₃ Se ₆ Seebeck 係數測量結果	59

表目錄

表 1-1. TmM1M2 ₃ X ₆ 相關反應式與 PXRD 測定結果	17
表 2-1. 各陽離子位置電子數(e ⁻ /site)	27
表 2-2. 各陽離子位置電子數以及判斷之填佔陽離子種類	30
表 2-3. AgSnSb ₃ Se ₆ 晶體數據	33
表2-4. AgSnSb ₃ Se ₆ 原子位置與熱參數值	34
表 2-5. AgSnSb ₃ Se ₆ 非等向性熱參數值	34
表 2.6. AgSnSb ₃ Se ₆ 中各個陽離子鍵結長度	35
表 3-1. Cu _{0.8} Sn _{1.4} Bi _{4.8} Se9及 Cu _{0.9} Sn _{1.2} Sb _{4.9} Se9中 M4 電子數及填佔	率 45
表 3-2. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se ₉ 晶體數據	48
表 3-3. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se9 原子位置與熱參數值	49
表 3-4. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se ₉ 非等向性熱參數值	49
表 3-5. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se ₉ 中各個陽離子鍵結長度	50
表 3-6. AgSnBi ₃ Se ₆ 晶體數據	55
表 3-7. AgSnBi ₃ Se ₆ 原子位置與熱參數值	56
表3-8. AgSnBi ₃ Se ₆ 非等向性熱參數值	57
表 3-9. AgSnBi3Se6 中各個鍵結長度	58

第一章 總 論

1-1 熱電材料

現今能源的供應,仍以火力發電為最大宗。然而,無論是以煤礦、 天然氣、或是重油為燃料,都是總儲存量有限的消耗性資源。此外, 在能量轉換的過程,無法避免能量以廢熱的形式流失,造成轉換效率 的限制。隨著消耗性資源的日漸減少,以及環保意識的興起,開發新 的能源轉換型式已成為重要課題。

熱電材料是一種能將電能及熱能互相轉換的材料。由溫度差產生 電壓差的性質,意調著,熱電材料具有將廢熱轉換成可利用電能的巨 大潛力;或者,對於地熱、太陽能等,這些目前還未能有效利用之能 源,增加其使用效率¹。另外,也能成為特殊環境下的能量供應源, 例如美國太空總署在1977年發射的Voyager太空船,就是以熱電元件 發電²。

除了將溫度差轉換為電能,熱電材料可由通入電流,產生加溫或 冷卻的效果。一般冰箱、冷氣使用的冷煤,對臭氧層的破壞已引起關 注。以熱電材料取代之,是可行的解決方法之一,目前小型的熱電冰 箱已生產上市。熱電材料應用在科技及工業界約四十年,目前最大缺 點為效能不夠高,以及價格偏高而普遍性低。如何提高工作效能 ,是目前熱電材料發展的重要研究課題。

1-1-1 熱電效應

熱電現象被正式研究的紀錄,起始於1821年Thomas Seebeck觀 察到的現象:連結於導體的電路,當導體兩端有溫度差時,電路內會 有電動勢產生³。隨後依不同作用方式,衍生出三種效應,依序介紹。

A.Seebeck效應:

西元 1823 年德國物理學家Seebeck發表了一個實驗結果,連接兩 不同導體形成一封閉迴路,並於其中置一羅盤指針;當於其中一接面 加熱時,由於兩導體導熱性不同而有溫度差,此時指針會偏轉,顯示 有一電動勢產生。他指出在有限的溫度範圍內,電壓會與溫度的改變 成等比例,此即為Seebeck效應,並定義Seebeck係數S為 $S=\Delta V/\Delta T$, ΔV 為電壓差, ΔT 為溫度差³。

4411111

B.Peltier效應:

1834 年法國人Peltier發現,當不同兩導體的接面有電流通過時, 在兩端接合處會有加熱或冷卻的現象,隨電流方向改變,是與Seebeck 互補的效應。此現象是因為在不同導體的介面,因電流通過而造成熱 含量的變化,抑制單電荷載子流過接面時,載子的熵改變量而造成。 Peltier係數(Π_{AB})定義為,當單位電流(I)在單位時間內流經導體A和B 的接面,造成可逆熱含量(Q_P)的改變,其效應正比於相對Seebeck係數 (S_{AB}),即 $\Pi_{AB} = Q_P/I = S_{AB}T$ 。⁴ C.Thomosn效應:

Thomson在 1851 年,結合Seebeck與Peltier係數間的關係,推導 出Thomson效應,即電流通過一個有溫度梯度的導體時,溫度差會隨 電流有增加或減少之現象,與電流方向有關,顯示了當電流通過導體 內部時,溫度梯度與電荷載子流動方向的關係。並定義Thomson係數 $\tau = (1/I)(dQ_p/dx)(dT/dx),此關係式表現了每單位溫度梯度、單位電流、$ 與一導體內熱含量的可逆改變量之間的關係⁴。

以上三大效應即為熱電現象的理論基礎。

1-1-2 熱電優值

目前判斷熱電材料的效率,主要是以熱電優值Z與溫度T的乘積 ZT 值來數量化。若 ZT 值達到 4,則此材料的熱電轉換效率,與 一般家用冰箱的冷卻壓縮機相近(約為 Carnot Cycle 效率的 30%)。 ZT值與材料各物理性質的關係式如下⁵:

 $ZT = (\sigma S^2 / \kappa)T$

Z:熱電優值(figure of merit) [1/K]

T:絕對溫度(Kelvin) [K]

S: Seebeck 係數(Seebeck coefficient) [V/K]

 σ : 導電度(electrical conductivity) [1/ Ω -cm]

κ:熱傳導率(thermal conductivity) [W/cm-k]

此關係式顯示,高效率的熱電材料,會有下列幾項性質:

- 1.有較高的導電性,則材料因電阻產生的焦耳熱能較小,因之而造成 的電功率損失也較低。
- 2.有較高的熱電力(thermopower,即 Seebeck 係數),則熱能與電動勢 會有較大轉換效率。
- 3.有較低的熱傳導率,表示材料熱梯度較大,能維持材料冷熱兩端之 溫度差。

這些影響熱電優值的因素,會受晶格振動以及自由電子運動所影響。同一材料的熱電力、導熱度、及導電度,並無法獨立變動,良好 的電導體通常也是良好的熱導體,且熱電力偏低。由圖 1-1 熱傳導與 電阻對優值之綜合影響可發現,最佳效率的熱電材料理論上會在半導 體區域。⁶

圖 1-1. 熱傳導與電阻對熱電優值之綜合影響

1-2 實驗方法及流程簡介

對於熱電材料的研究,本實驗室主要是以固態合成方法來合成具 有高熱電優值之潛力的新穎 16 族化合物(chalcogenides),以及對於可 能為未在文獻上發表過的新化合物,進行晶體結構解析及物理性質測 量。以下將按照實驗流程,簡單介紹所採用的實驗方法及其原理。

1-2-1 化合物之合成與長晶

目前常見的固態化合物合成方法,有固態燒結法(solid state method)、水熱法(hydrothermal method)、以及溶膠-凝膠法(sol-gel method)等等,不同合成方法、溫度、壓力、時間、或催化劑的存在,都會造成不同的反應結果,需依照產物的物理性質、熱穩定性、或尺 寸等諸多性質來選擇。

在硫屬化合物的合成上,本實驗室主要採用真空固態燒結法。取 元素態粉末(純度 99%以上)或二元化合物為起始物,在填充氮氣的手 套箱內,依照莫爾數比例計算出各別元素重量,混合成總重約 0.5 公 克的粉末,填充至石英管中。從手套箱內傳遞出後,以真空系統將管 內氣體抽走,使內部真空度達 10⁻²torr,再用氫氣焰將石英管一端熔 融密封。封好之石英管,依照元素特性、參考文獻、甚至相關實驗操 作經驗,來決定燒結及降溫的溫度及時間。本方法最主要的優點為簡 單及方便,並且在接近真空的狀態中,可避免反應物或生成物與氧氣 或水氣的反應;但缺點則是產物的形狀、粒徑及均勻度皆不易控制。

為了以單晶X光繞射來分析化合物的結構,需要產生足夠大小的 晶體。一般較著名的長晶方法中,柴式長晶法、布里奇曼法、以及火 焰法等結晶成長方法,需要特殊的儀器設備。本實驗室較常使用的方 法為緩慢降溫(slow cooling),先測樣品的熔點溫度後,在熔點附近的 溫度以極緩慢的速率降溫,通常有助於晶體的形成。另外,燒結時, 加入助熔劑(較常使用的為KCl、NaCl等鹽類),其在高溫的熔融態, 有時能幫助晶體之生成,是為助熔劑法(flux method)。或是在反應物 中,加入微量的碘,利用碘蒸氣在石英管兩端有溫差的情況下,會有 一個幫助長晶的條件;在此碘的作用為傳輸劑(transport agent),此方 法必須在管狀爐內進行⁷。

1-2-2 X光繞射及晶體結構分析

合成及長晶所得之產物,在顯微鏡下觀察並紀錄其外觀後,先以 粉末X光繞射(PXRD)方法檢測其產物組成,當比對資料庫(Joint Committee of Powder Diffraction Standaras, JCPDS data base)觀察到可 能含有未知產物時,再進一步挑取晶體進行單晶X光繞射(SXRD), 以分析其結構。以下簡單敘述X光繞射原理及所使用之儀器與操作。

A.X光繞射原理及粉末X光繞射

X光繞射儀中,X-ray產生基本原理為,經由提供穩定電壓,以 高電壓加速之電子束撞擊陽極標靶。當高速電子與標靶原子碰撞時, 原子內層之電子被游離,外層電子掉入內層之電子空位。由於內層電 子軌域能階較低,相差之能量,以X光之形式釋放,其波長隨標靶原 子的電子軌域能階而定,稱為特性光譜線,通常在繞射儀上加裝單光 器或濾光片取其中之單一波長。

當所產生的X光照射在晶體樣品上,在適當的角度會產生建設性 干涉而被偵測到。對於固定波長,在某一入射角度所發生的建設性干 涉,表示原子內有一組特定距離的晶面,其關係式為布拉格定律 (Bragg's law):2dsinθ=nλ,d為一組晶體平面間距離,θ為入射角度, λ為入射X光之波長,圖1-2為其示意圖。⁸

圖 1-2. 符合 Bragg's law 之繞射示意圖

假設將一晶體磨成粉末仍保有其晶體結構,則此粉末中,包含 數以百萬計的極小晶體,可視其排列方向為連續,即原本晶體中所含 有的特定晶面,粉末中都有些許晶體保留了下來。對此粉末進行隨時 間連續性改變入射角度的鐃射掃瞄,即可一次得知晶體中含有的所有 晶面間的距離。所得之粉末繞射圖譜,再依反應物所含元素,比對由 世界性組成粉末繞射標準委員會(Joint Committee of Powder Diffraction Standaras, JCPDS)收集之世界上各研究單位所得的繞射分 析結果,整理製作而成的資料庫,可方便快速地得知產物所含的結晶 性已知物成份。

在粉末繞射圖譜中,若存在於資料庫裡未能對照到已知物成份的 繞射峰,則視此反應物中,可能含有未知物存在。想更進一步證實未 知物的存在,了解其結構及所含元素,則必須挑取其晶體,以單晶X 光繞射來取得更進一步的資訊。

B.單晶X光繞射及晶體結構分析

當樣品的粉末繞射圖譜比對資料庫後,發現可能含有未知化合物 存在,則在顯微鏡下,挑取可能為單晶之晶體,以CAD4 X-ray 單晶繞射儀,在不同的θ、Ψ、及ω方向,亂數收集 25 個繞射訊號, 並初步計算晶體之晶胞常數。將此晶胞常數於ICSD線上資料庫搜尋 後,未比對到已知化合物,則進一步將此晶體以清華大學貴儀中心 CCD X-ray單晶繞射儀(BURKER SMART 1000 CCD Diffractometer System)收集較完整的繞射點數據。所收集的數據,以每張照片對晶 體拍射的時間為每frame數十秒,收集四組共數千張的照片組成。 隨 後,由Smart軟體檢查繞射點品質,以訊雜比大於20的條件進行篩選。 接著index出初步的晶胞常數後,採用SaintPlus 軟體對繞射點數據做 44111111 積分,並以SADABS軟體進行吸收校正。結構模型上的選擇,則採用 SHELXTL軟體,並在結構解析的過程中,利用Atoms軟體書出其結構 模型並判斷其中各原子間的鍵結及空間中的排列。圖 1-3 為晶體結構 分析的流程圖,更多結晶學上的細節可參照參考文獻。9-11

1-2-3 其他實驗及物理性質測量

完成晶體結構分析的新化合物,可再由解出的晶體結構,反推算 其理論粉末繞射圖譜。若其實際繞射圖譜與理論計算所得相似,不含 其他繞射鋒,則可視此反應條件下,所得產物接近純相。此時,可進 一步測量其導電度以及 Seebeck 係數等物理性質,以得知此新穎化合 物在熱電材料方面的潛力。本節將簡易敘述這些與實驗相關的儀器及 操作。

A.表面元素分析(EDS)

表面元素分析是取樣品中的結晶,利用掃瞄式電子顯徵鏡 (Scanning Electronic Microscope, SEM),確定樣品的位置並選取一平 面,任意選取三個點以及一個面,利用配備的能量散佈分析儀(Energy Dispersive Spectometer, EDS),來獲得其化學組成。一般的 EDS,無 法準確地定義出每個元素的真實比例,但作用有二:

 若所選取的點及面,皆含有反應化學式中所有原子,則產物之化學式,可能符合起始反應比例而為純相;2.觀察特定元素,是否成功地 摻雜(dopping)於已知結構的化合物中。

B.導電度及 Seebeck 係數測量

欲了解化合物在熱電材料方面的發展性,測量導電度及 Seebeck 係數等與熱電優值(ZT值)直接相關的物理性質,可得到初步的結 果。

首先將熔融塊狀的產物,以研鉢磨碎成細粉狀,再以壓片器壓成 5x1x1mm 的長方體塊材。塊材通常會密封於真空石英管中,長時間 置於 400~600℃下退火(annealing),使其形成較緊實的材料。

導電度的測量是利用四點探針法,利用銀膠將四條金屬線,等距 黏附於待測物上,將以真空系統將溫度降至100K以下,再逐漸上升。 升溫過程中,塊材兩端的電線將流通一電流,中央的兩端電線則測量 其電壓差,即可由電壓 V=電流 I x 電阻 R 的關係式,求得其各溫度 下的電阻值;再由 R=σL/A,ρ=1/σ 的關係式(L:中間兩點距離,A: 樣品截面積,σ:電阻率,ρ:導電度),作出其導電度與溫度之關係圖。

Seebeck 係數的測量,則使用銀膠將條形塊材,黏著於 Seebeck 測量儀(SB-100 MMR Technologies,inc.)的陶瓷載片上,於真空中測量 300K~700K 的 Seebeck 係數。 1-2-4 理論計算與能帶分析-線性原子球軌道模型(LMTO)

線性原子球軌道模型(Linear Muffin-Tin Orbitals, LMTO)計算 法,是一種計算方程式,計算晶體中,每個晶胞點上的原子位能。此 方法是以原子球軌道為基礎波函數,並假設所有原子為硬球模型,來 簡化個別原子的位能計算。¹²⁻¹⁴

計算過程中,將各別的原子位能,假設為球型的位能平均值且為 中心對稱,放入適合的晶胞點,堆疊出合理的晶體結構。之後將各點 之平均位能值,定義為晶體結構之位能零能點,再重新判定各原子之 位能;此時以原子球為觀點的位能,即為原子球模型位能(The Muffin-Tin Potential)。再配合原子球近似法(Atomic Sphere Approximation),此簡化方法中,原子球可以重疊,以避免原子球間 空隙難以計算的區域;最後,可得到晶體中,各原子電子結構的描述。 其示意圖如圖 1-4。

依計算結果所得之分析圖譜,有能態密度圖(Density of State, DOS)、能帶結構圖(Band Structure)、以及晶體電子軌域漢米爾頓方程 分佈圖(Crystal Orbital Hamilton Population, COHP)三種。COHP圖是 一種偵測固態化合物內,分子鍵結的分析技術,以orbital pair contribution的觀點,看出不同軌域間之鍵結。

能態密度(DOS)的定義,為單位能量中所含有的能階數,由 DOS曲線,可以計算能階的數目,常被用來解釋固體內分子的電子結 構。電子由能量最低的位置開始填入,所填入的最高能階為Fermi level,將此區域積分,可得所有被填滿之分子軌域的數目,因而得知 電子在能量上的貢獻。

在能帶結構(Band Structure)圖上, X 軸為the first Brillouin zone 中,根據其向量位置所定義的位置代號;曲線則表示不同軌域之間的 鍵結關係,具有方向性。圖 1-5 為Bi₂Te₃的能帶結構圖。

圖 1-5. Bi₂Te₃能帶結構圖

1-3 研究動機與實驗結果導論

硫屬化合物(chalcogenides)具有多樣化及特殊的物理性質,在熱 電材料的領域中,也被廣泛地應用。目前在產業上最普遍應用的熱電 材料是以Bi₂Te₃為基體的三元固態的合金,由P型的Bi₂Te₃-Sb₂Te₃及 N型的Bi₂Te₃-Bi₂Se₃結合而成,室溫下最佳ZT值約為1。在2004年被 發表的AgPb_mSbTe_{2+m}化合物,在800K高溫下ZT值可高達2.2。¹⁵⁻¹⁶

在嘗試材料合成的方向時,天然礦物的組成方式有很高的參考價 值。多數的天然礦物都是硫化物;而當化合物含有較重的原子時,通 常晶格導熱度會有下降的情況,此為增加熱電優值的有利條件;因此 可參考硫化物的結構,以合成硒化物,甚至碲化物為研究方向。

本論文中第二、三章的實驗結果與討論,將針對以本章中所描述 的實驗方法,以及上述的研究動機,所合成的三個新穎四元硒化合物。 在第二章,將討論新化合物AgSnSb₃Se₆的合成、結構,以及原子填佔 位置。本實驗室先前所合成的化合物中,AgPbSb₃Se₆、CuPbSb₃Se₆、 以及AgSnBi₃S₆,皆與天然礦物AgPbSb₃S₆,有相似的結構。AgPbSb₃S₆ 是屬於礦物學中硫磺鹽類(sulfosalt group)的Andorite系列,此系列為 結晶成單斜或斜方晶系的系統。以上各化合物中的鍵結情況,因原子 半徑的限制,有些許差異,也造成空間群不全相同;但陰陽離子在晶 胞中的分佈情況以及相對排列位置,則相當接近。

AgSnSb₃Se₆與上述化合物亦有相同結構,然而,在分析其結構 時,由於Ag、Sn、與Sb的電子密度過於接近(原子序 47/50/51),單純 利用單晶X光繞射結果,以及相關分析軟體,並不足以對其中的各陽 離子位置所填佔的元素,做出準確的判斷,並且難以計算混合填佔的 元素比例;因此在結構解析以及化學式的判斷上,有一定的困難。此 問題的可能解決方案,即本章所討論的重點,在於利用等結構化合 物,比較這些化合物間,同一相對位置的陽離子之電子密度,判斷過 渡金屬、14 族元素、以及 15 族元素,在此結構中的選擇性填佔情況。

因期望合成出更多與上述所討論的四元化合物,有相同結構的新 化合物,以得到更多資訊,對於陽離子位置,做更加正確的判斷;或 是得到與熱電相關的物理性質上,更加優良的材料,嘗試了一系列相 同比例的反應(見表 1-1 以及附錄之反應列表)。例如,以Au取代Ag、 Cu;或以能形成正三價的13 族元素(In、Ga)取代15 族的 Sb 及 Bi; 或以在目前效率較佳的熱電材料中,有相當高的比例含有的元素 Te, 取代 S 及 Se。然而,從 X 光粉末繞射圖譜,或是挑取晶體以 CAD4 單晶繞射儀得到的晶胞常數,都沒有發現可能為等結構的新化合物。

雖然並未順利合成出等結構化合物,但是在實驗過程中,發現了 兩個新的四元化硒合物Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉以及AgSnBi₃Se₆,其合成、結 構、以及純化相關實驗或物理性質測量,為第三章所要討論的主題。

包含Cu-Sn-Sb或Ag-Sn-Bi的四元硫屬化合物,目前只有 1977 年被發 表的Ag₂SnBiS₄(Sn為正三價)¹⁷。Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉在結構分析過程中, 與AgSnSb₃Se₆同似,其中原子Sn與Sb密度太過相近,而難以判斷陽離 子位置上的填佔元素種類,以及計算元素混合填佔比例;因此,我們 假設Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉各族陽離子的填佔選擇性,與本實驗室先前所合 成的Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉相同,由此來判斷陽離子的混合填佔情況,以及 做化學式之決定。

AgSnBi₃Se₆的化學式也是 1/1/3/6 的比例,但其結構與第二章的各化 合物並不相同,而與文獻上之Ag₃Bi₇S₁₂同為層狀結構,陽離子的選擇 性填佔,也是經由與此化合物的比較來做推論。

使用真空燒結法來進行固態化合物的合成,以目前的技術層面, 仍然難以預測產物的成份與結構,以及是否會有新化合物產生。本論 文所發現的新化合物只是許多未知化合物的極小部份,但希望所操作 過的實驗,以及其結果與分析,能提供之後的相關研究作為參考。

表 1-1. TmM1M2₃X₆相關反應式(800℃, 40 小時)與PXRD測定結果

起始物(元素與比例) 產物(PXRD結果)

AgSnSb ₃ S ₆	$Sn_3Sb_2S_6 / SnS$
AgSnSb ₃ Se ₆	$AgSnSb_3Se_6$
AgSnBi ₃ S ₆	unknown
AgSnBi ₃ Se ₆	unknown
AgPbSb ₃ S ₆	$AgPbSb_3S_6$
AgPbSb ₃ Se ₆	AgPbSb ₃ Se ₆
AgPbBi ₃ S ₆	$AgBi_3S_5$
AgPbBi ₃ Se ₆	unknown
CuSnSb ₃ S ₆	$CuSbS_2 / SnSb_2S_4$
CuSnSb ₃ Se ₆	$CuSe_2 / Sn_4Sb_4Se_{10}$
CuSnBi ₃ S ₆	Cu ₂ SnS ₃ / unknown
CuSnBi ₃ Se ₆	$Cu_2Sn_3Se_4 / Cu_{1.6}Bi_{4.8}Se_8$
CuPbSb ₃ S ₆	CuSb ₂ / Cu ₃ SbS ₃
CuPbSb ₃ Se ₆	CuPbSb ₃ Se ₆
CuPbBi ₃ S ₆	CuBi ₅ S ₈ / Cu _{3.21} Bi _{4.79}
CuPbBi ₃ Se ₆	$Cu_{1.6}Bi_{4.8}Se_8 / Cu_{1.6}Bi_{4.8}Se_8$
$AuSnSb_3S_6$	$Sb_2S_3/AuSb_2/SnS_2$
AuSnSb ₃ Se ₆	Sb ₂ Se ₃ /AuSe /Au
AuSnBi ₃ S ₆	Bi ₂ S ₃ /Au
AuSnBi ₃ Se ₆	Bi ₂ Se ₃ / Au /unknown
AuPbSb ₃ S ₆	unknown (amophous)
AuPbSb ₃ Se ₆	Se / unknown
AuPbBi ₃ S ₆	Bi _{2.98} Pb _{1.27} S _{5.75} / BiS
AuPbBi ₃ Se ₆	Au_2Bi_3 / Bi_2Se_3
AgPbSb ₃ Te ₆	Au / PbTe/ Sb
AuPbSb ₃ Te ₆	Ag /PbTe /Sb
CuPbSb ₃ Te ₆	Sb ₂ Te ₃ / PbTe
AgSnBi ₃ Te ₆	Bi ₂ Te ₃ / SnTe
AgPbGa ₃ Se ₆	PbSe / AgGaSe ₂
AgPbIn ₃ Se ₆	AgInSe ₂ / AgIn ₅ Se ₈ / PbSe
CuPbGa ₃ Se ₆	PbSe / CuGaSe ₂
CuPbIn ₃ Se ₆	PbSe / Cu _{0.39} In _{1.20} Se ₂

第二章 AgMSb₃Se₆(M = Pb,Sn)之合成,物性,與結構探討 2-1 摘要

本章節主要討論的新化合物AgSnSb₃Se₆,為斜方晶系 (orthorhombic),空間群P2₁2₁2₁,晶胞常數為a = 4.115(1)Å,b = 13.724(4)Å,c = 20.321(6)Å,V = 1147.47(6)Å³,與天然礦物 AgPbSb₃S₆,¹⁸以及本實驗室先前合成之AgPbSb₃Se₆¹⁹、CuPbSb₃Se₆¹⁹、 和AgSnBi₃S₆²⁰,皆有相似的結構。因此,比較了這些等結構化合物, 同一相對位置的陽離子之電子密度,希望能分析此結構中,各種不同 族的陽離子(包含過渡金屬、14 族元素、以及 15 族元素)的選擇性填 佔共通性。

AgSnSb₃Se₆可由固態燒結法得到接近純相的產物,因此也測量了 其導電度及熱電力(thermopower),並由LMTO理論計算觀察其能隙及 能態結構。

2-2 實驗部份

2-2-1 化合物之合成與長晶

AgSnSb₃Se₆之合成,起始物為元素態銀(Ag,Silver,Alfa Aesar, 95%)、錫(Sn,Tin,Alfa Aesar,99.80%)、銻(Sb,Antimony,Alfa Aesar, 99.90%)、以及硒(Se,Selenium,Alfa Aesar,99.99%)粉末,依 1-2-1 節中描述的方法,以莫耳數Ag/Sn/Sb/Se = 1/1/3/6 之比例,於內部真 空的石英管中燒結,其反應溫度條件為:從室溫以12小時升至 800℃,在 800℃停留 40 小時後,以36 小時降溫至 700℃(此步驟是 以緩慢降溫的方式幫助晶體的形成),最後自然降溫。

破真空取出之產物,為具有銀灰色金屬光澤之熔融塊狀產物,在 顯微鏡下,可觀察到表面平滑但底部(與石英管接觸面)孔洞中附有針 狀晶體。

2-2-2 粉末繞射圖譜

AgSnSb₃Se₆之粉末繞射圖譜,經JCPDS資料庫比對後為未知相, 然而與先前在實驗室中合成之產物AgPbSb₃Se₆之圖譜相當接近,如圖 2-1,因此初步推測可能合成出相似結構的產物。也嘗試一系列以同 族元素取代其中元素之相關反應(見附錄之反應列表),但未得到相似 的結果。

圖 2-1. AgPbSb₃Se₆(上)以及AgSnSb₃Se₆(下) 的粉末繞射圖譜

2-2-3 表面元素分析(EDS)

挑取AgSnSb₃Se₆產物中之塊狀結晶,進行表面元素分析實驗(儀 器及流程見1-2-3節),測定結果雖然無法準確定義出每個元素真實 比例,但在三個點(spot)及一個面(area)中,皆含有Ag、Sn、Sb、以及 Se之訊號(其比例約為Ag/Sn/Sb/Se = 3/5/16/76),可判定此化合物為含 有起始物之四種元素的四元化合物。

2-2-4 晶胞常數測定

於AgSnSb3Se6熔融塊狀產物中,在顯微鏡底下挑取片狀晶體,以 CAD4 X-ray單晶繞射儀,在不同的 θ 、 ψ 、及 ω 方向,隨機收集 25 個 繞射訊號,初步計算其晶胞常數。所得之晶胞為斜方晶系,晶胞常數 為a = 4.121(4)Å,b = 13.752(7)Å,c = 20.309(3)Å,V = 1151.26(8)Å³, 與AgPbSb3Se6之晶系相同,晶胞常數亦相當接近 $(a = 4.130(2)\text{\AA}, b = 13.730(8)\text{\AA}, c = 20.283(1)\text{\AA}, V = 1150.0(1)\text{\AA}^3)$ 支持了由觀察粉末繞射圖譜,此二化合物可能為相似結構的假設。將 此晶體以清華大學貴儀中心CCD X-ray單晶繞射儀(BURKER SMART 1000 CCD Diffractometer System)收集數據,進行晶體結構解 析。所收集的數據,每張照片對晶體拍射的時間為每frame 40 秒,收 44111111 集四組共 1315 張的照片,由Smart軟體檢查繞射點品質並以 I/σ > 20 的條件進行篩選。隨後如第一章總論中的 1-2-2 節所描述的流 程,進行吸收校正以及晶體結構分析,所得到較精確的晶胞常數為a= 4.115(1)Å, b = 13.724(4)Å, c = 20.321(6)Å, V = 1147.47(6)Å³ •

圖 2-2. AgSnSb₃Se₆由a軸(左)以及b軸(右)投影的結構圖

其沿 a 軸以及 b 軸投影的結構圖如圖 2-2,圖中黃色位置為陰離 子 Se 原子,紅色位置為陽離子;然而,在以 SHELXTL 軟體解析結 構的過程中,由於 Ag、Sn、與 Sb 的電子密度過於接近(原子序 47/50/51),不論在那一個陽離子位置中,填入何種原子,所得到的 R 值都差不多;由於相同的原因,也無法得知各陽離子位置,是否有混 合填佔(mixed occupied)的情形。為了解決陽離子定位的問題,將在下 一節中,比較同結構化合物中,各陽離子位置,在置換了不同陽離子 後的電子密度變化,來判斷此種結構中,過渡金屬 Ag、14 族元素 Sn、 以及 15 族元素 Sb 的填佔位置。

2-3 晶體結構解析及陽離子填佔位置

2-3-1 其他相同結構化合物

首先,概略介紹,先前於本實驗室中合成,且結構如圖 2-2 之數 個化合物。

AgSnBi₃S₆

AgSnBi₃S₆合成的構想來源為AgPb₄Bi₄S₁₀,將其中之Pb以Sn取 代,以AgSn₄Bi₄S₁₀的比例,在800°C的燒結12小時。於銀白色塊狀 產物中挑取一片菱形晶體,測得晶系為斜方晶系,空間群採用Pn2₁a, 晶胞常數為a = 20.086(1)Å,b = 13.310(7)Å,c = 4.054(2)Å,V= 1083.7(1)Å³,R1/wR2=0.0369/0.1067,GOF=0.814。晶體解析結果 顯示此化合物與文獻中AgPbBi₃S₆結構大致相同,故假設其分子式為 AgSnBi₃S₆,與原式AgSn₄Bi₄S₁₀有一些差距;但若採用AgSnBi₃S₆的比 例為起始反應,則會得到AgBi₃S₅及SnS₂的混合物,推測此化合物可 能為一亞穩定的產物。

在結構解析方面,部份陽離子位置,由電子密度的分析,可觀察 到 Bi 與其他陽離子有混合填佔的情況,但由於 Ag 與 Sn 的電子數太 接近,無法得知確實的情況。各陽離子位置的電子密度,及可能的填 佔情形,將在之後與其他化合物一併討論。

AgPbSb₃Se₆

AgPbSb₃Se₆的合成採用化學式中各元素為 1/1/3/6 比例的元素態 粉末,於真空石英管中,以 12 小時升至 800℃ 並停留 40 小時後,再 緩慢以 36 小時降至 700℃後自然降溫;其晶系為斜方晶系,空間群採 用P2₁2₁2₁,晶胞常數為與a = 4.130(2)Å,b = 13.730(8)Å,c =20.283(1)Å, V = 1150.0(1)Å³, R1/wR2=0.0692/0.1153, GOF=1.045, 其晶胞常數與AgSnSb₃Se₆相當接近。

AgPbSb₃Se₆由粉末繞射圖譜與由結構進行理論計算的圖譜對 照,可得到接近純相的產物。在物性方面,導電度會隨溫度上升而增 加,具有半導體性質;但因電阻較大(約 0.5MΩ),無法進行Seebeck 係數的測量。結構分析上,將陽離子位置的電子密度與以下將介紹的 CuPbSb₃Se₆比較,可推測11 族過渡金屬Ag的位置;Pb的電子數較其 他陽離子多,因此較容易判別,詳細情形將於以後一併討論。

CuPbSb₃Se₆

CuPbSb₃Se₆的合成與反應條件與AgPbSb₃Se₆相似,其晶系為斜方 晶系,空間群採用Cmc2₁,晶胞常數為與a=4.1604(2)Å,b= 13.730(8)Å,c=20.283(1)Å,V=1150.5(1)Å³,R1/wR2= 0.0508/0.1102,GOF=1.126。但依此化學式比例為起始物,反應所得 的產物中,其粉末繞射圖譜比對JCPDS資料庫,顯示含有副產物 Cu₃SbSe₄,因此沒有進行物性的測量。
在結構解析上,Cu與其他陽離子比較,有較低的電子數,因此 可由觀察電子密度,得知其在晶體結構中的位置;此外,可能由於 Cu原子體積較小,其所在的位置,電子密度不集中在同一點上,有 擾動(disorder)情形出現,即圖 2-3 中之淡藍色部份。

圖 2-3. CuPbSb₃Se₆由a軸(左)以及b軸(右)投影的結構圖

2-3-2 元素選擇性填佔的分析

圖 2-4. 本章中等結構化合物的平面結構圖(標記陽離子位置) 圖 2-4 為這些等結構化合物從a軸投影的平面結構圖,M1~M5標 示了各陽離子的位置,方便接下來對於各位置可能填佔之元素的討 論。表 2-1 則是本節中提及的四個等結構化合物中,M1~M5 這五個 陽離子位置的電子密度,此數據是在以SHELXTL軟體做結構精算 時,先填入特定的原子,再與軟體所顯示的填佔率,經由計算而得來。

	M1	M2	M3	M4	M5
CuPbSb ₃ Se ₆	36.63	48.30	49.81	77.15	52.17
AgPbSb ₃ Se ₆	49.31	44.52	53.16	71.43	52.12
AgSnSb ₃ Se ₆	44.56	43.53	51.05	50.56	51.51
AgSnBi ₃ S ₆	58.02	71.58	64.80	50.56/14.2*	78.85

表 2-1. 各陽離子位置電子數(e⁻/site) *:位置附近的殘餘電子密度

首先,在AgPbSb₃Se₆及CuPbSb₃Se₆,皆可觀察到M4 的位置上, 有特別高的電子密度;如此多電子密度的原子,在這些化學式中,只 有Pb原子,因此M4 是Pb原子的填佔位置,是相當合理的推測。但其 電子數並未到達Pb的原子序 82,也顯示了可能與其他原子有混合填 佔的情形。在AgPbSb₃Se₆與AgSnSb₃Se₆的比較上,也可發現,在將同 為 14 族的Pb換為原子序較低的Sn,M4 位置上的電子密度,相較於 其他位置,有最明顯的下降的情況;就以上的資訊,可以假設M4 的 位置,為此結構的化合物中,14 族原子最可能填佔的位置。

在AgPbSb₃Se₆與CuPbSb₃Se₆的互相比較中,CuPbSb₃Se₆的M1位 置,明顯的較低,因而推測,過渡金屬可能填占於M1的位置。M1 也正是圖 2-3 中,出現擾動的位置,因此這裡的推論,與上一節中, 銅原子在此結構中取代銀原子時,因體積的差異,而產生結構擾動的 假設,可互相印證。

然而, CuPbSb₃Se₆的M1 位置上的電子數(36),仍比Cu的原子序 (29)大,應有與其他原子混合填佔的情形,且與Pb或Sb的混合填佔, 都有可能達到此電子密度,因此無法單獨地判別。此時,我們觀察到 了化合物AgSnBi₃S₆中,M1 位置的電子數為 58。由以上的推論,此 位置應有過渡金屬Ag填佔,但若要達到電子數 58,Ag(原子序 47)與 Sn(原子序 50)的混合填佔,是不足以形成的;由此推測,M1 的位置 上,過渡金屬應是與15族原子混合填佔;意即在AgPbSb₃Se₆及 CuPbSb₃Se₆中,M1的位置,較可能分別為Ag/Sb與Cu/Sb的混合填佔, 而非與Pb混合。

除了以上14 族元素,以及過渡金屬銀、銅的填佔位置,其餘的 位置,都先假設基本上為15 族元素的填佔,從列表上可觀察到,在 AgPbSb₃Se₆、CuPbSb₃Se₆、以及AgSnSb₃Se₆中,M3 及M5 都接近於 Sb的電子數,M2 則略低一些,但在AgPbSb₃Se₆以及AgSnSb₃Se₆的反 應起始物中,都沒有比該位置的電子密度還低的原子存在,所以暫時 假設該位置是不完全填佔的情況;而與AgSnBi₃S₆比較,Bi電子數大 於Sb,此三個位置的電子密度,也的確有上升的情況。

表 2-2 是基於以上的推論,再加以考慮電荷平衡以及元素含量, 所得到此結構的各個化合物中, 陽離子填佔或混合填佔的情形。對於 最主要的研究目標AgSnSb₃Se₆,雖然受限於所含元素電子數目太接 近,無法像其他各化合物,由電子密度計算出混合填佔之兩原子的實 際比例,但可推斷各陽離子位置的可能原子為何。下一節中,將觀察 原子的配位及鍵結情況,對這裡所得到的結論,作一個驗證及探討。

29

	M1	M2	M3	M4	M5
	36.63	48.30	49.81	77.15	52.17
CuPbSb ₃ Se ₆	Cu 0.63 Sb 0.37	Sb 0.91	Sb 1.00	Pb 0.84 Sb 0.16	Sb 1.00
AgPbSb ₃ Se ₆	49.31 Ag 1.00	44.52 Sb 0.87	53.16 Sb 1.00	71.43 Pb 0.66 Sb 0.34	52.12 Sb 1.00
AgSnSb3Se6	44.56 Ag	43.53 Sb	51.05 Sb	50.56 Sn	51.51 Sb
AgSnBi ₃ S ₆	58.02 Ag 0.57 Bi 0.43	71.58 Bi 0.88	64.80 Bi 0.56 Ag 0.44	56.40/12.7 * Sn 0.69 Bi 0.31	78.85 Bi 1.00

表 2-2. 圖 2-4 中各陽離子位置電子數(粗體數字)以及填佔陽離子種類

2-3-3 AgSnSb₃Se₆的陽離子配位環境

圖 2-5. AgSnSb₃Se₆各陽離子的配位環境

(a):Ag1 (b):Sb2 (c):Sb3 (d):Sn4 (Sb5 環境與Sb3 相似)

AgSnSb₃Se₆中陽離子的配位環境,與AgPbSb₃Se₆大致上接近。 Ag1(圖 2-4 中的M1)與Sb2(M2)所在的環境相似,在八面體位置,以 六配位的方式做鍵結,扭曲的八面體由三個較短的鍵(2.65~2.76 Å)與 三個較長的鍵(2.91~3.10 Å)形成。另外兩個Sb原子Sb3(M3)及Sb5(M5) 的環境,由鍵長數據看來,顯示為五配位,鍵長為 2.61Å至 3.01 Å不 等;但若將之與距離稍遠(3.42Å)的Se原子,也視為鍵結,則其所在環 境,便與Ag1與Sb2相似,同樣形成扭曲的八面體。這些八面體,以 共同邊互相連結,形成3D的波浪結構;兩層不同方向間波浪結構, 以頂點的Se連接,即形成此化合主要的結構形式,如圖2-6,藍色及 綠色八面體分別為AgSe6及SbSe6。

圖 2-6 AgSnSb₃Se₆層狀結構圖

Sn 在結構的配位環境中為八配位,但考慮鍵長的合理性,僅與 四個 Se 原子鍵結,鍵長為 2.79Å 及 3.15 Å 各 2 個。其所在位置是兩 層不同方向 3D 波浪結構之間的空間,即圖 2-6 的紅色原子。

2-3-4 晶體結構數據資料

表2-3. AgSnSb3Se6晶體數據

Empirical formula	AgSnSb ₃ Se ₆
Formula weight	1065.57
Temperature	300(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
Ζ	4
Unit cell dimensions	a = 4.1153(1) Å
	b = 13.724(4) Å
	c = 20.321(6) Å
Volume	1147.7(6) Å ³
Density (calculated)	4.625 g/cm^3
Absorption coefficient	22.320 mm ⁻¹
F(000)	1362
Theta range for data collection	1.79 to 28.31°.
Index ranges	5<=h<=5,-18<=k<=18,-26<=l<=27
Reflections collected	8542
Independent reflections	2870 [R(int) = 0.0286]
Completeness to theta = 28.31°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2870 / 0 / 105
Goodness-of-fit on F ²	0.788
Final R indices [I>2sigma(I)]	R1 = 0.0308, wR2 = 0.1037
[all data]	R1 = 0.0759, wR2 = 0.1421
Absolute structure parameter	0.27(8)
Largest diff. peak and hole	1.600 and -1.747 e. Å ⁻³

 $R_{1} = (\Sigma | |F_{0}| - |Fc| |) / (\Sigma |F_{0}|), wR_{2} = \{\Sigma [w(F_{0}^{2} - Fc^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

	x	У	Z	U(eq)
Ag(1)	0.2484(9)	0.0796(2)	0.3673(1)	32(1)
Sb(2)	0.2529(1)	0.0788(2)	0.1323(1)	35(1)
Sb(3)	0.7494(6)	0.8622(1)	0.4470(1)	27(1)
Sn(4)	0.7498(9)	0.3011(1)	0.2500(2)	59(1)
Sb(5)	0.7507(6)	0.8624(1)	0.0532(1)	26(1)
Se(6)	0.2485(9)	0.7410(2)	0.3997(1)	25(1)
Se(7)	0.2503(9)	0.7410(2)	0.1002(1)	25(1)
Se(8)	0.2524(7)	0.0000(3)	0.0000(2)	29(1)
Se(9)	0.2509(1)	0.1635(1)	0.2501(2)	30(1)
Se(10)	0.7531(9)	0.9550(2)	0.1663(1)	22(1)
Se(11)	0.7461(9)	0.9553(2)	0.3335(1)	21(1)

表2-4. AgSnSb₃Se₆原子位置與熱參數值($Å^2x10^3$)

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1896							
	U ¹¹	U ²²	U ³³	U ²³	U^{13}	U ¹²	
$\overline{\text{Ag}(1)}$	27(1)	31(1)	40(2)	3(1)	3(2)	-7(2)	
Sb(2)	32(1)	29(1)	43(2)	1(1)	1(2)	6(2)	
Sb(3)	26(1)	28(1)	27(1)	7(1)	0(1)	-3(2)	
Sn(4)	28(1)	42(1)	106(1)	-1(2)	-6(1)	1(2)	
Sb(5)	26(1)	24(1)	30(1)	-4(1)	-3(1)	1(1)	
Se(6)	24(1)	20(1)	31(1)	-4(1)	3(2)	0(2)	
Se(7)	24(1)	21(1)	29(1)	2(1)	0(2)	0(2)	
Se(8)	23(1)	35(1)	31(1)	11(1)	0(2)	1(2)	
Se(9)	21(1)	23(1)	46(1)	-2(2)	11(1)	1(2)	
Se(10)	26(1)	21(1)	19(1)	-1(1)	5(2)	0(2)	
Se(11)	20(1)	20(1)	22(1)	1(1)	4(2)	3(2)	

表 2-5. AgSnSb₃Se₆ 非等向性熱參數值(Å²x 10³)

表 2-6. AgSnSb₃Se₆中各個陽離子鍵結長度(Å)

Ag(1)-Se(9)	2.646(4)
Ag(1)-Se(11)	2.752(4) x2
Ag(1)-Se(8)	2.909(5)
Ag(1)-Se(7)	3.091(5) x2
Sb(2)-Se(6)	3.101(2)
Sb(2)-Se(9)	2.660(4) x2
Sb(2)-Se(10)	2.757(5) x2
Sb(2)-Se(8)	2.899(5)
Sb(3)-Se(11)	2.637(3)
Sb(3)-Se(6)	2.812(4) x2
Sb(3)-Se(8)	2.990(4) x2
	ANTIMUL CONTRACT
Sn(4)-Se(9)	2.789(5) x2
Sn(4)-Se(6)	3.153(4)
Sn(4)-Se(7)	3.153(9)
	1896
Sb(5)-Se(10)	2.627(3)
Sb(5)-Se(7)	2.813(4) x2
Sb(5)-Se(8)	2.990(4) x2

2-4 物理性質測量與理論計算

2-4-1 導電度及 Seebeck 係數

由實際粉末繞射與由原子模型所模擬的繞射圖譜比較,

AgSnSb₃Se₆可得到接近純相的產物(圖 2-7,9°peak為holder之雜訊), 因此接著進行與熱電優質相關的物理性質測量。

圖 2-7. AgSnSb₃Se₆模擬繞射(上)與粉末繞射圖譜(下)

導電度的測量,是將熔融塊狀的產物以研缽磨碎成細粉狀後,壓成 5*1*1 mm的長柱形塊材。為了塊材結構更加緊實,將塊材重新以 石英管封好後,於高溫爐中在450℃下停留36小時。破真空取出的 塊材,以三用電表量測,AgSnSb₃Se₆的電阻值約為50kΩ,AgPbSb₃Se₆ 則為 300~500kΩ。之後以導電度計在低溫至室溫的範圍進行較精密的 量測,輸入 10⁻⁶安培的電流,將所量測到的電壓值轉換為電阻值及導 電度。電阻值與導電度對溫度的趨勢,如圖 2-8 所示。

隨著溫度上升,AgSnSb₃Se₆以及AgPbSb₃Se₆,電阻值均有由大變 小的趨勢,導電度也隨著溫度的上升而遞增,由此可觀察到 AgSnSb₃Se₆以及AgPbSb₃Se₆均具有半導體的性質。

圖 2-8.AgSnSb₃Se₆(上)以及AgPbSb₃Se₆(下)電阻及導電度對溫度趨勢

Seebeck係數方面,AgPbSb₃Se₆電阻過大(約 300~500kΩ)而無法進 行量測,AgSnSb₃Se₆在多次的量測中,也因電阻值偏高(50kΩ),多次 在 450~500K之間測量中斷。圖 2-9 為AgSnSb₃Se₆在 312~700K一次完 整進行的 Seebeck係數測量結果。500K之後的數值,有較大的跳動, 但塊材的退火(annealing)的溫度為是在 712K停留 36 小時,因此塊材 在Seebeck測量的溫度範圍內分解(decomposed)的可能性並不高,數據 跳動的原因可能為電阻較大造成的測量上不穩定(塊材電阻值達 1kΩ 以上的數量級就對Seebeck係數的測量而言偏高)。

在測量的溫度範圍內,無法觀察到其Seebeck係數值對溫度是否 有趨勢關係,但可得知其為P型半導體,平均值為238.31µV/K。

圖 2-9.AgSnSb₃Se₆由 312K至 700K的Seebeck係數測量結果

2-4-2 LMTO 理論模擬計算

圖 2-10 為AgSnSb₃Se₆以及AgPbSb₃Se₆,以線性原子球軌道模型 (Linear Muffin-Tin Orbitals,LMTO),計算出各別原子分別貢獻、以 及整個化合物的能態密度(Density of State,DOS)。圖中可觀察到 AgSnSb₃Se₆以及AgPbSb₃Se₆的能隙(band gap)都在 0.5eV以下,在一般 半導體的合理範圍;而AgSnSb₃Se₆的能隙較AgPbSb₃Se₆低一些,所量 測到的導電度也相對地較高。

圖 2-10. AgSnSb₃Se₆(左)以及AgPbSb₃Se₆(右)的DOS圖

2-5 結論

本章節主要討論新化合物AgSnSb₃Se₆,在分析結構時,為了分 辨結構中各陽離子位置所填佔的原子種類,而與實驗室先前所合成的 相同結構化合物AgSnBi₃S₆、AgPbSb₃Se₆、以及CuPbSb₃Se₆,作系統 性的討論,判斷不同族陽離子在此類結構中的填佔情況。雖然無法證 實AgSnSb₃Se₆中的陽離子是否有混合填佔的情況及比例,但可推斷各 陽離子位置的可能原子為何。

由粉末繞射圖譜顯示,AgSnSb₃Se₆可由元素態粉末,依其化學式 比例為起始物並以固態燒結方法,得到接近純相的產物。其導電度較 AgPbSb₃Se₆高且電阻值隨溫度上升而下降,Seebeck係數大約為 238.31µV/K,是一p-type半導體。

第三章

Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉及 AgSnBi₃Se₆的合成、結構與物性探討 3-1 摘要

本章節將由合成、結構、以及純化相關實驗或物理性質測量等 方面,討論兩個四元新硒化合物:

- Cu_{0.925(9)}Sn_{1.15(4)}Sb_{4.925(9)}Se₉,單斜晶系,空間群為 C2,晶胞常數 a = 13.57(5)Å,b=4.089(2)Å,c=15.07(6)Å,β=98.25(1)°,V=828(6) Å³,與文獻上之 Ag_{0.6}Cu_{0.48}Bi₆S9²¹,及本實驗室先前合成之 Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉²²,為同結構化合物。由於 Sn 與 Sb 電子數太接近, 此化合物中陽離子的混合填佔情況,以及化學式之決定,為參考同 結構化合物 Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉所得之推論。
- 2. AgSnBi₃Se₆, 單斜晶系,空間群為 C2,晶胞常數 a = 13.804(1)Å, b = 4.182(3)Å, c = 21.240(1)Å, β = 103.583(2), V = 1191.7(1)Å³, 與文獻上之 Ag₃Bi₇S_{12²³}為同結構化合物。雖然化學式也是 1/1/3/6 的比例,但其結構與前一章討論的各化合物並不相同。

3-2 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉之合成與結構

3-2-1 實驗部份

Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉之合成,以元素態粉末的銅(Cu, Copper, Alfa Aesar, 99.90%)、錫(Sn, Tin, Alfa Aesar, 99.80%)、銻(Sb, Antimony, Alfa Aesar, 99.90%)、以及硒(Se, Selenium, Alfa Aesar, 99.99%)為 起始物,以莫耳數 Cu/Sn/Sb/Se = 1/1/3/6 之比例,依 1-2-1 節中描述 的方法,於內部真空的石英管中燒結,其反應溫度條件為:從室溫以 12 小時升至 800℃,在 800℃停留 40 小時後,以 36 小時降溫至 700℃, 最後自然降溫。產物的粉末繞射圖譜,經 JCPDS 資料庫比對後為未 知相。

破真空後取出的熔融態產物,在研鉢中敲碎後於顯微鏡下觀察, 可明顯見到形狀相當工整的平行四邊形片狀黑色晶體,在此系列的反 應中並不常見,相當特別。取此晶體以 CAD4 X-ray 單晶繞射儀,在 不同的 θ 、 ψ 、及 ω 方向,亂數收集 25 個繞射訊號,初步所得之晶胞 為單斜晶系,晶胞常數為a = 13.62(4)Å,b = 4.09(2)Å,c = 15.11(1)Å, $\beta = 98.3(1)^{\circ}$, V = 834(5)Å³。

本反應式原來的目的,是希望合成以 Cu 取代上一章 AgSnSb₃Se₆ 中的 Ag,以觀察結構中的過渡金屬位置。上述形狀工整之片狀晶體 的晶胞常數顯然與期望的結構不同,因此,刻意挑取形狀較不規則且 細小的晶體,但以 CAD4 X-ray 單晶繞射儀測量後,仍得到接近的 晶胞常數。將產物的繞射圖譜與之後由結構解析得到的計算圖譜對照 (如圖 3-1),可發現圖譜大致符合,顯示雖以 Cu/Sn/Sb/Se 莫爾數比 1/1/3/6 為起始比例,但大部份產物為 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉。

將上述晶體送往清華大學貴儀中心,以 CCD X-ray 單晶繞射儀 (BURKER SMART 1000 CCD Diffractometer System)以 40 秒/frame, 收集四組共 2070 張照片,經由第一章中 1-2-2 節所中描述的晶體結 構解析過程,所得到較精確晶胞常數 a = 13.57(5)Å, b = 4.089(2)Å, c = 15.07(6)Å, $\beta = 98.25(1)^{\circ}$, V = 828(6)Å³。

圖 3-1. Cu0.9Sn1.2Sb4.9Se9 模擬繞射(上)與粉末繞射(下,比例 1/1/3/6)圖

3-2-2 化學式之決定

Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉是以莫爾數比 Cu/Sn/Sb/Se = 1/1/3/6 為起始比例 的反應下獲得之產物,但初步解析其結構時,在此結構中,陽離子與 陰離子的比例,是 7:9 而非起始的 5:6;並且由於對稱性,在晶格之 中,只有四個陽離子位置(其中之一在對稱中心上),若個別位置都為 原子的單獨填佔,將無法達到電荷平衡;故推測應有陽離子混合填佔 的情況。

但是在以 SHELEXTL 軟體進行結構分析的過程中,由於 Sb 與 Sn 電子數過於接近(50/51),此二元素的混合填佔,無法進行正確的 計算。因此,必須參照本實驗室先前合成出的 Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉,在同 族元素會以相同的相對位置以及比例填佔的假設之下,來推測其各陽 離子位置的填佔及混合的情況。

圖 3-2. Cu_{0.8}Sn_{1.4}Bi_{4.8}Se9 及 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se9 的平面結構圖

Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉的平面結構如圖 3-2(Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉亦同)。其 中 M1 為 Bi 的單獨填佔, M2 及 M3 為 Bi 和 Sn,以接近 7:3 的比例 混合填佔。而在 M4 的位置,電子密度接近 Cu 但略高一些,應為 Cu 與其他陽離子的混合填佔。然而之前的研究中,並無法確認,此位置 是 Cu 與 Sn 或是 Cu 與 Bi 的混合填佔。兩種填佔情況的原子模型, 精算化學比例分別為 Cu_{0.80(2)}Sn_{1.375(9)}Bi_{4.86(4)}Se₉ 及

Cu_{0.925(9)}Sn_{1.15(4)}Sb_{4.925(9)}Se₉;但根據這二個不同化學比例為起始反應 式,皆有不純物 Bi₂Se₃。最後,由於 Cu_{0.80(2)}Sn_{1.375(9)}Bi_{4.86(2)}Se₉的粉末 繞射圖譜,較接近計算所得的產物理論繞射圖譜,決定以此為化合物 化學式。Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉的合成,以及上一章所提及,比較等結構 化合物間相同位置上的電子密度,或許可以提供此問題,一個可能的 解答方向。表 3-1 是 Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉以及 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉,M4 的位 置上的電子密度,以及假設由 Cu/Sn 或 Cu/Bi(Sb)混合填佔,計算出 兩原子間的比例。

表 3-1. Cu_{0.8}Sn_{1.4}Bi_{4.8}Se9 及 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se9 中 M4 的電子數及填佔率

	M4 電子數	填佔	<u>率</u>
$Cu_{0.8}Sn_{1.4}Bi_{4.8}Se_9$	33.20	Cu/Sn 0 80/0 20(2)	Cu/Bi
$Cu_{0.9}Sn_{1.2}Sb_{4.9}Se_9$	30.75	Cu/Sn 0 92/0 08(3)	Cu/Sb 0 92/0 08(3)

由表 3-1 可以觀察到,當 $Cu_{0.8}Sn_{1.4}Bi_{4.8}Se_9$ 中的 Bi 被 Sb 取代時, M4 的電子數有些許的下降;而經由計算 Cu 與其他原子的混合填佔 比例,可發現當此位置以 Cu 與 15 族的元素混合填佔時,兩化合物 中 Cu /15 族元素的比例相當接近(Cu 為 0.925 與 0.92),而 Cu/Sn 的混 合填佔,則有較大的差距(0.8 與 0.92)。若假設在此結構的化合物中, 同族元素會以相同的相對位置以及接近的比例填佔,則在 M4 的位 置,Cu 與 Bi 混合填佔,為較為符合的結果,而所得的化學式為 $Cu_{0.925(9)}Sn_{1.15(4)}Bi_{4.925(9)}Se_9$ 。而本節所討論的新化合物,將各陽離子位 置的混合情況,假設為與 $Cu_{0.925(9)}Sn_{1.15(4)}Bi_{4.925(9)}Se_9$ 相同(見以下晶體 數據表 3-3.),則會得到 $Cu_{0.925(9)}Sn_{1.15(4)}Sb_{4.925(9)}Se_9$ 的化學式。

然而與 Cu_{0.925(9)}Sn_{1.15(4)}Bi_{4.925(9)}Se₉相似,以

Cu_{0.925(9)}Sn_{1.15(4)}Sb_{4.925(9)}Se₉為起始物元素比例,或對其元素間的比例微 調,將粉末繞射圖譜與由原子模型計算所得之圖譜比較,產物中都含 有 Sb₂Se₃為主的不純物,因此尚未進行物理性質的測量。

HILLIN

46

3-2-3 晶體結構

Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉結構由二種不同 NaCl-type 的區塊所組成。其 中一區為 NaCl(100) - type(圖 3-4 中淡黃色區塊),每一小塊是由 M4 原子和 Se 原子形成六配位八面體,以及二個由 Sb 原子和 Se 原子形 成五配位的半八面體所構成,由 M4 原子連接,沿 a 軸方向延伸。另 一區為每一小塊 NaCl(111) - type(圖 3-4 中淡藍色區塊),2 個 M2 原 子及 2 個 M3 原子,皆與 Se 原子形成六配位八面體,並以對角線的 方式組合而成此區塊。二區塊由 Se 原子所連接,為整個結構的架構。

圖 3-3. Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉結構圖

表 3-2. Cu_{0.9}Sn_{1.2}Sb_{4.9}Se9 晶體數據

Empirical formula	$Cu_{0.9}Sn_{1.2}Sb_{4.9}Se_9$
Formula weight	1506.91
Temperature	300(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	C2
Unit cell dimensions	a = 13.57(5) Å
	b = 4.089(2) Å
	c = 15.07(6) Å
	$\beta = 98.25(1)^{\circ}$
Volume	$828(6) \text{ Å}^3$
Ζ	2
Density (calculated)	5.9870g/cm ³
Absorption coefficient	30.415 mm ⁻¹
F(000)	1278
Theta range for data collection	1.37 to 28.44°.
Index ranges	8<=h<=15, -5<=k<=5, -20<=l<=19
Reflections collected	4946
Independent reflections	2017 [R(int) = 0.0189]
Completeness to theta = 28.44°	99.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2017 / 1 / 79
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	R1 = 0.0409, wR2 = 0.0961
[all data]	R1 = 0.0464, wR2 = 0.0997
Absolute structure parameter	0.33(14)
Extinction coefficient	0.00027(7)
Largest diff. peak and hole	7.177 and -3.801 e.Å ⁻³

 $R_{1} = (\Sigma | |F_{0}| - |Fc| |) / (\Sigma |F_{0}|), wR_{2} = \{\Sigma [w(F_{0}^{2} - Fc^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

表 3-3. Cu_{0.9}Sn_{1.2}Sb_{4.9}Se9 原子位置與熱參數值(Å²x10³)

	Х	у	Z	U(eq)	Occp.
Sb(1)	0.1492(1)	0.5085(8)	0.0683(1)	24(1)	1
M(2)	0.9443(1)	0.0097(8)	0.1905(1)	24(1)	Sb/Sn=0.72/0.28(9)
M(3)	0.2617(1)	0.0098(2)	0.3817(1)	42(1)	Sb/Sn=0.69/0.31(9)
M(4)	0	0	0.5000	274(7)	Cu/Sb=0.92/0.08(3)
Se(5)	0.0826(1)	0.5102(1)	0.2312(1)	20(1)	1
Se(6)	0	0.0060(2)	0	22(1)	1
Se(7)	0.2845(1)	0.0082(1)	0.1293(1)	25(1)	1
Se(8)	0.8585(1)	0.5084(1)	0.5435(1)	18(1)	1
Se(9)	0.9030(1)	0.0077(1)	0.3604(1)	22(1)	1

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. Maria, . IIII

表 3-4. Cu _{0.9} Sn _{1.2} Sb _{4.9} Se9 非等向性熱參數值(Å ² x 10 ³)							
	U^{11}	U^{22}	U ³³	U ²³	U^{13}	U^{12}	
<u>Sb(1)</u>	22(1)	21(1)	31(1)	0(2)	8(1)	1(1)	
Sn(2)	27(1)	22(1)	24(1)	1(1)	6(1)	1(1)	
Sb(3)	41(1)	59(1)	22(1)	2(2)	-8(1)	-2(2)	
M(4)	134(6)	535(19)	118(5)	0	-96(5)	0	
Se(5)	20(1)	22(1)	17(1)	1(2)	2(1)	0(2)	
Se(6)	24(1)	21(1)	21(1)	0	0(1)	0	
Se(7)	20(1)	22(1)	31(1)	0(2)	1(1)	7(2)	
Se(8)	19(1)	21(1)	15(1)	-1(2)	2(1)	0(1)	
Se(9)	23(1)	23(1)	23(1)	2(2)	8(1)	0(2)	

表	3-5.	2Sb1 0Se0	中名	個陽	離子	鍵結	長度	(Å)
っ		.2004.9009	1.0	1912		Ser.	NX	(/

Sb(1)-Se(8)	2.599(8)	-
Sb(1)-Se(9)	2.860(1) x2	
Sb(1)-Se(8)	2.935(9) x2	
M(2)-Se(5)	2.735(9)	
M(2)-Se(7)	2.811(9) x2	
M(2)-Se(6)	2.949(1) x2	
M(2)-Se(7)	3.232(8)	
M(3)-Se(9)	2.699(9)	
M(3)-Se(5)	2.781(9) x2	
M(3)-Se(7)	3.023(9) x2	
M(3)-Se(6)	3.071(1)	
Cu(4)-Se(9) Cu(4)-Se(8)	2.317(7) x2 2.91(6) x4	
	EITHING TRACE	-

3-3 AgSnBi₃Se₆之合成與結構

3-3-1 實驗部份

AgSnBi₃Se₆之合成,與Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉大致相同,以元素態粉 末的銀(Ag,Silver,Alfa Aesar,95%)、錫(Sn,Tin,Alfa Aesar,99.80%)、 鉍(Bi,Bismuth,Alfa Aesar,99.50%)、以及硒(Se,Selenium,Alfa Aesar,99.99%)為起始物,依1-2-1節中描述的方法,以莫耳數 Ag/Sn/Bi/Se = 1/1/3/6之比例,於內部真空的石英管中燒結,其反應 溫度條件為:從室溫以12小時升至800℃,在800℃停留40小時後, 以36小時降溫至700℃,最後自然降溫。

將破真空後取出的熔融態產物,以研鉢磨成粉末態後,進行 X 光粉末绕射,其圖譜與 JCPDS 資料庫的比對中,並沒有發現已知物 的繞射峰。因此挑取數個不規則形狀晶體,以 CAD4 X-ray 單晶繞射 儀,在不同的θ、Ψ、及ω方向,亂數收集 25 個繞射訊號,首先得到 一晶體並非單晶,但可測得為單斜晶系,晶胞常數為a=13.746(9)Å, b=4.162(2)Å,c=19.497(6)Å, $\beta=104.95(3)$ °, V=1077(1)Å³;之 後再度挑取一有相似晶胞常數且為單晶之晶體,以清華大學貴儀中心 CCD X-ray 單晶繞射儀以 40 秒/frame,收集四組共 2070 張照片, 經由晶體結構解析所得到較精確的晶胞常數為a=13.804(1)Å,b= 4.182(3)Å,c=21.240(1)Å, $\beta=103.583(2)$ °, V=1191.7(1)Å³。

3-3-2 晶體結構

圖 3-4. AgSnBi₃Se₆ 沿 b 軸(左)及 a 軸(右)投影的結構圖 AgSnBi₃Se₆的結構與上節描述的 Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉類似,由兩種 結構類型的區塊,以 Se 原子連接,沿 a 軸及 b 軸無限延伸所構成。

在陽離子的辨別上,是以 SHELEXTL 軟體所計算出的電子密度,以及參考文獻中 Ag3Bi7S12²³的結構為主要的依據。在 NaCl(100)type 區塊中,圖中紅色原子的電子數相當接近 Bi,紫色原子電子數 接近 Ag 或 Sn(兩者電子數分別為 47/50);而 Ag3Bi7S12的結構中,此 位置是由 Ag 單獨填佔,成為此區域中小單位沿 a 軸沿伸的連接點, 因此判斷在 AgSnBi3Se6 中此原子亦為 Ag 而非 Sn。

另一區塊中,圖中藍色原子電子數,也接近 Ag 或 Sn,而在 Ag₃Bi₇S₁₂中,此位置是由 Bi 單獨填佔;當加入了 Sn 原子,電子密 度有明顯的下降,由此判斷 AgSnBi₃Se₆中此位置是由 Sn 原子填佔, 應為合理的推測。區塊中其他位置,由 SHELEXTL 軟體計算的電子 密度,顯示為 Bi 及其他陽離子的混合填佔;考慮電荷平衡,以及 Ag₃Bi₇S₁₂中的填佔情況,判斷淡藍色位置(圖 3-4 中的 M3)為 Bi/Sn 的混合填佔(此位置在 Ag₃Bi₇S₁₂為 Bi 單獨填佔,當加入 Sn 時電子密 度下降),粉紅色位置(圖 3-4 中的 M4 及 M5)則為 Bi/Ag 的混合填佔(與 Ag₃Bi₇S₁₂中的情況相同)。

原子的配位環境方面,除了 NaCl(100) - type 區塊中的 Bi 原子, 以五配位的型式形成半八面體,其於陽離子都是六配位,與陰離子形 成八面體。

最後精算所得的化學式為 Ag1.08Sn1.015Bi3.08Se6,接近反應起始比例 1/1/3/6,圖 3-5為 AgSnBi3Se6模擬繞射與粉末繞射圖譜,觀察圖 譜可假設 AgSnBi3Se6以元素粉末為起始物,進行固態燒結可得到接 近純相的產物。但晶體解析得到的 R1 值為 8.8%偏高,可能需要品質 更好的晶體,才能得到更準確的結果。

53

圖 3-5. AgSnBi₃Se₆模擬繞射(上)與粉末繞射圖譜(下)

表 3-6. AgSnBi3Se6 晶體數據

Empirical formula	AgSnBi ₃ Se ₆
Formula weight	1327.4
Temperature	300(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	C2
Unit cell dimensions	a = 13.804(1) Å
	b = 4.182(3) Å
	c = 21.240(2) Å
	β=103.583(2)°
Volume	$1191.7(1) \text{ Å}^3$
Ζ	4
Density (calculated)	7.1932g/cm^3
Absorption coefficient	42.817 mm ⁻¹
F(000)	1712
Theta range for data collection	0.99 to 28.38°.
Index ranges	0<=h<=18, -5<=k<=4, -28<=l<=27
Reflections collected	4829
Independent reflections	2703 [R(int) = 0.0421]
Completeness to theta = 28.38°	99.4 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2703 / 1 / 108
Goodness-of-fit on F ²	1.052
Final R indices [I>2sigma(I)]	R1 = 0.0882, wR2 = 0.1940
[all data]	R1 = 0.1055, wR2 = 0.2136
Absolute structure parameter	0.24(7)
Extinction coefficient	0.00000(6)
Largest diff. peak and hole	23.180 and -3.521 e.Å ⁻³

 $R_{1} = (\Sigma | |F_{0}| - |Fc| |) / (\Sigma |F_{0}|), wR_{2} = \{\Sigma [w(F_{0}^{2} - Fc^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

	Х	у	Z	U(eq)	Occp.
Ag(1)	0	0.4970(2)	0	38(1)	1
Sn(2)	0	0.4893(2)	0.5000	15(1)	1
M(3)	0.1994(1)	0.9972(9)	0.4118(1)	19(1)	Bi/Sn=0.56/0.44(1)
M(4)	0.8902(1)	0.9952(7)	0.3202(1)	18(1)	Bi/Ag=0.77/0.23(1)
M(5)	0.0799(2)	0.5003(9)	0.2332(1)	21(1)	Bi/Ag=0.74/0.26(1)
Bi(6)	0.2592(2)	0.9968(1)	0.0906(1)	28(1)	1
Se(7)	0.2420(2)	0.0075(2)	0.2829(1)	15(1)	1
Se(8)	0.3479(1)	0.5060(3)	0.4589(2)	15(1)	1
Se(9)	0.9350(2)	0.0084(2)	0.1984(1)	14(1)	1
Se(10)	0.1269(2)	0.5050(2)	0.1145(1)	23(1)	1
Se(11)	0.3658(1)	0.4980(2)	0.0296(1)	15(1)	1
Se(12)	0.0443(1)	0.5060(2)	0.3727(1)	14(1)	1

表 3-7. AgSnBi₃Se₆ 原子位置與熱參數值(Å²x10³)

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

表3-8. AgSnBi₃Se₆ 非等向性熱參數值(Å²x 10³)

1896							
	U^{11}	U ²²	U ³³	U^{23}	U ¹³	U ¹²	
$\overline{\text{Ag}(1)}$	27(1)	36(2)	49(2)	0	1(1)	0	
Sn(2)	17(1)	16(1)	12(1)	0	2(1)	0	
M(3)	20(1)	16(1)	19(1)	2(2)	3(1)	-1(2)	
M(4)	19(1)	16(1)	19(1)	2(2)	5(1)	1(1)	
M(5)	25(1)	18(1)	19(1)	3(2)	4(1)	0(1)	
Bi(6)	29(1)	28(1)	21(1)	1(1)	-2(1)	-1(1)	
Se(7)	14(1)	8(1)	20(1)	-3(3)	0(1)	1(2)	
Se(8)	16(1)	11(2)	15(1)	-4(3)	-1(1)	0(2)	
Se(9)	16(1)	12(1)	12(1)	-4(3)	0(1)	-3(2)	
Se(10)	30(1)	17(1)	26(1)	-9(3)	15(1)	-5(3)	
Se(11)	17(1)	13(1)	15(1)	4(3)	3(1)	3(2)	
Se(12)	15(1)	9(2)	15(1)	1(3)	0(1)	2(2)	

表 3-9. AgSnBi₃Se₆ 中各個鍵結長度(Å)

Ag(1)-Se(10)	2.643(3) x2	M(5)-Se(10)	2.748(3)
Ag(1)-Se(11)	2.952(7) x2	M(5)-Se(9)	2.843(5)
Ag(1)-Se(11)	2.961(7) x2	M(5)-Se(9)	2.892(6)
		M(5)-Se(7)	3.043(6)
Sn(2)-Se(8)	2.896(7) x2	M(5)-Se(7)	3.084(6)
Sn(2)-Se(12)	2.909(3) x2	M(5)-Se(12)	3.115(3)
Sn(2)-Se(8)	2.998(8) x2		
		Bi(6)-Se(11)	2.725(3)
M(3)-Se(8)	2.908(7)	Bi(6)-Se(10)	2.873(6)
M(3)-Se(7)	2.932(3)	Bi(6)-Se(10)	2.923(6)
M(3)-Se(12)	2.941(6)	Bi(6)-Se(11)	3.014(5)
M(3)-Se(8)	2.962(7)	Bi(6)-Se(11)	3.024(5)
M(3)-Se(8)	2.970(3)		
M(3)-Se(12)	2.994(7)	and a start of the	
	11		
M(4)-Se(9)	2.797(3) ES	A A A	
M(4)-Se(7)	2.866(5)	E E	
M(4)-Se(7)	2.939(6)	96	
M(4)-Se(12)	2.972(7)	THIS	
M(4)-Se(12)	3.037(7)	n.	
M(4)-Se(8)	3.135(3)		

3-3-3 物理性質測量

圖3-5為AgSnBi₃Se₆由312K至652K的Thermopower測量結果。其 Seebeck係數在此範圍內的平均值為-344.097µV/K,較Bi₂Te₃(約-260 µV/K)略大一些。由圖可觀察到數值在312K到450K之間隨溫度逐漸增 大,但之後到650K則無明顯隨溫度變化的趨勢。由Seebeck係數顯示 AgSnBi₃Se₆屬於N-type半導體,與上一章P-type的AgSnSb₃Se₆相反, 推測是由於Bi所含電子數較Sb多,因此有了這樣的性質差異。

圖 3-5. AgSnBi₃Se₆ Seebeck 係數測量結果

3-4 結論

本章節討論了Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉以及AgSnBi₃Se₆兩個新四元硒化 物,此二化合物皆為層狀結構,且皆由NaCl(100)-type區塊,與另 一種結構的區塊組合而成。Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉與先前實驗室合成的 Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉為同結構,在結構解析的過程中,經由比較兩者Cu 與 15 或 16 族混合填佔的比例,可為之前Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉難以確定 Cu 與何種原子混合填佔,提供一可能的線索;而Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉中 無法以SHELEXTL軟體計算的Sn 與 Sb 原子的混合填佔比例,則可 參考Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉中Sn 與 Bi 原子混合填的情況,作為依據。

AgSnBi₃Se₆ 雖與前一章的 AgSnSb₃Se₆ 在同族元素有相同的比例,但並非同結構的化合物,且在 thermopower 上表現了相反的性質。 目前較明顯的問題是由於難以挑取到品質夠好的晶體,因此在結構解 析時所得到的 R 值偏高。

第四章 總 結

本論文主要內容,是對三種新的四元硒化合物,做結構以及物 理性質上的實驗及討論。

AgSnSb₃Se₆由X光粉末繞射與單晶繞射的直接觀察,就可推測 其結構與實驗室先前所合成的AgPbSb₃Se₆相同。但此化合物中個別陽 離子的電子數過於接近,為了分辨此化合物中陽離子位置的填佔原子 種類,比較了數個同結構化合物中,各陽離子位置在置換了不同陽離 子後,電子密度的變化情況;接著,對於不同族金屬陽離子,在這一 種結構中的填佔情況,做了一個初步的推測及整理。然而推論的正確 性及完整性,還需仰賴合成及發現更多的相關化合物。物理性質方 面,AgSnSb₃Se₆電阻值會隨著溫度的上升而下降,Seebeck係數在 312 至 700K之間為正值,是一P型半導體。雖然有一個尚可的熱功率值, 但電阻比起其他已知熱電材料來顯得偏高,限制了實用的可能性。

Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉與AgSnBi₃Se₆是在尋找上述等結構化合物的過 程中,所發現的新化合物。雖然Cu_{0.9}Sn_{1.2}Sb_{4.9}Se₉也遭遇了陽離子位置 判斷的困難,但在與實驗室先前合成的Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉互相比較之 下,能對所遇到的問題做出一些推測。此系統尚未能避免Sb₂Se₃或 Bi₂Se₃等穩定二元副產物的干擾,若在反應條件或比例的調整後能得 到純相的產物,就能對推論得到的化學式做驗證,以及測量其物理性 質。AgSnBi₃Se₆在結構分析時,與文獻上的Ag₃Bi₇Se₁₂比較之下,能 觀察到由於Sn的存在,一些陽離子位置有電子密度的下降;但其晶體 數據以及結構,需要有品質更好的晶體來做確認或修正。物性方面, AgSnBi₃Se₆為一n型半導體,雖然與AgSnSb₃Se₆在同族元素有相同的 比例,但結構及性質都不相同。

参考文獻

- 1. E. T.Caillat, Energy Conversion Engineering Conference **1996**, 2, 905.
- 2. C. Wood, Energy Convers. Manage. 24, 1984.
- 3. T. J. Seebeck, Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin 1823, 265.
- 4. T. J. Seebeck, Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen, Schweigger's J. Phys. 46, 101, 1826.
- 5. W. Thomsom, On a nechanical theory of thermo-electric currents, Vol.3, Philos. Mag. 1852.
- 6. *Thermoelectyicity: Science and Enginering*; Interscience: New York, 1961.
- 7. O. M. Okada S, Shishido T, Nakajima K, Rogl P.J. Cryst. Growth. **1999**, 200, 169.

all and a

- 8. Werner Massa, Crystal Structure Determination; Springer 2004.
- 9. O. K. Ohamasa M, Acta Crystallogr., sect A: Found. Crystallorgy., **1995**, *51*, 87.
- 10. H.P.K. a L.E. Alexander, X-ray Diffraction Procedures; Willey: New York 1974.
- 11. T. D. Jansen J, Zandbergen HW, Acta Crystallogr, sect A; Found. Crystallorgy. 1998, 54, 91.
- 12. Andersen, O. K., Phys. Rev B 1975, 12, 3060.
- 13. Andersen, O. K., Jepsen, O., Phys. Rev. Lett. 1984, 53, 2571-2574.
- 14. Jepsen, O.F., O. K. Z., Phys. B: Condensed Matter 1995, 97, 35-47.
- 15. Sinani, S. S.; Gordyakova, G. N., Zhurnal Sakharnoi Promyshlennosti **1956**, 26, 1398.

- Kuei Fang Hsu, Sim Loo, Fu Guo, Wei Chen, Jeffrey S. Dyck, Ctirad Uher, Tim Hogan, E. K. Polychroniadis, and Mercouri G. Kanatzidis, *Science* 2004, *303*, 818-821.
- 17. Johnston, D.C., Adrian, H., J. Phys. Chem. Solids 1977, 38, 355-365.
- Sawada I. K. H., Hellner E., Tokonami M., Z. Krisrallogr.
 1987, 180, 141.
- 19. 張芳卿, 含錦之新穎熱電材料的合成與分析, 交通大學應用化學 研究所碩士論文, 2005.
- 20. 陳奎伯, 含錫之新穎熱電材料的合成與分析, 交通大學應用化學 研究所碩士論文, 2004.
- 21. Mumme, W. G., Neues Jahrbuch Fuer Mineralogie 1990, 5, 193.
- 22. 楊朝翔, 新穎四元硒化合物的合成, 結構, 與物性分析 (Cr_xIn_{1-x})_{1.67+2/3δ}Pb_{4-δ}In₇Se₁₇, Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉, Ag_{0.375}Sn_{0.4375}Bi_{2.25}Se₄ 交通大學應用化學研究所碩士論文, 2006.
- 23. Herbert, H.K.; Mumme, W.G., *Neues Jahrbuch fuer Mineralogie Monatshefte* **1981**, 69-80.

編號	比例式	反應條件	PXRD結果
1	AgPbBi ₃ S ₆	800°C, 16hr	$AgBi_3S_5$
2	AgPbBi ₃ Se ₆	800°C, 16hr	unknown
3	$Sn_3Sb_2Se_6$	800°C, 30hr	SnSe
4	$SnSb_{1.6}Ga_{0.4}Se_4$	800°C, 30hr	Sb_2Se_3 $SnSb_2Se_4$
5	$SnSb_{1.6}Fe_{0.4}Se_4$	800°C, 30hr	Sb_2Se_3 $SnSb_2Se_4$
6	$SnSb_{1.6}Pb_{0.4}Se_4$	800°C, 30hr	Sb ₂ Se ₃ SnSb ₂ Se ₄ unknown
7	$Sn_{3.04}Sb_{1.33}Ga_{0.63}Se_6$	800°C, 30hr	SnSe
8	AgPbBi ₃ S ₆	800°C, 40hr	AgBi ₃ S ₅
9	AgPbBi ₃ Se ₆	800°C, 40hr	unknown
10	AgSnBi ₃ S ₆	800°C, 40hr	unknown
11	AgSnBi ₃ Se ₆	800°C, 40hr	unknown
12	CuPbBi ₃ S ₆	800°C, 40hr	CuBi ₅ S ₈ Cu _{3.21} Bi _{4.79}
13	CuPbBi ₃ Se ₆	800°C, 40hr	$Cu_{1.6}Bi_{4.8}Se_8$ $Cu_{1.6}B_{i4.8}Se_8$
14	$Sn_3Sb_2Se_6$	800°C, 30hr	SnSe
15	$Sn_3Sb_2Se_6$	800°C, 30hr(flux)	SnSe
16	$Sn_{3.04}Sb_{1.33}Fe_{0.63}Se_{6}$	800°C, 30hr	SnSe
17	$Sn_{3.04}Sb_{1.33}Al_{0.63}Se_{6}$	800°C, 30hr	SnSe
18	$SnSb_{1.6}In_{0.4}Se_4$	800°C, 30hraad	Sb_2Se_3 $SnSb_2Se_4$
19	$Sn_{3.04}Sb_{1.33}In_{0.63}Se_{6}$	800°C, 30hr	SnSe
20	AgSnSb ₃ S ₆	800°C, 40hr	$Sn_3Sb_2S_6$ SnS
21	AgSnSb ₃ Se ₆	800°C, 40hr	AgSnSb ₃ Se ₆
22	CuSnBi ₃ S ₆	800°C, 40hr	Cu ₂ SnS ₃ unknown
23	CuSnBi ₃ Se ₆	800°C, 40hr	$Cu_2Sn_3Se_4$ $Cu_{1.6}Bi_{4.8}Se_8$
24	CuPbSb ₃ S ₆	800°C, 40hr	CuSb ₂ Cu ₃ SbS ₃
25	AuPbBi ₃ S ₆	800°C, 40hr	Bi _{2.98} Pb _{1.27} S _{5.75} BiS
26	$Sn_3Sb_2S_6$	800°C, 30hr	$SnSb_2S_4$ ($SnS_2 Sn_2S_3$)
27	$SnSb_{1.25}Ga_{0.75}Se_4$	800°C, 30hr	$SnSb_2Se_4$ Ga_2Se_3
28	$SnSb_{1.6}Ga_{0.4}Se_4$	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
29	AgSnSb ₃ Se ₆	800°C, 40hr(->650°C)	AgSnSb ₃ Se ₆
30	AgSnSb ₃ Se ₆	800°C, 40hr(->600°C)	AgSnSb ₃ Se ₆

附錄 I. 反應列表

31	AgSnSb ₃ Se ₆	800°C,30hr(->550°C)	AgSnSb ₃ Se ₆
32	SnSb _{1.75} Ga _{0.25} Se ₄	800°C, 30hr	Sb_2Se_3 SnSe Ga
33	SnSb _{1.6} Ga _{0.4} Se ₄	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
34	SnSb _{1.25} Ga _{0.75} Se ₄	800°C, 30hr	$SnSb_2Se_4$ Ga_2Se_3
35	SnSb _{1.75} Ga _{0.25} Se ₄	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
36	SnSb _{1.6} Ga _{0.4} Se ₄	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
37	$SnSb_{1.6}Ga_{0.4}Se_4$	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
38	$SnSb_{1.25}Ga_{0.75}Se_4$	800°C, 30hr	$SnSb_2Se_4$ Ga_2Se_3
39	$SnSb_{1.6}Ga_{0.4}Se_4(1g)$	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
40	$SnSb_{1.6}Ga_{0.4}Se_4(2g)$	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
41	AgSnSb ₃ Se ₆	800°C, 40hr	AgSnSb ₃ Se ₆
42	$AgSn_4Bi_4S_{10} \\$	800°C, 40hr	unknown SnS ₂
43	AgPbSb ₃ Se ₆	800°C, 40hr	AgPbSb ₃ Se ₆
44	CuPbSb ₃ Se ₆	800°C, 40hr	CuPbSb ₃ Se ₆ Cu ₃ SbSe ₄
45	CuSnSb ₃ S ₆	800°C, 40hr	$CuSbS_2$ $SnSb_2S_4$
46	CuSnSb ₃ Se ₆	800°C, 40hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9$ Sb_2Se_3
47	$SnSb_{1.6}Ga_{0.4}Se_4$	800°C, 30hr	Sb ₂ Se ₃ SnSe Ga
48	$SnSb_{1.6}Ga_{0.4}Se_4$	800°C,30hr(NaCl flux)	Sb ₂ Se ₃ SnSe Ga
49	$SnSb_{1.6}Ga_{0.4}Se_2$	800°C, 30hr	SnSe Sb
50	AgPbGa ₃ Se ₆	800°C, 40hr	PbSe AgGaSe ₂
51	AgPbIn ₃ Se ₆	800°С, 40hr вэс	AgInSe ₂ AgIn ₅ Se ₈ PbSe
52	CuPbGa ₃ Se ₆	800°C, 40hr	PbSe CuGaSe ₂
53	CuPbIn ₃ Se ₆	800°C, 40hr	PbSe $Cu_{0.39}In_{1.20}Se_2$
54	$Ag_2PbSb_2Se_6$	800°C, 40hr	unknown
55	$Cu_2PbSb_2Se_6$	800°C, 40hr	Cu ₃ (SbSe ₄) Se CuSe ₂
56	$AuSnSb_3S_6$	800°C, 40hr	$Sb_2S_3 AuSb_2 SnS_2$
57	AuSnSb ₃ Se ₆	800°C, 40hr	Sb ₂ Se ₃ AuSe Au
58	$AuSnBi_3S_6$	800°C, 40hr	Bi ₂ S ₃ Au
59	AuSnBi ₃ Se ₆	800°C, 40hr	Bi ₂ Se ₃ Au unknown
60	$AuPbSb_3S_6$	800°C, 40hr	unknown (amophous)
61	AuPbSb ₃ Se ₆	800°C, 40hr	Se unknowm
62	$PbSb_{1.6}Ga_{0.4}Se_4$	800°C, 30hr(NaCl flux)	與管壁反應
63	$PbSb_{1.6}In_{0.4}Se_4$	800°C, 30hr(NaCl flux)	$Sb_2Se_3\;Se In_2Se_3 Pb_{3.58}Sb_{4.42}Se_{10}$
64	$Sn_{3.04}Sb_{1.33}Ga_{0.63}Se_6$	800°C, 30hr(NaCl flux)	Sb ₂ Se ₃ SnSe
65	$Sn_{3.04}Sb_{1.33}In_{0.63}Se_6$	800°C, 30hr(NaCl flux)	Sb ₂ Se ₃ SnSe

66	$SnSb_{1.6}Ga_{0.4}Se_4$	800°C, 30hr(NaCl flux)	Sb ₂ Se ₃ SnSe Ga
67	$SnSb_{1.6}In_{0.4}Se_4$	800°C, 30hr(NaCl flux)	$SnSb_2Se_4\ Sn_4Sb_4Se_{10} In_4Se_3$
68	$Sn_3Sb_2Se_6$	800°C, 30hr(quench)	SnSe
69	$Sn_{3.04}Sb_{1.33}Ga_{0.63}Se_6$	800°C, 30hr(quench)	SnSe
70	$Sn_3Sb_2S_6$	800°C, 30hr(quench)	$SnSb_2S_4 (SnS_2 Sn_2S_3)$
71	AuPbBi ₃ Se ₆	800°C, 40hr	Au_2Bi_3 Bi_2Se_3
72	AgSnBi ₃ Te ₆	800°C, 40hr	Bi ₂ Te ₃ SnTe
73	CuPbSb ₃ Te ₆	800°C, 40hr	Sb ₂ Te ₃ PbTe
74	AgSnBi ₃ S ₆	950°C, 40hr	amorphose
75	AgSnBi ₃ Se ₆	950°C, 40hr	unknown
76	CuSnSb ₃ Se ₆	950°C, 40hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9$ Sb_2Se_3
77	AgSnBi ₃ S ₆	650°C, 40hr	$AgBi_3S_5 SnS_2$
78	AgSnBi ₃ Se ₆	650°C, 40hr	unknown
79	CuSnSb ₃ Se ₆	650°C, 40hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9$ Sb_2Se_3
80	$CuSn_4Bi_4S_{10}$	800°C, 40hr	Bi ₂ S ₃ unknown
81	AgSnBi ₃ Se ₆	800°C, 40hr	unknown
82	AgSnSb ₃ Se ₆	800°C, 40hr	$AgSnSb_3Se_6$
83	CuSnBi ₃ S ₆	900°C 36hr&700°C 36hr	Cu ₂ SnS ₃ unknown
84	CuSnBi ₃ Se ₆	900°C 36hr&700°C 36hr	$Cu_2Sn_3Se_4 \ Cu_{1.6}Bi_{4.8}Se_8$
85	CuSnSb ₃ Se ₆	900°C 36hr&700°C 36hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9\ Sb_2Se_3$
86	$AgPb_{0.75}Sn_{0.25}Sb_3Se_6$	800°C, 40hrsss	unknown
87	$AgPb_{0.5}Sn_{0.5}Sb_3Se_6$	800°C, 40hr	unknown
88	$AgPb_{0.25}Sn_{0.75}Sb_3Se_6$	800°C, 40hr	unknown
89	AgSnBi ₃ Se ₆	900°C, 36hr	unknown
90	CuSnBi ₃ Se ₆	900°C, 36hr	$Cu_2Sn_3Se_4 \ Cu_{1.6}Bi_{4.8}Se_8$
91	CuSnSb ₃ Se ₆	900°C, 36hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9\ Sb_2Se_3$
92	CuGeSb ₃ Se ₆	800°C, 40hr	Sb ₂ Se ₃ unknown
93	AgGeSb ₃ Se ₆	800°C, 40hr	unknown
94	AgGeBi ₃ Se ₆	800°C, 40hr	GeSe ₂ unknown
95	AgPbSb ₃ Se ₆	800°C, 40hr	$AgPbSb_3Se_6$
96	AgSnSb ₃ Se ₆	800°C, 40hr	$AgSnSb_3Se_6$
97a	CuSnSb ₃ Se ₆	900°C, 36hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9\ Sb_2Se_3$
97b	CuSnSb ₃ Se ₆	700°C, 36hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9 Sb_2Se_3$
98	$Cu_{0.8}Sn_{1.4}Bi_{4.8}Se_9$	800°C, 40hr	$Cu_{0.8}Sn_{1.4}Bi_{4.8}Se_9\ Bi_2Se_3$
99	$Cu_{0.8}Sn_{1.4}Sb_{4.8}Se_{9}$	800°C, 40hr	Sb ₂ Se ₃ Se unknown
100	CuSn-Sh-Se-	800°C 40hr	Cu ₂ SnSe ₄ Sb ₂ Se ₃

101	CuSn ₂ Bi ₄ Se ₉	800°C, 40hr	$Cu_{0.9}Sn_{1.2}Bi_{4.9}Se_9 Sb_2Se_3$
102	$Ag_{0.8}Sn_{1.4}Bi_{4.8}Se_9$	800°C, 40hr	unknown
103	CuPb ₂ Sb ₄ Se ₉	800°C, 40hr	Sb Se PbSe Cu ₅ Se ₄
104	Ag ₂ CrSnTe ₄	700°C, 36hr	Cr ₅ Te ₈ (AgTe ₃) unknown
105	Ag ₂ MnSnTe ₄	700°C, 36hr	MnTe ₂ (AgTe ₃) unknown
106	Ag ₂ FeSnTe ₄	700°C, 36hr	FeTe ₂ AgTe ₃ unknown
107	Cu ₂ CrSnTe ₄	700°C, 36hr	SnTe Cu _{1.81} Cr ₂ Te ₄ unknown
108	$Cu_2MnSnTe_4$	700°C, 36hr	unknown
109	$Cu_2FeSnTe_4$	700°C, 36hr	SnTe $Cu_{1.096}Fe_{1.184}Te_{1.94}$ unknown
110	CrSn ₂ Sb ₄ Se ₉	800°C, 36hr	unknown
111	MnSn ₂ Sb ₄ Se ₉	800°C, 36hr	unknown
112	FeSn ₂ Sb ₄ Se ₉	800°C, 36hr	unknown
113	CrSn ₂ Bi ₄ Se ₉	800°C, 36hr	BiSe Sn _{0.57} 1Bi _{0.286} Se
114	MnSn ₂ Bi ₄ Se ₉	800°C, 36hr	Bi ₃ Se ₄ BiSe
115	FeSn ₂ Bi ₄ Se ₉	800°C, 36hr	BiSe Sn _{0.57} 1Bi _{0.286} Se unknown
116	CuSnBi ₅ Se ₉	800°C, 36hr	Bi ₂ Se ₃
117	CuSnSb ₅ Se ₉	800°C, 36hr	Se Cu ₃ SbSe ₃
118	AgSnBi ₅ Se ₉	800°C, 36hr	unknown